From 17259d6a532d10a2e38815f6cc394d35d7f31bd9 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Thu, 17 Jun 2010 06:42:50 +0000 Subject: * algebra/catdef.spad.pamphlet (PartialDifferentialSpace): New. (PartialDifferentialRing): Now extend PartialDifferentialSpace. --- src/ChangeLog | 5 + src/algebra/Makefile.in | 6 +- src/algebra/Makefile.pamphlet | 6 +- src/algebra/catdef.spad.pamphlet | 108 +- src/share/algebra/browse.daase | 2118 +-- src/share/algebra/category.daase | 3029 ++-- src/share/algebra/compress.daase | 1326 +- src/share/algebra/interp.daase | 10107 ++++++------ src/share/algebra/operation.daase | 30549 ++++++++++++++++++------------------ 9 files changed, 23691 insertions(+), 23563 deletions(-) (limited to 'src') diff --git a/src/ChangeLog b/src/ChangeLog index 4074e739..713731fb 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,8 @@ +2010-06-17 Gabriel Dos Reis + + * algebra/catdef.spad.pamphlet (PartialDifferentialSpace): New. + (PartialDifferentialRing): Now extend PartialDifferentialSpace. + 2010-06-16 Gabriel Dos Reis * algebra/vector.spad.pamphlet (DirectProductCategory): Extend diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index a56827df..5bbaa9dd 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -342,6 +342,7 @@ $(OUT)/DIFFDOM.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) $(OUT)/DIFFSPC.$(FASLEXT): $(OUT)/DIFFDOM.$(FASLEXT) $(OUT)/DIFFMOD.$(FASLEXT): $(OUT)/DIFFSPC.$(FASLEXT) $(OUT)/PDDOM.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) +$(OUT)/PDSPC.$(FASLEXT): $(OUT)/PDDOM.$(FASLEXT) axiom_algebra_layer_0 = \ AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \ @@ -368,7 +369,7 @@ axiom_algebra_layer_0 = \ DIOPS DIOPS- STRING STRICAT ISTRING ILIST \ LIST DIFFDOM DIFFDOM- DIFFSPC DIFFSPC- DIFFMOD \ LINEXP PATMAB REAL CHARZ LOGIC LOGIC- \ - RTVALUE SYSPTR PDDOM PDDOM- + RTVALUE SYSPTR PDDOM PDDOM- PDSPC PDSPC- axiom_algebra_layer_0_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_0)) @@ -499,13 +500,14 @@ axiom_algebra_layer_4_objects = \ $(OUT)/KERNEL.$(FASLEXT): $(OUT)/KERNEL2.$(FASLEXT) $(OUT)/DVARCAT.$(FASLEXT): $(OUT)/DIFFSPC.$(FASLEXT) +$(OUT)/PDRING.$(FASLEXT): $(OUT)/PDSPC.$(FASLEXT) axiom_algebra_layer_5 = \ CHARNZ DVARCAT DVARCAT- ELEMFUN \ ELEMFUN- ESTOOLS2 FCOMP FPATMAB IDPAM IDPO \ INCRMAPS KERNEL2 MODMONOM MONADWU MONADWU- \ MRF2 NARNG NARNG- NSUP2 ODVAR OPQUERY \ - ORDMON PATMATCH PERMCAT PDRING PDRING- \ + ORDMON PATMATCH PERMCAT PDRING \ SDVAR SUP2 TRIGCAT TRIGCAT- ULS2 UP2 \ ELABEXPR KERNEL diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 3149256b..c65cf20b 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -296,6 +296,7 @@ $(OUT)/DIFFDOM.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) $(OUT)/DIFFSPC.$(FASLEXT): $(OUT)/DIFFDOM.$(FASLEXT) $(OUT)/DIFFMOD.$(FASLEXT): $(OUT)/DIFFSPC.$(FASLEXT) $(OUT)/PDDOM.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) +$(OUT)/PDSPC.$(FASLEXT): $(OUT)/PDDOM.$(FASLEXT) axiom_algebra_layer_0 = \ AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \ @@ -322,7 +323,7 @@ axiom_algebra_layer_0 = \ DIOPS DIOPS- STRING STRICAT ISTRING ILIST \ LIST DIFFDOM DIFFDOM- DIFFSPC DIFFSPC- DIFFMOD \ LINEXP PATMAB REAL CHARZ LOGIC LOGIC- \ - RTVALUE SYSPTR PDDOM PDDOM- + RTVALUE SYSPTR PDDOM PDDOM- PDSPC PDSPC- axiom_algebra_layer_0_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_0)) @@ -478,13 +479,14 @@ axiom_algebra_layer_4_objects = \ $(OUT)/KERNEL.$(FASLEXT): $(OUT)/KERNEL2.$(FASLEXT) $(OUT)/DVARCAT.$(FASLEXT): $(OUT)/DIFFSPC.$(FASLEXT) +$(OUT)/PDRING.$(FASLEXT): $(OUT)/PDSPC.$(FASLEXT) axiom_algebra_layer_5 = \ CHARNZ DVARCAT DVARCAT- ELEMFUN \ ELEMFUN- ESTOOLS2 FCOMP FPATMAB IDPAM IDPO \ INCRMAPS KERNEL2 MODMONOM MONADWU MONADWU- \ MRF2 NARNG NARNG- NSUP2 ODVAR OPQUERY \ - ORDMON PATMATCH PERMCAT PDRING PDRING- \ + ORDMON PATMATCH PERMCAT PDRING \ SDVAR SUP2 TRIGCAT TRIGCAT- ULS2 UP2 \ ELABEXPR KERNEL diff --git a/src/algebra/catdef.spad.pamphlet b/src/algebra/catdef.spad.pamphlet index 735d2e43..a09a99ea 100644 --- a/src/algebra/catdef.spad.pamphlet +++ b/src/algebra/catdef.spad.pamphlet @@ -1430,7 +1430,7 @@ OrderedSet(): Category == SetCategory with ++ operation named \spad{differentiate} for partial differentiation with ++ respect to some domain of variables. ++ See Also: -++ DifferentialDomain +++ DifferentialDomain, PartialDifferentialSpace PartialDifferentialDomain(T: Type, S: Type): Category == Type with differentiate: (%,S) -> T ++ \spad{differentiate(x,v)} computes the partial derivative @@ -1443,6 +1443,65 @@ PartialDifferentialDomain(T: Type, S: Type): Category == Type with @ +\section{Partial Differential Space} + +<>= +)abbrev category PDSPC PartialDifferentialSpace +++ Author: Gabriel Dos Reis +++ Date Created: June 16, 2010 +++ Date Last Modified: June 16, 2010 +++ Description: +++ This category captures the interface of domains stable by partial +++ differentiation with respect to variables from some domain. +++ See Also: +++ PartialDifferentialDomain +PartialDifferentialSpace(S: SetCategory): Category == + PartialDifferentialDomain(%,S) with + differentiate: (%,List S) -> % + ++ \spad{differentiate(x,[s1,...sn])} computes successive + ++ partial derivatives, i.e. + ++ \spad{differentiate(...differentiate(x, s1)..., sn)}. + differentiate: (%,S,NonNegativeInteger) -> % + ++ \spad{differentiate(x,s,n)} computes multiple partial + ++ derivatives, i.e. \spad{n}-th derivative of \spad{x} + ++ with respect to \spad{s}. + differentiate: (%,List S,List NonNegativeInteger) -> % + ++ \spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes + ++ multiple partial derivatives, i.e. + D: (%,List S) -> % + ++ \spad{D(x,[s1,...sn])} is a shorthand for + ++ \spad{differentiate(x,[s1,...sn])}. + D: (%,S,NonNegativeInteger) -> % + ++ \spad{D(x,s,n)} is a shorthand for \spad{differentiate(x,s,n)}. + D: (%,List S,List NonNegativeInteger) -> % + ++ \spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for + ++ \spad{differentiate(x,[s1,...,sn],[n1,...,nn])}. + add + differentiate(r: %,l: List S) == + for s in l repeat r := differentiate(r, s) + r + + differentiate(r: %,s: S,n: NonNegativeInteger) == + for i in 1..n repeat r := differentiate(r, s) + r + + differentiate(r: %,ls: List S,ln: List NonNegativeInteger) == + for s in ls for n in ln repeat r := differentiate(r, s, n) + r + + D(r: %,v: S) == + differentiate(r,v) + + D(r: %,lv: List S) == + differentiate(r,lv) + D(r: %,v: S,n: NonNegativeInteger) == + differentiate(r,v,n) + D(r: %,lv: List S,ln: List NonNegativeInteger) == + differentiate(r, lv, ln) + +@ + + \section{category PDRING PartialDifferentialRing} <>= @@ -1463,49 +1522,8 @@ PartialDifferentialDomain(T: Type, S: Type): Category == Type with ++ \spad{differentiate(x+y,e) = differentiate(x,e)+differentiate(y,e)} ++ \spad{differentiate(x*y,e) = x*differentiate(y,e) + differentiate(x,e)*y} -PartialDifferentialRing(S:SetCategory): Category == Ring with - differentiate: (%, S) -> % - ++ differentiate(x,v) computes the partial derivative of x - ++ with respect to v. - differentiate: (%, List S) -> % - ++ differentiate(x,[s1,...sn]) computes successive partial derivatives, - ++ i.e. \spad{differentiate(...differentiate(x, s1)..., sn)}. - differentiate: (%, S, NonNegativeInteger) -> % - ++ differentiate(x, s, n) computes multiple partial derivatives, i.e. - ++ n-th derivative of x with respect to s. - differentiate: (%, List S, List NonNegativeInteger) -> % - ++ differentiate(x, [s1,...,sn], [n1,...,nn]) computes - ++ multiple partial derivatives, i.e. - D: (%, S) -> % - ++ D(x,v) computes the partial derivative of x - ++ with respect to v. - D: (%, List S) -> % - ++ D(x,[s1,...sn]) computes successive partial derivatives, - ++ i.e. \spad{D(...D(x, s1)..., sn)}. - D: (%, S, NonNegativeInteger) -> % - ++ D(x, s, n) computes multiple partial derivatives, i.e. - ++ n-th derivative of x with respect to s. - D: (%, List S, List NonNegativeInteger) -> % - ++ D(x, [s1,...,sn], [n1,...,nn]) computes - ++ multiple partial derivatives, i.e. - ++ \spad{D(...D(x, s1, n1)..., sn, nn)}. - add - differentiate(r:%, l:List S) == - for s in l repeat r := differentiate(r, s) - r - - differentiate(r:%, s:S, n:NonNegativeInteger) == - for i in 1..n repeat r := differentiate(r, s) - r - - differentiate(r:%, ls:List S, ln:List NonNegativeInteger) == - for s in ls for n in ln repeat r := differentiate(r, s, n) - r - - D(r:%, v:S) == differentiate(r,v) - D(r:%, lv:List S) == differentiate(r,lv) - D(r:%, v:S, n:NonNegativeInteger) == differentiate(r,v,n) - D(r:%, lv:List S, ln:List NonNegativeInteger) == differentiate(r, lv, ln) +PartialDifferentialRing(S:SetCategory): Category == + Join(Ring,PartialDifferentialSpace S) @ \section{category PFECAT PolynomialFactorizationExplicit} @@ -1966,9 +1984,11 @@ VectorSpace(S:Field): Category == Module(S) with <> <> <> +<> <> <> @ + \eject \begin{thebibliography}{99} \bibitem{1} nothing diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index cb342eef..7d7b97b7 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2266091 . 3485733144) +(2266740 . 3485743640) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4455 . T) (-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4451 . T) (-4456 . T) (-4450 . T)) +((-4456 . T) (-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4452 . T) (-4457 . T) (-4451 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -1395) +(-32 R -1396) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) +((|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4458))) +((|HasAttribute| |#1| (QUOTE -4459))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4458 . T) (-4459 . T)) +((-4459 . T) (-4460 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4452 . T) (-4453 . T) (-4455 . T)) +((-4453 . T) (-4454 . T) (-4456 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -1395 UP UPUP -2078) +(-40 -1396 UP UPUP -1510) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4451 |has| (-417 |#2|) (-372)) (-4456 |has| (-417 |#2|) (-372)) (-4450 |has| (-417 |#2|) (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2832 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2832 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2832 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372))))) -(-41 R -1395) +((-4452 |has| (-417 |#2|) (-372)) (-4457 |has| (-417 |#2|) (-372)) (-4451 |has| (-417 |#2|) (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2833 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2833 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2833 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372))))) +(-41 R -1396) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -440) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -440) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-315)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4455 |has| |#1| (-566)) (-4453 . T) (-4452 . T)) +((-4456 |has| |#1| (-566)) (-4454 . T) (-4453 . T)) ((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4458 . T) (-4459 . T)) -((-2832 (-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|))))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|))))))) +((-4459 . T) (-4460 . T)) +((-2833 (-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|))))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574))))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4455 . T)) +((-4456 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -1395) +(-54 |Base| R -1396) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4458 . T) (-4459 . T)) +((-4459 . T) (-4460 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-61 -2040) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-61 -2039) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -2040) +(-62 -2039) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -2040) +(-63 -2039) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -2040) +(-64 -2039) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -2040) +(-65 -2039) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2040) +(-66 -2039) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -2040) +(-67 -2039) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2040) +(-68 -2039) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2040) +(-69 -2039) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -2040) +(-70 -2039) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -2040) +(-71 -2039) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -2040) +(-72 -2039) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -2040) +(-73 -2039) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -2040) +(-74 -2039) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -2040) +(-77 -2039) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -2040) +(-78 -2039) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -2040) +(-79 -2039) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2040) +(-80 -2039) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2040) +(-81 -2039) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -2040) +(-82 -2039) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2040) +(-83 -2039) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2040) +(-84 -2039) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2040) +(-85 -2039) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2040) +(-86 -2039) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2040) +(-87 -2039) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -2040) +(-88 -2039) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -2040) +(-89 -2039) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-372)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4458 . T)) +((-4459 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4458 . T) ((-4460 "*") . T) (-4459 . T) (-4455 . T) (-4453 . T) (-4452 . T) (-4451 . T) (-4456 . T) (-4450 . T) (-4449 . T) (-4448 . T) (-4447 . T) (-4446 . T) (-4454 . T) (-4457 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4445 . T)) +((-4459 . T) ((-4461 "*") . T) (-4460 . T) (-4456 . T) (-4454 . T) (-4453 . T) (-4452 . T) (-4457 . T) (-4451 . T) (-4450 . T) (-4449 . T) (-4448 . T) (-4447 . T) (-4455 . T) (-4458 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4446 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4455 . T)) +((-4456 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4460 "*")))) +((|HasAttribute| |#1| (QUOTE (-4461 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4458 . T)) +((-4459 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4459 . T)) +((-4460 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| (-574) (QUOTE (-922))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1037))) (|HasCategory| (-574) (QUOTE (-830))) (-2832 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1167))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (|HasCategory| (-574) (QUOTE (-146))))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| (-574) (QUOTE (-923))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1038))) (|HasCategory| (-574) (QUOTE (-830))) (-2833 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1168))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (|HasCategory| (-574) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4459 . T) (-4458 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872))))) +((-4460 . T) (-4459 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4453 . T) (-4452 . T)) +((-4454 . T) (-4453 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -392,22 +392,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -1395 UP) +(-116 -1396 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-922))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-117 |#1|) (QUOTE (-1037))) (|HasCategory| (-117 |#1|) (QUOTE (-830))) (-2832 (|HasCategory| (-117 |#1|) (QUOTE (-830))) (|HasCategory| (-117 |#1|) (QUOTE (-860)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-1167))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-315))) (|HasCategory| (-117 |#1|) (QUOTE (-555))) (|HasCategory| (-117 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-922)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| (-117 |#1|) (QUOTE (-923))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-117 |#1|) (QUOTE (-1038))) (|HasCategory| (-117 |#1|) (QUOTE (-830))) (-2833 (|HasCategory| (-117 |#1|) (QUOTE (-830))) (|HasCategory| (-117 |#1|) (QUOTE (-860)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-1168))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-315))) (|HasCategory| (-117 |#1|) (QUOTE (-555))) (|HasCategory| (-117 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-923)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4459))) +((|HasAttribute| |#1| (QUOTE -4460))) (-120 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -418,15 +418,15 @@ NIL NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-124) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL (-125 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -434,20 +434,20 @@ NIL NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4458 . T) (-4459 . T)) +((-4459 . T) (-4460 . T)) NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) (-2832 (-12 (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1115)))) (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) (-2833 (-12 (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1116)))) (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -470,13 +470,13 @@ NIL NIL (-135) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4460 "*") . T)) +(((-4461 "*") . T)) NIL -(-136 |minix| -4105 S T$) +(-136 |minix| -4106 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -4105 R) +(-137 |minix| -4106 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -498,8 +498,8 @@ NIL NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4458 . T) (-4448 . T) (-4459 . T)) -((-2832 (-12 (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) +((-4459 . T) (-4449 . T) (-4460 . T)) +((-2833 (-12 (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4455 . T)) +((-4456 . T)) NIL (-147 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -522,9 +522,9 @@ NIL NIL (-148) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4455 . T)) +((-4456 . T)) NIL -(-149 -1395 UP UPUP) +(-149 -1396 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -535,14 +535,14 @@ NIL (-151 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasAttribute| |#1| (QUOTE -4458))) +((|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasAttribute| |#1| (QUOTE -4459))) (-152 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-153 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1167,7 +1167,7 @@ NIL (-309 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1064)))) +((|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1065)))) (-310) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL @@ -1190,7 +1190,7 @@ NIL NIL (-315) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-316 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1200,7 +1200,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-318 -1395) +(-318 -1396) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1214,8 +1214,8 @@ NIL NIL (-321 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-922))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-1037))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (-2832 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-860)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-1167))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -317) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -294) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-315))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-555))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-860))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-922))) (|HasCategory| $ (QUOTE (-146)))) (-2832 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-922))) (|HasCategory| $ (QUOTE (-146)))))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-923))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-1038))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (-2833 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-860)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-1168))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -317) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -294) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-315))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-555))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-860))) (-12 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-923))) (|HasCategory| $ (QUOTE (-146)))) (-2833 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-923))) (|HasCategory| $ (QUOTE (-146)))))) (-322 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1226,9 +1226,9 @@ NIL NIL (-324 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4455 -2832 (-12 (|has| |#1| (-566)) (-2832 (|has| |#1| (-1064)) (|has| |#1| (-483)))) (|has| |#1| (-1064)) (|has| |#1| (-483))) (-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) ((-4460 "*") |has| |#1| (-566)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-566)) (-4450 |has| |#1| (-566))) -((-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (QUOTE (-21))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (QUOTE (-1064))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1127)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2832 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1127)))) (-2832 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574))))) -(-325 R -1395) +((-4456 -2833 (-12 (|has| |#1| (-566)) (-2833 (|has| |#1| (-1065)) (|has| |#1| (-483)))) (|has| |#1| (-1065)) (|has| |#1| (-483))) (-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) ((-4461 "*") |has| |#1| (-566)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-566)) (-4451 |has| |#1| (-566))) +((-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (QUOTE (-21))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (QUOTE (-1065))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1128)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2833 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1128)))) (-2833 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574))))) +(-325 R -1396) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1238,8 +1238,8 @@ NIL NIL (-327 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|))))))) (-328 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1250,7 +1250,7 @@ NIL NIL (-330 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4453 . T) (-4452 . T)) +((-4454 . T) (-4453 . T)) ((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-802)))) (-331 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) @@ -1266,19 +1266,19 @@ NIL ((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174)))) (-334 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-335 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-336 S -1395) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-336 S -1396) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-377)))) -(-337 -1395) +(-337 -1396) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-338) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1300,54 +1300,54 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-343 S -1395 UP UPUP R) +(-343 S -1396 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-344 -1395 UP UPUP R) +(-344 -1396 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-345 -1395 UP UPUP R) +(-345 -1396 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL (-346 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-347 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-348 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-388)))) (|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574))))) +((-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-388)))) (|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574))))) (-349 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-350 S -1395 UP UPUP) +(-350 S -1396 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-372)))) -(-351 -1395 UP UPUP) +(-351 -1396 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4451 |has| (-417 |#2|) (-372)) (-4456 |has| (-417 |#2|) (-372)) (-4450 |has| (-417 |#2|) (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 |has| (-417 |#2|) (-372)) (-4457 |has| (-417 |#2|) (-372)) (-4451 |has| (-417 |#2|) (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-352 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (|HasCategory| (-923 |#1|) (QUOTE (-146))) (|HasCategory| (-923 |#1|) (QUOTE (-377)))) (|HasCategory| (-923 |#1|) (QUOTE (-148))) (|HasCategory| (-923 |#1|) (QUOTE (-377))) (|HasCategory| (-923 |#1|) (QUOTE (-146)))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (|HasCategory| (-924 |#1|) (QUOTE (-146))) (|HasCategory| (-924 |#1|) (QUOTE (-377)))) (|HasCategory| (-924 |#1|) (QUOTE (-148))) (|HasCategory| (-924 |#1|) (QUOTE (-377))) (|HasCategory| (-924 |#1|) (QUOTE (-146)))) (-353 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) (-354 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) (-355 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1362,33 +1362,33 @@ NIL NIL (-358) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-359 R UP -1395) +(-359 R UP -1396) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-360 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (|HasCategory| (-923 |#1|) (QUOTE (-146))) (|HasCategory| (-923 |#1|) (QUOTE (-377)))) (|HasCategory| (-923 |#1|) (QUOTE (-148))) (|HasCategory| (-923 |#1|) (QUOTE (-377))) (|HasCategory| (-923 |#1|) (QUOTE (-146)))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (|HasCategory| (-924 |#1|) (QUOTE (-146))) (|HasCategory| (-924 |#1|) (QUOTE (-377)))) (|HasCategory| (-924 |#1|) (QUOTE (-148))) (|HasCategory| (-924 |#1|) (QUOTE (-377))) (|HasCategory| (-924 |#1|) (QUOTE (-146)))) (-361 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) (-362 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) (-363 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (|HasCategory| (-923 |#1|) (QUOTE (-146))) (|HasCategory| (-923 |#1|) (QUOTE (-377)))) (|HasCategory| (-923 |#1|) (QUOTE (-148))) (|HasCategory| (-923 |#1|) (QUOTE (-377))) (|HasCategory| (-923 |#1|) (QUOTE (-146)))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (|HasCategory| (-924 |#1|) (QUOTE (-146))) (|HasCategory| (-924 |#1|) (QUOTE (-377)))) (|HasCategory| (-924 |#1|) (QUOTE (-148))) (|HasCategory| (-924 |#1|) (QUOTE (-377))) (|HasCategory| (-924 |#1|) (QUOTE (-146)))) (-364 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) -(-365 -1395 GF) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +(-365 -1396 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1396,21 +1396,21 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-367 -1395 FP FPP) +(-367 -1396 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-368 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) (-369 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-370 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4455 . T)) +((-4456 . T)) NIL (-371 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1418,7 +1418,7 @@ NIL NIL (-372) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-373 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1434,7 +1434,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-566)))) (-376 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4455 |has| |#1| (-566)) (-4453 . T) (-4452 . T)) +((-4456 |has| |#1| (-566)) (-4454 . T) (-4453 . T)) NIL (-377) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1446,7 +1446,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-372)))) (-379 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4452 . T) (-4453 . T) (-4455 . T)) +((-4453 . T) (-4454 . T) (-4456 . T)) NIL (-380 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1455,14 +1455,14 @@ NIL (-381 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115)))) +((|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116)))) (-382 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4458 . T)) +((-4459 . T)) NIL (-383 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4453 . T) (-4452 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4454 . T) (-4453 . T)) NIL (-384 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1482,7 +1482,7 @@ NIL NIL (-388) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4441 . T) (-4449 . T) (-3524 . T) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4442 . T) (-4450 . T) (-3525 . T) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-389 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1490,11 +1490,11 @@ NIL NIL (-390 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4453 . T) (-4452 . T)) +((-4454 . T) (-4453 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) (-391 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4453 . T) (-4452 . T)) +((-4454 . T) (-4453 . T)) NIL (-392) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) @@ -1506,7 +1506,7 @@ NIL NIL (-394 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4453 . T) (-4452 . T)) +((-4454 . T) (-4453 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) (-395 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) @@ -1518,7 +1518,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-860)))) (-397) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-398) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1530,13 +1530,13 @@ NIL NIL (-400 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4453 . T) (-4452 . T)) +((-4454 . T) (-4453 . T)) NIL (-401) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-402 -1395 UP UPUP R) +(-402 -1396 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1560,11 +1560,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-408 -2040 |returnType| -1573 |symbols|) +(-408 -2039 |returnType| -1572 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-409 -1395 UP) +(-409 -1396 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1578,15 +1578,15 @@ NIL NIL (-412) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-413 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4441)) (|HasAttribute| |#1| (QUOTE -4449))) +((|HasAttribute| |#1| (QUOTE -4442)) (|HasAttribute| |#1| (QUOTE -4450))) (-414) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3524 . T) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-3525 . T) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-415 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1598,20 +1598,20 @@ NIL NIL (-417 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4445 -12 (|has| |#1| (-6 -4456)) (|has| |#1| (-462)) (|has| |#1| (-6 -4445))) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-830))) (-2832 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-860)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-555))) (-12 (|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-462)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +((-4446 -12 (|has| |#1| (-6 -4457)) (|has| |#1| (-462)) (|has| |#1| (-6 -4446))) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-830))) (-2833 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-860)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-555))) (-12 (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-462)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))))) (-418 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-419 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4452 . T) (-4453 . T) (-4455 . T)) +((-4453 . T) (-4454 . T) (-4456 . T)) NIL (-420 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) +((|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-421 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL @@ -1620,14 +1620,14 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-423 R -1395 UP A) +(-423 R -1396 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4455 . T)) +((-4456 . T)) NIL -(-424 R -1395 UP A |ibasis|) +(-424 R -1396 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1053) (|devaluate| |#2|)))) +((|HasCategory| |#4| (LIST (QUOTE -1054) (|devaluate| |#2|)))) (-425 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1638,12 +1638,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-372)))) (-427 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4455 |has| |#1| (-566)) (-4453 . T) (-4452 . T)) +((-4456 |has| |#1| (-566)) (-4454 . T) (-4453 . T)) NIL (-428 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -317) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1237))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-1237)))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-462)))) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -317) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1238))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-1238)))) (|HasCategory| |#1| (QUOTE (-1038))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-462)))) (-429 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL @@ -1670,37 +1670,37 @@ NIL ((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377)))) (-435 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4458 . T) (-4448 . T) (-4459 . T)) +((-4459 . T) (-4449 . T) (-4460 . T)) NIL -(-436 R -1395) +(-436 R -1396) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-437 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4445 -12 (|has| |#1| (-6 -4445)) (|has| |#2| (-6 -4445))) (-4452 . T) (-4453 . T) (-4455 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4445)) (|HasAttribute| |#2| (QUOTE -4445)))) -(-438 R -1395) +((-4446 -12 (|has| |#1| (-6 -4446)) (|has| |#2| (-6 -4446))) (-4453 . T) (-4454 . T) (-4456 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4446)) (|HasAttribute| |#2| (QUOTE -4446)))) +(-438 R -1396) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL (-439 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-1127))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) +((|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-1128))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-440 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4455 -2832 (|has| |#1| (-1064)) (|has| |#1| (-483))) (-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) ((-4460 "*") |has| |#1| (-566)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-566)) (-4450 |has| |#1| (-566))) +((-4456 -2833 (|has| |#1| (-1065)) (|has| |#1| (-483))) (-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) ((-4461 "*") |has| |#1| (-566)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-566)) (-4451 |has| |#1| (-566))) NIL -(-441 R -1395) +(-441 R -1396) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-442 R -1395) +(-442 R -1396) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-443 R -1395) +(-443 R -1396) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1708,10 +1708,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-445 R -1395 UP) +(-445 R -1396 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-48))))) +((|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-48))))) (-446) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL @@ -1740,7 +1740,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-453 R UP -1395) +(-453 R UP -1396) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1778,16 +1778,16 @@ NIL NIL (-462) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-463 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4455 |has| (-417 (-965 |#1|)) (-566)) (-4453 . T) (-4452 . T)) -((|HasCategory| (-417 (-965 |#1|)) (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-417 (-965 |#1|)) (QUOTE (-566)))) +((-4456 |has| (-417 (-966 |#1|)) (-566)) (-4454 . T) (-4453 . T)) +((|HasCategory| (-417 (-966 |#1|)) (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-417 (-966 |#1|)) (QUOTE (-566)))) (-464 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#2| (QUOTE (-922))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#2| (QUOTE (-923))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146))))) (-465 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1814,7 +1814,7 @@ NIL NIL (-471 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4453 . T) (-4452 . T)) +((-4454 . T) (-4453 . T)) NIL (-472 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1822,8 +1822,8 @@ NIL NIL (-473 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4459 . T) (-4458 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4460 . T) (-4459 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) (-474 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1852,7 +1852,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-481 |lv| -1395 R) +(-481 |lv| -1396 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1862,23 +1862,23 @@ NIL NIL (-483) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4455 . T)) +((-4456 . T)) NIL (-484 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|))))))) (-485 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4459 . T)) -((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115)))) +((-4460 . T)) +((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116)))) (-486 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4459 . T) (-4458 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4460 . T) (-4459 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) (-487) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-488) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1886,29 +1886,29 @@ NIL NIL (-489 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) (-490) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-491 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#2| (QUOTE (-922))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-492 -4105 S) +(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#2| (QUOTE (-923))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-492 -4106 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))))) +((-4453 |has| |#2| (-1065)) (-4454 |has| |#2| (-1065)) (-4456 |has| |#2| (-6 -4456)) ((-4461 "*") |has| |#2| (-174)) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2833 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2833 (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))))) (-493) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL (-494 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-495 -1395 UP UPUP R) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-495 -1396 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1918,12 +1918,12 @@ NIL NIL (-497) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| (-574) (QUOTE (-922))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1037))) (|HasCategory| (-574) (QUOTE (-830))) (-2832 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1167))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (|HasCategory| (-574) (QUOTE (-146))))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| (-574) (QUOTE (-923))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1038))) (|HasCategory| (-574) (QUOTE (-830))) (-2833 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1168))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (|HasCategory| (-574) (QUOTE (-146))))) (-498 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) +((|HasAttribute| |#1| (QUOTE -4459)) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (-499 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1944,34 +1944,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-504 -1395 UP |AlExt| |AlPol|) +(-504 -1396 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-505) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574))))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574))))) (-506 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-507 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-508 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-509 R UP -1395) +(-509 R UP -1396) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-510 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4459 . T) (-4458 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872))))) +((-4460 . T) (-4459 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872))))) (-511 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1984,10 +1984,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-514 -1395 |Expon| |VarSet| |DPoly|) +(-514 -1396 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-1192))))) +((|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-1193))))) (-515 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -2034,36 +2034,36 @@ NIL ((|HasCategory| |#2| (QUOTE (-802)))) (-526 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-527) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-528 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (|HasCategory| (-591 |#1|) (QUOTE (-146))) (|HasCategory| (-591 |#1|) (QUOTE (-377)))) (|HasCategory| (-591 |#1|) (QUOTE (-148))) (|HasCategory| (-591 |#1|) (QUOTE (-377))) (|HasCategory| (-591 |#1|) (QUOTE (-146)))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (|HasCategory| (-591 |#1|) (QUOTE (-146))) (|HasCategory| (-591 |#1|) (QUOTE (-377)))) (|HasCategory| (-591 |#1|) (QUOTE (-148))) (|HasCategory| (-591 |#1|) (QUOTE (-377))) (|HasCategory| (-591 |#1|) (QUOTE (-146)))) (-529 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-530 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-531 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4459))) +((|HasAttribute| |#3| (QUOTE -4460))) (-532 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4459))) +((|HasAttribute| |#7| (QUOTE -4460))) (-533 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4460 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4461 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-534) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2096,7 +2096,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-542 K -1395 |Par|) +(-542 K -1396 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2120,7 +2120,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-548 K -1395 |Par|) +(-548 K -1396 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2150,7 +2150,7 @@ NIL NIL (-555) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b

1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b

1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b

1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b

1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-556) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) @@ -2170,13 +2170,13 @@ NIL NIL (-560 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) -(-561 R -1395) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) +(-561 R -1396) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-562 R0 -1395 UP UPUP R) +(-562 R0 -1396 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2186,7 +2186,7 @@ NIL NIL (-564 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3524 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-3525 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-565 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2194,9 +2194,9 @@ NIL NIL (-566) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-567 R -1395) +(-567 R -1396) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2208,7 +2208,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-570 R -1395 L) +(-570 R -1396 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|)))) @@ -2216,31 +2216,31 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-572 -1395 UP UPUP R) +(-572 -1396 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-573 -1395 UP) +(-573 -1396 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-574) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4440 . T) (-4446 . T) (-4450 . T) (-4445 . T) (-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4441 . T) (-4447 . T) (-4451 . T) (-4446 . T) (-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-575) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-576 R -1395 L) +(-576 R -1396 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|)))) -(-577 R -1395) +(-577 R -1396) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-639))))) -(-578 -1395 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1155)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-639))))) +(-578 -1396 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2248,27 +2248,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-580 -1395) +(-580 -1396) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-581 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3524 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-3525 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-582) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-583 R -1395) +(-583 R -1396) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-639))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-566)))) -(-584 -1395 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-639))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-566)))) +(-584 -1396 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-585 R -1395) +(-585 R -1396) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2290,21 +2290,21 @@ NIL NIL (-590 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-591 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377)))) (-592) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-593 R -1395) +(-593 R -1396) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-594 E -1395) +(-594 E -1396) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL @@ -2312,10 +2312,10 @@ NIL ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-596 -1395) +(-596 -1396) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4453 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-1192))))) +((-4454 . T) (-4453 . T)) +((|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-1193))))) (-597 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL @@ -2342,19 +2342,19 @@ NIL NIL (-603 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (-2832 (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (-2833 (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (-604 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-605 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))) (|HasCategory| (-574) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574)))))) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))) (|HasCategory| (-574) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574)))))) (-606 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4460 "*") |has| |#1| (-566)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-566)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T)) ((|HasCategory| |#1| (QUOTE (-566)))) (-607) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) @@ -2368,7 +2368,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-610 R -1395 FG) +(-610 R -1396 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2378,12 +2378,12 @@ NIL NIL (-612 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1064))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1065))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-613 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-860))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#3| (QUOTE (-1115)))) +((|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-860))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#3| (QUOTE (-1116)))) (-614 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2398,19 +2398,19 @@ NIL NIL (-617 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4455 -2832 (-2096 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4453 . T) (-4452 . T)) -((-2832 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) +((-4456 -2833 (-2095 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4454 . T) (-4453 . T)) +((-2833 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-618 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1174))) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| (-1174) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| (-1175) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872))))) (-619 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-620 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4459 . T)) +((-4460 . T)) NIL (-621 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) @@ -2428,7 +2428,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-625 -1395 UP) +(-625 -1396 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2450,20 +2450,20 @@ NIL NIL (-630 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4455 . T)) +((-4456 . T)) NIL (-631 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4452 . T) (-4453 . T) (-4455 . T)) +((-4453 . T) (-4454 . T) (-4456 . T)) ((|HasCategory| |#1| (QUOTE (-858)))) -(-632 R -1395) +(-632 R -1396) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL (-633 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4451 . T) (-4455 . T)) -((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) +((-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4452 . T) (-4456 . T)) +((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (-634 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL @@ -2478,7 +2478,7 @@ NIL NIL (-637 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4455 . T)) +((-4456 . T)) NIL (-638 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) @@ -2488,30 +2488,30 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-640 R -1395) +(-640 R -1396) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-641 |lv| -1395) +(-641 |lv| -1396) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-642) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4459 . T)) -((-12 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1174))) (LIST (QUOTE |:|) (QUOTE -1917) (QUOTE (-52))))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-52) (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-1174) (QUOTE (-860))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (QUOTE (-1115)))) +((-4460 . T)) +((-12 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -1916) (QUOTE (-52))))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-52) (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-1175) (QUOTE (-860))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116)))) (-643 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-372)))) (-644 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4453 . T) (-4452 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4454 . T) (-4453 . T)) NIL (-645 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4455 -2832 (-2096 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4453 . T) (-4452 . T)) -((-2832 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) +((-4456 -2833 (-2095 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4454 . T) (-4453 . T)) +((-2833 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-646 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL @@ -2523,7 +2523,7 @@ NIL (-648 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2085 (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-372)))) +((-2084 (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-372)))) (-649 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL @@ -2546,8 +2546,8 @@ NIL NIL (-654 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-655 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL @@ -2558,8 +2558,8 @@ NIL NIL (-657 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-658 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL @@ -2571,39 +2571,39 @@ NIL (-660 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4459))) +((|HasAttribute| |#1| (QUOTE -4460))) (-661 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-662 R -1395 L) +(-662 R -1396 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL (-663 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) +((-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) (-664 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) +((-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) (-665 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-372)))) (-666 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4452 . T) (-4453 . T) (-4455 . T)) +((-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-667 -1395 UP) +(-667 -1396 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-668 A -4129) +(-668 A -2815) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) +((-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) (-669 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL @@ -2618,7 +2618,7 @@ NIL NIL (-672 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4453 . T) (-4452 . T)) +((-4454 . T) (-4453 . T)) ((|HasCategory| |#1| (QUOTE (-801)))) (-673 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) @@ -2626,7 +2626,7 @@ NIL NIL (-674 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4453 . T) (-4452 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4454 . T) (-4453 . T)) ((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-174)))) (-675 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) @@ -2634,13 +2634,13 @@ NIL NIL (-676 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL -(-677 -1395) +(-677 -1396) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-678 -1395 |Row| |Col| M) +(-678 -1396 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2650,8 +2650,8 @@ NIL NIL (-680 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4455 . T) (-4458 . T) (-4452 . T) (-4453 . T)) -((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))) (-2832 (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +((-4456 . T) (-4459 . T) (-4453 . T) (-4454 . T)) +((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))) (-2833 (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) (-681) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2671,7 +2671,7 @@ NIL (-685 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-686) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2715,10 +2715,10 @@ NIL (-696 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList = [j<1>,j<2>,...,j]},{} then \\spad{x(i,j)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList = [j<1>,j<2>,...,j]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i,j)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566)))) +((|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566)))) (-697 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList = [j<1>,j<2>,...,j]},{} then \\spad{x(i,j)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList = [j<1>,j<2>,...,j]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i,j)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4458 . T) (-4459 . T)) +((-4459 . T) (-4460 . T)) NIL (-698 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) @@ -2726,8 +2726,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566)))) (-699 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4458 . T) (-4459 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4460 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +((-4459 . T) (-4460 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4461 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-700 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2736,7 +2736,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-702 S -1395 FLAF FLAS) +(-702 S -1396 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2746,11 +2746,11 @@ NIL NIL (-704) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4451 . T) (-4456 |has| (-709) (-372)) (-4450 |has| (-709) (-372)) (-3535 . T) (-4457 |has| (-709) (-6 -4457)) (-4454 |has| (-709) (-6 -4454)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| (-709) (QUOTE (-148))) (|HasCategory| (-709) (QUOTE (-146))) (|HasCategory| (-709) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-377))) (|HasCategory| (-709) (QUOTE (-372))) (-2832 (|HasCategory| (-709) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-709) (QUOTE (-239))) (-2832 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (LIST (QUOTE -294) (QUOTE (-709)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -317) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2832 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-709) (QUOTE (-1037))) (|HasCategory| (-709) (QUOTE (-1218))) (-12 (|HasCategory| (-709) (QUOTE (-1017))) (|HasCategory| (-709) (QUOTE (-1218)))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-372))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-922))))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (-12 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-922)))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-922))))) (|HasCategory| (-709) (QUOTE (-555))) (-12 (|HasCategory| (-709) (QUOTE (-1075))) (|HasCategory| (-709) (QUOTE (-1218)))) (|HasCategory| (-709) (QUOTE (-1075))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-566)))) (-12 (|HasCategory| (-709) (QUOTE (-239))) (|HasCategory| (-709) (QUOTE (-372)))) (-12 (|HasCategory| (-709) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-566))) (|HasAttribute| (-709) (QUOTE -4457)) (|HasAttribute| (-709) (QUOTE -4454)) (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-146)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-358))))) +((-4452 . T) (-4457 |has| (-709) (-372)) (-4451 |has| (-709) (-372)) (-3536 . T) (-4458 |has| (-709) (-6 -4458)) (-4455 |has| (-709) (-6 -4455)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| (-709) (QUOTE (-148))) (|HasCategory| (-709) (QUOTE (-146))) (|HasCategory| (-709) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-377))) (|HasCategory| (-709) (QUOTE (-372))) (-2833 (|HasCategory| (-709) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-709) (QUOTE (-239))) (-2833 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (LIST (QUOTE -294) (QUOTE (-709)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -317) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2833 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-709) (QUOTE (-1038))) (|HasCategory| (-709) (QUOTE (-1219))) (-12 (|HasCategory| (-709) (QUOTE (-1018))) (|HasCategory| (-709) (QUOTE (-1219)))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-372))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-923))))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (-12 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-923)))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-923))))) (|HasCategory| (-709) (QUOTE (-555))) (-12 (|HasCategory| (-709) (QUOTE (-1076))) (|HasCategory| (-709) (QUOTE (-1219)))) (|HasCategory| (-709) (QUOTE (-1076))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-372)))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-566)))) (-12 (|HasCategory| (-709) (QUOTE (-239))) (|HasCategory| (-709) (QUOTE (-372)))) (-12 (|HasCategory| (-709) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-566))) (|HasAttribute| (-709) (QUOTE -4458)) (|HasAttribute| (-709) (QUOTE -4455)) (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-146)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-358))))) (-705 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4459 . T)) +((-4460 . T)) NIL (-706 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) @@ -2760,13 +2760,13 @@ NIL ((|constructor| (NIL "\\indented{1}{} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-708 OV E -1395 PG) +(-708 OV E -1396 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-709) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3524 . T) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-3525 . T) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-710 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2774,7 +2774,7 @@ NIL NIL (-711) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4457 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4458 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-712 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) @@ -2792,7 +2792,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-716 S -3583 I) +(-716 S -3584 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2802,7 +2802,7 @@ NIL NIL (-718 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4452 . T) (-4453 . T) (-4455 . T)) +((-4453 . T) (-4454 . T) (-4456 . T)) NIL (-719 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) @@ -2812,25 +2812,25 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-721 R |Mod| -2432 -4297 |exactQuo|) +(-721 R |Mod| -3607 -3404 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-722 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))))) (-723 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL (-724 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T)) +((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-725 R |Mod| -2432 -4297 |exactQuo|) +(-725 R |Mod| -3607 -3404 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4455 . T)) +((-4456 . T)) NIL (-726 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) @@ -2838,11 +2838,11 @@ NIL NIL (-727 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4453 . T) (-4452 . T)) +((-4454 . T) (-4453 . T)) NIL -(-728 -1395) +(-728 -1396) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4455 . T)) +((-4456 . T)) NIL (-729 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) @@ -2866,7 +2866,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377)))) (-734 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4451 |has| |#1| (-372)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 |has| |#1| (-372)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-735 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) @@ -2876,7 +2876,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-737 -1395 UP) +(-737 -1396 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2894,8 +2894,8 @@ NIL NIL (-741 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#2| (QUOTE (-922))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#2| (QUOTE (-923))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146))))) (-742 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2910,16 +2910,16 @@ NIL NIL (-745 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T)) +((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-860)))) (-746 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4448 . T) (-4459 . T)) +((-4449 . T) (-4460 . T)) NIL (-747 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4458 . T) (-4448 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4459 . T) (-4449 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-748) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL @@ -2930,7 +2930,7 @@ NIL NIL (-750 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4453 . T) (-4452 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4454 . T) (-4453 . T) (-4456 . T)) NIL (-751 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) @@ -2946,7 +2946,7 @@ NIL NIL (-754 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4453 . T) (-4452 . T)) +((-4454 . T) (-4453 . T)) NIL (-755) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) @@ -3028,11 +3028,11 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-775 -1395) +(-775 -1396) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-776 P -1395) +(-776 P -1396) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL @@ -3040,7 +3040,7 @@ NIL NIL NIL NIL -(-778 UP -1395) +(-778 UP -1396) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -3054,9 +3054,9 @@ NIL NIL (-781) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4460 "*") . T)) +(((-4461 "*") . T)) NIL -(-782 R -1395) +(-782 R -1396) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -3076,7 +3076,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-787 -1395 |ExtF| |SUEx| |ExtP| |n|) +(-787 -1396 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -3090,28 +3090,28 @@ NIL NIL (-790 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2085 (|HasCategory| |#1| (QUOTE (-555)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574))))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-574))))))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (QUOTE (-555)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574))))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -1008) (QUOTE (-574))))))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))))) (-791 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL (-792 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))))) (-793 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-794 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL (-795 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-174)))) +((-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-174)))) (-796) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL @@ -3155,28 +3155,28 @@ NIL (-806 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377)))) +((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377)))) (-807 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4452 . T) (-4453 . T) (-4455 . T)) +((-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-808 -2832 R OS S) +(-808 -2833 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL (-809 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-2832 (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) +((-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-2833 (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (-810) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-811 R -1395 L) +(-811 R -1396 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-812 R -1395) +(-812 R -1396) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -3184,7 +3184,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-814 R -1395) +(-814 R -1396) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3192,11 +3192,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-816 -1395 UP UPUP R) +(-816 -1396 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-817 -1395 UP L LQ) +(-817 -1396 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3204,41 +3204,41 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-819 -1395 UP L LQ) +(-819 -1396 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-820 -1395 UP) +(-820 -1396 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-821 -1395 L UP A LO) +(-821 -1396 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-822 -1395 UP) +(-822 -1396 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-823 -1395 LO) +(-823 -1396 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-824 -1395 LODO) +(-824 -1396 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-825 -4105 S |f|) +(-825 -4106 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))))) +((-4453 |has| |#2| (-1065)) (-4454 |has| |#2| (-1065)) (-4456 |has| |#2| (-6 -4456)) ((-4461 "*") |has| |#2| (-174)) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2833 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2833 (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))))) (-826 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))))) (-827 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4460 "*") |has| |#2| (-372)) (-4451 |has| |#2| (-372)) (-4456 |has| |#2| (-372)) (-4450 |has| |#2| (-372)) (-4455 . T) (-4453 . T) (-4452 . T)) +(((-4461 "*") |has| |#2| (-372)) (-4452 |has| |#2| (-372)) (-4457 |has| |#2| (-372)) (-4451 |has| |#2| (-372)) (-4456 . T) (-4454 . T) (-4453 . T)) ((|HasCategory| |#2| (QUOTE (-372)))) (-828 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) @@ -3250,7 +3250,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-860)))) (-830) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-831) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) @@ -3278,7 +3278,7 @@ NIL NIL (-837 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4452 . T) (-4453 . T) (-4455 . T)) +((-4453 . T) (-4454 . T) (-4456 . T)) ((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-239)))) (-838) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) @@ -3290,7 +3290,7 @@ NIL NIL (-840 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4458 . T) (-4448 . T) (-4459 . T)) +((-4459 . T) (-4449 . T) (-4460 . T)) NIL (-841) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) @@ -3302,8 +3302,8 @@ NIL NIL (-843 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4455 |has| |#1| (-858))) -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555)))) +((-4456 |has| |#1| (-858))) +((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555)))) (-844 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL @@ -3314,7 +3314,7 @@ NIL NIL (-846 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T)) +((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) (-847) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) @@ -3342,13 +3342,13 @@ NIL NIL (-853 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4455 |has| |#1| (-858))) -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555)))) +((-4456 |has| |#1| (-858))) +((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555)))) (-854) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-855 -4105 S) +(-855 -4106 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3362,7 +3362,7 @@ NIL NIL (-858) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4455 . T)) +((-4456 . T)) NIL (-859 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a a= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) @@ -3378,20 +3378,20 @@ NIL ((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174)))) (-862 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4452 . T) (-4453 . T) (-4455 . T)) +((-4453 . T) (-4454 . T) (-4456 . T)) NIL (-863 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) -(-864 R |sigma| -2084) +(-864 R |sigma| -2083) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) -(-865 |x| R |sigma| -2084) +((-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) +(-865 |x| R |sigma| -2083) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-372)))) +((-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-372)))) (-866 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL @@ -3434,7 +3434,7 @@ NIL NIL (-876 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T)) +((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) (-877 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) @@ -3446,24 +3446,24 @@ NIL NIL (-879 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-880 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL (-881 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| (-880 |#1|) (QUOTE (-922))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-148))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-880 |#1|) (QUOTE (-1037))) (|HasCategory| (-880 |#1|) (QUOTE (-830))) (-2832 (|HasCategory| (-880 |#1|) (QUOTE (-830))) (|HasCategory| (-880 |#1|) (QUOTE (-860)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-1167))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-239))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -880) (|devaluate| |#1|)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (QUOTE (-315))) (|HasCategory| (-880 |#1|) (QUOTE (-555))) (|HasCategory| (-880 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-922)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| (-880 |#1|) (QUOTE (-923))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-148))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-880 |#1|) (QUOTE (-1038))) (|HasCategory| (-880 |#1|) (QUOTE (-830))) (-2833 (|HasCategory| (-880 |#1|) (QUOTE (-830))) (|HasCategory| (-880 |#1|) (QUOTE (-860)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-1168))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-239))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -880) (|devaluate| |#1|)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (QUOTE (-315))) (|HasCategory| (-880 |#1|) (QUOTE (-555))) (|HasCategory| (-880 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-923)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))))) (-882 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#2| (QUOTE (-922))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-830))) (-2832 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1167))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146))))) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#2| (QUOTE (-923))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1038))) (|HasCategory| |#2| (QUOTE (-830))) (-2833 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1168))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146))))) (-883 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) (-884) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3523,7 +3523,7 @@ NIL (-898 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2085 (|HasCategory| |#2| (QUOTE (-1064)))) (-2085 (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (-2085 (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192))))) +((-12 (-2084 (|HasCategory| |#2| (QUOTE (-1065)))) (-2084 (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (-2084 (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193))))) (-899 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL @@ -3532,7 +3532,7 @@ NIL ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-901 R -3583) +(-901 R -3584) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3553,18 +3553,18 @@ NIL NIL NIL (-906 A T$ S) -((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) +((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL (-907 T$ S) -((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) +((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL (-908) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-909 UP -1395) +(-909 UP -1396) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3576,1609 +3576,1613 @@ NIL ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-912 A S) -((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) +(-912 S) +((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) +((-4456 . T)) NIL +(-913 A S) +((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL -(-913 S) -((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4455 . T)) NIL (-914 S) +((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) +NIL +NIL +(-915 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-915 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-916 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-916 S) +(-917 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4455 . T)) +((-4456 . T)) NIL -(-917 S) +(-918 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-918 S) +(-919 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4455 . T)) -((-2832 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) -(-919 R E |VarSet| S) +((-4456 . T)) +((-2833 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) +(-920 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-920 R S) +(-921 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-921 S) +(-922 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-146)))) -(-922) +(-923) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-923 |p|) +(-924 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377)))) -(-924 R0 -1395 UP UPUP R) +(-925 R0 -1396 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-925 UP UPUP R) +(-926 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-926 UP UPUP) +(-927 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-927 R) +(-928 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-928 R) +(-929 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-929 E OV R P) +(-930 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-930) +(-931) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-931 -1395) +(-932 -1396) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-932 R) +(-933 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-933) +(-934) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-934) +(-935) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4460 "*") . T)) +(((-4461 "*") . T)) NIL -(-935 -1395 P) +(-936 -1396 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-936 |xx| -1395) +(-937 |xx| -1396) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-937 R |Var| |Expon| GR) +(-938 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-938 S) +(-939 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-939) +(-940) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-940) +(-941) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-941) +(-942) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-942 R -1395) +(-943 R -1396) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-943) +(-944) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-944 S A B) +(-945 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-945 S R -1395) +(-946 S R -1396) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-946 I) +(-947 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-947 S E) +(-948 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-948 S R L) +(-949 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-949 S E V R P) +(-950 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -897) (|devaluate| |#1|)))) -(-950 R -1395 -3583) +(-951 R -1396 -3584) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-951 -3583) +(-952 -3584) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-952 S R Q) +(-953 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-953 S) +(-954 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-954 S R P) +(-955 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-955) +(-956) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-956 R) +(-957 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1064))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-957 |lv| R) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1065))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-958 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-958 |TheField| |ThePols|) +(-959 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL ((|HasCategory| |#1| (QUOTE (-858)))) -(-959 R S) +(-960 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-960 |x| R) +(-961 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-961 S R E |VarSet|) +(-962 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-922))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) -(-962 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-923))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) +(-963 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) NIL -(-963 E V R P -1395) +(-964 E V R P -1396) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-964 E |Vars| R P S) +(-965 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-965 R) +(-966 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-966 E V R P -1395) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-967 E V R P -1396) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-462)))) -(-967) +(-968) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-968) +(-969) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-969 R L) +(-970 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-970 A B) +(-971 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-971 S) +(-972 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-972) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-973) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-973 -1395) +(-974 -1396) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-974 I) +(-975 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-975) +(-976) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-976 R E) +(-977 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4456))) -(-977 A B) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4457))) +(-978 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4455 -12 (|has| |#2| (-483)) (|has| |#1| (-483)))) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736))))) (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) -(-978) +((-4456 -12 (|has| |#2| (-483)) (|has| |#1| (-483)))) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736))))) (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) +(-979) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-979 T$) +(-980 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-980 T$) +(-981 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-981 S T$) +(-982 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-982) +(-983) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-983 S) +(-984 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4458 . T) (-4459 . T)) +((-4459 . T) (-4460 . T)) NIL -(-984 R |polR|) +(-985 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-462)))) -(-985) +(-986) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-986) +(-987) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-987 S |Coef| |Expon| |Var|) +(-988 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-988 |Coef| |Expon| |Var|) +(-989 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-989) +(-990) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-990 S R E |VarSet| P) +(-991 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-566)))) -(-991 R E |VarSet| P) +(-992 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4458 . T)) +((-4459 . T)) NIL -(-992 R E V P) +(-993 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-462)))) -(-993 K) +(-994 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-994 |VarSet| E RC P) +(-995 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-995 R) +(-996 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL -(-996 R1 R2) +(-997 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-997 R) +(-998 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-998 K) +(-999 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-999 R E OV PPR) +(-1000 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1000 K R UP -1395) +(-1001 K R UP -1396) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1001 |vl| |nv|) +(-1002 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-1002 R |Var| |Expon| |Dpoly|) +(-1003 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315))))) -(-1003 R E V P TS) +(-1004 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1004) +(-1005) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1005 A B R S) +(-1006 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1006 A S) +(-1007 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-922))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1167)))) -(-1007 S) +((|HasCategory| |#2| (QUOTE (-923))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1038))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1168)))) +(-1008 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1008 |n| K) +(-1009 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1009) +(-1010) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1010 S) +(-1011 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4458 . T) (-4459 . T)) +((-4459 . T) (-4460 . T)) NIL -(-1011 S R) +(-1012 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-298)))) -(-1012 R) +((|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-298)))) +(-1013 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4451 |has| |#1| (-298)) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 |has| |#1| (-298)) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1013 QR R QS S) +(-1014 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1014 R) +(-1015 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4451 |has| |#1| (-298)) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-555)))) -(-1015 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4452 |has| |#1| (-298)) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-555)))) (-1016 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1017 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1017) +(-1018) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1018 -1395 UP UPUP |radicnd| |n|) +(-1019 -1396 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4451 |has| (-417 |#2|) (-372)) (-4456 |has| (-417 |#2|) (-372)) (-4450 |has| (-417 |#2|) (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2832 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2832 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2832 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372))))) -(-1019 |bb|) +((-4452 |has| (-417 |#2|) (-372)) (-4457 |has| (-417 |#2|) (-372)) (-4451 |has| (-417 |#2|) (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2833 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2833 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2833 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372))))) +(-1020 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| (-574) (QUOTE (-922))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1037))) (|HasCategory| (-574) (QUOTE (-830))) (-2832 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1167))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (|HasCategory| (-574) (QUOTE (-146))))) -(-1020) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| (-574) (QUOTE (-923))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1038))) (|HasCategory| (-574) (QUOTE (-830))) (-2833 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1168))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (|HasCategory| (-574) (QUOTE (-146))))) +(-1021) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1021) +(-1022) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1022 RP) +(-1023 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1023 S) +(-1024 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1024 A S) +(-1025 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-1115)))) -(-1025 S) +((|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-1116)))) +(-1026 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1026 S) +(-1027 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1027) +(-1028) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4451 . T) (-4456 . T) (-4450 . T) (-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4455 . T)) +((-4452 . T) (-4457 . T) (-4451 . T) (-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4456 . T)) NIL -(-1028 R -1395) +(-1029 R -1396) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1029 R -1395) +(-1030 R -1396) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1030 -1395 UP) +(-1031 -1396 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1031 -1395 UP) +(-1032 -1396 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1032 S) +(-1033 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1033 F1 UP UPUP R F2) +(-1034 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1034) +(-1035) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1035 |Pol|) +(-1036 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1036 |Pol|) +(-1037 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1037) +(-1038) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1038) +(-1039) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1039 |TheField|) +(-1040 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4451 . T) (-4456 . T) (-4450 . T) (-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4455 . T)) -((-2832 (|HasCategory| (-417 (-574)) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1053) (QUOTE (-574))))) -(-1040 -1395 L) +((-4452 . T) (-4457 . T) (-4451 . T) (-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4456 . T)) +((-2833 (|HasCategory| (-417 (-574)) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1054) (QUOTE (-574))))) +(-1041 -1396 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1041 S) +(-1042 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1115)))) -(-1042 R E V P) +((|HasCategory| |#1| (QUOTE (-1116)))) +(-1043 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4459 . T) (-4458 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1043 R) +((-4460 . T) (-4459 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1044 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4460 "*")))) -(-1044 R) +((|HasAttribute| |#1| (QUOTE (-4461 "*")))) +(-1045 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315)))) -(-1045 S) +(-1046 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1046) +(-1047) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1047 S) +(-1048 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1048 S) +(-1049 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1049 -1395 |Expon| |VarSet| |FPol| |LFPol|) +(-1050 -1396 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1050) -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1192))) (LIST (QUOTE |:|) (QUOTE -1917) (QUOTE (-52))))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-52) (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-1192) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872))))) (-1051) +((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1193))) (LIST (QUOTE |:|) (QUOTE -1916) (QUOTE (-52))))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-52) (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-1193) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872))))) +(-1052) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1052 A S) +(-1053 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1053 S) +(-1054 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1054 Q R) +(-1055 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1055) +(-1056) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1056 UP) +(-1057 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1057 R) +(-1058 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1058 R) +(-1059 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1059 T$) +(-1060 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1060 T$) +(-1061 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1061 R |ls|) +(-1062 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4459 . T) (-4458 . T)) -((-12 (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1115))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -790) (|devaluate| |#1|) (LIST (QUOTE -874) (|devaluate| |#2|)))))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-874 |#2|) (QUOTE (-377))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) -(-1062) +((-4460 . T) (-4459 . T)) +((-12 (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1116))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -790) (|devaluate| |#1|) (LIST (QUOTE -874) (|devaluate| |#2|)))))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-874 |#2|) (QUOTE (-377))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) +(-1063) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1063 S) +(-1064 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1064) +(-1065) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4455 . T)) +((-4456 . T)) NIL -(-1065 |xx| -1395) +(-1066 |xx| -1396) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1066 S) +(-1067 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds if \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-1067 S |m| |n| R |Row| |Col|) +(-1068 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-566))) (|HasCategory| |#4| (QUOTE (-174)))) -(-1068 |m| |n| R |Row| |Col|) +(-1069 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4458 . T) (-4453 . T) (-4452 . T)) +((-4459 . T) (-4454 . T) (-4453 . T)) NIL -(-1069 |m| |n| R) +(-1070 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4458 . T) (-4453 . T) (-4452 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-2832 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-566))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1070 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4459 . T) (-4454 . T) (-4453 . T)) +((|HasCategory| |#3| (QUOTE (-174))) (-2833 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-566))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1071 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1071 R) +(-1072 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1072 S T$) +(-1073 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1115)))) -(-1073) +((|HasCategory| |#1| (QUOTE (-1116)))) +(-1074) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1074 S) +(-1075 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1075) +(-1076) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1076 |TheField| |ThePolDom|) +(-1077 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1077) +(-1078) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4446 . T) (-4450 . T) (-4445 . T) (-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4447 . T) (-4451 . T) (-4446 . T) (-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1078) +(-1079) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1192))) (LIST (QUOTE |:|) (QUOTE -1917) (QUOTE (-52))))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-52) (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-1192) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872))))) -(-1079 S R E V) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1193))) (LIST (QUOTE |:|) (QUOTE -1916) (QUOTE (-52))))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-52) (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-1193) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872))))) +(-1080 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-1192))))) -(-1080 R E V) +((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1008) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-1193))))) +(-1081 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) NIL -(-1081) +(-1082) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1082 S |TheField| |ThePols|) +(-1083 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1083 |TheField| |ThePols|) +(-1084 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1084 R E V P TS) +(-1085 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1085 S R E V P) +(-1086 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1086 R E V P) +(-1087 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL -(-1087 R E V P TS) +(-1088 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1088) +(-1089) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1089) +(-1090) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1090 |f|) +(-1091 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1091 |Base| R -1395) +(-1092 |Base| R -1396) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1092 |Base| R -1395) +(-1093 |Base| R -1396) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1093 R |ls|) +(-1094 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1094 UP SAE UPA) +(-1095 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1095 R UP M) +(-1096 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4451 |has| |#1| (-372)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-358)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372))))) -(-1096 UP SAE UPA) +((-4452 |has| |#1| (-372)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-358)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372))))) +(-1097 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1097) +(-1098) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1098) +(-1099) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1099 S) +(-1100 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1100) +(-1101) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1101 R) +(-1102 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1102 R) +(-1103 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1103 S) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1104 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1104 R S) +(-1105 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL ((|HasCategory| |#1| (QUOTE (-858)))) -(-1105) +(-1106) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1106 R S) +(-1107 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1107 S) +(-1108 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1109 |#1|) (QUOTE (-1115)))) -(-1108 S) +((|HasCategory| (-1110 |#1|) (QUOTE (-1116)))) +(-1109 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1109 S) +(-1110 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1115)))) -(-1110 S L) +((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1116)))) +(-1111 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1111) +(-1112) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1112 A S) +(-1113 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1113 S) +(-1114 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4448 . T)) +((-4449 . T)) NIL -(-1114 S) +(-1115 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1115) +(-1116) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1116 |m| |n|) +(-1117 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1117 S) +(-1118 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4458 . T) (-4448 . T) (-4459 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-1118 |Str| |Sym| |Int| |Flt| |Expr|) +((-4459 . T) (-4449 . T) (-4460 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-1119 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1119) +(-1120) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1120 |Str| |Sym| |Int| |Flt| |Expr|) +(-1121 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1121 R FS) +(-1122 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1122 R E V P TS) +(-1123 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1123 R E V P TS) +(-1124 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1124 R E V P) +(-1125 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL -(-1125) +(-1126) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1126 S) +(-1127 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1127) +(-1128) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1128 |dimtot| |dim1| S) +(-1129 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4452 |has| |#3| (-1064)) (-4453 |has| |#3| (-1064)) (-4455 |has| |#3| (-6 -4455)) ((-4460 "*") |has| |#3| (-174)) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#3| (QUOTE (-372))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (-2832 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-174))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-1115)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-860)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-736)))) (-2832 (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (|HasAttribute| |#3| (QUOTE -4455)) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) -(-1129 R |x|) +((-4453 |has| |#3| (-1065)) (-4454 |has| |#3| (-1065)) (-4456 |has| |#3| (-6 -4456)) ((-4461 "*") |has| |#3| (-174)) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#3| (QUOTE (-372))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (-2833 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-174))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1065)))) (|HasCategory| |#3| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (QUOTE (-1116)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-860)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1065))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-736)))) (-2833 (|HasCategory| |#3| (QUOTE (-1065))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116)))) (|HasAttribute| |#3| (QUOTE -4456)) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) +(-1130 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-462)))) -(-1130) +(-1131) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1131 R -1395) +(-1132 R -1396) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1132 R) +(-1133 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1133) +(-1134) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1134) +(-1135) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1135) +(-1136) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4446 . T) (-4450 . T) (-4445 . T) (-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4447 . T) (-4451 . T) (-4446 . T) (-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1136 S) +(-1137 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4458 . T) (-4459 . T)) +((-4459 . T) (-4460 . T)) NIL -(-1137 S |ndim| R |Row| |Col|) +(-1138 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-372))) (|HasAttribute| |#3| (QUOTE (-4460 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) -(-1138 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-372))) (|HasAttribute| |#3| (QUOTE (-4461 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) +(-1139 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4458 . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4459 . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1139 R |Row| |Col| M) +(-1140 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1140 R |VarSet|) +(-1141 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1141 |Coef| |Var| SMP) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1142 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372)))) -(-1142 R E V P) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372)))) +(-1143 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL -(-1143 UP -1395) +(-1144 UP -1396) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1144 R) +(-1145 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1145 R) +(-1146 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1146 R) +(-1147 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1147 S A) +(-1148 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL ((|HasCategory| |#1| (QUOTE (-860)))) -(-1148 R) +(-1149 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1149 R) +(-1150 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1150) +(-1151) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1151) +(-1152) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1152) +(-1153) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1153) +(-1154) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1154) +(-1155) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1155 V C) +(-1156 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1156 V C) +(-1157 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1155 |#1| |#2|) (QUOTE (-1115)))) (|HasCategory| (-1155 |#1| |#2|) (QUOTE (-1115))) (-2832 (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1155 |#1| |#2|) (QUOTE (-1115))))) (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872))))) -(-1157 |ndim| R) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1156 |#1| |#2|) (QUOTE (-1116)))) (|HasCategory| (-1156 |#1| |#2|) (QUOTE (-1116))) (-2833 (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1156 |#1| |#2|) (QUOTE (-1116))))) (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872))))) +(-1158 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4455 . T) (-4447 |has| |#2| (-6 (-4460 "*"))) (-4458 . T) (-4452 . T) (-4453 . T)) -((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-1158 S) +((-4456 . T) (-4448 |has| |#2| (-6 (-4461 "*"))) (-4459 . T) (-4453 . T) (-4454 . T)) +((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-372))) (-2833 (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-1159 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1159) +(-1160) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL -(-1160 R E V P TS) +(-1161 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1161 R E V P) +(-1162 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4459 . T) (-4458 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1162 S) +((-4460 . T) (-4459 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1163 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1163 A S) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1164 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1164 S) +(-1165 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1165 |Key| |Ent| |dent|) +(-1166 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4459 . T)) -((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115)))) -(-1166) +((-4460 . T)) +((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116)))) +(-1167) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1167) +(-1168) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1168 |Coef|) +(-1169 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1169 S) +(-1170 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1170 A B) +(-1171 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1171 A B C) +(-1172 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1172 S) +(-1173 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4459 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1173) +((-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1174) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL -(-1174) +(-1175) NIL -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) -(-1175 |Entry|) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) +(-1176 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4458 . T) (-4459 . T)) -((-12 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1174))) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#1|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| (-1174) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -623) (QUOTE (-872))))) -(-1176 A) +((-4459 . T) (-4460 . T)) +((-12 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#1|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-1175) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872))))) +(-1177 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b = sum(i+j=k,a)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL ((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) -(-1177 |Coef|) +(-1178 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1178 |Coef|) +(-1179 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1179 R UP) +(-1180 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-315)))) -(-1180 |n| R) +(-1181 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1181 S1 S2) +(-1182 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1182) +(-1183) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1183 |Coef| |var| |cen|) +(-1184 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4460 "*") -2832 (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-922)))) (-4451 -2832 (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1184 R -1395) +(((-4461 "*") -2833 (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-923)))) (-4452 -2833 (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-923)))) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1128))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1185 R -1396) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1185 R) +(-1186 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1186 R S) +(-1187 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1187 E OV R P) +(-1188 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1188 R) +(-1189 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1189 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1190 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|))))))) +(-1191 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1127))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) -(-1191) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1128))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|))))))) +(-1192) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1211) +(-1212) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1212 S) +(-1213 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1213) +(-1214) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1214) +(-1215) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1215 R) +(-1216 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1216) +(-1217) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1217 S) +(-1218 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1218) +(-1219) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1219 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4459 . T) (-4458 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-1220 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4460 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1221 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1221) +(-1222) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1222 R -1395) +(-1223 R -1396) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1223 R |Row| |Col| M) +(-1224 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1224 R -1395) +(-1225 R -1396) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -897) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -897) (|devaluate| |#1|))))) -(-1225 S R E V P) +(-1226 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-377)))) -(-1226 R E V P) +(-1227 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL -(-1227 |Coef|) +(-1228 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372)))) -(-1228 |Curve|) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372)))) +(-1229 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1229) +(-1230) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1230 S) +(-1231 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1231 -1395) +((|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1232 -1396) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1232) +(-1233) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1233) +(-1234) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1234 S) +(-1235 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL ((|HasCategory| |#1| (QUOTE (-860)))) -(-1235) +(-1236) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1236 S) +(-1237 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1237) +(-1238) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1238) +(-1239) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1239) +(-1240) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1240) +(-1241) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1241) +(-1242) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1242 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1243 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1243 |Coef|) +(-1244 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1244 S |Coef| UTS) +(-1245 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-372)))) -(-1245 |Coef| UTS) +(-1246 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1246 |Coef| UTS) +(-1247 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2832 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-922))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146)))))) -(-1247 |Coef| |var| |cen|) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1038)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2833 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1128))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1038)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1038)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-923))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146)))))) +(-1248 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4460 "*") -2832 (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-922)))) (-4451 -2832 (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) -((-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1248 ZP) +(((-4461 "*") -2833 (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-923)))) (-4452 -2833 (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-923)))) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) +((-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1128))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1249 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1249 R S) +(-1250 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL ((|HasCategory| |#1| (QUOTE (-858)))) -(-1250 S) +(-1251 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1115)))) -(-1251 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1116)))) +(-1252 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1252 R Q UP) +(-1253 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1253 R UP) +(-1254 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1254 R UP) +(-1255 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1255 R U) +(-1256 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1256 |x| R) +(-1257 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4454 |has| |#2| (-372)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#2| (QUOTE (-922))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-1257 R PR S PS) +(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4455 |has| |#2| (-372)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#2| (QUOTE (-923))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-1258 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1258 S R) +(-1259 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1167)))) -(-1259 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1168)))) +(-1260 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T)) NIL -(-1260 S |Coef| |Expon|) +(-1261 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1127))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2950) (LIST (|devaluate| |#2|) (QUOTE (-1192)))))) -(-1261 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1128))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2951) (LIST (|devaluate| |#2|) (QUOTE (-1193)))))) +(-1262 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1262 RC P) +(-1263 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1263 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1264 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1264 |Coef|) +(-1265 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1265 S |Coef| ULS) +(-1266 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1266 |Coef| ULS) +(-1267 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1267 |Coef| ULS) +(-1268 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) -(-1268 |Coef| |var| |cen|) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) +(-1269 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) -(-1269 R FE |var| |cen|) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|))))))) +(-1270 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4460 "*") |has| (-1268 |#2| |#3| |#4|) (-174)) (-4451 |has| (-1268 |#2| |#3| |#4|) (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-174))) (-2832 (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-372))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-462))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-566)))) -(-1270 A S) +(((-4461 "*") |has| (-1269 |#2| |#3| |#4|) (-174)) (-4452 |has| (-1269 |#2| |#3| |#4|) (-566)) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-174))) (-2833 (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-372))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-462))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-566)))) +(-1271 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4459))) -(-1271 S) +((|HasAttribute| |#1| (QUOTE -4460))) +(-1272 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1272 |Coef1| |Coef2| UTS1 UTS2) +(-1273 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1273 S |Coef|) +(-1274 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-1218))) (|HasSignature| |#2| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1578) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1192))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) -(-1274 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1219))) (|HasSignature| |#2| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3342) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1193))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) +(-1275 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1275 |Coef| |var| |cen|) +(-1276 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1127))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) -(-1276 |Coef| UTS) +(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1128))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|))))))) +(-1277 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y=f(y,y',..,y)} such that \\spad{y(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1277 -1395 UP L UTS) +(-1278 -1396 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-566)))) -(-1278) +(-1279) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1279 |sym|) +(-1280 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1280 S R) +(-1281 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1281 R) +((|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1282 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4459 . T) (-4458 . T)) +((-4460 . T) (-4459 . T)) NIL -(-1282 A B) +(-1283 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1283 R) +(-1284 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4459 . T) (-4458 . T)) -((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1064))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-1284) +((-4460 . T) (-4459 . T)) +((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1065))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-1285) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1285) +(-1286) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1286) +(-1287) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1287) +(-1288) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1288) +(-1289) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1289 A S) +(-1290 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1290 S) +(-1291 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4453 . T) (-4452 . T)) +((-4454 . T) (-4453 . T)) NIL -(-1291 R) +(-1292 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1292 K R UP -1395) +(-1293 K R UP -1396) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1293) +(-1294) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1294) +(-1295) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1295 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1296 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T)) +((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) -(-1296 R E V P) +(-1297 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4459 . T) (-4458 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1297 R) +((-4460 . T) (-4459 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1298 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4452 . T) (-4453 . T) (-4455 . T)) +((-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1298 |vl| R) +(-1299 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4455 . T) (-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4451))) -(-1299 R |VarSet| XPOLY) +((-4456 . T) (-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4452))) +(-1300 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1300 |vl| R) +(-1301 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T)) +((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T)) NIL -(-1301 S -1395) +(-1302 S -1396) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1302 -1395) +(-1303 -1396) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL -(-1303 |VarSet| R) +(-1304 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -727) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasAttribute| |#2| (QUOTE -4451))) -(-1304 |vl| R) +((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -727) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasAttribute| |#2| (QUOTE -4452))) +(-1305 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T)) +((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T)) NIL -(-1305 R) +(-1306 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4451 |has| |#1| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4451))) -(-1306 R E) +((-4452 |has| |#1| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4452))) +(-1307 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4455 . T) (-4456 |has| |#1| (-6 -4456)) (-4451 |has| |#1| (-6 -4451)) (-4453 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4455)) (|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4451))) -(-1307 |VarSet| R) +((-4456 . T) (-4457 |has| |#1| (-6 -4457)) (-4452 |has| |#1| (-6 -4452)) (-4454 . T) (-4453 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#1| (QUOTE -4452))) +(-1308 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4451))) -(-1308) +((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4452))) +(-1309) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1309 A) +(-1310 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1310 R |ls| |ls2|) +(-1311 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1311 R) +(-1312 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1312 |p|) +(-1313 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +(((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T)) NIL NIL NIL @@ -5196,4 +5200,4 @@ NIL NIL NIL NIL -((-3 NIL 2266071 2266076 2266081 2266086) (-2 NIL 2266051 2266056 2266061 2266066) (-1 NIL 2266031 2266036 2266041 2266046) (0 NIL 2266011 2266016 2266021 2266026) (-1312 "ZMOD.spad" 2265820 2265833 2265949 2266006) (-1311 "ZLINDEP.spad" 2264886 2264897 2265810 2265815) (-1310 "ZDSOLVE.spad" 2254831 2254853 2264876 2264881) (-1309 "YSTREAM.spad" 2254326 2254337 2254821 2254826) (-1308 "YDIAGRAM.spad" 2253960 2253969 2254316 2254321) (-1307 "XRPOLY.spad" 2253180 2253200 2253816 2253885) (-1306 "XPR.spad" 2250975 2250988 2252898 2252997) (-1305 "XPOLY.spad" 2250530 2250541 2250831 2250900) (-1304 "XPOLYC.spad" 2249849 2249865 2250456 2250525) (-1303 "XPBWPOLY.spad" 2248286 2248306 2249629 2249698) (-1302 "XF.spad" 2246749 2246764 2248188 2248281) (-1301 "XF.spad" 2245192 2245209 2246633 2246638) (-1300 "XFALG.spad" 2242240 2242256 2245118 2245187) (-1299 "XEXPPKG.spad" 2241491 2241517 2242230 2242235) (-1298 "XDPOLY.spad" 2241105 2241121 2241347 2241416) (-1297 "XALG.spad" 2240765 2240776 2241061 2241100) (-1296 "WUTSET.spad" 2236604 2236621 2240411 2240438) (-1295 "WP.spad" 2235803 2235847 2236462 2236529) (-1294 "WHILEAST.spad" 2235601 2235610 2235793 2235798) (-1293 "WHEREAST.spad" 2235272 2235281 2235591 2235596) (-1292 "WFFINTBS.spad" 2232935 2232957 2235262 2235267) (-1291 "WEIER.spad" 2231157 2231168 2232925 2232930) (-1290 "VSPACE.spad" 2230830 2230841 2231125 2231152) (-1289 "VSPACE.spad" 2230523 2230536 2230820 2230825) (-1288 "VOID.spad" 2230200 2230209 2230513 2230518) (-1287 "VIEW.spad" 2227880 2227889 2230190 2230195) (-1286 "VIEWDEF.spad" 2223081 2223090 2227870 2227875) (-1285 "VIEW3D.spad" 2207042 2207051 2223071 2223076) (-1284 "VIEW2D.spad" 2194933 2194942 2207032 2207037) (-1283 "VECTOR.spad" 2193607 2193618 2193858 2193885) (-1282 "VECTOR2.spad" 2192246 2192259 2193597 2193602) (-1281 "VECTCAT.spad" 2190150 2190161 2192214 2192241) (-1280 "VECTCAT.spad" 2187861 2187874 2189927 2189932) (-1279 "VARIABLE.spad" 2187641 2187656 2187851 2187856) (-1278 "UTYPE.spad" 2187285 2187294 2187631 2187636) (-1277 "UTSODETL.spad" 2186580 2186604 2187241 2187246) (-1276 "UTSODE.spad" 2184796 2184816 2186570 2186575) (-1275 "UTS.spad" 2179600 2179628 2183263 2183360) (-1274 "UTSCAT.spad" 2177079 2177095 2179498 2179595) (-1273 "UTSCAT.spad" 2174202 2174220 2176623 2176628) (-1272 "UTS2.spad" 2173797 2173832 2174192 2174197) (-1271 "URAGG.spad" 2168470 2168481 2173787 2173792) (-1270 "URAGG.spad" 2163107 2163120 2168426 2168431) (-1269 "UPXSSING.spad" 2160752 2160778 2162188 2162321) (-1268 "UPXS.spad" 2157906 2157934 2158884 2159033) (-1267 "UPXSCONS.spad" 2155665 2155685 2156038 2156187) (-1266 "UPXSCCA.spad" 2154236 2154256 2155511 2155660) (-1265 "UPXSCCA.spad" 2152949 2152971 2154226 2154231) (-1264 "UPXSCAT.spad" 2151538 2151554 2152795 2152944) (-1263 "UPXS2.spad" 2151081 2151134 2151528 2151533) (-1262 "UPSQFREE.spad" 2149495 2149509 2151071 2151076) (-1261 "UPSCAT.spad" 2147282 2147306 2149393 2149490) (-1260 "UPSCAT.spad" 2144775 2144801 2146888 2146893) (-1259 "UPOLYC.spad" 2139815 2139826 2144617 2144770) (-1258 "UPOLYC.spad" 2134747 2134760 2139551 2139556) (-1257 "UPOLYC2.spad" 2134218 2134237 2134737 2134742) (-1256 "UP.spad" 2131417 2131432 2131804 2131957) (-1255 "UPMP.spad" 2130317 2130330 2131407 2131412) (-1254 "UPDIVP.spad" 2129882 2129896 2130307 2130312) (-1253 "UPDECOMP.spad" 2128127 2128141 2129872 2129877) (-1252 "UPCDEN.spad" 2127336 2127352 2128117 2128122) (-1251 "UP2.spad" 2126700 2126721 2127326 2127331) (-1250 "UNISEG.spad" 2126053 2126064 2126619 2126624) (-1249 "UNISEG2.spad" 2125550 2125563 2126009 2126014) (-1248 "UNIFACT.spad" 2124653 2124665 2125540 2125545) (-1247 "ULS.spad" 2115211 2115239 2116298 2116727) (-1246 "ULSCONS.spad" 2107607 2107627 2107977 2108126) (-1245 "ULSCCAT.spad" 2105344 2105364 2107453 2107602) (-1244 "ULSCCAT.spad" 2103189 2103211 2105300 2105305) (-1243 "ULSCAT.spad" 2101421 2101437 2103035 2103184) (-1242 "ULS2.spad" 2100935 2100988 2101411 2101416) (-1241 "UINT8.spad" 2100812 2100821 2100925 2100930) (-1240 "UINT64.spad" 2100688 2100697 2100802 2100807) (-1239 "UINT32.spad" 2100564 2100573 2100678 2100683) (-1238 "UINT16.spad" 2100440 2100449 2100554 2100559) (-1237 "UFD.spad" 2099505 2099514 2100366 2100435) (-1236 "UFD.spad" 2098632 2098643 2099495 2099500) (-1235 "UDVO.spad" 2097513 2097522 2098622 2098627) (-1234 "UDPO.spad" 2095006 2095017 2097469 2097474) (-1233 "TYPE.spad" 2094938 2094947 2094996 2095001) (-1232 "TYPEAST.spad" 2094857 2094866 2094928 2094933) (-1231 "TWOFACT.spad" 2093509 2093524 2094847 2094852) (-1230 "TUPLE.spad" 2092995 2093006 2093408 2093413) (-1229 "TUBETOOL.spad" 2089862 2089871 2092985 2092990) (-1228 "TUBE.spad" 2088509 2088526 2089852 2089857) (-1227 "TS.spad" 2087108 2087124 2088074 2088171) (-1226 "TSETCAT.spad" 2074235 2074252 2087076 2087103) (-1225 "TSETCAT.spad" 2061348 2061367 2074191 2074196) (-1224 "TRMANIP.spad" 2055714 2055731 2061054 2061059) (-1223 "TRIMAT.spad" 2054677 2054702 2055704 2055709) (-1222 "TRIGMNIP.spad" 2053204 2053221 2054667 2054672) (-1221 "TRIGCAT.spad" 2052716 2052725 2053194 2053199) (-1220 "TRIGCAT.spad" 2052226 2052237 2052706 2052711) (-1219 "TREE.spad" 2050801 2050812 2051833 2051860) (-1218 "TRANFUN.spad" 2050640 2050649 2050791 2050796) (-1217 "TRANFUN.spad" 2050477 2050488 2050630 2050635) (-1216 "TOPSP.spad" 2050151 2050160 2050467 2050472) (-1215 "TOOLSIGN.spad" 2049814 2049825 2050141 2050146) (-1214 "TEXTFILE.spad" 2048375 2048384 2049804 2049809) (-1213 "TEX.spad" 2045521 2045530 2048365 2048370) (-1212 "TEX1.spad" 2045077 2045088 2045511 2045516) (-1211 "TEMUTL.spad" 2044632 2044641 2045067 2045072) (-1210 "TBCMPPK.spad" 2042725 2042748 2044622 2044627) (-1209 "TBAGG.spad" 2041775 2041798 2042705 2042720) (-1208 "TBAGG.spad" 2040833 2040858 2041765 2041770) (-1207 "TANEXP.spad" 2040241 2040252 2040823 2040828) (-1206 "TALGOP.spad" 2039965 2039976 2040231 2040236) (-1205 "TABLE.spad" 2038376 2038399 2038646 2038673) (-1204 "TABLEAU.spad" 2037857 2037868 2038366 2038371) (-1203 "TABLBUMP.spad" 2034660 2034671 2037847 2037852) (-1202 "SYSTEM.spad" 2033888 2033897 2034650 2034655) (-1201 "SYSSOLP.spad" 2031371 2031382 2033878 2033883) (-1200 "SYSPTR.spad" 2031270 2031279 2031361 2031366) (-1199 "SYSNNI.spad" 2030452 2030463 2031260 2031265) (-1198 "SYSINT.spad" 2029856 2029867 2030442 2030447) (-1197 "SYNTAX.spad" 2026062 2026071 2029846 2029851) (-1196 "SYMTAB.spad" 2024130 2024139 2026052 2026057) (-1195 "SYMS.spad" 2020153 2020162 2024120 2024125) (-1194 "SYMPOLY.spad" 2019160 2019171 2019242 2019369) (-1193 "SYMFUNC.spad" 2018661 2018672 2019150 2019155) (-1192 "SYMBOL.spad" 2016164 2016173 2018651 2018656) (-1191 "SWITCH.spad" 2012935 2012944 2016154 2016159) (-1190 "SUTS.spad" 2009840 2009868 2011402 2011499) (-1189 "SUPXS.spad" 2006981 2007009 2007972 2008121) (-1188 "SUP.spad" 2003794 2003805 2004567 2004720) (-1187 "SUPFRACF.spad" 2002899 2002917 2003784 2003789) (-1186 "SUP2.spad" 2002291 2002304 2002889 2002894) (-1185 "SUMRF.spad" 2001265 2001276 2002281 2002286) (-1184 "SUMFS.spad" 2000902 2000919 2001255 2001260) (-1183 "SULS.spad" 1991447 1991475 1992547 1992976) (-1182 "SUCHTAST.spad" 1991216 1991225 1991437 1991442) (-1181 "SUCH.spad" 1990898 1990913 1991206 1991211) (-1180 "SUBSPACE.spad" 1983013 1983028 1990888 1990893) (-1179 "SUBRESP.spad" 1982183 1982197 1982969 1982974) (-1178 "STTF.spad" 1978282 1978298 1982173 1982178) (-1177 "STTFNC.spad" 1974750 1974766 1978272 1978277) (-1176 "STTAYLOR.spad" 1967385 1967396 1974631 1974636) (-1175 "STRTBL.spad" 1965890 1965907 1966039 1966066) (-1174 "STRING.spad" 1965299 1965308 1965313 1965340) (-1173 "STRICAT.spad" 1965087 1965096 1965267 1965294) (-1172 "STREAM.spad" 1962005 1962016 1964612 1964627) (-1171 "STREAM3.spad" 1961578 1961593 1961995 1962000) (-1170 "STREAM2.spad" 1960706 1960719 1961568 1961573) (-1169 "STREAM1.spad" 1960412 1960423 1960696 1960701) (-1168 "STINPROD.spad" 1959348 1959364 1960402 1960407) (-1167 "STEP.spad" 1958549 1958558 1959338 1959343) (-1166 "STEPAST.spad" 1957783 1957792 1958539 1958544) (-1165 "STBL.spad" 1956309 1956337 1956476 1956491) (-1164 "STAGG.spad" 1955384 1955395 1956299 1956304) (-1163 "STAGG.spad" 1954457 1954470 1955374 1955379) (-1162 "STACK.spad" 1953814 1953825 1954064 1954091) (-1161 "SREGSET.spad" 1951518 1951535 1953460 1953487) (-1160 "SRDCMPK.spad" 1950079 1950099 1951508 1951513) (-1159 "SRAGG.spad" 1945222 1945231 1950047 1950074) (-1158 "SRAGG.spad" 1940385 1940396 1945212 1945217) (-1157 "SQMATRIX.spad" 1938057 1938075 1938973 1939060) (-1156 "SPLTREE.spad" 1932609 1932622 1937493 1937520) (-1155 "SPLNODE.spad" 1929197 1929210 1932599 1932604) (-1154 "SPFCAT.spad" 1928006 1928015 1929187 1929192) (-1153 "SPECOUT.spad" 1926558 1926567 1927996 1928001) (-1152 "SPADXPT.spad" 1918153 1918162 1926548 1926553) (-1151 "spad-parser.spad" 1917618 1917627 1918143 1918148) (-1150 "SPADAST.spad" 1917319 1917328 1917608 1917613) (-1149 "SPACEC.spad" 1901518 1901529 1917309 1917314) (-1148 "SPACE3.spad" 1901294 1901305 1901508 1901513) (-1147 "SORTPAK.spad" 1900843 1900856 1901250 1901255) (-1146 "SOLVETRA.spad" 1898606 1898617 1900833 1900838) (-1145 "SOLVESER.spad" 1897134 1897145 1898596 1898601) (-1144 "SOLVERAD.spad" 1893160 1893171 1897124 1897129) (-1143 "SOLVEFOR.spad" 1891622 1891640 1893150 1893155) (-1142 "SNTSCAT.spad" 1891222 1891239 1891590 1891617) (-1141 "SMTS.spad" 1889494 1889520 1890787 1890884) (-1140 "SMP.spad" 1886969 1886989 1887359 1887486) (-1139 "SMITH.spad" 1885814 1885839 1886959 1886964) (-1138 "SMATCAT.spad" 1883924 1883954 1885758 1885809) (-1137 "SMATCAT.spad" 1881966 1881998 1883802 1883807) (-1136 "SKAGG.spad" 1880929 1880940 1881934 1881961) (-1135 "SINT.spad" 1879869 1879878 1880795 1880924) (-1134 "SIMPAN.spad" 1879597 1879606 1879859 1879864) (-1133 "SIG.spad" 1878927 1878936 1879587 1879592) (-1132 "SIGNRF.spad" 1878045 1878056 1878917 1878922) (-1131 "SIGNEF.spad" 1877324 1877341 1878035 1878040) (-1130 "SIGAST.spad" 1876709 1876718 1877314 1877319) (-1129 "SHP.spad" 1874637 1874652 1876665 1876670) (-1128 "SHDP.spad" 1864583 1864610 1865092 1865223) (-1127 "SGROUP.spad" 1864191 1864200 1864573 1864578) (-1126 "SGROUP.spad" 1863797 1863808 1864181 1864186) (-1125 "SGCF.spad" 1856936 1856945 1863787 1863792) (-1124 "SFRTCAT.spad" 1855866 1855883 1856904 1856931) (-1123 "SFRGCD.spad" 1854929 1854949 1855856 1855861) (-1122 "SFQCMPK.spad" 1849566 1849586 1854919 1854924) (-1121 "SFORT.spad" 1849005 1849019 1849556 1849561) (-1120 "SEXOF.spad" 1848848 1848888 1848995 1849000) (-1119 "SEX.spad" 1848740 1848749 1848838 1848843) (-1118 "SEXCAT.spad" 1846521 1846561 1848730 1848735) (-1117 "SET.spad" 1844845 1844856 1845942 1845981) (-1116 "SETMN.spad" 1843295 1843312 1844835 1844840) (-1115 "SETCAT.spad" 1842617 1842626 1843285 1843290) (-1114 "SETCAT.spad" 1841937 1841948 1842607 1842612) (-1113 "SETAGG.spad" 1838486 1838497 1841917 1841932) (-1112 "SETAGG.spad" 1835043 1835056 1838476 1838481) (-1111 "SEQAST.spad" 1834746 1834755 1835033 1835038) (-1110 "SEGXCAT.spad" 1833902 1833915 1834736 1834741) (-1109 "SEG.spad" 1833715 1833726 1833821 1833826) (-1108 "SEGCAT.spad" 1832640 1832651 1833705 1833710) (-1107 "SEGBIND.spad" 1832398 1832409 1832587 1832592) (-1106 "SEGBIND2.spad" 1832096 1832109 1832388 1832393) (-1105 "SEGAST.spad" 1831810 1831819 1832086 1832091) (-1104 "SEG2.spad" 1831245 1831258 1831766 1831771) (-1103 "SDVAR.spad" 1830521 1830532 1831235 1831240) (-1102 "SDPOL.spad" 1827947 1827958 1828238 1828365) (-1101 "SCPKG.spad" 1826036 1826047 1827937 1827942) (-1100 "SCOPE.spad" 1825189 1825198 1826026 1826031) (-1099 "SCACHE.spad" 1823885 1823896 1825179 1825184) (-1098 "SASTCAT.spad" 1823794 1823803 1823875 1823880) (-1097 "SAOS.spad" 1823666 1823675 1823784 1823789) (-1096 "SAERFFC.spad" 1823379 1823399 1823656 1823661) (-1095 "SAE.spad" 1821554 1821570 1822165 1822300) (-1094 "SAEFACT.spad" 1821255 1821275 1821544 1821549) (-1093 "RURPK.spad" 1818914 1818930 1821245 1821250) (-1092 "RULESET.spad" 1818367 1818391 1818904 1818909) (-1091 "RULE.spad" 1816607 1816631 1818357 1818362) (-1090 "RULECOLD.spad" 1816459 1816472 1816597 1816602) (-1089 "RTVALUE.spad" 1816194 1816203 1816449 1816454) (-1088 "RSTRCAST.spad" 1815911 1815920 1816184 1816189) (-1087 "RSETGCD.spad" 1812289 1812309 1815901 1815906) (-1086 "RSETCAT.spad" 1802225 1802242 1812257 1812284) (-1085 "RSETCAT.spad" 1792181 1792200 1802215 1802220) (-1084 "RSDCMPK.spad" 1790633 1790653 1792171 1792176) (-1083 "RRCC.spad" 1789017 1789047 1790623 1790628) (-1082 "RRCC.spad" 1787399 1787431 1789007 1789012) (-1081 "RPTAST.spad" 1787101 1787110 1787389 1787394) (-1080 "RPOLCAT.spad" 1766461 1766476 1786969 1787096) (-1079 "RPOLCAT.spad" 1745534 1745551 1766044 1766049) (-1078 "ROUTINE.spad" 1741417 1741426 1744181 1744208) (-1077 "ROMAN.spad" 1740745 1740754 1741283 1741412) (-1076 "ROIRC.spad" 1739825 1739857 1740735 1740740) (-1075 "RNS.spad" 1738728 1738737 1739727 1739820) (-1074 "RNS.spad" 1737717 1737728 1738718 1738723) (-1073 "RNG.spad" 1737452 1737461 1737707 1737712) (-1072 "RNGBIND.spad" 1736612 1736626 1737407 1737412) (-1071 "RMODULE.spad" 1736377 1736388 1736602 1736607) (-1070 "RMCAT2.spad" 1735797 1735854 1736367 1736372) (-1069 "RMATRIX.spad" 1734621 1734640 1734964 1735003) (-1068 "RMATCAT.spad" 1730200 1730231 1734577 1734616) (-1067 "RMATCAT.spad" 1725669 1725702 1730048 1730053) (-1066 "RLINSET.spad" 1725224 1725235 1725659 1725664) (-1065 "RINTERP.spad" 1725112 1725132 1725214 1725219) (-1064 "RING.spad" 1724582 1724591 1725092 1725107) (-1063 "RING.spad" 1724060 1724071 1724572 1724577) (-1062 "RIDIST.spad" 1723452 1723461 1724050 1724055) (-1061 "RGCHAIN.spad" 1722035 1722051 1722937 1722964) (-1060 "RGBCSPC.spad" 1721816 1721828 1722025 1722030) (-1059 "RGBCMDL.spad" 1721346 1721358 1721806 1721811) (-1058 "RF.spad" 1718988 1718999 1721336 1721341) (-1057 "RFFACTOR.spad" 1718450 1718461 1718978 1718983) (-1056 "RFFACT.spad" 1718185 1718197 1718440 1718445) (-1055 "RFDIST.spad" 1717181 1717190 1718175 1718180) (-1054 "RETSOL.spad" 1716600 1716613 1717171 1717176) (-1053 "RETRACT.spad" 1716028 1716039 1716590 1716595) (-1052 "RETRACT.spad" 1715454 1715467 1716018 1716023) (-1051 "RETAST.spad" 1715266 1715275 1715444 1715449) (-1050 "RESULT.spad" 1713326 1713335 1713913 1713940) (-1049 "RESRING.spad" 1712673 1712720 1713264 1713321) (-1048 "RESLATC.spad" 1711997 1712008 1712663 1712668) (-1047 "REPSQ.spad" 1711728 1711739 1711987 1711992) (-1046 "REP.spad" 1709282 1709291 1711718 1711723) (-1045 "REPDB.spad" 1708989 1709000 1709272 1709277) (-1044 "REP2.spad" 1698647 1698658 1708831 1708836) (-1043 "REP1.spad" 1692843 1692854 1698597 1698602) (-1042 "REGSET.spad" 1690640 1690657 1692489 1692516) (-1041 "REF.spad" 1689975 1689986 1690595 1690600) (-1040 "REDORDER.spad" 1689181 1689198 1689965 1689970) (-1039 "RECLOS.spad" 1687964 1687984 1688668 1688761) (-1038 "REALSOLV.spad" 1687104 1687113 1687954 1687959) (-1037 "REAL.spad" 1686976 1686985 1687094 1687099) (-1036 "REAL0Q.spad" 1684274 1684289 1686966 1686971) (-1035 "REAL0.spad" 1681118 1681133 1684264 1684269) (-1034 "RDUCEAST.spad" 1680839 1680848 1681108 1681113) (-1033 "RDIV.spad" 1680494 1680519 1680829 1680834) (-1032 "RDIST.spad" 1680061 1680072 1680484 1680489) (-1031 "RDETRS.spad" 1678925 1678943 1680051 1680056) (-1030 "RDETR.spad" 1677064 1677082 1678915 1678920) (-1029 "RDEEFS.spad" 1676163 1676180 1677054 1677059) (-1028 "RDEEF.spad" 1675173 1675190 1676153 1676158) (-1027 "RCFIELD.spad" 1672359 1672368 1675075 1675168) (-1026 "RCFIELD.spad" 1669631 1669642 1672349 1672354) (-1025 "RCAGG.spad" 1667559 1667570 1669621 1669626) (-1024 "RCAGG.spad" 1665414 1665427 1667478 1667483) (-1023 "RATRET.spad" 1664774 1664785 1665404 1665409) (-1022 "RATFACT.spad" 1664466 1664478 1664764 1664769) (-1021 "RANDSRC.spad" 1663785 1663794 1664456 1664461) (-1020 "RADUTIL.spad" 1663541 1663550 1663775 1663780) (-1019 "RADIX.spad" 1660462 1660476 1662008 1662101) (-1018 "RADFF.spad" 1658875 1658912 1658994 1659150) (-1017 "RADCAT.spad" 1658470 1658479 1658865 1658870) (-1016 "RADCAT.spad" 1658063 1658074 1658460 1658465) (-1015 "QUEUE.spad" 1657411 1657422 1657670 1657697) (-1014 "QUAT.spad" 1655869 1655880 1656212 1656277) (-1013 "QUATCT2.spad" 1655489 1655508 1655859 1655864) (-1012 "QUATCAT.spad" 1653659 1653670 1655419 1655484) (-1011 "QUATCAT.spad" 1651580 1651593 1653342 1653347) (-1010 "QUAGG.spad" 1650407 1650418 1651548 1651575) (-1009 "QQUTAST.spad" 1650175 1650184 1650397 1650402) (-1008 "QFORM.spad" 1649793 1649808 1650165 1650170) (-1007 "QFCAT.spad" 1648495 1648506 1649695 1649788) (-1006 "QFCAT.spad" 1646788 1646801 1647990 1647995) (-1005 "QFCAT2.spad" 1646480 1646497 1646778 1646783) (-1004 "QEQUAT.spad" 1646038 1646047 1646470 1646475) (-1003 "QCMPACK.spad" 1640784 1640804 1646028 1646033) (-1002 "QALGSET.spad" 1636862 1636895 1640698 1640703) (-1001 "QALGSET2.spad" 1634857 1634876 1636852 1636857) (-1000 "PWFFINTB.spad" 1632272 1632294 1634847 1634852) (-999 "PUSHVAR.spad" 1631611 1631630 1632262 1632267) (-998 "PTRANFN.spad" 1627739 1627749 1631601 1631606) (-997 "PTPACK.spad" 1624827 1624837 1627729 1627734) (-996 "PTFUNC2.spad" 1624650 1624664 1624817 1624822) (-995 "PTCAT.spad" 1623905 1623915 1624618 1624645) (-994 "PSQFR.spad" 1623212 1623236 1623895 1623900) (-993 "PSEUDLIN.spad" 1622098 1622108 1623202 1623207) (-992 "PSETPK.spad" 1607531 1607547 1621976 1621981) (-991 "PSETCAT.spad" 1601451 1601474 1607511 1607526) (-990 "PSETCAT.spad" 1595345 1595370 1601407 1601412) (-989 "PSCURVE.spad" 1594328 1594336 1595335 1595340) (-988 "PSCAT.spad" 1593111 1593140 1594226 1594323) (-987 "PSCAT.spad" 1591984 1592015 1593101 1593106) (-986 "PRTITION.spad" 1590682 1590690 1591974 1591979) (-985 "PRTDAST.spad" 1590401 1590409 1590672 1590677) (-984 "PRS.spad" 1579963 1579980 1590357 1590362) (-983 "PRQAGG.spad" 1579398 1579408 1579931 1579958) (-982 "PROPLOG.spad" 1578970 1578978 1579388 1579393) (-981 "PROPFUN2.spad" 1578593 1578606 1578960 1578965) (-980 "PROPFUN1.spad" 1577991 1578002 1578583 1578588) (-979 "PROPFRML.spad" 1576559 1576570 1577981 1577986) (-978 "PROPERTY.spad" 1576047 1576055 1576549 1576554) (-977 "PRODUCT.spad" 1573729 1573741 1574013 1574068) (-976 "PR.spad" 1572121 1572133 1572820 1572947) (-975 "PRINT.spad" 1571873 1571881 1572111 1572116) (-974 "PRIMES.spad" 1570126 1570136 1571863 1571868) (-973 "PRIMELT.spad" 1568207 1568221 1570116 1570121) (-972 "PRIMCAT.spad" 1567834 1567842 1568197 1568202) (-971 "PRIMARR.spad" 1566839 1566849 1567017 1567044) (-970 "PRIMARR2.spad" 1565606 1565618 1566829 1566834) (-969 "PREASSOC.spad" 1564988 1565000 1565596 1565601) (-968 "PPCURVE.spad" 1564125 1564133 1564978 1564983) (-967 "PORTNUM.spad" 1563900 1563908 1564115 1564120) (-966 "POLYROOT.spad" 1562749 1562771 1563856 1563861) (-965 "POLY.spad" 1560084 1560094 1560599 1560726) (-964 "POLYLIFT.spad" 1559349 1559372 1560074 1560079) (-963 "POLYCATQ.spad" 1557467 1557489 1559339 1559344) (-962 "POLYCAT.spad" 1550937 1550958 1557335 1557462) (-961 "POLYCAT.spad" 1543745 1543768 1550145 1550150) (-960 "POLY2UP.spad" 1543197 1543211 1543735 1543740) (-959 "POLY2.spad" 1542794 1542806 1543187 1543192) (-958 "POLUTIL.spad" 1541735 1541764 1542750 1542755) (-957 "POLTOPOL.spad" 1540483 1540498 1541725 1541730) (-956 "POINT.spad" 1539321 1539331 1539408 1539435) (-955 "PNTHEORY.spad" 1536023 1536031 1539311 1539316) (-954 "PMTOOLS.spad" 1534798 1534812 1536013 1536018) (-953 "PMSYM.spad" 1534347 1534357 1534788 1534793) (-952 "PMQFCAT.spad" 1533938 1533952 1534337 1534342) (-951 "PMPRED.spad" 1533417 1533431 1533928 1533933) (-950 "PMPREDFS.spad" 1532871 1532893 1533407 1533412) (-949 "PMPLCAT.spad" 1531951 1531969 1532803 1532808) (-948 "PMLSAGG.spad" 1531536 1531550 1531941 1531946) (-947 "PMKERNEL.spad" 1531115 1531127 1531526 1531531) (-946 "PMINS.spad" 1530695 1530705 1531105 1531110) (-945 "PMFS.spad" 1530272 1530290 1530685 1530690) (-944 "PMDOWN.spad" 1529562 1529576 1530262 1530267) (-943 "PMASS.spad" 1528572 1528580 1529552 1529557) (-942 "PMASSFS.spad" 1527539 1527555 1528562 1528567) (-941 "PLOTTOOL.spad" 1527319 1527327 1527529 1527534) (-940 "PLOT.spad" 1522242 1522250 1527309 1527314) (-939 "PLOT3D.spad" 1518706 1518714 1522232 1522237) (-938 "PLOT1.spad" 1517863 1517873 1518696 1518701) (-937 "PLEQN.spad" 1505153 1505180 1517853 1517858) (-936 "PINTERP.spad" 1504775 1504794 1505143 1505148) (-935 "PINTERPA.spad" 1504559 1504575 1504765 1504770) (-934 "PI.spad" 1504168 1504176 1504533 1504554) (-933 "PID.spad" 1503138 1503146 1504094 1504163) (-932 "PICOERCE.spad" 1502795 1502805 1503128 1503133) (-931 "PGROEB.spad" 1501396 1501410 1502785 1502790) (-930 "PGE.spad" 1493013 1493021 1501386 1501391) (-929 "PGCD.spad" 1491903 1491920 1493003 1493008) (-928 "PFRPAC.spad" 1491052 1491062 1491893 1491898) (-927 "PFR.spad" 1487715 1487725 1490954 1491047) (-926 "PFOTOOLS.spad" 1486973 1486989 1487705 1487710) (-925 "PFOQ.spad" 1486343 1486361 1486963 1486968) (-924 "PFO.spad" 1485762 1485789 1486333 1486338) (-923 "PF.spad" 1485336 1485348 1485567 1485660) (-922 "PFECAT.spad" 1483018 1483026 1485262 1485331) (-921 "PFECAT.spad" 1480728 1480738 1482974 1482979) (-920 "PFBRU.spad" 1478616 1478628 1480718 1480723) (-919 "PFBR.spad" 1476176 1476199 1478606 1478611) (-918 "PERM.spad" 1471983 1471993 1476006 1476021) (-917 "PERMGRP.spad" 1466753 1466763 1471973 1471978) (-916 "PERMCAT.spad" 1465414 1465424 1466733 1466748) (-915 "PERMAN.spad" 1463946 1463960 1465404 1465409) (-914 "PENDTREE.spad" 1463287 1463297 1463575 1463580) (-913 "PDRING.spad" 1461838 1461848 1463267 1463282) (-912 "PDRING.spad" 1460397 1460409 1461828 1461833) (-911 "PDEPROB.spad" 1459412 1459420 1460387 1460392) (-910 "PDEPACK.spad" 1453452 1453460 1459402 1459407) (-909 "PDECOMP.spad" 1452922 1452939 1453442 1453447) (-908 "PDECAT.spad" 1451278 1451286 1452912 1452917) (-907 "PDDOM.spad" 1450744 1450757 1451268 1451273) (-906 "PDDOM.spad" 1450208 1450223 1450734 1450739) (-905 "PCOMP.spad" 1450061 1450074 1450198 1450203) (-904 "PBWLB.spad" 1448649 1448666 1450051 1450056) (-903 "PATTERN.spad" 1443188 1443198 1448639 1448644) (-902 "PATTERN2.spad" 1442926 1442938 1443178 1443183) (-901 "PATTERN1.spad" 1441262 1441278 1442916 1442921) (-900 "PATRES.spad" 1438837 1438849 1441252 1441257) (-899 "PATRES2.spad" 1438509 1438523 1438827 1438832) (-898 "PATMATCH.spad" 1436706 1436737 1438217 1438222) (-897 "PATMAB.spad" 1436135 1436145 1436696 1436701) (-896 "PATLRES.spad" 1435221 1435235 1436125 1436130) (-895 "PATAB.spad" 1434985 1434995 1435211 1435216) (-894 "PARTPERM.spad" 1432993 1433001 1434975 1434980) (-893 "PARSURF.spad" 1432427 1432455 1432983 1432988) (-892 "PARSU2.spad" 1432224 1432240 1432417 1432422) (-891 "script-parser.spad" 1431744 1431752 1432214 1432219) (-890 "PARSCURV.spad" 1431178 1431206 1431734 1431739) (-889 "PARSC2.spad" 1430969 1430985 1431168 1431173) (-888 "PARPCURV.spad" 1430431 1430459 1430959 1430964) (-887 "PARPC2.spad" 1430222 1430238 1430421 1430426) (-886 "PARAMAST.spad" 1429350 1429358 1430212 1430217) (-885 "PAN2EXPR.spad" 1428762 1428770 1429340 1429345) (-884 "PALETTE.spad" 1427732 1427740 1428752 1428757) (-883 "PAIR.spad" 1426719 1426732 1427320 1427325) (-882 "PADICRC.spad" 1424053 1424071 1425224 1425317) (-881 "PADICRAT.spad" 1422068 1422080 1422289 1422382) (-880 "PADIC.spad" 1421763 1421775 1421994 1422063) (-879 "PADICCT.spad" 1420312 1420324 1421689 1421758) (-878 "PADEPAC.spad" 1419001 1419020 1420302 1420307) (-877 "PADE.spad" 1417753 1417769 1418991 1418996) (-876 "OWP.spad" 1416993 1417023 1417611 1417678) (-875 "OVERSET.spad" 1416566 1416574 1416983 1416988) (-874 "OVAR.spad" 1416347 1416370 1416556 1416561) (-873 "OUT.spad" 1415433 1415441 1416337 1416342) (-872 "OUTFORM.spad" 1404825 1404833 1415423 1415428) (-871 "OUTBFILE.spad" 1404243 1404251 1404815 1404820) (-870 "OUTBCON.spad" 1403249 1403257 1404233 1404238) (-869 "OUTBCON.spad" 1402253 1402263 1403239 1403244) (-868 "OSI.spad" 1401728 1401736 1402243 1402248) (-867 "OSGROUP.spad" 1401646 1401654 1401718 1401723) (-866 "ORTHPOL.spad" 1400131 1400141 1401563 1401568) (-865 "OREUP.spad" 1399584 1399612 1399811 1399850) (-864 "ORESUP.spad" 1398885 1398909 1399264 1399303) (-863 "OREPCTO.spad" 1396742 1396754 1398805 1398810) (-862 "OREPCAT.spad" 1390889 1390899 1396698 1396737) (-861 "OREPCAT.spad" 1384926 1384938 1390737 1390742) (-860 "ORDSET.spad" 1384098 1384106 1384916 1384921) (-859 "ORDSET.spad" 1383268 1383278 1384088 1384093) (-858 "ORDRING.spad" 1382658 1382666 1383248 1383263) (-857 "ORDRING.spad" 1382056 1382066 1382648 1382653) (-856 "ORDMON.spad" 1381911 1381919 1382046 1382051) (-855 "ORDFUNS.spad" 1381043 1381059 1381901 1381906) (-854 "ORDFIN.spad" 1380863 1380871 1381033 1381038) (-853 "ORDCOMP.spad" 1379328 1379338 1380410 1380439) (-852 "ORDCOMP2.spad" 1378621 1378633 1379318 1379323) (-851 "OPTPROB.spad" 1377259 1377267 1378611 1378616) (-850 "OPTPACK.spad" 1369668 1369676 1377249 1377254) (-849 "OPTCAT.spad" 1367347 1367355 1369658 1369663) (-848 "OPSIG.spad" 1367001 1367009 1367337 1367342) (-847 "OPQUERY.spad" 1366550 1366558 1366991 1366996) (-846 "OP.spad" 1366292 1366302 1366372 1366439) (-845 "OPERCAT.spad" 1365758 1365768 1366282 1366287) (-844 "OPERCAT.spad" 1365222 1365234 1365748 1365753) (-843 "ONECOMP.spad" 1363967 1363977 1364769 1364798) (-842 "ONECOMP2.spad" 1363391 1363403 1363957 1363962) (-841 "OMSERVER.spad" 1362397 1362405 1363381 1363386) (-840 "OMSAGG.spad" 1362185 1362195 1362353 1362392) (-839 "OMPKG.spad" 1360801 1360809 1362175 1362180) (-838 "OM.spad" 1359774 1359782 1360791 1360796) (-837 "OMLO.spad" 1359199 1359211 1359660 1359699) (-836 "OMEXPR.spad" 1359033 1359043 1359189 1359194) (-835 "OMERR.spad" 1358578 1358586 1359023 1359028) (-834 "OMERRK.spad" 1357612 1357620 1358568 1358573) (-833 "OMENC.spad" 1356956 1356964 1357602 1357607) (-832 "OMDEV.spad" 1351265 1351273 1356946 1356951) (-831 "OMCONN.spad" 1350674 1350682 1351255 1351260) (-830 "OINTDOM.spad" 1350437 1350445 1350600 1350669) (-829 "OFMONOID.spad" 1348560 1348570 1350393 1350398) (-828 "ODVAR.spad" 1347821 1347831 1348550 1348555) (-827 "ODR.spad" 1347465 1347491 1347633 1347782) (-826 "ODPOL.spad" 1344847 1344857 1345187 1345314) (-825 "ODP.spad" 1334929 1334949 1335302 1335433) (-824 "ODETOOLS.spad" 1333578 1333597 1334919 1334924) (-823 "ODESYS.spad" 1331272 1331289 1333568 1333573) (-822 "ODERTRIC.spad" 1327281 1327298 1331229 1331234) (-821 "ODERED.spad" 1326680 1326704 1327271 1327276) (-820 "ODERAT.spad" 1324295 1324312 1326670 1326675) (-819 "ODEPRRIC.spad" 1321332 1321354 1324285 1324290) (-818 "ODEPROB.spad" 1320589 1320597 1321322 1321327) (-817 "ODEPRIM.spad" 1317923 1317945 1320579 1320584) (-816 "ODEPAL.spad" 1317309 1317333 1317913 1317918) (-815 "ODEPACK.spad" 1303975 1303983 1317299 1317304) (-814 "ODEINT.spad" 1303410 1303426 1303965 1303970) (-813 "ODEIFTBL.spad" 1300805 1300813 1303400 1303405) (-812 "ODEEF.spad" 1296296 1296312 1300795 1300800) (-811 "ODECONST.spad" 1295833 1295851 1296286 1296291) (-810 "ODECAT.spad" 1294431 1294439 1295823 1295828) (-809 "OCT.spad" 1292567 1292577 1293281 1293320) (-808 "OCTCT2.spad" 1292213 1292234 1292557 1292562) (-807 "OC.spad" 1290009 1290019 1292169 1292208) (-806 "OC.spad" 1287530 1287542 1289692 1289697) (-805 "OCAMON.spad" 1287378 1287386 1287520 1287525) (-804 "OASGP.spad" 1287193 1287201 1287368 1287373) (-803 "OAMONS.spad" 1286715 1286723 1287183 1287188) (-802 "OAMON.spad" 1286576 1286584 1286705 1286710) (-801 "OAGROUP.spad" 1286438 1286446 1286566 1286571) (-800 "NUMTUBE.spad" 1286029 1286045 1286428 1286433) (-799 "NUMQUAD.spad" 1274005 1274013 1286019 1286024) (-798 "NUMODE.spad" 1265359 1265367 1273995 1274000) (-797 "NUMINT.spad" 1262925 1262933 1265349 1265354) (-796 "NUMFMT.spad" 1261765 1261773 1262915 1262920) (-795 "NUMERIC.spad" 1253879 1253889 1261570 1261575) (-794 "NTSCAT.spad" 1252387 1252403 1253847 1253874) (-793 "NTPOLFN.spad" 1251938 1251948 1252304 1252309) (-792 "NSUP.spad" 1244984 1244994 1249524 1249677) (-791 "NSUP2.spad" 1244376 1244388 1244974 1244979) (-790 "NSMP.spad" 1240606 1240625 1240914 1241041) (-789 "NREP.spad" 1238984 1238998 1240596 1240601) (-788 "NPCOEF.spad" 1238230 1238250 1238974 1238979) (-787 "NORMRETR.spad" 1237828 1237867 1238220 1238225) (-786 "NORMPK.spad" 1235730 1235749 1237818 1237823) (-785 "NORMMA.spad" 1235418 1235444 1235720 1235725) (-784 "NONE.spad" 1235159 1235167 1235408 1235413) (-783 "NONE1.spad" 1234835 1234845 1235149 1235154) (-782 "NODE1.spad" 1234322 1234338 1234825 1234830) (-781 "NNI.spad" 1233217 1233225 1234296 1234317) (-780 "NLINSOL.spad" 1231843 1231853 1233207 1233212) (-779 "NIPROB.spad" 1230384 1230392 1231833 1231838) (-778 "NFINTBAS.spad" 1227944 1227961 1230374 1230379) (-777 "NETCLT.spad" 1227918 1227929 1227934 1227939) (-776 "NCODIV.spad" 1226134 1226150 1227908 1227913) (-775 "NCNTFRAC.spad" 1225776 1225790 1226124 1226129) (-774 "NCEP.spad" 1223942 1223956 1225766 1225771) (-773 "NASRING.spad" 1223538 1223546 1223932 1223937) (-772 "NASRING.spad" 1223132 1223142 1223528 1223533) (-771 "NARNG.spad" 1222484 1222492 1223122 1223127) (-770 "NARNG.spad" 1221834 1221844 1222474 1222479) (-769 "NAGSP.spad" 1220911 1220919 1221824 1221829) (-768 "NAGS.spad" 1210572 1210580 1220901 1220906) (-767 "NAGF07.spad" 1209003 1209011 1210562 1210567) (-766 "NAGF04.spad" 1203405 1203413 1208993 1208998) (-765 "NAGF02.spad" 1197474 1197482 1203395 1203400) (-764 "NAGF01.spad" 1193235 1193243 1197464 1197469) (-763 "NAGE04.spad" 1186935 1186943 1193225 1193230) (-762 "NAGE02.spad" 1177595 1177603 1186925 1186930) (-761 "NAGE01.spad" 1173597 1173605 1177585 1177590) (-760 "NAGD03.spad" 1171601 1171609 1173587 1173592) (-759 "NAGD02.spad" 1164348 1164356 1171591 1171596) (-758 "NAGD01.spad" 1158641 1158649 1164338 1164343) (-757 "NAGC06.spad" 1154516 1154524 1158631 1158636) (-756 "NAGC05.spad" 1153017 1153025 1154506 1154511) (-755 "NAGC02.spad" 1152284 1152292 1153007 1153012) (-754 "NAALG.spad" 1151825 1151835 1152252 1152279) (-753 "NAALG.spad" 1151386 1151398 1151815 1151820) (-752 "MULTSQFR.spad" 1148344 1148361 1151376 1151381) (-751 "MULTFACT.spad" 1147727 1147744 1148334 1148339) (-750 "MTSCAT.spad" 1145821 1145842 1147625 1147722) (-749 "MTHING.spad" 1145480 1145490 1145811 1145816) (-748 "MSYSCMD.spad" 1144914 1144922 1145470 1145475) (-747 "MSET.spad" 1142872 1142882 1144620 1144659) (-746 "MSETAGG.spad" 1142717 1142727 1142840 1142867) (-745 "MRING.spad" 1139694 1139706 1142425 1142492) (-744 "MRF2.spad" 1139264 1139278 1139684 1139689) (-743 "MRATFAC.spad" 1138810 1138827 1139254 1139259) (-742 "MPRFF.spad" 1136850 1136869 1138800 1138805) (-741 "MPOLY.spad" 1134321 1134336 1134680 1134807) (-740 "MPCPF.spad" 1133585 1133604 1134311 1134316) (-739 "MPC3.spad" 1133402 1133442 1133575 1133580) (-738 "MPC2.spad" 1133048 1133081 1133392 1133397) (-737 "MONOTOOL.spad" 1131399 1131416 1133038 1133043) (-736 "MONOID.spad" 1130718 1130726 1131389 1131394) (-735 "MONOID.spad" 1130035 1130045 1130708 1130713) (-734 "MONOGEN.spad" 1128783 1128796 1129895 1130030) (-733 "MONOGEN.spad" 1127553 1127568 1128667 1128672) (-732 "MONADWU.spad" 1125583 1125591 1127543 1127548) (-731 "MONADWU.spad" 1123611 1123621 1125573 1125578) (-730 "MONAD.spad" 1122771 1122779 1123601 1123606) (-729 "MONAD.spad" 1121929 1121939 1122761 1122766) (-728 "MOEBIUS.spad" 1120665 1120679 1121909 1121924) (-727 "MODULE.spad" 1120535 1120545 1120633 1120660) (-726 "MODULE.spad" 1120425 1120437 1120525 1120530) (-725 "MODRING.spad" 1119760 1119799 1120405 1120420) (-724 "MODOP.spad" 1118425 1118437 1119582 1119649) (-723 "MODMONOM.spad" 1118156 1118174 1118415 1118420) (-722 "MODMON.spad" 1114951 1114967 1115670 1115823) (-721 "MODFIELD.spad" 1114313 1114352 1114853 1114946) (-720 "MMLFORM.spad" 1113173 1113181 1114303 1114308) (-719 "MMAP.spad" 1112915 1112949 1113163 1113168) (-718 "MLO.spad" 1111374 1111384 1112871 1112910) (-717 "MLIFT.spad" 1109986 1110003 1111364 1111369) (-716 "MKUCFUNC.spad" 1109521 1109539 1109976 1109981) (-715 "MKRECORD.spad" 1109125 1109138 1109511 1109516) (-714 "MKFUNC.spad" 1108532 1108542 1109115 1109120) (-713 "MKFLCFN.spad" 1107500 1107510 1108522 1108527) (-712 "MKBCFUNC.spad" 1106995 1107013 1107490 1107495) (-711 "MINT.spad" 1106434 1106442 1106897 1106990) (-710 "MHROWRED.spad" 1104945 1104955 1106424 1106429) (-709 "MFLOAT.spad" 1103465 1103473 1104835 1104940) (-708 "MFINFACT.spad" 1102865 1102887 1103455 1103460) (-707 "MESH.spad" 1100647 1100655 1102855 1102860) (-706 "MDDFACT.spad" 1098858 1098868 1100637 1100642) (-705 "MDAGG.spad" 1098149 1098159 1098838 1098853) (-704 "MCMPLX.spad" 1094160 1094168 1094774 1094975) (-703 "MCDEN.spad" 1093370 1093382 1094150 1094155) (-702 "MCALCFN.spad" 1090492 1090518 1093360 1093365) (-701 "MAYBE.spad" 1089776 1089787 1090482 1090487) (-700 "MATSTOR.spad" 1087084 1087094 1089766 1089771) (-699 "MATRIX.spad" 1085788 1085798 1086272 1086299) (-698 "MATLIN.spad" 1083132 1083156 1085672 1085677) (-697 "MATCAT.spad" 1074861 1074883 1083100 1083127) (-696 "MATCAT.spad" 1066462 1066486 1074703 1074708) (-695 "MATCAT2.spad" 1065744 1065792 1066452 1066457) (-694 "MAPPKG3.spad" 1064659 1064673 1065734 1065739) (-693 "MAPPKG2.spad" 1063997 1064009 1064649 1064654) (-692 "MAPPKG1.spad" 1062825 1062835 1063987 1063992) (-691 "MAPPAST.spad" 1062140 1062148 1062815 1062820) (-690 "MAPHACK3.spad" 1061952 1061966 1062130 1062135) (-689 "MAPHACK2.spad" 1061721 1061733 1061942 1061947) (-688 "MAPHACK1.spad" 1061365 1061375 1061711 1061716) (-687 "MAGMA.spad" 1059155 1059172 1061355 1061360) (-686 "MACROAST.spad" 1058734 1058742 1059145 1059150) (-685 "M3D.spad" 1056454 1056464 1058112 1058117) (-684 "LZSTAGG.spad" 1053692 1053702 1056444 1056449) (-683 "LZSTAGG.spad" 1050928 1050940 1053682 1053687) (-682 "LWORD.spad" 1047633 1047650 1050918 1050923) (-681 "LSTAST.spad" 1047417 1047425 1047623 1047628) (-680 "LSQM.spad" 1045703 1045717 1046097 1046148) (-679 "LSPP.spad" 1045238 1045255 1045693 1045698) (-678 "LSMP.spad" 1044088 1044116 1045228 1045233) (-677 "LSMP1.spad" 1041906 1041920 1044078 1044083) (-676 "LSAGG.spad" 1041575 1041585 1041874 1041901) (-675 "LSAGG.spad" 1041264 1041276 1041565 1041570) (-674 "LPOLY.spad" 1040218 1040237 1041120 1041189) (-673 "LPEFRAC.spad" 1039489 1039499 1040208 1040213) (-672 "LO.spad" 1038890 1038904 1039423 1039450) (-671 "LOGIC.spad" 1038492 1038500 1038880 1038885) (-670 "LOGIC.spad" 1038092 1038102 1038482 1038487) (-669 "LODOOPS.spad" 1037022 1037034 1038082 1038087) (-668 "LODO.spad" 1036406 1036422 1036702 1036741) (-667 "LODOF.spad" 1035452 1035469 1036363 1036368) (-666 "LODOCAT.spad" 1034118 1034128 1035408 1035447) (-665 "LODOCAT.spad" 1032782 1032794 1034074 1034079) (-664 "LODO2.spad" 1032055 1032067 1032462 1032501) (-663 "LODO1.spad" 1031455 1031465 1031735 1031774) (-662 "LODEEF.spad" 1030257 1030275 1031445 1031450) (-661 "LNAGG.spad" 1026404 1026414 1030247 1030252) (-660 "LNAGG.spad" 1022515 1022527 1026360 1026365) (-659 "LMOPS.spad" 1019283 1019300 1022505 1022510) (-658 "LMODULE.spad" 1019051 1019061 1019273 1019278) (-657 "LMDICT.spad" 1018338 1018348 1018602 1018629) (-656 "LLINSET.spad" 1017896 1017906 1018328 1018333) (-655 "LITERAL.spad" 1017802 1017813 1017886 1017891) (-654 "LIST.spad" 1015537 1015547 1016949 1016976) (-653 "LIST3.spad" 1014848 1014862 1015527 1015532) (-652 "LIST2.spad" 1013550 1013562 1014838 1014843) (-651 "LIST2MAP.spad" 1010453 1010465 1013540 1013545) (-650 "LINSET.spad" 1010232 1010242 1010443 1010448) (-649 "LINEXP.spad" 1009370 1009380 1010222 1010227) (-648 "LINDEP.spad" 1008179 1008191 1009282 1009287) (-647 "LIMITRF.spad" 1006107 1006117 1008169 1008174) (-646 "LIMITPS.spad" 1005010 1005023 1006097 1006102) (-645 "LIE.spad" 1003026 1003038 1004300 1004445) (-644 "LIECAT.spad" 1002502 1002512 1002952 1003021) (-643 "LIECAT.spad" 1002006 1002018 1002458 1002463) (-642 "LIB.spad" 1000219 1000227 1000665 1000680) (-641 "LGROBP.spad" 997572 997591 1000209 1000214) (-640 "LF.spad" 996527 996543 997562 997567) (-639 "LFCAT.spad" 995586 995594 996517 996522) (-638 "LEXTRIPK.spad" 991089 991104 995576 995581) (-637 "LEXP.spad" 989092 989119 991069 991084) (-636 "LETAST.spad" 988791 988799 989082 989087) (-635 "LEADCDET.spad" 987189 987206 988781 988786) (-634 "LAZM3PK.spad" 985893 985915 987179 987184) (-633 "LAUPOL.spad" 984586 984599 985486 985555) (-632 "LAPLACE.spad" 984169 984185 984576 984581) (-631 "LA.spad" 983609 983623 984091 984130) (-630 "LALG.spad" 983385 983395 983589 983604) (-629 "LALG.spad" 983169 983181 983375 983380) (-628 "KVTFROM.spad" 982904 982914 983159 983164) (-627 "KTVLOGIC.spad" 982416 982424 982894 982899) (-626 "KRCFROM.spad" 982154 982164 982406 982411) (-625 "KOVACIC.spad" 980877 980894 982144 982149) (-624 "KONVERT.spad" 980599 980609 980867 980872) (-623 "KOERCE.spad" 980336 980346 980589 980594) (-622 "KERNEL.spad" 978991 979001 980120 980125) (-621 "KERNEL2.spad" 978694 978706 978981 978986) (-620 "KDAGG.spad" 977803 977825 978674 978689) (-619 "KDAGG.spad" 976920 976944 977793 977798) (-618 "KAFILE.spad" 975883 975899 976118 976145) (-617 "JORDAN.spad" 973712 973724 975173 975318) (-616 "JOINAST.spad" 973406 973414 973702 973707) (-615 "JAVACODE.spad" 973272 973280 973396 973401) (-614 "IXAGG.spad" 971405 971429 973262 973267) (-613 "IXAGG.spad" 969393 969419 971252 971257) (-612 "IVECTOR.spad" 968163 968178 968318 968345) (-611 "ITUPLE.spad" 967324 967334 968153 968158) (-610 "ITRIGMNP.spad" 966163 966182 967314 967319) (-609 "ITFUN3.spad" 965669 965683 966153 966158) (-608 "ITFUN2.spad" 965413 965425 965659 965664) (-607 "ITFORM.spad" 964768 964776 965403 965408) (-606 "ITAYLOR.spad" 962762 962777 964632 964729) (-605 "ISUPS.spad" 955199 955214 961736 961833) (-604 "ISUMP.spad" 954700 954716 955189 955194) (-603 "ISTRING.spad" 953788 953801 953869 953896) (-602 "ISAST.spad" 953507 953515 953778 953783) (-601 "IRURPK.spad" 952224 952243 953497 953502) (-600 "IRSN.spad" 950196 950204 952214 952219) (-599 "IRRF2F.spad" 948681 948691 950152 950157) (-598 "IRREDFFX.spad" 948282 948293 948671 948676) (-597 "IROOT.spad" 946621 946631 948272 948277) (-596 "IR.spad" 944422 944436 946476 946503) (-595 "IRFORM.spad" 943746 943754 944412 944417) (-594 "IR2.spad" 942774 942790 943736 943741) (-593 "IR2F.spad" 941980 941996 942764 942769) (-592 "IPRNTPK.spad" 941740 941748 941970 941975) (-591 "IPF.spad" 941305 941317 941545 941638) (-590 "IPADIC.spad" 941066 941092 941231 941300) (-589 "IP4ADDR.spad" 940623 940631 941056 941061) (-588 "IOMODE.spad" 940145 940153 940613 940618) (-587 "IOBFILE.spad" 939506 939514 940135 940140) (-586 "IOBCON.spad" 939371 939379 939496 939501) (-585 "INVLAPLA.spad" 939020 939036 939361 939366) (-584 "INTTR.spad" 932402 932419 939010 939015) (-583 "INTTOOLS.spad" 930157 930173 931976 931981) (-582 "INTSLPE.spad" 929477 929485 930147 930152) (-581 "INTRVL.spad" 929043 929053 929391 929472) (-580 "INTRF.spad" 927467 927481 929033 929038) (-579 "INTRET.spad" 926899 926909 927457 927462) (-578 "INTRAT.spad" 925626 925643 926889 926894) (-577 "INTPM.spad" 924011 924027 925269 925274) (-576 "INTPAF.spad" 921875 921893 923943 923948) (-575 "INTPACK.spad" 912249 912257 921865 921870) (-574 "INT.spad" 911697 911705 912103 912244) (-573 "INTHERTR.spad" 910971 910988 911687 911692) (-572 "INTHERAL.spad" 910641 910665 910961 910966) (-571 "INTHEORY.spad" 907080 907088 910631 910636) (-570 "INTG0.spad" 900813 900831 907012 907017) (-569 "INTFTBL.spad" 894842 894850 900803 900808) (-568 "INTFACT.spad" 893901 893911 894832 894837) (-567 "INTEF.spad" 892286 892302 893891 893896) (-566 "INTDOM.spad" 890909 890917 892212 892281) (-565 "INTDOM.spad" 889594 889604 890899 890904) (-564 "INTCAT.spad" 887853 887863 889508 889589) (-563 "INTBIT.spad" 887360 887368 887843 887848) (-562 "INTALG.spad" 886548 886575 887350 887355) (-561 "INTAF.spad" 886048 886064 886538 886543) (-560 "INTABL.spad" 884566 884597 884729 884756) (-559 "INT8.spad" 884446 884454 884556 884561) (-558 "INT64.spad" 884325 884333 884436 884441) (-557 "INT32.spad" 884204 884212 884315 884320) (-556 "INT16.spad" 884083 884091 884194 884199) (-555 "INS.spad" 881586 881594 883985 884078) (-554 "INS.spad" 879175 879185 881576 881581) (-553 "INPSIGN.spad" 878623 878636 879165 879170) (-552 "INPRODPF.spad" 877719 877738 878613 878618) (-551 "INPRODFF.spad" 876807 876831 877709 877714) (-550 "INNMFACT.spad" 875782 875799 876797 876802) (-549 "INMODGCD.spad" 875270 875300 875772 875777) (-548 "INFSP.spad" 873567 873589 875260 875265) (-547 "INFPROD0.spad" 872647 872666 873557 873562) (-546 "INFORM.spad" 869846 869854 872637 872642) (-545 "INFORM1.spad" 869471 869481 869836 869841) (-544 "INFINITY.spad" 869023 869031 869461 869466) (-543 "INETCLTS.spad" 869000 869008 869013 869018) (-542 "INEP.spad" 867538 867560 868990 868995) (-541 "INDE.spad" 867267 867284 867528 867533) (-540 "INCRMAPS.spad" 866688 866698 867257 867262) (-539 "INBFILE.spad" 865760 865768 866678 866683) (-538 "INBFF.spad" 861554 861565 865750 865755) (-537 "INBCON.spad" 859844 859852 861544 861549) (-536 "INBCON.spad" 858132 858142 859834 859839) (-535 "INAST.spad" 857793 857801 858122 858127) (-534 "IMPTAST.spad" 857501 857509 857783 857788) (-533 "IMATRIX.spad" 856446 856472 856958 856985) (-532 "IMATQF.spad" 855540 855584 856402 856407) (-531 "IMATLIN.spad" 854145 854169 855496 855501) (-530 "ILIST.spad" 852803 852818 853328 853355) (-529 "IIARRAY2.spad" 852191 852229 852410 852437) (-528 "IFF.spad" 851601 851617 851872 851965) (-527 "IFAST.spad" 851215 851223 851591 851596) (-526 "IFARRAY.spad" 848708 848723 850398 850425) (-525 "IFAMON.spad" 848570 848587 848664 848669) (-524 "IEVALAB.spad" 847975 847987 848560 848565) (-523 "IEVALAB.spad" 847378 847392 847965 847970) (-522 "IDPO.spad" 847176 847188 847368 847373) (-521 "IDPOAMS.spad" 846932 846944 847166 847171) (-520 "IDPOAM.spad" 846652 846664 846922 846927) (-519 "IDPC.spad" 845590 845602 846642 846647) (-518 "IDPAM.spad" 845335 845347 845580 845585) (-517 "IDPAG.spad" 845082 845094 845325 845330) (-516 "IDENT.spad" 844732 844740 845072 845077) (-515 "IDECOMP.spad" 841971 841989 844722 844727) (-514 "IDEAL.spad" 836920 836959 841906 841911) (-513 "ICDEN.spad" 836109 836125 836910 836915) (-512 "ICARD.spad" 835300 835308 836099 836104) (-511 "IBPTOOLS.spad" 833907 833924 835290 835295) (-510 "IBITS.spad" 833110 833123 833543 833570) (-509 "IBATOOL.spad" 830087 830106 833100 833105) (-508 "IBACHIN.spad" 828594 828609 830077 830082) (-507 "IARRAY2.spad" 827582 827608 828201 828228) (-506 "IARRAY1.spad" 826627 826642 826765 826792) (-505 "IAN.spad" 824850 824858 826443 826536) (-504 "IALGFACT.spad" 824453 824486 824840 824845) (-503 "HYPCAT.spad" 823877 823885 824443 824448) (-502 "HYPCAT.spad" 823299 823309 823867 823872) (-501 "HOSTNAME.spad" 823107 823115 823289 823294) (-500 "HOMOTOP.spad" 822850 822860 823097 823102) (-499 "HOAGG.spad" 820132 820142 822840 822845) (-498 "HOAGG.spad" 817189 817201 819899 819904) (-497 "HEXADEC.spad" 815291 815299 815656 815749) (-496 "HEUGCD.spad" 814326 814337 815281 815286) (-495 "HELLFDIV.spad" 813916 813940 814316 814321) (-494 "HEAP.spad" 813308 813318 813523 813550) (-493 "HEADAST.spad" 812841 812849 813298 813303) (-492 "HDP.spad" 802919 802935 803296 803427) (-491 "HDMP.spad" 800133 800148 800749 800876) (-490 "HB.spad" 798384 798392 800123 800128) (-489 "HASHTBL.spad" 796854 796885 797065 797092) (-488 "HASAST.spad" 796570 796578 796844 796849) (-487 "HACKPI.spad" 796061 796069 796472 796565) (-486 "GTSET.spad" 795000 795016 795707 795734) (-485 "GSTBL.spad" 793519 793554 793693 793708) (-484 "GSERIES.spad" 790690 790717 791651 791800) (-483 "GROUP.spad" 789963 789971 790670 790685) (-482 "GROUP.spad" 789244 789254 789953 789958) (-481 "GROEBSOL.spad" 787738 787759 789234 789239) (-480 "GRMOD.spad" 786309 786321 787728 787733) (-479 "GRMOD.spad" 784878 784892 786299 786304) (-478 "GRIMAGE.spad" 777767 777775 784868 784873) (-477 "GRDEF.spad" 776146 776154 777757 777762) (-476 "GRAY.spad" 774609 774617 776136 776141) (-475 "GRALG.spad" 773686 773698 774599 774604) (-474 "GRALG.spad" 772761 772775 773676 773681) (-473 "GPOLSET.spad" 772215 772238 772443 772470) (-472 "GOSPER.spad" 771484 771502 772205 772210) (-471 "GMODPOL.spad" 770632 770659 771452 771479) (-470 "GHENSEL.spad" 769715 769729 770622 770627) (-469 "GENUPS.spad" 766008 766021 769705 769710) (-468 "GENUFACT.spad" 765585 765595 765998 766003) (-467 "GENPGCD.spad" 765171 765188 765575 765580) (-466 "GENMFACT.spad" 764623 764642 765161 765166) (-465 "GENEEZ.spad" 762574 762587 764613 764618) (-464 "GDMP.spad" 759630 759647 760404 760531) (-463 "GCNAALG.spad" 753553 753580 759424 759491) (-462 "GCDDOM.spad" 752729 752737 753479 753548) (-461 "GCDDOM.spad" 751967 751977 752719 752724) (-460 "GB.spad" 749493 749531 751923 751928) (-459 "GBINTERN.spad" 745513 745551 749483 749488) (-458 "GBF.spad" 741280 741318 745503 745508) (-457 "GBEUCLID.spad" 739162 739200 741270 741275) (-456 "GAUSSFAC.spad" 738475 738483 739152 739157) (-455 "GALUTIL.spad" 736801 736811 738431 738436) (-454 "GALPOLYU.spad" 735255 735268 736791 736796) (-453 "GALFACTU.spad" 733428 733447 735245 735250) (-452 "GALFACT.spad" 723617 723628 733418 733423) (-451 "FVFUN.spad" 720640 720648 723607 723612) (-450 "FVC.spad" 719692 719700 720630 720635) (-449 "FUNDESC.spad" 719370 719378 719682 719687) (-448 "FUNCTION.spad" 719219 719231 719360 719365) (-447 "FT.spad" 717516 717524 719209 719214) (-446 "FTEM.spad" 716681 716689 717506 717511) (-445 "FSUPFACT.spad" 715581 715600 716617 716622) (-444 "FST.spad" 713667 713675 715571 715576) (-443 "FSRED.spad" 713147 713163 713657 713662) (-442 "FSPRMELT.spad" 712029 712045 713104 713109) (-441 "FSPECF.spad" 710120 710136 712019 712024) (-440 "FS.spad" 704388 704398 709895 710115) (-439 "FS.spad" 698434 698446 703943 703948) (-438 "FSINT.spad" 698094 698110 698424 698429) (-437 "FSERIES.spad" 697285 697297 697914 698013) (-436 "FSCINT.spad" 696602 696618 697275 697280) (-435 "FSAGG.spad" 695719 695729 696558 696597) (-434 "FSAGG.spad" 694798 694810 695639 695644) (-433 "FSAGG2.spad" 693541 693557 694788 694793) (-432 "FS2UPS.spad" 688032 688066 693531 693536) (-431 "FS2.spad" 687679 687695 688022 688027) (-430 "FS2EXPXP.spad" 686804 686827 687669 687674) (-429 "FRUTIL.spad" 685758 685768 686794 686799) (-428 "FR.spad" 679290 679300 684598 684667) (-427 "FRNAALG.spad" 674559 674569 679232 679285) (-426 "FRNAALG.spad" 669840 669852 674515 674520) (-425 "FRNAAF2.spad" 669296 669314 669830 669835) (-424 "FRMOD.spad" 668706 668736 669227 669232) (-423 "FRIDEAL.spad" 667931 667952 668686 668701) (-422 "FRIDEAL2.spad" 667535 667567 667921 667926) (-421 "FRETRCT.spad" 667046 667056 667525 667530) (-420 "FRETRCT.spad" 666423 666435 666904 666909) (-419 "FRAMALG.spad" 664771 664784 666379 666418) (-418 "FRAMALG.spad" 663151 663166 664761 664766) (-417 "FRAC.spad" 660250 660260 660653 660826) (-416 "FRAC2.spad" 659855 659867 660240 660245) (-415 "FR2.spad" 659191 659203 659845 659850) (-414 "FPS.spad" 656006 656014 659081 659186) (-413 "FPS.spad" 652849 652859 655926 655931) (-412 "FPC.spad" 651895 651903 652751 652844) (-411 "FPC.spad" 651027 651037 651885 651890) (-410 "FPATMAB.spad" 650789 650799 651017 651022) (-409 "FPARFRAC.spad" 649276 649293 650779 650784) (-408 "FORTRAN.spad" 647782 647825 649266 649271) (-407 "FORT.spad" 646731 646739 647772 647777) (-406 "FORTFN.spad" 643901 643909 646721 646726) (-405 "FORTCAT.spad" 643585 643593 643891 643896) (-404 "FORMULA.spad" 641059 641067 643575 643580) (-403 "FORMULA1.spad" 640538 640548 641049 641054) (-402 "FORDER.spad" 640229 640253 640528 640533) (-401 "FOP.spad" 639430 639438 640219 640224) (-400 "FNLA.spad" 638854 638876 639398 639425) (-399 "FNCAT.spad" 637449 637457 638844 638849) (-398 "FNAME.spad" 637341 637349 637439 637444) (-397 "FMTC.spad" 637139 637147 637267 637336) (-396 "FMONOID.spad" 636804 636814 637095 637100) (-395 "FMONCAT.spad" 633957 633967 636794 636799) (-394 "FM.spad" 633652 633664 633891 633918) (-393 "FMFUN.spad" 630682 630690 633642 633647) (-392 "FMC.spad" 629734 629742 630672 630677) (-391 "FMCAT.spad" 627402 627420 629702 629729) (-390 "FM1.spad" 626759 626771 627336 627363) (-389 "FLOATRP.spad" 624494 624508 626749 626754) (-388 "FLOAT.spad" 617808 617816 624360 624489) (-387 "FLOATCP.spad" 615239 615253 617798 617803) (-386 "FLINEXP.spad" 614961 614971 615229 615234) (-385 "FLINEXP.spad" 614627 614639 614897 614902) (-384 "FLASORT.spad" 613953 613965 614617 614622) (-383 "FLALG.spad" 611599 611618 613879 613948) (-382 "FLAGG.spad" 608641 608651 611579 611594) (-381 "FLAGG.spad" 605584 605596 608524 608529) (-380 "FLAGG2.spad" 604309 604325 605574 605579) (-379 "FINRALG.spad" 602370 602383 604265 604304) (-378 "FINRALG.spad" 600357 600372 602254 602259) (-377 "FINITE.spad" 599509 599517 600347 600352) (-376 "FINAALG.spad" 588630 588640 599451 599504) (-375 "FINAALG.spad" 577763 577775 588586 588591) (-374 "FILE.spad" 577346 577356 577753 577758) (-373 "FILECAT.spad" 575872 575889 577336 577341) (-372 "FIELD.spad" 575278 575286 575774 575867) (-371 "FIELD.spad" 574770 574780 575268 575273) (-370 "FGROUP.spad" 573417 573427 574750 574765) (-369 "FGLMICPK.spad" 572204 572219 573407 573412) (-368 "FFX.spad" 571579 571594 571920 572013) (-367 "FFSLPE.spad" 571082 571103 571569 571574) (-366 "FFPOLY.spad" 562344 562355 571072 571077) (-365 "FFPOLY2.spad" 561404 561421 562334 562339) (-364 "FFP.spad" 560801 560821 561120 561213) (-363 "FF.spad" 560249 560265 560482 560575) (-362 "FFNBX.spad" 558761 558781 559965 560058) (-361 "FFNBP.spad" 557274 557291 558477 558570) (-360 "FFNB.spad" 555739 555760 556955 557048) (-359 "FFINTBAS.spad" 553253 553272 555729 555734) (-358 "FFIELDC.spad" 550830 550838 553155 553248) (-357 "FFIELDC.spad" 548493 548503 550820 550825) (-356 "FFHOM.spad" 547241 547258 548483 548488) (-355 "FFF.spad" 544676 544687 547231 547236) (-354 "FFCGX.spad" 543523 543543 544392 544485) (-353 "FFCGP.spad" 542412 542432 543239 543332) (-352 "FFCG.spad" 541204 541225 542093 542186) (-351 "FFCAT.spad" 534377 534399 541043 541199) (-350 "FFCAT.spad" 527629 527653 534297 534302) (-349 "FFCAT2.spad" 527376 527416 527619 527624) (-348 "FEXPR.spad" 519093 519139 527132 527171) (-347 "FEVALAB.spad" 518801 518811 519083 519088) (-346 "FEVALAB.spad" 518294 518306 518578 518583) (-345 "FDIV.spad" 517736 517760 518284 518289) (-344 "FDIVCAT.spad" 515800 515824 517726 517731) (-343 "FDIVCAT.spad" 513862 513888 515790 515795) (-342 "FDIV2.spad" 513518 513558 513852 513857) (-341 "FCTRDATA.spad" 512526 512534 513508 513513) (-340 "FCPAK1.spad" 511093 511101 512516 512521) (-339 "FCOMP.spad" 510472 510482 511083 511088) (-338 "FC.spad" 500479 500487 510462 510467) (-337 "FAXF.spad" 493450 493464 500381 500474) (-336 "FAXF.spad" 486473 486489 493406 493411) (-335 "FARRAY.spad" 484623 484633 485656 485683) (-334 "FAMR.spad" 482759 482771 484521 484618) (-333 "FAMR.spad" 480879 480893 482643 482648) (-332 "FAMONOID.spad" 480547 480557 480833 480838) (-331 "FAMONC.spad" 478843 478855 480537 480542) (-330 "FAGROUP.spad" 478467 478477 478739 478766) (-329 "FACUTIL.spad" 476671 476688 478457 478462) (-328 "FACTFUNC.spad" 475865 475875 476661 476666) (-327 "EXPUPXS.spad" 472698 472721 473997 474146) (-326 "EXPRTUBE.spad" 469986 469994 472688 472693) (-325 "EXPRODE.spad" 467146 467162 469976 469981) (-324 "EXPR.spad" 462321 462331 463035 463330) (-323 "EXPR2UPS.spad" 458443 458456 462311 462316) (-322 "EXPR2.spad" 458148 458160 458433 458438) (-321 "EXPEXPAN.spad" 455088 455113 455720 455813) (-320 "EXIT.spad" 454759 454767 455078 455083) (-319 "EXITAST.spad" 454495 454503 454749 454754) (-318 "EVALCYC.spad" 453955 453969 454485 454490) (-317 "EVALAB.spad" 453527 453537 453945 453950) (-316 "EVALAB.spad" 453097 453109 453517 453522) (-315 "EUCDOM.spad" 450671 450679 453023 453092) (-314 "EUCDOM.spad" 448307 448317 450661 450666) (-313 "ESTOOLS.spad" 440153 440161 448297 448302) (-312 "ESTOOLS2.spad" 439756 439770 440143 440148) (-311 "ESTOOLS1.spad" 439441 439452 439746 439751) (-310 "ES.spad" 432256 432264 439431 439436) (-309 "ES.spad" 424977 424987 432154 432159) (-308 "ESCONT.spad" 421770 421778 424967 424972) (-307 "ESCONT1.spad" 421519 421531 421760 421765) (-306 "ES2.spad" 421024 421040 421509 421514) (-305 "ES1.spad" 420594 420610 421014 421019) (-304 "ERROR.spad" 417921 417929 420584 420589) (-303 "EQTBL.spad" 416393 416415 416602 416629) (-302 "EQ.spad" 411198 411208 413985 414097) (-301 "EQ2.spad" 410916 410928 411188 411193) (-300 "EP.spad" 407242 407252 410906 410911) (-299 "ENV.spad" 405920 405928 407232 407237) (-298 "ENTIRER.spad" 405588 405596 405864 405915) (-297 "EMR.spad" 404876 404917 405514 405583) (-296 "ELTAGG.spad" 403130 403149 404866 404871) (-295 "ELTAGG.spad" 401348 401369 403086 403091) (-294 "ELTAB.spad" 400823 400836 401338 401343) (-293 "ELFUTS.spad" 400210 400229 400813 400818) (-292 "ELEMFUN.spad" 399899 399907 400200 400205) (-291 "ELEMFUN.spad" 399586 399596 399889 399894) (-290 "ELAGG.spad" 397557 397567 399566 399581) (-289 "ELAGG.spad" 395465 395477 397476 397481) (-288 "ELABOR.spad" 394811 394819 395455 395460) (-287 "ELABEXPR.spad" 393743 393751 394801 394806) (-286 "EFUPXS.spad" 390519 390549 393699 393704) (-285 "EFULS.spad" 387355 387378 390475 390480) (-284 "EFSTRUC.spad" 385370 385386 387345 387350) (-283 "EF.spad" 380146 380162 385360 385365) (-282 "EAB.spad" 378422 378430 380136 380141) (-281 "E04UCFA.spad" 377958 377966 378412 378417) (-280 "E04NAFA.spad" 377535 377543 377948 377953) (-279 "E04MBFA.spad" 377115 377123 377525 377530) (-278 "E04JAFA.spad" 376651 376659 377105 377110) (-277 "E04GCFA.spad" 376187 376195 376641 376646) (-276 "E04FDFA.spad" 375723 375731 376177 376182) (-275 "E04DGFA.spad" 375259 375267 375713 375718) (-274 "E04AGNT.spad" 371109 371117 375249 375254) (-273 "DVARCAT.spad" 367999 368009 371099 371104) (-272 "DVARCAT.spad" 364887 364899 367989 367994) (-271 "DSMP.spad" 362354 362368 362659 362786) (-270 "DROPT.spad" 356313 356321 362344 362349) (-269 "DROPT1.spad" 355978 355988 356303 356308) (-268 "DROPT0.spad" 350835 350843 355968 355973) (-267 "DRAWPT.spad" 349008 349016 350825 350830) (-266 "DRAW.spad" 341884 341897 348998 349003) (-265 "DRAWHACK.spad" 341192 341202 341874 341879) (-264 "DRAWCX.spad" 338662 338670 341182 341187) (-263 "DRAWCURV.spad" 338209 338224 338652 338657) (-262 "DRAWCFUN.spad" 327741 327749 338199 338204) (-261 "DQAGG.spad" 325919 325929 327709 327736) (-260 "DPOLCAT.spad" 321268 321284 325787 325914) (-259 "DPOLCAT.spad" 316703 316721 321224 321229) (-258 "DPMO.spad" 309497 309513 309635 309880) (-257 "DPMM.spad" 302304 302322 302429 302674) (-256 "DOMTMPLT.spad" 302075 302083 302294 302299) (-255 "DOMCTOR.spad" 301830 301838 302065 302070) (-254 "DOMAIN.spad" 300917 300925 301820 301825) (-253 "DMP.spad" 298177 298192 298747 298874) (-252 "DLP.spad" 297529 297539 298167 298172) (-251 "DLIST.spad" 296108 296118 296712 296739) (-250 "DLAGG.spad" 294525 294535 296098 296103) (-249 "DIVRING.spad" 294067 294075 294469 294520) (-248 "DIVRING.spad" 293653 293663 294057 294062) (-247 "DISPLAY.spad" 291843 291851 293643 293648) (-246 "DIRPROD.spad" 281658 281674 282298 282429) (-245 "DIRPROD2.spad" 280476 280494 281648 281653) (-244 "DIRPCAT.spad" 279637 279653 280340 280471) (-243 "DIRPCAT.spad" 278527 278545 279232 279237) (-242 "DIOSP.spad" 277352 277360 278517 278522) (-241 "DIOPS.spad" 276348 276358 277332 277347) (-240 "DIOPS.spad" 275318 275330 276304 276309) (-239 "DIFRING.spad" 275156 275164 275298 275313) (-238 "DIFFSPC.spad" 274735 274743 275146 275151) (-237 "DIFFSPC.spad" 274312 274322 274725 274730) (-236 "DIFFMOD.spad" 273801 273811 274280 274307) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file +((-3 NIL 2266720 2266725 2266730 2266735) (-2 NIL 2266700 2266705 2266710 2266715) (-1 NIL 2266680 2266685 2266690 2266695) (0 NIL 2266660 2266665 2266670 2266675) (-1313 "ZMOD.spad" 2266469 2266482 2266598 2266655) (-1312 "ZLINDEP.spad" 2265535 2265546 2266459 2266464) (-1311 "ZDSOLVE.spad" 2255480 2255502 2265525 2265530) (-1310 "YSTREAM.spad" 2254975 2254986 2255470 2255475) (-1309 "YDIAGRAM.spad" 2254609 2254618 2254965 2254970) (-1308 "XRPOLY.spad" 2253829 2253849 2254465 2254534) (-1307 "XPR.spad" 2251624 2251637 2253547 2253646) (-1306 "XPOLY.spad" 2251179 2251190 2251480 2251549) (-1305 "XPOLYC.spad" 2250498 2250514 2251105 2251174) (-1304 "XPBWPOLY.spad" 2248935 2248955 2250278 2250347) (-1303 "XF.spad" 2247398 2247413 2248837 2248930) (-1302 "XF.spad" 2245841 2245858 2247282 2247287) (-1301 "XFALG.spad" 2242889 2242905 2245767 2245836) (-1300 "XEXPPKG.spad" 2242140 2242166 2242879 2242884) (-1299 "XDPOLY.spad" 2241754 2241770 2241996 2242065) (-1298 "XALG.spad" 2241414 2241425 2241710 2241749) (-1297 "WUTSET.spad" 2237253 2237270 2241060 2241087) (-1296 "WP.spad" 2236452 2236496 2237111 2237178) (-1295 "WHILEAST.spad" 2236250 2236259 2236442 2236447) (-1294 "WHEREAST.spad" 2235921 2235930 2236240 2236245) (-1293 "WFFINTBS.spad" 2233584 2233606 2235911 2235916) (-1292 "WEIER.spad" 2231806 2231817 2233574 2233579) (-1291 "VSPACE.spad" 2231479 2231490 2231774 2231801) (-1290 "VSPACE.spad" 2231172 2231185 2231469 2231474) (-1289 "VOID.spad" 2230849 2230858 2231162 2231167) (-1288 "VIEW.spad" 2228529 2228538 2230839 2230844) (-1287 "VIEWDEF.spad" 2223730 2223739 2228519 2228524) (-1286 "VIEW3D.spad" 2207691 2207700 2223720 2223725) (-1285 "VIEW2D.spad" 2195582 2195591 2207681 2207686) (-1284 "VECTOR.spad" 2194256 2194267 2194507 2194534) (-1283 "VECTOR2.spad" 2192895 2192908 2194246 2194251) (-1282 "VECTCAT.spad" 2190799 2190810 2192863 2192890) (-1281 "VECTCAT.spad" 2188510 2188523 2190576 2190581) (-1280 "VARIABLE.spad" 2188290 2188305 2188500 2188505) (-1279 "UTYPE.spad" 2187934 2187943 2188280 2188285) (-1278 "UTSODETL.spad" 2187229 2187253 2187890 2187895) (-1277 "UTSODE.spad" 2185445 2185465 2187219 2187224) (-1276 "UTS.spad" 2180249 2180277 2183912 2184009) (-1275 "UTSCAT.spad" 2177728 2177744 2180147 2180244) (-1274 "UTSCAT.spad" 2174851 2174869 2177272 2177277) (-1273 "UTS2.spad" 2174446 2174481 2174841 2174846) (-1272 "URAGG.spad" 2169119 2169130 2174436 2174441) (-1271 "URAGG.spad" 2163756 2163769 2169075 2169080) (-1270 "UPXSSING.spad" 2161401 2161427 2162837 2162970) (-1269 "UPXS.spad" 2158555 2158583 2159533 2159682) (-1268 "UPXSCONS.spad" 2156314 2156334 2156687 2156836) (-1267 "UPXSCCA.spad" 2154885 2154905 2156160 2156309) (-1266 "UPXSCCA.spad" 2153598 2153620 2154875 2154880) (-1265 "UPXSCAT.spad" 2152187 2152203 2153444 2153593) (-1264 "UPXS2.spad" 2151730 2151783 2152177 2152182) (-1263 "UPSQFREE.spad" 2150144 2150158 2151720 2151725) (-1262 "UPSCAT.spad" 2147931 2147955 2150042 2150139) (-1261 "UPSCAT.spad" 2145424 2145450 2147537 2147542) (-1260 "UPOLYC.spad" 2140464 2140475 2145266 2145419) (-1259 "UPOLYC.spad" 2135396 2135409 2140200 2140205) (-1258 "UPOLYC2.spad" 2134867 2134886 2135386 2135391) (-1257 "UP.spad" 2132066 2132081 2132453 2132606) (-1256 "UPMP.spad" 2130966 2130979 2132056 2132061) (-1255 "UPDIVP.spad" 2130531 2130545 2130956 2130961) (-1254 "UPDECOMP.spad" 2128776 2128790 2130521 2130526) (-1253 "UPCDEN.spad" 2127985 2128001 2128766 2128771) (-1252 "UP2.spad" 2127349 2127370 2127975 2127980) (-1251 "UNISEG.spad" 2126702 2126713 2127268 2127273) (-1250 "UNISEG2.spad" 2126199 2126212 2126658 2126663) (-1249 "UNIFACT.spad" 2125302 2125314 2126189 2126194) (-1248 "ULS.spad" 2115860 2115888 2116947 2117376) (-1247 "ULSCONS.spad" 2108256 2108276 2108626 2108775) (-1246 "ULSCCAT.spad" 2105993 2106013 2108102 2108251) (-1245 "ULSCCAT.spad" 2103838 2103860 2105949 2105954) (-1244 "ULSCAT.spad" 2102070 2102086 2103684 2103833) (-1243 "ULS2.spad" 2101584 2101637 2102060 2102065) (-1242 "UINT8.spad" 2101461 2101470 2101574 2101579) (-1241 "UINT64.spad" 2101337 2101346 2101451 2101456) (-1240 "UINT32.spad" 2101213 2101222 2101327 2101332) (-1239 "UINT16.spad" 2101089 2101098 2101203 2101208) (-1238 "UFD.spad" 2100154 2100163 2101015 2101084) (-1237 "UFD.spad" 2099281 2099292 2100144 2100149) (-1236 "UDVO.spad" 2098162 2098171 2099271 2099276) (-1235 "UDPO.spad" 2095655 2095666 2098118 2098123) (-1234 "TYPE.spad" 2095587 2095596 2095645 2095650) (-1233 "TYPEAST.spad" 2095506 2095515 2095577 2095582) (-1232 "TWOFACT.spad" 2094158 2094173 2095496 2095501) (-1231 "TUPLE.spad" 2093644 2093655 2094057 2094062) (-1230 "TUBETOOL.spad" 2090511 2090520 2093634 2093639) (-1229 "TUBE.spad" 2089158 2089175 2090501 2090506) (-1228 "TS.spad" 2087757 2087773 2088723 2088820) (-1227 "TSETCAT.spad" 2074884 2074901 2087725 2087752) (-1226 "TSETCAT.spad" 2061997 2062016 2074840 2074845) (-1225 "TRMANIP.spad" 2056363 2056380 2061703 2061708) (-1224 "TRIMAT.spad" 2055326 2055351 2056353 2056358) (-1223 "TRIGMNIP.spad" 2053853 2053870 2055316 2055321) (-1222 "TRIGCAT.spad" 2053365 2053374 2053843 2053848) (-1221 "TRIGCAT.spad" 2052875 2052886 2053355 2053360) (-1220 "TREE.spad" 2051450 2051461 2052482 2052509) (-1219 "TRANFUN.spad" 2051289 2051298 2051440 2051445) (-1218 "TRANFUN.spad" 2051126 2051137 2051279 2051284) (-1217 "TOPSP.spad" 2050800 2050809 2051116 2051121) (-1216 "TOOLSIGN.spad" 2050463 2050474 2050790 2050795) (-1215 "TEXTFILE.spad" 2049024 2049033 2050453 2050458) (-1214 "TEX.spad" 2046170 2046179 2049014 2049019) (-1213 "TEX1.spad" 2045726 2045737 2046160 2046165) (-1212 "TEMUTL.spad" 2045281 2045290 2045716 2045721) (-1211 "TBCMPPK.spad" 2043374 2043397 2045271 2045276) (-1210 "TBAGG.spad" 2042424 2042447 2043354 2043369) (-1209 "TBAGG.spad" 2041482 2041507 2042414 2042419) (-1208 "TANEXP.spad" 2040890 2040901 2041472 2041477) (-1207 "TALGOP.spad" 2040614 2040625 2040880 2040885) (-1206 "TABLE.spad" 2039025 2039048 2039295 2039322) (-1205 "TABLEAU.spad" 2038506 2038517 2039015 2039020) (-1204 "TABLBUMP.spad" 2035309 2035320 2038496 2038501) (-1203 "SYSTEM.spad" 2034537 2034546 2035299 2035304) (-1202 "SYSSOLP.spad" 2032020 2032031 2034527 2034532) (-1201 "SYSPTR.spad" 2031919 2031928 2032010 2032015) (-1200 "SYSNNI.spad" 2031101 2031112 2031909 2031914) (-1199 "SYSINT.spad" 2030505 2030516 2031091 2031096) (-1198 "SYNTAX.spad" 2026711 2026720 2030495 2030500) (-1197 "SYMTAB.spad" 2024779 2024788 2026701 2026706) (-1196 "SYMS.spad" 2020802 2020811 2024769 2024774) (-1195 "SYMPOLY.spad" 2019809 2019820 2019891 2020018) (-1194 "SYMFUNC.spad" 2019310 2019321 2019799 2019804) (-1193 "SYMBOL.spad" 2016813 2016822 2019300 2019305) (-1192 "SWITCH.spad" 2013584 2013593 2016803 2016808) (-1191 "SUTS.spad" 2010489 2010517 2012051 2012148) (-1190 "SUPXS.spad" 2007630 2007658 2008621 2008770) (-1189 "SUP.spad" 2004443 2004454 2005216 2005369) (-1188 "SUPFRACF.spad" 2003548 2003566 2004433 2004438) (-1187 "SUP2.spad" 2002940 2002953 2003538 2003543) (-1186 "SUMRF.spad" 2001914 2001925 2002930 2002935) (-1185 "SUMFS.spad" 2001551 2001568 2001904 2001909) (-1184 "SULS.spad" 1992096 1992124 1993196 1993625) (-1183 "SUCHTAST.spad" 1991865 1991874 1992086 1992091) (-1182 "SUCH.spad" 1991547 1991562 1991855 1991860) (-1181 "SUBSPACE.spad" 1983662 1983677 1991537 1991542) (-1180 "SUBRESP.spad" 1982832 1982846 1983618 1983623) (-1179 "STTF.spad" 1978931 1978947 1982822 1982827) (-1178 "STTFNC.spad" 1975399 1975415 1978921 1978926) (-1177 "STTAYLOR.spad" 1968034 1968045 1975280 1975285) (-1176 "STRTBL.spad" 1966539 1966556 1966688 1966715) (-1175 "STRING.spad" 1965948 1965957 1965962 1965989) (-1174 "STRICAT.spad" 1965736 1965745 1965916 1965943) (-1173 "STREAM.spad" 1962654 1962665 1965261 1965276) (-1172 "STREAM3.spad" 1962227 1962242 1962644 1962649) (-1171 "STREAM2.spad" 1961355 1961368 1962217 1962222) (-1170 "STREAM1.spad" 1961061 1961072 1961345 1961350) (-1169 "STINPROD.spad" 1959997 1960013 1961051 1961056) (-1168 "STEP.spad" 1959198 1959207 1959987 1959992) (-1167 "STEPAST.spad" 1958432 1958441 1959188 1959193) (-1166 "STBL.spad" 1956958 1956986 1957125 1957140) (-1165 "STAGG.spad" 1956033 1956044 1956948 1956953) (-1164 "STAGG.spad" 1955106 1955119 1956023 1956028) (-1163 "STACK.spad" 1954463 1954474 1954713 1954740) (-1162 "SREGSET.spad" 1952167 1952184 1954109 1954136) (-1161 "SRDCMPK.spad" 1950728 1950748 1952157 1952162) (-1160 "SRAGG.spad" 1945871 1945880 1950696 1950723) (-1159 "SRAGG.spad" 1941034 1941045 1945861 1945866) (-1158 "SQMATRIX.spad" 1938706 1938724 1939622 1939709) (-1157 "SPLTREE.spad" 1933258 1933271 1938142 1938169) (-1156 "SPLNODE.spad" 1929846 1929859 1933248 1933253) (-1155 "SPFCAT.spad" 1928655 1928664 1929836 1929841) (-1154 "SPECOUT.spad" 1927207 1927216 1928645 1928650) (-1153 "SPADXPT.spad" 1918802 1918811 1927197 1927202) (-1152 "spad-parser.spad" 1918267 1918276 1918792 1918797) (-1151 "SPADAST.spad" 1917968 1917977 1918257 1918262) (-1150 "SPACEC.spad" 1902167 1902178 1917958 1917963) (-1149 "SPACE3.spad" 1901943 1901954 1902157 1902162) (-1148 "SORTPAK.spad" 1901492 1901505 1901899 1901904) (-1147 "SOLVETRA.spad" 1899255 1899266 1901482 1901487) (-1146 "SOLVESER.spad" 1897783 1897794 1899245 1899250) (-1145 "SOLVERAD.spad" 1893809 1893820 1897773 1897778) (-1144 "SOLVEFOR.spad" 1892271 1892289 1893799 1893804) (-1143 "SNTSCAT.spad" 1891871 1891888 1892239 1892266) (-1142 "SMTS.spad" 1890143 1890169 1891436 1891533) (-1141 "SMP.spad" 1887618 1887638 1888008 1888135) (-1140 "SMITH.spad" 1886463 1886488 1887608 1887613) (-1139 "SMATCAT.spad" 1884573 1884603 1886407 1886458) (-1138 "SMATCAT.spad" 1882615 1882647 1884451 1884456) (-1137 "SKAGG.spad" 1881578 1881589 1882583 1882610) (-1136 "SINT.spad" 1880518 1880527 1881444 1881573) (-1135 "SIMPAN.spad" 1880246 1880255 1880508 1880513) (-1134 "SIG.spad" 1879576 1879585 1880236 1880241) (-1133 "SIGNRF.spad" 1878694 1878705 1879566 1879571) (-1132 "SIGNEF.spad" 1877973 1877990 1878684 1878689) (-1131 "SIGAST.spad" 1877358 1877367 1877963 1877968) (-1130 "SHP.spad" 1875286 1875301 1877314 1877319) (-1129 "SHDP.spad" 1865232 1865259 1865741 1865872) (-1128 "SGROUP.spad" 1864840 1864849 1865222 1865227) (-1127 "SGROUP.spad" 1864446 1864457 1864830 1864835) (-1126 "SGCF.spad" 1857585 1857594 1864436 1864441) (-1125 "SFRTCAT.spad" 1856515 1856532 1857553 1857580) (-1124 "SFRGCD.spad" 1855578 1855598 1856505 1856510) (-1123 "SFQCMPK.spad" 1850215 1850235 1855568 1855573) (-1122 "SFORT.spad" 1849654 1849668 1850205 1850210) (-1121 "SEXOF.spad" 1849497 1849537 1849644 1849649) (-1120 "SEX.spad" 1849389 1849398 1849487 1849492) (-1119 "SEXCAT.spad" 1847170 1847210 1849379 1849384) (-1118 "SET.spad" 1845494 1845505 1846591 1846630) (-1117 "SETMN.spad" 1843944 1843961 1845484 1845489) (-1116 "SETCAT.spad" 1843266 1843275 1843934 1843939) (-1115 "SETCAT.spad" 1842586 1842597 1843256 1843261) (-1114 "SETAGG.spad" 1839135 1839146 1842566 1842581) (-1113 "SETAGG.spad" 1835692 1835705 1839125 1839130) (-1112 "SEQAST.spad" 1835395 1835404 1835682 1835687) (-1111 "SEGXCAT.spad" 1834551 1834564 1835385 1835390) (-1110 "SEG.spad" 1834364 1834375 1834470 1834475) (-1109 "SEGCAT.spad" 1833289 1833300 1834354 1834359) (-1108 "SEGBIND.spad" 1833047 1833058 1833236 1833241) (-1107 "SEGBIND2.spad" 1832745 1832758 1833037 1833042) (-1106 "SEGAST.spad" 1832459 1832468 1832735 1832740) (-1105 "SEG2.spad" 1831894 1831907 1832415 1832420) (-1104 "SDVAR.spad" 1831170 1831181 1831884 1831889) (-1103 "SDPOL.spad" 1828596 1828607 1828887 1829014) (-1102 "SCPKG.spad" 1826685 1826696 1828586 1828591) (-1101 "SCOPE.spad" 1825838 1825847 1826675 1826680) (-1100 "SCACHE.spad" 1824534 1824545 1825828 1825833) (-1099 "SASTCAT.spad" 1824443 1824452 1824524 1824529) (-1098 "SAOS.spad" 1824315 1824324 1824433 1824438) (-1097 "SAERFFC.spad" 1824028 1824048 1824305 1824310) (-1096 "SAE.spad" 1821982 1821998 1822593 1822728) (-1095 "SAEFACT.spad" 1821683 1821703 1821972 1821977) (-1094 "RURPK.spad" 1819342 1819358 1821673 1821678) (-1093 "RULESET.spad" 1818795 1818819 1819332 1819337) (-1092 "RULE.spad" 1817035 1817059 1818785 1818790) (-1091 "RULECOLD.spad" 1816887 1816900 1817025 1817030) (-1090 "RTVALUE.spad" 1816622 1816631 1816877 1816882) (-1089 "RSTRCAST.spad" 1816339 1816348 1816612 1816617) (-1088 "RSETGCD.spad" 1812717 1812737 1816329 1816334) (-1087 "RSETCAT.spad" 1802653 1802670 1812685 1812712) (-1086 "RSETCAT.spad" 1792609 1792628 1802643 1802648) (-1085 "RSDCMPK.spad" 1791061 1791081 1792599 1792604) (-1084 "RRCC.spad" 1789445 1789475 1791051 1791056) (-1083 "RRCC.spad" 1787827 1787859 1789435 1789440) (-1082 "RPTAST.spad" 1787529 1787538 1787817 1787822) (-1081 "RPOLCAT.spad" 1766889 1766904 1787397 1787524) (-1080 "RPOLCAT.spad" 1745962 1745979 1766472 1766477) (-1079 "ROUTINE.spad" 1741845 1741854 1744609 1744636) (-1078 "ROMAN.spad" 1741173 1741182 1741711 1741840) (-1077 "ROIRC.spad" 1740253 1740285 1741163 1741168) (-1076 "RNS.spad" 1739156 1739165 1740155 1740248) (-1075 "RNS.spad" 1738145 1738156 1739146 1739151) (-1074 "RNG.spad" 1737880 1737889 1738135 1738140) (-1073 "RNGBIND.spad" 1737040 1737054 1737835 1737840) (-1072 "RMODULE.spad" 1736805 1736816 1737030 1737035) (-1071 "RMCAT2.spad" 1736225 1736282 1736795 1736800) (-1070 "RMATRIX.spad" 1735049 1735068 1735392 1735431) (-1069 "RMATCAT.spad" 1730628 1730659 1735005 1735044) (-1068 "RMATCAT.spad" 1726097 1726130 1730476 1730481) (-1067 "RLINSET.spad" 1725652 1725663 1726087 1726092) (-1066 "RINTERP.spad" 1725540 1725560 1725642 1725647) (-1065 "RING.spad" 1725010 1725019 1725520 1725535) (-1064 "RING.spad" 1724488 1724499 1725000 1725005) (-1063 "RIDIST.spad" 1723880 1723889 1724478 1724483) (-1062 "RGCHAIN.spad" 1722463 1722479 1723365 1723392) (-1061 "RGBCSPC.spad" 1722244 1722256 1722453 1722458) (-1060 "RGBCMDL.spad" 1721774 1721786 1722234 1722239) (-1059 "RF.spad" 1719416 1719427 1721764 1721769) (-1058 "RFFACTOR.spad" 1718878 1718889 1719406 1719411) (-1057 "RFFACT.spad" 1718613 1718625 1718868 1718873) (-1056 "RFDIST.spad" 1717609 1717618 1718603 1718608) (-1055 "RETSOL.spad" 1717028 1717041 1717599 1717604) (-1054 "RETRACT.spad" 1716456 1716467 1717018 1717023) (-1053 "RETRACT.spad" 1715882 1715895 1716446 1716451) (-1052 "RETAST.spad" 1715694 1715703 1715872 1715877) (-1051 "RESULT.spad" 1713754 1713763 1714341 1714368) (-1050 "RESRING.spad" 1713101 1713148 1713692 1713749) (-1049 "RESLATC.spad" 1712425 1712436 1713091 1713096) (-1048 "REPSQ.spad" 1712156 1712167 1712415 1712420) (-1047 "REP.spad" 1709710 1709719 1712146 1712151) (-1046 "REPDB.spad" 1709417 1709428 1709700 1709705) (-1045 "REP2.spad" 1699075 1699086 1709259 1709264) (-1044 "REP1.spad" 1693271 1693282 1699025 1699030) (-1043 "REGSET.spad" 1691068 1691085 1692917 1692944) (-1042 "REF.spad" 1690403 1690414 1691023 1691028) (-1041 "REDORDER.spad" 1689609 1689626 1690393 1690398) (-1040 "RECLOS.spad" 1688392 1688412 1689096 1689189) (-1039 "REALSOLV.spad" 1687532 1687541 1688382 1688387) (-1038 "REAL.spad" 1687404 1687413 1687522 1687527) (-1037 "REAL0Q.spad" 1684702 1684717 1687394 1687399) (-1036 "REAL0.spad" 1681546 1681561 1684692 1684697) (-1035 "RDUCEAST.spad" 1681267 1681276 1681536 1681541) (-1034 "RDIV.spad" 1680922 1680947 1681257 1681262) (-1033 "RDIST.spad" 1680489 1680500 1680912 1680917) (-1032 "RDETRS.spad" 1679353 1679371 1680479 1680484) (-1031 "RDETR.spad" 1677492 1677510 1679343 1679348) (-1030 "RDEEFS.spad" 1676591 1676608 1677482 1677487) (-1029 "RDEEF.spad" 1675601 1675618 1676581 1676586) (-1028 "RCFIELD.spad" 1672787 1672796 1675503 1675596) (-1027 "RCFIELD.spad" 1670059 1670070 1672777 1672782) (-1026 "RCAGG.spad" 1667987 1667998 1670049 1670054) (-1025 "RCAGG.spad" 1665842 1665855 1667906 1667911) (-1024 "RATRET.spad" 1665202 1665213 1665832 1665837) (-1023 "RATFACT.spad" 1664894 1664906 1665192 1665197) (-1022 "RANDSRC.spad" 1664213 1664222 1664884 1664889) (-1021 "RADUTIL.spad" 1663969 1663978 1664203 1664208) (-1020 "RADIX.spad" 1660890 1660904 1662436 1662529) (-1019 "RADFF.spad" 1659047 1659084 1659166 1659322) (-1018 "RADCAT.spad" 1658642 1658651 1659037 1659042) (-1017 "RADCAT.spad" 1658235 1658246 1658632 1658637) (-1016 "QUEUE.spad" 1657583 1657594 1657842 1657869) (-1015 "QUAT.spad" 1655984 1655995 1656327 1656392) (-1014 "QUATCT2.spad" 1655604 1655623 1655974 1655979) (-1013 "QUATCAT.spad" 1653774 1653785 1655534 1655599) (-1012 "QUATCAT.spad" 1651695 1651708 1653457 1653462) (-1011 "QUAGG.spad" 1650522 1650533 1651663 1651690) (-1010 "QQUTAST.spad" 1650290 1650299 1650512 1650517) (-1009 "QFORM.spad" 1649908 1649923 1650280 1650285) (-1008 "QFCAT.spad" 1648610 1648621 1649810 1649903) (-1007 "QFCAT.spad" 1646903 1646916 1648105 1648110) (-1006 "QFCAT2.spad" 1646595 1646612 1646893 1646898) (-1005 "QEQUAT.spad" 1646153 1646162 1646585 1646590) (-1004 "QCMPACK.spad" 1640899 1640919 1646143 1646148) (-1003 "QALGSET.spad" 1636977 1637010 1640813 1640818) (-1002 "QALGSET2.spad" 1634972 1634991 1636967 1636972) (-1001 "PWFFINTB.spad" 1632387 1632409 1634962 1634967) (-1000 "PUSHVAR.spad" 1631725 1631745 1632377 1632382) (-999 "PTRANFN.spad" 1627853 1627863 1631715 1631720) (-998 "PTPACK.spad" 1624941 1624951 1627843 1627848) (-997 "PTFUNC2.spad" 1624764 1624778 1624931 1624936) (-996 "PTCAT.spad" 1624019 1624029 1624732 1624759) (-995 "PSQFR.spad" 1623326 1623350 1624009 1624014) (-994 "PSEUDLIN.spad" 1622212 1622222 1623316 1623321) (-993 "PSETPK.spad" 1607645 1607661 1622090 1622095) (-992 "PSETCAT.spad" 1601565 1601588 1607625 1607640) (-991 "PSETCAT.spad" 1595459 1595484 1601521 1601526) (-990 "PSCURVE.spad" 1594442 1594450 1595449 1595454) (-989 "PSCAT.spad" 1593225 1593254 1594340 1594437) (-988 "PSCAT.spad" 1592098 1592129 1593215 1593220) (-987 "PRTITION.spad" 1590796 1590804 1592088 1592093) (-986 "PRTDAST.spad" 1590515 1590523 1590786 1590791) (-985 "PRS.spad" 1580077 1580094 1590471 1590476) (-984 "PRQAGG.spad" 1579512 1579522 1580045 1580072) (-983 "PROPLOG.spad" 1579084 1579092 1579502 1579507) (-982 "PROPFUN2.spad" 1578707 1578720 1579074 1579079) (-981 "PROPFUN1.spad" 1578105 1578116 1578697 1578702) (-980 "PROPFRML.spad" 1576673 1576684 1578095 1578100) (-979 "PROPERTY.spad" 1576161 1576169 1576663 1576668) (-978 "PRODUCT.spad" 1573843 1573855 1574127 1574182) (-977 "PR.spad" 1572235 1572247 1572934 1573061) (-976 "PRINT.spad" 1571987 1571995 1572225 1572230) (-975 "PRIMES.spad" 1570240 1570250 1571977 1571982) (-974 "PRIMELT.spad" 1568321 1568335 1570230 1570235) (-973 "PRIMCAT.spad" 1567948 1567956 1568311 1568316) (-972 "PRIMARR.spad" 1566953 1566963 1567131 1567158) (-971 "PRIMARR2.spad" 1565720 1565732 1566943 1566948) (-970 "PREASSOC.spad" 1565102 1565114 1565710 1565715) (-969 "PPCURVE.spad" 1564239 1564247 1565092 1565097) (-968 "PORTNUM.spad" 1564014 1564022 1564229 1564234) (-967 "POLYROOT.spad" 1562863 1562885 1563970 1563975) (-966 "POLY.spad" 1560198 1560208 1560713 1560840) (-965 "POLYLIFT.spad" 1559463 1559486 1560188 1560193) (-964 "POLYCATQ.spad" 1557581 1557603 1559453 1559458) (-963 "POLYCAT.spad" 1551051 1551072 1557449 1557576) (-962 "POLYCAT.spad" 1543859 1543882 1550259 1550264) (-961 "POLY2UP.spad" 1543311 1543325 1543849 1543854) (-960 "POLY2.spad" 1542908 1542920 1543301 1543306) (-959 "POLUTIL.spad" 1541849 1541878 1542864 1542869) (-958 "POLTOPOL.spad" 1540597 1540612 1541839 1541844) (-957 "POINT.spad" 1539435 1539445 1539522 1539549) (-956 "PNTHEORY.spad" 1536137 1536145 1539425 1539430) (-955 "PMTOOLS.spad" 1534912 1534926 1536127 1536132) (-954 "PMSYM.spad" 1534461 1534471 1534902 1534907) (-953 "PMQFCAT.spad" 1534052 1534066 1534451 1534456) (-952 "PMPRED.spad" 1533531 1533545 1534042 1534047) (-951 "PMPREDFS.spad" 1532985 1533007 1533521 1533526) (-950 "PMPLCAT.spad" 1532065 1532083 1532917 1532922) (-949 "PMLSAGG.spad" 1531650 1531664 1532055 1532060) (-948 "PMKERNEL.spad" 1531229 1531241 1531640 1531645) (-947 "PMINS.spad" 1530809 1530819 1531219 1531224) (-946 "PMFS.spad" 1530386 1530404 1530799 1530804) (-945 "PMDOWN.spad" 1529676 1529690 1530376 1530381) (-944 "PMASS.spad" 1528686 1528694 1529666 1529671) (-943 "PMASSFS.spad" 1527653 1527669 1528676 1528681) (-942 "PLOTTOOL.spad" 1527433 1527441 1527643 1527648) (-941 "PLOT.spad" 1522356 1522364 1527423 1527428) (-940 "PLOT3D.spad" 1518820 1518828 1522346 1522351) (-939 "PLOT1.spad" 1517977 1517987 1518810 1518815) (-938 "PLEQN.spad" 1505267 1505294 1517967 1517972) (-937 "PINTERP.spad" 1504889 1504908 1505257 1505262) (-936 "PINTERPA.spad" 1504673 1504689 1504879 1504884) (-935 "PI.spad" 1504282 1504290 1504647 1504668) (-934 "PID.spad" 1503252 1503260 1504208 1504277) (-933 "PICOERCE.spad" 1502909 1502919 1503242 1503247) (-932 "PGROEB.spad" 1501510 1501524 1502899 1502904) (-931 "PGE.spad" 1493127 1493135 1501500 1501505) (-930 "PGCD.spad" 1492017 1492034 1493117 1493122) (-929 "PFRPAC.spad" 1491166 1491176 1492007 1492012) (-928 "PFR.spad" 1487829 1487839 1491068 1491161) (-927 "PFOTOOLS.spad" 1487087 1487103 1487819 1487824) (-926 "PFOQ.spad" 1486457 1486475 1487077 1487082) (-925 "PFO.spad" 1485876 1485903 1486447 1486452) (-924 "PF.spad" 1485450 1485462 1485681 1485774) (-923 "PFECAT.spad" 1483132 1483140 1485376 1485445) (-922 "PFECAT.spad" 1480842 1480852 1483088 1483093) (-921 "PFBRU.spad" 1478730 1478742 1480832 1480837) (-920 "PFBR.spad" 1476290 1476313 1478720 1478725) (-919 "PERM.spad" 1472097 1472107 1476120 1476135) (-918 "PERMGRP.spad" 1466867 1466877 1472087 1472092) (-917 "PERMCAT.spad" 1465528 1465538 1466847 1466862) (-916 "PERMAN.spad" 1464060 1464074 1465518 1465523) (-915 "PENDTREE.spad" 1463401 1463411 1463689 1463694) (-914 "PDSPC.spad" 1462214 1462224 1463391 1463396) (-913 "PDSPC.spad" 1461025 1461037 1462204 1462209) (-912 "PDRING.spad" 1460867 1460877 1461005 1461020) (-911 "PDEPROB.spad" 1459882 1459890 1460857 1460862) (-910 "PDEPACK.spad" 1453922 1453930 1459872 1459877) (-909 "PDECOMP.spad" 1453392 1453409 1453912 1453917) (-908 "PDECAT.spad" 1451748 1451756 1453382 1453387) (-907 "PDDOM.spad" 1451186 1451199 1451738 1451743) (-906 "PDDOM.spad" 1450622 1450637 1451176 1451181) (-905 "PCOMP.spad" 1450475 1450488 1450612 1450617) (-904 "PBWLB.spad" 1449063 1449080 1450465 1450470) (-903 "PATTERN.spad" 1443602 1443612 1449053 1449058) (-902 "PATTERN2.spad" 1443340 1443352 1443592 1443597) (-901 "PATTERN1.spad" 1441676 1441692 1443330 1443335) (-900 "PATRES.spad" 1439251 1439263 1441666 1441671) (-899 "PATRES2.spad" 1438923 1438937 1439241 1439246) (-898 "PATMATCH.spad" 1437120 1437151 1438631 1438636) (-897 "PATMAB.spad" 1436549 1436559 1437110 1437115) (-896 "PATLRES.spad" 1435635 1435649 1436539 1436544) (-895 "PATAB.spad" 1435399 1435409 1435625 1435630) (-894 "PARTPERM.spad" 1433407 1433415 1435389 1435394) (-893 "PARSURF.spad" 1432841 1432869 1433397 1433402) (-892 "PARSU2.spad" 1432638 1432654 1432831 1432836) (-891 "script-parser.spad" 1432158 1432166 1432628 1432633) (-890 "PARSCURV.spad" 1431592 1431620 1432148 1432153) (-889 "PARSC2.spad" 1431383 1431399 1431582 1431587) (-888 "PARPCURV.spad" 1430845 1430873 1431373 1431378) (-887 "PARPC2.spad" 1430636 1430652 1430835 1430840) (-886 "PARAMAST.spad" 1429764 1429772 1430626 1430631) (-885 "PAN2EXPR.spad" 1429176 1429184 1429754 1429759) (-884 "PALETTE.spad" 1428146 1428154 1429166 1429171) (-883 "PAIR.spad" 1427133 1427146 1427734 1427739) (-882 "PADICRC.spad" 1424467 1424485 1425638 1425731) (-881 "PADICRAT.spad" 1422482 1422494 1422703 1422796) (-880 "PADIC.spad" 1422177 1422189 1422408 1422477) (-879 "PADICCT.spad" 1420726 1420738 1422103 1422172) (-878 "PADEPAC.spad" 1419415 1419434 1420716 1420721) (-877 "PADE.spad" 1418167 1418183 1419405 1419410) (-876 "OWP.spad" 1417407 1417437 1418025 1418092) (-875 "OVERSET.spad" 1416980 1416988 1417397 1417402) (-874 "OVAR.spad" 1416761 1416784 1416970 1416975) (-873 "OUT.spad" 1415847 1415855 1416751 1416756) (-872 "OUTFORM.spad" 1405239 1405247 1415837 1415842) (-871 "OUTBFILE.spad" 1404657 1404665 1405229 1405234) (-870 "OUTBCON.spad" 1403663 1403671 1404647 1404652) (-869 "OUTBCON.spad" 1402667 1402677 1403653 1403658) (-868 "OSI.spad" 1402142 1402150 1402657 1402662) (-867 "OSGROUP.spad" 1402060 1402068 1402132 1402137) (-866 "ORTHPOL.spad" 1400545 1400555 1401977 1401982) (-865 "OREUP.spad" 1399998 1400026 1400225 1400264) (-864 "ORESUP.spad" 1399299 1399323 1399678 1399717) (-863 "OREPCTO.spad" 1397156 1397168 1399219 1399224) (-862 "OREPCAT.spad" 1391303 1391313 1397112 1397151) (-861 "OREPCAT.spad" 1385340 1385352 1391151 1391156) (-860 "ORDSET.spad" 1384512 1384520 1385330 1385335) (-859 "ORDSET.spad" 1383682 1383692 1384502 1384507) (-858 "ORDRING.spad" 1383072 1383080 1383662 1383677) (-857 "ORDRING.spad" 1382470 1382480 1383062 1383067) (-856 "ORDMON.spad" 1382325 1382333 1382460 1382465) (-855 "ORDFUNS.spad" 1381457 1381473 1382315 1382320) (-854 "ORDFIN.spad" 1381277 1381285 1381447 1381452) (-853 "ORDCOMP.spad" 1379742 1379752 1380824 1380853) (-852 "ORDCOMP2.spad" 1379035 1379047 1379732 1379737) (-851 "OPTPROB.spad" 1377673 1377681 1379025 1379030) (-850 "OPTPACK.spad" 1370082 1370090 1377663 1377668) (-849 "OPTCAT.spad" 1367761 1367769 1370072 1370077) (-848 "OPSIG.spad" 1367415 1367423 1367751 1367756) (-847 "OPQUERY.spad" 1366964 1366972 1367405 1367410) (-846 "OP.spad" 1366706 1366716 1366786 1366853) (-845 "OPERCAT.spad" 1366172 1366182 1366696 1366701) (-844 "OPERCAT.spad" 1365636 1365648 1366162 1366167) (-843 "ONECOMP.spad" 1364381 1364391 1365183 1365212) (-842 "ONECOMP2.spad" 1363805 1363817 1364371 1364376) (-841 "OMSERVER.spad" 1362811 1362819 1363795 1363800) (-840 "OMSAGG.spad" 1362599 1362609 1362767 1362806) (-839 "OMPKG.spad" 1361215 1361223 1362589 1362594) (-838 "OM.spad" 1360188 1360196 1361205 1361210) (-837 "OMLO.spad" 1359613 1359625 1360074 1360113) (-836 "OMEXPR.spad" 1359447 1359457 1359603 1359608) (-835 "OMERR.spad" 1358992 1359000 1359437 1359442) (-834 "OMERRK.spad" 1358026 1358034 1358982 1358987) (-833 "OMENC.spad" 1357370 1357378 1358016 1358021) (-832 "OMDEV.spad" 1351679 1351687 1357360 1357365) (-831 "OMCONN.spad" 1351088 1351096 1351669 1351674) (-830 "OINTDOM.spad" 1350851 1350859 1351014 1351083) (-829 "OFMONOID.spad" 1348974 1348984 1350807 1350812) (-828 "ODVAR.spad" 1348235 1348245 1348964 1348969) (-827 "ODR.spad" 1347879 1347905 1348047 1348196) (-826 "ODPOL.spad" 1345261 1345271 1345601 1345728) (-825 "ODP.spad" 1335343 1335363 1335716 1335847) (-824 "ODETOOLS.spad" 1333992 1334011 1335333 1335338) (-823 "ODESYS.spad" 1331686 1331703 1333982 1333987) (-822 "ODERTRIC.spad" 1327695 1327712 1331643 1331648) (-821 "ODERED.spad" 1327094 1327118 1327685 1327690) (-820 "ODERAT.spad" 1324709 1324726 1327084 1327089) (-819 "ODEPRRIC.spad" 1321746 1321768 1324699 1324704) (-818 "ODEPROB.spad" 1321003 1321011 1321736 1321741) (-817 "ODEPRIM.spad" 1318337 1318359 1320993 1320998) (-816 "ODEPAL.spad" 1317723 1317747 1318327 1318332) (-815 "ODEPACK.spad" 1304389 1304397 1317713 1317718) (-814 "ODEINT.spad" 1303824 1303840 1304379 1304384) (-813 "ODEIFTBL.spad" 1301219 1301227 1303814 1303819) (-812 "ODEEF.spad" 1296710 1296726 1301209 1301214) (-811 "ODECONST.spad" 1296247 1296265 1296700 1296705) (-810 "ODECAT.spad" 1294845 1294853 1296237 1296242) (-809 "OCT.spad" 1292981 1292991 1293695 1293734) (-808 "OCTCT2.spad" 1292627 1292648 1292971 1292976) (-807 "OC.spad" 1290423 1290433 1292583 1292622) (-806 "OC.spad" 1287944 1287956 1290106 1290111) (-805 "OCAMON.spad" 1287792 1287800 1287934 1287939) (-804 "OASGP.spad" 1287607 1287615 1287782 1287787) (-803 "OAMONS.spad" 1287129 1287137 1287597 1287602) (-802 "OAMON.spad" 1286990 1286998 1287119 1287124) (-801 "OAGROUP.spad" 1286852 1286860 1286980 1286985) (-800 "NUMTUBE.spad" 1286443 1286459 1286842 1286847) (-799 "NUMQUAD.spad" 1274419 1274427 1286433 1286438) (-798 "NUMODE.spad" 1265773 1265781 1274409 1274414) (-797 "NUMINT.spad" 1263339 1263347 1265763 1265768) (-796 "NUMFMT.spad" 1262179 1262187 1263329 1263334) (-795 "NUMERIC.spad" 1254293 1254303 1261984 1261989) (-794 "NTSCAT.spad" 1252801 1252817 1254261 1254288) (-793 "NTPOLFN.spad" 1252352 1252362 1252718 1252723) (-792 "NSUP.spad" 1245398 1245408 1249938 1250091) (-791 "NSUP2.spad" 1244790 1244802 1245388 1245393) (-790 "NSMP.spad" 1241020 1241039 1241328 1241455) (-789 "NREP.spad" 1239398 1239412 1241010 1241015) (-788 "NPCOEF.spad" 1238644 1238664 1239388 1239393) (-787 "NORMRETR.spad" 1238242 1238281 1238634 1238639) (-786 "NORMPK.spad" 1236144 1236163 1238232 1238237) (-785 "NORMMA.spad" 1235832 1235858 1236134 1236139) (-784 "NONE.spad" 1235573 1235581 1235822 1235827) (-783 "NONE1.spad" 1235249 1235259 1235563 1235568) (-782 "NODE1.spad" 1234736 1234752 1235239 1235244) (-781 "NNI.spad" 1233631 1233639 1234710 1234731) (-780 "NLINSOL.spad" 1232257 1232267 1233621 1233626) (-779 "NIPROB.spad" 1230798 1230806 1232247 1232252) (-778 "NFINTBAS.spad" 1228358 1228375 1230788 1230793) (-777 "NETCLT.spad" 1228332 1228343 1228348 1228353) (-776 "NCODIV.spad" 1226548 1226564 1228322 1228327) (-775 "NCNTFRAC.spad" 1226190 1226204 1226538 1226543) (-774 "NCEP.spad" 1224356 1224370 1226180 1226185) (-773 "NASRING.spad" 1223952 1223960 1224346 1224351) (-772 "NASRING.spad" 1223546 1223556 1223942 1223947) (-771 "NARNG.spad" 1222898 1222906 1223536 1223541) (-770 "NARNG.spad" 1222248 1222258 1222888 1222893) (-769 "NAGSP.spad" 1221325 1221333 1222238 1222243) (-768 "NAGS.spad" 1210986 1210994 1221315 1221320) (-767 "NAGF07.spad" 1209417 1209425 1210976 1210981) (-766 "NAGF04.spad" 1203819 1203827 1209407 1209412) (-765 "NAGF02.spad" 1197888 1197896 1203809 1203814) (-764 "NAGF01.spad" 1193649 1193657 1197878 1197883) (-763 "NAGE04.spad" 1187349 1187357 1193639 1193644) (-762 "NAGE02.spad" 1178009 1178017 1187339 1187344) (-761 "NAGE01.spad" 1174011 1174019 1177999 1178004) (-760 "NAGD03.spad" 1172015 1172023 1174001 1174006) (-759 "NAGD02.spad" 1164762 1164770 1172005 1172010) (-758 "NAGD01.spad" 1159055 1159063 1164752 1164757) (-757 "NAGC06.spad" 1154930 1154938 1159045 1159050) (-756 "NAGC05.spad" 1153431 1153439 1154920 1154925) (-755 "NAGC02.spad" 1152698 1152706 1153421 1153426) (-754 "NAALG.spad" 1152239 1152249 1152666 1152693) (-753 "NAALG.spad" 1151800 1151812 1152229 1152234) (-752 "MULTSQFR.spad" 1148758 1148775 1151790 1151795) (-751 "MULTFACT.spad" 1148141 1148158 1148748 1148753) (-750 "MTSCAT.spad" 1146235 1146256 1148039 1148136) (-749 "MTHING.spad" 1145894 1145904 1146225 1146230) (-748 "MSYSCMD.spad" 1145328 1145336 1145884 1145889) (-747 "MSET.spad" 1143286 1143296 1145034 1145073) (-746 "MSETAGG.spad" 1143131 1143141 1143254 1143281) (-745 "MRING.spad" 1140108 1140120 1142839 1142906) (-744 "MRF2.spad" 1139678 1139692 1140098 1140103) (-743 "MRATFAC.spad" 1139224 1139241 1139668 1139673) (-742 "MPRFF.spad" 1137264 1137283 1139214 1139219) (-741 "MPOLY.spad" 1134735 1134750 1135094 1135221) (-740 "MPCPF.spad" 1133999 1134018 1134725 1134730) (-739 "MPC3.spad" 1133816 1133856 1133989 1133994) (-738 "MPC2.spad" 1133462 1133495 1133806 1133811) (-737 "MONOTOOL.spad" 1131813 1131830 1133452 1133457) (-736 "MONOID.spad" 1131132 1131140 1131803 1131808) (-735 "MONOID.spad" 1130449 1130459 1131122 1131127) (-734 "MONOGEN.spad" 1129197 1129210 1130309 1130444) (-733 "MONOGEN.spad" 1127967 1127982 1129081 1129086) (-732 "MONADWU.spad" 1125997 1126005 1127957 1127962) (-731 "MONADWU.spad" 1124025 1124035 1125987 1125992) (-730 "MONAD.spad" 1123185 1123193 1124015 1124020) (-729 "MONAD.spad" 1122343 1122353 1123175 1123180) (-728 "MOEBIUS.spad" 1121079 1121093 1122323 1122338) (-727 "MODULE.spad" 1120949 1120959 1121047 1121074) (-726 "MODULE.spad" 1120839 1120851 1120939 1120944) (-725 "MODRING.spad" 1120174 1120213 1120819 1120834) (-724 "MODOP.spad" 1118839 1118851 1119996 1120063) (-723 "MODMONOM.spad" 1118570 1118588 1118829 1118834) (-722 "MODMON.spad" 1115365 1115381 1116084 1116237) (-721 "MODFIELD.spad" 1114727 1114766 1115267 1115360) (-720 "MMLFORM.spad" 1113587 1113595 1114717 1114722) (-719 "MMAP.spad" 1113329 1113363 1113577 1113582) (-718 "MLO.spad" 1111788 1111798 1113285 1113324) (-717 "MLIFT.spad" 1110400 1110417 1111778 1111783) (-716 "MKUCFUNC.spad" 1109935 1109953 1110390 1110395) (-715 "MKRECORD.spad" 1109539 1109552 1109925 1109930) (-714 "MKFUNC.spad" 1108946 1108956 1109529 1109534) (-713 "MKFLCFN.spad" 1107914 1107924 1108936 1108941) (-712 "MKBCFUNC.spad" 1107409 1107427 1107904 1107909) (-711 "MINT.spad" 1106848 1106856 1107311 1107404) (-710 "MHROWRED.spad" 1105359 1105369 1106838 1106843) (-709 "MFLOAT.spad" 1103879 1103887 1105249 1105354) (-708 "MFINFACT.spad" 1103279 1103301 1103869 1103874) (-707 "MESH.spad" 1101061 1101069 1103269 1103274) (-706 "MDDFACT.spad" 1099272 1099282 1101051 1101056) (-705 "MDAGG.spad" 1098563 1098573 1099252 1099267) (-704 "MCMPLX.spad" 1094574 1094582 1095188 1095389) (-703 "MCDEN.spad" 1093784 1093796 1094564 1094569) (-702 "MCALCFN.spad" 1090906 1090932 1093774 1093779) (-701 "MAYBE.spad" 1090190 1090201 1090896 1090901) (-700 "MATSTOR.spad" 1087498 1087508 1090180 1090185) (-699 "MATRIX.spad" 1086202 1086212 1086686 1086713) (-698 "MATLIN.spad" 1083546 1083570 1086086 1086091) (-697 "MATCAT.spad" 1075275 1075297 1083514 1083541) (-696 "MATCAT.spad" 1066876 1066900 1075117 1075122) (-695 "MATCAT2.spad" 1066158 1066206 1066866 1066871) (-694 "MAPPKG3.spad" 1065073 1065087 1066148 1066153) (-693 "MAPPKG2.spad" 1064411 1064423 1065063 1065068) (-692 "MAPPKG1.spad" 1063239 1063249 1064401 1064406) (-691 "MAPPAST.spad" 1062554 1062562 1063229 1063234) (-690 "MAPHACK3.spad" 1062366 1062380 1062544 1062549) (-689 "MAPHACK2.spad" 1062135 1062147 1062356 1062361) (-688 "MAPHACK1.spad" 1061779 1061789 1062125 1062130) (-687 "MAGMA.spad" 1059569 1059586 1061769 1061774) (-686 "MACROAST.spad" 1059148 1059156 1059559 1059564) (-685 "M3D.spad" 1056868 1056878 1058526 1058531) (-684 "LZSTAGG.spad" 1054106 1054116 1056858 1056863) (-683 "LZSTAGG.spad" 1051342 1051354 1054096 1054101) (-682 "LWORD.spad" 1048047 1048064 1051332 1051337) (-681 "LSTAST.spad" 1047831 1047839 1048037 1048042) (-680 "LSQM.spad" 1046117 1046131 1046511 1046562) (-679 "LSPP.spad" 1045652 1045669 1046107 1046112) (-678 "LSMP.spad" 1044502 1044530 1045642 1045647) (-677 "LSMP1.spad" 1042320 1042334 1044492 1044497) (-676 "LSAGG.spad" 1041989 1041999 1042288 1042315) (-675 "LSAGG.spad" 1041678 1041690 1041979 1041984) (-674 "LPOLY.spad" 1040632 1040651 1041534 1041603) (-673 "LPEFRAC.spad" 1039903 1039913 1040622 1040627) (-672 "LO.spad" 1039304 1039318 1039837 1039864) (-671 "LOGIC.spad" 1038906 1038914 1039294 1039299) (-670 "LOGIC.spad" 1038506 1038516 1038896 1038901) (-669 "LODOOPS.spad" 1037436 1037448 1038496 1038501) (-668 "LODO.spad" 1036820 1036836 1037116 1037155) (-667 "LODOF.spad" 1035866 1035883 1036777 1036782) (-666 "LODOCAT.spad" 1034532 1034542 1035822 1035861) (-665 "LODOCAT.spad" 1033196 1033208 1034488 1034493) (-664 "LODO2.spad" 1032469 1032481 1032876 1032915) (-663 "LODO1.spad" 1031869 1031879 1032149 1032188) (-662 "LODEEF.spad" 1030671 1030689 1031859 1031864) (-661 "LNAGG.spad" 1026818 1026828 1030661 1030666) (-660 "LNAGG.spad" 1022929 1022941 1026774 1026779) (-659 "LMOPS.spad" 1019697 1019714 1022919 1022924) (-658 "LMODULE.spad" 1019465 1019475 1019687 1019692) (-657 "LMDICT.spad" 1018752 1018762 1019016 1019043) (-656 "LLINSET.spad" 1018310 1018320 1018742 1018747) (-655 "LITERAL.spad" 1018216 1018227 1018300 1018305) (-654 "LIST.spad" 1015951 1015961 1017363 1017390) (-653 "LIST3.spad" 1015262 1015276 1015941 1015946) (-652 "LIST2.spad" 1013964 1013976 1015252 1015257) (-651 "LIST2MAP.spad" 1010867 1010879 1013954 1013959) (-650 "LINSET.spad" 1010646 1010656 1010857 1010862) (-649 "LINEXP.spad" 1009784 1009794 1010636 1010641) (-648 "LINDEP.spad" 1008593 1008605 1009696 1009701) (-647 "LIMITRF.spad" 1006521 1006531 1008583 1008588) (-646 "LIMITPS.spad" 1005424 1005437 1006511 1006516) (-645 "LIE.spad" 1003440 1003452 1004714 1004859) (-644 "LIECAT.spad" 1002916 1002926 1003366 1003435) (-643 "LIECAT.spad" 1002420 1002432 1002872 1002877) (-642 "LIB.spad" 1000633 1000641 1001079 1001094) (-641 "LGROBP.spad" 997986 998005 1000623 1000628) (-640 "LF.spad" 996941 996957 997976 997981) (-639 "LFCAT.spad" 996000 996008 996931 996936) (-638 "LEXTRIPK.spad" 991503 991518 995990 995995) (-637 "LEXP.spad" 989506 989533 991483 991498) (-636 "LETAST.spad" 989205 989213 989496 989501) (-635 "LEADCDET.spad" 987603 987620 989195 989200) (-634 "LAZM3PK.spad" 986307 986329 987593 987598) (-633 "LAUPOL.spad" 984899 984912 985799 985868) (-632 "LAPLACE.spad" 984482 984498 984889 984894) (-631 "LA.spad" 983922 983936 984404 984443) (-630 "LALG.spad" 983698 983708 983902 983917) (-629 "LALG.spad" 983482 983494 983688 983693) (-628 "KVTFROM.spad" 983217 983227 983472 983477) (-627 "KTVLOGIC.spad" 982729 982737 983207 983212) (-626 "KRCFROM.spad" 982467 982477 982719 982724) (-625 "KOVACIC.spad" 981190 981207 982457 982462) (-624 "KONVERT.spad" 980912 980922 981180 981185) (-623 "KOERCE.spad" 980649 980659 980902 980907) (-622 "KERNEL.spad" 979304 979314 980433 980438) (-621 "KERNEL2.spad" 979007 979019 979294 979299) (-620 "KDAGG.spad" 978116 978138 978987 979002) (-619 "KDAGG.spad" 977233 977257 978106 978111) (-618 "KAFILE.spad" 976196 976212 976431 976458) (-617 "JORDAN.spad" 974025 974037 975486 975631) (-616 "JOINAST.spad" 973719 973727 974015 974020) (-615 "JAVACODE.spad" 973585 973593 973709 973714) (-614 "IXAGG.spad" 971718 971742 973575 973580) (-613 "IXAGG.spad" 969706 969732 971565 971570) (-612 "IVECTOR.spad" 968476 968491 968631 968658) (-611 "ITUPLE.spad" 967637 967647 968466 968471) (-610 "ITRIGMNP.spad" 966476 966495 967627 967632) (-609 "ITFUN3.spad" 965982 965996 966466 966471) (-608 "ITFUN2.spad" 965726 965738 965972 965977) (-607 "ITFORM.spad" 965081 965089 965716 965721) (-606 "ITAYLOR.spad" 963075 963090 964945 965042) (-605 "ISUPS.spad" 955512 955527 962049 962146) (-604 "ISUMP.spad" 955013 955029 955502 955507) (-603 "ISTRING.spad" 954101 954114 954182 954209) (-602 "ISAST.spad" 953820 953828 954091 954096) (-601 "IRURPK.spad" 952537 952556 953810 953815) (-600 "IRSN.spad" 950509 950517 952527 952532) (-599 "IRRF2F.spad" 948994 949004 950465 950470) (-598 "IRREDFFX.spad" 948595 948606 948984 948989) (-597 "IROOT.spad" 946934 946944 948585 948590) (-596 "IR.spad" 944735 944749 946789 946816) (-595 "IRFORM.spad" 944059 944067 944725 944730) (-594 "IR2.spad" 943087 943103 944049 944054) (-593 "IR2F.spad" 942293 942309 943077 943082) (-592 "IPRNTPK.spad" 942053 942061 942283 942288) (-591 "IPF.spad" 941618 941630 941858 941951) (-590 "IPADIC.spad" 941379 941405 941544 941613) (-589 "IP4ADDR.spad" 940936 940944 941369 941374) (-588 "IOMODE.spad" 940458 940466 940926 940931) (-587 "IOBFILE.spad" 939819 939827 940448 940453) (-586 "IOBCON.spad" 939684 939692 939809 939814) (-585 "INVLAPLA.spad" 939333 939349 939674 939679) (-584 "INTTR.spad" 932715 932732 939323 939328) (-583 "INTTOOLS.spad" 930470 930486 932289 932294) (-582 "INTSLPE.spad" 929790 929798 930460 930465) (-581 "INTRVL.spad" 929356 929366 929704 929785) (-580 "INTRF.spad" 927780 927794 929346 929351) (-579 "INTRET.spad" 927212 927222 927770 927775) (-578 "INTRAT.spad" 925939 925956 927202 927207) (-577 "INTPM.spad" 924324 924340 925582 925587) (-576 "INTPAF.spad" 922188 922206 924256 924261) (-575 "INTPACK.spad" 912562 912570 922178 922183) (-574 "INT.spad" 912010 912018 912416 912557) (-573 "INTHERTR.spad" 911284 911301 912000 912005) (-572 "INTHERAL.spad" 910954 910978 911274 911279) (-571 "INTHEORY.spad" 907393 907401 910944 910949) (-570 "INTG0.spad" 901126 901144 907325 907330) (-569 "INTFTBL.spad" 895155 895163 901116 901121) (-568 "INTFACT.spad" 894214 894224 895145 895150) (-567 "INTEF.spad" 892599 892615 894204 894209) (-566 "INTDOM.spad" 891222 891230 892525 892594) (-565 "INTDOM.spad" 889907 889917 891212 891217) (-564 "INTCAT.spad" 888166 888176 889821 889902) (-563 "INTBIT.spad" 887673 887681 888156 888161) (-562 "INTALG.spad" 886861 886888 887663 887668) (-561 "INTAF.spad" 886361 886377 886851 886856) (-560 "INTABL.spad" 884879 884910 885042 885069) (-559 "INT8.spad" 884759 884767 884869 884874) (-558 "INT64.spad" 884638 884646 884749 884754) (-557 "INT32.spad" 884517 884525 884628 884633) (-556 "INT16.spad" 884396 884404 884507 884512) (-555 "INS.spad" 881899 881907 884298 884391) (-554 "INS.spad" 879488 879498 881889 881894) (-553 "INPSIGN.spad" 878936 878949 879478 879483) (-552 "INPRODPF.spad" 878032 878051 878926 878931) (-551 "INPRODFF.spad" 877120 877144 878022 878027) (-550 "INNMFACT.spad" 876095 876112 877110 877115) (-549 "INMODGCD.spad" 875583 875613 876085 876090) (-548 "INFSP.spad" 873880 873902 875573 875578) (-547 "INFPROD0.spad" 872960 872979 873870 873875) (-546 "INFORM.spad" 870159 870167 872950 872955) (-545 "INFORM1.spad" 869784 869794 870149 870154) (-544 "INFINITY.spad" 869336 869344 869774 869779) (-543 "INETCLTS.spad" 869313 869321 869326 869331) (-542 "INEP.spad" 867851 867873 869303 869308) (-541 "INDE.spad" 867580 867597 867841 867846) (-540 "INCRMAPS.spad" 867001 867011 867570 867575) (-539 "INBFILE.spad" 866073 866081 866991 866996) (-538 "INBFF.spad" 861867 861878 866063 866068) (-537 "INBCON.spad" 860157 860165 861857 861862) (-536 "INBCON.spad" 858445 858455 860147 860152) (-535 "INAST.spad" 858106 858114 858435 858440) (-534 "IMPTAST.spad" 857814 857822 858096 858101) (-533 "IMATRIX.spad" 856759 856785 857271 857298) (-532 "IMATQF.spad" 855853 855897 856715 856720) (-531 "IMATLIN.spad" 854458 854482 855809 855814) (-530 "ILIST.spad" 853116 853131 853641 853668) (-529 "IIARRAY2.spad" 852504 852542 852723 852750) (-528 "IFF.spad" 851914 851930 852185 852278) (-527 "IFAST.spad" 851528 851536 851904 851909) (-526 "IFARRAY.spad" 849021 849036 850711 850738) (-525 "IFAMON.spad" 848883 848900 848977 848982) (-524 "IEVALAB.spad" 848288 848300 848873 848878) (-523 "IEVALAB.spad" 847691 847705 848278 848283) (-522 "IDPO.spad" 847489 847501 847681 847686) (-521 "IDPOAMS.spad" 847245 847257 847479 847484) (-520 "IDPOAM.spad" 846965 846977 847235 847240) (-519 "IDPC.spad" 845903 845915 846955 846960) (-518 "IDPAM.spad" 845648 845660 845893 845898) (-517 "IDPAG.spad" 845395 845407 845638 845643) (-516 "IDENT.spad" 845045 845053 845385 845390) (-515 "IDECOMP.spad" 842284 842302 845035 845040) (-514 "IDEAL.spad" 837233 837272 842219 842224) (-513 "ICDEN.spad" 836422 836438 837223 837228) (-512 "ICARD.spad" 835613 835621 836412 836417) (-511 "IBPTOOLS.spad" 834220 834237 835603 835608) (-510 "IBITS.spad" 833423 833436 833856 833883) (-509 "IBATOOL.spad" 830400 830419 833413 833418) (-508 "IBACHIN.spad" 828907 828922 830390 830395) (-507 "IARRAY2.spad" 827895 827921 828514 828541) (-506 "IARRAY1.spad" 826940 826955 827078 827105) (-505 "IAN.spad" 825163 825171 826756 826849) (-504 "IALGFACT.spad" 824766 824799 825153 825158) (-503 "HYPCAT.spad" 824190 824198 824756 824761) (-502 "HYPCAT.spad" 823612 823622 824180 824185) (-501 "HOSTNAME.spad" 823420 823428 823602 823607) (-500 "HOMOTOP.spad" 823163 823173 823410 823415) (-499 "HOAGG.spad" 820445 820455 823153 823158) (-498 "HOAGG.spad" 817502 817514 820212 820217) (-497 "HEXADEC.spad" 815604 815612 815969 816062) (-496 "HEUGCD.spad" 814639 814650 815594 815599) (-495 "HELLFDIV.spad" 814229 814253 814629 814634) (-494 "HEAP.spad" 813621 813631 813836 813863) (-493 "HEADAST.spad" 813154 813162 813611 813616) (-492 "HDP.spad" 803232 803248 803609 803740) (-491 "HDMP.spad" 800446 800461 801062 801189) (-490 "HB.spad" 798697 798705 800436 800441) (-489 "HASHTBL.spad" 797167 797198 797378 797405) (-488 "HASAST.spad" 796883 796891 797157 797162) (-487 "HACKPI.spad" 796374 796382 796785 796878) (-486 "GTSET.spad" 795313 795329 796020 796047) (-485 "GSTBL.spad" 793832 793867 794006 794021) (-484 "GSERIES.spad" 791003 791030 791964 792113) (-483 "GROUP.spad" 790276 790284 790983 790998) (-482 "GROUP.spad" 789557 789567 790266 790271) (-481 "GROEBSOL.spad" 788051 788072 789547 789552) (-480 "GRMOD.spad" 786622 786634 788041 788046) (-479 "GRMOD.spad" 785191 785205 786612 786617) (-478 "GRIMAGE.spad" 778080 778088 785181 785186) (-477 "GRDEF.spad" 776459 776467 778070 778075) (-476 "GRAY.spad" 774922 774930 776449 776454) (-475 "GRALG.spad" 773999 774011 774912 774917) (-474 "GRALG.spad" 773074 773088 773989 773994) (-473 "GPOLSET.spad" 772528 772551 772756 772783) (-472 "GOSPER.spad" 771797 771815 772518 772523) (-471 "GMODPOL.spad" 770945 770972 771765 771792) (-470 "GHENSEL.spad" 770028 770042 770935 770940) (-469 "GENUPS.spad" 766321 766334 770018 770023) (-468 "GENUFACT.spad" 765898 765908 766311 766316) (-467 "GENPGCD.spad" 765484 765501 765888 765893) (-466 "GENMFACT.spad" 764936 764955 765474 765479) (-465 "GENEEZ.spad" 762887 762900 764926 764931) (-464 "GDMP.spad" 759943 759960 760717 760844) (-463 "GCNAALG.spad" 753866 753893 759737 759804) (-462 "GCDDOM.spad" 753042 753050 753792 753861) (-461 "GCDDOM.spad" 752280 752290 753032 753037) (-460 "GB.spad" 749806 749844 752236 752241) (-459 "GBINTERN.spad" 745826 745864 749796 749801) (-458 "GBF.spad" 741593 741631 745816 745821) (-457 "GBEUCLID.spad" 739475 739513 741583 741588) (-456 "GAUSSFAC.spad" 738788 738796 739465 739470) (-455 "GALUTIL.spad" 737114 737124 738744 738749) (-454 "GALPOLYU.spad" 735568 735581 737104 737109) (-453 "GALFACTU.spad" 733741 733760 735558 735563) (-452 "GALFACT.spad" 723930 723941 733731 733736) (-451 "FVFUN.spad" 720953 720961 723920 723925) (-450 "FVC.spad" 720005 720013 720943 720948) (-449 "FUNDESC.spad" 719683 719691 719995 720000) (-448 "FUNCTION.spad" 719532 719544 719673 719678) (-447 "FT.spad" 717829 717837 719522 719527) (-446 "FTEM.spad" 716994 717002 717819 717824) (-445 "FSUPFACT.spad" 715894 715913 716930 716935) (-444 "FST.spad" 713980 713988 715884 715889) (-443 "FSRED.spad" 713460 713476 713970 713975) (-442 "FSPRMELT.spad" 712342 712358 713417 713422) (-441 "FSPECF.spad" 710433 710449 712332 712337) (-440 "FS.spad" 704701 704711 710208 710428) (-439 "FS.spad" 698747 698759 704256 704261) (-438 "FSINT.spad" 698407 698423 698737 698742) (-437 "FSERIES.spad" 697598 697610 698227 698326) (-436 "FSCINT.spad" 696915 696931 697588 697593) (-435 "FSAGG.spad" 696032 696042 696871 696910) (-434 "FSAGG.spad" 695111 695123 695952 695957) (-433 "FSAGG2.spad" 693854 693870 695101 695106) (-432 "FS2UPS.spad" 688345 688379 693844 693849) (-431 "FS2.spad" 687992 688008 688335 688340) (-430 "FS2EXPXP.spad" 687117 687140 687982 687987) (-429 "FRUTIL.spad" 686071 686081 687107 687112) (-428 "FR.spad" 679546 679556 684854 684923) (-427 "FRNAALG.spad" 674815 674825 679488 679541) (-426 "FRNAALG.spad" 670096 670108 674771 674776) (-425 "FRNAAF2.spad" 669552 669570 670086 670091) (-424 "FRMOD.spad" 668962 668992 669483 669488) (-423 "FRIDEAL.spad" 668187 668208 668942 668957) (-422 "FRIDEAL2.spad" 667791 667823 668177 668182) (-421 "FRETRCT.spad" 667302 667312 667781 667786) (-420 "FRETRCT.spad" 666679 666691 667160 667165) (-419 "FRAMALG.spad" 665027 665040 666635 666674) (-418 "FRAMALG.spad" 663407 663422 665017 665022) (-417 "FRAC.spad" 660506 660516 660909 661082) (-416 "FRAC2.spad" 660111 660123 660496 660501) (-415 "FR2.spad" 659447 659459 660101 660106) (-414 "FPS.spad" 656262 656270 659337 659442) (-413 "FPS.spad" 653105 653115 656182 656187) (-412 "FPC.spad" 652151 652159 653007 653100) (-411 "FPC.spad" 651283 651293 652141 652146) (-410 "FPATMAB.spad" 651045 651055 651273 651278) (-409 "FPARFRAC.spad" 649532 649549 651035 651040) (-408 "FORTRAN.spad" 648038 648081 649522 649527) (-407 "FORT.spad" 646987 646995 648028 648033) (-406 "FORTFN.spad" 644157 644165 646977 646982) (-405 "FORTCAT.spad" 643841 643849 644147 644152) (-404 "FORMULA.spad" 641315 641323 643831 643836) (-403 "FORMULA1.spad" 640794 640804 641305 641310) (-402 "FORDER.spad" 640485 640509 640784 640789) (-401 "FOP.spad" 639686 639694 640475 640480) (-400 "FNLA.spad" 639110 639132 639654 639681) (-399 "FNCAT.spad" 637705 637713 639100 639105) (-398 "FNAME.spad" 637597 637605 637695 637700) (-397 "FMTC.spad" 637395 637403 637523 637592) (-396 "FMONOID.spad" 637060 637070 637351 637356) (-395 "FMONCAT.spad" 634213 634223 637050 637055) (-394 "FM.spad" 633908 633920 634147 634174) (-393 "FMFUN.spad" 630938 630946 633898 633903) (-392 "FMC.spad" 629990 629998 630928 630933) (-391 "FMCAT.spad" 627658 627676 629958 629985) (-390 "FM1.spad" 627015 627027 627592 627619) (-389 "FLOATRP.spad" 624750 624764 627005 627010) (-388 "FLOAT.spad" 618064 618072 624616 624745) (-387 "FLOATCP.spad" 615495 615509 618054 618059) (-386 "FLINEXP.spad" 615217 615227 615485 615490) (-385 "FLINEXP.spad" 614883 614895 615153 615158) (-384 "FLASORT.spad" 614209 614221 614873 614878) (-383 "FLALG.spad" 611855 611874 614135 614204) (-382 "FLAGG.spad" 608897 608907 611835 611850) (-381 "FLAGG.spad" 605840 605852 608780 608785) (-380 "FLAGG2.spad" 604565 604581 605830 605835) (-379 "FINRALG.spad" 602626 602639 604521 604560) (-378 "FINRALG.spad" 600613 600628 602510 602515) (-377 "FINITE.spad" 599765 599773 600603 600608) (-376 "FINAALG.spad" 588886 588896 599707 599760) (-375 "FINAALG.spad" 578019 578031 588842 588847) (-374 "FILE.spad" 577602 577612 578009 578014) (-373 "FILECAT.spad" 576128 576145 577592 577597) (-372 "FIELD.spad" 575534 575542 576030 576123) (-371 "FIELD.spad" 575026 575036 575524 575529) (-370 "FGROUP.spad" 573673 573683 575006 575021) (-369 "FGLMICPK.spad" 572460 572475 573663 573668) (-368 "FFX.spad" 571835 571850 572176 572269) (-367 "FFSLPE.spad" 571338 571359 571825 571830) (-366 "FFPOLY.spad" 562600 562611 571328 571333) (-365 "FFPOLY2.spad" 561660 561677 562590 562595) (-364 "FFP.spad" 561057 561077 561376 561469) (-363 "FF.spad" 560505 560521 560738 560831) (-362 "FFNBX.spad" 559017 559037 560221 560314) (-361 "FFNBP.spad" 557530 557547 558733 558826) (-360 "FFNB.spad" 555995 556016 557211 557304) (-359 "FFINTBAS.spad" 553509 553528 555985 555990) (-358 "FFIELDC.spad" 551086 551094 553411 553504) (-357 "FFIELDC.spad" 548749 548759 551076 551081) (-356 "FFHOM.spad" 547497 547514 548739 548744) (-355 "FFF.spad" 544932 544943 547487 547492) (-354 "FFCGX.spad" 543779 543799 544648 544741) (-353 "FFCGP.spad" 542668 542688 543495 543588) (-352 "FFCG.spad" 541460 541481 542349 542442) (-351 "FFCAT.spad" 534633 534655 541299 541455) (-350 "FFCAT.spad" 527885 527909 534553 534558) (-349 "FFCAT2.spad" 527632 527672 527875 527880) (-348 "FEXPR.spad" 519349 519395 527388 527427) (-347 "FEVALAB.spad" 519057 519067 519339 519344) (-346 "FEVALAB.spad" 518550 518562 518834 518839) (-345 "FDIV.spad" 517992 518016 518540 518545) (-344 "FDIVCAT.spad" 516056 516080 517982 517987) (-343 "FDIVCAT.spad" 514118 514144 516046 516051) (-342 "FDIV2.spad" 513774 513814 514108 514113) (-341 "FCTRDATA.spad" 512782 512790 513764 513769) (-340 "FCPAK1.spad" 511349 511357 512772 512777) (-339 "FCOMP.spad" 510728 510738 511339 511344) (-338 "FC.spad" 500735 500743 510718 510723) (-337 "FAXF.spad" 493706 493720 500637 500730) (-336 "FAXF.spad" 486729 486745 493662 493667) (-335 "FARRAY.spad" 484879 484889 485912 485939) (-334 "FAMR.spad" 483015 483027 484777 484874) (-333 "FAMR.spad" 481135 481149 482899 482904) (-332 "FAMONOID.spad" 480803 480813 481089 481094) (-331 "FAMONC.spad" 479099 479111 480793 480798) (-330 "FAGROUP.spad" 478723 478733 478995 479022) (-329 "FACUTIL.spad" 476927 476944 478713 478718) (-328 "FACTFUNC.spad" 476121 476131 476917 476922) (-327 "EXPUPXS.spad" 472954 472977 474253 474402) (-326 "EXPRTUBE.spad" 470242 470250 472944 472949) (-325 "EXPRODE.spad" 467402 467418 470232 470237) (-324 "EXPR.spad" 462577 462587 463291 463586) (-323 "EXPR2UPS.spad" 458699 458712 462567 462572) (-322 "EXPR2.spad" 458404 458416 458689 458694) (-321 "EXPEXPAN.spad" 455344 455369 455976 456069) (-320 "EXIT.spad" 455015 455023 455334 455339) (-319 "EXITAST.spad" 454751 454759 455005 455010) (-318 "EVALCYC.spad" 454211 454225 454741 454746) (-317 "EVALAB.spad" 453783 453793 454201 454206) (-316 "EVALAB.spad" 453353 453365 453773 453778) (-315 "EUCDOM.spad" 450927 450935 453279 453348) (-314 "EUCDOM.spad" 448563 448573 450917 450922) (-313 "ESTOOLS.spad" 440409 440417 448553 448558) (-312 "ESTOOLS2.spad" 440012 440026 440399 440404) (-311 "ESTOOLS1.spad" 439697 439708 440002 440007) (-310 "ES.spad" 432512 432520 439687 439692) (-309 "ES.spad" 425233 425243 432410 432415) (-308 "ESCONT.spad" 422026 422034 425223 425228) (-307 "ESCONT1.spad" 421775 421787 422016 422021) (-306 "ES2.spad" 421280 421296 421765 421770) (-305 "ES1.spad" 420850 420866 421270 421275) (-304 "ERROR.spad" 418177 418185 420840 420845) (-303 "EQTBL.spad" 416649 416671 416858 416885) (-302 "EQ.spad" 411454 411464 414241 414353) (-301 "EQ2.spad" 411172 411184 411444 411449) (-300 "EP.spad" 407498 407508 411162 411167) (-299 "ENV.spad" 406176 406184 407488 407493) (-298 "ENTIRER.spad" 405844 405852 406120 406171) (-297 "EMR.spad" 405132 405173 405770 405839) (-296 "ELTAGG.spad" 403386 403405 405122 405127) (-295 "ELTAGG.spad" 401604 401625 403342 403347) (-294 "ELTAB.spad" 401079 401092 401594 401599) (-293 "ELFUTS.spad" 400466 400485 401069 401074) (-292 "ELEMFUN.spad" 400155 400163 400456 400461) (-291 "ELEMFUN.spad" 399842 399852 400145 400150) (-290 "ELAGG.spad" 397813 397823 399822 399837) (-289 "ELAGG.spad" 395721 395733 397732 397737) (-288 "ELABOR.spad" 395067 395075 395711 395716) (-287 "ELABEXPR.spad" 393999 394007 395057 395062) (-286 "EFUPXS.spad" 390775 390805 393955 393960) (-285 "EFULS.spad" 387611 387634 390731 390736) (-284 "EFSTRUC.spad" 385626 385642 387601 387606) (-283 "EF.spad" 380402 380418 385616 385621) (-282 "EAB.spad" 378678 378686 380392 380397) (-281 "E04UCFA.spad" 378214 378222 378668 378673) (-280 "E04NAFA.spad" 377791 377799 378204 378209) (-279 "E04MBFA.spad" 377371 377379 377781 377786) (-278 "E04JAFA.spad" 376907 376915 377361 377366) (-277 "E04GCFA.spad" 376443 376451 376897 376902) (-276 "E04FDFA.spad" 375979 375987 376433 376438) (-275 "E04DGFA.spad" 375515 375523 375969 375974) (-274 "E04AGNT.spad" 371365 371373 375505 375510) (-273 "DVARCAT.spad" 368255 368265 371355 371360) (-272 "DVARCAT.spad" 365143 365155 368245 368250) (-271 "DSMP.spad" 362610 362624 362915 363042) (-270 "DROPT.spad" 356569 356577 362600 362605) (-269 "DROPT1.spad" 356234 356244 356559 356564) (-268 "DROPT0.spad" 351091 351099 356224 356229) (-267 "DRAWPT.spad" 349264 349272 351081 351086) (-266 "DRAW.spad" 342140 342153 349254 349259) (-265 "DRAWHACK.spad" 341448 341458 342130 342135) (-264 "DRAWCX.spad" 338918 338926 341438 341443) (-263 "DRAWCURV.spad" 338465 338480 338908 338913) (-262 "DRAWCFUN.spad" 327997 328005 338455 338460) (-261 "DQAGG.spad" 326175 326185 327965 327992) (-260 "DPOLCAT.spad" 321524 321540 326043 326170) (-259 "DPOLCAT.spad" 316959 316977 321480 321485) (-258 "DPMO.spad" 309753 309769 309891 310136) (-257 "DPMM.spad" 302560 302578 302685 302930) (-256 "DOMTMPLT.spad" 302331 302339 302550 302555) (-255 "DOMCTOR.spad" 302086 302094 302321 302326) (-254 "DOMAIN.spad" 301173 301181 302076 302081) (-253 "DMP.spad" 298433 298448 299003 299130) (-252 "DLP.spad" 297785 297795 298423 298428) (-251 "DLIST.spad" 296364 296374 296968 296995) (-250 "DLAGG.spad" 294781 294791 296354 296359) (-249 "DIVRING.spad" 294323 294331 294725 294776) (-248 "DIVRING.spad" 293909 293919 294313 294318) (-247 "DISPLAY.spad" 292099 292107 293899 293904) (-246 "DIRPROD.spad" 281914 281930 282554 282685) (-245 "DIRPROD2.spad" 280732 280750 281904 281909) (-244 "DIRPCAT.spad" 279893 279909 280596 280727) (-243 "DIRPCAT.spad" 278783 278801 279488 279493) (-242 "DIOSP.spad" 277608 277616 278773 278778) (-241 "DIOPS.spad" 276604 276614 277588 277603) (-240 "DIOPS.spad" 275574 275586 276560 276565) (-239 "DIFRING.spad" 275412 275420 275554 275569) (-238 "DIFFSPC.spad" 274991 274999 275402 275407) (-237 "DIFFSPC.spad" 274568 274578 274981 274986) (-236 "DIFFMOD.spad" 274057 274067 274536 274563) (-235 "DIFFDOM.spad" 273222 273233 274047 274052) (-234 "DIFFDOM.spad" 272385 272398 273212 273217) (-233 "DIFEXT.spad" 271556 271566 272365 272380) (-232 "DIFEXT.spad" 270644 270656 271455 271460) (-231 "DIAGG.spad" 270274 270284 270624 270639) (-230 "DIAGG.spad" 269912 269924 270264 270269) (-229 "DHMATRIX.spad" 268224 268234 269369 269396) (-228 "DFSFUN.spad" 261864 261872 268214 268219) (-227 "DFLOAT.spad" 258595 258603 261754 261859) (-226 "DFINTTLS.spad" 256826 256842 258585 258590) (-225 "DERHAM.spad" 254740 254772 256806 256821) (-224 "DEQUEUE.spad" 254064 254074 254347 254374) (-223 "DEGRED.spad" 253681 253695 254054 254059) (-222 "DEFINTRF.spad" 251218 251228 253671 253676) (-221 "DEFINTEF.spad" 249728 249744 251208 251213) (-220 "DEFAST.spad" 249096 249104 249718 249723) (-219 "DECIMAL.spad" 247202 247210 247563 247656) (-218 "DDFACT.spad" 245015 245032 247192 247197) (-217 "DBLRESP.spad" 244615 244639 245005 245010) (-216 "DBASE.spad" 243279 243289 244605 244610) (-215 "DATAARY.spad" 242741 242754 243269 243274) (-214 "D03FAFA.spad" 242569 242577 242731 242736) (-213 "D03EEFA.spad" 242389 242397 242559 242564) (-212 "D03AGNT.spad" 241475 241483 242379 242384) (-211 "D02EJFA.spad" 240937 240945 241465 241470) (-210 "D02CJFA.spad" 240415 240423 240927 240932) (-209 "D02BHFA.spad" 239905 239913 240405 240410) (-208 "D02BBFA.spad" 239395 239403 239895 239900) (-207 "D02AGNT.spad" 234209 234217 239385 239390) (-206 "D01WGTS.spad" 232528 232536 234199 234204) (-205 "D01TRNS.spad" 232505 232513 232518 232523) (-204 "D01GBFA.spad" 232027 232035 232495 232500) (-203 "D01FCFA.spad" 231549 231557 232017 232022) (-202 "D01ASFA.spad" 231017 231025 231539 231544) (-201 "D01AQFA.spad" 230463 230471 231007 231012) (-200 "D01APFA.spad" 229887 229895 230453 230458) (-199 "D01ANFA.spad" 229381 229389 229877 229882) (-198 "D01AMFA.spad" 228891 228899 229371 229376) (-197 "D01ALFA.spad" 228431 228439 228881 228886) (-196 "D01AKFA.spad" 227957 227965 228421 228426) (-195 "D01AJFA.spad" 227480 227488 227947 227952) (-194 "D01AGNT.spad" 223547 223555 227470 227475) (-193 "CYCLOTOM.spad" 223053 223061 223537 223542) (-192 "CYCLES.spad" 219845 219853 223043 223048) (-191 "CVMP.spad" 219262 219272 219835 219840) (-190 "CTRIGMNP.spad" 217762 217778 219252 219257) (-189 "CTOR.spad" 217453 217461 217752 217757) (-188 "CTORKIND.spad" 217056 217064 217443 217448) (-187 "CTORCAT.spad" 216305 216313 217046 217051) (-186 "CTORCAT.spad" 215552 215562 216295 216300) (-185 "CTORCALL.spad" 215141 215151 215542 215547) (-184 "CSTTOOLS.spad" 214386 214399 215131 215136) (-183 "CRFP.spad" 208110 208123 214376 214381) (-182 "CRCEAST.spad" 207830 207838 208100 208105) (-181 "CRAPACK.spad" 206881 206891 207820 207825) (-180 "CPMATCH.spad" 206385 206400 206806 206811) (-179 "CPIMA.spad" 206090 206109 206375 206380) (-178 "COORDSYS.spad" 201099 201109 206080 206085) (-177 "CONTOUR.spad" 200510 200518 201089 201094) (-176 "CONTFRAC.spad" 196260 196270 200412 200505) (-175 "CONDUIT.spad" 196018 196026 196250 196255) (-174 "COMRING.spad" 195692 195700 195956 196013) (-173 "COMPPROP.spad" 195210 195218 195682 195687) (-172 "COMPLPAT.spad" 194977 194992 195200 195205) (-171 "COMPLEX.spad" 189114 189124 189358 189619) (-170 "COMPLEX2.spad" 188829 188841 189104 189109) (-169 "COMPILER.spad" 188378 188386 188819 188824) (-168 "COMPFACT.spad" 187980 187994 188368 188373) (-167 "COMPCAT.spad" 186052 186062 187714 187975) (-166 "COMPCAT.spad" 183852 183864 185516 185521) (-165 "COMMUPC.spad" 183600 183618 183842 183847) (-164 "COMMONOP.spad" 183133 183141 183590 183595) (-163 "COMM.spad" 182944 182952 183123 183128) (-162 "COMMAAST.spad" 182707 182715 182934 182939) (-161 "COMBOPC.spad" 181622 181630 182697 182702) (-160 "COMBINAT.spad" 180389 180399 181612 181617) (-159 "COMBF.spad" 177771 177787 180379 180384) (-158 "COLOR.spad" 176608 176616 177761 177766) (-157 "COLONAST.spad" 176274 176282 176598 176603) (-156 "CMPLXRT.spad" 175985 176002 176264 176269) (-155 "CLLCTAST.spad" 175647 175655 175975 175980) (-154 "CLIP.spad" 171755 171763 175637 175642) (-153 "CLIF.spad" 170410 170426 171711 171750) (-152 "CLAGG.spad" 166915 166925 170400 170405) (-151 "CLAGG.spad" 163291 163303 166778 166783) (-150 "CINTSLPE.spad" 162622 162635 163281 163286) (-149 "CHVAR.spad" 160760 160782 162612 162617) (-148 "CHARZ.spad" 160675 160683 160740 160755) (-147 "CHARPOL.spad" 160185 160195 160665 160670) (-146 "CHARNZ.spad" 159938 159946 160165 160180) (-145 "CHAR.spad" 157812 157820 159928 159933) (-144 "CFCAT.spad" 157140 157148 157802 157807) (-143 "CDEN.spad" 156336 156350 157130 157135) (-142 "CCLASS.spad" 154485 154493 155747 155786) (-141 "CATEGORY.spad" 153527 153535 154475 154480) (-140 "CATCTOR.spad" 153418 153426 153517 153522) (-139 "CATAST.spad" 153036 153044 153408 153413) (-138 "CASEAST.spad" 152750 152758 153026 153031) (-137 "CARTEN.spad" 148117 148141 152740 152745) (-136 "CARTEN2.spad" 147507 147534 148107 148112) (-135 "CARD.spad" 144802 144810 147481 147502) (-134 "CAPSLAST.spad" 144576 144584 144792 144797) (-133 "CACHSET.spad" 144200 144208 144566 144571) (-132 "CABMON.spad" 143755 143763 144190 144195) (-131 "BYTEORD.spad" 143430 143438 143745 143750) (-130 "BYTE.spad" 142857 142865 143420 143425) (-129 "BYTEBUF.spad" 140716 140724 142026 142053) (-128 "BTREE.spad" 139789 139799 140323 140350) (-127 "BTOURN.spad" 138794 138804 139396 139423) (-126 "BTCAT.spad" 138186 138196 138762 138789) (-125 "BTCAT.spad" 137598 137610 138176 138181) (-124 "BTAGG.spad" 137064 137072 137566 137593) (-123 "BTAGG.spad" 136550 136560 137054 137059) (-122 "BSTREE.spad" 135291 135301 136157 136184) (-121 "BRILL.spad" 133488 133499 135281 135286) (-120 "BRAGG.spad" 132428 132438 133478 133483) (-119 "BRAGG.spad" 131332 131344 132384 132389) (-118 "BPADICRT.spad" 129313 129325 129568 129661) (-117 "BPADIC.spad" 128977 128989 129239 129308) (-116 "BOUNDZRO.spad" 128633 128650 128967 128972) (-115 "BOP.spad" 123815 123823 128623 128628) (-114 "BOP1.spad" 121281 121291 123805 123810) (-113 "BOOLE.spad" 120931 120939 121271 121276) (-112 "BOOLEAN.spad" 120369 120377 120921 120926) (-111 "BMODULE.spad" 120081 120093 120337 120364) (-110 "BITS.spad" 119502 119510 119717 119744) (-109 "BINDING.spad" 118915 118923 119492 119497) (-108 "BINARY.spad" 117026 117034 117382 117475) (-107 "BGAGG.spad" 116231 116241 117006 117021) (-106 "BGAGG.spad" 115444 115456 116221 116226) (-105 "BFUNCT.spad" 115008 115016 115424 115439) (-104 "BEZOUT.spad" 114148 114175 114958 114963) (-103 "BBTREE.spad" 110993 111003 113755 113782) (-102 "BASTYPE.spad" 110665 110673 110983 110988) (-101 "BASTYPE.spad" 110335 110345 110655 110660) (-100 "BALFACT.spad" 109794 109807 110325 110330) (-99 "AUTOMOR.spad" 109245 109254 109774 109789) (-98 "ATTREG.spad" 105968 105975 108997 109240) (-97 "ATTRBUT.spad" 101991 101998 105948 105963) (-96 "ATTRAST.spad" 101708 101715 101981 101986) (-95 "ATRIG.spad" 101178 101185 101698 101703) (-94 "ATRIG.spad" 100646 100655 101168 101173) (-93 "ASTCAT.spad" 100550 100557 100636 100641) (-92 "ASTCAT.spad" 100452 100461 100540 100545) (-91 "ASTACK.spad" 99791 99800 100059 100086) (-90 "ASSOCEQ.spad" 98617 98628 99747 99752) (-89 "ASP9.spad" 97698 97711 98607 98612) (-88 "ASP8.spad" 96741 96754 97688 97693) (-87 "ASP80.spad" 96063 96076 96731 96736) (-86 "ASP7.spad" 95223 95236 96053 96058) (-85 "ASP78.spad" 94674 94687 95213 95218) (-84 "ASP77.spad" 94043 94056 94664 94669) (-83 "ASP74.spad" 93135 93148 94033 94038) (-82 "ASP73.spad" 92406 92419 93125 93130) (-81 "ASP6.spad" 91273 91286 92396 92401) (-80 "ASP55.spad" 89782 89795 91263 91268) (-79 "ASP50.spad" 87599 87612 89772 89777) (-78 "ASP4.spad" 86894 86907 87589 87594) (-77 "ASP49.spad" 85893 85906 86884 86889) (-76 "ASP42.spad" 84300 84339 85883 85888) (-75 "ASP41.spad" 82879 82918 84290 84295) (-74 "ASP35.spad" 81867 81880 82869 82874) (-73 "ASP34.spad" 81168 81181 81857 81862) (-72 "ASP33.spad" 80728 80741 81158 81163) (-71 "ASP31.spad" 79868 79881 80718 80723) (-70 "ASP30.spad" 78760 78773 79858 79863) (-69 "ASP29.spad" 78226 78239 78750 78755) (-68 "ASP28.spad" 69499 69512 78216 78221) (-67 "ASP27.spad" 68396 68409 69489 69494) (-66 "ASP24.spad" 67483 67496 68386 68391) (-65 "ASP20.spad" 66947 66960 67473 67478) (-64 "ASP1.spad" 66328 66341 66937 66942) (-63 "ASP19.spad" 61014 61027 66318 66323) (-62 "ASP12.spad" 60428 60441 61004 61009) (-61 "ASP10.spad" 59699 59712 60418 60423) (-60 "ARRAY2.spad" 59059 59068 59306 59333) (-59 "ARRAY1.spad" 57896 57905 58242 58269) (-58 "ARRAY12.spad" 56609 56620 57886 57891) (-57 "ARR2CAT.spad" 52383 52404 56577 56604) (-56 "ARR2CAT.spad" 48177 48200 52373 52378) (-55 "ARITY.spad" 47549 47556 48167 48172) (-54 "APPRULE.spad" 46809 46831 47539 47544) (-53 "APPLYORE.spad" 46428 46441 46799 46804) (-52 "ANY.spad" 45287 45294 46418 46423) (-51 "ANY1.spad" 44358 44367 45277 45282) (-50 "ANTISYM.spad" 42803 42819 44338 44353) (-49 "ANON.spad" 42496 42503 42793 42798) (-48 "AN.spad" 40805 40812 42312 42405) (-47 "AMR.spad" 38990 39001 40703 40800) (-46 "AMR.spad" 37012 37025 38727 38732) (-45 "ALIST.spad" 34424 34445 34774 34801) (-44 "ALGSC.spad" 33559 33585 34296 34349) (-43 "ALGPKG.spad" 29342 29353 33515 33520) (-42 "ALGMFACT.spad" 28535 28549 29332 29337) (-41 "ALGMANIP.spad" 26009 26024 28368 28373) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 495d64d5..994ca14a 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,16 +1,16 @@ -(193492 . 3485733151) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) -((((-574)) . T) (($) -2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1053 (-417 (-574))))) ((|#1|) . T)) +(199361 . 3485743647) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) +((((-574)) . T) (($) -2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1054 (-417 (-574))))) ((|#1|) . T)) (((|#2| |#2|) . T)) ((((-574)) . T)) -((($ $) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2| |#2|) . T) ((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574))))) +((($ $) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2| |#2|) . T) ((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574))))) ((($) . T)) (((|#1|) . T)) ((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#2|) . T)) -((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) -(|has| |#1| (-922)) +((($) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +(|has| |#1| (-923)) ((((-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) @@ -19,49 +19,50 @@ ((($) . T)) (((|#2| |#2|) . T)) ((((-145)) . T)) -((((-546)) . T) (((-1174)) . T) (((-227)) . T) (((-388)) . T) (((-903 (-388))) . T)) +((((-546)) . T) (((-1175)) . T) (((-227)) . T) (((-388)) . T) (((-903 (-388))) . T)) (((|#1|) . T)) ((((-227)) . T) (((-872)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1|) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) -((($ $) . T) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T)) -(-2832 (|has| |#1| (-830)) (|has| |#1| (-860))) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-858))) +((($ $) . T) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T)) +(-2833 (|has| |#1| (-830)) (|has| |#1| (-860))) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T)) ((((-872)) . T)) ((((-872)) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (|has| |#1| (-858)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-324 |#1|)) . T) (((-574)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) ((((-574)) . T) (((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) ((((-417 (-574))) . T) (((-709)) . T) (($) . T)) ((((-872)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) (((|#4|) . T)) ((((-417 (-574))) . T) (((-709)) . T) (($) . T)) ((((-872)) . T)) -((((-872)) |has| (-1109 |#1|) (-1115))) -(-2832 (|has| |#1| (-239)) (|has| |#1| (-294 $ $)) (|has| |#1| (-294 |#1| |#1|))) -((((-872)) . T) (((-1197)) . T)) +((((-872)) |has| (-1110 |#1|) (-1116))) +(-2833 (|has| |#1| (-239)) (|has| |#1| (-294 $ $)) (|has| |#1| (-294 |#1| |#1|)) (|has| |#1| (-912 (-1193)))) +((((-872)) . T) (((-1198)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1197)) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -(((|#2| (-492 (-2876 |#1|) (-781))) . T)) -(((|#1| (-541 (-1192))) . T)) +((((-1198)) . T)) +(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574))))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +(((|#2| (-492 (-2877 |#1|) (-781))) . T)) +((((-1193)) |has| (-417 |#2|) (-912 (-1193)))) +(((|#1| (-541 (-1193))) . T)) (((#0=(-880 |#1|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -((((-1174)) . T) (((-971 (-130))) . T) (((-872)) . T)) +((((-1175)) . T) (((-972 (-130))) . T) (((-872)) . T)) ((((-872)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (|has| |#4| (-377)) (|has| |#3| (-377)) (((|#1|) . T)) -((((-1192)) . T)) +((((-1193)) . T)) ((((-516)) . T)) ((((-880 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) ((((-872)) . T)) @@ -72,22 +73,22 @@ (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-566)) -((((-574)) . T) (((-417 (-574))) -2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574))))) ((|#2|) . T) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((-874 |#1|)) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) -((((-2 (|:| -2590 |#1|) (|:| -2017 |#2|))) . T)) +((((-574)) . T) (((-417 (-574))) -2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574))))) ((|#2|) . T) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((-874 |#1|)) . T)) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) +((((-2 (|:| -2591 |#1|) (|:| -3139 |#2|))) . T)) ((($) . T)) -((((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) ((|#1|) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) (((-1192)) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) ((|#1|) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((-1193)) . T)) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116)))) ((((-546)) |has| |#1| (-624 (-546)))) -((((-1192)) . T)) +((((-1193)) . T)) ((((-574)) . T) (($) . T)) ((((-591 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) ((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1|) . T) (((-574)) . T) (($) . T)) ((((-872)) . T)) ((((-872)) . T)) @@ -98,12 +99,12 @@ ((((-872)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -(|has| |#1| (-1115)) +(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +(|has| |#1| (-1116)) (((|#1|) . T)) ((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) ((((-117 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) @@ -111,14 +112,14 @@ ((((-417 (-574))) . T) (($) . T) (((-574)) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) (((|#2|) . T) (((-574)) . T) ((|#6|) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) ((($) . T)) (((|#2|) . T)) ((($) . T)) (((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) ((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) ((($ $) . T)) ((($) . T)) ((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) @@ -127,30 +128,30 @@ (|has| |#1| (-377)) (((|#1|) . T)) ((((-872)) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) (((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) ((((-574)) . T)) ((((-872)) . T)) (((|#1| |#2|) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))) ((($) |has| |#1| (-239))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (|has| |#1| (-566)) (((|#1|) . T) (((-574)) . T) (($) . T)) ((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-858))) ((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) -(|has| |#1| (-1115)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) -(|has| |#1| (-1115)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) +(|has| |#1| (-1116)) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) +(|has| |#1| (-1116)) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) (|has| |#1| (-858)) (((|#1| |#1|) . T)) ((($) . T) (((-417 (-574))) . T)) @@ -165,82 +166,82 @@ (|has| |#3| (-803)) (|has| |#3| (-803)) (((|#1| |#2|) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-1197)) . T)) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-1198)) . T)) (((|#1| |#2|) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) (((-1192) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1192) |#2|)))) -(|has| |#1| (-1115)) -(|has| |#1| (-1115)) +(((|#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) (((-1193) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1193) |#2|)))) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) ((((-574)) . T) (((-417 (-574))) . T)) -(((|#1| (-1192) (-1103 (-1192)) (-541 (-1103 (-1192)))) . T)) +(((|#1| (-1193) (-1104 (-1193)) (-541 (-1104 (-1193)))) . T)) ((((-574) |#1|) . T)) ((((-574)) . T)) ((((-574)) . T)) -((((-923 |#1|)) . T)) +((((-924 |#1|)) . T)) (((|#1| (-541 |#2|)) . T)) ((((-574)) . T)) ((((-574)) . T)) (((|#1|) . T)) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) (((|#1| (-781)) . T)) (|has| |#2| (-803)) (|has| |#2| (-803)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1174) |#1|) . T)) -((((-1250 (-574)) $) . T) (((-574) (-130)) . T)) +((((-1175) |#1|) . T)) +((((-1251 (-574)) $) . T) (((-574) (-130)) . T)) (((|#1|) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) (((|#3| (-781)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) ((($) . T) (((-417 (-574))) . T)) ((($) . T)) ((($) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((((-417 (-574))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) ((((-417 (-574))) . T) (((-574)) . T)) -((((-574)) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) -((((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) ((|#1|) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#2|) . T)) -((((-1192) |#2|) |has| |#2| (-524 (-1192) |#2|)) ((|#2| |#2|) |has| |#2| (-317 |#2|))) +((((-574)) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574))))) +((((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) ((|#1|) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#2|) . T)) +((((-1193) |#2|) |has| |#2| (-524 (-1193) |#2|)) ((|#2| |#2|) |has| |#2| (-317 |#2|))) ((((-417 (-574))) . T) (((-574)) . T)) -((((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) (((-1097)) . T) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) +((((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((-1098)) . T) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (((|#1|) . T) (($) . T)) ((((-574)) . T)) ((((-574)) . T)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) ((((-574)) . T)) ((((-574)) . T)) ((((-417 (-574))) . T) (($) . T)) -(((#0=(-709) (-1188 #0#)) . T)) +(((#0=(-709) (-1189 #0#)) . T)) ((((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T)) (|has| |#2| (-372)) -((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +((((-1251 (-574)) $) . T) (((-574) |#1|) . T)) ((($) |has| (-417 |#2|) (-239))) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((((-872)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((((-1174) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((((-1175) |#1|) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) (((|#3| |#3|) . T)) ((((-872)) . T)) ((((-872)) . T)) (((|#1| |#1|) . T)) -(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) (((|#1|) . T)) (((|#1|) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) ((((-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) @@ -248,81 +249,86 @@ ((((-872)) . T)) ((((-574) |#1|) . T)) ((((-872)) . T)) -((((-171 (-227))) |has| |#1| (-1037)) (((-171 (-388))) |has| |#1| (-1037)) (((-546)) |has| |#1| (-624 (-546))) (((-1188 |#1|)) . T) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388))))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-171 (-227))) |has| |#1| (-1038)) (((-171 (-388))) |has| |#1| (-1038)) (((-546)) |has| |#1| (-624 (-546))) (((-1189 |#1|)) . T) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388))))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1|) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-858))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-858))) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) (|has| |#1| (-372)) ((((-872)) . T)) ((($) . T)) ((($) . T)) ((((-130)) . T)) -(-12 (|has| |#4| (-239)) (|has| |#4| (-1064))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) +(-12 (|has| |#4| (-239)) (|has| |#4| (-1065))) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1065))) ((($) |has| |#2| (-239))) -(-2832 (|has| |#4| (-174)) (|has| |#4| (-1064))) -(-2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) -((((-872)) . T) (((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) +(-2833 (|has| |#4| (-174)) (|has| |#4| (-1065))) +(-2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) +((((-872)) . T) (((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) ((((-872)) . T)) (((|#1|) . T)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T)) (((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) . T)) +(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T)) (|has| |#1| (-566)) -((((-574)) -2832 (|has| |#4| (-174)) (-12 (|has| |#4| (-1053 (-574))) (|has| |#4| (-1115))) (|has| |#4| (-1064))) ((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-1115))) (((-417 (-574))) -12 (|has| |#4| (-1053 (-417 (-574)))) (|has| |#4| (-1115)))) -((((-574)) -2832 (|has| |#3| (-174)) (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (|has| |#3| (-1064))) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-1115))) (((-417 (-574))) -12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-574)) -2833 (|has| |#4| (-174)) (-12 (|has| |#4| (-1054 (-574))) (|has| |#4| (-1116))) (|has| |#4| (-1065))) ((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-1116))) (((-417 (-574))) -12 (|has| |#4| (-1054 (-417 (-574)))) (|has| |#4| (-1116)))) +((((-574)) -2833 (|has| |#3| (-174)) (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (|has| |#3| (-1065))) ((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-1116))) (((-417 (-574))) -12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (|has| |#1| (-566)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) (((|#1|) . T)) (|has| |#1| (-566)) +((((-874 |#1|)) . T)) (|has| |#1| (-566)) (|has| |#1| (-566)) +(((|#2|) . T)) +((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T)) ((((-709)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-1017)) (|has| |#1| (-1218))) +((((-1193)) |has| |#1| (-912 (-1193))) (((-1104 (-1193))) . T)) +(-12 (|has| |#1| (-1018)) (|has| |#1| (-1219))) ((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-417 (-574))) . T)) ((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) -(-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))) +(-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))) ((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) (((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) -(((|#4| |#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1064))) (($ $) |has| |#4| (-174))) -(((|#3| |#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (($ $) |has| |#3| (-174))) +(((|#4| |#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1065))) (($ $) |has| |#4| (-174))) +(((|#3| |#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))) (($ $) |has| |#3| (-174))) (((|#2|) . T)) (((|#1|) . T)) ((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574))))) ((((-872)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2590 |#1|) (|:| -2017 |#2|))) . T) (((-872)) . T)) +((((-2 (|:| -2591 |#1|) (|:| -3139 |#2|))) . T) (((-872)) . T)) ((((-546)) |has| |#1| (-624 (-546))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574))))) -(((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1064))) (($) |has| |#4| (-174))) -(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (($) |has| |#3| (-174))) -((((-2 (|:| -2590 |#1|) (|:| -2017 |#2|))) . T)) +(((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1065))) (($) |has| |#4| (-174))) +(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))) (($) |has| |#3| (-174))) +((((-2 (|:| -2591 |#1|) (|:| -3139 |#2|))) . T)) ((((-872)) . T)) ((((-872)) . T)) ((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) ((((-654 |#1|)) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574))))) ((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) ((((-417 $) (-417 $)) |has| |#2| (-566)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) . T)) +((($ (-1193)) |has| |#2| (-912 (-1193)))) +((((-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) . T)) (((|#1|) . T)) -(|has| |#2| (-922)) -((((-1174) (-52)) . T)) +(|has| |#2| (-923)) +((((-1175) (-52)) . T)) ((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T)) ((((-546)) . T) (((-227)) . T) (((-388)) . T) (((-903 (-388))) . T)) ((((-872)) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))) (((|#1|) |has| |#1| (-174))) (((|#1| $) |has| |#1| (-294 |#1| |#1|))) ((((-872)) . T)) @@ -332,83 +338,84 @@ ((((-872)) . T)) (|has| |#1| (-860)) (((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T)) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-1115)) -((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-1116)) +((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) (((|#1|) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116)))) ((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) . T) (((-1197)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -((((-1197)) . T)) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-872)) . T) (((-1198)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((((-1198)) . T)) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-239)) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1| (-541 (-828 (-1192)))) . T)) -(((|#1| (-986)) . T)) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1| (-541 (-828 (-1193)))) . T)) +(((|#1| (-987)) . T)) ((((-574)) . T) ((|#2|) . T)) +((((-1193)) . T)) (((#0=(-880 |#1|) $) |has| #0# (-294 #0# #0#))) ((((-574) |#4|) . T)) ((((-574) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1167)) -((((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) . T)) -(|has| (-1269 |#1| |#2| |#3| |#4|) (-146)) -(|has| (-1269 |#1| |#2| |#3| |#4|) (-148)) +(|has| |#1| (-1168)) +((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T)) +(|has| (-1270 |#1| |#2| |#3| |#4|) (-146)) +(|has| (-1270 |#1| |#2| |#3| |#4|) (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1192)) -12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) +((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1115)) -((((-1174) |#1|) . T)) +(|has| |#1| (-1116)) +((((-1175) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -((((-1140 |#1| (-1192))) . T) (((-574)) . T) (((-828 (-1192))) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-1192)) . T)) +((((-1141 |#1| (-1193))) . T) (((-574)) . T) (((-828 (-1193))) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-1193)) . T)) (|has| |#2| (-377)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1064))) +(((|#2|) |has| |#2| (-1065))) ((((-872)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) (((|#1|) . T)) -((((-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((#0=(-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) #0#) |has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))))) +((((-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((#0=(-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) #0#) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))))) ((((-872)) . T)) ((((-574) |#1|) . T)) ((((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388))))) (((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) ((($) . T)) ((((-872)) . T)) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) ((((-872)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) ((((-872)) . T)) ((((-872)) . T)) -(|has| (-1268 |#2| |#3| |#4|) (-148)) -(|has| (-1268 |#2| |#3| |#4|) (-146)) -(((|#2|) |has| |#2| (-1115)) (((-574)) -12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) +(|has| (-1269 |#2| |#3| |#4|) (-148)) +(|has| (-1269 |#2| |#3| |#4|) (-146)) +(((|#2|) |has| |#2| (-1116)) (((-574)) -12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((|#1|) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) ((((-872)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))) (((|#1|) . T)) ((((-574) |#1|) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) -((((-872)) |has| |#1| (-1115))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-858))) +((((-872)) |has| |#1| (-1116))) ((($) |has| |#1| (-239))) -(-2832 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)) (|has| |#1| (-1127))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-923 |#1|)) . T)) +(-2833 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)) (|has| |#1| (-1128))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-924 |#1|)) . T)) ((((-417 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-574) |#1|))) ((((-417 (-574))) . T) (($) . T)) @@ -418,147 +425,148 @@ ((((-872)) . T)) ((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) (|has| |#1| (-372)) -(-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) +(-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-372)) (|has| |#1| (-15 * (|#1| (-781) |#1|))) ((((-574)) . T)) ((((-574)) . T)) -((((-1157 |#2| (-417 (-965 |#1|)))) . T) (((-417 (-965 |#1|))) . T)) +((((-1158 |#2| (-417 (-966 |#1|)))) . T) (((-417 (-966 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) (((|#1|) . T)) -((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +((((-1251 (-574)) $) . T) (((-574) |#1|) . T)) ((((-872)) . T)) (((|#2|) . T)) -(-2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(-2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) ((($) |has| |#1| (-566)) (((-574)) . T)) (|has| |#2| (-803)) (|has| |#2| (-803)) -((((-1275 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) -((((-1279 |#2|)) . T) (((-1275 |#1| |#2| |#3|)) . T) (((-1247 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((((-1276 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) +((((-1280 |#2|)) . T) (((-1276 |#1| |#2| |#3|)) . T) (((-1248 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T)) (((|#1|) . T)) -((((-1192)) -12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) +((((-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) -(-2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) -(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +(-2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) +(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566)))) ((($ $) |has| |#1| (-566)) ((|#1| |#1|) . T)) -(((#0=(-709) (-1188 #0#)) . T)) +((($ (-1193)) |has| (-417 |#2|) (-912 (-1193)))) +(((#0=(-709) (-1189 #0#)) . T)) ((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) ((((-417 (-574))) . T) (($) . T)) -((((-872)) . T) (((-1283 |#4|)) . T)) -((((-872)) . T) (((-1283 |#3|)) . T)) +((((-872)) . T) (((-1284 |#4|)) . T)) +((((-872)) . T) (((-1284 |#3|)) . T)) ((((-591 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) ((($) . T) (((-417 (-574))) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566)))) ((($) |has| |#1| (-566)) ((|#1|) . T)) ((((-872)) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) ((($) . T)) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1275 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) -(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -(((|#3|) |has| |#3| (-1064))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -(|has| (-1109 |#1|) (-1115)) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1276 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) +(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +(((|#3|) |has| |#3| (-1065))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +(|has| (-1110 |#1|) (-1116)) (((|#2| (-829 |#1|)) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) ((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) (((|#2|) . T) ((|#6|) . T)) (|has| |#1| (-372)) ((((-574)) . T) ((|#2|) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) (((|#2|) . T) ((|#6|) . T)) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) . T)) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) ((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((#0=(-1097) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((#0=(-1098) |#2|) . T) ((#0# $) . T) (($ $) . T)) ((((-872)) . T)) -((((-923 |#1|)) . T)) +((((-924 |#1|)) . T)) ((((-145)) . T)) ((((-145)) . T)) ((((-246 |#1| |#2|) |#2|) . T)) ((((-872)) . T)) -(((|#3|) |has| |#3| (-1115)) (((-574)) -12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (((-417 (-574))) -12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +(((|#3|) |has| |#3| (-1116)) (((-574)) -12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (((-417 (-574))) -12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116)))) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (((|#1|) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116)))) ((((-546)) |has| |#1| (-624 (-546)))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) . T)) +((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T)) (|has| |#1| (-372)) -((((-1197)) . T)) +((((-1198)) . T)) (((|#1|) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-858))) ((($) . T)) -((((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) +((((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) (|has| |#2| (-830)) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-858)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) ((((-872)) . T)) ((((-546)) |has| |#1| (-624 (-546)))) (((|#1| |#2|) . T)) -((((-1192)) -12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) -((((-1174) |#1|) . T)) +((((-1193)) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) +((((-1175) |#1|) . T)) (((|#1| |#2| |#3| (-541 |#3|)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (|has| |#1| (-377)) (|has| |#1| (-377)) (|has| |#1| (-377)) ((((-872)) . T)) ((((-417 (-574))) . T)) (((|#1|) . T)) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((((-417 (-574))) . T)) (|has| |#1| (-377)) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((((-574)) . T)) ((((-574)) . T)) (((|#1|) . T) (((-574)) . T)) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((((-872)) . T)) ((((-872)) . T)) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) -((((-1192) #0=(-880 |#1|)) |has| #0# (-524 (-1192) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1065))) +((((-1193) #0=(-880 |#1|)) |has| #0# (-524 (-1193) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) (((|#1|) . T)) ((((-574) |#4|) . T)) ((((-574) |#3|) . T)) (((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) -((((-1269 |#1| |#2| |#3| |#4|)) . T)) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) +((((-1270 |#1| |#2| |#3| |#4|)) . T)) ((((-417 (-574))) . T) (((-574)) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) ((((-574)) . T)) ((((-574)) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -((((-574)) -2832 (|has| |#2| (-174)) (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) +((((-574)) -2833 (|has| |#2| (-174)) (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-1116))) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((|#1|) . T)) (((|#1|) . T)) ((((-417 (-574))) . T) (($) . T)) @@ -566,7 +574,7 @@ (((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) ((($) . T) (((-417 (-574))) . T)) (((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574))))) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) ((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) (((|#1|) |has| |#1| (-566))) @@ -577,106 +585,112 @@ ((((-574) |#3|) . T)) ((((-872)) . T)) ((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566)))) ((((-872)) . T)) -(-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))) +(-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))) (|has| |#1| (-358))) ((((-574) |#1|) . T)) (((|#1|) . T)) ((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1192) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1193) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) -(((|#2| |#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($ $) |has| |#2| (-174))) +((($) -2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +(((|#2| |#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (($ $) |has| |#2| (-174))) ((((-145)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-377)) (|has| |#2| (-377))) ((((-872)) . T)) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (($) |has| |#2| (-174))) (((|#1|) . T)) ((((-872)) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) (|has| $ (-148)) -((((-1197)) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) -((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) -((($) -2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) +((((-1198)) . T)) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) +((((-1251 (-574)) $) . T) (((-574) |#1|) . T)) +((($) -2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (|has| |#1| (-372)) -(-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) +(-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-372)) (|has| |#1| (-15 * (|#1| (-781) |#1|))) (((|#1|) . T)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) ((((-872)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((|#2| (-541 (-874 |#1|))) . T)) ((((-872)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1|) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((((-591 |#1|)) . T)) ((($) . T)) ((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) (((|#1|) . T) (($) . T)) ((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) -((((-1190 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) -((((-1279 |#2|)) . T) (((-1190 |#1| |#2| |#3|)) . T) (((-1183 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((((-1191 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) +((((-1280 |#2|)) . T) (((-1191 |#1| |#2| |#3|)) . T) (((-1184 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) (((|#4|) . T)) (((|#3|) . T)) ((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T)) -((((-1192)) -12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) +((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (|has| |#2| (-239)) (((|#1|) . T)) +((((-874 |#1|)) . T)) +((((-1193)) |has| |#1| (-912 (-1193))) ((|#3|) . T)) ((($) . T)) ((((-872)) . T)) ((((-872)) . T)) -((((-574)) . T) (((-417 (-574))) -2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574))))) ((|#2|) . T) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((-874 |#1|)) . T)) +((((-574)) . T) (((-417 (-574))) -2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574))))) ((|#2|) . T) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((-874 |#1|)) . T)) ((((-574) |#2|) . T)) ((((-872)) . T)) ((($) . T) (((-574)) . T) ((|#2|) . T) (((-417 (-574))) . T)) ((((-872)) . T)) ((((-872)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1190 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -((((-872)) . T)) -(((|#2|) |has| |#2| (-1064))) -(|has| |#1| (-1115)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) -(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1191 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((((-872)) . T)) +(((|#2|) |has| |#2| (-1065))) +(|has| |#1| (-1116)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) +(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T)) -(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) ((((-872)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((($ (-874 |#1|)) . T)) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) -(((#0=(-1097) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) +((($ |#2|) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((($ (-1193)) |has| |#1| (-912 (-1193))) (($ (-1098)) . T)) ((($) . T)) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(((#0=(-1098) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ (-1193)) |has| |#1| (-912 (-1193))) (($ (-1104 (-1193))) . T)) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1115)) (((-574)) -12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) +(((|#2|) |has| |#2| (-1116)) (((-574)) -12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) (((|#2|) |has| |#1| (-372))) ((((-574) |#1|) . T)) -((((-1197)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) ((((-872)) . T)) ((((-417 |#2|) |#3|) . T)) @@ -686,173 +700,178 @@ (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) -((((-872)) . T) (((-1197)) . T)) +((((-872)) . T) (((-1198)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1197)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-1198)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) ((((-417 (-574))) . T) (($) . T)) ((((-417 (-574))) . T) (($) . T)) ((((-417 (-574))) . T) (($) . T)) (((|#2| |#3| (-874 |#1|)) . T)) -((((-1192)) |has| |#2| (-913 (-1192)))) +((((-1193)) |has| |#2| (-912 (-1193)))) (((|#1|) . T)) (((|#1| (-541 |#2|) |#2|) . T)) -(((|#1| (-781) (-1097)) . T)) +(((|#1| (-781) (-1098)) . T)) ((((-417 (-574))) |has| |#2| (-372)) (($) . T)) -(((|#1| (-541 (-1103 (-1192))) (-1103 (-1192))) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(((|#1| (-541 (-1104 (-1193))) (-1104 (-1193))) . T)) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (((|#2|) . T)) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((|#1|) . T)) (((|#2|) . T)) -((((-1014 |#1|)) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2832 (|has| (-1014 |#1|) (-1053 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) +((((-1015 |#1|)) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2833 (|has| (-1015 |#1|) (-1054 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) (|has| |#2| (-803)) (|has| |#2| (-803)) (|has| |#1| (-377)) (|has| |#1| (-377)) (|has| |#1| (-377)) ((((-904 |#1|)) . T) (((-829 |#1|)) . T)) -((((-829 (-1192))) . T)) +((((-829 (-1193))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) ((((-872)) . T)) ((((-872)) . T)) -((((-654 (-934))) . T) (((-872)) . T)) +((((-654 (-935))) . T) (((-872)) . T)) ((((-417 (-574))) . T) (((-872)) . T)) ((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) (|has| |#1| (-239)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((($ $) . T) (((-574) |#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((((-1275 |#1| |#2| |#3|) $) -12 (|has| (-1275 |#1| |#2| |#3|) (-294 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((((-1276 |#1| |#2| |#3|) $) -12 (|has| (-1276 |#1| |#2| |#3|) (-294 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T)) ((($ $) . T) (((-417 (-574)) |#1|) . T)) ((((-781) |#1|) . T) (($ $) . T)) (((|#1|) . T)) -((((-1155 |#1| |#2|)) |has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) -(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) -(((|#2|) . T) (((-574)) |has| |#2| (-1053 (-574))) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) +((($ (-1193)) . T)) +((((-1156 |#1| |#2|)) |has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) +(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) +(((|#2|) . T) (((-574)) |has| |#2| (-1054 (-574))) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574))))) (((|#1|) . T)) +((((-1193)) -2833 (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193)))))) (((|#1| |#2|) . T)) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) (((|#2|) . T)) -((((-872)) -2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) (((-1283 |#2|)) . T)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#1|) . T) (((-574)) . T) (($) . T)) +((((-872)) -2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) (((-1284 |#2|)) . T)) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#1|) . T) (((-574)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) ((((-574)) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) -(|has| |#1| (-1115)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) +(|has| |#1| (-1116)) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) ((((-574) (-145)) . T)) -((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) +((($) -2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) ((((-574)) . T)) (((|#1|) . T) ((|#2|) . T) (((-574)) . T)) -((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-574)) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) +((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-574)) . T)) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) (((|#1|) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) ((($) . T) (((-574)) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) (((|#2|) |has| |#1| (-372))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((((-1197)) . T)) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((((-1198)) . T)) ((((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#1| (-541 #0=(-1192)) #0#) . T)) +(((|#1| (-541 #0=(-1193)) #0#) . T)) (((|#1|) . T) (($) . T)) ((((-574)) . T)) (|has| |#4| (-174)) (|has| |#3| (-174)) -(((#0=(-417 (-965 |#1|)) #0#) . T)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) -(|has| |#1| (-1115)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) -(|has| |#1| (-1115)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +(((#0=(-417 (-966 |#1|)) #0#) . T)) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) +(|has| |#1| (-1116)) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) +(|has| |#1| (-1116)) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116)))) ((((-546)) |has| |#1| (-624 (-546)))) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) (((|#1| |#1|) |has| |#1| (-174))) (|has| (-417 |#2|) (-239)) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((((-417 (-965 |#1|))) . T)) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((((-417 (-966 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-574)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((((-1193)) |has| |#2| (-912 (-1193)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((((-872)) . T)) ((((-872)) . T)) -((((-1269 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1064)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) +((((-1270 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1065)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) (((|#1| |#2|) . T)) -(-2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) +(-2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) (|has| |#3| (-803)) (|has| |#3| (-803)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) (((|#2|) . T)) ((((-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) -(((|#1| (-1172 |#1|)) |has| |#1| (-858))) +(((|#1| (-1173 |#1|)) |has| |#1| (-858))) ((((-574) |#2|) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) (((|#1|) . T)) -(-12 (|has| |#1| (-372)) (|has| |#2| (-1167))) +(-12 (|has| |#1| (-372)) (|has| |#2| (-1168))) ((((-417 (-574))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((($) . T) (((-417 (-574))) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) (((|#2|) . T)) ((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574))))) -(((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)))) -(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)))) +(((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)))) +(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)))) ((((-872)) . T)) (((|#1|) . T)) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-922))) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-923))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-923))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) (((|#2|) . T)) (((|#2|) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-922))) -((($ $) . T) ((#0=(-1192) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-828 (-1192)) |#1|) . T) ((#1# $) . T)) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-923))) +((($ $) . T) ((#0=(-1193) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-828 (-1193)) |#1|) . T) ((#1# $) . T)) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-923))) ((((-574) |#2|) . T)) ((((-872)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((($) -2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((($) -2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) ((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) ((((-574) |#1|) . T)) (|has| (-417 |#2|) (-148)) (|has| (-417 |#2|) (-146)) @@ -865,42 +884,42 @@ (|has| |#1| (-566)) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) ((((-872)) . T)) -((((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) . T)) +((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T)) (|has| |#1| (-38 (-417 (-574)))) -((((-398) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) . T)) +((((-398) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T)) (|has| |#1| (-38 (-417 (-574)))) -(|has| |#2| (-1167)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) -((((-872)) . T) (((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-1232)) . T) (((-872)) . T) (((-1197)) . T)) +(|has| |#2| (-1168)) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) +((((-872)) . T) (((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-1233)) . T) (((-872)) . T) (((-1198)) . T)) ((((-117 |#1|)) . T)) -((((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) +((((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) (((|#1|) . T)) -((((-398) (-1174)) . T)) +((((-398) (-1175)) . T)) (|has| |#1| (-566)) -((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((((-1251 (-574)) $) . T) (((-574) |#1|) . T)) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) (((|#2|) . T)) -((((-781) (-1197)) . T)) +((((-781) (-1198)) . T)) ((((-872)) . T)) ((((-829 |#1|)) . T)) ((($) . T)) (((|#2|) |has| |#2| (-174))) -((((-1192) (-52)) . T)) +((((-1193) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) @@ -909,25 +928,25 @@ ((((-654 |#1|)) . T)) ((((-872)) . T)) ((((-546)) |has| |#1| (-624 (-546)))) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) (((|#2|) |has| |#2| (-317 |#2|))) (((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1| (-1188 |#1|)) . T)) +(((|#1| (-1189 |#1|)) . T)) (|has| $ (-148)) (((|#2|) . T)) ((($) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) (|has| |#2| (-377)) (((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) ((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) (((|#1| |#2|) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) ((((-574)) . T) (((-417 (-574))) . T) (($) . T)) (((|#1| |#2|) . T)) ((((-872)) . T)) @@ -935,80 +954,80 @@ ((((-872)) . T)) ((((-872)) . T)) ((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) -((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) +((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) ((((-872)) . T)) -((((-1190 |#1| |#2| |#3|) $) -12 (|has| (-1190 |#1| |#2| |#3|) (-294 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T)) +((((-1191 |#1| |#2| |#3|) $) -12 (|has| (-1191 |#1| |#2| |#3|) (-294 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T)) ((($ $) . T) (((-417 (-574)) |#1|) . T)) ((((-781) |#1|) . T) (($ $) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(((#0=(-1275 |#1| |#2| |#3|) #0#) -12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1192) #0#) -12 (|has| (-1275 |#1| |#2| |#3|) (-524 (-1192) (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) -(-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(((#0=(-1276 |#1| |#2| |#3|) #0#) -12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1193) #0#) -12 (|has| (-1276 |#1| |#2| |#3|) (-524 (-1193) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) +(-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-574)) . T) (($) . T)) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) ((($) . T) (((-574)) . T) ((|#2|) . T)) ((((-574)) . T) (($) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) ((((-417 (-574))) . T) (((-574)) . T)) ((((-574) (-145)) . T)) ((((-145)) . T)) (((|#1|) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-112)) . T)) -(((|#1|) . T)) -((((-546)) |has| |#1| (-624 (-546))) (((-227)) . #0=(|has| |#1| (-1037))) (((-388)) . #0#)) +((((-546)) |has| |#1| (-624 (-546))) (((-227)) . #0=(|has| |#1| (-1038))) (((-388)) . #0#)) ((((-872)) . T)) -((((-1197)) . T)) +(((|#1|) . T)) +((((-1198)) . T)) (|has| |#1| (-830)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T)) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-566))) (|has| |#1| (-566)) (|has| |#1| (-860)) -((($) . T) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) -(|has| |#1| (-922)) +((($) . T) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) +(|has| |#1| (-923)) (((|#1|) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) ((((-872)) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((((-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) -(((|#1| (-1283 |#1|) (-1283 |#1|)) . T)) -((((-574) (-145)) . T) (((-1250 (-574)) $) . T)) +(((|#1| (-1284 |#1|) (-1284 |#1|)) . T)) +((((-574) (-145)) . T) (((-1251 (-574)) $) . T)) ((($) . T)) -(-2832 (|has| |#4| (-174)) (|has| |#4| (-1064))) -(-2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) -((((-1197)) . T) (((-872)) . T)) -((((-1197)) . T)) +(-2833 (|has| |#4| (-174)) (|has| |#4| (-1065))) +(-2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) +((((-1198)) . T) (((-872)) . T)) +((((-1198)) . T)) ((((-872)) . T)) -(|has| |#1| (-1115)) -(((|#1| (-986)) . T)) +(|has| |#1| (-1116)) +(((|#1| (-987)) . T)) (((|#1| |#1|) . T)) ((($) . T)) (|has| |#2| (-803)) (|has| |#2| (-803)) (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) ((($) . T) (((-574)) . T) (((-880 |#1|)) . T) (((-417 (-574))) . T)) (((|#1|) . T)) (|has| |#2| (-803)) (|has| |#2| (-803)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) -(-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) +(-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-574)) . T)) (((|#2|) |has| |#2| (-174))) @@ -1021,24 +1040,24 @@ (((|#1|) . T)) ((((-417 (-574))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-417 (-574))) . T)) -((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) +((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) (|has| |#1| (-838)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) -(|has| |#1| (-1115)) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T)) +(|has| |#1| (-1116)) (((|#1| $) |has| |#1| (-294 |#1| |#1|))) ((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) ((($) |has| |#1| (-566))) (((|#2|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1115))) -(((|#3|) |has| |#3| (-1115))) +(((|#4|) |has| |#4| (-1116))) +(((|#3|) |has| |#3| (-1116))) (|has| |#3| (-377)) -((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-574)) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-574)) . T)) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) ((((-872)) . T)) ((((-872)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1| |#1|) |has| |#1| (-174))) (|has| |#2| (-372)) @@ -1046,50 +1065,52 @@ (((|#1|) |has| |#1| (-174))) ((((-417 (-574))) . T) (((-574)) . T)) ((($) |has| |#2| (-239))) +((($ (-874 |#1|)) . T)) +((($ (-1193)) |has| |#1| (-912 (-1193))) (($ |#3|) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) ((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) ((($) . T) (((-574)) . T)) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) ((((-145)) . T)) (((|#1|) . T)) -((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) +((($) -2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) ((((-145)) . T)) ((((-145)) . T)) ((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#) ((|#2|) . T) (((-574)) . T)) (((|#1| |#2| |#3|) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) (((|#1|) |has| |#1| (-174))) (|has| $ (-148)) (|has| $ (-148)) -((((-1197)) . T)) +((((-1198)) . T)) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) ((((-872)) . T)) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1064)) (|has| |#1| (-1127))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1065)) (|has| |#1| (-1128))) ((($ $) |has| |#1| (-294 $ $)) ((|#1| $) |has| |#1| (-294 |#1| |#1|))) (((|#1| (-417 (-574))) . T)) (((|#1|) . T)) ((((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-1192)) . T)) +((((-1193)) . T)) (|has| |#1| (-566)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (|has| |#1| (-566)) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) ((((-872)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-574) (-417 (-965 |#1|))) . T)) +((((-574) (-417 (-966 |#1|))) . T)) (((|#2|) . T) (($) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(((|#2| (-246 (-2876 |#1|) (-781)) (-874 |#1|)) . T)) +(((|#2| (-246 (-2877 |#1|) (-781)) (-874 |#1|)) . T)) (((|#1| (-541 |#3|) |#3|) . T)) (|has| |#1| (-146)) (((#0=(-417 (-574)) #0#) |has| |#2| (-372)) (($ $) . T)) @@ -1101,21 +1122,21 @@ (|has| |#1| (-377)) ((((-872)) . T)) ((((-417 (-574))) |has| |#2| (-372)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) -(-2832 (|has| |#1| (-358)) (|has| |#1| (-377))) -((((-1157 |#2| |#1|)) . T) ((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) +(-2833 (|has| |#1| (-358)) (|has| |#1| (-377))) +((((-1158 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-174)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) -(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1065))) +(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (|has| |#3| (-803)) (|has| |#3| (-803)) ((((-872)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) ((((-709)) . T)) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) (|has| |#1| (-566)) (((|#1|) . T)) (((|#1|) . T)) @@ -1126,54 +1147,57 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-1192) (-52)) . T)) -((((-1019 10)) . T) (((-417 (-574))) . T) (((-872)) . T)) +((((-1193) (-52)) . T)) +((((-1020 10)) . T) (((-417 (-574))) . T) (((-872)) . T)) ((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) (((|#1|) . T)) -((((-1019 16)) . T) (((-417 (-574))) . T) (((-872)) . T)) +((((-1020 16)) . T) (((-417 (-574))) . T) (((-872)) . T)) ((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) (((|#1| (-574)) . T)) ((((-872)) . T)) ((((-872)) . T)) (((|#1| |#2|) . T)) +((((-1193)) |has| |#2| (-912 (-1193))) (((-1098)) . T)) (((|#1|) . T)) -(((|#1| (-417 (-574))) . T)) (((|#3|) . T) (((-622 $)) . T)) +(((|#1| (-417 (-574))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -((((-574)) -2832 (|has| |#2| (-174)) (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +((((-574)) -2833 (|has| |#2| (-174)) (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-1116))) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -(((#0=(-1190 |#1| |#2| |#3|) #0#) -12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1192) #0#) -12 (|has| (-1190 |#1| |#2| |#3|) (-524 (-1192) (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) +(((#0=(-1191 |#1| |#2| |#3|) #0#) -12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1193) #0#) -12 (|has| (-1191 |#1| |#2| |#3|) (-524 (-1193) (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) ((((-872)) . T)) ((((-872)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) |has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))))) ((((-872)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -((((-1192) (-52)) . T)) +((((-1193) (-52)) . T)) +((((-1193)) |has| |#1| (-912 (-1193)))) (((|#3|) . T)) ((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) (|has| |#1| (-838)) ((($) . T) (((-574)) . T) ((|#1|) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) ((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(|has| (-1109 |#1|) (-1115)) -(((|#2| |#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($ $) |has| |#2| (-174))) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)))) -((((-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) +(|has| (-1110 |#1|) (-1116)) +(((|#2| |#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (($ $) |has| |#2| (-174))) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)))) +((((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (($) |has| |#2| (-174))) ((((-574)) . T)) -((((-1197)) . T)) +((((-1198)) . T)) ((((-781)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) @@ -1181,7 +1205,7 @@ ((((-574)) . T)) (((|#2|) . T)) ((((-872)) . T)) -(((|#1| (-417 (-574)) (-1097)) . T)) +(((|#1| (-417 (-574)) (-1098)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (|has| |#1| (-566)) @@ -1189,107 +1213,112 @@ ((((-117 |#1|)) . T)) (((|#1|) . T)) ((((-417 (-574))) . T) (($) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) -((((-1197)) . T)) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((($) . T) (((-417 (-574))) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +((((-1198)) . T)) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((((-574)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) +((($ (-1193)) -2833 (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193)))))) ((((-574)) . T)) -((((-903 (-574))) . T) (((-903 (-388))) . T) (((-546)) . T) (((-1192)) . T)) +((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) +((((-903 (-574))) . T) (((-903 (-388))) . T) (((-546)) . T) (((-1193)) . T)) ((((-872)) . T)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) ((($) . T)) (((|#1|) . T)) ((((-872)) . T)) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +((($) -2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) ((((-880 |#1|)) . T)) -(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) -(|has| |#2| (-1167)) -(((#0=(-52)) . T) (((-2 (|:| -3666 (-1192)) (|:| -1917 #0#))) . T)) +(-2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1065))) +(|has| |#2| (-1168)) +(((#0=(-52)) . T) (((-2 (|:| -3667 (-1193)) (|:| -1916 #0#))) . T)) (((|#1| |#2|) . T)) -(-2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) -(((|#1| (-574) (-1097)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(((|#1| (-417 (-574)) (-1097)) . T)) -((($) -2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +(-2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) +(((|#1| (-574) (-1098)) . T)) +((((-874 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(((|#1| (-417 (-574)) (-1098)) . T)) +((((-1193)) . T)) +((($) -2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) ((($) |has| (-417 |#2|) (-239))) ((((-574) |#2|) . T)) +((($ (-1193)) |has| |#2| (-912 (-1193)))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-377)) (((|#1| |#1|) . T)) ((((-872)) . T)) -((((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) +((((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) (-12 (|has| |#1| (-377)) (|has| |#2| (-377))) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) ((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) (((|#1|) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) (|has| |#1| (-358)) -((((-574)) -2832 (|has| |#3| (-174)) (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (|has| |#3| (-1064))) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-1115))) (((-417 (-574))) -12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) +((((-574)) -2833 (|has| |#3| (-174)) (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (|has| |#3| (-1065))) ((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-1116))) (((-417 (-574))) -12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116)))) (((|#1|) . T)) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#4|) . T)) (((|#4|) . T) (((-872)) . T)) -(((|#3|) . T) ((|#2|) . T) (($) -2832 (|has| |#4| (-174)) (|has| |#4| (-1064))) (((-574)) . T) ((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-736)) (|has| |#4| (-1064)))) -(((|#2|) . T) (($) -2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) (((-574)) . T) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1064)))) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) +(((|#3|) . T) ((|#2|) . T) (($) -2833 (|has| |#4| (-174)) (|has| |#4| (-1065))) (((-574)) . T) ((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-736)) (|has| |#4| (-1065)))) +(((|#2|) . T) (($) -2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) (((-574)) . T) ((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1065)))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) (|has| |#1| (-566)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-872)) . T)) (((|#1| |#2|) . T)) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-922))) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-923))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-923))) ((((-417 (-574))) . T) (((-574)) . T)) ((((-574)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) ((($) . T)) ((((-872)) . T)) (((|#1|) . T)) ((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) ((((-872)) . T)) -(((|#3| |#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (($ $) |has| |#3| (-174))) -(|has| |#1| (-1037)) +(((|#3| |#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))) (($ $) |has| |#3| (-174))) +(|has| |#1| (-1038)) ((((-872)) . T)) -(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (($) |has| |#3| (-174))) +(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))) (($) |has| |#3| (-174))) ((((-574) (-112)) . T)) -((((-1197)) . T)) +((((-1198)) . T)) (((|#1|) |has| |#1| (-317 |#1|))) -((((-1197)) . T)) +((((-1198)) . T)) (|has| |#1| (-377)) (|has| |#1| (-377)) (|has| |#1| (-377)) -((((-1192) $) |has| |#1| (-524 (-1192) $)) (($ $) |has| |#1| (-317 $)) ((|#1| |#1|) |has| |#1| (-317 |#1|)) (((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|))) -((((-1192)) |has| |#1| (-913 (-1192)))) -(-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))) +((((-1193) $) |has| |#1| (-524 (-1193) $)) (($ $) |has| |#1| (-317 $)) ((|#1| |#1|) |has| |#1| (-317 |#1|)) (((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|))) +((((-1193)) |has| |#1| (-912 (-1193)))) +(-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((($) . T)) ((((-398) |#1|) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) -(|has| |#1| (-1115)) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-358))) +(|has| |#1| (-1116)) (((|#2|) . T) (((-872)) . T)) ((((-872)) . T)) (((|#2|) . T)) -((((-923 |#1|)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +((((-924 |#1|)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) @@ -1298,29 +1327,29 @@ (((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) (((|#1| |#1|) . T)) (((#0=(-880 |#1|)) |has| #0# (-317 #0#))) -((((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1053 (-417 (-574))))) ((|#1|) . T)) +((((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1054 (-417 (-574))))) ((|#1|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-803)) (|has| |#2| (-803)) (((|#1|) . T)) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) ((($) . T) (((-574)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1218)) +(|has| |#1| (-1219)) (((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) ((((-417 (-574))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1064))) -(((|#3|) |has| |#3| (-1064))) +(((|#4|) |has| |#4| (-1065))) +(((|#3|) |has| |#3| (-1065))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) (|has| |#1| (-372)) ((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((($ $) . T) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((($ $) . T) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T)) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) ((((-872)) . T)) ((((-872)) . T)) @@ -1330,104 +1359,108 @@ (((|#1|) . T)) ((((-574) |#3|) . T)) ((((-872)) . T)) +(((|#2|) . T)) ((((-546)) |has| |#3| (-624 (-546)))) ((((-699 |#3|)) . T) (((-872)) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-858)) (|has| |#1| (-858)) -((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T)) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((($) . T)) -(((#0=(-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) #0#) |has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))))) +(((#0=(-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) #0#) |has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))))) ((($) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-1115))) -((((-872)) -2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) (((-1283 |#2|)) . T)) +(((|#2|) |has| |#2| (-1116))) +((((-872)) -2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) (((-1284 |#2|)) . T)) ((($) . T)) ((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-1174) (-52)) . T)) +((((-1175) (-52)) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +((($) -2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) ((((-872)) . T)) (((|#2|) . T)) -((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +((($) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) ((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T)) ((($) . T) (((-574)) . T)) ((((-574) (-145)) . T)) -((((-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T) ((|#1| |#2|) . T)) +((((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((|#1| |#2|) . T)) ((((-417 (-574))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) ((((-872)) . T)) -((((-923 |#1|)) . T)) +((((-924 |#1|)) . T)) (|has| |#1| (-372)) (|has| |#1| (-372)) (|has| |#1| (-372)) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-858)) -((($) -2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((($) -2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) (|has| |#1| (-372)) (((|#1|) . T) (($) . T)) (|has| |#1| (-858)) -((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -((((-1192)) |has| |#1| (-913 (-1192)))) +((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((((-1193)) |has| |#1| (-912 (-1193)))) (|has| |#1| (-858)) ((((-516)) . T)) -(((|#1| (-1192)) . T)) -(((|#1| (-1283 |#1|) (-1283 |#1|)) . T)) -((((-872)) . T) (((-1197)) . T)) +(((|#1| (-1193)) . T)) +(((|#1| (-1284 |#1|) (-1284 |#1|)) . T)) +((((-872)) . T) (((-1198)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1197)) . T)) -(|has| |#1| (-1115)) -(((|#1| (-1192) (-828 (-1192)) (-541 (-828 (-1192)))) . T)) -((((-417 (-965 |#1|))) . T)) +((((-1198)) . T)) +(|has| |#1| (-1116)) +(((|#1| (-1193) (-828 (-1193)) (-541 (-828 (-1193)))) . T)) +((((-417 (-966 |#1|))) . T)) ((((-546)) . T)) ((((-872)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T) (((-1250 (-574)) $) . T) ((|#1| |#2|) . T)) +((((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) (((-1251 (-574)) $) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#2| (-427 |#1|)) (|has| |#2| (-427 |#1|)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) . T)) (((|#1|) . T)) ((((-546)) |has| |#1| (-624 (-546))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574))))) ((((-872)) . T)) ((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) ((((-516)) . T)) ((((-516)) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) -((((-880 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-1193)) -12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) +((((-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (|has| |#1| (-566)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1065))) (|has| |#1| (-239)) +((((-880 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) (|has| |#1| (-377)) (|has| |#1| (-377)) (|has| |#1| (-377)) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) -((((-1174) |#1|) . T)) -(|has| |#1| (-1167)) -((((-971 |#1|)) . T)) -(((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T)) -((((-417 (-574))) |has| |#1| (-1053 (-574))) (((-574)) |has| |#1| (-1053 (-574))) (((-1192)) |has| |#1| (-1053 (-1192))) ((|#1|) . T)) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) +((((-1175) |#1|) . T)) +(|has| |#1| (-1168)) +((((-972 |#1|)) . T)) +(((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T)) +((((-417 (-574))) |has| |#1| (-1054 (-574))) (((-574)) |has| |#1| (-1054 (-574))) (((-1193)) |has| |#1| (-1054 (-1193))) ((|#1|) . T)) ((($) . T)) ((($) . T)) ((((-574) |#2|) . T)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) ((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388)))) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-574)) . T)) ((((-654 |#4|)) . T) (((-872)) . T)) @@ -1435,39 +1468,39 @@ ((((-546)) |has| |#4| (-624 (-546)))) ((((-872)) . T) (((-654 |#4|)) . T)) ((($) |has| |#1| (-858))) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) -((((-574)) -2832 (|has| |#2| (-174)) (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) +((((-574)) -2833 (|has| |#2| (-174)) (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-1116))) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) ((((-654 |#4|)) . T) (((-872)) . T)) ((((-546)) |has| |#4| (-624 (-546)))) (((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) (((|#1|) . T)) -((((-1192)) |has| (-417 |#2|) (-913 (-1192)))) +((((-1193)) |has| (-417 |#2|) (-912 (-1193)))) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) ((($) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) ((($) |has| |#1| (-239))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) ((($) . T)) ((($) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) ((($) . T)) ((($) . T)) -((((-872)) -2832 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-623 (-872))) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-860)) (|has| |#3| (-1064)) (|has| |#3| (-1115))) (((-1283 |#3|)) . T)) +((((-872)) -2833 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-623 (-872))) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-860)) (|has| |#3| (-1065)) (|has| |#3| (-1116))) (((-1284 |#3|)) . T)) (((|#2|) . T)) ((((-574) |#2|) . T)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) -(((|#2| |#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($ $) |has| |#2| (-174))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) +(((|#2| |#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (($ $) |has| |#2| (-174))) (((|#2|) . T) (((-574)) . T)) ((((-872)) . T)) ((((-872)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((|#2|) . T)) ((((-872)) . T)) ((((-872)) . T)) -((((-1174) (-1192) (-574) (-227) (-872)) . T)) +((((-1175) (-1193) (-574) (-227) (-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) @@ -1500,12 +1533,12 @@ ((((-417 (-574))) . T) (($) . T)) ((((-872)) . T)) ((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) ((($) . T) (((-417 (-574))) . T)) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (($) |has| |#2| (-174))) (|has| $ (-148)) ((((-417 |#2|)) . T)) -((((-417 (-574))) |has| #0=(-417 |#2|) (-1053 (-417 (-574)))) (((-574)) |has| #0# (-1053 (-574))) ((#0#) . T)) +((((-417 (-574))) |has| #0=(-417 |#2|) (-1054 (-417 (-574)))) (((-574)) |has| #0# (-1054 (-574))) ((#0#) . T)) (((|#2| |#2|) . T)) (((|#4|) |has| |#4| (-174))) (|has| |#2| (-146)) @@ -1513,32 +1546,32 @@ (((|#3|) |has| |#3| (-174))) (|has| |#1| (-148)) (|has| |#1| (-146)) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) (|has| |#1| (-148)) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) (|has| |#1| (-148)) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) (|has| |#1| (-148)) (((|#1|) . T)) (|has| |#2| (-239)) (((|#2|) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) -((((-1192) (-52)) . T)) +((((-1193) (-52)) . T)) ((((-872)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) (((|#1| |#1|) . T)) -((((-1192)) |has| |#2| (-913 (-1192)))) +((((-1193)) |has| |#2| (-912 (-1193)))) ((((-130)) . T)) -(|has| (-417 |#2|) (-239)) -((((-574) (-112)) . T) (((-1250 (-574)) $) . T)) +(-2833 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-912 (-1193)))) +((((-574) (-112)) . T) (((-1251 (-574)) $) . T)) (|has| |#1| (-566)) (((|#2|) . T)) (((|#2|) . T)) ((((-904 |#1|)) . T) ((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T)) -(((|#1|) . T) (((-574)) . T) (((-829 (-1192))) . T)) +(((|#1|) . T) (((-574)) . T) (((-829 (-1193))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) @@ -1547,66 +1580,68 @@ (|has| |#1| (-38 (-417 (-574)))) (((|#3|) . T)) (|has| |#1| (-38 (-417 (-574)))) -((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) +((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574))))) (((|#1|) . T)) -((((-1019 2)) . T) (((-417 (-574))) . T) (((-872)) . T)) +((((-1020 2)) . T) (((-417 (-574))) . T) (((-872)) . T)) ((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) ((((-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) -((((-1014 |#1|)) . T) ((|#1|) . T)) +((((-1015 |#1|)) . T) ((|#1|) . T)) +((((-1193)) |has| |#1| (-912 (-1193))) (((-828 (-1193))) . T)) ((((-872)) . T)) -((((-872)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) ((((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1188 |#1|)) . T)) +(((|#1| (-1189 |#1|)) . T)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) (((|#3|) . T) (($) . T)) (|has| |#1| (-860)) (((|#1|) . T) (((-574)) . T) (($) . T)) (((|#2|) . T)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T)) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) ((((-574) |#2|) . T)) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +((((-872)) . T)) (((|#2|) . T)) ((((-574) |#3|) . T)) (((|#2|) . T)) ((((-872)) . T)) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) -(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) -(-2832 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239)))) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) +(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) +(-2833 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239)))) (|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) (((|#2| |#2|) . T)) -((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +(|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-372)) -(((|#2|) . T) (((-574)) |has| |#2| (-1053 (-574))) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) -(|has| |#1| (-1115)) +(((|#2|) . T) (((-574)) |has| |#2| (-1054 (-574))) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574))))) +((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372))) (((|#2|) . T)) +(|has| |#1| (-1116)) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) -(|has| |#1| (-38 (-417 (-574)))) (((|#1|) |has| |#1| (-174))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) -(((|#2|) . T)) -((((-1174) (-52)) . T)) +(|has| |#1| (-38 (-417 (-574)))) +((((-1175) (-52)) . T)) (((|#1|) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($ (-1193)) |has| |#2| (-912 (-1193))) (($ (-1098)) . T)) (((|#2|) |has| |#2| (-174))) +(((|#2|) . T)) (((|#1|) . T)) -((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) (((-574)) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1064)))) +((($) -2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) (((-574)) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065)))) ((((-574) |#3|) . T)) ((((-574) (-145)) . T)) ((((-145)) . T)) ((((-872)) . T)) -((((-1197)) . T)) +((((-1198)) . T)) ((((-112)) . T)) (|has| |#1| (-148)) (((|#1|) . T)) @@ -1614,107 +1649,114 @@ ((($) . T)) (|has| |#1| (-566)) ((((-574)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1|) . T)) +((($ (-1193)) |has| |#1| (-912 (-1193)))) (((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) ((((-145)) . T)) ((((-872)) . T)) ((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) ((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) ((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) -((((-1192) (-52)) . T) (((-1174) (-52)) . T)) +((((-1193) (-52)) . T) (((-1175) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1| |#2|) . T)) (|has| |#2| (-239)) -((((-1250 (-574)) $) . T) (((-574) (-145)) . T)) -(((#0=(-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-1251 (-574)) $) . T) (((-574) (-145)) . T)) +(((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-860)) -(((|#2| (-781) (-1097)) . T)) +(((|#2| (-781) (-1098)) . T)) (((|#1| |#2|) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (|has| |#1| (-801)) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-566))) +((((-1193)) -2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (((|#1|) |has| |#1| (-174))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2832 (|has| |#1| (-148)) (-12 (|has| |#1| (-372)) (|has| |#2| (-148)))) -(-2832 (|has| |#1| (-146)) (-12 (|has| |#1| (-372)) (|has| |#2| (-146)))) +(-2833 (|has| |#1| (-148)) (-12 (|has| |#1| (-372)) (|has| |#2| (-148)))) +(-2833 (|has| |#1| (-146)) (-12 (|has| |#1| (-372)) (|has| |#2| (-146)))) (((|#4|) . T)) (|has| |#1| (-146)) -((((-1174) |#1|) . T)) +((((-1175) |#1|) . T)) (|has| |#1| (-148)) (((|#1|) . T)) ((((-574)) . T)) ((((-872)) . T)) (((|#1| |#2|) . T)) ((((-872)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#3|) . T)) -((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372))) ((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) ((((-872)) . T)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) (((|#1|) . T)) (((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115))) (((-971 |#1|)) . T)) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))) (((-972 |#1|)) . T)) (|has| |#1| (-858)) (|has| |#1| (-858)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((((-971 |#1|)) . T)) -(((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-736)))) -(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((((-972 |#1|)) . T)) +(((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-736)))) +(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)))) (|has| |#2| (-372)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-736)) (|has| |#4| (-1064))) (($) |has| |#4| (-174))) -(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1064))) (($) |has| |#3| (-174))) -(((|#2|) |has| |#2| (-1064))) -((((-1174) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) +(((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-736)) (|has| |#4| (-1065))) (($) |has| |#4| (-174))) +(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1065))) (($) |has| |#3| (-174))) +(((|#2|) |has| |#2| (-1065))) +((((-1175) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (((|#2| (-904 |#1|)) . T)) ((($) . T)) +((($ (-874 |#1|)) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) -((((-398) (-1174)) . T)) +((((-398) (-1175)) . T)) +((($ (-1193)) . T)) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) -2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) (((-1283 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3666 (-1174)) (|:| -1917 #0#))) . T)) +((((-872)) -2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) (((-1284 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3667 (-1175)) (|:| -1916 #0#))) . T)) (((|#1|) . T)) ((((-872)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) ((((-145)) . T)) (|has| |#2| (-146)) ((((-574)) . T)) (|has| |#2| (-148)) (|has| |#1| (-483)) -(-2832 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) +(-2833 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))) (|has| |#1| (-372)) ((((-872)) . T)) (|has| |#1| (-38 (-417 (-574)))) ((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) ((($) |has| |#1| (-566))) -((((-1197)) . T)) +((((-1198)) . T)) (|has| |#1| (-858)) (|has| |#1| (-858)) ((((-872)) . T)) (((|#2|) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1192)) |has| |#1| (-913 (-1192)))) +((((-1193)) |has| |#1| (-912 (-1193)))) (((|#2| |#2|) . T)) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) ((((-872)) . T)) ((((-872)) . T)) -(|has| |#1| (-1115)) -(((|#2| (-492 (-2876 |#1|) (-781)) (-874 |#1|)) . T)) +(|has| |#1| (-1116)) +(((|#2| (-492 (-2877 |#1|) (-781)) (-874 |#1|)) . T)) ((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#)) -(((|#1| (-541 (-1192)) (-1192)) . T)) +(((|#1| (-541 (-1193)) (-1193)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-872)) . T)) @@ -1733,18 +1775,19 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) . T)) -((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -((((-1192) (-52)) . T)) +((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T)) +((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +((((-1193) (-52)) . T)) ((((-417 (-574)) |#1|) . T) (($ $) . T)) (((|#1| (-574)) . T)) -((((-923 |#1|)) . T)) -(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1064))) (($) -2832 (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)))) -(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +((((-924 |#1|)) . T)) +(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1065))) (($) -2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)))) +((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) +(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574))))) (|has| |#1| (-860)) (|has| |#1| (-860)) ((((-574) |#2|) . T)) @@ -1753,33 +1796,35 @@ ((((-574)) . T)) (|has| |#1| (-860)) ((((-699 |#2|)) . T) (((-872)) . T)) -((((-1275 |#1| |#2| |#3|)) -12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) +((((-1276 |#1| |#2| |#3|)) -12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) ((((-417 (-574))) . T) (((-574)) . T) (($) . T)) (|has| |#1| (-239)) (((|#1| |#2|) . T)) -((((-417 (-965 |#1|))) . T)) -((((-986)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +((((-417 (-966 |#1|))) . T)) +((((-987)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (((|#1|) |has| |#1| (-174))) -(-2832 (|has| |#1| (-239)) (|has| |#1| (-294 |#1| |#1|))) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) -(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)))) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(-2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-922))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(-2833 (|has| |#1| (-239)) (|has| |#1| (-294 |#1| |#1|)) (|has| |#1| (-912 (-1193)))) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) +(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)))) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(-2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-923))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($ |#2|) . T)) +((($ (-1193)) |has| |#1| (-912 (-1193))) (($ (-1098)) . T)) ((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) ((((-574) |#2|) . T)) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)))) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)))) (|has| |#1| (-358)) -(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) +(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (((|#2|) . T) (((-574)) . T)) ((($) . T) (((-417 (-574))) . T)) ((((-574) (-112)) . T)) (|has| |#1| (-830)) (|has| |#1| (-830)) (((|#1|) . T)) -(-2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) +(-2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) (|has| |#1| (-858)) (|has| |#1| (-858)) (|has| |#1| (-858)) @@ -1788,22 +1833,22 @@ ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-358))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -((((-1192)) |has| |#1| (-913 (-1192))) (((-1097)) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T)) (((|#1|) . T)) (|has| |#1| (-858)) -(((#0=(-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) #0#) |has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(|has| |#1| (-1115)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) +(((#0=(-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) #0#) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(|has| |#1| (-1116)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1157 |#2| (-417 (-965 |#1|)))) . T) (((-417 (-965 |#1|))) . T) (((-574)) . T)) +((((-1158 |#2| (-417 (-966 |#1|)))) . T) (((-417 (-966 |#1|))) . T) (((-574)) . T)) (((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) @@ -1816,14 +1861,18 @@ ((((-872)) . T)) ((((-145)) . T) (((-872)) . T)) ((((-574) |#1|) . T)) -(((|#1| (-781) (-1097)) . T)) +(((|#1| (-781) (-1098)) . T)) (((|#3|) . T)) ((((-145)) . T)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) -2832 (|has| |#1| (-858)) (|has| |#1| (-1053 (-574)))) ((|#1|) . T)) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) -2833 (|has| |#1| (-858)) (|has| |#1| (-1054 (-574)))) ((|#1|) . T)) (((|#1|) . T)) +(((|#2|) . T)) ((((-145)) . T)) (((|#2|) |has| |#2| (-174))) -(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) +((((-1193)) -2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) +(-2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -1834,85 +1883,88 @@ (((|#2|) |has| |#1| (-372))) ((((-872)) . T)) ((((-872)) . T)) +((((-874 |#1|)) . T)) (((|#2|) . T)) -(((|#1| (-1188 |#1|)) . T)) -((((-1097)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +(((|#1| (-1189 |#1|)) . T)) +((((-1098)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574))))) ((($) . T) ((|#1|) . T) (((-417 (-574))) . T) (((-574)) |has| |#1| (-649 (-574)))) ((($) . T)) ((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) ((($) |has| |#1| (-566))) (((|#2|) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566)))) ((($) |has| |#1| (-566)) ((|#1|) . T)) ((($) |has| |#1| (-858))) -((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) -(|has| |#1| (-922)) -((((-1192)) . T)) -((((-872)) . T)) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372))) +(|has| |#1| (-923)) +((((-1193)) . T)) +((((-872)) . T)) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-574) |#2|) . T)) +((($ (-1193)) -12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) +((($ (-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) ((($) |has| |#1| (-239))) ((($) |has| |#1| (-377))) ((($) |has| |#1| (-377))) ((($) |has| |#1| (-377))) (((|#1| |#2|) . T)) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-922))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((#0=(-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) #0#) |has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))))) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-923))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((#0=(-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) #0#) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-923))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)))) +(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)))) (|has| |#1| (-860)) (|has| |#1| (-566)) ((((-591 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) (-12 (|has| |#1| (-372)) (|has| |#2| (-860)))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) -((((-923 |#1|)) . T)) +(-2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) (-12 (|has| |#1| (-372)) (|has| |#2| (-860)))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) +((((-924 |#1|)) . T)) (((|#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) (((|#1| (-781)) . T)) ((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) . T)) +((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T)) ((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T) (((-417 (-574))) . T) (($) . T)) ((((-682 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-872)) . T) (((-1197)) . T)) +((((-872)) . T) (((-1198)) . T)) ((((-546)) . T)) ((((-872)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-872)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -((((-1197)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((((-1198)) . T)) ((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T) (((-574)) . T)) (((|#3|) . T) (((-574)) . T) (((-622 $)) . T)) ((((-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) (((|#2|) . T)) -(-2832 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-860)) (|has| |#3| (-1064)) (|has| |#3| (-1115))) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) -(|has| |#1| (-1218)) -(|has| |#1| (-1218)) -(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) -(|has| |#1| (-1218)) -(|has| |#1| (-1218)) +(-2833 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-860)) (|has| |#3| (-1065)) (|has| |#3| (-1116))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T)) +(|has| |#1| (-1219)) +(|has| |#1| (-1219)) +(-2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) +(|has| |#1| (-1219)) +(|has| |#1| (-1219)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) ((($ $) . T) ((#0=(-417 (-574)) #0#) . T) ((#1=(-417 |#1|) #1#) . T) ((|#1| |#1|) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) @@ -1926,59 +1978,61 @@ (((|#1|) . T)) ((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -((((-1174) (-52)) . T)) -(|has| |#1| (-1115)) +((((-1175) (-52)) . T)) +(|has| |#1| (-1116)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(-2832 (|has| |#2| (-830)) (|has| |#2| (-860))) +(-2833 (|has| |#2| (-830)) (|has| |#2| (-860))) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) ((((-574)) . T) (($) . T)) ((((-781)) . T)) -(-2832 (|has| |#1| (-239)) (|has| |#1| (-358))) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(-2833 (|has| |#1| (-239)) (|has| |#1| (-358))) +((((-1193)) |has| |#1| (-912 (-1193)))) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((((-872)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((($) . T) (((-574)) . T)) -(|has| |#2| (-922)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(|has| |#2| (-923)) (|has| |#1| (-372)) -(((|#2|) |has| |#2| (-1115))) +(((|#2|) |has| |#2| (-1116))) +((($) . T) (((-574)) . T)) ((($) . T)) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -((((-546)) . T) (((-417 (-1188 (-574)))) . T) (((-227)) . T) (((-388)) . T)) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +((((-546)) . T) (((-417 (-1189 (-574)))) . T) (((-227)) . T) (((-388)) . T)) ((((-388)) . T) (((-227)) . T) (((-872)) . T)) -(|has| |#1| (-922)) -(|has| |#1| (-922)) +(|has| |#1| (-923)) +(|has| |#1| (-923)) +((($ (-1193)) |has| |#1| (-912 (-1193))) (($ (-828 (-1193))) . T)) ((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -(|has| |#1| (-922)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +(|has| |#1| (-923)) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-923))) ((($) . T)) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)))) -((($) . T) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) (((|#1|) . T)) -((((-1190 |#1| |#2| |#3|)) -12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-922))) +((($) . T) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065))) (($) |has| |#2| (-174))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) +((((-1191 |#1| |#2| |#3|)) -12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-923))) ((((-872)) . T)) ((((-872)) . T)) -((((-986)) . T)) -((((-986)) . T) (((-872)) . T)) ((($ $) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -((($) -2832 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239))))) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +((($) -2833 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239))))) ((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) +((((-987)) . T)) +((((-987)) . T) (((-872)) . T)) ((($ $) . T)) ((((-574) (-112)) . T)) ((($) . T)) (((|#1|) . T)) ((((-112)) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((((-574)) . T)) (((|#1| (-574)) . T)) ((($) . T)) @@ -1987,7 +2041,7 @@ (((|#1|) . T)) ((((-574)) . T)) (((|#1| |#2|) . T)) -((((-1192)) |has| |#1| (-1064))) +((((-1193)) |has| |#1| (-1065))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) @@ -1995,133 +2049,138 @@ ((((-872)) . T)) (((|#1|) . T)) (((|#1| (-574)) . T)) -(((|#1| (-1275 |#1| |#2| |#3|)) . T)) +(((|#1| (-1276 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-417 (-574))) . T)) -(((|#1| (-1247 |#1| |#2| |#3|)) . T)) +(((|#1| (-1248 |#1| |#2| |#3|)) . T)) (((|#1| (-781)) . T)) ((((-872)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -(|has| |#1| (-1115)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +(|has| |#1| (-1116)) (((|#1|) . T)) -((((-1174) |#1|) . T)) +((((-1175) |#1|) . T)) ((($) . T)) (|has| |#2| (-148)) (|has| |#2| (-146)) -(((|#1| (-541 (-828 (-1192))) (-828 (-1192))) . T)) +(((|#1| (-541 (-828 (-1193))) (-828 (-1193))) . T)) ((((-872)) . T)) -((((-1269 |#1| |#2| |#3| |#4|)) . T)) -((((-1269 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1064))) -((((-574) (-112)) . T) (((-1250 (-574)) $) . T)) -((((-872)) |has| |#1| (-1115))) +((((-1270 |#1| |#2| |#3| |#4|)) . T)) +((((-1270 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1065))) +((((-574) (-112)) . T) (((-1251 (-574)) $) . T)) +((((-872)) |has| |#1| (-1116))) (((|#1|) . T) (((-574)) . T) (($) . T)) (|has| |#2| (-174)) ((((-574)) . T)) (((|#1|) . T)) ((((-574)) . T)) ((((-872)) . T)) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-358))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-358))) ((((-872)) . T)) (|has| |#1| (-148)) (((|#3|) . T)) ((((-872)) . T)) -(-2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) +(-2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) ((($) |has| |#2| (-239))) -((((-1268 |#2| |#3| |#4|)) . T) (((-1269 |#1| |#2| |#3| |#4|)) . T)) +((((-1269 |#2| |#3| |#4|)) . T) (((-1270 |#1| |#2| |#3| |#4|)) . T)) ((((-872)) . T)) -((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574)))) (((-622 $)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) -2832 (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-417 (-965 |#1|))) |has| |#1| (-566)) (((-965 |#1|)) |has| |#1| (-1064)) (((-1192)) . T)) +((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574)))) (((-622 $)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) -2833 (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-417 (-966 |#1|))) |has| |#1| (-566)) (((-966 |#1|)) |has| |#1| (-1065)) (((-1193)) . T)) (((|#1|) . T) (($) . T)) (((|#1| (-781)) . T)) (((|#1|) . T)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) (((|#1|) |has| |#1| (-317 |#1|))) -((((-1269 |#1| |#2| |#3| |#4|)) . T)) +((((-1270 |#1| |#2| |#3| |#4|)) . T)) ((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388)))) (((|#1|) . T)) +((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (((|#1|) . T)) (|has| |#1| (-566)) ((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) (((|#1|) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) -(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) +(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) (((|#1|) |has| |#1| (-174))) ((((-872)) . T)) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((($ (-1193)) -2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) +((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) +((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (((|#1|) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) (((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1115))) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)))) -((((-1268 |#2| |#3| |#4|)) . T)) +(((|#3|) |has| |#3| (-1116))) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)))) +((((-1269 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) (|has| |#1| (-830)) (|has| |#1| (-830)) -(((|#1| (-574) (-1097)) . T)) +(((|#1| (-574) (-1098)) . T)) ((($) |has| |#1| (-317 $)) ((|#1|) |has| |#1| (-317 |#1|))) (|has| |#1| (-858)) (|has| |#1| (-858)) -(((|#1| (-574) (-1097)) . T)) -(-2832 (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -(((|#1| (-417 (-574)) (-1097)) . T)) -(((|#1| (-781) (-1097)) . T)) +(((|#1| (-574) (-1098)) . T)) +(-2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +(((|#1| (-417 (-574)) (-1098)) . T)) +(((|#1| (-781) (-1098)) . T)) (|has| |#1| (-860)) -(((#0=(-923 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) +(((#0=(-924 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (((|#2|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-1115)) -((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) +((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +(|has| |#1| (-1116)) ((((-417 (-574))) |has| |#2| (-372)) (($) . T) (((-574)) . T)) -((((-574)) -2832 (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)))) +((((-574)) -2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)))) (((|#1|) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) ((((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((|#2|) |has| |#1| (-372))) -(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) -((((-699 (-348 (-2962) (-2962 (QUOTE X) (QUOTE HESS)) (-709)))) . T)) +(-2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) +((((-699 (-348 (-2963) (-2963 (QUOTE X) (QUOTE HESS)) (-709)))) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -((((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T)) ((((-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) -((((-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T)) -(((|#1| |#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1064)))) +((((-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T)) +(((|#1| |#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1065)))) (((|#1|) . T)) ((((-574)) . T)) ((((-574)) . T)) -(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1064)))) +(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1065)))) (((|#2|) |has| |#2| (-372))) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)) (((-574)) |has| |#1| (-649 (-574)))) (|has| |#1| (-860)) (((|#1|) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (((|#1|) . T) (((-574)) . T)) (((|#2|) . T)) ((((-574)) . T) ((|#3|) . T)) -((((-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) |has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))))) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) +((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) |has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-923))) (((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) ((((-872)) . T)) ((((-872)) . T)) -((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) (((-574)) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1064)))) +((($ (-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) +((($) -2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) (((-574)) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065)))) ((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) ((((-872)) . T)) ((($) |has| |#1| (-239))) @@ -2138,75 +2197,80 @@ (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1190 |#1| |#2| |#3|)) . T)) +(((|#1| (-1191 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-417 (-574))) . T)) (((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#1| (-1183 |#1| |#2| |#3|)) . T)) +(((|#1| (-1184 |#1| |#2| |#3|)) . T)) (((|#1| (-781)) . T)) (((|#1|) . T)) -((((-417 (-965 |#1|))) . T)) +((((-417 (-966 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) -((((-417 (-965 |#1|))) . T)) +((((-417 (-966 |#1|))) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) |has| |#1| (-174))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-574)) . T) ((|#1|) . T) (($) . T) (((-417 (-574))) . T) (((-1192)) |has| |#1| (-1053 (-1192)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-574)) . T) ((|#1|) . T) (($) . T) (((-417 (-574))) . T) (((-1193)) |has| |#1| (-1054 (-1193)))) (((|#1| |#2|) . T)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) -2832 (|has| |#1| (-858)) (|has| |#1| (-1053 (-574)))) ((|#1|) . T)) -(-12 (|has| |#4| (-239)) (|has| |#4| (-1064))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) -2833 (|has| |#1| (-858)) (|has| |#1| (-1054 (-574)))) ((|#1|) . T)) +(-12 (|has| |#4| (-239)) (|has| |#4| (-1065))) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1065))) ((((-145)) . T)) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (((|#1|) . T)) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) (((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) . T) (($ $) . T)) (((|#2|) . T) ((|#1|) . T) (((-574)) . T)) ((((-872)) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) ((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) (|has| |#1| (-372)) (|has| |#1| (-372)) +((($ |#2|) . T)) (|has| (-417 |#2|) (-239)) ((((-654 |#1|)) . T)) -(|has| |#1| (-922)) -(((|#2|) |has| |#2| (-1064))) +((($ (-1193)) -2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) +((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) +((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) +(|has| |#1| (-923)) +(((|#2|) |has| |#2| (-1065))) ((($) . T)) (|has| |#1| (-372)) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) (((|#1|) |has| |#1| (-174))) +((($ (-874 |#1|)) . T)) (((|#1| |#1|) . T)) ((((-880 |#1|)) . T)) ((((-872)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1115))) +(((|#2|) |has| |#2| (-1116))) (((|#1|) . T)) ((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -((((-654 $)) . T) (((-1174)) . T) (((-1192)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T)) -((($) -2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) (((-574)) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1064)))) +((((-654 $)) . T) (((-1175)) . T) (((-1193)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T)) +((($) -2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) (((-574)) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))) ((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1065)))) ((((-417 (-574))) . T) (((-574)) . T) (((-622 $)) . T)) (((|#1|) . T)) ((((-872)) . T)) ((($) . T)) (((|#1| (-541 |#2|) |#2|) . T)) ((((-872)) . T)) -(((|#1| (-574) (-1097)) . T)) -((((-923 |#1|)) . T)) +(((|#1| (-574) (-1098)) . T)) +((((-924 |#1|)) . T)) ((((-872)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-417 (-574)) (-1097)) . T)) -(((|#1| (-781) (-1097)) . T)) +(((|#1| (-417 (-574)) (-1098)) . T)) +(((|#1| (-781) (-1098)) . T)) (((#0=(-417 |#2|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-574)) -2832 (|has| (-417 (-574)) (-1053 (-574))) (|has| |#1| (-1053 (-574)))) (((-417 (-574))) . T)) +(((|#1|) . T) (((-574)) -2833 (|has| (-417 (-574)) (-1054 (-574))) (|has| |#1| (-1054 (-574)))) (((-417 (-574))) . T)) (((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) @@ -2220,59 +2284,60 @@ ((((-872)) . T)) (((|#1| |#3|) . T)) ((((-872)) . T)) -(((|#1|) |has| |#1| (-174)) (((-965 |#1|)) . T) (((-574)) . T)) +(((|#1|) |has| |#1| (-174)) (((-966 |#1|)) . T) (((-574)) . T)) (((|#1|) |has| |#1| (-174))) ((((-709)) . T)) ((((-709)) . T)) (((|#2|) |has| |#2| (-174))) (|has| |#1| (-239)) -((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) -((((-112)) |has| |#1| (-1115)) (((-872)) -2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)) (|has| |#1| (-1127)) (|has| |#1| (-1115)))) +((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574))))) +((((-112)) |has| |#1| (-1116)) (((-872)) -2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)) (|has| |#1| (-1128)) (|has| |#1| (-1116)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) . T)) +((((-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) . T)) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) ((((-574)) . T) (((-417 (-574))) . T) (($) . T)) ((((-872)) . T)) +((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) ((((-574)) . T) (((-417 (-574))) . T) (($) . T)) ((((-872)) . T)) ((((-709)) . T) (((-417 (-574))) . T) (((-574)) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#2|) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) ((((-574) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) ((((-388)) . T)) ((((-709)) . T)) ((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#)) (((|#1|) |has| |#1| (-174))) -((((-417 (-965 |#1|))) . T)) +((((-417 (-966 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((|#1|) . T)) (((|#2|) . T)) -(((|#3|) |has| |#3| (-1064))) -(|has| |#2| (-922)) -(|has| |#1| (-922)) +(((|#3|) |has| |#3| (-1065))) +(|has| |#2| (-923)) +(|has| |#1| (-923)) (|has| |#1| (-372)) ((($) . T)) -((((-1192)) |has| |#2| (-913 (-1192)))) +((((-1193)) |has| |#2| (-912 (-1193)))) ((((-872)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) ((((-417 (-574))) . T) (($) . T)) (|has| |#1| (-483)) (|has| |#1| (-377)) (|has| |#1| (-377)) (|has| |#1| (-377)) (|has| |#1| (-372)) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1064)) (|has| |#1| (-1127))) -((($) -2832 (|has| |#1| (-239)) (|has| |#1| (-358)))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1065)) (|has| |#1| (-1128))) +((($) -2833 (|has| |#1| (-239)) (|has| |#1| (-358)))) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-358)) @@ -2283,6 +2348,7 @@ (|has| |#1| (-38 (-417 (-574)))) (((|#2|) . T) (((-872)) . T)) (((|#2|) . T) (((-872)) . T)) +((($ (-1193)) |has| |#1| (-912 (-1193)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) @@ -2293,22 +2359,22 @@ (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-860)) -((((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) . T)) +((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-574)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) ((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) ((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (((|#2|) . T)) (|has| |#1| (-15 * (|#1| (-574) |#1|))) (((|#3|) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-377)) -(-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) +(-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-860)) (|has| |#1| (-15 * (|#1| (-781) |#1|))) -(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) +(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) @@ -2317,56 +2383,57 @@ ((((-574)) . T)) (|has| |#1| (-372)) (|has| |#1| (-372)) -(|has| |#2| (-239)) +(-2833 (|has| |#2| (-239)) (|has| |#2| (-912 (-1193)))) ((((-872)) . T)) ((((-872)) . T)) -((((-546)) |has| |#1| (-624 (-546))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#1| (-1037))) (((-227)) . #0#)) +((((-546)) |has| |#1| (-624 (-546))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#1| (-1038))) (((-227)) . #0#)) (((|#1|) |has| |#1| (-372))) ((((-872)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) ((($ $) . T) (((-622 $) $) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) -((($) . T) (((-1269 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T)) -((($) -2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) ((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-1064))) (((-417 (-574))) |has| |#1| (-566)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) -((($) . T) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) +((($) . T) (((-1270 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T)) +((($) -2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) ((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-1065))) (((-417 (-574))) |has| |#1| (-566)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) +((($) . T) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) (|has| |#1| (-372)) (|has| |#1| (-372)) (|has| |#1| (-372)) ((((-388)) . T) (((-574)) . T) (((-417 (-574))) . T)) +((((-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) ((((-654 (-790 |#1| (-874 |#2|)))) . T) (((-872)) . T)) ((((-546)) |has| (-790 |#1| (-874 |#2|)) (-624 (-546)))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-388)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) +(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (((|#1|) |has| |#1| (-174))) ((((-872)) . T)) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-922))) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-923))) (((|#1|) . T)) ((($) . T)) ((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) ((((-546)) |has| |#1| (-624 (-546)))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) ((((-781)) . T)) -(|has| |#1| (-1115)) -((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) (((-574)) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1064)))) +(|has| |#1| (-1116)) +((($) -2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) (((-574)) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065)))) ((((-872)) . T)) -((((-1192)) . T) (((-872)) . T)) +((((-1193)) . T) (((-872)) . T)) ((((-574)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) ((((-417 (-574))) . T) (((-574)) . T) (((-622 $)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) ((((-574)) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) -(((#0=(-1268 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (($) . T)) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) +(((#0=(-1269 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (($) . T)) ((((-574)) . T)) ((($) . T)) (|has| |#1| (-372)) -(-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148))) -(-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))) +(-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148))) +(-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))) (|has| |#1| (-372)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -2384,73 +2451,74 @@ (((|#2|) . T)) ((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#)) ((((-417 (-574))) |has| |#2| (-372)) (($) . T)) -(|has| |#1| (-1115)) -((((-1157 |#2| |#1|)) . T) ((|#1|) . T) (((-574)) . T)) +(|has| |#1| (-1116)) +((((-1158 |#2| |#1|)) . T) ((|#1|) . T) (((-574)) . T)) (((|#1| |#2|) . T)) -((((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574)))))) +((((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574)))))) +((((-1193)) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) (((|#3|) |has| |#3| (-174))) (((|#2|) . T) (($) . T) (((-574)) . T)) (((|#1|) . T) (($) . T) (((-574)) . T)) -(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) +(-2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) ((((-872)) . T)) ((((-574)) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1065))) (((|#1| $) |has| |#1| (-294 |#1| |#1|))) ((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T)) -((((-965 |#1|)) . T) (((-872)) . T)) +((((-966 |#1|)) . T) (((-872)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-298)) (|has| |#1| (-372))) ((#0=(-417 (-574)) #0#) |has| |#1| (-372))) -((((-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) . T)) -((((-965 |#1|)) . T)) +(((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-298)) (|has| |#1| (-372))) ((#0=(-417 (-574)) #0#) |has| |#1| (-372))) +((((-966 |#1|)) . T)) +((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T)) ((($) . T)) ((((-574) |#1|) . T)) -((((-1192)) |has| (-417 |#2|) (-913 (-1192)))) -(((|#1|) . T) (($) -2832 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372))) +((((-1193)) |has| (-417 |#2|) (-912 (-1193)))) +(((|#1|) . T) (($) -2833 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372))) ((((-546)) |has| |#2| (-624 (-546)))) ((((-699 |#2|)) . T) (((-872)) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) ((((-880 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) -(-2832 (|has| |#4| (-803)) (|has| |#4| (-860))) -(-2832 (|has| |#3| (-803)) (|has| |#3| (-860))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(-2833 (|has| |#4| (-803)) (|has| |#4| (-860))) +(-2833 (|has| |#3| (-803)) (|has| |#3| (-860))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-872)) . T)) ((((-872)) . T)) (((|#1|) . T)) ((($) . T) (((-574)) . T) ((|#2|) . T)) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) -(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)))) -(((|#2|) |has| |#2| (-1064))) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) +(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)))) +(((|#2|) |has| |#2| (-1065))) (((|#3|) . T)) ((($) . T)) (((|#1|) . T)) ((((-417 |#2|)) . T)) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)))) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)))) (((|#1|) . T)) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) -(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) -((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065))) (($) |has| |#2| (-174))) +(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) +((((-1251 (-574)) $) . T) (((-574) |#1|) . T)) (((|#1|) . T)) ((($) . T)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) ((((-417 (-574))) . T) (($) . T)) ((((-417 (-574))) . T) (($) . T)) ((((-417 (-574))) . T) (($) . T)) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-1237))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-1238))) ((($) . T)) -((((-417 (-574))) |has| #0=(-417 |#2|) (-1053 (-417 (-574)))) (((-574)) |has| #0# (-1053 (-574))) ((#0#) . T)) +((((-417 (-574))) |has| #0=(-417 |#2|) (-1054 (-417 (-574)))) (((-574)) |has| #0# (-1054 (-574))) ((#0#) . T)) (((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) (((|#1| (-781)) . T)) (|has| |#1| (-860)) (((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) ((((-574)) . T)) (|has| |#1| (-38 (-417 (-574)))) -((((-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) |has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (|has| |#1| (-858)) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) @@ -2465,7 +2533,7 @@ (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) -(|has| (-417 |#2|) (-239)) +(-2833 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-912 (-1193)))) (|has| |#1| (-358)) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) @@ -2473,72 +2541,75 @@ (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) -((((-1174)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T)) +((((-1175)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T)) ((((-872)) . T)) -(-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) +(-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-15 * (|#1| (-781) |#1|))) -(((|#2|) . T) (((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) (((-1097)) . T) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) +(((|#2|) . T) (((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((-1098)) . T) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (((|#1| |#2|) . T)) ((((-145)) . T)) ((((-790 |#1| (-874 |#2|))) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) -(|has| |#1| (-1218)) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) +(|has| |#1| (-1219)) ((((-872)) . T)) (((|#1|) . T)) -(-2832 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-860)) (|has| |#3| (-1064)) (|has| |#3| (-1115))) -((((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|))) +(-2833 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-860)) (|has| |#3| (-1065)) (|has| |#3| (-1116))) +((((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|))) (((|#2|) . T)) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -((((-923 |#1|)) . T)) -((($) -12 (|has| |#4| (-239)) (|has| |#4| (-1064)))) -((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((((-924 |#1|)) . T)) +((($) -12 (|has| |#4| (-239)) (|has| |#4| (-1065)))) +((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) ((($) . T)) -((((-417 (-965 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-417 (-966 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) ((((-546)) |has| |#4| (-624 (-546)))) -((((-872)) . T) (((-654 |#4|)) . T)) (|has| |#1| (-858)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -(|has| |#1| (-1115)) +((((-872)) . T) (((-654 |#4|)) . T)) +(|has| |#1| (-1116)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) |has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))))) (|has| |#1| (-372)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)))) +(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)))) ((((-682 |#1|)) . T)) -(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1064))) (($) |has| |#3| (-174))) +(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1065))) (($) |has| |#3| (-174))) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148))) -(-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))) +(-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148))) +(-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) -((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) +((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372))) (|has| |#1| (-858)) (((|#1| |#2|) . T)) (((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) ((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-1115)) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-1116)) (((|#1|) . T) (($) . T) (((-417 (-574))) . T) (((-574)) . T)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-1115)) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-1116)) (((|#2|) |has| |#2| (-174))) ((((-574)) . T) ((|#1|) . T)) (((|#2|) . T) (($) . T) (((-574)) . T)) (((|#2|) . T)) +((((-1193)) |has| |#2| (-912 (-1193)))) (((|#1| |#1|) . T)) (((|#3|) |has| |#3| (-372))) ((((-417 |#2|)) . T)) @@ -2547,10 +2618,10 @@ ((((-872)) . T)) ((((-872)) . T)) ((((-546)) |has| |#1| (-624 (-546)))) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) -(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)))) +((((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) +(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)))) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) ((((-574)) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) @@ -2560,11 +2631,11 @@ (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) (((|#2|) |has| |#2| (-372))) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) (((|#2|) . T)) ((((-417 (-574))) . T) (((-709)) . T) (($) . T)) -((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (|has| |#1| (-239)) (((#0=(-790 |#1| (-874 |#2|)) #0#) |has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|))))) ((($) |has| |#1| (-239))) @@ -2573,24 +2644,25 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) -((((-1192)) |has| |#1| (-913 (-1192))) (((-1097)) . T)) -((((-1192)) |has| |#1| (-913 (-1192))) (((-1103 (-1192))) . T)) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T)) +((((-1193)) |has| |#1| (-912 (-1193))) (((-1104 (-1193))) . T)) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) +((($ (-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) ((((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (|has| |#1| (-38 (-417 (-574)))) -(((|#4|) |has| |#4| (-1064)) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1064)))) -(((|#3|) |has| |#3| (-1064)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) +(((|#4|) |has| |#4| (-1065)) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1065)))) +(((|#3|) |has| |#3| (-1065)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (|has| |#1| (-146)) (|has| |#1| (-148)) ((($ $) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)) (|has| |#1| (-1127)) (|has| |#1| (-1115))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)) (|has| |#1| (-1128)) (|has| |#1| (-1116))) (|has| |#1| (-566)) (((|#2|) . T)) ((((-574)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (((|#1|) . T)) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) ((((-591 |#1|)) . T)) ((($) . T)) @@ -2599,7 +2671,7 @@ ((($) . T)) (((|#1|) . T)) ((((-872)) . T)) -(((|#2|) |has| |#2| (-6 (-4460 "*")))) +(((|#2|) |has| |#2| (-6 (-4461 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) @@ -2609,39 +2681,38 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T) (((-574)) . T)) -((((-1268 |#2| |#3| |#4|)) . T) (((-574)) . T) (((-1269 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) -((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574)))) (((-574)) -2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))) (|has| |#1| (-1064))) ((|#1|) . T) (((-622 $)) . T) (($) |has| |#1| (-566)) (((-417 (-574))) -2832 (|has| |#1| (-566)) (|has| |#1| (-1053 (-417 (-574))))) (((-417 (-965 |#1|))) |has| |#1| (-566)) (((-965 |#1|)) |has| |#1| (-1064)) (((-1192)) . T)) -((((-417 (-574))) |has| |#2| (-1053 (-417 (-574)))) (((-574)) |has| |#2| (-1053 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) +((((-1269 |#2| |#3| |#4|)) . T) (((-574)) . T) (((-1270 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574)))) (((-574)) -2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))) (|has| |#1| (-1065))) ((|#1|) . T) (((-622 $)) . T) (($) |has| |#1| (-566)) (((-417 (-574))) -2833 (|has| |#1| (-566)) (|has| |#1| (-1054 (-417 (-574))))) (((-417 (-966 |#1|))) |has| |#1| (-566)) (((-966 |#1|)) |has| |#1| (-1065)) (((-1193)) . T)) +((((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))) (((-574)) |has| |#2| (-1054 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) ((($) . T) (((-117 |#1|)) . T) (((-417 (-574))) . T)) -((((-1140 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) -((((-1188 |#1|)) . T) (((-1097)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) -((((-1140 |#1| (-1192))) . T) (((-1103 (-1192))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-1192)) . T)) -(|has| |#1| (-1115)) +((((-1141 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574))))) +((((-1189 |#1|)) . T) (((-1098)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574))))) +((((-1141 |#1| (-1193))) . T) (((-1104 (-1193))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-1193)) . T)) +(|has| |#1| (-1116)) ((($) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) ((((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))) (((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((|#1| |#2|) . T)) -((((-1192) |#1|) . T)) +((((-1193) |#1|) . T)) (((|#4|) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-1192) (-52)) . T)) -(|has| |#1| (-239)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) -((((-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T)) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-1193) (-52)) . T)) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T)) +((((-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T)) ((((-872)) . T)) -(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) -(((#0=(-1269 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) +(-2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) +(((#0=(-1270 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-174)) ((#0=(-417 (-574)) #0#) |has| |#1| (-566)) (($ $) |has| |#1| (-566))) ((($) |has| |#1| (-15 * (|#1| (-574) |#1|)))) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) (((|#1| $) |has| |#1| (-294 |#1| |#1|))) -((((-1269 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-1270 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-566)) (($) |has| |#1| (-566))) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) (|has| |#1| (-372)) -((($) |has| |#1| (-858)) (((-574)) -2832 (|has| |#1| (-21)) (|has| |#1| (-858)))) -((($) -2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) +((($) |has| |#1| (-858)) (((-574)) -2833 (|has| |#1| (-21)) (|has| |#1| (-858)))) +((($) -2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) ((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) ((($) |has| |#1| (-15 * (|#1| (-781) |#1|)))) (|has| |#1| (-146)) @@ -2650,38 +2721,39 @@ (|has| |#1| (-146)) ((((-417 (-574))) . T) (($) . T)) (((|#3|) |has| |#3| (-372))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) -((((-1192)) . T)) -((($) . T) (((-1268 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| (-1268 |#2| |#3| |#4|) (-38 (-417 (-574)))) (((-574)) . T)) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) +((((-1193)) . T)) +((($) . T) (((-1269 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| (-1269 |#2| |#3| |#4|) (-38 (-417 (-574)))) (((-574)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (((|#2| |#3|) . T)) -(-2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(-2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((|#1| (-541 |#2|)) . T)) (((|#1| (-781)) . T)) -(((|#1| (-541 (-1103 (-1192)))) . T)) +(((|#1| (-541 (-1104 (-1193)))) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#2| (-922)) -(-2832 (|has| |#2| (-803)) (|has| |#2| (-860))) +(|has| |#2| (-923)) +(-2833 (|has| |#2| (-803)) (|has| |#2| (-860))) ((((-872)) . T)) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)))) -(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) -((($ $) . T) ((#0=(-1268 |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) |has| #0# (-38 (-417 (-574))))) -((((-923 |#1|)) . T)) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)))) +(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065))) (($) |has| |#2| (-174))) +((($ (-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) +((($ $) . T) ((#0=(-1269 |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) |has| #0# (-38 (-417 (-574))))) +((((-924 |#1|)) . T)) (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((((-574)) . T) (($) . T) (((-417 (-574))) . T)) ((((-872)) . T)) ((($) . T) (((-574)) . T)) ((($) . T)) -(-2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (|has| |#1| (-372)) (|has| |#1| (-372)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1268 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) -((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) -(-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372)) (|has| |#1| (-358))) -(-2832 (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) +((($) . T) ((#0=(-1269 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) +((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372))) +(-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372)) (|has| |#1| (-358))) +(-2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))) ((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) (((|#1| |#2|) . T)) ((((-872)) . T)) @@ -2704,13 +2776,13 @@ (((|#1|) . T)) ((((-872)) . T)) (((|#2|) |has| |#2| (-174))) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T) (((-574)) . T) (($) . T)) (((|#3|) . T) (((-574)) . T) (($) . T)) ((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T)) @@ -2718,44 +2790,45 @@ ((($) . T)) (((|#4|) . T)) ((($) . T)) -((($ $) . T)) +((($ (-1193)) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) ((((-872)) . T)) -(((|#1| (-541 (-1192))) . T)) -((($) . T)) +(((|#1| (-541 (-1193))) . T)) +((($ $) . T)) (((|#1|) |has| |#1| (-174))) +((($) . T)) ((((-872)) . T)) (((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (((|#2|) . T)) -(((|#2|) -2832 (|has| |#2| (-6 (-4460 "*"))) (|has| |#2| (-174)))) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -(|has| |#2| (-922)) -(|has| |#1| (-922)) -((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) +(((|#2|) -2833 (|has| |#2| (-6 (-4461 "*"))) (|has| |#2| (-174)))) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +(|has| |#2| (-923)) +(|has| |#1| (-923)) +((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (((|#2|) |has| |#2| (-174))) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372))) ((((-872)) . T)) ((((-872)) . T)) ((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-574)) . T)) -((((-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) . T)) +((((-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) ((((-872)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-574)) . T)) (((|#1| (-417 (-574))) . T)) (((|#1|) . T)) -(-2832 (|has| |#1| (-298)) (|has| |#1| (-372))) +(-2833 (|has| |#1| (-298)) (|has| |#1| (-372))) ((((-145)) . T)) ((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T) (((-417 (-574))) . T) (($) . T)) (|has| |#1| (-858)) ((((-872)) . T)) ((((-872)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2765,116 +2838,120 @@ ((((-872)) . T)) ((((-872)) . T)) ((((-189)) . T) (((-872)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) ((((-872)) . T)) ((((-872)) . T)) ((((-546)) |has| |#1| (-624 (-546))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388))))) -((((-1192) (-52)) . T)) +((((-1193) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-654 (-145))) . T) (((-1174)) . T)) +((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) +((((-654 (-145))) . T) (((-1175)) . T)) ((((-872)) . T)) -((((-1174)) . T)) -((((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) -((((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) . T)) +((((-1175)) . T)) +((((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) (|has| |#1| (-860)) -((($) -2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) +((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T)) ((((-872)) . T)) ((((-546)) |has| |#1| (-624 (-546)))) +((($) -2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) ((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) -((($) |has| |#1| (-15 * (|#1| (-781) |#1|)))) ((((-872)) . T)) (((|#2|) |has| |#2| (-372))) ((((-872)) . T)) +((($) |has| |#1| (-15 * (|#1| (-781) |#1|)))) ((((-546)) |has| |#4| (-624 (-546)))) -((((-872)) . T) (((-654 |#4|)) . T)) (((|#2|) . T)) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-872)) . T) (((-654 |#4|)) . T)) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T) (((-622 $)) . T)) -(-2832 (|has| |#4| (-174)) (|has| |#4| (-1064))) -(-2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) -((((-1192) (-52)) . T)) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2833 (|has| |#4| (-174)) (|has| |#4| (-1065))) +(-2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) +((((-1193) (-52)) . T)) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1064))) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) -(|has| |#1| (-922)) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -(|has| |#1| (-922)) +(-2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) +(|has| |#1| (-923)) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +(|has| |#1| (-923)) (((|#1|) . T) (((-574)) . T) (((-417 (-574))) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) ((((-872)) . T)) ((((-574)) . T)) +((($ (-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (((#0=(-417 (-574)) #0#) . T) (($ $) . T)) ((((-417 (-574))) . T) (($) . T)) -(((|#1| (-417 (-574)) (-1097)) . T)) -(|has| |#1| (-1115)) +(((|#1| (-417 (-574)) (-1098)) . T)) +(|has| |#1| (-1116)) (|has| |#1| (-566)) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (|has| |#1| (-830)) -(((#0=(-923 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) +(((#0=(-924 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) ((((-417 |#2|)) . T)) (|has| |#1| (-858)) -((((-1219 |#1|)) . T) (((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-1220 |#1|)) . T) (((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) (((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) . T) ((#1=(-574) #1#) . T) (($ $) . T)) -((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -(((|#2|) |has| |#2| (-1064)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +(((|#2|) |has| |#2| (-1065)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (((|#2|) . T)) ((((-872)) . T)) +((((-1193)) . T)) ((((-417 (-574))) . T) (((-709)) . T) (($) . T) (((-574)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) -((((-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) . T)) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) +((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T)) ((((-574) |#3|) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3666 (-1192)) (|:| -1917 #0#))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3667 (-1193)) (|:| -1916 #0#))) . T)) (|has| |#1| (-358)) ((((-574)) . T)) ((((-872)) . T)) (((|#1|) . T)) -(((#0=(-1269 |#1| |#2| |#3| |#4|) $) |has| #0# (-294 #0# #0#))) +(((#0=(-1270 |#1| |#2| |#3| |#4|) $) |has| #0# (-294 #0# #0#))) (|has| |#1| (-372)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) -(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1064))) (($) -2832 (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) (((-574)) -2832 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)))) -(((#0=(-1097) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1065))) +(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1065))) (($) -2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))) (((-574)) -2833 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)))) +(((#0=(-1098) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-358))) (((#0=(-417 (-574)) #0#) . T) ((#1=(-709) #1#) . T) (($ $) . T)) ((((-324 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) |has| |#1| (-372))) ((((-872)) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) (((|#1|) . T)) -(((|#1|) -2832 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|)))) -(((|#1|) -2832 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|)))) +(((|#1|) -2833 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|)))) +(((|#1|) -2833 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|)))) (((|#2|) . T)) ((((-417 (-574))) . T) (((-709)) . T) (($) . T)) ((((-589)) . T)) (((|#3| |#3|) . T)) +((($ (-1193)) |has| |#2| (-912 (-1193)))) (|has| |#2| (-239)) ((((-874 |#1|)) . T)) -((((-1192)) |has| |#1| (-913 (-1192))) ((|#3|) . T)) +((((-1193)) |has| |#1| (-912 (-1193))) ((|#3|) . T)) ((((-654 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-372)) (|has| |#2| (-1037))) +(-12 (|has| |#1| (-372)) (|has| |#2| (-1038))) ((((-417 (-574))) . T) (($) . T)) -((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372))) ((($) . T) (((-417 (-574))) . T)) ((((-872)) . T)) (|has| |#1| (-372)) @@ -2883,13 +2960,13 @@ ((((-574)) . T) (((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) ((((-574)) . T)) (((|#3|) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) (((|#2|) . T)) (((|#1|) . T)) ((($) |has| |#1| (-239))) ((((-574)) . T)) -(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#1|) . T) (($) . T) (((-574)) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#1|) . T) (($) . T) (((-574)) . T)) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) (((|#1| |#2|) . T)) ((($) . T)) @@ -2899,7 +2976,7 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T) (((-574)) . T)) (((|#1|) . T) (((-574)) . T)) -(((|#1| (-1283 |#1|) (-1283 |#1|)) . T)) +(((|#1| (-1284 |#1|) (-1284 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) ((((-872)) . T)) @@ -2907,8 +2984,8 @@ (((|#2|) . T)) (((|#3|) . T)) (((#0=(-117 |#1|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -((((-417 (-574))) |has| |#2| (-1053 (-417 (-574)))) (((-574)) |has| |#2| (-1053 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) -((((-1140 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#2|) . T)) +((((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))) (((-574)) |has| |#2| (-1054 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) +((((-1141 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2926,52 +3003,51 @@ ((((-388)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) ((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) . T)) -(|has| |#2| (-922)) -(|has| |#1| (-239)) +(|has| |#2| (-923)) (|has| |#1| (-377)) (|has| |#1| (-377)) (|has| |#1| (-377)) -(|has| |#1| (-922)) -(|has| |#1| (-922)) +(|has| |#1| (-923)) +(|has| |#1| (-923)) (((|#4|) . T)) -(|has| |#2| (-1037)) +(|has| |#2| (-1038)) ((($) . T)) -(|has| |#1| (-922)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +(|has| |#1| (-923)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) (|has| |#1| (-372)) -((((-923 |#1|)) . T)) +((((-924 |#1|)) . T)) ((($) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) . T)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) |has| |#1| (-858)) (((-574)) -2832 (|has| |#1| (-21)) (|has| |#1| (-858)))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) |has| |#1| (-858)) (((-574)) -2833 (|has| |#1| (-21)) (|has| |#1| (-858)))) ((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -(-2832 (|has| |#1| (-377)) (|has| |#1| (-860))) +(-2833 (|has| |#1| (-377)) (|has| |#1| (-860))) (((|#1|) . T)) ((((-781)) . T)) ((((-872)) . T)) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) -((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1065))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) ((((-417 |#2|) |#3|) . T)) ((($) . T) (((-417 (-574))) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T) (((-622 $)) . T)) ((((-574)) . T) (($) . T)) ((((-574)) . T) (($) . T)) ((((-781) |#1|) . T)) -(((|#2| (-246 (-2876 |#1|) (-781))) . T)) +(((|#2| (-246 (-2877 |#1|) (-781))) . T)) (((|#1| (-541 |#3|)) . T)) ((((-417 (-574))) . T)) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -((((-1174)) . T) (((-872)) . T)) -(((#0=(-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) #0#) |has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))))) -((((-1174)) . T)) -(|has| |#1| (-922)) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +((((-1175)) . T) (((-872)) . T)) +(((#0=(-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) #0#) |has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))))) +((((-1175)) . T)) +(|has| |#1| (-923)) (|has| |#2| (-372)) (((|#1|) . T) (($) . T) (((-574)) . T)) -(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1064))) +(-2833 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065))) ((((-171 (-388))) . T) (((-227)) . T) (((-388)) . T)) ((((-872)) . T)) (((|#1|) . T)) @@ -2988,13 +3064,13 @@ (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) -(-2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) +(-2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) (|has| |#1| (-38 (-417 (-574)))) (-12 (|has| |#1| (-555)) (|has| |#1| (-838))) ((((-872)) . T)) -((((-1192)) -2832 (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))) (-12 (|has| |#1| (-372)) (|has| |#2| (-913 (-1192)))))) +((((-1193)) -2833 (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193)))))) (|has| |#1| (-372)) -((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (|has| |#1| (-372)) ((((-417 (-574))) . T) (($) . T)) ((((-417 |#2|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) @@ -3003,23 +3079,24 @@ (|has| |#1| (-377)) (|has| |#1| (-377)) ((((-574) |#1|) . T)) +((((-1193)) |has| |#1| (-912 (-1193)))) (((|#1|) . T)) -(-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))) +(-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))) (((|#2|) |has| |#1| (-372))) (((|#2|) |has| |#1| (-372))) ((((-574)) . T) (($) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-1192)) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-1192)))) (((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-574)))) (((-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-574))))) +(((|#2|) . T) (((-1193)) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-1193)))) (((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-574)))) (((-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-574))))) (((|#2|) . T)) ((($) . T)) -((((-1192) #0=(-1269 |#1| |#2| |#3| |#4|)) |has| #0# (-524 (-1192) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) +((((-1193) #0=(-1270 |#1| |#2| |#3| |#4|)) |has| #0# (-524 (-1193) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) ((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T)) ((((-622 $) $) . T) (($ $) . T)) -((((-171 (-227))) . T) (((-171 (-388))) . T) (((-1188 (-709))) . T) (((-903 (-388))) . T)) +((((-171 (-227))) . T) (((-171 (-388))) . T) (((-1189 (-709))) . T) (((-903 (-388))) . T)) (((|#3|) . T)) (|has| |#1| (-566)) (|has| (-417 |#2|) (-239)) @@ -3031,43 +3108,43 @@ ((($ $) . T)) ((($) . T)) ((((-872)) . T)) -((((-1192)) |has| |#2| (-913 (-1192)))) +((((-1193)) |has| |#2| (-912 (-1193)))) ((((-417 (-574))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-872)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#2|) |has| |#1| (-372))) ((((-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-388)))) (((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-574))))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (|has| |#1| (-372)) (((|#1|) . T)) ((($) . T) (((-574)) . T) ((|#2|) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((|#3|) . T)) -((((-1174)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T)) +((((-1175)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T)) (((|#1|) . T)) (|has| |#1| (-372)) (|has| |#1| (-566)) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) ((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1064))) +(-2833 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065))) (((|#2|) . T)) (((|#2|) . T)) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -((((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (|has| |#1| (-38 (-417 (-574)))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-417 (-574)))) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) ((($) . T)) -((((-1174) |#1|) . T)) +((((-1175) |#1|) . T)) (|has| |#1| (-148)) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) (|has| |#1| (-148)) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-377))) ((($) . T)) (|has| |#1| (-148)) ((((-591 |#1|)) . T)) @@ -3078,14 +3155,14 @@ ((($) . T)) ((($) . T)) ((((-417 |#2|)) . T)) -((((-417 (-574))) |has| |#2| (-1053 (-574))) (((-574)) |has| |#2| (-1053 (-574))) (((-1192)) |has| |#2| (-1053 (-1192))) ((|#2|) . T)) +((((-417 (-574))) |has| |#2| (-1054 (-574))) (((-574)) |has| |#2| (-1054 (-574))) (((-1193)) |has| |#2| (-1054 (-1193))) ((|#2|) . T)) (((#0=(-417 |#2|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-358))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-358))) (|has| |#1| (-148)) ((((-872)) . T)) ((($) . T)) -((((-1155 |#1| |#2|)) . T)) +((((-1156 |#1| |#2|)) . T)) (((|#1| (-574)) . T)) (((|#1| (-417 (-574))) . T)) ((((-574)) |has| |#2| (-897 (-574))) (((-388)) |has| |#2| (-897 (-388)))) @@ -3096,61 +3173,63 @@ (((|#2|) . T)) ((((-872)) . T)) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((((-1192) (-52)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((((-1193) (-52)) . T)) ((((-417 |#2|)) . T)) ((((-872)) . T)) (((|#1|) . T)) -(|has| |#1| (-1115)) +((((-1193)) |has| |#1| (-912 (-1193)))) +(|has| |#1| (-1116)) (|has| |#1| (-801)) (|has| |#1| (-801)) ((((-872)) . T)) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) ((((-872)) . T)) ((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116)))) ((((-115)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-227)) . T) (((-388)) . T) (((-903 (-388))) . T)) ((((-872)) . T)) -((((-1269 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-1270 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566))) ((((-872)) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1065))) ((((-872)) . T)) (((|#2|) . T)) ((((-872)) . T)) -(((#0=(-923 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) +(((#0=(-924 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) (|has| |#1| (-372)) ((((-872)) . T)) (((|#2|) . T)) ((((-574)) . T)) +((((-1193)) |has| (-417 |#2|) (-912 (-1193)))) ((((-872)) . T)) ((((-574)) . T)) -(-2832 (|has| |#2| (-803)) (|has| |#2| (-860))) +(-2833 (|has| |#2| (-803)) (|has| |#2| (-860))) ((((-171 (-388))) . T) (((-227)) . T) (((-388)) . T)) ((((-872)) . T)) ((((-872)) . T)) -((((-1174)) . T) (((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) +((((-1175)) . T) (((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) ((((-872)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) ((#0=(-1268 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) +((($) . T) ((#0=(-1269 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) (|has| |#1| (-372)) (|has| |#1| (-372)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) ((((-574) $) . T) (((-654 (-574)) $) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)) (|has| |#1| (-1127)) (|has| |#1| (-1115))) -(|has| |#1| (-1167)) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)) (|has| |#1| (-1128)) (|has| |#1| (-1116))) +(|has| |#1| (-1168)) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) ((($) . T)) -((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) ((((-574) |#1|) . T)) (((|#1|) . T)) (((#0=(-117 |#1|) $) |has| #0# (-294 #0# #0#))) @@ -3161,13 +3240,15 @@ ((((-872)) . T)) ((((-115)) . T) ((|#1|) . T)) ((((-872)) . T)) -(((|#1| |#2|) . T)) +((((-1193)) |has| |#2| (-912 (-1193)))) (((|#1|) |has| |#1| (-317 |#1|))) -((((-574) |#1|) . T) (((-1250 (-574)) $) . T)) -((((-1192) |#1|) . T)) -(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)))) +((((-574) |#1|) . T) (((-1251 (-574)) $) . T)) +(((|#1| |#2|) . T)) +((((-1193) |#1|) . T)) +(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)))) (((|#1|) . T)) -(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1064)))) +((($ (-1193)) . T)) +(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1065)))) ((((-574)) . T) (((-417 (-574))) . T)) (((|#1|) . T)) (|has| |#1| (-566)) @@ -3177,36 +3258,36 @@ ((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (|has| |#1| (-372)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (|has| |#1| (-372)) (|has| |#1| (-566)) ((($) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) ((((-790 |#1| (-874 |#2|))) |has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|))))) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-922)) +(|has| |#2| (-923)) (((|#1| (-541 |#2|)) . T)) (((|#1| (-781)) . T)) (|has| |#1| (-239)) -(((|#1| (-541 (-1103 (-1192)))) . T)) +(((|#1| (-541 (-1104 (-1193)))) . T)) (|has| |#2| (-372)) -((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) +((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) ((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) ((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((((-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) . T)) +((((-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-574)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-872)) . T)) ((((-872)) . T)) -(-2832 (|has| |#3| (-803)) (|has| |#3| (-860))) +(-2833 (|has| |#3| (-803)) (|has| |#3| (-860))) ((((-872)) . T)) -((((-1135)) . T) (((-872)) . T)) +((((-1136)) . T) (((-872)) . T)) ((((-546)) . T) (((-872)) . T)) (((|#1|) . T)) ((($ $) . T) (((-622 $) $) . T)) @@ -3215,16 +3296,16 @@ ((((-574)) . T)) (((|#3|) . T)) ((((-872)) . T)) -(-2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-574)) . T) (((-417 (-574))) -2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574))))) ((|#2|) . T) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((-874 |#1|)) . T)) -((((-1140 |#1| |#2|)) . T) ((|#2|) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-574)) . T)) -((((-1188 |#1|)) . T) (((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) (((-1097)) . T) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) -(-2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) -((((-1140 |#1| (-1192))) . T) (((-574)) . T) (((-1103 (-1192))) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-1192)) . T)) +(-2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-574)) . T) (((-417 (-574))) -2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574))))) ((|#2|) . T) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((-874 |#1|)) . T)) +((((-1141 |#1| |#2|)) . T) ((|#2|) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-574)) . T)) +((((-1189 |#1|)) . T) (((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((-1098)) . T) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) +(-2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) +((((-1141 |#1| (-1193))) . T) (((-574)) . T) (((-1104 (-1193))) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-1193)) . T)) (((#0=(-591 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) ((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) (((|#1|) |has| |#1| (-174))) -(((|#1| (-1283 |#1|) (-1283 |#1|)) . T)) +(((|#1| (-1284 |#1|) (-1284 |#1|)) . T)) ((((-591 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) ((($) . T) (((-417 (-574))) . T)) (((|#1|) . T)) @@ -3232,13 +3313,13 @@ (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-417 (-574))) . T)) -(((|#2|) |has| |#2| (-6 (-4460 "*")))) +(((|#2|) |has| |#2| (-6 (-4461 "*")))) (((|#1|) . T)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) (((|#1|) . T)) ((((-872)) . T)) ((((-302 |#3|)) . T)) -(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) ((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) @@ -3246,78 +3327,79 @@ (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) (((|#2|) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) ((((-872)) . T)) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(|has| |#2| (-922)) -(|has| |#1| (-922)) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(|has| |#2| (-923)) +(|has| |#1| (-923)) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) ((((-872)) . T)) (((|#1|) . T)) -((((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) . T)) +((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -((((-1192)) . T) ((|#1|) . T)) +((((-1193)) . T) ((|#1|) . T)) ((((-872)) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T)) ((((-872)) . T)) ((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (((#0=(-417 (-574)) #0#) . T)) ((((-417 (-574))) . T)) (((|#1|) |has| |#1| (-174))) -(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1064))) +(-2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065))) (((|#1|) . T)) (((|#1|) . T)) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (((|#1|) . T)) ((((-417 (-574))) . T) (((-574)) . T) (($) . T)) ((((-546)) . T)) ((((-872)) . T)) -((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) +((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) ((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) ((((-872)) . T)) -((((-1192)) |has| |#2| (-913 (-1192))) (((-1097)) . T)) -((((-923 |#1|)) . T)) -((((-1268 |#2| |#3| |#4|)) . T)) +((((-1193)) |has| |#2| (-912 (-1193))) (((-1098)) . T)) +((((-924 |#1|)) . T)) +((((-1269 |#2| |#3| |#4|)) . T)) ((($) . T) (((-417 (-574))) . T)) (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((((-872)) . T)) -(|has| |#1| (-1237)) +(|has| |#1| (-1238)) (((|#2|) . T)) ((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -((((-1192)) |has| |#1| (-913 (-1192)))) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) -(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((((-1193)) |has| |#1| (-912 (-1193)))) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) +(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566)))) ((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) ((($) . T) (((-417 (-574))) . T)) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1064)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) +(((|#2|) |has| |#2| (-1065)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) ((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566)))) (|has| |#1| (-566)) (((|#1|) |has| |#1| (-372))) ((((-574)) . T)) -((((-1192) #0=(-117 |#1|)) |has| #0# (-524 (-1192) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) +((((-1193) #0=(-117 |#1|)) |has| #0# (-524 (-1193) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) (|has| |#1| (-801)) (|has| |#1| (-801)) -(((|#2|) . T) (((-574)) |has| |#2| (-1053 (-574))) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) -((((-1097)) . T) ((|#2|) . T) (((-574)) |has| |#2| (-1053 (-574))) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) +((((-1193)) |has| |#1| (-912 (-1193)))) +(((|#2|) . T) (((-574)) |has| |#2| (-1054 (-574))) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574))))) +((((-1098)) . T) ((|#2|) . T) (((-574)) |has| |#2| (-1054 (-574))) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574))))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3326,23 +3408,24 @@ (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-872)) . T)) ((($) |has| |#1| (-377))) ((($) |has| |#1| (-377))) ((($) |has| |#1| (-377))) (|has| |#2| (-830)) (|has| |#2| (-830)) -((((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) -(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) -((($) -2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) +((($ (-1193)) |has| |#1| (-912 (-1193)))) +(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574))))) +((($) -2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) +(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) ((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388)))) (((|#1|) . T)) ((((-880 |#1|)) . T)) ((((-880 |#1|)) . T)) -(-12 (|has| |#1| (-372)) (|has| |#2| (-922))) +(-12 (|has| |#1| (-372)) (|has| |#2| (-923))) ((((-417 (-574))) . T) (((-709)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-372)) @@ -3350,8 +3433,8 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) -(((|#2|) -2832 (|has| |#2| (-6 (-4460 "*"))) (|has| |#2| (-174)))) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) +(((|#2|) -2833 (|has| |#2| (-6 (-4461 "*"))) (|has| |#2| (-174)))) (((|#2|) . T)) (|has| |#1| (-372)) (((|#2|) . T)) @@ -3363,14 +3446,14 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#2| (-781)) . T)) -((((-1192)) . T)) +((((-1193)) . T)) ((((-880 |#1|)) . T)) -(-2832 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-1064))) -(-2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) +(-2833 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-1065))) +(-2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))) ((((-872)) . T)) (((|#1|) . T)) -(-2832 (|has| |#2| (-803)) (|has| |#2| (-860))) -(-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) +(-2833 (|has| |#2| (-803)) (|has| |#2| (-860))) +(-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) ((((-880 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-377)) @@ -3388,27 +3471,28 @@ (((|#1|) . T)) ((((-872)) . T)) ((($) . T) ((|#2|) . T) (((-417 (-574))) . T) (((-574)) |has| |#2| (-649 (-574)))) -(|has| |#1| (-1115)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(|has| |#1| (-1116)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-872)) . T)) -(|has| |#2| (-922)) -((((-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) . T)) +(|has| |#2| (-923)) +((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T)) ((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574))))) ((((-872)) . T)) ((((-872)) . T)) -(((|#3|) |has| |#3| (-1064)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) -((((-1140 |#1| |#2|)) . T) (((-965 |#1|)) |has| |#2| (-624 (-1192))) (((-872)) . T)) -((((-965 |#1|)) |has| |#2| (-624 (-1192))) (((-1174)) -12 (|has| |#1| (-1053 (-574))) (|has| |#2| (-624 (-1192)))) (((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388))))) (((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546))))) -((((-1188 |#1|)) . T) (((-872)) . T)) +(((|#3|) |has| |#3| (-1065)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) +((((-1141 |#1| |#2|)) . T) (((-966 |#1|)) |has| |#2| (-624 (-1193))) (((-872)) . T)) +((((-966 |#1|)) |has| |#2| (-624 (-1193))) (((-1175)) -12 (|has| |#1| (-1054 (-574))) (|has| |#2| (-624 (-1193)))) (((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388))))) (((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546))))) +((((-1189 |#1|)) . T) (((-872)) . T)) ((((-872)) . T)) -((((-417 (-574))) |has| |#2| (-1053 (-417 (-574)))) (((-574)) |has| |#2| (-1053 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) +((((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))) (((-574)) |has| |#2| (-1054 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) +((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T)) ((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T) (((-1192)) . T)) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T) (((-1193)) . T)) ((((-872)) . T)) ((((-574)) . T)) (((|#1|) . T)) @@ -3419,49 +3503,50 @@ ((((-872)) . T)) (((|#1|) . T)) ((((-872)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) ((((-654 |#1|)) . T)) ((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) -((($) . T) (((-574)) . T) (((-1269 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T)) -((((-574)) -2832 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) (($) -2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) ((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-1064))) (((-417 (-574))) |has| |#1| (-566))) -((((-1197)) . T)) +((($) . T) (((-574)) . T) (((-1270 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T)) +((((-574)) -2833 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) (($) -2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) ((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-1065))) (((-417 (-574))) |has| |#1| (-566))) +((((-1198)) . T)) ((((-574)) . T) (((-417 (-574))) . T)) -((((-1197)) . T)) -((((-1197)) . T)) +((($ (-1193)) |has| |#1| (-912 (-1193)))) +((((-1198)) . T)) +((((-1198)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -((((-1197)) . T)) +((((-1198)) . T)) (((|#1|) |has| |#1| (-317 |#1|))) ((((-388)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-872)) . T)) ((((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) ((((-417 |#2|) |#3|) . T)) +((((-872)) . T)) (((|#1|) . T)) -(|has| |#1| (-1115)) -(((|#2| (-492 (-2876 |#1|) (-781))) . T)) +(|has| |#1| (-1116)) +(((|#2| (-492 (-2877 |#1|) (-781))) . T)) ((((-574) |#1|) . T)) -((((-1174)) . T) (((-872)) . T)) +((((-1175)) . T) (((-872)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-541 (-1192))) . T)) -(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1064))) +(((|#1| (-541 (-1193))) . T)) +(-2833 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065))) ((((-574)) . T)) (((|#2|) . T)) -((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) +((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (((|#2|) . T)) -((((-1192)) |has| |#1| (-913 (-1192))) (((-1097)) . T)) +((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T)) (((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) (|has| |#1| (-566)) -(((#0=(-1268 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) +(((#0=(-1269 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) ((($) . T) (((-417 (-574))) . T)) ((($) . T)) ((($) . T)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) (((|#1|) . T)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) ((((-872)) . T)) ((((-145)) . T)) (((|#1|) . T) (((-417 (-574))) . T)) @@ -3469,16 +3554,17 @@ (((|#1|) . T)) ((((-872)) . T)) (((|#1|) . T)) -(|has| |#1| (-1167)) -(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T)) +(|has| |#1| (-1168)) +((($ (-1193)) |has| (-417 |#2|) (-912 (-1193)))) (((|#1|) . T)) +(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T)) ((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574))))) ((((-872)) . T)) -((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T) ((|#2|) . T)) -((((-1097)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T) ((|#2|) . T)) +((((-1098)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574))))) ((((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388)))) (((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574))))) -((((-1269 |#1| |#2| |#3| |#4|)) . T)) +((((-1270 |#1| |#2| |#3| |#4|)) . T)) ((((-574) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) @@ -3490,226 +3576,228 @@ ((($) . T)) (((|#1|) . T) (((-417 (-574))) |has| |#1| (-372))) ((((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-1115)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) (|has| |#2| (-372)) -(((|#1|) . T) (($) -2832 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372))) +(((|#1|) . T) (($) -2833 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372))) (|has| |#1| (-372)) (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574)))) ((($) |has| |#2| (-239))) ((((-574)) . T)) -((((-1192)) -12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) -((((-1192)) -12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) +((($ (-1193)) |has| |#2| (-912 (-1193)))) +((((-1193)) -12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) +((((-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (((|#1|) . T)) (|has| |#1| (-239)) -(((|#2| (-246 (-2876 |#1|) (-781))) . T)) +(((|#2| (-246 (-2877 |#1|) (-781))) . T)) (((|#1| (-541 |#3|)) . T)) (|has| |#1| (-377)) (|has| |#1| (-377)) (|has| |#1| (-377)) (((|#1|) . T) (($) . T)) (((|#1| (-541 |#2|)) . T)) -(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1064))) +(-2833 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065))) (((|#1| (-781)) . T)) (|has| |#1| (-566)) -(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1064))) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) +(-2833 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ((((-872)) . T)) ((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -(-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) -(-2832 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-1064))) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) +(-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) +(-2833 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-1065))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) (((|#1|) |has| |#1| (-174))) -(((|#4|) |has| |#4| (-1064))) -(((|#3|) |has| |#3| (-1064))) +(((|#4|) |has| |#4| (-1065))) +(((|#3|) |has| |#3| (-1065))) (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) -((((-574)) . T) (((-417 (-574))) -2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574))))) ((|#2|) . T) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((-874 |#1|)) . T)) -((((-1140 |#1| |#2|)) . T) (((-574)) . T) ((|#3|) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) ((|#2|) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-574)) . T) (((-417 (-574))) -2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574))))) ((|#2|) . T) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((-874 |#1|)) . T)) +((((-1141 |#1| |#2|)) . T) (((-574)) . T) ((|#3|) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) ((|#2|) . T)) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116)))) ((((-546)) |has| |#1| (-624 (-546)))) (((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) (((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -((((-1197)) . T)) +((((-1198)) . T)) ((((-682 |#1|)) . T)) ((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) ((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) ((((-872)) . T)) -((((-654 $)) . T) (((-1174)) . T) (((-1192)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) +((((-654 $)) . T) (((-1175)) . T) (((-1193)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) ((($) . T) (((-417 (-574))) . T)) (((|#1|) . T)) -(((|#4|) |has| |#4| (-1115)) (((-574)) -12 (|has| |#4| (-1053 (-574))) (|has| |#4| (-1115))) (((-417 (-574))) -12 (|has| |#4| (-1053 (-417 (-574)))) (|has| |#4| (-1115)))) -(((|#3|) |has| |#3| (-1115)) (((-574)) -12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (((-417 (-574))) -12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) +(((|#4|) |has| |#4| (-1116)) (((-574)) -12 (|has| |#4| (-1054 (-574))) (|has| |#4| (-1116))) (((-417 (-574))) -12 (|has| |#4| (-1054 (-417 (-574)))) (|has| |#4| (-1116)))) +(((|#3|) |has| |#3| (-1116)) (((-574)) -12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (((-417 (-574))) -12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116)))) (|has| |#2| (-372)) -(((|#2|) |has| |#2| (-1064)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) +(((|#2|) |has| |#2| (-1065)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((|#1|) . T)) -(|has| |#2| (-372)) -(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +((((-1193)) |has| |#1| (-1065))) +(|has| |#2| (-372)) (((|#2| |#2|) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) (((|#1|) . T) (($) . T) (((-417 (-574))) . T)) (((|#2|) . T)) -((((-872)) |has| |#1| (-1115))) +((((-872)) |has| |#1| (-1116))) ((($) . T)) -((((-1269 |#1| |#2| |#3| |#4|)) . T)) +((((-1270 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#2| (-830)) (|has| |#2| (-830)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-372)) (|has| |#1| (-372)) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-372)) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) |has| |#2| (-427 |#1|))) (((|#1|) |has| |#2| (-427 |#1|))) -((((-1174)) . T)) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-654 |#1|)) . T) (((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) -((((-1197)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) +((((-1175)) . T)) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-654 |#1|)) . T) (((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116)))) +((((-1198)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) ((((-654 |#1|)) . T)) ((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-872)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1232)) . T) (((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) |has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))))) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-872)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1233)) . T) (((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) |has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))))) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((((-574) |#1|) . T)) ((((-574) |#1|) . T)) ((((-574) |#1|) . T)) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((((-574) |#1|) . T)) (((|#1|) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) -((((-1192)) |has| |#1| (-913 (-1192))) (((-828 (-1192))) . T)) -(-2832 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-1064))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((((-1193)) |has| |#1| (-912 (-1193))) (((-828 (-1193))) . T)) +(-2833 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-1065))) ((((-829 |#1|)) . T)) (((|#1| |#2|) . T)) ((((-872)) . T)) -(-2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) +(-2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) (((|#1| |#2|) . T)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) (|has| |#1| (-38 (-417 (-574)))) ((((-872)) . T)) -((((-1269 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-1270 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566))) (((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) (|has| |#1| (-372)) -(-2832 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239)))) +(-2833 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239)))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-372)) (((|#1|) . T)) -(((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T)) -((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +(((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T)) +((((-1251 (-574)) $) . T) (((-574) |#1|) . T)) ((((-324 |#1|)) . T)) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((#0=(-709) (-1188 #0#)) . T)) -((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((#0=(-709) (-1189 #0#)) . T)) +((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) (((|#1|) . T) (($) . T) (((-574)) . T) (((-417 (-574))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-858)) -(((|#2|) . T) (((-1192)) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-1192)))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) -(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +(((|#2|) . T) (((-1193)) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-1193)))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) +(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566)))) ((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1140 |#1| (-1192))) . T) (((-828 (-1192))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-1192)) . T)) +((((-1141 |#1| (-1193))) . T) (((-828 (-1193))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-1193)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1097) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1192) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1103 (-1192)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1098) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1193) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1104 (-1193)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) (((-574)) |has| |#2| (-649 (-574))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) -(|has| |#1| (-239)) -(|has| |#2| (-922)) -((($) . T) ((#0=(-1268 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) +(|has| |#2| (-923)) +((($) . T) ((#0=(-1269 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) (((|#1|) |has| |#1| (-174))) ((((-574) |#1|) . T)) (((|#1|) . T)) -((((-1197)) . T)) -(((#0=(-1269 |#1| |#2| |#3| |#4|)) |has| #0# (-317 #0#))) +((((-1198)) . T)) +(((#0=(-1270 |#1| |#2| |#3| |#4|)) |has| #0# (-317 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2| |#2|) |has| |#1| (-372)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2| |#2|) |has| |#1| (-372)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) (|has| |#2| (-239)) (|has| $ (-148)) ((((-872)) . T)) -((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) ((((-872)) . T)) (|has| |#1| (-858)) ((((-130)) . T)) -((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) ((((-417 (-574))) . T) (((-709)) . T) (($) . T) (((-574)) . T)) (((|#1|) . T)) ((((-130)) . T)) -((((-417 |#2|) |#3|) . T)) +((($ (-1193)) |has| |#1| (-912 (-1193)))) ((((-872)) . T)) -(-12 (|has| |#1| (-315)) (|has| |#1| (-922))) +(-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (((|#2| (-682 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((((-872)) |has| |#1| (-1115))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((((-417 |#2|) |#3|) . T)) +((((-872)) |has| |#1| (-1116))) (((|#4|) . T)) (|has| |#1| (-566)) -((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T)) -((((-1192)) -2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) -(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) -((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) -((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) -(((|#1|) . T)) -(((|#1| (-541 (-828 (-1192)))) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -((((-574)) . T) ((|#2|) . T) (($) . T) (((-417 (-574))) . T) (((-1192)) |has| |#2| (-1053 (-1192)))) -(((|#1|) . T)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) -(((|#1|) . T)) -(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1064))) -(-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) -((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T)) +((((-1193)) -2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) +(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) +((((-1251 (-574)) $) . T) (((-574) |#1|) . T)) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) +(((|#1|) . T)) +(((|#1| (-541 (-828 (-1193)))) . T)) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +((((-574)) . T) ((|#2|) . T) (($) . T) (((-417 (-574))) . T) (((-1193)) |has| |#2| (-1054 (-1193)))) +(((|#1|) . T)) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) +(((|#1|) . T)) +(-2833 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065))) +(-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) +((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372))) ((($) . T) (((-880 |#1|)) . T) (((-417 (-574))) . T)) -((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372))) (|has| |#1| (-566)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-417 |#2|)) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116)))) ((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116)))) ((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116)))) ((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-417 (-574)) #0#) . T) (($ $) . T)) (((|#2|) . T) (((-417 (-574))) . T) (($) . T)) @@ -3730,67 +3818,68 @@ ((((-872)) . T)) ((((-872)) . T)) (|has| |#1| (-239)) -(((|#1|) . T) (((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) +(((|#1|) . T) (((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) ((((-872)) . T)) ((((-115)) . T) ((|#1|) . T) (((-574)) . T)) ((((-130)) . T)) ((($) . T) (((-574)) . T) (((-117 |#1|)) . T) (((-417 (-574))) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T)) (((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))) (((|#2|) . T) ((|#6|) . T)) ((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) ((($) . T) (((-574)) . T)) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-1119)) . T)) -((((-872)) . T)) -((((-1197)) . T) (((-872)) . T)) -((((-1197)) . T) (((-872)) . T)) -((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-1197)) . T)) -((((-1197)) . T)) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-1120)) . T)) +((((-872)) . T)) +((((-1198)) . T) (((-872)) . T)) +((((-1198)) . T) (((-872)) . T)) +((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-1198)) . T)) +((((-1198)) . T)) ((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) ((($) . T) (((-574)) . T)) -((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) ((((-872)) . T)) -(|has| |#2| (-922)) -((($ $) . T) (((-1192) $) . T)) -((((-1275 |#1| |#2| |#3|)) . T)) -((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +(|has| |#2| (-923)) +((($ $) . T) (((-1193) $) . T)) +((((-1276 |#1| |#2| |#3|)) . T)) +((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372))) (((|#1|) . T)) -((((-1275 |#1| |#2| |#3|)) . T) (((-1247 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-922)) -((((-1192)) . T) (((-872)) . T)) +((((-1276 |#1| |#2| |#3|)) . T) (((-1248 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-923)) +((((-1193)) . T) (((-872)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-174))) ((((-709)) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) -((((-1197)) . T)) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) +((((-1198)) . T)) (((|#1|) |has| |#1| (-174))) -((((-1197)) . T)) -((((-1269 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-1198)) . T)) +((((-1270 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566))) -((((-1197)) . T)) -((((-1269 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-1198)) . T)) +((((-1270 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-566)) (($) |has| |#1| (-566))) ((((-417 (-574))) . T) (($) . T)) (((|#1| (-574)) . T)) -(((|#1|) |has| |#1| (-174))) +((($ (-1193)) |has| |#1| (-912 (-1193))) (($ (-1098)) . T)) ((((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-1197)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) -((((-1197)) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-1197)) . T)) -((((-1197)) . T)) +(((|#1|) |has| |#1| (-174))) +((((-1198)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-358))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-1198)) . T)) +((((-1198)) . T)) (|has| |#1| (-372)) (|has| |#1| (-372)) -(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-174)) (|has| |#1| (-566))) (((|#1| (-574)) . T)) (((|#1| (-417 (-574))) . T)) (((|#1| (-781)) . T)) @@ -3798,55 +3887,55 @@ (((|#1| (-541 |#2|) |#2|) . T)) ((((-574) |#1|) . T)) ((((-574) |#1|) . T)) -(|has| |#1| (-1115)) +(|has| |#1| (-1116)) (|has| (-417 |#2|) (-239)) ((((-574) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-903 (-388))) . T) (((-903 (-574))) . T) (((-1192)) . T) (((-546)) . T)) -(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1064))) -(-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) +((((-903 (-388))) . T) (((-903 (-574))) . T) (((-1193)) . T) (((-546)) . T)) +(-2833 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065))) +(-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) ((((-872)) . T)) ((((-574)) . T)) ((((-574)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-2832 (|has| |#2| (-174)) (|has| |#2| (-1064))) -((((-1192)) -12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) -(-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) +(-2833 (|has| |#2| (-174)) (|has| |#2| (-1065))) +((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) +(-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-372)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1268 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) +((($) . T) ((#0=(-1269 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) (|has| |#1| (-239)) ((($) . T) (((-574)) . T) (((-417 (-574))) . T)) ((($) . T) (((-574)) . T)) ((($) . T) (((-574)) . T)) -((($) . T) ((#0=(-1268 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) +((($) . T) ((#0=(-1269 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) ((((-872)) . T)) -(((|#1| (-781) (-1097)) . T)) -((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) -((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +(((|#1| (-781) (-1098)) . T)) +((((-1251 (-574)) $) . T) (((-574) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((((-1251 (-574)) $) . T) (((-574) |#1|) . T)) +((((-1251 (-574)) $) . T) (((-574) |#1|) . T)) ((((-117 |#1|)) . T)) ((((-417 (-574))) . T) (((-574)) . T)) -(((|#2|) |has| |#2| (-1064))) +(((|#2|) |has| |#2| (-1065))) ((((-417 (-574))) . T) (($) . T)) (((|#2|) . T)) ((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) ((((-574)) . T)) ((((-574)) . T)) -((((-1174) (-1192) (-574) (-227) (-872)) . T)) +((((-1175) (-1193) (-574) (-227) (-872)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) ((((-574)) . T) ((|#2|) |has| |#2| (-174))) ((((-115)) . T) ((|#1|) . T) (((-574)) . T)) -(-2832 (|has| |#1| (-358)) (|has| |#1| (-377))) +(-2833 (|has| |#1| (-358)) (|has| |#1| (-377))) (((|#1| |#2|) . T)) ((((-227)) . T)) ((((-417 (-574))) . T) (($) . T) (((-574)) . T)) @@ -3854,31 +3943,31 @@ ((($) . T) ((|#1|) . T)) ((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) ((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#2|) |has| |#2| (-1115)) (((-574)) -12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) +(((|#2|) |has| |#2| (-1116)) (((-574)) -12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (|has| |#2| (-239)) (((|#1|) . T)) (((|#1|) . T)) ((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116)))) ((((-574) $) . T) (((-654 (-574)) $) . T)) ((($) . T) (((-417 (-574))) . T)) -(|has| |#1| (-922)) -(|has| |#1| (-922)) -((((-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1037))) (((-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1037))) (((-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) (((-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) (((-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546))))) +(|has| |#1| (-923)) +(|has| |#1| (-923)) +((((-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1038))) (((-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1038))) (((-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) (((-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) (((-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546))))) ((((-872)) . T)) ((((-872)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#1|) . T) (((-574)) . T)) -((((-1197)) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) +((((-1198)) . T)) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-858))) (((|#2|) . T)) -(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) +(-2833 (|has| |#1| (-21)) (|has| |#1| (-858))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-872)) -2832 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))))) +((((-872)) -2833 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))))) ((((-417 |#2|) |#3|) . T)) ((((-417 (-574))) . T) (($) . T)) (|has| |#1| (-38 (-417 (-574)))) @@ -3892,21 +3981,21 @@ (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((#0=(-574) #0#) . T)) ((($) . T) (((-417 (-574))) . T)) -(-2832 (|has| |#4| (-174)) (|has| |#4| (-1064))) -(-2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) -((((-872)) . T) (((-1197)) . T)) +(-2833 (|has| |#4| (-174)) (|has| |#4| (-1065))) +(-2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) +((((-872)) . T) (((-1198)) . T)) (|has| |#4| (-803)) (|has| |#4| (-803)) (|has| |#3| (-803)) (|has| |#3| (-803)) -((((-1197)) . T)) +((((-1198)) . T)) ((((-574)) . T)) (((|#2|) . T)) -((((-1192)) -2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) -((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) -((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) +((((-1193)) -2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) +((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3914,106 +4003,108 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T)) ((((-874 |#1|)) . T)) -((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) -((((-1155 |#1| |#2|)) . T)) -((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) -(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) -((((-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) . T)) +((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-1156 |#1| |#2|)) . T)) +((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372))) +(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) +((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T)) ((($) . T)) -(|has| |#1| (-1037)) -(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +(|has| |#1| (-1038)) +(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) ((($) . T)) ((((-872)) . T)) -((((-546)) |has| |#2| (-624 (-546))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#2| (-1037))) (((-227)) . #0#)) +((((-546)) |has| |#2| (-624 (-546))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#2| (-1038))) (((-227)) . #0#)) ((((-302 |#3|)) . T)) -((((-1192) (-52)) . T)) +((((-1193) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))) +((((-1193)) |has| |#2| (-912 (-1193)))) ((((-872)) . T)) (((|#2|) . T)) ((((-872)) . T)) ((((-417 (-574)) |#1|) . T) (($ $) . T)) ((((-417 |#2|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) ((((-417 (-574))) . T) (((-709)) . T) (($) . T)) -((((-1190 |#1| |#2| |#3|)) . T)) -((((-1190 |#1| |#2| |#3|)) . T) (((-1183 |#1| |#2| |#3|)) . T)) +((((-1191 |#1| |#2| |#3|)) . T)) +((((-1191 |#1| |#2| |#3|)) . T) (((-1184 |#1| |#2| |#3|)) . T)) ((((-872)) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) ((((-574) |#1|) . T)) -((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-372)) -(((|#3|) . T) ((|#2|) . T) (($) -2832 (|has| |#4| (-174)) (|has| |#4| (-1064))) ((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1064))) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1064)))) -(((|#2|) . T) (($) -2832 (|has| |#3| (-174)) (|has| |#3| (-1064))) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) +(((|#3|) . T) ((|#2|) . T) (($) -2833 (|has| |#4| (-174)) (|has| |#4| (-1065))) ((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1065))) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1065)))) +(((|#2|) . T) (($) -2833 (|has| |#3| (-174)) (|has| |#3| (-1065))) ((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (((|#1|) . T)) (((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-417 (-574))) |has| |#2| (-1053 (-417 (-574)))) (((-574)) |has| |#2| (-1053 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) -((((-1192)) . T) ((|#1|) . T)) +((((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))) (((-574)) |has| |#2| (-1054 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) +((((-1193)) . T) ((|#1|) . T)) ((((-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) ((((-189)) . T) (((-872)) . T)) ((((-872)) . T)) (((|#1|) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) ((((-130)) . T) (((-872)) . T)) -((((-574) |#1|) . T) (((-1250 (-574)) $) . T)) +((((-574) |#1|) . T) (((-1251 (-574)) $) . T)) ((((-130)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-372)) (|has| |#2| (-294 |#2| |#2|))) (($ $) . T) (((-574) |#1|) . T)) ((($ $) . T) (((-417 (-574)) |#1|) . T)) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-922))) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-923))) +((($ (-1193)) |has| |#1| (-1065))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) ((((-872)) . T)) ((((-872)) . T)) ((((-872)) . T)) (((|#1| (-541 |#2|)) . T)) -((((-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) . T)) +((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T)) ((((-574) (-130)) . T)) (((|#1| (-574)) . T)) (((|#1| (-417 (-574))) . T)) (((|#1| (-781)) . T)) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) ((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) -(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) +(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((($) . T)) (((|#2| (-541 (-874 |#1|))) . T)) -((((-1197)) . T)) -((((-1197)) . T)) +((((-1198)) . T)) +((((-1198)) . T)) ((((-574) |#1|) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) (((|#2|) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-872)) . T) (((-1197)) . T)) -((((-1197)) . T)) -((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-872)) . T) (((-1198)) . T)) +((((-1198)) . T)) +((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116)))) (((|#1|) . T)) (((|#2| (-781)) . T)) (((|#1| |#2|) . T)) -((((-1174) |#1|) . T)) +((((-1175) |#1|) . T)) ((((-417 |#2|)) . T)) -((((-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T)) +((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T)) (|has| |#1| (-566)) (|has| |#1| (-566)) ((($) . T) ((|#2|) . T)) @@ -4024,36 +4115,36 @@ ((((-574)) . T) (($) . T)) (((|#2| $) |has| |#2| (-294 |#2| |#2|))) (((|#1| (-654 |#1|)) |has| |#1| (-858))) -(-2832 (|has| |#1| (-239)) (|has| |#1| (-358))) -(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-1279 |#1|)) . T) (((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) -(|has| |#1| (-1115)) +(-2833 (|has| |#1| (-239)) (|has| |#1| (-358))) +(-2833 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-1280 |#1|)) . T) (((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574))))) +(|has| |#1| (-1116)) (((|#1|) . T)) -((((-1279 |#1|)) . T) (((-574)) . T) (($) -2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((-1097)) . T) ((|#2|) . T) (((-417 (-574))) -2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574)))))) +((((-1280 |#1|)) . T) (((-574)) . T) (($) -2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((-1098)) . T) ((|#2|) . T) (((-417 (-574))) -2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574)))))) ((((-417 (-574))) . T) (($) . T)) -((((-1014 |#1|)) . T) ((|#1|) . T) (((-574)) -2832 (|has| (-1014 |#1|) (-1053 (-574))) (|has| |#1| (-1053 (-574)))) (((-417 (-574))) -2832 (|has| (-1014 |#1|) (-1053 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) -((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((((-1192)) |has| |#1| (-913 (-1192)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) -((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-1015 |#1|)) . T) ((|#1|) . T) (((-574)) -2833 (|has| (-1015 |#1|) (-1054 (-574))) (|has| |#1| (-1054 (-574)))) (((-417 (-574))) -2833 (|has| (-1015 |#1|) (-1054 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) +((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((((-1193)) |has| |#1| (-912 (-1193)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) +((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T)) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1155 |#1| |#2|) #0#) |has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|)))) +(((#0=(-1156 |#1| |#2|) #0#) |has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) (|has| |#1| (-294 |#1| |#1|)) (|has| |#1| (-239)) (((#0=(-117 |#1|)) |has| #0# (-317 #0#))) ((($ $) . T)) -(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116))) ((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-239)) ((|#2| |#1|) |has| |#1| (-239)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-488 . -1115) T) ((-271 . -524) 193383) ((-253 . -524) 193326) ((-251 . -1115) 193276) ((-581 . -111) 193261) ((-541 . -23) T) ((-134 . -1115) T) ((-139 . -1115) T) ((-118 . -317) 193218) ((-138 . -1115) T) ((-1014 . -238) 193197) ((-809 . -1233) 193166) ((-489 . -524) 192958) ((-687 . -626) 192942) ((-704 . -102) T) ((-1156 . -524) 192861) ((-400 . -132) T) ((-1296 . -991) 192830) ((-1039 . -1066) 192767) ((-31 . -93) T) ((-612 . -499) 192751) ((-1039 . -650) 192688) ((-631 . -132) T) ((-829 . -856) T) ((-533 . -57) 192638) ((-529 . -524) 192571) ((-360 . -235) 192558) ((-363 . -1066) 192503) ((-59 . -524) 192436) ((-526 . -524) 192369) ((-428 . -913) 192328) ((-171 . -1064) T) ((-507 . -524) 192261) ((-506 . -524) 192194) ((-363 . -650) 192139) ((-809 . -1053) 191919) ((-709 . -38) 191884) ((-1256 . -626) 191632) ((-352 . -358) T) ((-1109 . -1108) 191616) ((-1109 . -1115) 191594) ((-865 . -626) 191491) ((-171 . -249) 191442) ((-171 . -239) 191393) ((-1109 . -1110) 191351) ((-882 . -294) 191309) ((-227 . -805) T) ((-227 . -802) T) ((-704 . -292) NIL) ((-581 . -626) 191281) ((-1165 . -1209) 191260) ((-417 . -1007) 191244) ((-48 . -1066) 191209) ((-711 . -21) T) ((-711 . -25) T) ((-48 . -650) 191174) ((-1298 . -658) 191148) ((-324 . -161) 191127) ((-324 . -144) 191106) ((-1165 . -107) 191056) ((-117 . -21) T) ((-40 . -233) 191033) ((-135 . -25) T) ((-117 . -25) T) ((-618 . -296) 191009) ((-485 . -296) 190988) ((-1256 . -334) 190965) ((-1256 . -1064) T) ((-865 . -1064) T) ((-809 . -347) 190949) ((-140 . -187) T) ((-118 . -1167) NIL) ((-91 . -623) 190881) ((-487 . -132) T) ((-1256 . -239) T) ((-1111 . -500) 190862) ((-1111 . -623) 190828) ((-1105 . -500) 190809) ((-1105 . -623) 190775) ((-603 . -1233) T) ((-1088 . -500) 190756) ((-581 . -1064) T) ((-1088 . -623) 190722) ((-672 . -727) 190706) ((-1081 . -500) 190687) ((-1081 . -623) 190653) ((-971 . -296) 190630) ((-60 . -34) T) ((-1077 . -805) T) ((-1077 . -802) T) ((-1051 . -500) 190611) ((-1034 . -500) 190592) ((-826 . -736) T) ((-741 . -47) 190557) ((-633 . -38) 190544) ((-364 . -298) T) ((-361 . -298) T) ((-353 . -298) T) ((-271 . -298) 190475) ((-253 . -298) 190406) ((-1051 . -623) 190372) ((-1039 . -102) T) ((-1034 . -623) 190338) ((-636 . -500) 190319) ((-423 . -736) T) ((-118 . -38) 190264) ((-493 . -500) 190245) ((-636 . -623) 190211) ((-423 . -483) T) ((-220 . -500) 190192) ((-493 . -623) 190158) ((-363 . -102) T) ((-220 . -623) 190124) ((-1227 . -1073) T) ((-352 . -656) 190054) ((-721 . -1073) T) ((-1190 . -47) 190031) ((-1189 . -47) 190001) ((-1183 . -47) 189978) ((-129 . -296) 189953) ((-1050 . -152) 189899) ((-923 . -298) T) ((-1141 . -47) 189871) ((-704 . -317) NIL) ((-525 . -623) 189853) ((-520 . -623) 189835) ((-518 . -623) 189817) ((-335 . -1115) 189767) ((-722 . -462) 189698) ((-48 . -102) T) ((-1267 . -294) 189656) ((-1246 . -294) 189556) ((-654 . -676) 189540) ((-654 . -661) 189524) ((-348 . -21) T) ((-348 . -25) T) ((-40 . -358) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-654 . -382) 189508) ((-615 . -500) 189490) ((-612 . -294) 189442) ((-615 . -623) 189409) ((-398 . -102) T) ((-1135 . -144) T) ((-127 . -623) 189341) ((-884 . -1115) T) ((-668 . -421) 189325) ((-724 . -623) 189307) ((-255 . -623) 189274) ((-189 . -623) 189256) ((-163 . -623) 189238) ((-158 . -623) 189220) ((-1298 . -736) T) ((-1117 . -34) T) ((-881 . -805) NIL) ((-881 . -802) NIL) ((-868 . -860) T) ((-741 . -897) NIL) ((-1307 . -132) T) ((-390 . -132) T) ((-903 . -626) 189188) ((-917 . -102) T) ((-741 . -1053) 189064) ((-1190 . -1233) T) ((-541 . -132) T) ((-1189 . -1233) T) ((-1102 . -421) 189048) ((-1015 . -499) 189032) ((-118 . -410) 189009) ((-1183 . -1233) T) ((-792 . -421) 188993) ((-790 . -421) 188977) ((-956 . -34) T) ((-704 . -1167) NIL) ((-258 . -658) 188769) ((-257 . -658) 188548) ((-827 . -933) 188527) ((-464 . -421) 188511) ((-612 . -19) 188495) ((-1161 . -1226) 188464) ((-1183 . -897) NIL) ((-1183 . -895) 188416) ((-612 . -614) 188393) ((-1219 . -623) 188325) ((-1191 . -623) 188307) ((-62 . -405) T) ((-1189 . -1053) 188242) ((-1183 . -1053) 188208) ((-704 . -38) 188158) ((-40 . -656) 188088) ((-484 . -294) 188046) ((-1239 . -623) 188028) ((-741 . -386) 188012) ((-848 . -623) 187994) ((-668 . -1073) T) ((-1267 . -1017) 187960) ((-1246 . -1017) 187926) ((-256 . -1233) T) ((-1103 . -626) 187910) ((-1078 . -1209) 187885) ((-1091 . -626) 187862) ((-882 . -624) 187669) ((-882 . -623) 187651) ((-711 . -235) 187638) ((-1205 . -499) 187575) ((-428 . -1037) 187553) ((-48 . -317) 187540) ((-1078 . -107) 187486) ((-489 . -499) 187423) ((-530 . -1233) T) ((-1183 . -347) 187375) ((-1156 . -499) 187346) ((-1183 . -386) 187298) ((-1102 . -1073) T) ((-447 . -102) T) ((-185 . -1115) T) ((-258 . -34) T) ((-257 . -34) T) ((-792 . -1073) T) ((-790 . -1073) T) ((-741 . -913) 187275) ((-464 . -1073) T) ((-59 . -499) 187259) ((-1049 . -1071) 187233) ((-529 . -499) 187217) ((-526 . -499) 187201) ((-507 . -499) 187185) ((-506 . -499) 187169) ((-251 . -524) 187102) ((-1049 . -111) 187069) ((-1190 . -913) 186982) ((-1189 . -913) 186888) ((-680 . -1127) T) ((-1183 . -913) 186721) ((-655 . -93) T) ((-1141 . -913) 186705) ((-363 . -1167) T) ((-330 . -1071) 186687) ((-31 . -500) 186668) ((-258 . -804) 186647) ((-258 . -803) 186626) ((-257 . -804) 186605) ((-257 . -803) 186584) ((-31 . -623) 186550) ((-50 . -1073) T) ((-258 . -736) 186500) ((-257 . -736) 186450) ((-1227 . -1115) T) ((-680 . -23) T) ((-591 . -1073) T) ((-528 . -1073) T) ((-388 . -1071) 186415) ((-330 . -111) 186390) ((-73 . -392) T) ((-73 . -405) T) ((-1039 . -38) 186327) ((-704 . -410) 186309) ((-99 . -102) T) ((-721 . -1115) T) ((-1312 . -1066) 186296) ((-1018 . -146) 186268) ((-1018 . -148) 186240) ((-880 . -656) 186212) ((-388 . -111) 186168) ((-327 . -1237) 186147) ((-484 . -1017) 186113) ((-363 . -38) 186078) ((-40 . -379) 186050) ((-883 . -623) 185922) ((-128 . -126) 185906) ((-122 . -126) 185890) ((-846 . -1071) 185860) ((-843 . -21) 185812) ((-837 . -1071) 185796) ((-843 . -25) 185748) ((-327 . -566) 185699) ((-527 . -626) 185680) ((-574 . -838) T) ((-246 . -1233) T) ((-1049 . -626) 185649) ((-846 . -111) 185614) ((-837 . -111) 185593) ((-1267 . -623) 185575) ((-1246 . -623) 185557) ((-1246 . -624) 185228) ((-1188 . -922) 185207) ((-1140 . -922) 185186) ((-48 . -38) 185151) ((-1305 . -1127) T) ((-546 . -294) 185107) ((-612 . -623) 185019) ((-612 . -624) 184980) ((-1303 . -1127) T) ((-370 . -626) 184964) ((-330 . -626) 184948) ((-1157 . -238) 184927) ((-246 . -1053) 184754) ((-1188 . -658) 184643) ((-1140 . -658) 184532) ((-864 . -658) 184506) ((-728 . -623) 184488) ((-556 . -377) T) ((-1305 . -23) T) ((-1303 . -23) T) ((-501 . -1115) T) ((-388 . -626) 184438) ((-388 . -628) 184420) ((-1049 . -1064) T) ((-875 . -102) T) ((-1205 . -294) 184399) ((-171 . -377) 184350) ((-1019 . -1233) T) ((-846 . -626) 184304) ((-837 . -626) 184259) ((-44 . -23) T) ((-489 . -294) 184238) ((-596 . -1115) T) ((-1161 . -1124) 184207) ((-1119 . -1118) 184159) ((-400 . -21) T) ((-400 . -25) T) ((-153 . -1127) T) ((-1312 . -102) T) ((-1019 . -895) 184141) ((-1019 . -897) 184123) ((-1227 . -727) 184020) ((-633 . -233) 184004) ((-631 . -21) T) ((-297 . -566) T) ((-631 . -25) T) ((-1213 . -1115) T) ((-721 . -727) 183969) ((-246 . -386) 183938) ((-1019 . -1053) 183898) ((-388 . -1064) T) ((-225 . -1073) T) ((-118 . -233) 183875) ((-59 . -294) 183827) ((-153 . -23) T) ((-526 . -294) 183779) ((-335 . -524) 183712) ((-506 . -294) 183664) ((-388 . -249) T) ((-388 . -239) T) ((-846 . -1064) T) ((-837 . -1064) T) ((-722 . -962) 183633) ((-711 . -860) T) ((-484 . -623) 183615) ((-1269 . -1066) 183520) ((-590 . -656) 183492) ((-574 . -656) 183464) ((-505 . -656) 183414) ((-837 . -239) 183393) ((-135 . -860) T) ((-1269 . -650) 183285) ((-668 . -1115) T) ((-1205 . -614) 183264) ((-560 . -1209) 183243) ((-345 . -1115) T) ((-327 . -372) 183222) ((-417 . -148) 183201) ((-417 . -146) 183180) ((-977 . -1127) 183079) ((-246 . -913) 183011) ((-825 . -1127) 182961) ((-664 . -862) 182945) ((-489 . -614) 182924) ((-560 . -107) 182874) ((-1019 . -386) 182856) ((-1019 . -347) 182838) ((-1192 . -623) 182820) ((-97 . -1115) T) ((-977 . -23) 182631) ((-487 . -21) T) ((-487 . -25) T) ((-825 . -23) 182521) ((-1192 . -624) 182443) ((-59 . -19) 182427) ((-1188 . -736) T) ((-1140 . -736) T) ((-1102 . -1115) T) ((-526 . -19) 182411) ((-506 . -19) 182395) ((-59 . -614) 182372) ((-1018 . -238) 182344) ((-914 . -102) 182322) ((-864 . -736) T) ((-792 . -1115) T) ((-526 . -614) 182299) ((-506 . -614) 182276) ((-790 . -1115) T) ((-790 . -1080) 182243) ((-471 . -1115) T) ((-464 . -1115) T) ((-596 . -727) 182218) ((-659 . -1115) T) ((-1275 . -47) 182195) ((-1269 . -102) T) ((-1268 . -47) 182165) ((-1247 . -47) 182142) ((-1227 . -174) 182093) ((-1189 . -315) 182072) ((-1183 . -315) 182051) ((-1111 . -626) 182032) ((-1105 . -626) 182013) ((-1095 . -566) 181964) ((-1019 . -913) NIL) ((-1095 . -1237) 181915) ((-680 . -132) T) ((-637 . -1127) T) ((-1088 . -626) 181896) ((-1081 . -626) 181877) ((-1051 . -626) 181858) ((-1034 . -626) 181839) ((-709 . -656) 181789) ((-282 . -1115) T) ((-85 . -451) T) ((-85 . -405) T) ((-724 . -1071) 181759) ((-721 . -174) T) ((-50 . -1115) T) ((-605 . -47) 181736) ((-227 . -658) 181701) ((-591 . -1115) T) ((-528 . -1115) T) ((-497 . -830) T) ((-497 . -933) T) ((-368 . -1237) T) ((-362 . -1237) T) ((-354 . -1237) T) ((-327 . -1127) T) ((-324 . -1066) 181611) ((-321 . -1066) 181540) ((-108 . -1237) T) ((-636 . -626) 181521) ((-368 . -566) T) ((-219 . -933) T) ((-219 . -830) T) ((-324 . -650) 181431) ((-321 . -650) 181360) ((-362 . -566) T) ((-354 . -566) T) ((-493 . -626) 181341) ((-108 . -566) T) ((-668 . -727) 181311) ((-1183 . -1037) NIL) ((-220 . -626) 181292) ((-327 . -23) T) ((-67 . -1233) T) ((-1015 . -623) 181224) ((-704 . -233) 181206) ((-724 . -111) 181171) ((-654 . -34) T) ((-251 . -499) 181155) ((-1312 . -1167) T) ((-1307 . -21) T) ((-1307 . -25) T) ((-1305 . -132) T) ((-1117 . -1113) 181139) ((-173 . -1115) T) ((-1303 . -132) T) ((-1296 . -102) T) ((-1279 . -623) 181105) ((-1275 . -1233) T) ((-1268 . -1233) T) ((-965 . -922) 181084) ((-1268 . -1053) 181019) ((-1247 . -1233) T) ((-1247 . -897) NIL) ((-525 . -626) 181003) ((-1247 . -895) 180955) ((-1247 . -1053) 180921) ((-1227 . -524) 180888) ((-491 . -922) 180867) ((-1205 . -624) NIL) ((-1205 . -623) 180849) ((-1102 . -727) 180698) ((-1077 . -658) 180670) ((-965 . -658) 180559) ((-607 . -500) 180540) ((-595 . -500) 180521) ((-792 . -727) 180350) ((-607 . -623) 180316) ((-595 . -623) 180282) ((-546 . -623) 180264) ((-546 . -624) 180245) ((-790 . -727) 180094) ((-1092 . -102) T) ((-390 . -25) T) ((-633 . -656) 180066) ((-390 . -21) T) ((-491 . -658) 179955) ((-471 . -727) 179926) ((-464 . -727) 179775) ((-1002 . -102) T) ((-1157 . -1138) 179720) ((-1061 . -1226) 179649) ((-914 . -317) 179587) ((-747 . -102) T) ((-118 . -656) 179517) ((-615 . -626) 179499) ((-886 . -93) T) ((-724 . -626) 179453) ((-541 . -25) T) ((-691 . -93) T) ((-686 . -93) T) ((-674 . -623) 179435) ((-655 . -500) 179416) ((-142 . -102) T) ((-44 . -132) T) ((-655 . -623) 179369) ((-605 . -1233) T) ((-352 . -1073) T) ((-297 . -1127) T) ((-488 . -93) T) ((-417 . -238) 179348) ((-364 . -623) 179330) ((-361 . -623) 179312) ((-353 . -623) 179294) ((-271 . -624) 179042) ((-271 . -623) 179024) ((-253 . -623) 179006) ((-253 . -624) 178867) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1156 . -623) 178849) ((-1135 . -650) 178836) ((-1135 . -1066) 178823) ((-829 . -736) T) ((-829 . -867) T) ((-612 . -296) 178800) ((-591 . -727) 178765) ((-489 . -624) NIL) ((-489 . -623) 178747) ((-528 . -727) 178692) ((-324 . -102) T) ((-321 . -102) T) ((-297 . -23) T) ((-153 . -132) T) ((-923 . -623) 178674) ((-923 . -624) 178656) ((-396 . -736) T) ((-882 . -1071) 178608) ((-882 . -111) 178546) ((-724 . -1064) T) ((-722 . -1259) 178530) ((-704 . -358) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-529 . -623) 178462) ((-388 . -805) T) ((-225 . -1115) T) ((-169 . -1233) T) ((-388 . -802) T) ((-227 . -804) T) ((-227 . -801) T) ((-59 . -624) 178423) ((-59 . -623) 178335) ((-227 . -736) T) ((-526 . -624) 178296) ((-526 . -623) 178208) ((-507 . -623) 178140) ((-506 . -624) 178101) ((-506 . -623) 178013) ((-1095 . -372) 177964) ((-40 . -421) 177941) ((-77 . -1233) T) ((-881 . -922) NIL) ((-368 . -337) 177925) ((-368 . -372) T) ((-362 . -337) 177909) ((-362 . -372) T) ((-354 . -337) 177893) ((-354 . -372) T) ((-324 . -292) 177872) ((-108 . -372) T) ((-70 . -1233) T) ((-1247 . -347) 177824) ((-881 . -658) 177769) ((-1247 . -386) 177721) ((-977 . -132) 177576) ((-825 . -132) 177466) ((-971 . -661) 177450) ((-1102 . -174) 177361) ((-971 . -382) 177345) ((-1077 . -804) T) ((-1077 . -801) T) ((-882 . -626) 177243) ((-792 . -174) 177134) ((-790 . -174) 177045) ((-826 . -47) 177007) ((-1077 . -736) T) ((-335 . -499) 176991) ((-965 . -736) T) ((-1296 . -317) 176929) ((-464 . -174) 176840) ((-251 . -294) 176792) ((-1275 . -913) 176705) ((-1268 . -913) 176611) ((-1267 . -1071) 176446) ((-491 . -736) T) ((-1247 . -913) 176279) ((-1246 . -1071) 176087) ((-1227 . -298) 176066) ((-1202 . -1233) T) ((-1199 . -377) T) ((-1198 . -377) T) ((-1161 . -152) 176050) ((-1135 . -102) T) ((-1133 . -1115) T) ((-1095 . -23) T) ((-1095 . -1127) T) ((-1090 . -102) T) ((-1072 . -623) 176017) ((-940 . -968) T) ((-747 . -317) 175955) ((-75 . -1233) T) ((-674 . -391) 175927) ((-171 . -922) 175880) ((-30 . -968) T) ((-112 . -854) T) ((-1 . -623) 175862) ((-1018 . -419) 175834) ((-129 . -661) 175816) ((-50 . -630) 175800) ((-704 . -656) 175735) ((-605 . -913) 175648) ((-448 . -102) T) ((-129 . -382) 175630) ((-142 . -317) NIL) ((-882 . -1064) T) ((-843 . -860) 175609) ((-81 . -1233) T) ((-721 . -298) T) ((-40 . -1073) T) ((-591 . -174) T) ((-528 . -174) T) ((-521 . -623) 175591) ((-171 . -658) 175465) ((-517 . -623) 175447) ((-360 . -148) 175429) ((-360 . -146) T) ((-368 . -1127) T) ((-362 . -1127) T) ((-354 . -1127) T) ((-1019 . -315) T) ((-927 . -315) T) ((-882 . -249) T) ((-108 . -1127) T) ((-882 . -239) 175408) ((-1267 . -111) 175229) ((-1246 . -111) 175018) ((-251 . -1271) 175002) ((-574 . -858) T) ((-368 . -23) T) ((-363 . -358) T) ((-324 . -317) 174989) ((-321 . -317) 174930) ((-362 . -23) T) ((-327 . -132) T) ((-354 . -23) T) ((-1019 . -1037) T) ((-31 . -626) 174911) ((-108 . -23) T) ((-664 . -1066) 174895) ((-251 . -614) 174872) ((-341 . -1115) T) ((-664 . -650) 174842) ((-1269 . -38) 174734) ((-1256 . -922) 174713) ((-112 . -1115) T) ((-826 . -1233) 174692) ((-1050 . -102) T) ((-1256 . -658) 174581) ((-881 . -804) NIL) ((-865 . -658) 174555) ((-881 . -801) NIL) ((-826 . -897) NIL) ((-881 . -736) T) ((-1102 . -524) 174428) ((-792 . -524) 174375) ((-790 . -524) 174327) ((-581 . -658) 174314) ((-826 . -1053) 174142) ((-464 . -524) 174085) ((-398 . -399) T) ((-1267 . -626) 173898) ((-1246 . -626) 173646) ((-60 . -1233) T) ((-631 . -860) 173625) ((-510 . -671) T) ((-1161 . -991) 173594) ((-1039 . -656) 173531) ((-1018 . -462) T) ((-709 . -858) T) ((-520 . -802) T) ((-484 . -1071) 173366) ((-510 . -113) T) ((-352 . -1115) T) ((-321 . -1167) NIL) ((-297 . -132) T) ((-404 . -1115) T) ((-880 . -1073) T) ((-704 . -379) 173333) ((-363 . -656) 173263) ((-225 . -630) 173240) ((-335 . -294) 173192) ((-484 . -111) 173013) ((-1267 . -1064) T) ((-1246 . -1064) T) ((-826 . -386) 172997) ((-171 . -736) T) ((-664 . -102) T) ((-1267 . -249) 172976) ((-1267 . -239) 172928) ((-1246 . -239) 172833) ((-1246 . -249) 172812) ((-1018 . -412) NIL) ((-680 . -649) 172760) ((-324 . -38) 172670) ((-321 . -38) 172599) ((-69 . -623) 172581) ((-327 . -503) 172547) ((-48 . -656) 172497) ((-1205 . -296) 172476) ((-1241 . -860) T) ((-1128 . -1127) 172426) ((-83 . -1233) T) ((-61 . -623) 172408) ((-489 . -296) 172387) ((-1298 . -1053) 172364) ((-1180 . -1115) T) ((-1128 . -23) 172254) ((-826 . -913) 172190) ((-1256 . -736) T) ((-1117 . -1233) T) ((-484 . -626) 172016) ((-360 . -238) T) ((-1102 . -298) 171947) ((-979 . -1115) T) ((-904 . -102) T) ((-792 . -298) 171858) ((-335 . -19) 171842) ((-59 . -296) 171819) ((-790 . -298) 171750) ((-865 . -736) T) ((-118 . -858) NIL) ((-526 . -296) 171727) ((-335 . -614) 171704) ((-506 . -296) 171681) ((-464 . -298) 171612) ((-1050 . -317) 171463) ((-886 . -500) 171444) ((-886 . -623) 171410) ((-691 . -500) 171391) ((-581 . -736) T) ((-686 . -500) 171372) ((-691 . -623) 171322) ((-686 . -623) 171288) ((-672 . -623) 171270) ((-488 . -500) 171251) ((-488 . -623) 171217) ((-251 . -624) 171178) ((-251 . -500) 171155) ((-139 . -500) 171136) ((-138 . -500) 171117) ((-134 . -500) 171098) ((-251 . -623) 170990) ((-215 . -102) T) ((-139 . -623) 170956) ((-138 . -623) 170922) ((-134 . -623) 170888) ((-1162 . -34) T) ((-956 . -1233) T) ((-352 . -727) 170833) ((-680 . -25) T) ((-680 . -21) T) ((-1192 . -626) 170814) ((-484 . -1064) T) ((-645 . -427) 170779) ((-617 . -427) 170744) ((-1135 . -1167) T) ((-722 . -1066) 170567) ((-591 . -298) T) ((-528 . -298) T) ((-1268 . -315) 170546) ((-484 . -239) 170498) ((-484 . -249) 170477) ((-1247 . -315) 170456) ((-722 . -650) 170285) ((-1247 . -1037) NIL) ((-1095 . -132) T) ((-882 . -805) 170264) ((-145 . -102) T) ((-40 . -1115) T) ((-882 . -802) 170243) ((-654 . -1025) 170227) ((-590 . -1073) T) ((-574 . -1073) T) ((-505 . -1073) T) ((-417 . -462) T) ((-368 . -132) T) ((-324 . -410) 170211) ((-321 . -410) 170172) ((-362 . -132) T) ((-354 . -132) T) ((-1197 . -1115) T) ((-1135 . -38) 170159) ((-1109 . -623) 170126) ((-108 . -132) T) ((-967 . -1115) T) ((-934 . -1115) T) ((-781 . -1115) T) ((-682 . -1115) T) ((-711 . -148) T) ((-117 . -148) T) ((-1305 . -21) T) ((-1305 . -25) T) ((-1303 . -21) T) ((-1303 . -25) T) ((-674 . -1071) 170110) ((-541 . -860) T) ((-510 . -860) T) ((-364 . -1071) 170062) ((-361 . -1071) 170014) ((-353 . -1071) 169966) ((-258 . -1233) T) ((-257 . -1233) T) ((-271 . -1071) 169809) ((-253 . -1071) 169652) ((-674 . -111) 169631) ((-557 . -854) T) ((-364 . -111) 169569) ((-361 . -111) 169507) ((-353 . -111) 169445) ((-271 . -111) 169274) ((-253 . -111) 169103) ((-827 . -1237) 169082) ((-633 . -421) 169066) ((-44 . -21) T) ((-44 . -25) T) ((-825 . -649) 168972) ((-827 . -566) 168951) ((-258 . -1053) 168778) ((-257 . -1053) 168605) ((-127 . -120) 168589) ((-923 . -1071) 168554) ((-722 . -102) T) ((-709 . -1073) T) ((-607 . -626) 168535) ((-595 . -626) 168516) ((-546 . -628) 168419) ((-352 . -174) T) ((-88 . -623) 168401) ((-153 . -21) T) ((-153 . -25) T) ((-923 . -111) 168357) ((-40 . -727) 168302) ((-880 . -1115) T) ((-674 . -626) 168279) ((-655 . -626) 168260) ((-364 . -626) 168197) ((-361 . -626) 168134) ((-557 . -1115) T) ((-353 . -626) 168071) ((-335 . -624) 168032) ((-335 . -623) 167944) ((-271 . -626) 167697) ((-253 . -626) 167482) ((-1246 . -802) 167435) ((-1246 . -805) 167388) ((-258 . -386) 167357) ((-257 . -386) 167326) ((-664 . -38) 167296) ((-618 . -34) T) ((-492 . -1127) 167246) ((-485 . -34) T) ((-1128 . -132) 167136) ((-977 . -25) 166947) ((-923 . -626) 166897) ((-884 . -623) 166879) ((-977 . -21) 166834) ((-825 . -21) 166764) ((-825 . -25) 166635) ((-1239 . -377) T) ((-633 . -1073) T) ((-1194 . -566) 166614) ((-1188 . -47) 166591) ((-364 . -1064) T) ((-361 . -1064) T) ((-492 . -23) 166481) ((-353 . -1064) T) ((-271 . -1064) T) ((-253 . -1064) T) ((-1140 . -47) 166453) ((-118 . -1073) T) ((-1049 . -658) 166427) ((-971 . -34) T) ((-364 . -239) 166406) ((-364 . -249) T) ((-361 . -239) 166385) ((-361 . -249) T) ((-353 . -239) 166364) ((-353 . -249) T) ((-271 . -334) 166336) ((-253 . -334) 166293) ((-271 . -239) 166272) ((-1172 . -152) 166256) ((-258 . -913) 166188) ((-257 . -913) 166120) ((-1097 . -860) T) ((-424 . -1127) T) ((-1069 . -23) T) ((-1039 . -858) T) ((-923 . -1064) T) ((-330 . -658) 166102) ((-711 . -238) T) ((-680 . -235) 166075) ((-1227 . -1017) 166041) ((-1189 . -933) 166020) ((-1183 . -933) 165999) ((-1183 . -830) NIL) ((-1014 . -1066) 165895) ((-980 . -1233) T) ((-923 . -249) T) ((-827 . -372) 165874) ((-394 . -23) T) ((-128 . -1115) 165852) ((-122 . -1115) 165830) ((-923 . -239) T) ((-129 . -34) T) ((-388 . -658) 165795) ((-1014 . -650) 165743) ((-880 . -727) 165730) ((-1312 . -656) 165702) ((-1061 . -152) 165667) ((-1008 . -1233) T) ((-40 . -174) T) ((-704 . -421) 165649) ((-722 . -317) 165636) ((-846 . -658) 165596) ((-837 . -658) 165570) ((-327 . -25) T) ((-327 . -21) T) ((-668 . -294) 165549) ((-590 . -1115) T) ((-574 . -1115) T) ((-505 . -1115) T) ((-251 . -296) 165526) ((-1188 . -1233) T) ((-321 . -233) 165487) ((-1188 . -897) NIL) ((-55 . -1115) T) ((-1140 . -897) 165346) ((-130 . -860) T) ((-1188 . -1053) 165226) ((-1140 . -1053) 165109) ((-185 . -623) 165091) ((-864 . -1053) 164987) ((-792 . -294) 164914) ((-827 . -1127) T) ((-1049 . -736) T) ((-612 . -661) 164898) ((-1061 . -991) 164827) ((-1014 . -102) T) ((-827 . -23) T) ((-722 . -1167) 164805) ((-704 . -1073) T) ((-612 . -382) 164789) ((-360 . -462) T) ((-352 . -298) T) ((-1284 . -1115) T) ((-254 . -1115) T) ((-409 . -102) T) ((-297 . -21) T) ((-297 . -25) T) ((-370 . -736) T) ((-720 . -1115) T) ((-709 . -1115) T) ((-370 . -483) T) ((-1227 . -623) 164771) ((-1188 . -386) 164755) ((-1140 . -386) 164739) ((-1039 . -421) 164701) ((-142 . -231) 164683) ((-388 . -804) T) ((-388 . -801) T) ((-880 . -174) T) ((-388 . -736) T) ((-721 . -623) 164665) ((-722 . -38) 164494) ((-1283 . -1281) 164478) ((-360 . -412) T) ((-1283 . -1115) 164428) ((-1206 . -1115) T) ((-590 . -727) 164415) ((-574 . -727) 164402) ((-505 . -727) 164367) ((-1269 . -656) 164257) ((-324 . -639) 164236) ((-846 . -736) T) ((-837 . -736) T) ((-654 . -1233) T) ((-1095 . -649) 164184) ((-1188 . -913) 164127) ((-1140 . -913) 164111) ((-825 . -235) 164057) ((-672 . -1071) 164041) ((-108 . -649) 164023) ((-492 . -132) 163913) ((-1194 . -1127) T) ((-965 . -47) 163882) ((-633 . -1115) T) ((-672 . -111) 163861) ((-501 . -623) 163827) ((-335 . -296) 163804) ((-491 . -47) 163761) ((-1194 . -23) T) ((-118 . -1115) T) ((-103 . -102) 163739) ((-1295 . -1127) T) ((-558 . -860) T) ((-227 . -1233) T) ((-1069 . -132) T) ((-1039 . -1073) T) ((-829 . -1053) 163723) ((-1295 . -23) T) ((-1018 . -734) 163695) ((-1213 . -623) 163677) ((-709 . -727) 163642) ((-596 . -623) 163624) ((-396 . -1053) 163608) ((-363 . -1073) T) ((-394 . -132) T) ((-332 . -1053) 163592) ((-1135 . -838) T) ((-1120 . -1115) T) ((-1095 . -21) T) ((-227 . -897) 163574) ((-1019 . -933) T) ((-91 . -34) T) ((-1019 . -830) T) ((-927 . -933) T) ((-1095 . -25) T) ((-1014 . -317) 163539) ((-497 . -1237) T) ((-886 . -626) 163520) ((-724 . -658) 163480) ((-691 . -626) 163461) ((-219 . -1237) T) ((-686 . -626) 163442) ((-227 . -1053) 163402) ((-40 . -298) T) ((-497 . -566) T) ((-488 . -626) 163383) ((-368 . -25) T) ((-324 . -656) 163038) ((-321 . -656) 162952) ((-368 . -21) T) ((-362 . -25) T) ((-362 . -21) T) ((-219 . -566) T) ((-354 . -25) T) ((-354 . -21) T) ((-327 . -235) 162898) ((-251 . -626) 162875) ((-139 . -626) 162856) ((-138 . -626) 162837) ((-134 . -626) 162818) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1073) T) ((-590 . -174) T) ((-574 . -174) T) ((-505 . -174) T) ((-1077 . -1233) T) ((-668 . -623) 162800) ((-747 . -746) 162784) ((-345 . -623) 162766) ((-68 . -392) T) ((-68 . -405) T) ((-1117 . -107) 162750) ((-1077 . -897) 162732) ((-965 . -897) 162657) ((-663 . -1127) T) ((-633 . -727) 162644) ((-491 . -897) NIL) ((-1161 . -102) T) ((-1109 . -628) 162628) ((-1077 . -1053) 162610) ((-97 . -623) 162592) ((-487 . -148) T) ((-965 . -1053) 162472) ((-118 . -727) 162417) ((-663 . -23) T) ((-491 . -1053) 162293) ((-1102 . -624) NIL) ((-1102 . -623) 162275) ((-792 . -624) NIL) ((-792 . -623) 162236) ((-790 . -624) 161870) ((-790 . -623) 161784) ((-1128 . -649) 161690) ((-471 . -623) 161672) ((-464 . -623) 161654) ((-464 . -624) 161515) ((-1050 . -231) 161461) ((-882 . -922) 161440) ((-127 . -34) T) ((-827 . -132) T) ((-659 . -623) 161422) ((-588 . -102) T) ((-364 . -1302) 161406) ((-361 . -1302) 161390) ((-353 . -1302) 161374) ((-128 . -524) 161307) ((-122 . -524) 161240) ((-521 . -802) T) ((-521 . -805) T) ((-520 . -804) T) ((-103 . -317) 161178) ((-224 . -102) 161156) ((-709 . -174) T) ((-704 . -1115) T) ((-882 . -658) 161072) ((-65 . -393) T) ((-282 . -623) 161054) ((-65 . -405) T) ((-965 . -386) 161038) ((-880 . -298) T) ((-50 . -623) 161020) ((-1014 . -38) 160968) ((-1135 . -656) 160940) ((-591 . -623) 160922) ((-491 . -386) 160906) ((-591 . -624) 160888) ((-528 . -623) 160870) ((-923 . -1302) 160857) ((-881 . -1233) T) ((-711 . -462) T) ((-505 . -524) 160823) ((-497 . -372) T) ((-364 . -377) 160802) ((-361 . -377) 160781) ((-353 . -377) 160760) ((-724 . -736) T) ((-219 . -372) T) ((-117 . -462) T) ((-1306 . -1297) 160744) ((-881 . -895) 160721) ((-881 . -897) NIL) ((-977 . -860) 160620) ((-825 . -860) 160571) ((-1240 . -102) T) ((-664 . -666) 160555) ((-1219 . -34) T) ((-173 . -623) 160537) ((-1128 . -21) 160467) ((-1128 . -25) 160338) ((-881 . -1053) 160315) ((-965 . -913) 160296) ((-1256 . -47) 160273) ((-923 . -377) T) ((-59 . -661) 160257) ((-526 . -661) 160241) ((-491 . -913) 160218) ((-71 . -451) T) ((-71 . -405) T) ((-506 . -661) 160202) ((-59 . -382) 160186) ((-633 . -174) T) ((-526 . -382) 160170) ((-506 . -382) 160154) ((-837 . -718) 160138) ((-1188 . -315) 160117) ((-1194 . -132) T) ((-1157 . -1066) 160101) ((-118 . -174) T) ((-1157 . -650) 160033) ((-1161 . -317) 159971) ((-171 . -1233) T) ((-1295 . -132) T) ((-876 . -1066) 159941) ((-645 . -754) 159925) ((-617 . -754) 159909) ((-1268 . -933) 159888) ((-1247 . -933) 159867) ((-1247 . -830) NIL) ((-876 . -650) 159837) ((-704 . -727) 159787) ((-1246 . -922) 159740) ((-1039 . -1115) T) ((-881 . -386) 159717) ((-881 . -347) 159694) ((-918 . -1127) T) ((-171 . -895) 159678) ((-171 . -897) 159603) ((-1283 . -524) 159536) ((-1095 . -235) 159455) ((-497 . -1127) T) ((-363 . -1115) T) ((-219 . -1127) T) ((-76 . -451) T) ((-76 . -405) T) ((-1267 . -658) 159352) ((-171 . -1053) 159248) ((-327 . -860) T) ((-1246 . -658) 159056) ((-882 . -804) 159035) ((-882 . -801) 159014) ((-882 . -736) T) ((-497 . -23) T) ((-368 . -235) 158987) ((-362 . -235) 158960) ((-354 . -235) 158933) ((-225 . -623) 158915) ((-176 . -462) T) ((-224 . -317) 158853) ((-86 . -451) T) ((-86 . -405) T) ((-108 . -235) 158840) ((-219 . -23) T) ((-1307 . -1300) 158819) ((-687 . -1053) 158803) ((-590 . -298) T) ((-574 . -298) T) ((-505 . -298) T) ((-137 . -480) 158758) ((-1256 . -1233) T) ((-664 . -656) 158717) ((-48 . -1115) T) ((-722 . -233) 158701) ((-881 . -913) NIL) ((-1256 . -897) NIL) ((-900 . -102) T) ((-896 . -102) T) ((-398 . -1115) T) ((-171 . -386) 158685) ((-171 . -347) 158669) ((-1256 . -1053) 158549) ((-865 . -1053) 158445) ((-1157 . -102) T) ((-672 . -802) 158424) ((-663 . -132) T) ((-672 . -805) 158403) ((-118 . -524) 158311) ((-581 . -1053) 158293) ((-302 . -1290) 158263) ((-876 . -102) T) ((-976 . -566) 158242) ((-1227 . -1071) 158125) ((-1018 . -1066) 158070) ((-492 . -649) 157976) ((-917 . -1115) T) ((-1039 . -727) 157913) ((-721 . -1071) 157878) ((-1018 . -650) 157823) ((-627 . -102) T) ((-612 . -34) T) ((-1162 . -1233) T) ((-1227 . -111) 157692) ((-484 . -658) 157589) ((-363 . -727) 157534) ((-171 . -913) 157493) ((-709 . -298) T) ((-704 . -174) T) ((-721 . -111) 157449) ((-1312 . -1073) T) ((-1256 . -386) 157433) ((-428 . -1237) 157411) ((-1133 . -623) 157393) ((-321 . -858) NIL) ((-428 . -566) T) ((-227 . -315) T) ((-1246 . -801) 157346) ((-1246 . -804) 157299) ((-1267 . -736) T) ((-1246 . -736) T) ((-48 . -727) 157264) ((-227 . -1037) T) ((-1269 . -421) 157230) ((-360 . -1290) 157207) ((-1256 . -913) 157150) ((-728 . -736) T) ((-341 . -623) 157132) ((-1227 . -626) 157014) ((-1128 . -235) 156960) ((-112 . -623) 156942) ((-112 . -624) 156924) ((-728 . -483) T) ((-721 . -626) 156874) ((-1306 . -1066) 156858) ((-492 . -21) 156788) ((-128 . -499) 156772) ((-122 . -499) 156756) ((-492 . -25) 156627) ((-1306 . -650) 156597) ((-633 . -298) T) ((-596 . -1071) 156572) ((-447 . -1115) T) ((-1077 . -315) T) ((-118 . -298) T) ((-1119 . -102) T) ((-1018 . -102) T) ((-596 . -111) 156540) ((-1157 . -317) 156478) ((-1227 . -1064) T) ((-1077 . -1037) T) ((-66 . -1233) T) ((-1069 . -25) T) ((-1069 . -21) T) ((-721 . -1064) T) ((-394 . -21) T) ((-394 . -25) T) ((-704 . -524) NIL) ((-1039 . -174) T) ((-721 . -249) T) ((-1077 . -555) T) ((-722 . -656) 156388) ((-516 . -102) T) ((-512 . -102) T) ((-363 . -174) T) ((-352 . -623) 156370) ((-417 . -1066) 156322) ((-404 . -623) 156304) ((-1135 . -858) T) ((-484 . -736) T) ((-903 . -1053) 156272) ((-417 . -650) 156224) ((-108 . -860) T) ((-668 . -1071) 156208) ((-497 . -132) T) ((-1269 . -1073) T) ((-219 . -132) T) ((-1172 . -102) 156186) ((-99 . -1115) T) ((-251 . -676) 156170) ((-251 . -661) 156154) ((-668 . -111) 156133) ((-596 . -626) 156117) ((-324 . -421) 156101) ((-251 . -382) 156085) ((-1175 . -241) 156032) ((-1014 . -233) 156016) ((-74 . -1233) T) ((-48 . -174) T) ((-711 . -397) T) ((-711 . -144) T) ((-1306 . -102) T) ((-1213 . -626) 155998) ((-1103 . -1233) T) ((-1102 . -1071) 155841) ((-1091 . -1233) T) ((-271 . -922) 155820) ((-253 . -922) 155799) ((-792 . -1071) 155622) ((-790 . -1071) 155465) ((-618 . -1233) T) ((-1180 . -623) 155447) ((-1102 . -111) 155276) ((-1061 . -102) T) ((-485 . -1233) T) ((-471 . -1071) 155247) ((-464 . -1071) 155090) ((-674 . -658) 155074) ((-881 . -315) T) ((-792 . -111) 154883) ((-790 . -111) 154712) ((-364 . -658) 154664) ((-361 . -658) 154616) ((-353 . -658) 154568) ((-271 . -658) 154457) ((-253 . -658) 154346) ((-1174 . -860) T) ((-1103 . -1053) 154330) ((-471 . -111) 154291) ((-464 . -111) 154120) ((-1091 . -1053) 154097) ((-1015 . -34) T) ((-979 . -623) 154079) ((-971 . -1233) T) ((-127 . -1025) 154063) ((-976 . -1127) T) ((-881 . -1037) NIL) ((-745 . -1127) T) ((-725 . -1127) T) ((-668 . -626) 153981) ((-1283 . -499) 153965) ((-1157 . -38) 153925) ((-976 . -23) T) ((-923 . -658) 153890) ((-875 . -1115) T) ((-853 . -102) T) ((-827 . -21) T) ((-645 . -1066) 153874) ((-617 . -1066) 153858) ((-827 . -25) T) ((-745 . -23) T) ((-725 . -23) T) ((-645 . -650) 153842) ((-110 . -671) T) ((-617 . -650) 153826) ((-591 . -1071) 153791) ((-528 . -1071) 153736) ((-229 . -57) 153694) ((-463 . -23) T) ((-417 . -102) T) ((-270 . -102) T) ((-110 . -113) T) ((-704 . -298) T) ((-876 . -38) 153664) ((-591 . -111) 153620) ((-528 . -111) 153549) ((-1102 . -626) 153285) ((-428 . -1127) T) ((-324 . -1073) 153175) ((-321 . -1073) T) ((-129 . -1233) T) ((-792 . -626) 152923) ((-790 . -626) 152689) ((-668 . -1064) T) ((-1312 . -1115) T) ((-464 . -626) 152474) ((-171 . -315) 152405) ((-428 . -23) T) ((-40 . -623) 152387) ((-40 . -624) 152371) ((-108 . -1007) 152353) ((-117 . -879) 152337) ((-659 . -626) 152321) ((-48 . -524) 152287) ((-1219 . -1025) 152271) ((-1197 . -623) 152238) ((-1205 . -34) T) ((-967 . -623) 152204) ((-934 . -623) 152186) ((-1128 . -860) 152137) ((-781 . -623) 152119) ((-682 . -623) 152101) ((-1172 . -317) 152039) ((-489 . -34) T) ((-1107 . -1233) T) ((-487 . -462) T) ((-1156 . -34) T) ((-1102 . -1064) T) ((-50 . -626) 152008) ((-792 . -1064) T) ((-790 . -1064) T) ((-657 . -241) 151992) ((-642 . -241) 151938) ((-591 . -626) 151888) ((-528 . -626) 151818) ((-492 . -235) 151764) ((-1256 . -315) 151743) ((-1102 . -334) 151704) ((-464 . -1064) T) ((-1194 . -21) T) ((-1102 . -239) 151683) ((-792 . -334) 151660) ((-792 . -239) T) ((-790 . -334) 151632) ((-741 . -1237) 151611) ((-335 . -661) 151595) ((-1194 . -25) T) ((-59 . -34) T) ((-529 . -34) T) ((-526 . -34) T) ((-464 . -334) 151574) ((-335 . -382) 151558) ((-507 . -34) T) ((-506 . -34) T) ((-1018 . -1167) NIL) ((-741 . -566) 151489) ((-645 . -102) T) ((-617 . -102) T) ((-364 . -736) T) ((-361 . -736) T) ((-353 . -736) T) ((-271 . -736) T) ((-253 . -736) T) ((-388 . -1233) T) ((-1061 . -317) 151397) ((-1295 . -21) T) ((-914 . -1115) 151375) ((-828 . -235) 151362) ((-50 . -1064) T) ((-1295 . -25) T) ((-1190 . -566) 151341) ((-1189 . -1237) 151320) ((-1189 . -566) 151271) ((-1183 . -1237) 151250) ((-1183 . -566) 151201) ((-591 . -1064) T) ((-528 . -1064) T) ((-1039 . -298) T) ((-370 . -1053) 151185) ((-330 . -1053) 151169) ((-1018 . -38) 151114) ((-388 . -897) 151096) ((-1014 . -656) 151019) ((-846 . -1233) T) ((-837 . -1233) 150998) ((-809 . -1127) T) ((-923 . -736) T) ((-591 . -249) T) ((-591 . -239) T) ((-528 . -239) T) ((-528 . -249) T) ((-1141 . -566) 150977) ((-363 . -298) T) ((-657 . -705) 150961) ((-388 . -1053) 150921) ((-302 . -1066) 150842) ((-1135 . -1073) T) ((-103 . -126) 150826) ((-302 . -650) 150768) ((-809 . -23) T) ((-1305 . -1300) 150744) ((-1283 . -294) 150696) ((-417 . -317) 150661) ((-1303 . -1300) 150640) ((-1269 . -1115) T) ((-880 . -623) 150622) ((-846 . -1053) 150591) ((-205 . -797) T) ((-204 . -797) T) ((-203 . -797) T) ((-202 . -797) T) ((-201 . -797) T) ((-200 . -797) T) ((-199 . -797) T) ((-198 . -797) T) ((-197 . -797) T) ((-196 . -797) T) ((-557 . -623) 150573) ((-505 . -1017) T) ((-281 . -849) T) ((-280 . -849) T) ((-279 . -849) T) ((-278 . -849) T) ((-48 . -298) T) ((-277 . -849) T) ((-276 . -849) T) ((-275 . -849) T) ((-195 . -797) T) ((-622 . -860) T) ((-664 . -421) 150557) ((-680 . -238) 150536) ((-225 . -626) 150498) ((-110 . -860) T) ((-663 . -21) T) ((-663 . -25) T) ((-1306 . -38) 150468) ((-118 . -294) 150419) ((-1283 . -19) 150403) ((-1283 . -614) 150380) ((-1296 . -1115) T) ((-360 . -1066) 150325) ((-1092 . -1115) T) ((-1002 . -1115) T) ((-976 . -132) T) ((-827 . -235) 150312) ((-747 . -1115) T) ((-360 . -650) 150257) ((-745 . -132) T) ((-725 . -132) T) ((-521 . -803) T) ((-521 . -804) T) ((-463 . -132) T) ((-417 . -1167) 150235) ((-225 . -1064) T) ((-302 . -102) 150017) ((-142 . -1115) T) ((-709 . -1017) T) ((-1120 . -294) 149973) ((-91 . -1233) T) ((-128 . -623) 149905) ((-122 . -623) 149837) ((-1312 . -174) T) ((-1189 . -372) 149816) ((-1183 . -372) 149795) ((-324 . -1115) T) ((-428 . -132) T) ((-321 . -1115) T) ((-417 . -38) 149747) ((-1148 . -102) T) ((-1269 . -727) 149639) ((-664 . -1073) T) ((-1150 . -1278) T) ((-327 . -146) 149618) ((-327 . -148) 149597) ((-140 . -1115) T) ((-137 . -1115) T) ((-115 . -1115) T) ((-868 . -102) T) ((-590 . -623) 149579) ((-574 . -624) 149478) ((-574 . -623) 149460) ((-505 . -623) 149442) ((-505 . -624) 149387) ((-495 . -23) T) ((-492 . -860) 149338) ((-497 . -649) 149320) ((-978 . -623) 149302) ((-219 . -649) 149284) ((-227 . -414) T) ((-672 . -658) 149268) ((-55 . -623) 149250) ((-1188 . -933) 149229) ((-741 . -1127) T) ((-360 . -102) T) ((-1232 . -1098) T) ((-1135 . -854) T) ((-828 . -860) T) ((-741 . -23) T) ((-352 . -1071) 149174) ((-1174 . -1173) T) ((-1162 . -107) 149158) ((-1190 . -1127) T) ((-1189 . -1127) T) ((-525 . -1053) 149142) ((-1183 . -1127) T) ((-1141 . -1127) T) ((-352 . -111) 149071) ((-1019 . -1237) T) ((-127 . -1233) T) ((-927 . -1237) T) ((-704 . -294) NIL) ((-724 . -1233) T) ((-1284 . -623) 149053) ((-1190 . -23) T) ((-1189 . -23) T) ((-1183 . -23) T) ((-1157 . -233) 149037) ((-1019 . -566) T) ((-1141 . -23) T) ((-927 . -566) T) ((-1090 . -1115) T) ((-254 . -623) 149019) ((-825 . -238) 148971) ((-809 . -132) T) ((-720 . -623) 148953) ((-324 . -727) 148863) ((-321 . -727) 148792) ((-709 . -623) 148774) ((-709 . -624) 148719) ((-417 . -410) 148703) ((-448 . -1115) T) ((-497 . -25) T) ((-497 . -21) T) ((-1135 . -1115) T) ((-219 . -25) T) ((-219 . -21) T) ((-722 . -421) 148687) ((-724 . -1053) 148656) ((-1283 . -623) 148568) ((-1283 . -624) 148529) ((-1269 . -174) T) ((-1206 . -623) 148511) ((-251 . -34) T) ((-352 . -626) 148441) ((-404 . -626) 148423) ((-939 . -989) T) ((-1219 . -1233) T) ((-672 . -801) 148402) ((-672 . -804) 148381) ((-408 . -405) T) ((-533 . -102) 148359) ((-1050 . -1115) T) ((-224 . -1010) 148343) ((-514 . -102) T) ((-633 . -623) 148325) ((-45 . -860) NIL) ((-633 . -624) 148302) ((-1050 . -620) 148277) ((-914 . -524) 148210) ((-327 . -238) 148162) ((-352 . -1064) T) ((-118 . -624) NIL) ((-118 . -623) 148144) ((-882 . -1233) T) ((-680 . -427) 148128) ((-680 . -1138) 148073) ((-510 . -152) 148055) ((-352 . -239) T) ((-352 . -249) T) ((-40 . -1071) 148000) ((-882 . -895) 147984) ((-882 . -897) 147909) ((-722 . -1073) T) ((-704 . -1017) NIL) ((-1267 . -47) 147879) ((-1246 . -47) 147856) ((-1156 . -1025) 147827) ((-3 . |UnionCategory|) T) ((-1135 . -727) 147814) ((-1120 . -623) 147796) ((-1095 . -148) 147775) ((-1095 . -146) 147726) ((-979 . -626) 147710) ((-227 . -933) T) ((-40 . -111) 147639) ((-882 . -1053) 147503) ((-1019 . -372) T) ((-1018 . -233) 147480) ((-711 . -1066) 147467) ((-927 . -372) T) ((-711 . -650) 147454) ((-327 . -1221) 147420) ((-388 . -315) T) ((-327 . -1218) 147386) ((-324 . -174) 147365) ((-321 . -174) T) ((-591 . -1302) 147352) ((-528 . -1302) 147329) ((-368 . -148) 147308) ((-117 . -1066) 147295) ((-368 . -146) 147246) ((-362 . -148) 147225) ((-362 . -146) 147176) ((-354 . -148) 147155) ((-618 . -1209) 147131) ((-117 . -650) 147118) ((-354 . -146) 147069) ((-327 . -35) 147035) ((-485 . -1209) 147014) ((0 . |EnumerationCategory|) T) ((-327 . -95) 146980) ((-388 . -1037) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 146930) ((-664 . -1115) T) ((-618 . -107) 146877) ((-495 . -132) T) ((-485 . -107) 146827) ((-246 . -1127) 146777) ((-882 . -386) 146761) ((-882 . -347) 146745) ((-246 . -23) 146635) ((-40 . -626) 146565) ((-1077 . -933) T) ((-1077 . -830) T) ((-591 . -377) T) ((-528 . -377) T) ((-1296 . -524) 146498) ((-1275 . -566) 146477) ((-1268 . -1237) 146456) ((-360 . -1167) T) ((-335 . -34) T) ((-44 . -427) 146440) ((-1197 . -626) 146376) ((-883 . -1233) T) ((-400 . -754) 146360) ((-1268 . -566) 146311) ((-1267 . -1233) T) ((-1157 . -656) 146270) ((-741 . -132) T) ((-682 . -626) 146254) ((-1247 . -1237) 146233) ((-1247 . -566) 146184) ((-1246 . -1233) T) ((-1246 . -897) 146057) ((-1246 . -895) 146027) ((-1190 . -132) T) ((-319 . -1098) T) ((-1189 . -132) T) ((-747 . -524) 145960) ((-1183 . -132) T) ((-1141 . -132) T) ((-904 . -1115) T) ((-145 . -854) T) ((-1039 . -1017) T) ((-701 . -623) 145942) ((-1019 . -23) T) ((-533 . -317) 145880) ((-1019 . -1127) T) ((-142 . -524) NIL) ((-876 . -656) 145825) ((-1018 . -358) NIL) ((-986 . -23) T) ((-927 . -1127) T) ((-360 . -38) 145790) ((-927 . -23) T) ((-882 . -913) 145749) ((-82 . -623) 145731) ((-40 . -1064) T) ((-880 . -1071) 145718) ((-880 . -111) 145703) ((-711 . -102) T) ((-704 . -623) 145685) ((-612 . -1233) T) ((-606 . -566) 145664) ((-437 . -1127) T) ((-348 . -1066) 145648) ((-215 . -1115) T) ((-176 . -1066) 145580) ((-484 . -47) 145550) ((-40 . -239) 145522) ((-40 . -249) T) ((-135 . -102) T) ((-117 . -102) T) ((-605 . -566) 145501) ((-348 . -650) 145485) ((-704 . -624) 145393) ((-324 . -524) 145359) ((-176 . -650) 145291) ((-321 . -524) 145183) ((-497 . -235) 145170) ((-1267 . -1053) 145154) ((-1246 . -1053) 144940) ((-1014 . -421) 144924) ((-219 . -235) 144911) ((-437 . -23) T) ((-1135 . -174) T) ((-1269 . -298) T) ((-664 . -727) 144881) ((-145 . -1115) T) ((-48 . -1017) T) ((-417 . -233) 144865) ((-303 . -241) 144815) ((-881 . -933) T) ((-881 . -830) NIL) ((-880 . -626) 144787) ((-874 . -860) T) ((-1246 . -347) 144757) ((-1246 . -386) 144727) ((-1095 . -238) 144652) ((-224 . -1136) 144636) ((-1283 . -296) 144613) ((-368 . -238) 144592) ((-362 . -238) 144571) ((-484 . -1233) T) ((-354 . -238) 144550) ((-108 . -238) T) ((-1227 . -658) 144475) ((-1018 . -656) 144405) ((-976 . -21) T) ((-976 . -25) T) ((-745 . -21) T) ((-745 . -25) T) ((-725 . -21) T) ((-725 . -25) T) ((-721 . -658) 144370) ((-463 . -21) T) ((-463 . -25) T) ((-348 . -102) T) ((-176 . -102) T) ((-1014 . -1073) T) ((-880 . -1064) T) ((-784 . -102) T) ((-1268 . -372) 144349) ((-1267 . -913) 144255) ((-1247 . -372) 144234) ((-1246 . -913) 144085) ((-1039 . -623) 144067) ((-417 . -838) 144020) ((-1190 . -503) 143986) ((-171 . -933) 143917) ((-1189 . -503) 143883) ((-1183 . -503) 143849) ((-722 . -1115) T) ((-1141 . -503) 143815) ((-590 . -1071) 143802) ((-574 . -1071) 143789) ((-505 . -1071) 143754) ((-324 . -298) 143733) ((-321 . -298) T) ((-363 . -623) 143715) ((-428 . -25) T) ((-428 . -21) T) ((-99 . -294) 143694) ((-590 . -111) 143679) ((-574 . -111) 143664) ((-505 . -111) 143620) ((-1192 . -897) 143587) ((-914 . -499) 143571) ((-48 . -623) 143553) ((-48 . -624) 143498) ((-246 . -132) 143388) ((-1306 . -656) 143347) ((-1256 . -933) 143326) ((-826 . -1237) 143305) ((-398 . -500) 143286) ((-1050 . -524) 143130) ((-398 . -623) 143096) ((-826 . -566) 143027) ((-596 . -658) 143002) ((-271 . -47) 142974) ((-253 . -47) 142931) ((-541 . -519) 142908) ((-590 . -626) 142880) ((-574 . -626) 142852) ((-505 . -626) 142785) ((-1089 . -1233) T) ((-1015 . -1233) T) ((-1275 . -23) T) ((-1275 . -1127) T) ((-1268 . -1127) T) ((-709 . -1071) 142750) ((-1268 . -23) T) ((-1247 . -1127) T) ((-1247 . -23) T) ((-1227 . -736) T) ((-1135 . -298) T) ((-1018 . -379) 142722) ((-112 . -377) T) ((-484 . -913) 142628) ((-1128 . -238) 142580) ((-917 . -623) 142562) ((-55 . -626) 142544) ((-91 . -107) 142528) ((-1019 . -132) T) ((-918 . -860) 142479) ((-711 . -1167) T) ((-709 . -111) 142435) ((-853 . -656) 142352) ((-606 . -1127) T) ((-605 . -1127) T) ((-722 . -727) 142181) ((-721 . -736) T) ((-986 . -132) T) ((-927 . -132) T) ((-497 . -860) T) ((-809 . -25) T) ((-809 . -21) T) ((-590 . -1064) T) ((-219 . -860) T) ((-417 . -656) 142118) ((-574 . -1064) T) ((-546 . -1233) T) ((-505 . -1064) T) ((-606 . -23) T) ((-352 . -1302) 142095) ((-327 . -462) 142074) ((-348 . -317) 142061) ((-605 . -23) T) ((-437 . -132) T) ((-668 . -658) 142035) ((-251 . -1025) 142019) ((-882 . -315) T) ((-1307 . -1297) 142003) ((-781 . -802) T) ((-781 . -805) T) ((-711 . -38) 141990) ((-574 . -239) T) ((-505 . -249) T) ((-505 . -239) T) ((-1165 . -241) 141940) ((-1102 . -922) 141919) ((-117 . -38) 141906) ((-211 . -810) T) ((-210 . -810) T) ((-209 . -810) T) ((-208 . -810) T) ((-882 . -1037) 141884) ((-1296 . -499) 141868) ((-792 . -922) 141847) ((-790 . -922) 141826) ((-364 . -1233) 141805) ((-361 . -1233) 141784) ((-353 . -1233) 141763) ((-1205 . -1233) T) ((-271 . -1233) 141742) ((-464 . -922) 141721) ((-747 . -499) 141705) ((-1102 . -658) 141594) ((-709 . -626) 141529) ((-792 . -658) 141418) ((-633 . -1071) 141405) ((-489 . -1233) T) ((-352 . -377) T) ((-142 . -499) 141387) ((-790 . -658) 141276) ((-1156 . -1233) T) ((-559 . -860) T) ((-471 . -658) 141247) ((-271 . -897) 141106) ((-253 . -897) NIL) ((-118 . -1071) 141051) ((-464 . -658) 140940) ((-674 . -1053) 140917) ((-633 . -111) 140902) ((-400 . -1066) 140886) ((-364 . -1053) 140870) ((-361 . -1053) 140854) ((-353 . -1053) 140838) ((-271 . -1053) 140682) ((-253 . -1053) 140558) ((-923 . -1233) T) ((-118 . -111) 140487) ((-59 . -1233) T) ((-400 . -650) 140471) ((-631 . -1066) 140455) ((-529 . -1233) T) ((-526 . -1233) T) ((-507 . -1233) T) ((-506 . -1233) T) ((-447 . -623) 140437) ((-444 . -623) 140419) ((-631 . -650) 140403) ((-3 . -102) T) ((-1042 . -1226) 140372) ((-843 . -102) T) ((-699 . -57) 140330) ((-709 . -1064) T) ((-645 . -656) 140299) ((-617 . -656) 140268) ((-50 . -658) 140242) ((-297 . -462) T) ((-486 . -1226) 140211) ((0 . -102) T) ((-591 . -658) 140176) ((-528 . -658) 140121) ((-49 . -102) T) ((-923 . -1053) 140108) ((-709 . -249) T) ((-1095 . -419) 140087) ((-741 . -649) 140035) ((-1014 . -1115) T) ((-722 . -174) 139926) ((-633 . -626) 139821) ((-497 . -1007) 139803) ((-428 . -235) 139776) ((-271 . -386) 139760) ((-253 . -386) 139744) ((-409 . -1115) T) ((-1041 . -102) 139722) ((-348 . -38) 139706) ((-219 . -1007) 139688) ((-118 . -626) 139618) ((-176 . -38) 139550) ((-1267 . -315) 139529) ((-1246 . -315) 139508) ((-668 . -736) T) ((-99 . -623) 139490) ((-487 . -1066) 139455) ((-1183 . -649) 139407) ((-487 . -650) 139372) ((-495 . -25) T) ((-495 . -21) T) ((-1246 . -1037) 139324) ((-1072 . -1233) T) ((-633 . -1064) T) ((-388 . -414) T) ((-400 . -102) T) ((-1120 . -628) 139239) ((-271 . -913) 139185) ((-253 . -913) 139162) ((-118 . -1064) T) ((-826 . -1127) T) ((-1102 . -736) T) ((-633 . -239) 139141) ((-631 . -102) T) ((-792 . -736) T) ((-790 . -736) T) ((-423 . -1127) T) ((-118 . -249) T) ((-40 . -377) NIL) ((-118 . -239) NIL) ((-1238 . -860) T) ((-464 . -736) T) ((-826 . -23) T) ((-741 . -25) T) ((-741 . -21) T) ((-1092 . -294) 139120) ((-78 . -406) T) ((-78 . -405) T) ((-543 . -777) 139102) ((-704 . -1071) 139052) ((-1308 . -102) T) ((-1275 . -132) T) ((-1268 . -132) T) ((-1247 . -132) T) ((-1190 . -25) T) ((-1157 . -421) 139036) ((-645 . -376) 138968) ((-617 . -376) 138900) ((-1172 . -1164) 138884) ((-103 . -1115) 138862) ((-1190 . -21) T) ((-1189 . -21) T) ((-875 . -623) 138844) ((-1014 . -727) 138792) ((-225 . -658) 138759) ((-704 . -111) 138693) ((-50 . -736) T) ((-1189 . -25) T) ((-360 . -358) T) ((-1183 . -21) T) ((-1095 . -462) 138644) ((-1183 . -25) T) ((-722 . -524) 138591) ((-591 . -736) T) ((-528 . -736) T) ((-1141 . -21) T) ((-1141 . -25) T) ((-606 . -132) T) ((-605 . -132) T) ((-302 . -656) 138326) ((-492 . -238) 138278) ((-368 . -462) T) ((-362 . -462) T) ((-354 . -462) T) ((-484 . -315) 138257) ((-1241 . -102) T) ((-321 . -294) 138192) ((-108 . -462) T) ((-79 . -451) T) ((-79 . -405) T) ((-487 . -102) T) ((-701 . -626) 138176) ((-1312 . -623) 138158) ((-1312 . -624) 138140) ((-1095 . -412) 138119) ((-1050 . -499) 138050) ((-137 . -294) 138027) ((-574 . -805) T) ((-574 . -802) T) ((-1078 . -241) 137973) ((-368 . -412) 137924) ((-362 . -412) 137875) ((-354 . -412) 137826) ((-1298 . -1127) T) ((-1307 . -1066) 137810) ((-390 . -1066) 137794) ((-1307 . -650) 137764) ((-828 . -238) T) ((-390 . -650) 137734) ((-704 . -626) 137669) ((-1298 . -23) T) ((-1285 . -102) T) ((-177 . -623) 137651) ((-1157 . -1073) T) ((-557 . -377) T) ((-680 . -754) 137635) ((-1194 . -146) 137614) ((-1194 . -148) 137593) ((-1161 . -1115) T) ((-1161 . -1086) 137562) ((-69 . -1233) T) ((-1039 . -1071) 137499) ((-360 . -656) 137429) ((-876 . -1073) T) ((-246 . -649) 137335) ((-704 . -1064) T) ((-363 . -1071) 137280) ((-61 . -1233) T) ((-1039 . -111) 137196) ((-914 . -623) 137107) ((-704 . -249) T) ((-704 . -239) NIL) ((-853 . -858) 137086) ((-709 . -805) T) ((-709 . -802) T) ((-1018 . -421) 137063) ((-363 . -111) 136992) ((-388 . -933) T) ((-417 . -858) 136971) ((-722 . -298) 136882) ((-225 . -736) T) ((-1275 . -503) 136848) ((-1268 . -503) 136814) ((-1247 . -503) 136780) ((-588 . -1115) T) ((-324 . -1017) 136759) ((-224 . -1115) 136737) ((-1240 . -854) T) ((-327 . -988) 136699) ((-105 . -102) T) ((-48 . -1071) 136664) ((-1307 . -102) T) ((-390 . -102) T) ((-48 . -111) 136620) ((-1019 . -649) 136602) ((-1269 . -623) 136584) ((-541 . -102) T) ((-510 . -102) T) ((-1148 . -1149) 136568) ((-153 . -1290) 136552) ((-251 . -1233) T) ((-1232 . -102) T) ((-1039 . -626) 136489) ((-827 . -238) T) ((-1188 . -1237) 136468) ((-363 . -626) 136398) ((-1140 . -1237) 136377) ((-246 . -21) 136307) ((-246 . -25) 136178) ((-128 . -120) 136162) ((-122 . -120) 136146) ((-44 . -754) 136130) ((-1188 . -566) 136041) ((-1140 . -566) 135972) ((-1240 . -1115) T) ((-1050 . -294) 135947) ((-1182 . -1098) T) ((-1009 . -1098) T) ((-826 . -132) T) ((-118 . -805) NIL) ((-118 . -802) NIL) ((-364 . -315) T) ((-361 . -315) T) ((-353 . -315) T) ((-258 . -1127) 135897) ((-257 . -1127) 135847) ((-1039 . -1064) T) ((-1018 . -1073) T) ((-48 . -626) 135780) ((-352 . -658) 135725) ((-631 . -38) 135709) ((-1296 . -623) 135671) ((-1296 . -624) 135632) ((-1092 . -623) 135614) ((-1039 . -249) T) ((-363 . -1064) T) ((-825 . -1290) 135584) ((-258 . -23) T) ((-257 . -23) T) ((-1002 . -623) 135566) ((-1190 . -235) 135519) ((-1189 . -235) 135465) ((-747 . -624) 135426) ((-747 . -623) 135408) ((-1183 . -235) 135289) ((-809 . -860) 135268) ((-1175 . -152) 135215) ((-1014 . -524) 135127) ((-363 . -239) T) ((-363 . -249) T) ((-398 . -626) 135108) ((-1019 . -25) T) ((-142 . -623) 135090) ((-142 . -624) 135049) ((-923 . -315) T) ((-1019 . -21) T) ((-986 . -25) T) ((-927 . -21) T) ((-927 . -25) T) ((-437 . -21) T) ((-437 . -25) T) ((-853 . -421) 135033) ((-48 . -1064) T) ((-1305 . -1297) 135017) ((-1303 . -1297) 135001) ((-1050 . -614) 134976) ((-324 . -624) 134837) ((-324 . -623) 134819) ((-321 . -624) NIL) ((-321 . -623) 134801) ((-48 . -249) T) ((-48 . -239) T) ((-664 . -294) 134762) ((-560 . -241) 134712) ((-140 . -623) 134679) ((-137 . -623) 134661) ((-115 . -623) 134643) ((-487 . -38) 134608) ((-1307 . -1304) 134587) ((-1298 . -132) T) ((-1306 . -1073) T) ((-1097 . -102) T) ((-88 . -1233) T) ((-510 . -317) NIL) ((-1015 . -107) 134571) ((-900 . -1115) T) ((-896 . -1115) T) ((-1283 . -661) 134555) ((-1283 . -382) 134539) ((-335 . -1233) T) ((-603 . -860) T) ((-1157 . -1115) T) ((-1157 . -1068) 134479) ((-103 . -524) 134412) ((-940 . -623) 134394) ((-352 . -736) T) ((-30 . -623) 134376) ((-876 . -1115) T) ((-853 . -1073) 134355) ((-40 . -658) 134262) ((-227 . -1237) T) ((-417 . -1073) T) ((-1174 . -152) 134244) ((-1014 . -298) 134195) ((-627 . -1115) T) ((-227 . -566) T) ((-327 . -1264) 134179) ((-327 . -1261) 134149) ((-711 . -656) 134121) ((-1205 . -1209) 134100) ((-1090 . -623) 134082) ((-1205 . -107) 134032) ((-657 . -152) 134016) ((-642 . -152) 133962) ((-117 . -656) 133934) ((-489 . -1209) 133913) ((-497 . -148) T) ((-497 . -146) NIL) ((-1135 . -624) 133828) ((-448 . -623) 133810) ((-219 . -148) T) ((-219 . -146) NIL) ((-1135 . -623) 133792) ((-130 . -102) T) ((-52 . -102) T) ((-1247 . -649) 133744) ((-489 . -107) 133694) ((-1008 . -23) T) ((-1307 . -38) 133664) ((-1188 . -1127) T) ((-1140 . -1127) T) ((-1077 . -1237) T) ((-246 . -235) 133610) ((-319 . -102) T) ((-864 . -1127) T) ((-965 . -1237) 133589) ((-491 . -1237) 133568) ((-1077 . -566) T) ((-965 . -566) 133499) ((-1188 . -23) T) ((-1166 . -1098) T) ((-1140 . -23) T) ((-864 . -23) T) ((-491 . -566) 133430) ((-1157 . -727) 133362) ((-680 . -1066) 133346) ((-1161 . -524) 133279) ((-680 . -650) 133263) ((-1050 . -624) NIL) ((-1050 . -623) 133245) ((-96 . -1098) T) ((-876 . -727) 133215) ((-1312 . -1071) 133202) ((-1227 . -47) 133171) ((-258 . -132) T) ((-257 . -132) T) ((-1119 . -1115) T) ((-1018 . -1115) T) ((-62 . -623) 133153) ((-1183 . -860) NIL) ((-1039 . -802) T) ((-1039 . -805) T) ((-1312 . -111) 133138) ((-1275 . -25) T) ((-1275 . -21) T) ((-1268 . -21) T) ((-880 . -658) 133125) ((-1268 . -25) T) ((-1247 . -21) T) ((-1247 . -25) T) ((-1042 . -152) 133109) ((-1019 . -235) 133096) ((-882 . -830) 133075) ((-882 . -933) T) ((-722 . -294) 133002) ((-606 . -21) T) ((-348 . -656) 132961) ((-606 . -25) T) ((-605 . -21) T) ((-176 . -656) 132878) ((-40 . -736) T) ((-224 . -524) 132811) ((-605 . -25) T) ((-486 . -152) 132795) ((-473 . -152) 132779) ((-934 . -804) T) ((-934 . -736) T) ((-781 . -803) T) ((-781 . -804) T) ((-516 . -1115) T) ((-512 . -1115) T) ((-781 . -736) T) ((-227 . -372) T) ((-1305 . -1066) 132763) ((-1303 . -1066) 132747) ((-1305 . -650) 132717) ((-1172 . -1115) 132695) ((-881 . -1237) T) ((-1303 . -650) 132665) ((-664 . -623) 132647) ((-881 . -566) T) ((-704 . -377) NIL) ((-44 . -1066) 132631) ((-1312 . -626) 132613) ((-1306 . -1115) T) ((-680 . -102) T) ((-368 . -1290) 132597) ((-362 . -1290) 132581) ((-44 . -650) 132565) ((-354 . -1290) 132549) ((-558 . -102) T) ((-530 . -860) 132528) ((-497 . -238) T) ((-219 . -238) T) ((-1061 . -1115) T) ((-827 . -462) 132507) ((-153 . -1066) 132491) ((-1061 . -1086) 132420) ((-1042 . -991) 132389) ((-829 . -1127) T) ((-1018 . -727) 132334) ((-153 . -650) 132318) ((-396 . -1127) T) ((-486 . -991) 132287) ((-473 . -991) 132256) ((-110 . -152) 132238) ((-73 . -623) 132220) ((-904 . -623) 132202) ((-1095 . -734) 132181) ((-1312 . -1064) T) ((-826 . -649) 132129) ((-302 . -1073) 132071) ((-171 . -1237) 131976) ((-227 . -1127) T) ((-332 . -23) T) ((-1183 . -1007) 131928) ((-853 . -1115) T) ((-1269 . -1071) 131833) ((-1141 . -750) 131812) ((-1267 . -933) 131791) ((-1246 . -933) 131770) ((-880 . -736) T) ((-171 . -566) 131681) ((-590 . -658) 131668) ((-574 . -658) 131640) ((-417 . -1115) T) ((-270 . -1115) T) ((-215 . -623) 131622) ((-505 . -658) 131572) ((-227 . -23) T) ((-1246 . -830) 131525) ((-1305 . -102) T) ((-363 . -1302) 131502) ((-1303 . -102) T) ((-1269 . -111) 131394) ((-825 . -1066) 131271) ((-825 . -650) 131193) ((-145 . -623) 131175) ((-1008 . -132) T) ((-44 . -102) T) ((-246 . -860) 131126) ((-1256 . -1237) 131105) ((-103 . -499) 131089) ((-1306 . -727) 131059) ((-1102 . -47) 131020) ((-1077 . -1127) T) ((-965 . -1127) T) ((-128 . -34) T) ((-122 . -34) T) ((-792 . -47) 130997) ((-790 . -47) 130969) ((-1256 . -566) 130880) ((-363 . -377) T) ((-491 . -1127) T) ((-1188 . -132) T) ((-1140 . -132) T) ((-464 . -47) 130859) ((-881 . -372) T) ((-864 . -132) T) ((-153 . -102) T) ((-1077 . -23) T) ((-965 . -23) T) ((-581 . -566) T) ((-826 . -25) T) ((-826 . -21) T) ((-1157 . -524) 130792) ((-602 . -1098) T) ((-596 . -1053) 130776) ((-1269 . -626) 130650) ((-491 . -23) T) ((-360 . -1073) T) ((-1227 . -913) 130631) ((-680 . -317) 130569) ((-1128 . -1290) 130539) ((-709 . -658) 130504) ((-1019 . -860) T) ((-1018 . -174) T) ((-976 . -146) 130483) ((-645 . -1115) T) ((-617 . -1115) T) ((-976 . -148) 130462) ((-745 . -148) 130441) ((-745 . -146) 130420) ((-668 . -1233) T) ((-986 . -860) T) ((-1275 . -235) 130373) ((-1268 . -235) 130319) ((-1247 . -235) 130200) ((-843 . -656) 130117) ((-484 . -933) 130096) ((-327 . -1066) 129931) ((-324 . -1071) 129841) ((-321 . -1071) 129770) ((-1014 . -294) 129728) ((-417 . -727) 129680) ((-327 . -650) 129521) ((-605 . -235) 129474) ((-711 . -858) T) ((-1269 . -1064) T) ((-324 . -111) 129370) ((-321 . -111) 129283) ((-977 . -102) T) ((-825 . -102) 129073) ((-722 . -624) NIL) ((-722 . -623) 129055) ((-1269 . -334) 128999) ((-668 . -1053) 128895) ((-1102 . -1233) 128874) ((-1050 . -296) 128849) ((-590 . -736) T) ((-574 . -804) T) ((-171 . -372) 128800) ((-574 . -801) T) ((-574 . -736) T) ((-505 . -736) T) ((-792 . -1233) T) ((-1161 . -499) 128784) ((-1102 . -897) NIL) ((-881 . -1127) T) ((-118 . -922) NIL) ((-1305 . -1304) 128760) ((-1303 . -1304) 128739) ((-792 . -897) NIL) ((-790 . -897) 128598) ((-1298 . -25) T) ((-1298 . -21) T) ((-1230 . -102) 128576) ((-1121 . -405) T) ((-633 . -658) 128563) ((-464 . -897) NIL) ((-685 . -102) 128541) ((-1102 . -1053) 128368) ((-881 . -23) T) ((-792 . -1053) 128227) ((-790 . -1053) 128084) ((-118 . -658) 128029) ((-464 . -1053) 127905) ((-324 . -626) 127469) ((-321 . -626) 127352) ((-400 . -656) 127321) ((-659 . -1053) 127305) ((-591 . -1233) T) ((-637 . -102) T) ((-528 . -1233) T) ((-224 . -499) 127289) ((-1283 . -34) T) ((-631 . -656) 127248) ((-297 . -1066) 127235) ((-137 . -626) 127219) ((-297 . -650) 127206) ((-645 . -727) 127190) ((-617 . -727) 127174) ((-680 . -38) 127134) ((-327 . -102) T) ((-85 . -623) 127116) ((-50 . -1053) 127100) ((-1135 . -1071) 127087) ((-1102 . -386) 127071) ((-792 . -386) 127055) ((-709 . -736) T) ((-709 . -804) T) ((-709 . -801) T) ((-591 . -1053) 127042) ((-528 . -1053) 127019) ((-60 . -57) 126981) ((-332 . -132) T) ((-324 . -1064) 126871) ((-321 . -1064) T) ((-171 . -1127) T) ((-790 . -386) 126855) ((-45 . -152) 126805) ((-1019 . -1007) 126787) ((-464 . -386) 126771) ((-417 . -174) T) ((-324 . -249) 126750) ((-321 . -249) T) ((-321 . -239) NIL) ((-302 . -1115) 126532) ((-227 . -132) T) ((-1135 . -111) 126517) ((-171 . -23) T) ((-809 . -148) 126496) ((-809 . -146) 126475) ((-258 . -649) 126381) ((-257 . -649) 126287) ((-327 . -292) 126253) ((-1172 . -524) 126186) ((-487 . -656) 126136) ((-1148 . -1115) T) ((-227 . -1075) T) ((-825 . -317) 126074) ((-1102 . -913) 126009) ((-792 . -913) 125952) ((-790 . -913) 125936) ((-1305 . -38) 125906) ((-1303 . -38) 125876) ((-1256 . -1127) T) ((-865 . -1127) T) ((-464 . -913) 125853) ((-868 . -1115) T) ((-1256 . -23) T) ((-1135 . -626) 125825) ((-1077 . -132) T) ((-581 . -1127) T) ((-865 . -23) T) ((-633 . -736) T) ((-364 . -933) T) ((-361 . -933) T) ((-297 . -102) T) ((-353 . -933) T) ((-985 . -1098) T) ((-965 . -132) T) ((-826 . -235) 125798) ((-118 . -804) NIL) ((-118 . -801) NIL) ((-118 . -736) T) ((-1061 . -524) 125699) ((-704 . -922) NIL) ((-581 . -23) T) ((-491 . -132) T) ((-428 . -238) 125678) ((-685 . -317) 125616) ((-645 . -771) T) ((-617 . -771) T) ((-1247 . -860) NIL) ((-1095 . -1066) 125526) ((-1018 . -298) T) ((-704 . -658) 125476) ((-258 . -21) T) ((-360 . -1115) T) ((-258 . -25) T) ((-257 . -21) T) ((-257 . -25) T) ((-153 . -38) 125460) ((-2 . -102) T) ((-923 . -933) T) ((-1095 . -650) 125328) ((-492 . -1290) 125298) ((-1135 . -1064) T) ((-721 . -315) T) ((-368 . -1066) 125250) ((-362 . -1066) 125202) ((-354 . -1066) 125154) ((-368 . -650) 125106) ((-225 . -1053) 125083) ((-362 . -650) 125035) ((-108 . -1066) 124985) ((-354 . -650) 124937) ((-302 . -727) 124879) ((-711 . -1073) T) ((-497 . -462) T) ((-417 . -524) 124791) ((-108 . -650) 124741) ((-219 . -462) T) ((-1135 . -239) T) ((-303 . -152) 124691) ((-1014 . -624) 124652) ((-1014 . -623) 124634) ((-1004 . -623) 124616) ((-117 . -1073) T) ((-664 . -1071) 124600) ((-227 . -503) T) ((-409 . -623) 124582) ((-409 . -624) 124559) ((-1069 . -1290) 124529) ((-664 . -111) 124508) ((-1157 . -499) 124492) ((-1307 . -656) 124451) ((-390 . -656) 124420) ((-825 . -38) 124390) ((-63 . -451) T) ((-63 . -405) T) ((-1175 . -102) T) ((-881 . -132) T) ((-494 . -102) 124368) ((-1312 . -377) T) ((-1095 . -102) T) ((-1076 . -102) T) ((-360 . -727) 124313) ((-741 . -148) 124292) ((-741 . -146) 124271) ((-664 . -626) 124189) ((-1039 . -658) 124126) ((-533 . -1115) 124104) ((-368 . -102) T) ((-362 . -102) T) ((-354 . -102) T) ((-108 . -102) T) ((-514 . -1115) T) ((-363 . -658) 124049) ((-1188 . -649) 123997) ((-1140 . -649) 123945) ((-394 . -519) 123924) ((-843 . -858) 123903) ((-388 . -1237) T) ((-704 . -736) T) ((-1247 . -1007) 123855) ((-348 . -1073) T) ((-112 . -1233) T) ((-176 . -1073) T) ((-103 . -623) 123787) ((-1190 . -146) 123766) ((-1190 . -148) 123745) ((-388 . -566) T) ((-1189 . -148) 123724) ((-1189 . -146) 123703) ((-1183 . -146) 123610) ((-417 . -298) T) ((-1183 . -148) 123517) ((-1141 . -148) 123496) ((-1141 . -146) 123475) ((-327 . -38) 123316) ((-171 . -132) T) ((-321 . -805) NIL) ((-321 . -802) NIL) ((-664 . -1064) T) ((-48 . -658) 123266) ((-1128 . -1066) 123143) ((-904 . -626) 123120) ((-1128 . -650) 123042) ((-1182 . -102) T) ((-1009 . -102) T) ((-1008 . -21) T) ((-128 . -1025) 123026) ((-122 . -1025) 123010) ((-1008 . -25) T) ((-914 . -120) 122994) ((-1174 . -102) T) ((-1256 . -132) T) ((-1188 . -25) T) ((-352 . -1233) T) ((-1188 . -21) T) ((-865 . -132) T) ((-1140 . -25) T) ((-1140 . -21) T) ((-864 . -25) T) ((-864 . -21) T) ((-792 . -315) 122973) ((-1175 . -317) 122768) ((-1172 . -499) 122752) ((-657 . -102) 122730) ((-642 . -102) T) ((-1165 . -152) 122680) ((-581 . -132) T) ((-631 . -858) 122659) ((-1161 . -623) 122621) ((-1161 . -624) 122582) ((-1039 . -801) T) ((-1039 . -804) T) ((-1039 . -736) T) ((-722 . -1071) 122405) ((-494 . -317) 122343) ((-463 . -427) 122313) ((-360 . -174) T) ((-297 . -38) 122300) ((-258 . -235) 122246) ((-257 . -235) 122192) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-276 . -102) T) ((-352 . -1053) 122169) ((-275 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-363 . -736) T) ((-722 . -111) 121978) ((-680 . -233) 121962) ((-591 . -315) T) ((-528 . -315) T) ((-302 . -524) 121911) ((-108 . -317) NIL) ((-72 . -405) T) ((-1128 . -102) 121701) ((-843 . -421) 121685) ((-1135 . -805) T) ((-1135 . -802) T) ((-711 . -1115) T) ((-588 . -623) 121667) ((-388 . -372) T) ((-171 . -503) 121645) ((-224 . -623) 121577) ((-135 . -1115) T) ((-117 . -1115) T) ((-979 . -1233) T) ((-48 . -736) T) ((-1061 . -499) 121542) ((-142 . -435) 121524) ((-142 . -377) T) ((-1042 . -102) T) ((-522 . -519) 121503) ((-722 . -626) 121259) ((-1190 . -238) 121218) ((-486 . -102) T) ((-473 . -102) T) ((-1189 . -238) 121170) ((-1183 . -238) 121057) ((-1049 . -1127) T) ((-1240 . -623) 121039) ((-1197 . -1053) 120975) ((-1190 . -35) 120941) ((-1190 . -95) 120907) ((-1190 . -1221) 120873) ((-1190 . -1218) 120839) ((-1189 . -1218) 120805) ((-1189 . -1221) 120771) ((-1174 . -317) NIL) ((-89 . -406) T) ((-89 . -405) T) ((-1095 . -1167) 120750) ((-40 . -1233) 120722) ((-1189 . -95) 120688) ((-1049 . -23) T) ((-1189 . -35) 120654) ((-581 . -503) T) ((-1183 . -1218) 120620) ((-1183 . -1221) 120586) ((-1183 . -95) 120552) ((-1183 . -35) 120518) ((-370 . -1127) T) ((-368 . -1167) 120497) ((-362 . -1167) 120476) ((-354 . -1167) 120455) ((-1119 . -294) 120411) ((-1141 . -35) 120377) ((-1141 . -95) 120343) ((-108 . -1167) T) ((-1141 . -1221) 120309) ((-843 . -1073) 120288) ((-657 . -317) 120226) ((-642 . -317) 120077) ((-1141 . -1218) 120043) ((-722 . -1064) T) ((-1077 . -649) 120025) ((-1095 . -38) 119893) ((-965 . -649) 119841) ((-1019 . -148) T) ((-1019 . -146) NIL) ((-388 . -1127) T) ((-332 . -25) T) ((-330 . -23) T) ((-956 . -860) 119820) ((-722 . -334) 119797) ((-491 . -649) 119745) ((-40 . -1053) 119633) ((-722 . -239) T) ((-711 . -727) 119620) ((-348 . -1115) T) ((-176 . -1115) T) ((-339 . -860) T) ((-428 . -462) 119570) ((-388 . -23) T) ((-368 . -38) 119535) ((-362 . -38) 119500) ((-354 . -38) 119465) ((-80 . -451) T) ((-80 . -405) T) ((-227 . -25) T) ((-227 . -21) T) ((-846 . -1127) T) ((-108 . -38) 119415) ((-837 . -1127) T) ((-784 . -1115) T) ((-117 . -727) 119402) ((-682 . -1053) 119386) ((-622 . -102) T) ((-846 . -23) T) ((-837 . -23) T) ((-1172 . -294) 119338) ((-1128 . -317) 119276) ((-492 . -1066) 119153) ((-1117 . -241) 119137) ((-64 . -406) T) ((-64 . -405) T) ((-1166 . -102) T) ((-110 . -102) T) ((-492 . -650) 119059) ((-40 . -386) 119036) ((-96 . -102) T) ((-663 . -862) 119020) ((-1188 . -235) 119007) ((-1150 . -1098) T) ((-1077 . -21) T) ((-1077 . -25) T) ((-1069 . -1066) 118991) ((-825 . -233) 118960) ((-965 . -25) T) ((-965 . -21) T) ((-1069 . -650) 118902) ((-631 . -1073) T) ((-1135 . -377) T) ((-1042 . -317) 118840) ((-680 . -656) 118799) ((-491 . -25) T) ((-491 . -21) T) ((-394 . -1066) 118783) ((-900 . -623) 118765) ((-896 . -623) 118747) ((-533 . -524) 118680) ((-258 . -860) 118631) ((-257 . -860) 118582) ((-394 . -650) 118552) ((-881 . -649) 118529) ((-486 . -317) 118467) ((-473 . -317) 118405) ((-360 . -298) T) ((-1172 . -1271) 118389) ((-1157 . -623) 118351) ((-1157 . -624) 118312) ((-1155 . -102) T) ((-1014 . -1071) 118208) ((-40 . -913) 118160) ((-1172 . -614) 118137) ((-1312 . -658) 118124) ((-876 . -500) 118101) ((-1078 . -152) 118047) ((-882 . -1237) T) ((-1014 . -111) 117929) ((-348 . -727) 117913) ((-876 . -623) 117875) ((-176 . -727) 117807) ((-882 . -566) T) ((-417 . -294) 117765) ((-246 . -238) 117717) ((-108 . -410) 117699) ((-84 . -393) T) ((-84 . -405) T) ((-711 . -174) T) ((-627 . -623) 117681) ((-99 . -736) T) ((-492 . -102) 117471) ((-99 . -483) T) ((-117 . -174) T) ((-1305 . -656) 117430) ((-1303 . -656) 117389) ((-1128 . -38) 117359) ((-171 . -649) 117307) ((-1069 . -102) T) ((-1014 . -626) 117197) ((-881 . -25) T) ((-825 . -244) 117176) ((-881 . -21) T) ((-828 . -102) T) ((-44 . -656) 117119) ((-1019 . -238) T) ((-424 . -102) T) ((-394 . -102) T) ((-110 . -317) NIL) ((-229 . -102) 117097) ((-128 . -1233) T) ((-122 . -1233) T) ((-827 . -1066) 117048) ((-827 . -650) 116990) ((-1049 . -132) T) ((-680 . -376) 116974) ((-153 . -656) 116933) ((-645 . -294) 116891) ((-617 . -294) 116849) ((-1312 . -736) T) ((-1014 . -1064) T) ((-1256 . -649) 116797) ((-1119 . -623) 116779) ((-1018 . -623) 116761) ((-574 . -1233) T) ((-505 . -1233) T) ((-525 . -23) T) ((-520 . -23) T) ((-352 . -315) T) ((-518 . -23) T) ((-330 . -132) T) ((-3 . -1115) T) ((-1018 . -624) 116745) ((-1014 . -249) 116724) ((-1014 . -239) 116703) ((-1275 . -146) 116682) ((-1275 . -148) 116661) ((-843 . -1115) T) ((-1268 . -148) 116640) ((-1268 . -146) 116619) ((-1267 . -1237) 116598) ((-1247 . -146) 116505) ((-1247 . -148) 116412) ((-1246 . -1237) 116391) ((-388 . -132) T) ((-227 . -235) 116378) ((-574 . -897) 116360) ((0 . -1115) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1115) T) ((-1269 . -658) 116265) ((-1267 . -566) 116216) ((-724 . -1127) T) ((-1246 . -566) 116167) ((-574 . -1053) 116149) ((-605 . -148) 116128) ((-605 . -146) 116107) ((-505 . -1053) 116050) ((-1150 . -1152) T) ((-87 . -393) T) ((-87 . -405) T) ((-882 . -372) T) ((-846 . -132) T) ((-837 . -132) T) ((-977 . -656) 115994) ((-724 . -23) T) ((-516 . -623) 115960) ((-512 . -623) 115942) ((-825 . -656) 115712) ((-1307 . -1073) T) ((-388 . -1075) T) ((-1041 . -1115) 115690) ((-55 . -1053) 115672) ((-914 . -34) T) ((-492 . -317) 115610) ((-602 . -102) T) ((-1172 . -624) 115571) ((-1172 . -623) 115503) ((-1194 . -1066) 115386) ((-45 . -102) T) ((-827 . -102) T) ((-1194 . -650) 115283) ((-1256 . -25) T) ((-1256 . -21) T) ((-1077 . -235) 115270) ((-865 . -25) T) ((-44 . -376) 115254) ((-865 . -21) T) ((-741 . -462) 115205) ((-1306 . -623) 115187) ((-1295 . -1066) 115157) ((-1069 . -317) 115095) ((-681 . -1098) T) ((-616 . -1098) T) ((-400 . -1115) T) ((-581 . -25) T) ((-581 . -21) T) ((-182 . -1098) T) ((-162 . -1098) T) ((-157 . -1098) T) ((-155 . -1098) T) ((-1295 . -650) 115065) ((-631 . -1115) T) ((-709 . -897) 115047) ((-1283 . -1233) T) ((-229 . -317) 114985) ((-145 . -377) T) ((-1061 . -624) 114927) ((-1061 . -623) 114870) ((-321 . -922) NIL) ((-1241 . -854) T) ((-709 . -1053) 114815) ((-721 . -933) T) ((-484 . -1237) 114794) ((-1189 . -462) 114773) ((-1183 . -462) 114752) ((-338 . -102) T) ((-882 . -1127) T) ((-327 . -656) 114634) ((-324 . -658) 114363) ((-321 . -658) 114292) ((-484 . -566) 114243) ((-348 . -524) 114209) ((-560 . -152) 114159) ((-40 . -315) T) ((-853 . -623) 114141) ((-711 . -298) T) ((-882 . -23) T) ((-388 . -503) T) ((-1095 . -233) 114111) ((-522 . -102) T) ((-417 . -624) 113918) ((-417 . -623) 113900) ((-270 . -623) 113882) ((-117 . -298) T) ((-1269 . -736) T) ((-633 . -1233) 113861) ((-1308 . -1115) T) ((-1267 . -372) 113840) ((-1246 . -372) 113819) ((-1296 . -34) T) ((-1241 . -1115) T) ((-118 . -1233) T) ((-108 . -233) 113801) ((-1194 . -102) T) ((-487 . -1115) T) ((-533 . -499) 113785) ((-747 . -34) T) ((-663 . -1066) 113769) ((-492 . -38) 113739) ((-663 . -650) 113709) ((-881 . -235) NIL) ((-142 . -34) T) ((-118 . -895) 113686) ((-118 . -897) NIL) ((-633 . -1053) 113569) ((-1295 . -102) T) ((-1275 . -238) 113528) ((-654 . -860) 113507) ((-1268 . -238) 113459) ((-1247 . -238) 113346) ((-303 . -102) T) ((-722 . -377) 113325) ((-118 . -1053) 113302) ((-400 . -727) 113286) ((-605 . -238) 113245) ((-631 . -727) 113229) ((-1120 . -1233) T) ((-45 . -317) 113033) ((-826 . -146) 113012) ((-826 . -148) 112991) ((-297 . -656) 112963) ((-1306 . -391) 112942) ((-829 . -860) T) ((-1285 . -1115) T) ((-1175 . -231) 112889) ((-396 . -860) 112868) ((-1275 . -1221) 112834) ((-1275 . -1218) 112800) ((-1268 . -1218) 112766) ((-525 . -132) T) ((-1268 . -1221) 112732) ((-1247 . -1218) 112698) ((-1247 . -1221) 112664) ((-1275 . -35) 112630) ((-1275 . -95) 112596) ((-1268 . -95) 112562) ((-645 . -623) 112531) ((-617 . -623) 112500) ((-227 . -860) T) ((-1268 . -35) 112466) ((-1267 . -1127) T) ((-1247 . -95) 112432) ((-1135 . -658) 112404) ((-1247 . -35) 112370) ((-1246 . -1127) T) ((-603 . -152) 112352) ((-1095 . -358) 112331) ((-176 . -298) T) ((-118 . -386) 112308) ((-118 . -347) 112285) ((-171 . -235) 112230) ((-880 . -315) T) ((-321 . -804) NIL) ((-321 . -801) NIL) ((-324 . -736) 112079) ((-321 . -736) T) ((-484 . -372) 112058) ((-368 . -358) 112037) ((-362 . -358) 112016) ((-354 . -358) 111995) ((-324 . -483) 111974) ((-1267 . -23) T) ((-1246 . -23) T) ((-728 . -1127) T) ((-724 . -132) T) ((-663 . -102) T) ((-487 . -727) 111939) ((-45 . -290) 111889) ((-105 . -1115) T) ((-68 . -623) 111871) ((-985 . -102) T) ((-874 . -102) T) ((-633 . -913) 111830) ((-1307 . -1115) T) ((-390 . -1115) T) ((-1256 . -235) 111817) ((-82 . -1233) T) ((-1232 . -1115) T) ((-1077 . -860) T) ((-118 . -913) NIL) ((-792 . -933) 111796) ((-723 . -860) T) ((-541 . -1115) T) ((-510 . -1115) T) ((-364 . -1237) T) ((-361 . -1237) T) ((-353 . -1237) T) ((-271 . -1237) 111775) ((-253 . -1237) 111754) ((-543 . -870) T) ((-1128 . -233) 111723) ((-1174 . -838) T) ((-1157 . -1071) 111707) ((-400 . -771) T) ((-704 . -1233) T) ((-701 . -1053) 111691) ((-364 . -566) T) ((-361 . -566) T) ((-353 . -566) T) ((-271 . -566) 111622) ((-253 . -566) 111553) ((-535 . -1098) T) ((-1157 . -111) 111532) ((-463 . -754) 111502) ((-876 . -1071) 111472) ((-827 . -38) 111414) ((-704 . -895) 111396) ((-704 . -897) 111378) ((-303 . -317) 111182) ((-923 . -1237) T) ((-1172 . -296) 111159) ((-1095 . -656) 111054) ((-680 . -421) 111038) ((-876 . -111) 111003) ((-1019 . -462) T) ((-704 . -1053) 110948) ((-923 . -566) T) ((-543 . -623) 110930) ((-591 . -933) T) ((-497 . -1066) 110880) ((-484 . -1127) T) ((-528 . -933) T) ((-927 . -462) T) ((-65 . -623) 110862) ((-219 . -1066) 110812) ((-497 . -650) 110762) ((-368 . -656) 110699) ((-362 . -656) 110636) ((-354 . -656) 110573) ((-642 . -231) 110519) ((-219 . -650) 110469) ((-108 . -656) 110419) ((-484 . -23) T) ((-1135 . -804) T) ((-882 . -132) T) ((-1135 . -801) T) ((-1298 . -1300) 110398) ((-1135 . -736) T) ((-664 . -658) 110372) ((-302 . -623) 110113) ((-1157 . -626) 110031) ((-1050 . -34) T) ((-826 . -238) 110010) ((-590 . -315) T) ((-574 . -315) T) ((-505 . -315) T) ((-1307 . -727) 109980) ((-704 . -386) 109962) ((-704 . -347) 109944) ((-487 . -174) T) ((-390 . -727) 109914) ((-876 . -626) 109849) ((-881 . -860) NIL) ((-574 . -1037) T) ((-505 . -1037) T) ((-1148 . -623) 109831) ((-1128 . -244) 109810) ((-216 . -102) T) ((-1165 . -102) T) ((-71 . -623) 109792) ((-1157 . -1064) T) ((-1194 . -38) 109689) ((-868 . -623) 109671) ((-574 . -555) T) ((-680 . -1073) T) ((-741 . -962) 109624) ((-363 . -1233) T) ((-1157 . -239) 109603) ((-1097 . -1115) T) ((-1049 . -25) T) ((-1049 . -21) T) ((-1018 . -1071) 109548) ((-918 . -102) T) ((-876 . -1064) T) ((-704 . -913) NIL) ((-364 . -337) 109532) ((-364 . -372) T) ((-361 . -337) 109516) ((-361 . -372) T) ((-353 . -337) 109500) ((-353 . -372) T) ((-497 . -102) T) ((-1295 . -38) 109470) ((-556 . -860) T) ((-533 . -697) 109420) ((-219 . -102) T) ((-1039 . -1053) 109300) ((-1018 . -111) 109229) ((-1190 . -988) 109198) ((-1189 . -988) 109160) ((-530 . -152) 109144) ((-1095 . -379) 109123) ((-360 . -623) 109105) ((-330 . -21) T) ((-363 . -1053) 109082) ((-330 . -25) T) ((-1183 . -988) 109051) ((-48 . -1233) T) ((-76 . -623) 109033) ((-1141 . -988) 109000) ((-709 . -315) T) ((-130 . -854) T) ((-923 . -372) T) ((-388 . -25) T) ((-388 . -21) T) ((-923 . -337) 108987) ((-86 . -623) 108969) ((-709 . -1037) T) ((-687 . -860) T) ((-1267 . -132) T) ((-1246 . -132) T) ((-914 . -1025) 108953) ((-846 . -21) T) ((-48 . -1053) 108896) ((-846 . -25) T) ((-837 . -25) T) ((-837 . -21) T) ((-1128 . -656) 108666) ((-1305 . -1073) T) ((-559 . -102) T) ((-1303 . -1073) T) ((-664 . -736) T) ((-1119 . -628) 108569) ((-1018 . -626) 108499) ((-1306 . -1071) 108483) ((-825 . -421) 108452) ((-103 . -120) 108436) ((-130 . -1115) T) ((-52 . -1115) T) ((-939 . -623) 108418) ((-881 . -1007) 108395) ((-833 . -102) T) ((-1306 . -111) 108374) ((-663 . -38) 108344) ((-581 . -860) T) ((-364 . -1127) T) ((-361 . -1127) T) ((-353 . -1127) T) ((-271 . -1127) T) ((-253 . -1127) T) ((-1165 . -317) 108148) ((-633 . -315) 108127) ((-1103 . -235) 108114) ((-674 . -23) T) ((-534 . -1098) T) ((-319 . -1115) T) ((-492 . -233) 108083) ((-153 . -1073) T) ((-364 . -23) T) ((-361 . -23) T) ((-353 . -23) T) ((-118 . -315) T) ((-271 . -23) T) ((-253 . -23) T) ((-1018 . -1064) T) ((-722 . -922) 108062) ((-1172 . -626) 108039) ((-1018 . -239) 108011) ((-1018 . -249) T) ((-118 . -1037) NIL) ((-923 . -1127) T) ((-1268 . -462) 107990) ((-1247 . -462) 107969) ((-533 . -623) 107901) ((-722 . -658) 107790) ((-417 . -1071) 107742) ((-514 . -623) 107724) ((-923 . -23) T) ((-497 . -317) NIL) ((-1306 . -626) 107680) ((-484 . -132) T) ((-219 . -317) NIL) ((-417 . -111) 107618) ((-825 . -1073) 107568) ((-747 . -1113) 107552) ((-1267 . -503) 107518) ((-1246 . -503) 107484) ((-558 . -854) T) ((-142 . -1113) 107466) ((-487 . -298) T) ((-1306 . -1064) T) ((-258 . -238) 107418) ((-257 . -238) 107370) ((-1238 . -102) T) ((-1078 . -102) T) ((-853 . -626) 107238) ((-510 . -524) NIL) ((-492 . -244) 107217) ((-417 . -626) 107115) ((-976 . -1066) 106998) ((-745 . -1066) 106968) ((-976 . -650) 106865) ((-1188 . -146) 106844) ((-745 . -650) 106814) ((-463 . -1066) 106784) ((-1188 . -148) 106763) ((-1140 . -148) 106742) ((-1140 . -146) 106721) ((-645 . -1071) 106705) ((-617 . -1071) 106689) ((-463 . -650) 106659) ((-1190 . -1274) 106643) ((-1190 . -1261) 106620) ((-1189 . -1266) 106581) ((-680 . -1115) T) ((-680 . -1068) 106521) ((-1189 . -1261) 106491) ((-558 . -1115) T) ((-497 . -1167) T) ((-1189 . -1264) 106475) ((-1183 . -1245) 106436) ((-828 . -273) 106420) ((-219 . -1167) T) ((-352 . -933) T) ((-99 . -1233) T) ((-645 . -111) 106399) ((-617 . -111) 106378) ((-1183 . -1261) 106355) ((-853 . -1064) 106334) ((-1183 . -1243) 106318) ((-525 . -25) T) ((-505 . -310) T) ((-521 . -23) T) ((-520 . -25) T) ((-518 . -25) T) ((-517 . -23) T) ((-428 . -1066) 106292) ((-417 . -1064) T) ((-327 . -1073) T) ((-704 . -315) T) ((-428 . -650) 106266) ((-108 . -858) T) ((-722 . -736) T) ((-417 . -249) T) ((-417 . -239) 106245) ((-388 . -235) 106232) ((-497 . -38) 106182) ((-219 . -38) 106132) ((-484 . -503) 106098) ((-1240 . -377) T) ((-1174 . -1159) T) ((-1116 . -102) T) ((-837 . -235) 106071) ((-711 . -623) 106053) ((-711 . -624) 105968) ((-724 . -21) T) ((-724 . -25) T) ((-1150 . -102) T) ((-492 . -656) 105738) ((-135 . -623) 105720) ((-117 . -623) 105702) ((-158 . -25) T) ((-1305 . -1115) T) ((-882 . -649) 105650) ((-1303 . -1115) T) ((-976 . -102) T) ((-745 . -102) T) ((-725 . -102) T) ((-463 . -102) T) ((-826 . -462) 105601) ((-44 . -1115) T) ((-1103 . -860) T) ((-1078 . -317) 105452) ((-674 . -132) T) ((-1069 . -656) 105421) ((-680 . -727) 105405) ((-297 . -1073) T) ((-364 . -132) T) ((-361 . -132) T) ((-353 . -132) T) ((-271 . -132) T) ((-253 . -132) T) ((-394 . -656) 105374) ((-428 . -102) T) ((-153 . -1115) T) ((-45 . -231) 105324) ((-809 . -1066) 105308) ((-971 . -860) 105287) ((-1014 . -658) 105189) ((-809 . -650) 105173) ((-246 . -1290) 105143) ((-1039 . -315) T) ((-302 . -1071) 105064) ((-923 . -132) T) ((-40 . -933) T) ((-497 . -410) 105046) ((-363 . -315) T) ((-219 . -410) 105028) ((-1095 . -421) 105012) ((-302 . -111) 104928) ((-1199 . -860) T) ((-1198 . -860) T) ((-882 . -25) T) ((-882 . -21) T) ((-1269 . -47) 104872) ((-348 . -623) 104854) ((-1188 . -238) T) ((-227 . -148) T) ((-176 . -623) 104836) ((-784 . -623) 104818) ((-129 . -860) T) ((-618 . -241) 104765) ((-485 . -241) 104715) ((-1305 . -727) 104685) ((-48 . -315) T) ((-1303 . -727) 104655) ((-65 . -626) 104584) ((-977 . -1115) T) ((-825 . -1115) 104374) ((-320 . -102) T) ((-914 . -1233) T) ((-48 . -1037) T) ((-1246 . -649) 104282) ((-699 . -102) 104260) ((-44 . -727) 104244) ((-560 . -102) T) ((-302 . -626) 104175) ((-67 . -392) T) ((-67 . -405) T) ((-672 . -23) T) ((-827 . -656) 104111) ((-680 . -771) T) ((-1230 . -1115) 104089) ((-360 . -1071) 104034) ((-685 . -1115) 104012) ((-1077 . -148) T) ((-965 . -148) 103991) ((-965 . -146) 103970) ((-809 . -102) T) ((-153 . -727) 103954) ((-491 . -148) 103933) ((-491 . -146) 103912) ((-360 . -111) 103841) ((-1095 . -1073) T) ((-330 . -860) 103820) ((-1275 . -988) 103789) ((-637 . -1115) T) ((-1268 . -988) 103751) ((-521 . -132) T) ((-517 . -132) T) ((-303 . -231) 103701) ((-368 . -1073) T) ((-362 . -1073) T) ((-354 . -1073) T) ((-302 . -1064) 103643) ((-1247 . -988) 103612) ((-388 . -860) T) ((-108 . -1073) T) ((-1014 . -736) T) ((-880 . -933) T) ((-853 . -805) 103591) ((-853 . -802) 103570) ((-428 . -317) 103509) ((-478 . -102) T) ((-605 . -988) 103478) ((-327 . -1115) T) ((-417 . -805) 103457) ((-417 . -802) 103436) ((-510 . -499) 103418) ((-1269 . -1053) 103384) ((-1267 . -21) T) ((-1267 . -25) T) ((-1246 . -21) T) ((-1246 . -25) T) ((-825 . -727) 103326) ((-360 . -626) 103256) ((-709 . -414) T) ((-1296 . -1233) T) ((-1128 . -421) 103225) ((-616 . -102) T) ((-1092 . -1233) T) ((-1018 . -377) NIL) ((-681 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1194 . -656) 103135) ((-747 . -1233) T) ((-741 . -1066) 102978) ((-44 . -771) T) ((-741 . -650) 102827) ((-603 . -102) T) ((-663 . -666) 102811) ((-77 . -406) T) ((-77 . -405) T) ((-142 . -1233) T) ((-881 . -148) T) ((-881 . -146) NIL) ((-1232 . -93) T) ((-360 . -1064) T) ((-227 . -238) T) ((-70 . -392) T) ((-70 . -405) T) ((-1181 . -102) T) ((-680 . -524) 102744) ((-1295 . -656) 102689) ((-699 . -317) 102627) ((-976 . -38) 102524) ((-1196 . -623) 102506) ((-745 . -38) 102476) ((-560 . -317) 102280) ((-1190 . -1066) 102163) ((-324 . -1233) T) ((-360 . -239) T) ((-360 . -249) T) ((-321 . -1233) T) ((-297 . -1115) T) ((-1189 . -1066) 101998) ((-1183 . -1066) 101788) ((-1141 . -1066) 101671) ((-1190 . -650) 101568) ((-1189 . -650) 101409) ((-721 . -1237) T) ((-1183 . -650) 101205) ((-1172 . -661) 101189) ((-1141 . -650) 101086) ((-1227 . -566) 101065) ((-829 . -395) 101049) ((-721 . -566) T) ((-324 . -895) 101033) ((-324 . -897) 100958) ((-137 . -1233) T) ((-321 . -895) 100919) ((-321 . -897) NIL) ((-809 . -317) 100884) ((-327 . -727) 100725) ((-396 . -395) 100709) ((-332 . -331) 100686) ((-495 . -102) T) ((-484 . -25) T) ((-484 . -21) T) ((-428 . -38) 100660) ((-324 . -1053) 100323) ((-227 . -1218) T) ((-227 . -1221) T) ((-3 . -623) 100305) ((-321 . -1053) 100235) ((-882 . -235) 100208) ((-2 . -1115) T) ((-2 . |RecordCategory|) T) ((-1128 . -1073) 100158) ((-843 . -623) 100140) ((-1077 . -238) T) ((-590 . -933) T) ((-574 . -830) T) ((-574 . -933) T) ((-505 . -933) T) ((-137 . -1053) 100124) ((-227 . -95) T) ((-171 . -148) 100103) ((-75 . -451) T) ((0 . -623) 100085) ((-75 . -405) T) ((-171 . -146) 100036) ((-227 . -35) T) ((-49 . -623) 100018) ((-487 . -1073) T) ((-497 . -233) 100000) ((-494 . -983) 99984) ((-219 . -233) 99966) ((-81 . -451) T) ((-81 . -405) T) ((-1161 . -34) T) ((-825 . -174) 99945) ((-741 . -102) T) ((-663 . -656) 99904) ((-1041 . -623) 99871) ((-510 . -294) 99821) ((-324 . -386) 99790) ((-321 . -386) 99751) ((-321 . -347) 99712) ((-1100 . -623) 99694) ((-826 . -962) 99641) ((-672 . -132) T) ((-1256 . -146) 99620) ((-1256 . -148) 99599) ((-1190 . -102) T) ((-1189 . -102) T) ((-1183 . -102) T) ((-1175 . -1115) T) ((-1141 . -102) T) ((-224 . -34) T) ((-297 . -727) 99586) ((-1175 . -620) 99562) ((-603 . -317) NIL) ((-1275 . -1274) 99546) ((-494 . -1115) 99524) ((-1165 . -231) 99474) ((-400 . -623) 99456) ((-520 . -860) T) ((-1135 . -1233) T) ((-1275 . -1261) 99433) ((-1268 . -1266) 99394) ((-1268 . -1261) 99364) ((-1268 . -1264) 99348) ((-1247 . -1245) 99309) ((-1247 . -1261) 99286) ((-1247 . -1243) 99270) ((-631 . -623) 99252) ((-1190 . -292) 99218) ((-709 . -933) T) ((-1189 . -292) 99184) ((-1183 . -292) 99150) ((-1141 . -292) 99116) ((-1095 . -1115) T) ((-1076 . -1115) T) ((-48 . -310) T) ((-324 . -913) 99082) ((-321 . -913) NIL) ((-1076 . -1083) 99061) ((-1135 . -897) 99043) ((-809 . -38) 99027) ((-271 . -649) 98975) ((-253 . -649) 98923) ((-711 . -1071) 98910) ((-605 . -1261) 98887) ((-1135 . -1053) 98869) ((-327 . -174) 98800) ((-368 . -1115) T) ((-362 . -1115) T) ((-354 . -1115) T) ((-510 . -19) 98782) ((-1117 . -152) 98766) ((-881 . -238) NIL) ((-108 . -1115) T) ((-117 . -1071) 98753) ((-721 . -372) T) ((-510 . -614) 98728) ((-711 . -111) 98713) ((-1267 . -235) 98659) ((-1246 . -235) 98558) ((-446 . -102) T) ((-886 . -1278) T) ((-256 . -102) T) ((-45 . -1164) 98508) ((-117 . -111) 98493) ((-1308 . -623) 98460) ((-1308 . -500) 98442) ((-1285 . -623) 98424) ((-1256 . -238) T) ((-645 . -730) T) ((-617 . -730) T) ((-1241 . -623) 98406) ((-1239 . -860) T) ((-1227 . -1127) T) ((-1227 . -23) T) ((-1188 . -462) 98337) ((-825 . -524) 98270) ((-1050 . -1233) T) ((-246 . -1066) 98147) ((-1183 . -317) 98032) ((-1182 . -1115) T) ((-956 . -152) 98016) ((-1174 . -1115) T) ((-1157 . -658) 97954) ((-246 . -650) 97876) ((-1141 . -317) 97863) ((-1140 . -462) 97814) ((-1102 . -566) 97745) ((-535 . -102) T) ((-530 . -102) 97695) ((-1102 . -1237) 97674) ((-1095 . -727) 97542) ((-1019 . -1066) 97492) ((-792 . -1237) 97471) ((-790 . -1237) 97450) ((-62 . -1233) T) ((-487 . -623) 97402) ((-487 . -624) 97324) ((-1009 . -1115) T) ((-792 . -566) 97235) ((-790 . -566) 97166) ((-741 . -317) 97153) ((-492 . -421) 97122) ((-633 . -933) 97101) ((-464 . -1237) 97080) ((-711 . -626) 97052) ((-685 . -524) 96985) ((-408 . -623) 96967) ((-674 . -25) T) ((-674 . -21) T) ((-464 . -566) 96898) ((-364 . -25) T) ((-364 . -21) T) ((-361 . -25) T) ((-118 . -933) T) ((-118 . -830) NIL) ((-361 . -21) T) ((-353 . -25) T) ((-353 . -21) T) ((-271 . -25) T) ((-271 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -238) 96849) ((-83 . -393) T) ((-83 . -405) T) ((-135 . -626) 96831) ((-117 . -626) 96803) ((-1019 . -650) 96753) ((-956 . -995) 96737) ((-927 . -650) 96689) ((-927 . -1066) 96641) ((-923 . -21) T) ((-923 . -25) T) ((-882 . -860) 96592) ((-876 . -658) 96552) ((-721 . -1127) T) ((-721 . -23) T) ((-711 . -1064) T) ((-711 . -239) T) ((-297 . -174) T) ((-664 . -1233) T) ((-319 . -93) T) ((-657 . -1115) 96530) ((-642 . -620) 96505) ((-642 . -1115) T) ((-591 . -1237) T) ((-591 . -566) T) ((-528 . -1237) T) ((-528 . -566) T) ((-497 . -656) 96455) ((-484 . -235) 96401) ((-437 . -1066) 96385) ((-437 . -650) 96369) ((-368 . -727) 96321) ((-362 . -727) 96273) ((-348 . -1071) 96257) ((-354 . -727) 96209) ((-348 . -111) 96188) ((-176 . -1071) 96120) ((-219 . -656) 96070) ((-176 . -111) 95981) ((-108 . -727) 95931) ((-281 . -1115) T) ((-280 . -1115) T) ((-279 . -1115) T) ((-278 . -1115) T) ((-277 . -1115) T) ((-276 . -1115) T) ((-275 . -1115) T) ((-214 . -1115) T) ((-213 . -1115) T) ((-171 . -1221) 95909) ((-171 . -1218) 95887) ((-211 . -1115) T) ((-210 . -1115) T) ((-117 . -1064) T) ((-209 . -1115) T) ((-208 . -1115) T) ((-205 . -1115) T) ((-204 . -1115) T) ((-203 . -1115) T) ((-202 . -1115) T) ((-201 . -1115) T) ((-200 . -1115) T) ((-199 . -1115) T) ((-198 . -1115) T) ((-197 . -1115) T) ((-196 . -1115) T) ((-195 . -1115) T) ((-246 . -102) 95677) ((-171 . -35) 95655) ((-171 . -95) 95633) ((-664 . -1053) 95529) ((-492 . -1073) 95479) ((-1128 . -1115) 95269) ((-1157 . -34) T) ((-680 . -499) 95253) ((-73 . -1233) T) ((-105 . -623) 95235) ((-1307 . -623) 95217) ((-390 . -623) 95199) ((-348 . -626) 95151) ((-176 . -626) 95068) ((-1232 . -500) 95049) ((-741 . -38) 94898) ((-581 . -1221) T) ((-581 . -1218) T) ((-541 . -623) 94880) ((-530 . -317) 94818) ((-510 . -623) 94800) ((-510 . -624) 94782) ((-1232 . -623) 94748) ((-1183 . -1167) NIL) ((-1042 . -1086) 94717) ((-1042 . -1115) T) ((-1019 . -102) T) ((-986 . -102) T) ((-927 . -102) T) ((-904 . -1053) 94694) ((-1157 . -736) T) ((-1018 . -658) 94601) ((-486 . -1115) T) ((-473 . -1115) T) ((-596 . -23) T) ((-581 . -35) T) ((-581 . -95) T) ((-437 . -102) T) ((-1078 . -231) 94547) ((-1190 . -38) 94444) ((-876 . -736) T) ((-704 . -933) T) ((-521 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-1189 . -38) 94285) ((-348 . -1064) T) ((-1183 . -38) 94081) ((-1095 . -174) T) ((-176 . -1064) T) ((-1141 . -38) 93978) ((-722 . -47) 93955) ((-368 . -174) T) ((-362 . -174) T) ((-529 . -57) 93929) ((-507 . -57) 93879) ((-360 . -1302) 93856) ((-227 . -462) T) ((-327 . -298) 93807) ((-354 . -174) T) ((-176 . -249) T) ((-1246 . -860) 93706) ((-108 . -174) T) ((-882 . -1007) 93690) ((-668 . -1127) T) ((-591 . -372) T) ((-591 . -337) 93677) ((-528 . -337) 93654) ((-528 . -372) T) ((-324 . -315) 93633) ((-321 . -315) T) ((-612 . -860) 93612) ((-1128 . -727) 93554) ((-530 . -290) 93538) ((-668 . -23) T) ((-428 . -233) 93522) ((-321 . -1037) NIL) ((-345 . -23) T) ((-103 . -1025) 93506) ((-45 . -36) 93485) ((-622 . -1115) T) ((-360 . -377) T) ((-534 . -102) T) ((-505 . -27) T) ((-246 . -317) 93423) ((-1102 . -1127) T) ((-1306 . -658) 93397) ((-792 . -1127) T) ((-790 . -1127) T) ((-1194 . -421) 93381) ((-464 . -1127) T) ((-1077 . -462) T) ((-1166 . -1115) T) ((-965 . -462) 93332) ((-1130 . -1098) T) ((-110 . -1115) T) ((-1102 . -23) T) ((-1175 . -524) 93115) ((-827 . -1073) T) ((-792 . -23) T) ((-790 . -23) T) ((-491 . -462) 93066) ((-471 . -23) T) ((-390 . -391) 93045) ((-364 . -235) 93018) ((-361 . -235) 92991) ((-353 . -235) 92964) ((-464 . -23) T) ((-271 . -235) 92937) ((-96 . -1115) T) ((-722 . -1233) T) ((-680 . -294) 92914) ((-494 . -524) 92847) ((-1275 . -1066) 92730) ((-1275 . -650) 92627) ((-1268 . -650) 92468) ((-1268 . -1066) 92303) ((-1247 . -650) 92099) ((-297 . -298) T) ((-1247 . -1066) 91889) ((-1097 . -623) 91871) ((-1097 . -624) 91852) ((-417 . -922) 91831) ((-1227 . -132) T) ((-50 . -1127) T) ((-1183 . -410) 91783) ((-1039 . -933) T) ((-1018 . -736) T) ((-853 . -658) 91756) ((-722 . -897) NIL) ((-606 . -1066) 91716) ((-591 . -1127) T) ((-528 . -1127) T) ((-605 . -1066) 91599) ((-1172 . -34) T) ((-1019 . -317) NIL) ((-825 . -499) 91583) ((-606 . -650) 91556) ((-363 . -933) T) ((-605 . -650) 91453) ((-923 . -235) 91440) ((-417 . -658) 91356) ((-50 . -23) T) ((-721 . -132) T) ((-722 . -1053) 91236) ((-591 . -23) T) ((-108 . -524) NIL) ((-528 . -23) T) ((-171 . -419) 91207) ((-1155 . -1115) T) ((-1298 . -1297) 91191) ((-711 . -805) T) ((-711 . -802) T) ((-1135 . -315) T) ((-388 . -148) T) ((-288 . -623) 91173) ((-287 . -623) 91155) ((-1246 . -1007) 91125) ((-48 . -933) T) ((-685 . -499) 91109) ((-258 . -1290) 91079) ((-257 . -1290) 91049) ((-1192 . -860) T) ((-1103 . -238) T) ((-1128 . -174) 91028) ((-1135 . -1037) T) ((-1061 . -34) T) ((-846 . -148) 91007) ((-846 . -146) 90986) ((-747 . -107) 90970) ((-622 . -133) T) ((-492 . -1115) 90760) ((-1194 . -1073) T) ((-881 . -462) T) ((-85 . -1233) T) ((-246 . -38) 90730) ((-142 . -107) 90712) ((-722 . -386) 90696) ((-843 . -626) 90564) ((-1306 . -736) T) ((-1295 . -1073) T) ((-1275 . -102) T) ((-1135 . -555) T) ((-589 . -102) T) ((-130 . -500) 90546) ((-1268 . -102) T) ((-400 . -1071) 90530) ((-1188 . -962) 90499) ((-44 . -294) 90476) ((-130 . -623) 90443) ((-52 . -623) 90425) ((-1140 . -962) 90392) ((-663 . -421) 90376) ((-1247 . -102) T) ((-1174 . -524) NIL) ((-672 . -25) T) ((-631 . -1071) 90360) ((-672 . -21) T) ((-976 . -656) 90270) ((-745 . -656) 90215) ((-725 . -656) 90187) ((-400 . -111) 90166) ((-224 . -261) 90150) ((-1069 . -1068) 90090) ((-1069 . -1115) T) ((-1019 . -1167) T) ((-828 . -1115) T) ((-463 . -656) 90005) ((-352 . -1237) T) ((-645 . -658) 89989) ((-631 . -111) 89968) ((-617 . -658) 89952) ((-606 . -102) T) ((-319 . -500) 89933) ((-596 . -132) T) ((-605 . -102) T) ((-424 . -1115) T) ((-394 . -1115) T) ((-319 . -623) 89899) ((-229 . -1115) 89877) ((-657 . -524) 89810) ((-642 . -524) 89654) ((-843 . -1064) 89633) ((-654 . -152) 89617) ((-352 . -566) T) ((-722 . -913) 89560) ((-560 . -231) 89510) ((-1275 . -292) 89476) ((-1268 . -292) 89442) ((-1095 . -298) 89393) ((-497 . -858) T) ((-225 . -1127) T) ((-1247 . -292) 89359) ((-1227 . -503) 89325) ((-1019 . -38) 89275) ((-219 . -858) T) ((-428 . -656) 89234) ((-927 . -38) 89186) ((-853 . -804) 89165) ((-853 . -801) 89144) ((-853 . -736) 89123) ((-368 . -298) T) ((-362 . -298) T) ((-354 . -298) T) ((-171 . -462) 89054) ((-437 . -38) 89038) ((-225 . -23) T) ((-108 . -298) T) ((-417 . -804) 89017) ((-417 . -801) 88996) ((-417 . -736) T) ((-510 . -296) 88971) ((-487 . -1071) 88936) ((-668 . -132) T) ((-631 . -626) 88905) ((-1128 . -524) 88838) ((-345 . -132) T) ((-171 . -412) 88817) ((-492 . -727) 88759) ((-825 . -294) 88736) ((-487 . -111) 88692) ((-663 . -1073) T) ((-826 . -1066) 88535) ((-1294 . -1098) T) ((-1256 . -462) 88466) ((-826 . -650) 88315) ((-1293 . -1098) T) ((-1102 . -132) T) ((-1069 . -727) 88257) ((-1042 . -524) 88190) ((-792 . -132) T) ((-790 . -132) T) ((-581 . -462) T) ((-631 . -1064) T) ((-602 . -1115) T) ((-543 . -175) T) ((-471 . -132) T) ((-464 . -132) T) ((-388 . -238) T) ((-1014 . -1233) 88131) ((-45 . -1115) T) ((-394 . -727) 88101) ((-827 . -1115) T) ((-486 . -524) 88034) ((-473 . -524) 87967) ((-1308 . -626) 87949) ((-463 . -376) 87919) ((-45 . -620) 87898) ((-324 . -310) T) ((-837 . -238) 87877) ((-487 . -626) 87827) ((-1247 . -317) 87712) ((-680 . -623) 87674) ((-59 . -860) 87653) ((-1019 . -410) 87635) ((-558 . -623) 87617) ((-809 . -656) 87576) ((-825 . -614) 87553) ((-526 . -860) 87532) ((-506 . -860) 87511) ((-40 . -1237) T) ((-1014 . -1053) 87407) ((-50 . -132) T) ((-591 . -132) T) ((-528 . -132) T) ((-302 . -658) 87267) ((-352 . -337) 87244) ((-352 . -372) T) ((-330 . -331) 87221) ((-327 . -294) 87179) ((-40 . -566) T) ((-388 . -1218) T) ((-388 . -1221) T) ((-1050 . -1209) 87154) ((-1205 . -241) 87104) ((-1183 . -233) 87056) ((-338 . -1115) T) ((-388 . -95) T) ((-388 . -35) T) ((-1050 . -107) 87002) ((-487 . -1064) T) ((-1307 . -1071) 86986) ((-489 . -241) 86936) ((-1175 . -499) 86870) ((-1298 . -1066) 86854) ((-390 . -1071) 86838) ((-1298 . -650) 86808) ((-487 . -249) T) ((-826 . -102) T) ((-724 . -148) 86787) ((-724 . -146) 86766) ((-494 . -499) 86750) ((-495 . -344) 86719) ((-1307 . -111) 86698) ((-522 . -1115) T) ((-492 . -174) 86677) ((-1014 . -386) 86661) ((-423 . -102) T) ((-390 . -111) 86640) ((-1014 . -347) 86624) ((-286 . -998) 86608) ((-285 . -998) 86592) ((-1305 . -623) 86574) ((-1303 . -623) 86556) ((-110 . -524) NIL) ((-1188 . -1259) 86540) ((-864 . -862) 86524) ((-1194 . -1115) T) ((-103 . -1233) T) ((-965 . -962) 86485) ((-827 . -727) 86427) ((-1247 . -1167) NIL) ((-491 . -962) 86372) ((-1077 . -144) T) ((-60 . -102) 86350) ((-44 . -623) 86332) ((-78 . -623) 86314) ((-360 . -658) 86259) ((-1295 . -1115) T) ((-521 . -860) T) ((-297 . -294) 86238) ((-352 . -1127) T) ((-303 . -1115) T) ((-1014 . -913) 86197) ((-303 . -620) 86176) ((-1307 . -626) 86125) ((-1275 . -38) 86022) ((-1268 . -38) 85863) ((-1247 . -38) 85659) ((-497 . -1073) T) ((-390 . -626) 85643) ((-219 . -1073) T) ((-352 . -23) T) ((-153 . -623) 85625) ((-843 . -805) 85604) ((-843 . -802) 85583) ((-1232 . -626) 85564) ((-606 . -38) 85537) ((-605 . -38) 85434) ((-880 . -566) T) ((-225 . -132) T) ((-327 . -1017) 85400) ((-79 . -623) 85382) ((-722 . -315) 85361) ((-302 . -736) 85263) ((-834 . -102) T) ((-874 . -854) T) ((-302 . -483) 85242) ((-1298 . -102) T) ((-40 . -372) T) ((-882 . -148) 85221) ((-495 . -656) 85203) ((-882 . -146) 85182) ((-1174 . -499) 85164) ((-1307 . -1064) T) ((-492 . -524) 85097) ((-1161 . -1233) T) ((-977 . -623) 85079) ((-657 . -499) 85063) ((-642 . -499) 84994) ((-825 . -623) 84725) ((-48 . -27) T) ((-1194 . -727) 84622) ((-663 . -1115) T) ((-871 . -870) T) ((-446 . -373) 84596) ((-741 . -656) 84506) ((-1117 . -102) T) ((-985 . -1115) T) ((-874 . -1115) T) ((-826 . -317) 84493) ((-543 . -537) T) ((-543 . -586) T) ((-1303 . -391) 84465) ((-1069 . -524) 84398) ((-1175 . -294) 84374) ((-246 . -233) 84343) ((-258 . -1066) 84220) ((-257 . -1066) 84097) ((-1295 . -727) 84067) ((-1182 . -93) T) ((-1009 . -93) T) ((-827 . -174) 84046) ((-258 . -650) 83968) ((-257 . -650) 83890) ((-1230 . -500) 83867) ((-229 . -524) 83800) ((-631 . -805) 83779) ((-631 . -802) 83758) ((-1230 . -623) 83670) ((-224 . -1233) T) ((-685 . -623) 83602) ((-1190 . -656) 83512) ((-1172 . -1025) 83496) ((-956 . -102) 83446) ((-360 . -736) T) ((-871 . -623) 83428) ((-1189 . -656) 83310) ((-1183 . -656) 83147) ((-1141 . -656) 83057) ((-1247 . -410) 83009) ((-1128 . -499) 82993) ((-60 . -317) 82931) ((-339 . -102) T) ((-1227 . -21) T) ((-1227 . -25) T) ((-40 . -1127) T) ((-721 . -21) T) ((-637 . -623) 82913) ((-525 . -331) 82892) ((-721 . -25) T) ((-449 . -102) T) ((-108 . -294) NIL) ((-934 . -1127) T) ((-40 . -23) T) ((-781 . -1127) T) ((-574 . -1237) T) ((-505 . -1237) T) ((-327 . -623) 82874) ((-1019 . -233) 82856) ((-171 . -167) 82840) ((-590 . -566) T) ((-574 . -566) T) ((-505 . -566) T) ((-781 . -23) T) ((-1267 . -148) 82819) ((-1175 . -614) 82795) ((-1267 . -146) 82774) ((-1042 . -499) 82758) ((-1246 . -146) 82683) ((-1246 . -148) 82608) ((-1298 . -1304) 82587) ((-486 . -499) 82571) ((-473 . -499) 82555) ((-533 . -34) T) ((-663 . -727) 82525) ((-112 . -982) T) ((-672 . -860) 82504) ((-1194 . -174) 82455) ((-374 . -102) T) ((-246 . -244) 82434) ((-258 . -102) T) ((-257 . -102) T) ((-1256 . -962) 82403) ((-251 . -860) 82382) ((-826 . -38) 82231) ((-45 . -524) 82023) ((-1174 . -294) 81973) ((-216 . -1115) T) ((-1165 . -1115) T) ((-882 . -238) 81952) ((-1165 . -620) 81931) ((-596 . -25) T) ((-596 . -21) T) ((-1117 . -317) 81869) ((-976 . -421) 81853) ((-709 . -1237) T) ((-642 . -294) 81806) ((-1102 . -649) 81754) ((-792 . -649) 81702) ((-790 . -649) 81650) ((-352 . -132) T) ((-297 . -623) 81632) ((-918 . -1115) T) ((-709 . -566) T) ((-130 . -626) 81614) ((-880 . -1127) T) ((-464 . -649) 81562) ((-918 . -916) 81546) ((-388 . -462) T) ((-497 . -1115) T) ((-956 . -317) 81484) ((-711 . -658) 81456) ((-559 . -854) T) ((-219 . -1115) T) ((-324 . -933) 81435) ((-321 . -933) T) ((-321 . -830) NIL) ((-400 . -730) T) ((-880 . -23) T) ((-117 . -658) 81422) ((-484 . -146) 81401) ((-428 . -421) 81385) ((-484 . -148) 81364) ((-110 . -499) 81346) ((-319 . -626) 81327) ((-2 . -623) 81309) ((-188 . -102) T) ((-1174 . -19) 81291) ((-1174 . -614) 81266) ((-668 . -21) T) ((-668 . -25) T) ((-603 . -1159) T) ((-1128 . -294) 81243) ((-345 . -25) T) ((-345 . -21) T) ((-246 . -656) 81013) ((-505 . -372) T) ((-1305 . -1071) 80997) ((-1298 . -38) 80967) ((-1188 . -1066) 80790) ((-1157 . -1233) T) ((-1140 . -1066) 80633) ((-864 . -1066) 80617) ((-642 . -614) 80592) ((-1303 . -1071) 80576) ((-1267 . -1218) 80542) ((-1267 . -1221) 80508) ((-1188 . -650) 80337) ((-1140 . -650) 80186) ((-864 . -650) 80156) ((-1267 . -95) 80122) ((-1267 . -238) 80074) ((-559 . -1115) T) ((-1102 . -25) T) ((-1102 . -21) T) ((-541 . -802) T) ((-541 . -805) T) ((-118 . -1237) T) ((-976 . -1073) T) ((-633 . -566) T) ((-792 . -25) T) ((-792 . -21) T) ((-790 . -21) T) ((-790 . -25) T) ((-745 . -1073) T) ((-725 . -1073) T) ((-680 . -1071) 80058) ((-527 . -1098) T) ((-471 . -25) T) ((-118 . -566) T) ((-471 . -21) T) ((-464 . -25) T) ((-464 . -21) T) ((-1250 . -102) 80036) ((-1166 . -93) T) ((-1157 . -1053) 79932) ((-827 . -298) 79911) ((-1247 . -233) 79863) ((-833 . -1115) T) ((-979 . -982) T) ((-680 . -111) 79842) ((-627 . -1233) T) ((-303 . -524) 79634) ((-1246 . -1218) 79600) ((-1246 . -1221) 79566) ((-1246 . -238) 79471) ((-258 . -317) 79409) ((-257 . -317) 79347) ((-1241 . -377) T) ((-1175 . -624) NIL) ((-1175 . -623) 79329) ((-1238 . -854) T) ((-1157 . -386) 79313) ((-1135 . -830) T) ((-96 . -93) T) ((-1135 . -933) T) ((-1128 . -614) 79290) ((-1095 . -624) 79274) ((-1019 . -656) 79224) ((-927 . -656) 79161) ((-825 . -296) 79138) ((-494 . -623) 79070) ((-618 . -152) 79017) ((-497 . -727) 78967) ((-428 . -1073) T) ((-492 . -499) 78951) ((-437 . -656) 78910) ((-335 . -860) 78889) ((-348 . -658) 78863) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -727) 78813) ((-171 . -734) 78784) ((-176 . -658) 78716) ((-591 . -21) T) ((-591 . -25) T) ((-528 . -25) T) ((-528 . -21) T) ((-485 . -152) 78666) ((-1095 . -623) 78648) ((-1076 . -623) 78630) ((-1008 . -102) T) ((-872 . -102) T) ((-809 . -421) 78593) ((-40 . -132) T) ((-709 . -372) T) ((-711 . -736) T) ((-711 . -804) T) ((-711 . -801) T) ((-214 . -908) T) ((-590 . -1127) T) ((-574 . -1127) T) ((-505 . -1127) T) ((-368 . -623) 78575) ((-362 . -623) 78557) ((-354 . -623) 78539) ((-66 . -406) T) ((-66 . -405) T) ((-108 . -624) 78469) ((-108 . -623) 78411) ((-213 . -908) T) ((-971 . -152) 78395) ((-781 . -132) T) ((-680 . -626) 78313) ((-135 . -736) T) ((-117 . -736) T) ((-1267 . -35) 78279) ((-1069 . -499) 78263) ((-590 . -23) T) ((-574 . -23) T) ((-505 . -23) T) ((-1246 . -95) 78229) ((-1246 . -35) 78195) ((-1188 . -102) T) ((-1140 . -102) T) ((-864 . -102) T) ((-229 . -499) 78179) ((-1305 . -111) 78158) ((-1303 . -111) 78137) ((-44 . -1071) 78121) ((-1305 . -626) 78067) ((-1305 . -1064) T) ((-1303 . -626) 77996) ((-1256 . -1259) 77980) ((-1238 . -1115) T) ((-865 . -862) 77964) ((-1194 . -298) 77943) ((-1119 . -1233) T) ((-110 . -294) 77893) ((-1018 . -1233) 77865) ((-129 . -152) 77847) ((-1157 . -913) 77806) ((-44 . -111) 77785) ((-1197 . -1278) T) ((-1182 . -500) 77766) ((-1182 . -623) 77732) ((-1174 . -624) NIL) ((-680 . -1064) T) ((-1174 . -623) 77714) ((-1078 . -620) 77689) ((-484 . -238) 77641) ((-1078 . -1115) T) ((-1009 . -500) 77622) ((-74 . -451) T) ((-74 . -405) T) ((-1009 . -623) 77588) ((-153 . -1071) 77572) ((-680 . -239) 77551) ((-581 . -564) 77535) ((-364 . -148) 77514) ((-364 . -146) 77465) ((-361 . -148) 77444) ((-361 . -146) 77395) ((-353 . -148) 77374) ((-353 . -146) 77325) ((-271 . -146) 77304) ((-271 . -148) 77283) ((-258 . -38) 77253) ((-253 . -148) 77232) ((-118 . -372) T) ((-253 . -146) 77211) ((-257 . -38) 77181) ((-153 . -111) 77160) ((-1018 . -1053) 77048) ((-1183 . -858) NIL) ((-704 . -1237) T) ((-809 . -1073) T) ((-709 . -1127) T) ((-1303 . -1064) T) ((-1172 . -1233) T) ((-1018 . -386) 77025) ((-923 . -146) T) ((-923 . -148) 77007) ((-880 . -132) T) ((-825 . -1071) 76904) ((-709 . -23) T) ((-704 . -566) T) ((-227 . -1066) 76869) ((-657 . -623) 76801) ((-657 . -624) 76762) ((-642 . -624) NIL) ((-642 . -623) 76744) ((-497 . -174) T) ((-227 . -650) 76709) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-484 . -1221) 76675) ((-484 . -1218) 76641) ((-281 . -623) 76623) ((-280 . -623) 76605) ((-279 . -623) 76587) ((-278 . -623) 76569) ((-277 . -623) 76551) ((-510 . -661) 76533) ((-276 . -623) 76515) ((-348 . -736) T) ((-275 . -623) 76497) ((-110 . -19) 76479) ((-176 . -736) T) ((-510 . -382) 76461) ((-214 . -623) 76443) ((-530 . -1164) 76427) ((-510 . -124) T) ((-110 . -614) 76402) ((-213 . -623) 76384) ((-484 . -35) 76350) ((-484 . -95) 76316) ((-211 . -623) 76298) ((-210 . -623) 76280) ((-209 . -623) 76262) ((-208 . -623) 76244) ((-205 . -623) 76226) ((-204 . -623) 76208) ((-203 . -623) 76190) ((-202 . -623) 76172) ((-201 . -623) 76154) ((-200 . -623) 76136) ((-199 . -623) 76118) ((-546 . -1118) 76070) ((-198 . -623) 76052) ((-197 . -623) 76034) ((-45 . -499) 75971) ((-196 . -623) 75953) ((-195 . -623) 75935) ((-153 . -626) 75904) ((-1130 . -102) T) ((-825 . -111) 75794) ((-654 . -102) 75744) ((-492 . -294) 75721) ((-1306 . -1053) 75705) ((-1128 . -623) 75436) ((-1116 . -1115) T) ((-1061 . -1233) T) ((-1188 . -317) 75423) ((-1077 . -1066) 75410) ((-1150 . -1115) T) ((-965 . -1066) 75253) ((-1140 . -317) 75240) ((-1111 . -1098) T) ((-633 . -1127) T) ((-1077 . -650) 75227) ((-1105 . -1098) T) ((-965 . -650) 75076) ((-1102 . -235) 75049) ((-491 . -1066) 74892) ((-1088 . -1098) T) ((-1081 . -1098) T) ((-1051 . -1098) T) ((-1034 . -1098) T) ((-118 . -1127) T) ((-491 . -650) 74741) ((-792 . -235) 74728) ((-829 . -102) T) ((-636 . -1098) T) ((-633 . -23) T) ((-1165 . -524) 74520) ((-493 . -1098) T) ((-396 . -102) T) ((-332 . -102) T) ((-220 . -1098) T) ((-976 . -1115) T) ((-153 . -1064) T) ((-741 . -421) 74504) ((-118 . -23) T) ((-1018 . -913) 74456) ((-745 . -1115) T) ((-725 . -1115) T) ((-463 . -1115) T) ((-417 . -1233) T) ((-324 . -440) 74440) ((-602 . -93) T) ((-1275 . -656) 74350) ((-1042 . -624) 74311) ((-1039 . -1237) T) ((-227 . -102) T) ((-1042 . -623) 74273) ((-1268 . -656) 74155) ((-826 . -233) 74139) ((-825 . -626) 73889) ((-1247 . -656) 73726) ((-1039 . -566) T) ((-843 . -658) 73699) ((-363 . -1237) T) ((-486 . -623) 73661) ((-486 . -624) 73622) ((-473 . -624) 73583) ((-473 . -623) 73545) ((-606 . -656) 73504) ((-417 . -895) 73488) ((-327 . -1071) 73323) ((-417 . -897) 73248) ((-605 . -656) 73158) ((-853 . -1053) 73054) ((-497 . -524) NIL) ((-492 . -614) 73031) ((-591 . -235) 73018) ((-363 . -566) T) ((-528 . -235) 73005) ((-219 . -524) NIL) ((-882 . -462) T) ((-428 . -1115) T) ((-417 . -1053) 72869) ((-327 . -111) 72690) ((-704 . -372) T) ((-227 . -292) T) ((-1230 . -626) 72667) ((-48 . -1237) T) ((-1188 . -1167) 72645) ((-1175 . -296) 72621) ((-825 . -1064) 72571) ((-590 . -132) T) ((-574 . -132) T) ((-505 . -132) T) ((-364 . -238) 72550) ((-361 . -238) 72529) ((-353 . -238) 72508) ((-48 . -566) T) ((-1077 . -102) T) ((-271 . -238) 72487) ((-965 . -102) T) ((-324 . -27) 72466) ((-881 . -1066) 72411) ((-825 . -239) 72363) ((-255 . -845) 72345) ((-189 . -845) 72327) ((-723 . -102) T) ((-303 . -499) 72264) ((-881 . -650) 72209) ((-491 . -102) T) ((-741 . -1073) T) ((-622 . -623) 72191) ((-622 . -624) 72052) ((-417 . -386) 72036) ((-417 . -347) 72020) ((-1188 . -38) 71849) ((-1140 . -38) 71698) ((-327 . -626) 71524) ((-923 . -238) T) ((-645 . -1233) 71498) ((-617 . -1233) 71472) ((-864 . -38) 71442) ((-400 . -658) 71426) ((-654 . -317) 71364) ((-1166 . -500) 71345) ((-1166 . -623) 71311) ((-976 . -727) 71208) ((-745 . -727) 71178) ((-224 . -107) 71162) ((-45 . -294) 71062) ((-631 . -658) 71036) ((-320 . -1115) T) ((-297 . -1071) 71023) ((-110 . -623) 71005) ((-110 . -624) 70987) ((-463 . -727) 70957) ((-826 . -260) 70896) ((-699 . -1115) 70874) ((-560 . -1115) T) ((-1190 . -1073) T) ((-1189 . -1073) T) ((-96 . -500) 70855) ((-1183 . -1073) T) ((-297 . -111) 70840) ((-1141 . -1073) T) ((-560 . -620) 70819) ((-96 . -623) 70785) ((-1019 . -858) T) ((-229 . -697) 70743) ((-704 . -1127) T) ((-1227 . -750) 70719) ((-1039 . -372) T) ((-848 . -845) 70701) ((-843 . -804) 70680) ((-417 . -913) 70639) ((-327 . -1064) T) ((-352 . -25) T) ((-352 . -21) T) ((-171 . -1066) 70549) ((-68 . -1233) T) ((-843 . -801) 70528) ((-428 . -727) 70502) ((-809 . -1115) T) ((-722 . -933) 70481) ((-709 . -132) T) ((-171 . -650) 70309) ((-704 . -23) T) ((-497 . -298) T) ((-843 . -736) 70288) ((-327 . -239) 70240) ((-327 . -249) 70219) ((-219 . -298) T) ((-130 . -377) T) ((-1267 . -462) 70198) ((-1246 . -462) 70177) ((-363 . -337) 70154) ((-363 . -372) T) ((-1155 . -623) 70136) ((-45 . -1271) 70086) ((-881 . -102) T) ((-654 . -290) 70070) ((-709 . -1075) T) ((-1294 . -102) T) ((-1293 . -102) T) ((-487 . -658) 70035) ((-478 . -1115) T) ((-45 . -614) 69960) ((-1174 . -296) 69935) ((-297 . -626) 69907) ((-40 . -649) 69846) ((-1256 . -1066) 69669) ((-865 . -1066) 69653) ((-48 . -372) T) ((-1121 . -623) 69635) ((-1256 . -650) 69464) ((-865 . -650) 69434) ((-642 . -296) 69409) ((-826 . -656) 69319) ((-581 . -1066) 69306) ((-492 . -623) 69037) ((-246 . -421) 69006) ((-965 . -317) 68993) ((-581 . -650) 68980) ((-65 . -1233) T) ((-1078 . -524) 68824) ((-681 . -1115) T) ((-633 . -132) T) ((-491 . -317) 68811) ((-616 . -1115) T) ((-556 . -102) T) ((-118 . -132) T) ((-297 . -1064) T) ((-182 . -1115) T) ((-162 . -1115) T) ((-157 . -1115) T) ((-155 . -1115) T) ((-463 . -771) T) ((-31 . -1098) T) ((-976 . -174) 68762) ((-985 . -93) T) ((-1095 . -1071) 68672) ((-631 . -804) 68651) ((-603 . -1115) T) ((-631 . -801) 68630) ((-631 . -736) T) ((-303 . -294) 68609) ((-302 . -1233) T) ((-1069 . -623) 68571) ((-1069 . -624) 68532) ((-1039 . -1127) T) ((-171 . -102) T) ((-282 . -860) T) ((-1181 . -1115) T) ((-828 . -623) 68514) ((-1128 . -296) 68491) ((-1117 . -231) 68475) ((-1018 . -315) T) ((-809 . -727) 68459) ((-368 . -1071) 68411) ((-363 . -1127) T) ((-362 . -1071) 68363) ((-424 . -623) 68345) ((-394 . -623) 68327) ((-354 . -1071) 68279) ((-229 . -623) 68211) ((-1095 . -111) 68107) ((-1039 . -23) T) ((-108 . -1071) 68057) ((-911 . -102) T) ((-851 . -102) T) ((-818 . -102) T) ((-779 . -102) T) ((-687 . -102) T) ((-484 . -462) 68036) ((-428 . -174) T) ((-368 . -111) 67974) ((-362 . -111) 67912) ((-354 . -111) 67850) ((-258 . -233) 67819) ((-257 . -233) 67788) ((-363 . -23) T) ((-71 . -1233) T) ((-227 . -38) 67753) ((-108 . -111) 67687) ((-40 . -25) T) ((-40 . -21) T) ((-680 . -730) T) ((-171 . -292) 67665) ((-48 . -1127) T) ((-934 . -25) T) ((-781 . -25) T) ((-1307 . -658) 67639) ((-1165 . -499) 67576) ((-495 . -1115) T) ((-1298 . -656) 67535) ((-1256 . -102) T) ((-1077 . -1167) T) ((-865 . -102) T) ((-246 . -1073) 67485) ((-977 . -802) 67438) ((-977 . -805) 67391) ((-390 . -658) 67375) ((-48 . -23) T) ((-825 . -805) 67354) ((-825 . -802) 67333) ((-558 . -377) T) ((-303 . -614) 67312) ((-487 . -736) T) ((-581 . -102) T) ((-1095 . -626) 67130) ((-255 . -187) T) ((-189 . -187) T) ((-881 . -317) 67087) ((-663 . -294) 67066) ((-112 . -671) T) ((-360 . -1233) T) ((-368 . -626) 67003) ((-362 . -626) 66940) ((-354 . -626) 66877) ((-76 . -1233) T) ((-108 . -626) 66827) ((-112 . -113) T) ((-1077 . -38) 66814) ((-674 . -383) 66793) ((-965 . -38) 66642) ((-741 . -1115) T) ((-491 . -38) 66491) ((-86 . -1233) T) ((-602 . -500) 66472) ((-1247 . -858) NIL) ((-581 . -292) T) ((-1190 . -1115) T) ((-602 . -623) 66438) ((-1189 . -1115) T) ((-1183 . -1115) T) ((-1095 . -1064) T) ((-360 . -1053) 66415) ((-827 . -500) 66399) ((-1019 . -1073) T) ((-45 . -623) 66381) ((-45 . -624) NIL) ((-927 . -1073) T) ((-827 . -623) 66350) ((-1162 . -102) 66328) ((-1095 . -249) 66279) ((-437 . -1073) T) ((-368 . -1064) T) ((-362 . -1064) T) ((-374 . -373) 66256) ((-354 . -1064) T) ((-352 . -235) 66243) ((-258 . -244) 66222) ((-257 . -244) 66201) ((-1095 . -239) 66126) ((-1141 . -1115) T) ((-302 . -913) 66085) ((-108 . -1064) T) ((-704 . -132) T) ((-428 . -524) 65927) ((-368 . -239) 65906) ((-368 . -249) T) ((-44 . -730) T) ((-362 . -239) 65885) ((-362 . -249) T) ((-354 . -239) 65864) ((-354 . -249) T) ((-1182 . -626) 65845) ((-171 . -317) 65810) ((-108 . -249) T) ((-108 . -239) T) ((-1009 . -626) 65791) ((-327 . -802) T) ((-880 . -21) T) ((-880 . -25) T) ((-417 . -315) T) ((-510 . -34) T) ((-110 . -296) 65766) ((-1128 . -1071) 65663) ((-881 . -1167) NIL) ((-338 . -623) 65645) ((-417 . -1037) 65623) ((-1128 . -111) 65513) ((-701 . -1278) T) ((-446 . -1115) T) ((-256 . -1115) T) ((-1307 . -736) T) ((-63 . -623) 65495) ((-881 . -38) 65440) ((-533 . -1233) T) ((-612 . -152) 65424) ((-522 . -623) 65406) ((-1256 . -317) 65393) ((-741 . -727) 65242) ((-541 . -803) T) ((-541 . -804) T) ((-574 . -649) 65224) ((-505 . -649) 65184) ((-364 . -462) T) ((-361 . -462) T) ((-353 . -462) T) ((-271 . -462) 65135) ((-535 . -1115) T) ((-530 . -1115) 65085) ((-253 . -462) 65036) ((-1165 . -294) 65015) ((-1194 . -623) 64997) ((-699 . -524) 64930) ((-976 . -298) 64909) ((-560 . -524) 64701) ((-258 . -656) 64521) ((-257 . -656) 64328) ((-1295 . -623) 64297) ((-1295 . -500) 64281) ((-1190 . -727) 64178) ((-1188 . -233) 64162) ((-1128 . -626) 63912) ((-171 . -1167) 63891) ((-1189 . -727) 63732) ((-1183 . -727) 63528) ((-979 . -113) T) ((-903 . -102) T) ((-1172 . -684) 63512) ((-1141 . -727) 63409) ((-1039 . -132) T) ((-364 . -412) 63360) ((-361 . -412) 63311) ((-353 . -412) 63262) ((-977 . -377) 63215) ((-809 . -524) 63127) ((-303 . -624) NIL) ((-303 . -623) 63109) ((-923 . -462) T) ((-918 . -294) 63088) ((-825 . -377) 63067) ((-520 . -519) 63046) ((-518 . -519) 63025) ((-497 . -294) NIL) ((-492 . -296) 63002) ((-428 . -298) T) ((-363 . -132) T) ((-219 . -294) NIL) ((-704 . -503) NIL) ((-99 . -1127) T) ((-40 . -235) 62968) ((-171 . -38) 62796) ((-1267 . -988) 62758) ((-1162 . -317) 62696) ((-1246 . -988) 62665) ((-923 . -412) T) ((-1128 . -1064) 62615) ((-1269 . -566) T) ((-1165 . -614) 62594) ((-112 . -860) T) ((-1078 . -499) 62525) ((-590 . -21) T) ((-590 . -25) T) ((-574 . -21) T) ((-574 . -25) T) ((-505 . -25) T) ((-505 . -21) T) ((-1256 . -1167) 62503) ((-1128 . -239) 62455) ((-48 . -132) T) ((-1214 . -102) T) ((-246 . -1115) 62245) ((-881 . -410) 62222) ((-1103 . -102) T) ((-1091 . -102) T) ((-618 . -102) T) ((-485 . -102) T) ((-1256 . -38) 62051) ((-865 . -38) 62021) ((-1049 . -1066) 61995) ((-741 . -174) 61906) ((-663 . -623) 61888) ((-655 . -1098) T) ((-1049 . -650) 61872) ((-581 . -38) 61859) ((-985 . -500) 61840) ((-985 . -623) 61806) ((-971 . -102) 61756) ((-874 . -623) 61738) ((-874 . -624) 61660) ((-603 . -524) NIL) ((-1275 . -1073) T) ((-1268 . -1073) T) ((-330 . -1066) 61642) ((-1247 . -1073) T) ((-1312 . -1127) T) ((-1227 . -148) 61621) ((-1227 . -146) 61600) ((-330 . -650) 61582) ((-711 . -1233) T) ((-1200 . -102) T) ((-1199 . -102) T) ((-1198 . -102) T) ((-1190 . -174) 61533) ((-606 . -1073) T) ((-605 . -1073) T) ((-1189 . -174) 61464) ((-1183 . -174) 61395) ((-388 . -1066) 61360) ((-1166 . -626) 61341) ((-1141 . -174) 61292) ((-1019 . -1115) T) ((-986 . -1115) T) ((-927 . -1115) T) ((-388 . -650) 61257) ((-809 . -807) 61241) ((-709 . -25) T) ((-709 . -21) T) ((-118 . -649) 61218) ((-711 . -897) 61200) ((-437 . -1115) T) ((-324 . -1237) 61179) ((-321 . -1237) T) ((-171 . -410) 61163) ((-846 . -1066) 61133) ((-484 . -988) 61095) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -623) 61077) ((-837 . -1066) 61061) ((-108 . -805) T) ((-108 . -802) T) ((-711 . -1053) 61043) ((-324 . -566) 61022) ((-321 . -566) T) ((-846 . -650) 60992) ((-837 . -650) 60962) ((-1312 . -23) T) ((-135 . -1053) 60944) ((-96 . -626) 60925) ((-1008 . -656) 60907) ((-492 . -1071) 60804) ((-45 . -296) 60729) ((-246 . -727) 60671) ((-527 . -102) T) ((-492 . -111) 60561) ((-1107 . -102) 60531) ((-1049 . -102) T) ((-1188 . -656) 60441) ((-1140 . -656) 60351) ((-864 . -656) 60310) ((-654 . -838) 60289) ((-741 . -524) 60232) ((-1069 . -1071) 60216) ((-1150 . -93) T) ((-1078 . -294) 60191) ((-633 . -21) T) ((-633 . -25) T) ((-534 . -1115) T) ((-680 . -658) 60129) ((-370 . -102) T) ((-330 . -102) T) ((-394 . -1071) 60113) ((-1069 . -111) 60092) ((-826 . -421) 60076) ((-118 . -25) T) ((-89 . -623) 60058) ((-118 . -21) T) ((-618 . -317) 59853) ((-485 . -317) 59657) ((-1165 . -624) NIL) ((-394 . -111) 59636) ((-388 . -102) T) ((-216 . -623) 59618) ((-1165 . -623) 59600) ((-1183 . -524) 59369) ((-1019 . -727) 59319) ((-1141 . -524) 59289) ((-927 . -727) 59241) ((-492 . -626) 58991) ((-360 . -315) T) ((-1205 . -152) 58941) ((-971 . -317) 58879) ((-846 . -102) T) ((-437 . -727) 58863) ((-227 . -838) T) ((-837 . -102) T) ((-835 . -102) T) ((-1305 . -658) 58837) ((-489 . -152) 58787) ((-1267 . -1266) 58766) ((-1135 . -1237) T) ((-348 . -1053) 58733) ((-1267 . -1261) 58703) ((-1267 . -1264) 58687) ((-1246 . -1245) 58666) ((-80 . -623) 58648) ((-918 . -623) 58630) ((-1246 . -1261) 58607) ((-1135 . -566) T) ((-934 . -860) T) ((-781 . -860) T) ((-682 . -860) T) ((-497 . -624) 58537) ((-497 . -623) 58478) ((-388 . -292) T) ((-1246 . -1243) 58462) ((-1269 . -1127) T) ((-219 . -624) 58392) ((-219 . -623) 58333) ((-1078 . -614) 58308) ((-828 . -626) 58292) ((-574 . -235) 58279) ((-526 . -152) 58263) ((-59 . -152) 58247) ((-506 . -152) 58231) ((-505 . -235) 58218) ((-368 . -1302) 58202) ((-362 . -1302) 58186) ((-354 . -1302) 58170) ((-324 . -372) 58149) ((-321 . -372) T) ((-492 . -1064) 58099) ((-704 . -649) 58081) ((-1303 . -658) 58055) ((-129 . -317) NIL) ((-1269 . -23) T) ((-699 . -499) 58039) ((-64 . -623) 58021) ((-1128 . -805) 58000) ((-1128 . -802) 57979) ((-560 . -499) 57916) ((-680 . -34) T) ((-492 . -239) 57868) ((-303 . -296) 57847) ((-246 . -174) 57826) ((-826 . -1073) T) ((-44 . -658) 57784) ((-1095 . -377) 57735) ((-741 . -298) 57666) ((-530 . -524) 57599) ((-827 . -1071) 57550) ((-559 . -623) 57532) ((-368 . -377) 57511) ((-362 . -377) 57490) ((-354 . -377) 57469) ((-1102 . -146) 57448) ((-1102 . -148) 57427) ((-981 . -1233) T) ((-881 . -233) 57404) ((-827 . -111) 57346) ((-792 . -146) 57325) ((-271 . -962) 57292) ((-253 . -962) 57237) ((-792 . -148) 57216) ((-790 . -146) 57195) ((-790 . -148) 57174) ((-153 . -658) 57148) ((-589 . -1115) T) ((-463 . -294) 57111) ((-464 . -148) 57090) ((-464 . -146) 57069) ((-680 . -736) T) ((-833 . -623) 57051) ((-1275 . -1115) T) ((-1268 . -1115) T) ((-1247 . -1115) T) ((-1227 . -1221) 57017) ((-1227 . -1218) 56983) ((-1190 . -298) 56962) ((-1189 . -298) 56913) ((-1183 . -298) 56864) ((-1141 . -298) 56843) ((-348 . -913) 56824) ((-1019 . -174) T) ((-927 . -174) T) ((-704 . -21) T) ((-704 . -25) T) ((-227 . -656) 56774) ((-606 . -1115) T) ((-605 . -1115) T) ((-484 . -1264) 56758) ((-484 . -1261) 56728) ((-428 . -294) 56656) ((-557 . -860) T) ((-324 . -1127) 56505) ((-321 . -1127) T) ((-1227 . -35) 56471) ((-1227 . -95) 56437) ((-84 . -623) 56419) ((-91 . -102) 56397) ((-1312 . -132) T) ((-724 . -1066) 56367) ((-602 . -626) 56348) ((-591 . -146) T) ((-591 . -148) 56330) ((-528 . -148) 56312) ((-528 . -146) T) ((-724 . -650) 56282) ((-324 . -23) 56134) ((-40 . -351) 56108) ((-321 . -23) T) ((-827 . -626) 56022) ((-1174 . -661) 56004) ((-1298 . -1073) T) ((-1174 . -382) 55986) ((-825 . -658) 55791) ((-1111 . -102) T) ((-1105 . -102) T) ((-1088 . -102) T) ((-171 . -233) 55775) ((-1081 . -102) T) ((-1051 . -102) T) ((-1034 . -102) T) ((-603 . -499) 55757) ((-636 . -102) T) ((-246 . -524) 55690) ((-493 . -102) T) ((-1305 . -736) T) ((-1303 . -736) T) ((-220 . -102) T) ((-1194 . -1071) 55573) ((-1077 . -656) 55545) ((-965 . -656) 55455) ((-1194 . -111) 55324) ((-886 . -1098) T) ((-871 . -175) T) ((-491 . -656) 55234) ((-827 . -1064) T) ((-691 . -1098) T) ((-686 . -1098) T) ((-633 . -235) 55207) ((-525 . -102) T) ((-520 . -102) T) ((-48 . -649) 55167) ((-518 . -102) T) ((-488 . -1098) T) ((-1295 . -1071) 55137) ((-118 . -235) NIL) ((-139 . -1098) T) ((-138 . -1098) T) ((-134 . -1098) T) ((-1049 . -38) 55121) ((-827 . -239) T) ((-827 . -249) 55100) ((-1295 . -111) 55065) ((-1275 . -727) 54962) ((-1268 . -727) 54803) ((-560 . -294) 54782) ((-1256 . -233) 54766) ((-1238 . -623) 54748) ((-616 . -93) T) ((-1078 . -624) NIL) ((-1078 . -623) 54730) ((-681 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1247 . -727) 54526) ((-1018 . -933) T) ((-153 . -736) T) ((-1194 . -626) 54379) ((-1128 . -377) 54358) ((-1039 . -25) T) ((-1019 . -524) NIL) ((-258 . -421) 54327) ((-257 . -421) 54296) ((-1039 . -21) T) ((-882 . -1066) 54248) ((-606 . -727) 54221) ((-605 . -727) 54118) ((-809 . -294) 54076) ((-127 . -102) 54054) ((-843 . -1053) 53950) ((-171 . -838) 53929) ((-327 . -658) 53826) ((-825 . -34) T) ((-724 . -102) T) ((-1135 . -1127) T) ((-1041 . -1233) T) ((-882 . -650) 53778) ((-388 . -38) 53743) ((-363 . -25) T) ((-363 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-364 . -1290) 53727) ((-361 . -1290) 53711) ((-353 . -1290) 53695) ((-171 . -358) 53674) ((-574 . -860) T) ((-1102 . -238) 53653) ((-1135 . -23) T) ((-87 . -623) 53635) ((-792 . -238) T) ((-711 . -315) T) ((-846 . -38) 53605) ((-837 . -38) 53575) ((-1295 . -626) 53517) ((-1269 . -132) T) ((-1165 . -296) 53496) ((-977 . -736) 53395) ((-977 . -803) 53348) ((-977 . -804) 53301) ((-117 . -315) T) ((-91 . -317) 53239) ((-685 . -34) T) ((-560 . -614) 53218) ((-48 . -25) T) ((-48 . -21) T) ((-825 . -804) 53197) ((-825 . -803) 53176) ((-711 . -1037) T) ((-663 . -1071) 53160) ((-881 . -656) 53090) ((-825 . -736) 53040) ((-977 . -483) 52993) ((-492 . -805) 52972) ((-492 . -802) 52951) ((-923 . -1290) 52938) ((-1194 . -1064) T) ((-663 . -111) 52917) ((-1194 . -334) 52894) ((-1219 . -102) 52872) ((-1116 . -623) 52854) ((-711 . -555) T) ((-826 . -1115) T) ((-591 . -238) T) ((-528 . -238) T) ((-1295 . -1064) T) ((-1150 . -500) 52835) ((-1239 . -102) T) ((-423 . -1115) T) ((-1150 . -623) 52801) ((-258 . -1073) 52751) ((-257 . -1073) 52701) ((-848 . -102) T) ((-297 . -658) 52688) ((-603 . -294) 52638) ((-699 . -697) 52596) ((-976 . -623) 52578) ((-882 . -102) T) ((-745 . -623) 52560) ((-725 . -623) 52542) ((-1275 . -174) 52493) ((-1268 . -174) 52424) ((-1247 . -174) 52355) ((-709 . -860) T) ((-1019 . -298) T) ((-463 . -623) 52337) ((-637 . -736) T) ((-60 . -1115) 52315) ((-251 . -152) 52299) ((-927 . -298) T) ((-1039 . -1027) T) ((-637 . -483) T) ((-722 . -1237) 52278) ((-704 . -235) NIL) ((-663 . -626) 52196) ((-171 . -656) 52091) ((-1283 . -860) 52070) ((-606 . -174) 52049) ((-605 . -174) 52000) ((-1267 . -650) 51841) ((-1267 . -1066) 51676) ((-1246 . -650) 51490) ((-1246 . -1066) 51298) ((-722 . -566) 51209) ((-417 . -933) T) ((-417 . -830) 51188) ((-327 . -804) T) ((-985 . -626) 51169) ((-327 . -736) T) ((-428 . -623) 51151) ((-428 . -624) 51058) ((-654 . -1164) 51042) ((-110 . -661) 51024) ((-176 . -315) T) ((-127 . -317) 50962) ((-110 . -382) 50944) ((-408 . -1233) T) ((-324 . -132) 50815) ((-321 . -132) T) ((-69 . -405) T) ((-110 . -124) T) ((-530 . -499) 50799) ((-664 . -1127) T) ((-603 . -19) 50781) ((-61 . -451) T) ((-61 . -405) T) ((-834 . -1115) T) ((-603 . -614) 50756) ((-487 . -1053) 50716) ((-663 . -1064) T) ((-664 . -23) T) ((-1298 . -1115) T) ((-31 . -102) T) ((-1256 . -656) 50626) ((-865 . -656) 50585) ((-826 . -727) 50434) ((-587 . -870) T) ((-581 . -656) 50406) ((-118 . -860) NIL) ((-1188 . -421) 50390) ((-1140 . -421) 50374) ((-864 . -421) 50358) ((-883 . -102) 50309) ((-1267 . -102) T) ((-1247 . -524) 50078) ((-1246 . -102) T) ((-1219 . -317) 50016) ((-1190 . -294) 49981) ((-1189 . -294) 49939) ((-535 . -93) T) ((-1183 . -294) 49767) ((-320 . -623) 49749) ((-1117 . -1115) T) ((-1095 . -658) 49623) ((-721 . -462) T) ((-699 . -623) 49555) ((-297 . -736) T) ((-108 . -922) NIL) ((-699 . -624) 49516) ((-611 . -623) 49498) ((-587 . -623) 49480) ((-560 . -624) NIL) ((-560 . -623) 49462) ((-539 . -623) 49444) ((-521 . -519) 49423) ((-497 . -1071) 49373) ((-484 . -1066) 49208) ((-517 . -519) 49187) ((-484 . -650) 49028) ((-219 . -1071) 48978) ((-368 . -658) 48930) ((-362 . -658) 48882) ((-227 . -858) T) ((-354 . -658) 48834) ((-612 . -102) 48784) ((-497 . -111) 48718) ((-492 . -377) 48697) ((-108 . -658) 48647) ((-363 . -235) 48634) ((-246 . -499) 48618) ((-352 . -148) 48600) ((-352 . -146) T) ((-171 . -379) 48571) ((-956 . -1281) 48555) ((-219 . -111) 48489) ((-882 . -317) 48454) ((-956 . -1115) 48404) ((-809 . -624) 48365) ((-809 . -623) 48347) ((-728 . -102) T) ((-339 . -1115) T) ((-216 . -626) 48324) ((-1135 . -132) T) ((-724 . -38) 48294) ((-324 . -503) 48273) ((-510 . -1233) T) ((-1267 . -292) 48239) ((-1246 . -292) 48205) ((-335 . -152) 48189) ((-449 . -1115) T) ((-1078 . -296) 48164) ((-1298 . -727) 48134) ((-48 . -235) 48121) ((-1175 . -34) T) ((-1307 . -1053) 48098) ((-494 . -34) T) ((-478 . -623) 48080) ((-256 . -294) 48054) ((-390 . -1053) 48038) ((-1188 . -1073) T) ((-1140 . -1073) T) ((-864 . -1073) T) ((-1077 . -858) T) ((-497 . -626) 47988) ((-219 . -626) 47938) ((-826 . -174) 47849) ((-530 . -294) 47801) ((-1275 . -298) 47780) ((-1214 . -373) 47754) ((-1103 . -273) 47738) ((-681 . -500) 47719) ((-681 . -623) 47685) ((-616 . -500) 47666) ((-118 . -1007) 47643) ((-616 . -623) 47593) ((-484 . -102) T) ((-182 . -500) 47574) ((-182 . -623) 47540) ((-162 . -500) 47521) ((-162 . -623) 47487) ((-157 . -500) 47468) ((-155 . -500) 47449) ((-157 . -623) 47415) ((-374 . -1115) T) ((-258 . -1115) T) ((-257 . -1115) T) ((-155 . -623) 47381) ((-1268 . -298) 47332) ((-1247 . -298) 47283) ((-882 . -1167) 47261) ((-1190 . -1017) 47227) ((-618 . -373) 47167) ((-1189 . -1017) 47133) ((-618 . -231) 47080) ((-704 . -860) T) ((-603 . -623) 47062) ((-603 . -624) NIL) ((-485 . -231) 47012) ((-497 . -1064) T) ((-1183 . -1017) 46978) ((-88 . -450) T) ((-88 . -405) T) ((-219 . -1064) T) ((-1141 . -1017) 46944) ((-1095 . -736) T) ((-722 . -1127) T) ((-606 . -298) 46923) ((-605 . -298) 46902) ((-497 . -249) T) ((-497 . -239) T) ((-219 . -249) T) ((-219 . -239) T) ((-1181 . -623) 46884) ((-882 . -38) 46836) ((-368 . -736) T) ((-362 . -736) T) ((-354 . -736) T) ((-108 . -804) T) ((-108 . -801) T) ((-722 . -23) T) ((-108 . -736) T) ((-530 . -1271) 46820) ((-1312 . -25) T) ((-484 . -292) 46786) ((-1312 . -21) T) ((-1246 . -317) 46725) ((-1192 . -102) T) ((-40 . -146) 46697) ((-40 . -148) 46669) ((-530 . -614) 46646) ((-1128 . -658) 46451) ((-612 . -317) 46389) ((-45 . -661) 46339) ((-45 . -676) 46289) ((-45 . -382) 46239) ((-1174 . -34) T) ((-881 . -858) NIL) ((-664 . -132) T) ((-495 . -623) 46221) ((-246 . -294) 46198) ((-188 . -1115) T) ((-1102 . -462) 46149) ((-826 . -524) 46023) ((-792 . -462) 45954) ((-674 . -1066) 45938) ((-657 . -34) T) ((-642 . -34) T) ((-674 . -650) 45922) ((-364 . -1066) 45874) ((-352 . -238) T) ((-361 . -1066) 45826) ((-353 . -1066) 45778) ((-271 . -1066) 45621) ((-253 . -1066) 45464) ((-790 . -462) 45415) ((-364 . -650) 45367) ((-361 . -650) 45319) ((-353 . -650) 45271) ((-271 . -650) 45120) ((-253 . -650) 44969) ((-464 . -462) 44920) ((-965 . -421) 44904) ((-741 . -623) 44886) ((-258 . -727) 44828) ((-257 . -727) 44770) ((-741 . -624) 44631) ((-491 . -421) 44615) ((-348 . -310) T) ((-534 . -93) T) ((-360 . -933) T) ((-1015 . -102) 44593) ((-923 . -1066) 44558) ((-1039 . -860) T) ((-60 . -524) 44491) ((-923 . -650) 44456) ((-1246 . -1167) 44408) ((-1019 . -294) NIL) ((-227 . -1073) T) ((-388 . -838) T) ((-1128 . -34) T) ((-591 . -462) T) ((-528 . -462) T) ((-1250 . -1108) 44392) ((-1250 . -1115) 44370) ((-246 . -614) 44347) ((-1250 . -1110) 44304) ((-1190 . -623) 44286) ((-1189 . -623) 44268) ((-1183 . -623) 44250) ((-1183 . -624) NIL) ((-1141 . -623) 44232) ((-882 . -410) 44216) ((-607 . -102) T) ((-595 . -102) T) ((-546 . -102) T) ((-1267 . -38) 44057) ((-1246 . -38) 43871) ((-880 . -148) T) ((-591 . -412) T) ((-528 . -412) T) ((-1279 . -102) T) ((-1269 . -21) T) ((-1269 . -25) T) ((-1128 . -804) 43850) ((-1128 . -803) 43829) ((-1008 . -1115) T) ((-1042 . -34) T) ((-872 . -1115) T) ((-1128 . -736) 43779) ((-674 . -102) T) ((-655 . -102) T) ((-560 . -296) 43758) ((-1205 . -102) T) ((-486 . -34) T) ((-473 . -34) T) ((-364 . -102) T) ((-361 . -102) T) ((-353 . -102) T) ((-271 . -102) T) ((-253 . -102) T) ((-487 . -315) T) ((-1077 . -1073) T) ((-965 . -1073) T) ((-324 . -649) 43664) ((-321 . -649) 43625) ((-1188 . -1115) T) ((-491 . -1073) T) ((-489 . -102) T) ((-446 . -623) 43607) ((-1140 . -1115) T) ((-256 . -623) 43589) ((-864 . -1115) T) ((-1156 . -102) T) ((-826 . -298) 43520) ((-976 . -1071) 43403) ((-487 . -1037) T) ((-745 . -1071) 43373) ((-1049 . -656) 43332) ((-1162 . -1136) 43316) ((-463 . -1071) 43286) ((-1117 . -524) 43219) ((-976 . -111) 43088) ((-923 . -102) T) ((-40 . -238) 43060) ((-745 . -111) 43025) ((-535 . -500) 43006) ((-535 . -623) 42972) ((-59 . -102) 42922) ((-530 . -624) 42883) ((-530 . -623) 42795) ((-529 . -102) 42773) ((-526 . -102) 42723) ((-507 . -102) 42701) ((-506 . -102) 42651) ((-463 . -111) 42614) ((-258 . -174) 42593) ((-257 . -174) 42572) ((-330 . -656) 42554) ((-428 . -1071) 42528) ((-1227 . -988) 42490) ((-1014 . -1127) T) ((-388 . -656) 42440) ((-1150 . -626) 42421) ((-956 . -524) 42354) ((-497 . -805) T) ((-484 . -38) 42195) ((-428 . -111) 42162) ((-497 . -802) T) ((-1015 . -317) 42100) ((-219 . -805) T) ((-219 . -802) T) ((-1014 . -23) T) ((-722 . -132) T) ((-1246 . -410) 42070) ((-846 . -656) 42015) ((-837 . -656) 41974) ((-324 . -25) 41826) ((-171 . -421) 41810) ((-324 . -21) 41681) ((-321 . -25) T) ((-321 . -21) T) ((-874 . -377) T) ((-976 . -626) 41534) ((-110 . -34) T) ((-745 . -626) 41490) ((-725 . -626) 41472) ((-492 . -658) 41277) ((-881 . -1073) T) ((-603 . -296) 41252) ((-590 . -148) T) ((-574 . -148) T) ((-505 . -148) T) ((-1188 . -727) 41081) ((-1072 . -102) 41059) ((-1140 . -727) 40908) ((-1135 . -649) 40890) ((-864 . -727) 40860) ((-680 . -1233) T) ((-1 . -102) T) ((-428 . -626) 40768) ((-246 . -623) 40499) ((-1130 . -1115) T) ((-1256 . -421) 40483) ((-1205 . -317) 40287) ((-976 . -1064) T) ((-745 . -1064) T) ((-725 . -1064) T) ((-654 . -1115) 40237) ((-1069 . -658) 40221) ((-865 . -421) 40205) ((-521 . -102) T) ((-517 . -102) T) ((-271 . -317) 40192) ((-253 . -317) 40179) ((-976 . -334) 40158) ((-394 . -658) 40142) ((-680 . -1053) 40038) ((-489 . -317) 39842) ((-258 . -524) 39775) ((-257 . -524) 39708) ((-1156 . -317) 39634) ((-829 . -1115) T) ((-809 . -1071) 39618) ((-1275 . -294) 39583) ((-1268 . -294) 39541) ((-1247 . -294) 39369) ((-396 . -1115) T) ((-332 . -1115) T) ((-428 . -1064) T) ((-171 . -1073) T) ((-59 . -317) 39307) ((-809 . -111) 39286) ((-605 . -294) 39251) ((-529 . -317) 39189) ((-526 . -317) 39127) ((-507 . -317) 39065) ((-506 . -317) 39003) ((-428 . -239) 38982) ((-492 . -34) T) ((-227 . -1115) T) ((-1019 . -624) 38912) ((-1019 . -623) 38872) ((-986 . -623) 38832) ((-927 . -623) 38814) ((-709 . -148) T) ((-711 . -933) T) ((-711 . -830) T) ((-437 . -623) 38796) ((-1135 . -21) T) ((-1135 . -25) T) ((-680 . -386) 38780) ((-117 . -933) T) ((-882 . -233) 38764) ((-44 . -1233) T) ((-78 . -1233) T) ((-127 . -126) 38748) ((-1069 . -34) T) ((-1305 . -1053) 38722) ((-1303 . -1053) 38679) ((-1256 . -1073) T) ((-865 . -1073) T) ((-364 . -1167) 38658) ((-361 . -1167) 38637) ((-353 . -1167) 38616) ((-492 . -804) 38595) ((-492 . -803) 38574) ((-229 . -34) T) ((-492 . -736) 38524) ((-809 . -626) 38370) ((-672 . -1066) 38354) ((-60 . -499) 38338) ((-581 . -1073) T) ((-672 . -650) 38322) ((-1188 . -174) 38213) ((-1140 . -174) 38124) ((-1077 . -1115) T) ((-1102 . -962) 38069) ((-965 . -1115) T) ((-827 . -658) 38020) ((-792 . -962) 37989) ((-723 . -1115) T) ((-790 . -962) 37956) ((-526 . -290) 37940) ((-680 . -913) 37899) ((-491 . -1115) T) ((-464 . -962) 37866) ((-79 . -1233) T) ((-364 . -38) 37831) ((-361 . -38) 37796) ((-353 . -38) 37761) ((-271 . -38) 37610) ((-253 . -38) 37459) ((-923 . -1167) T) ((-534 . -500) 37440) ((-633 . -148) 37419) ((-633 . -146) 37398) ((-534 . -623) 37364) ((-118 . -148) T) ((-118 . -146) NIL) ((-424 . -736) T) ((-809 . -1064) T) ((-574 . -238) T) ((-505 . -238) T) ((-352 . -462) T) ((-1275 . -1017) 37330) ((-1268 . -1017) 37296) ((-1247 . -1017) 37262) ((-923 . -38) 37227) ((-227 . -727) 37192) ((-327 . -47) 37162) ((-40 . -419) 37134) ((-141 . -623) 37116) ((-1014 . -132) T) ((-825 . -1233) T) ((-176 . -933) T) ((-559 . -377) T) ((-724 . -656) 37061) ((-616 . -626) 37042) ((-352 . -412) T) ((-681 . -626) 37023) ((-321 . -235) NIL) ((-182 . -626) 37004) ((-162 . -626) 36985) ((-157 . -626) 36966) ((-155 . -626) 36947) ((-530 . -296) 36924) ((-1246 . -233) 36894) ((-886 . -102) T) ((-825 . -1053) 36721) ((-45 . -34) T) ((-691 . -102) T) ((-686 . -102) T) ((-672 . -102) T) ((-664 . -21) T) ((-664 . -25) T) ((-1117 . -499) 36705) ((-685 . -1233) T) ((-488 . -102) T) ((-251 . -102) 36655) ((-556 . -854) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-881 . -1115) T) ((-1194 . -658) 36580) ((-1077 . -727) 36567) ((-741 . -1071) 36410) ((-1188 . -524) 36357) ((-965 . -727) 36206) ((-1140 . -524) 36158) ((-1294 . -1115) T) ((-1293 . -1115) T) ((-491 . -727) 36007) ((-67 . -623) 35989) ((-741 . -111) 35818) ((-956 . -499) 35802) ((-1295 . -658) 35762) ((-1190 . -1071) 35645) ((-827 . -736) T) ((-1189 . -1071) 35480) ((-1183 . -1071) 35270) ((-327 . -1233) T) ((-1141 . -1071) 35153) ((-1018 . -1237) T) ((-1109 . -102) 35131) ((-825 . -386) 35100) ((-589 . -623) 35082) ((-556 . -1115) T) ((-1018 . -566) T) ((-1190 . -111) 34951) ((-1189 . -111) 34772) ((-1183 . -111) 34541) ((-1141 . -111) 34410) ((-1120 . -1118) 34374) ((-388 . -858) T) ((-1275 . -623) 34356) ((-1268 . -623) 34338) ((-882 . -656) 34275) ((-1247 . -623) 34257) ((-1247 . -624) NIL) ((-246 . -296) 34234) ((-40 . -462) T) ((-227 . -174) T) ((-171 . -1115) T) ((-741 . -626) 34019) ((-704 . -148) T) ((-704 . -146) NIL) ((-606 . -623) 34001) ((-605 . -623) 33983) ((-1135 . -235) 33970) ((-911 . -1115) T) ((-851 . -1115) T) ((-818 . -1115) T) ((-779 . -1115) T) ((-687 . -1115) T) ((-668 . -862) 33954) ((-633 . -238) 33933) ((-825 . -913) 33865) ((-1238 . -377) T) ((-40 . -412) NIL) ((-118 . -238) NIL) ((-1190 . -626) 33747) ((-1135 . -671) T) ((-881 . -727) 33692) ((-258 . -499) 33676) ((-257 . -499) 33660) ((-1189 . -626) 33403) ((-1183 . -626) 33198) ((-722 . -649) 33146) ((-663 . -658) 33120) ((-1141 . -626) 33002) ((-303 . -34) T) ((-1135 . -113) T) ((-741 . -1064) T) ((-591 . -1290) 32989) ((-528 . -1290) 32966) ((-1256 . -1115) T) ((-1188 . -298) 32877) ((-1140 . -298) 32808) ((-1077 . -174) T) ((-297 . -1233) T) ((-865 . -1115) T) ((-965 . -174) 32719) ((-792 . -1259) 32703) ((-654 . -524) 32636) ((-77 . -623) 32618) ((-741 . -334) 32583) ((-1194 . -736) T) ((-581 . -1115) T) ((-491 . -174) 32494) ((-251 . -317) 32432) ((-1157 . -1127) T) ((-70 . -623) 32414) ((-1295 . -736) T) ((-1190 . -1064) T) ((-1189 . -1064) T) ((-335 . -102) 32364) ((-1183 . -1064) T) ((-1157 . -23) T) ((-1141 . -1064) T) ((-91 . -1136) 32348) ((-876 . -1127) T) ((-1190 . -239) 32307) ((-1189 . -249) 32286) ((-1189 . -239) 32238) ((-1183 . -239) 32125) ((-1183 . -249) 32104) ((-327 . -913) 32010) ((-876 . -23) T) ((-171 . -727) 31838) ((-417 . -1237) T) ((-1116 . -377) T) ((-1018 . -372) T) ((-880 . -462) T) ((-1039 . -148) T) ((-956 . -294) 31790) ((-321 . -860) NIL) ((-1267 . -656) 31672) ((-884 . -102) T) ((-1246 . -656) 31527) ((-722 . -25) T) ((-417 . -566) T) ((-722 . -21) T) ((-535 . -626) 31508) ((-363 . -148) 31490) ((-363 . -146) T) ((-1162 . -1115) 31468) ((-463 . -730) T) ((-75 . -623) 31450) ((-115 . -860) T) ((-251 . -290) 31434) ((-246 . -1071) 31331) ((-81 . -623) 31313) ((-745 . -377) 31266) ((-1192 . -838) T) ((-747 . -241) 31250) ((-1175 . -1233) T) ((-142 . -241) 31232) ((-246 . -111) 31122) ((-1256 . -727) 30951) ((-48 . -148) T) ((-881 . -174) T) ((-865 . -727) 30921) ((-494 . -1233) T) ((-965 . -524) 30868) ((-663 . -736) T) ((-581 . -727) 30855) ((-1049 . -1073) T) ((-704 . -238) NIL) ((-491 . -524) 30798) ((-956 . -19) 30782) ((-956 . -614) 30759) ((-1095 . -1233) 30684) ((-826 . -624) NIL) ((-826 . -623) 30666) ((-1227 . -1066) 30549) ((-1019 . -1071) 30499) ((-423 . -623) 30481) ((-258 . -294) 30458) ((-368 . -1233) 30437) ((-362 . -1233) 30416) ((-354 . -1233) 30395) ((-257 . -294) 30372) ((-497 . -922) NIL) ((-324 . -29) 30342) ((-108 . -1233) T) ((-1018 . -1127) T) ((-219 . -922) NIL) ((-1227 . -650) 30239) ((-927 . -1071) 30191) ((-1095 . -1053) 30087) ((-1019 . -111) 30021) ((-721 . -1066) 29986) ((-1018 . -23) T) ((-927 . -111) 29924) ((-747 . -705) 29908) ((-721 . -650) 29873) ((-271 . -233) 29857) ((-437 . -1071) 29841) ((-388 . -1073) T) ((-246 . -626) 29591) ((-704 . -1221) NIL) ((-497 . -658) 29541) ((-484 . -656) 29423) ((-108 . -895) 29405) ((-108 . -897) 29387) ((-704 . -1218) NIL) ((-219 . -658) 29337) ((-368 . -1053) 29321) ((-362 . -1053) 29305) ((-335 . -317) 29243) ((-354 . -1053) 29227) ((-227 . -298) T) ((-437 . -111) 29206) ((-60 . -623) 29138) ((-171 . -174) T) ((-1135 . -860) T) ((-108 . -1053) 29098) ((-903 . -1115) T) ((-846 . -1073) T) ((-837 . -1073) T) ((-704 . -35) NIL) ((-704 . -95) NIL) ((-321 . -1007) 29059) ((-185 . -102) T) ((-590 . -462) T) ((-574 . -462) T) ((-505 . -462) T) ((-417 . -372) T) ((-246 . -1064) 29009) ((-1165 . -34) T) ((-487 . -933) T) ((-1014 . -649) 28957) ((-258 . -614) 28934) ((-257 . -614) 28911) ((-1095 . -386) 28895) ((-881 . -524) 28803) ((-246 . -239) 28755) ((-1174 . -1233) T) ((-1019 . -626) 28705) ((-927 . -626) 28642) ((-834 . -623) 28624) ((-1306 . -1127) T) ((-1298 . -623) 28606) ((-1256 . -174) 28497) ((-437 . -626) 28466) ((-108 . -386) 28448) ((-108 . -347) 28430) ((-1077 . -298) T) ((-965 . -298) 28361) ((-809 . -377) 28340) ((-657 . -1233) T) ((-642 . -1233) T) ((-1306 . -23) T) ((-596 . -1066) 28315) ((-491 . -298) 28246) ((-581 . -174) T) ((-335 . -290) 28230) ((-363 . -238) T) ((-1227 . -102) T) ((-1214 . -1115) T) ((-1103 . -1115) T) ((-1091 . -1115) T) ((-596 . -650) 28205) ((-83 . -623) 28187) ((-1199 . -854) T) ((-1198 . -854) T) ((-721 . -102) T) ((-364 . -358) 28166) ((-618 . -1115) T) ((-361 . -358) 28145) ((-353 . -358) 28124) ((-485 . -1115) T) ((-1205 . -231) 28074) ((-271 . -260) 28036) ((-1157 . -132) T) ((-618 . -620) 28012) ((-1095 . -913) 27945) ((-1019 . -1064) T) ((-927 . -1064) T) ((-485 . -620) 27924) ((-1183 . -802) NIL) ((-1183 . -805) NIL) ((-1117 . -624) 27885) ((-1117 . -623) 27867) ((-489 . -231) 27817) ((-1019 . -249) T) ((-1019 . -239) T) ((-971 . -1115) 27767) ((-437 . -1064) T) ((-927 . -249) T) ((-876 . -132) T) ((-48 . -238) T) ((-709 . -462) T) ((-853 . -1127) 27746) ((-108 . -913) NIL) ((-1227 . -292) 27712) ((-1128 . -1233) T) ((-882 . -858) 27691) ((-1014 . -25) T) ((-918 . -736) T) ((-171 . -524) 27603) ((-1014 . -21) T) ((-918 . -483) T) ((-417 . -1127) T) ((-497 . -804) T) ((-497 . -801) T) ((-923 . -358) T) ((-497 . -736) T) ((-219 . -804) T) ((-219 . -801) T) ((-722 . -235) 27590) ((-219 . -736) T) ((-853 . -23) 27542) ((-1200 . -1115) T) ((-668 . -1066) 27526) ((-1199 . -1115) T) ((-534 . -626) 27507) ((-1198 . -1115) T) ((-327 . -315) 27486) ((-1050 . -241) 27432) ((-668 . -650) 27402) ((-417 . -23) T) ((-956 . -624) 27363) ((-956 . -623) 27275) ((-654 . -499) 27259) ((-45 . -1025) 27209) ((-1128 . -1053) 27036) ((-627 . -982) T) ((-501 . -102) T) ((-339 . -623) 27018) ((-1008 . -294) 26985) ((-603 . -661) 26967) ((-131 . -1115) T) ((-129 . -1115) T) ((-603 . -382) 26949) ((-352 . -1290) 26926) ((-449 . -623) 26908) ((-1256 . -524) 26855) ((-1102 . -1066) 26698) ((-1042 . -1233) T) ((-881 . -298) T) ((-1188 . -294) 26625) ((-1102 . -650) 26474) ((-1015 . -1010) 26458) ((-792 . -1066) 26281) ((-790 . -1066) 26124) ((-792 . -650) 25953) ((-790 . -650) 25802) ((-486 . -1233) T) ((-473 . -1233) T) ((-596 . -102) T) ((-471 . -1066) 25773) ((-464 . -1066) 25616) ((-674 . -656) 25585) ((-633 . -462) 25564) ((-471 . -650) 25535) ((-464 . -650) 25384) ((-364 . -656) 25321) ((-361 . -656) 25258) ((-353 . -656) 25195) ((-271 . -656) 25105) ((-253 . -656) 25015) ((-1298 . -391) 24987) ((-527 . -1115) T) ((-118 . -462) T) ((-1213 . -102) T) ((-1107 . -1115) 24957) ((-1049 . -1115) T) ((-1130 . -93) T) ((-904 . -860) T) ((-1275 . -111) 24826) ((-360 . -1237) T) ((-1275 . -1071) 24709) ((-1128 . -386) 24678) ((-1268 . -1071) 24513) ((-1247 . -1071) 24303) ((-1268 . -111) 24124) ((-1247 . -111) 23893) ((-1227 . -317) 23880) ((-1018 . -132) T) ((-923 . -656) 23830) ((-374 . -623) 23812) ((-360 . -566) T) ((-297 . -315) T) ((-606 . -1071) 23772) ((-605 . -1071) 23655) ((-591 . -1066) 23620) ((-528 . -1066) 23565) ((-370 . -1115) T) ((-330 . -1115) T) ((-258 . -623) 23526) ((-257 . -623) 23487) ((-591 . -650) 23452) ((-528 . -650) 23397) ((-704 . -419) 23364) ((-645 . -23) T) ((-617 . -23) T) ((-668 . -102) T) ((-606 . -111) 23317) ((-605 . -111) 23186) ((-388 . -1115) T) ((-345 . -102) T) ((-171 . -298) 23097) ((-1246 . -858) 23050) ((-724 . -1073) T) ((-1162 . -524) 22983) ((-1206 . -845) 22967) ((-1128 . -913) 22899) ((-846 . -1115) T) ((-837 . -1115) T) ((-835 . -1115) T) ((-97 . -102) T) ((-145 . -860) T) ((-622 . -895) 22883) ((-110 . -1233) T) ((-1102 . -102) T) ((-1078 . -34) T) ((-792 . -102) T) ((-790 . -102) T) ((-1275 . -626) 22765) ((-1268 . -626) 22508) ((-471 . -102) T) ((-464 . -102) T) ((-1247 . -626) 22303) ((-246 . -805) 22282) ((-246 . -802) 22261) ((-659 . -102) T) ((-606 . -626) 22219) ((-605 . -626) 22101) ((-1256 . -298) 22012) ((-674 . -644) 21996) ((-188 . -623) 21978) ((-654 . -294) 21930) ((-1049 . -727) 21914) ((-581 . -298) T) ((-976 . -658) 21839) ((-1306 . -132) T) ((-745 . -658) 21799) ((-725 . -658) 21786) ((-282 . -102) T) ((-463 . -658) 21716) ((-50 . -102) T) ((-591 . -102) T) ((-528 . -102) T) ((-1275 . -1064) T) ((-1268 . -1064) T) ((-1247 . -1064) T) ((-517 . -656) 21698) ((-330 . -727) 21680) ((-1275 . -239) 21639) ((-1268 . -249) 21618) ((-1268 . -239) 21570) ((-1247 . -239) 21457) ((-1247 . -249) 21436) ((-1227 . -38) 21333) ((-606 . -1064) T) ((-605 . -1064) T) ((-1019 . -805) T) ((-1019 . -802) T) ((-986 . -805) T) ((-986 . -802) T) ((-882 . -1073) T) ((-109 . -623) 21315) ((-704 . -462) T) ((-388 . -727) 21280) ((-428 . -658) 21254) ((-880 . -879) 21238) ((-721 . -38) 21203) ((-605 . -239) 21162) ((-40 . -734) 21134) ((-360 . -337) 21111) ((-360 . -372) T) ((-1095 . -315) 21062) ((-302 . -1127) 20943) ((-1121 . -1233) T) ((-1014 . -235) 20916) ((-173 . -102) T) ((-1250 . -623) 20883) ((-853 . -132) 20835) ((-654 . -1271) 20819) ((-846 . -727) 20789) ((-837 . -727) 20759) ((-492 . -1233) T) ((-368 . -315) T) ((-362 . -315) T) ((-354 . -315) T) ((-654 . -614) 20736) ((-417 . -132) T) ((-530 . -676) 20720) ((-108 . -315) T) ((-302 . -23) 20603) ((-530 . -661) 20587) ((-704 . -412) NIL) ((-530 . -382) 20571) ((-299 . -623) 20553) ((-91 . -1115) 20531) ((-108 . -1037) T) ((-574 . -144) T) ((-1283 . -152) 20515) ((-492 . -1053) 20342) ((-1269 . -146) 20303) ((-1269 . -148) 20264) ((-1069 . -1233) T) ((-1008 . -623) 20246) ((-828 . -1233) T) ((-872 . -623) 20228) ((-826 . -1071) 20071) ((-1294 . -93) T) ((-1293 . -93) T) ((-1188 . -624) NIL) ((-1111 . -1115) T) ((-1105 . -1115) T) ((-1102 . -317) 20058) ((-1088 . -1115) T) ((-229 . -1233) T) ((-1081 . -1115) T) ((-1051 . -1115) T) ((-1034 . -1115) T) ((-792 . -317) 20045) ((-790 . -317) 20032) ((-1188 . -623) 20014) ((-826 . -111) 19843) ((-1140 . -623) 19825) ((-636 . -1115) T) ((-587 . -175) T) ((-539 . -175) T) ((-464 . -317) 19812) ((-493 . -1115) T) ((-1140 . -624) 19560) ((-1049 . -174) T) ((-956 . -296) 19537) ((-220 . -1115) T) ((-864 . -623) 19519) ((-618 . -524) 19302) ((-81 . -626) 19243) ((-828 . -1053) 19227) ((-485 . -524) 19019) ((-976 . -736) T) ((-745 . -736) T) ((-725 . -736) T) ((-360 . -1127) T) ((-1195 . -623) 19001) ((-225 . -102) T) ((-492 . -386) 18970) ((-525 . -1115) T) ((-520 . -1115) T) ((-518 . -1115) T) ((-809 . -658) 18944) ((-1039 . -462) T) ((-971 . -524) 18877) ((-360 . -23) T) ((-645 . -132) T) ((-617 . -132) T) ((-363 . -462) T) ((-246 . -377) 18856) ((-388 . -174) T) ((-1267 . -1073) T) ((-1246 . -1073) T) ((-227 . -1017) T) ((-826 . -626) 18593) ((-709 . -397) T) ((-428 . -736) T) ((-711 . -1237) T) ((-1157 . -649) 18541) ((-590 . -879) 18525) ((-1298 . -1071) 18509) ((-1175 . -1209) 18485) ((-711 . -566) T) ((-127 . -1115) 18463) ((-724 . -1115) T) ((-668 . -38) 18433) ((-492 . -913) 18365) ((-255 . -1115) T) ((-189 . -1115) T) ((-363 . -412) T) ((-324 . -148) 18344) ((-324 . -146) 18323) ((-129 . -524) NIL) ((-117 . -566) T) ((-321 . -148) 18279) ((-321 . -146) 18235) ((-48 . -462) T) ((-163 . -1115) T) ((-158 . -1115) T) ((-1175 . -107) 18182) ((-792 . -1167) 18160) ((-699 . -34) T) ((-1298 . -111) 18139) ((-560 . -34) T) ((-494 . -107) 18123) ((-258 . -296) 18100) ((-257 . -296) 18077) ((-881 . -294) 18028) ((-45 . -1233) T) ((-1239 . -854) T) ((-827 . -1233) T) ((-826 . -1064) T) ((-672 . -656) 17997) ((-1194 . -47) 17974) ((-826 . -334) 17936) ((-1102 . -38) 17785) ((-826 . -239) 17764) ((-792 . -38) 17593) ((-790 . -38) 17442) ((-1130 . -500) 17423) ((-464 . -38) 17272) ((-1130 . -623) 17238) ((-1133 . -102) T) ((-654 . -624) 17199) ((-654 . -623) 17111) ((-591 . -1167) T) ((-528 . -1167) T) ((-1162 . -499) 17095) ((-352 . -1066) 17040) ((-1219 . -1115) 17018) ((-1157 . -25) T) ((-1157 . -21) T) ((-352 . -650) 16963) ((-1298 . -626) 16912) ((-484 . -1073) T) ((-1239 . -1115) T) ((-1247 . -802) NIL) ((-1247 . -805) NIL) ((-1014 . -860) 16891) ((-848 . -1115) T) ((-829 . -623) 16873) ((-876 . -21) T) ((-876 . -25) T) ((-809 . -736) T) ((-176 . -1237) T) ((-591 . -38) 16838) ((-528 . -38) 16803) ((-396 . -623) 16785) ((-341 . -102) T) ((-332 . -623) 16767) ((-171 . -294) 16725) ((-63 . -1233) T) ((-112 . -102) T) ((-882 . -1115) T) ((-176 . -566) T) ((-724 . -727) 16695) ((-302 . -132) 16578) ((-227 . -623) 16560) ((-227 . -624) 16490) ((-1018 . -649) 16429) ((-1298 . -1064) T) ((-1135 . -148) T) ((-642 . -1209) 16404) ((-741 . -922) 16383) ((-603 . -34) T) ((-657 . -107) 16367) ((-642 . -107) 16313) ((-1256 . -294) 16240) ((-741 . -658) 16129) ((-303 . -1233) T) ((-1194 . -1053) 16025) ((-956 . -628) 16002) ((-587 . -586) T) ((-587 . -537) T) ((-539 . -537) T) ((-1183 . -922) NIL) ((-1077 . -624) 15917) ((-1077 . -623) 15899) ((-965 . -623) 15881) ((-723 . -500) 15831) ((-352 . -102) T) ((-258 . -1071) 15728) ((-257 . -1071) 15625) ((-404 . -102) T) ((-31 . -1115) T) ((-965 . -624) 15486) ((-723 . -623) 15421) ((-1296 . -1226) 15390) ((-491 . -623) 15372) ((-491 . -624) 15233) ((-271 . -421) 15217) ((-253 . -421) 15201) ((-321 . -238) NIL) ((-258 . -111) 15091) ((-257 . -111) 14981) ((-1190 . -658) 14906) ((-1189 . -658) 14803) ((-1183 . -658) 14655) ((-1141 . -658) 14580) ((-360 . -132) T) ((-82 . -451) T) ((-82 . -405) T) ((-1018 . -25) T) ((-1018 . -21) T) ((-883 . -1115) 14531) ((-40 . -1066) 14476) ((-882 . -727) 14428) ((-40 . -650) 14373) ((-388 . -298) T) ((-171 . -1017) 14324) ((-704 . -397) T) ((-1014 . -1012) 14308) ((-711 . -1127) T) ((-704 . -167) 14290) ((-1267 . -1115) T) ((-1246 . -1115) T) ((-324 . -1218) 14269) ((-324 . -1221) 14248) ((-1180 . -102) T) ((-324 . -972) 14227) ((-135 . -1127) T) ((-117 . -1127) T) ((-663 . -1233) T) ((-612 . -1281) 14211) ((-711 . -23) T) ((-612 . -1115) 14161) ((-324 . -95) 14140) ((-91 . -524) 14073) ((-176 . -372) T) ((-258 . -626) 13823) ((-257 . -626) 13573) ((-324 . -35) 13552) ((-618 . -499) 13486) ((-135 . -23) T) ((-117 . -23) T) ((-979 . -102) T) ((-728 . -1115) T) ((-485 . -499) 13423) ((-417 . -649) 13371) ((-663 . -1053) 13267) ((-971 . -499) 13251) ((-364 . -1073) T) ((-361 . -1073) T) ((-353 . -1073) T) ((-271 . -1073) T) ((-253 . -1073) T) ((-881 . -624) NIL) ((-881 . -623) 13233) ((-1294 . -500) 13214) ((-1293 . -500) 13195) ((-1306 . -21) T) ((-1294 . -623) 13161) ((-1293 . -623) 13127) ((-581 . -1017) T) ((-741 . -736) T) ((-1306 . -25) T) ((-258 . -1064) 13077) ((-257 . -1064) 13027) ((-72 . -1233) T) ((-1157 . -235) 13000) ((-258 . -239) 12952) ((-257 . -239) 12904) ((-1135 . -238) T) ((-40 . -102) T) ((-923 . -1073) T) ((-1197 . -102) T) ((-129 . -499) 12886) ((-1190 . -736) T) ((-1189 . -736) T) ((-1183 . -736) T) ((-1183 . -801) NIL) ((-1183 . -804) NIL) ((-967 . -102) T) ((-934 . -102) T) ((-880 . -1066) 12873) ((-1141 . -736) T) ((-781 . -102) T) ((-682 . -102) T) ((-880 . -650) 12860) ((-556 . -623) 12842) ((-484 . -1115) T) ((-348 . -1127) T) ((-176 . -1127) T) ((-327 . -933) 12821) ((-1267 . -727) 12662) ((-882 . -174) T) ((-1246 . -727) 12476) ((-853 . -21) 12428) ((-853 . -25) 12380) ((-251 . -1164) 12364) ((-127 . -524) 12297) ((-417 . -25) T) ((-417 . -21) T) ((-348 . -23) T) ((-171 . -624) 12063) ((-171 . -623) 12045) ((-176 . -23) T) ((-654 . -296) 12022) ((-530 . -34) T) ((-911 . -623) 12004) ((-89 . -1233) T) ((-851 . -623) 11986) ((-818 . -623) 11968) ((-779 . -623) 11950) ((-687 . -623) 11932) ((-246 . -658) 11737) ((-627 . -113) T) ((-1192 . -1115) T) ((-1188 . -1071) 11560) ((-1165 . -1233) T) ((-1140 . -1071) 11403) ((-864 . -1071) 11387) ((-1250 . -628) 11371) ((-1188 . -111) 11180) ((-1140 . -111) 11009) ((-864 . -111) 10988) ((-1240 . -860) T) ((-1256 . -624) NIL) ((-1256 . -623) 10970) ((-352 . -1167) T) ((-865 . -623) 10952) ((-1091 . -294) 10931) ((-80 . -1233) T) ((-918 . -1233) T) ((-1019 . -922) NIL) ((-1227 . -656) 10841) ((-618 . -294) 10817) ((-1219 . -524) 10750) ((-497 . -1233) T) ((-581 . -623) 10732) ((-485 . -294) 10711) ((-1102 . -233) 10695) ((-527 . -93) T) ((-1019 . -658) 10645) ((-219 . -1233) T) ((-1018 . -235) 10611) ((-971 . -294) 10563) ((-297 . -933) T) ((-827 . -315) 10542) ((-880 . -102) T) ((-792 . -233) 10526) ((-927 . -658) 10478) ((-721 . -656) 10428) ((-704 . -734) 10395) ((-645 . -21) T) ((-645 . -25) T) ((-617 . -21) T) ((-557 . -102) T) ((-352 . -38) 10360) ((-497 . -895) 10342) ((-497 . -897) 10324) ((-484 . -727) 10165) ((-219 . -895) 10147) ((-64 . -1233) T) ((-219 . -897) 10129) ((-617 . -25) T) ((-437 . -658) 10103) ((-1188 . -626) 9872) ((-497 . -1053) 9832) ((-882 . -524) 9744) ((-1140 . -626) 9536) ((-864 . -626) 9454) ((-219 . -1053) 9414) ((-246 . -34) T) ((-1015 . -1115) 9392) ((-590 . -1066) 9379) ((-574 . -1066) 9366) ((-505 . -1066) 9331) ((-1267 . -174) 9262) ((-1246 . -174) 9193) ((-590 . -650) 9180) ((-574 . -650) 9167) ((-505 . -650) 9132) ((-722 . -146) 9111) ((-722 . -148) 9090) ((-711 . -132) T) ((-137 . -475) 9067) ((-1162 . -623) 8999) ((-668 . -666) 8983) ((-129 . -294) 8933) ((-117 . -132) T) ((-487 . -1237) T) ((-618 . -614) 8909) ((-485 . -614) 8888) ((-345 . -344) 8857) ((-607 . -1115) T) ((-595 . -1115) T) ((-546 . -1115) T) ((-487 . -566) T) ((-1188 . -1064) T) ((-1140 . -1064) T) ((-864 . -1064) T) ((-246 . -804) 8836) ((-246 . -803) 8815) ((-1188 . -334) 8792) ((-246 . -736) 8742) ((-971 . -19) 8726) ((-497 . -386) 8708) ((-497 . -347) 8690) ((-1140 . -334) 8662) ((-363 . -1290) 8639) ((-219 . -386) 8621) ((-219 . -347) 8603) ((-971 . -614) 8580) ((-1188 . -239) T) ((-1279 . -1115) T) ((-674 . -1115) T) ((-655 . -1115) T) ((-1205 . -1115) T) ((-1102 . -260) 8517) ((-596 . -656) 8477) ((-364 . -1115) T) ((-361 . -1115) T) ((-353 . -1115) T) ((-271 . -1115) T) ((-253 . -1115) T) ((-84 . -1233) T) ((-128 . -102) 8455) ((-122 . -102) 8433) ((-1246 . -524) 8293) ((-1205 . -620) 8272) ((-1156 . -1115) T) ((-1130 . -626) 8253) ((-1095 . -933) 8204) ((-489 . -1115) T) ((-1019 . -804) T) ((-1019 . -801) T) ((-489 . -620) 8183) ((-258 . -805) 8162) ((-258 . -802) 8141) ((-257 . -805) 8120) ((-40 . -1167) NIL) ((-257 . -802) 8099) ((-1019 . -736) T) ((-129 . -19) 8081) ((-986 . -804) T) ((-709 . -1066) 8046) ((-927 . -736) T) ((-923 . -1115) T) ((-903 . -623) 8028) ((-129 . -614) 8003) ((-709 . -650) 7968) ((-91 . -499) 7952) ((-497 . -913) NIL) ((-882 . -298) T) ((-227 . -1071) 7917) ((-846 . -294) 7896) ((-219 . -913) NIL) ((-843 . -1127) 7875) ((-59 . -1115) 7825) ((-529 . -1115) 7803) ((-526 . -1115) 7753) ((-507 . -1115) 7731) ((-506 . -1115) 7681) ((-590 . -102) T) ((-574 . -102) T) ((-505 . -102) T) ((-484 . -174) 7612) ((-368 . -933) T) ((-362 . -933) T) ((-354 . -933) T) ((-227 . -111) 7568) ((-843 . -23) 7520) ((-437 . -736) T) ((-108 . -933) T) ((-40 . -38) 7465) ((-108 . -830) T) ((-591 . -358) T) ((-528 . -358) T) ((-668 . -656) 7424) ((-324 . -462) 7403) ((-321 . -462) T) ((-612 . -524) 7336) ((-417 . -235) 7309) ((-348 . -132) T) ((-176 . -132) T) ((-302 . -25) 7173) ((-302 . -21) 7056) ((-45 . -1209) 7035) ((-66 . -623) 7017) ((-55 . -102) T) ((-345 . -656) 6999) ((-1284 . -102) T) ((-1283 . -102) 6949) ((-45 . -107) 6899) ((-829 . -626) 6883) ((-1275 . -658) 6808) ((-1268 . -658) 6705) ((-1247 . -658) 6557) ((-1247 . -922) NIL) ((-1214 . -623) 6539) ((-1117 . -435) 6523) ((-1117 . -377) 6502) ((-396 . -626) 6486) ((-332 . -626) 6470) ((-1206 . -102) T) ((-1111 . -93) T) ((-1078 . -1233) T) ((-1102 . -656) 6380) ((-1077 . -1071) 6367) ((-1077 . -111) 6352) ((-965 . -1071) 6195) ((-965 . -111) 6024) ((-792 . -656) 5934) ((-790 . -656) 5844) ((-633 . -1066) 5831) ((-674 . -727) 5815) ((-633 . -650) 5802) ((-491 . -1071) 5645) ((-487 . -372) T) ((-471 . -656) 5601) ((-464 . -656) 5511) ((-227 . -626) 5461) ((-364 . -727) 5413) ((-361 . -727) 5365) ((-118 . -1066) 5310) ((-353 . -727) 5262) ((-271 . -727) 5111) ((-253 . -727) 4960) ((-1105 . -93) T) ((-1088 . -93) T) ((-118 . -650) 4905) ((-1081 . -93) T) ((-956 . -661) 4889) ((-1072 . -1115) 4867) ((-491 . -111) 4696) ((-1051 . -93) T) ((-1034 . -93) T) ((-956 . -382) 4680) ((-254 . -102) T) ((-976 . -47) 4659) ((-74 . -623) 4641) ((-722 . -238) T) ((-720 . -102) T) ((-709 . -102) T) ((-1 . -1115) T) ((-631 . -1127) T) ((-1103 . -623) 4623) ((-636 . -93) T) ((-1091 . -623) 4605) ((-923 . -727) 4570) ((-127 . -499) 4554) ((-493 . -93) T) ((-631 . -23) T) ((-400 . -23) T) ((-87 . -1233) T) ((-220 . -93) T) ((-618 . -623) 4536) ((-618 . -624) NIL) ((-485 . -624) NIL) ((-485 . -623) 4518) ((-360 . -25) T) ((-360 . -21) T) ((-50 . -656) 4477) ((-521 . -1115) T) ((-517 . -1115) T) ((-128 . -317) 4415) ((-122 . -317) 4353) ((-606 . -658) 4327) ((-605 . -658) 4252) ((-591 . -656) 4202) ((-227 . -1064) T) ((-528 . -656) 4132) ((-388 . -1017) T) ((-227 . -249) T) ((-227 . -239) T) ((-1077 . -626) 4104) ((-1077 . -628) 4085) ((-971 . -624) 4046) ((-971 . -623) 3958) ((-965 . -626) 3747) ((-880 . -38) 3734) ((-723 . -626) 3684) ((-1267 . -298) 3635) ((-1246 . -298) 3586) ((-491 . -626) 3371) ((-1135 . -462) T) ((-512 . -860) T) ((-324 . -1154) 3350) ((-1014 . -148) 3329) ((-1014 . -146) 3308) ((-505 . -317) 3295) ((-303 . -1209) 3274) ((-1200 . -623) 3256) ((-1199 . -623) 3238) ((-1198 . -623) 3220) ((-881 . -1071) 3165) ((-487 . -1127) T) ((-140 . -845) 3147) ((-115 . -845) 3128) ((-633 . -102) T) ((-1219 . -499) 3112) ((-258 . -377) 3091) ((-257 . -377) 3070) ((-1077 . -1064) T) ((-303 . -107) 3020) ((-131 . -623) 3002) ((-129 . -624) NIL) ((-129 . -623) 2946) ((-118 . -102) T) ((-965 . -1064) T) ((-881 . -111) 2875) ((-487 . -23) T) ((-463 . -1233) T) ((-491 . -1064) T) ((-1077 . -239) T) ((-965 . -334) 2844) ((-491 . -334) 2801) ((-364 . -174) T) ((-361 . -174) T) ((-353 . -174) T) ((-271 . -174) 2712) ((-253 . -174) 2623) ((-976 . -1053) 2519) ((-527 . -500) 2500) ((-745 . -1053) 2471) ((-527 . -623) 2437) ((-428 . -1233) 2354) ((-1120 . -102) T) ((-1107 . -623) 2313) ((-1049 . -623) 2295) ((-704 . -1066) 2245) ((-1296 . -152) 2229) ((-1294 . -626) 2210) ((-1293 . -626) 2191) ((-1288 . -623) 2173) ((-1275 . -736) T) ((-704 . -650) 2123) ((-1268 . -736) T) ((-1247 . -801) NIL) ((-1247 . -804) NIL) ((-171 . -1071) 2033) ((-923 . -174) T) ((-881 . -626) 1963) ((-1247 . -736) T) ((-1018 . -351) 1937) ((-225 . -656) 1889) ((-1015 . -524) 1822) ((-853 . -860) 1801) ((-574 . -1167) T) ((-484 . -298) 1752) ((-606 . -736) T) ((-370 . -623) 1734) ((-330 . -623) 1716) ((-428 . -1053) 1612) ((-605 . -736) T) ((-417 . -860) 1563) ((-171 . -111) 1459) ((-843 . -132) 1411) ((-747 . -152) 1395) ((-1283 . -317) 1333) ((-497 . -315) T) ((-388 . -623) 1300) ((-530 . -1025) 1284) ((-388 . -624) 1198) ((-219 . -315) T) ((-142 . -152) 1180) ((-724 . -294) 1159) ((-497 . -1037) T) ((-590 . -38) 1146) ((-574 . -38) 1133) ((-505 . -38) 1098) ((-219 . -1037) T) ((-881 . -1064) T) ((-846 . -623) 1080) ((-837 . -623) 1062) ((-835 . -623) 1044) ((-826 . -922) 1023) ((-1307 . -1127) T) ((-1256 . -1071) 846) ((-865 . -1071) 830) ((-881 . -249) T) ((-881 . -239) NIL) ((-699 . -1233) T) ((-1307 . -23) T) ((-826 . -658) 719) ((-560 . -1233) T) ((-428 . -347) 703) ((-581 . -1071) 690) ((-1256 . -111) 499) ((-711 . -649) 481) ((-865 . -111) 460) ((-390 . -23) T) ((-171 . -626) 238) ((-1205 . -524) 30) ((-886 . -1115) T) ((-691 . -1115) T) ((-686 . -1115) T) ((-672 . -1115) T)) \ No newline at end of file +(((-488 . -1116) T) ((-271 . -524) 199252) ((-253 . -524) 199195) ((-251 . -1116) 199145) ((-581 . -111) 199130) ((-541 . -23) T) ((-139 . -1116) T) ((-138 . -1116) T) ((-118 . -317) 199087) ((-134 . -1116) T) ((-1015 . -238) 199066) ((-809 . -1234) 199035) ((-489 . -524) 198827) ((-687 . -626) 198811) ((-704 . -102) T) ((-1157 . -524) 198730) ((-400 . -132) T) ((-1297 . -992) 198699) ((-1040 . -1067) 198636) ((-31 . -93) T) ((-612 . -499) 198620) ((-1040 . -650) 198557) ((-631 . -132) T) ((-829 . -856) T) ((-533 . -57) 198507) ((-529 . -524) 198440) ((-360 . -235) 198427) ((-363 . -1067) 198372) ((-59 . -524) 198305) ((-526 . -524) 198238) ((-428 . -912) 198197) ((-171 . -1065) T) ((-507 . -524) 198130) ((-506 . -524) 198063) ((-363 . -650) 198008) ((-809 . -1054) 197788) ((-709 . -38) 197753) ((-1257 . -626) 197501) ((-352 . -358) T) ((-1110 . -1109) 197485) ((-1110 . -1116) 197463) ((-865 . -626) 197360) ((-171 . -249) 197311) ((-171 . -239) 197262) ((-1110 . -1111) 197220) ((-882 . -294) 197178) ((-227 . -805) T) ((-227 . -802) T) ((-704 . -292) NIL) ((-581 . -626) 197150) ((-1166 . -1210) 197129) ((-417 . -1008) 197113) ((-48 . -1067) 197078) ((-711 . -21) T) ((-711 . -25) T) ((-48 . -650) 197043) ((-1299 . -658) 197017) ((-324 . -161) 196996) ((-324 . -144) 196975) ((-1166 . -107) 196925) ((-117 . -21) T) ((-40 . -233) 196902) ((-135 . -25) T) ((-117 . -25) T) ((-618 . -296) 196878) ((-485 . -296) 196857) ((-1257 . -334) 196834) ((-1257 . -1065) T) ((-865 . -1065) T) ((-809 . -347) 196818) ((-140 . -187) T) ((-118 . -1168) NIL) ((-91 . -623) 196750) ((-487 . -132) T) ((-1257 . -239) T) ((-1112 . -500) 196731) ((-1112 . -623) 196697) ((-1106 . -500) 196678) ((-1106 . -623) 196644) ((-603 . -1234) T) ((-1089 . -500) 196625) ((-581 . -1065) T) ((-1089 . -623) 196591) ((-672 . -727) 196575) ((-1082 . -500) 196556) ((-1082 . -623) 196522) ((-972 . -296) 196499) ((-60 . -34) T) ((-1078 . -805) T) ((-1078 . -802) T) ((-1052 . -500) 196480) ((-1035 . -500) 196461) ((-826 . -736) T) ((-741 . -47) 196426) ((-633 . -38) 196413) ((-364 . -298) T) ((-361 . -298) T) ((-353 . -298) T) ((-271 . -298) 196344) ((-253 . -298) 196275) ((-1052 . -623) 196241) ((-1040 . -102) T) ((-1035 . -623) 196207) ((-636 . -500) 196188) ((-423 . -736) T) ((-118 . -38) 196133) ((-493 . -500) 196114) ((-636 . -623) 196080) ((-423 . -483) T) ((-220 . -500) 196061) ((-493 . -623) 196027) ((-363 . -102) T) ((-220 . -623) 195993) ((-1228 . -1074) T) ((-352 . -656) 195923) ((-721 . -1074) T) ((-1191 . -47) 195900) ((-1190 . -47) 195870) ((-1184 . -47) 195847) ((-129 . -296) 195822) ((-1051 . -152) 195768) ((-924 . -298) T) ((-1142 . -47) 195740) ((-704 . -317) NIL) ((-525 . -623) 195722) ((-520 . -623) 195704) ((-518 . -623) 195686) ((-335 . -1116) 195636) ((-324 . -907) 195600) ((-321 . -907) NIL) ((-722 . -462) 195531) ((-48 . -102) T) ((-1268 . -294) 195489) ((-1247 . -294) 195389) ((-654 . -676) 195373) ((-654 . -661) 195357) ((-348 . -21) T) ((-348 . -25) T) ((-40 . -358) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-654 . -382) 195341) ((-615 . -500) 195323) ((-612 . -294) 195275) ((-615 . -623) 195242) ((-398 . -102) T) ((-1136 . -144) T) ((-127 . -623) 195174) ((-884 . -1116) T) ((-668 . -421) 195158) ((-741 . -1234) T) ((-724 . -623) 195140) ((-255 . -623) 195107) ((-189 . -623) 195089) ((-163 . -623) 195071) ((-158 . -623) 195053) ((-1299 . -736) T) ((-1118 . -34) T) ((-881 . -805) NIL) ((-881 . -802) NIL) ((-868 . -860) T) ((-741 . -897) NIL) ((-1308 . -132) T) ((-390 . -132) T) ((-903 . -626) 195021) ((-918 . -102) T) ((-741 . -1054) 194897) ((-1191 . -1234) T) ((-1190 . -1234) T) ((-541 . -132) T) ((-1184 . -1234) T) ((-1103 . -421) 194881) ((-1016 . -499) 194865) ((-118 . -410) 194842) ((-1142 . -1234) T) ((-792 . -421) 194826) ((-790 . -421) 194810) ((-957 . -34) T) ((-704 . -1168) NIL) ((-258 . -658) 194602) ((-257 . -658) 194381) ((-827 . -934) 194360) ((-464 . -421) 194344) ((-612 . -19) 194328) ((-1162 . -1227) 194297) ((-1184 . -897) NIL) ((-1184 . -895) 194249) ((-612 . -614) 194226) ((-1220 . -623) 194158) ((-1192 . -623) 194140) ((-62 . -405) T) ((-1190 . -1054) 194075) ((-1184 . -1054) 194041) ((-704 . -38) 193991) ((-40 . -656) 193921) ((-484 . -294) 193879) ((-1240 . -623) 193861) ((-741 . -386) 193845) ((-848 . -623) 193827) ((-668 . -1074) T) ((-633 . -914) 193786) ((-1268 . -1018) 193752) ((-1247 . -1018) 193718) ((-256 . -1234) T) ((-1104 . -626) 193702) ((-1079 . -1210) 193677) ((-1092 . -626) 193654) ((-882 . -624) 193461) ((-882 . -623) 193443) ((-118 . -914) NIL) ((-711 . -235) 193430) ((-1206 . -499) 193367) ((-428 . -1038) 193345) ((-48 . -317) 193332) ((-1079 . -107) 193278) ((-489 . -499) 193215) ((-530 . -1234) T) ((-1184 . -347) 193167) ((-1157 . -499) 193138) ((-1184 . -386) 193090) ((-1103 . -1074) T) ((-447 . -102) T) ((-185 . -1116) T) ((-258 . -34) T) ((-257 . -34) T) ((-792 . -1074) T) ((-790 . -1074) T) ((-741 . -912) 193067) ((-464 . -1074) T) ((-59 . -499) 193051) ((-1050 . -1072) 193025) ((-529 . -499) 193009) ((-526 . -499) 192993) ((-507 . -499) 192977) ((-506 . -499) 192961) ((-251 . -524) 192894) ((-1050 . -111) 192861) ((-1191 . -912) 192774) ((-1190 . -912) 192680) ((-680 . -1128) T) ((-1184 . -912) 192513) ((-655 . -93) T) ((-1142 . -912) 192497) ((-363 . -1168) T) ((-330 . -1072) 192479) ((-31 . -500) 192460) ((-258 . -804) 192439) ((-258 . -803) 192418) ((-257 . -804) 192397) ((-257 . -803) 192376) ((-31 . -623) 192342) ((-50 . -1074) T) ((-258 . -736) 192292) ((-257 . -736) 192242) ((-1228 . -1116) T) ((-680 . -23) T) ((-591 . -1074) T) ((-528 . -1074) T) ((-388 . -1072) 192207) ((-330 . -111) 192182) ((-73 . -392) T) ((-73 . -405) T) ((-1040 . -38) 192119) ((-704 . -410) 192101) ((-99 . -102) T) ((-721 . -1116) T) ((-1313 . -1067) 192088) ((-1019 . -146) 192060) ((-1019 . -148) 192032) ((-880 . -656) 192004) ((-388 . -111) 191960) ((-327 . -1238) 191939) ((-484 . -1018) 191905) ((-363 . -38) 191870) ((-40 . -379) 191842) ((-883 . -623) 191714) ((-128 . -126) 191698) ((-122 . -126) 191682) ((-846 . -1072) 191652) ((-843 . -21) 191604) ((-837 . -1072) 191588) ((-843 . -25) 191540) ((-327 . -566) 191491) ((-527 . -626) 191472) ((-574 . -838) T) ((-246 . -1234) T) ((-1050 . -626) 191441) ((-846 . -111) 191406) ((-837 . -111) 191385) ((-1268 . -623) 191367) ((-1247 . -623) 191349) ((-1247 . -624) 191020) ((-1189 . -923) 190999) ((-1141 . -923) 190978) ((-48 . -38) 190943) ((-1306 . -1128) T) ((-546 . -294) 190899) ((-612 . -623) 190811) ((-612 . -624) 190772) ((-1304 . -1128) T) ((-370 . -626) 190756) ((-330 . -626) 190740) ((-1158 . -238) 190719) ((-246 . -1054) 190546) ((-1189 . -658) 190435) ((-1141 . -658) 190324) ((-864 . -658) 190298) ((-728 . -623) 190280) ((-556 . -377) T) ((-1306 . -23) T) ((-704 . -914) NIL) ((-1304 . -23) T) ((-501 . -1116) T) ((-388 . -626) 190230) ((-388 . -628) 190212) ((-1050 . -1065) T) ((-875 . -102) T) ((-1206 . -294) 190191) ((-171 . -377) 190142) ((-1020 . -1234) T) ((-846 . -626) 190096) ((-837 . -626) 190051) ((-44 . -23) T) ((-489 . -294) 190030) ((-596 . -1116) T) ((-1162 . -1125) 189999) ((-1120 . -1119) 189951) ((-400 . -21) T) ((-400 . -25) T) ((-153 . -1128) T) ((-1313 . -102) T) ((-1020 . -895) 189933) ((-1020 . -897) 189915) ((-1228 . -727) 189812) ((-633 . -233) 189796) ((-631 . -21) T) ((-297 . -566) T) ((-631 . -25) T) ((-1214 . -1116) T) ((-721 . -727) 189761) ((-246 . -386) 189730) ((-1020 . -1054) 189690) ((-388 . -1065) T) ((-225 . -1074) T) ((-118 . -233) 189667) ((-59 . -294) 189619) ((-153 . -23) T) ((-526 . -294) 189571) ((-335 . -524) 189504) ((-506 . -294) 189456) ((-388 . -249) T) ((-388 . -239) T) ((-846 . -1065) T) ((-837 . -1065) T) ((-722 . -963) 189425) ((-711 . -860) T) ((-484 . -623) 189407) ((-1270 . -1067) 189312) ((-590 . -656) 189284) ((-574 . -656) 189256) ((-505 . -656) 189206) ((-837 . -239) 189185) ((-135 . -860) T) ((-1270 . -650) 189077) ((-668 . -1116) T) ((-1206 . -614) 189056) ((-560 . -1210) 189035) ((-345 . -1116) T) ((-327 . -372) 189014) ((-417 . -148) 188993) ((-417 . -146) 188972) ((-978 . -1128) 188871) ((-246 . -912) 188803) ((-825 . -1128) 188753) ((-664 . -862) 188737) ((-489 . -614) 188716) ((-560 . -107) 188666) ((-1020 . -386) 188648) ((-1020 . -347) 188630) ((-1193 . -623) 188612) ((-97 . -1116) T) ((-978 . -23) 188423) ((-487 . -21) T) ((-487 . -25) T) ((-825 . -23) 188313) ((-1193 . -624) 188235) ((-59 . -19) 188219) ((-1189 . -736) T) ((-1141 . -736) T) ((-1103 . -1116) T) ((-526 . -19) 188203) ((-506 . -19) 188187) ((-59 . -614) 188164) ((-1019 . -238) 188136) ((-915 . -102) 188114) ((-864 . -736) T) ((-792 . -1116) T) ((-526 . -614) 188091) ((-506 . -614) 188068) ((-790 . -1116) T) ((-790 . -1081) 188035) ((-471 . -1116) T) ((-464 . -1116) T) ((-596 . -727) 188010) ((-659 . -1116) T) ((-1276 . -47) 187987) ((-1270 . -102) T) ((-1269 . -47) 187957) ((-1248 . -47) 187934) ((-1228 . -174) 187885) ((-1190 . -315) 187864) ((-1184 . -315) 187843) ((-1112 . -626) 187824) ((-1106 . -626) 187805) ((-1096 . -566) 187756) ((-1096 . -1238) 187707) ((-1020 . -912) NIL) ((-1089 . -626) 187688) ((-680 . -132) T) ((-637 . -1128) T) ((-1082 . -626) 187669) ((-1052 . -626) 187650) ((-1035 . -626) 187631) ((-724 . -1072) 187601) ((-709 . -656) 187551) ((-282 . -1116) T) ((-85 . -451) T) ((-85 . -405) T) ((-722 . -907) 187490) ((-721 . -174) T) ((-50 . -1116) T) ((-605 . -47) 187467) ((-227 . -658) 187432) ((-591 . -1116) T) ((-528 . -1116) T) ((-497 . -830) T) ((-497 . -934) T) ((-368 . -1238) T) ((-362 . -1238) T) ((-354 . -1238) T) ((-327 . -1128) T) ((-324 . -1067) 187342) ((-321 . -1067) 187271) ((-108 . -1238) T) ((-636 . -626) 187252) ((-368 . -566) T) ((-219 . -934) T) ((-219 . -830) T) ((-324 . -650) 187162) ((-321 . -650) 187091) ((-362 . -566) T) ((-354 . -566) T) ((-493 . -626) 187072) ((-108 . -566) T) ((-668 . -727) 187042) ((-1184 . -1038) NIL) ((-220 . -626) 187023) ((-327 . -23) T) ((-67 . -1234) T) ((-1016 . -623) 186955) ((-704 . -233) 186937) ((-724 . -111) 186902) ((-654 . -34) T) ((-251 . -499) 186886) ((-1313 . -1168) T) ((-1308 . -21) T) ((-1308 . -25) T) ((-1306 . -132) T) ((-1118 . -1114) 186870) ((-173 . -1116) T) ((-1304 . -132) T) ((-1297 . -102) T) ((-1280 . -623) 186836) ((-1276 . -1234) T) ((-1269 . -1234) T) ((-966 . -923) 186815) ((-1269 . -1054) 186750) ((-1248 . -1234) T) ((-1248 . -897) NIL) ((-525 . -626) 186734) ((-1248 . -895) 186686) ((-1248 . -1054) 186652) ((-1228 . -524) 186619) ((-491 . -923) 186598) ((-1206 . -624) NIL) ((-1206 . -623) 186580) ((-1103 . -727) 186429) ((-1078 . -658) 186401) ((-966 . -658) 186290) ((-607 . -500) 186271) ((-595 . -500) 186252) ((-792 . -727) 186081) ((-607 . -623) 186047) ((-595 . -623) 186013) ((-546 . -623) 185995) ((-546 . -624) 185976) ((-790 . -727) 185825) ((-1093 . -102) T) ((-390 . -25) T) ((-633 . -656) 185797) ((-390 . -21) T) ((-491 . -658) 185686) ((-471 . -727) 185657) ((-464 . -727) 185506) ((-1003 . -102) T) ((-1158 . -1139) 185451) ((-1062 . -1227) 185380) ((-915 . -317) 185318) ((-747 . -102) T) ((-118 . -656) 185248) ((-615 . -626) 185230) ((-886 . -93) T) ((-724 . -626) 185184) ((-541 . -25) T) ((-691 . -93) T) ((-686 . -93) T) ((-674 . -623) 185166) ((-655 . -500) 185147) ((-142 . -102) T) ((-44 . -132) T) ((-655 . -623) 185100) ((-605 . -1234) T) ((-352 . -1074) T) ((-297 . -1128) T) ((-488 . -93) T) ((-417 . -238) 185079) ((-364 . -623) 185061) ((-361 . -623) 185043) ((-353 . -623) 185025) ((-271 . -624) 184773) ((-271 . -623) 184755) ((-253 . -623) 184737) ((-253 . -624) 184598) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1157 . -623) 184580) ((-1136 . -650) 184567) ((-1136 . -1067) 184554) ((-829 . -736) T) ((-829 . -867) T) ((-612 . -296) 184531) ((-591 . -727) 184496) ((-489 . -624) NIL) ((-489 . -623) 184478) ((-528 . -727) 184423) ((-324 . -102) T) ((-321 . -102) T) ((-297 . -23) T) ((-153 . -132) T) ((-924 . -623) 184405) ((-924 . -624) 184387) ((-396 . -736) T) ((-882 . -1072) 184339) ((-882 . -111) 184277) ((-724 . -1065) T) ((-722 . -1260) 184261) ((-704 . -358) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-529 . -623) 184193) ((-388 . -805) T) ((-225 . -1116) T) ((-169 . -1234) T) ((-388 . -802) T) ((-227 . -804) T) ((-227 . -801) T) ((-59 . -624) 184154) ((-59 . -623) 184066) ((-227 . -736) T) ((-526 . -624) 184027) ((-526 . -623) 183939) ((-507 . -623) 183871) ((-506 . -624) 183832) ((-506 . -623) 183744) ((-1096 . -372) 183695) ((-40 . -421) 183672) ((-77 . -1234) T) ((-881 . -923) NIL) ((-368 . -337) 183656) ((-368 . -372) T) ((-362 . -337) 183640) ((-362 . -372) T) ((-354 . -337) 183624) ((-354 . -372) T) ((-324 . -292) 183603) ((-108 . -372) T) ((-70 . -1234) T) ((-1248 . -347) 183555) ((-881 . -658) 183500) ((-1248 . -386) 183452) ((-978 . -132) 183307) ((-825 . -132) 183197) ((-972 . -661) 183181) ((-1103 . -174) 183092) ((-972 . -382) 183076) ((-1078 . -804) T) ((-1078 . -801) T) ((-882 . -626) 182974) ((-792 . -174) 182865) ((-790 . -174) 182776) ((-826 . -47) 182738) ((-1078 . -736) T) ((-335 . -499) 182722) ((-966 . -736) T) ((-1297 . -317) 182660) ((-1276 . -912) 182573) ((-464 . -174) 182484) ((-251 . -294) 182436) ((-1269 . -912) 182342) ((-1268 . -1072) 182177) ((-1248 . -912) 182010) ((-491 . -736) T) ((-1247 . -1072) 181818) ((-1228 . -298) 181797) ((-1203 . -1234) T) ((-1200 . -377) T) ((-1199 . -377) T) ((-1162 . -152) 181781) ((-1136 . -102) T) ((-1134 . -1116) T) ((-1096 . -23) T) ((-1096 . -1128) T) ((-1091 . -102) T) ((-1073 . -623) 181748) ((-1019 . -419) 181720) ((-941 . -969) T) ((-747 . -317) 181658) ((-75 . -1234) T) ((-674 . -391) 181630) ((-171 . -923) 181583) ((-30 . -969) T) ((-112 . -854) T) ((-1 . -623) 181565) ((-1015 . -907) 181522) ((-129 . -661) 181504) ((-50 . -630) 181488) ((-704 . -656) 181423) ((-605 . -912) 181336) ((-448 . -102) T) ((-129 . -382) 181318) ((-142 . -317) NIL) ((-882 . -1065) T) ((-843 . -860) 181297) ((-81 . -1234) T) ((-721 . -298) T) ((-40 . -1074) T) ((-591 . -174) T) ((-528 . -174) T) ((-521 . -623) 181279) ((-171 . -658) 181153) ((-517 . -623) 181135) ((-360 . -148) 181117) ((-360 . -146) T) ((-368 . -1128) T) ((-362 . -1128) T) ((-354 . -1128) T) ((-1020 . -315) T) ((-928 . -315) T) ((-882 . -249) T) ((-108 . -1128) T) ((-882 . -239) 181096) ((-1268 . -111) 180917) ((-1247 . -111) 180706) ((-251 . -1272) 180690) ((-574 . -858) T) ((-368 . -23) T) ((-363 . -358) T) ((-324 . -317) 180677) ((-321 . -317) 180618) ((-362 . -23) T) ((-327 . -132) T) ((-354 . -23) T) ((-1020 . -1038) T) ((-31 . -626) 180599) ((-108 . -23) T) ((-664 . -1067) 180583) ((-251 . -614) 180560) ((-341 . -1116) T) ((-664 . -650) 180530) ((-1270 . -38) 180422) ((-1257 . -923) 180401) ((-112 . -1116) T) ((-826 . -1234) T) ((-1051 . -102) T) ((-1257 . -658) 180290) ((-881 . -804) NIL) ((-865 . -658) 180264) ((-881 . -801) NIL) ((-826 . -897) NIL) ((-881 . -736) T) ((-1103 . -524) 180137) ((-792 . -524) 180084) ((-790 . -524) 180036) ((-581 . -658) 180023) ((-826 . -1054) 179851) ((-464 . -524) 179794) ((-398 . -399) T) ((-1268 . -626) 179607) ((-1247 . -626) 179355) ((-60 . -1234) T) ((-631 . -860) 179334) ((-510 . -671) T) ((-1162 . -992) 179303) ((-1040 . -656) 179240) ((-1019 . -462) T) ((-709 . -858) T) ((-520 . -802) T) ((-484 . -1072) 179075) ((-510 . -113) T) ((-352 . -1116) T) ((-321 . -1168) NIL) ((-297 . -132) T) ((-404 . -1116) T) ((-880 . -1074) T) ((-704 . -379) 179042) ((-363 . -656) 178972) ((-225 . -630) 178949) ((-335 . -294) 178901) ((-484 . -111) 178722) ((-1268 . -1065) T) ((-1247 . -1065) T) ((-826 . -386) 178706) ((-171 . -736) T) ((-664 . -102) T) ((-1268 . -249) 178685) ((-1268 . -239) 178637) ((-1247 . -239) 178542) ((-1247 . -249) 178521) ((-1019 . -412) NIL) ((-680 . -649) 178469) ((-324 . -38) 178379) ((-321 . -38) 178308) ((-69 . -623) 178290) ((-327 . -503) 178256) ((-48 . -656) 178206) ((-1206 . -296) 178185) ((-1242 . -860) T) ((-1129 . -1128) 178135) ((-83 . -1234) T) ((-61 . -623) 178117) ((-489 . -296) 178096) ((-1299 . -1054) 178073) ((-1181 . -1116) T) ((-1129 . -23) 177963) ((-826 . -912) 177899) ((-1257 . -736) T) ((-1118 . -1234) T) ((-484 . -626) 177725) ((-360 . -238) T) ((-1103 . -298) 177656) ((-980 . -1116) T) ((-904 . -102) T) ((-792 . -298) 177567) ((-335 . -19) 177551) ((-59 . -296) 177528) ((-790 . -298) 177459) ((-865 . -736) T) ((-118 . -858) NIL) ((-526 . -296) 177436) ((-335 . -614) 177413) ((-506 . -296) 177390) ((-464 . -298) 177321) ((-1051 . -317) 177172) ((-886 . -500) 177153) ((-886 . -623) 177119) ((-691 . -500) 177100) ((-581 . -736) T) ((-686 . -500) 177081) ((-691 . -623) 177031) ((-686 . -623) 176997) ((-672 . -623) 176979) ((-488 . -500) 176960) ((-488 . -623) 176926) ((-251 . -624) 176887) ((-251 . -500) 176864) ((-139 . -500) 176845) ((-138 . -500) 176826) ((-134 . -500) 176807) ((-251 . -623) 176699) ((-215 . -102) T) ((-139 . -623) 176665) ((-138 . -623) 176631) ((-134 . -623) 176597) ((-1163 . -34) T) ((-957 . -1234) T) ((-352 . -727) 176542) ((-680 . -25) T) ((-680 . -21) T) ((-1193 . -626) 176523) ((-484 . -1065) T) ((-645 . -427) 176488) ((-617 . -427) 176453) ((-1136 . -1168) T) ((-722 . -1067) 176276) ((-591 . -298) T) ((-528 . -298) T) ((-1269 . -315) 176255) ((-484 . -239) 176207) ((-484 . -249) 176186) ((-1248 . -315) 176165) ((-722 . -650) 175994) ((-1248 . -1038) NIL) ((-1096 . -132) T) ((-882 . -805) 175973) ((-145 . -102) T) ((-40 . -1116) T) ((-882 . -802) 175952) ((-654 . -1026) 175936) ((-590 . -1074) T) ((-574 . -1074) T) ((-505 . -1074) T) ((-417 . -462) T) ((-368 . -132) T) ((-324 . -410) 175920) ((-321 . -410) 175881) ((-362 . -132) T) ((-354 . -132) T) ((-1198 . -1116) T) ((-1136 . -38) 175868) ((-1110 . -623) 175835) ((-108 . -132) T) ((-968 . -1116) T) ((-935 . -1116) T) ((-781 . -1116) T) ((-682 . -1116) T) ((-711 . -148) T) ((-117 . -148) T) ((-1306 . -21) T) ((-1306 . -25) T) ((-1304 . -21) T) ((-1304 . -25) T) ((-674 . -1072) 175819) ((-541 . -860) T) ((-510 . -860) T) ((-364 . -1072) 175771) ((-361 . -1072) 175723) ((-353 . -1072) 175675) ((-258 . -1234) T) ((-257 . -1234) T) ((-271 . -1072) 175518) ((-253 . -1072) 175361) ((-674 . -111) 175340) ((-827 . -1238) 175319) ((-557 . -854) T) ((-324 . -914) 175285) ((-364 . -111) 175223) ((-361 . -111) 175161) ((-353 . -111) 175099) ((-271 . -111) 174928) ((-253 . -111) 174757) ((-321 . -914) NIL) ((-633 . -421) 174741) ((-44 . -21) T) ((-44 . -25) T) ((-825 . -649) 174647) ((-827 . -566) 174626) ((-258 . -1054) 174453) ((-257 . -1054) 174280) ((-127 . -120) 174264) ((-924 . -1072) 174229) ((-722 . -102) T) ((-709 . -1074) T) ((-607 . -626) 174210) ((-595 . -626) 174191) ((-546 . -628) 174094) ((-352 . -174) T) ((-88 . -623) 174076) ((-153 . -21) T) ((-153 . -25) T) ((-924 . -111) 174032) ((-40 . -727) 173977) ((-880 . -1116) T) ((-674 . -626) 173954) ((-655 . -626) 173935) ((-364 . -626) 173872) ((-361 . -626) 173809) ((-557 . -1116) T) ((-353 . -626) 173746) ((-335 . -624) 173707) ((-335 . -623) 173619) ((-271 . -626) 173372) ((-253 . -626) 173157) ((-1247 . -802) 173110) ((-1247 . -805) 173063) ((-258 . -386) 173032) ((-257 . -386) 173001) ((-664 . -38) 172971) ((-618 . -34) T) ((-492 . -1128) 172921) ((-485 . -34) T) ((-1129 . -132) 172811) ((-978 . -25) 172622) ((-924 . -626) 172572) ((-884 . -623) 172554) ((-978 . -21) 172509) ((-825 . -21) 172439) ((-825 . -25) 172310) ((-1240 . -377) T) ((-633 . -1074) T) ((-1195 . -566) 172289) ((-1189 . -47) 172266) ((-364 . -1065) T) ((-361 . -1065) T) ((-492 . -23) 172156) ((-353 . -1065) T) ((-271 . -1065) T) ((-253 . -1065) T) ((-1141 . -47) 172128) ((-118 . -1074) T) ((-1050 . -658) 172102) ((-972 . -34) T) ((-364 . -239) 172081) ((-364 . -249) T) ((-361 . -239) 172060) ((-361 . -249) T) ((-353 . -239) 172039) ((-353 . -249) T) ((-271 . -334) 172011) ((-253 . -334) 171968) ((-271 . -239) 171947) ((-1173 . -152) 171931) ((-258 . -912) 171863) ((-257 . -912) 171795) ((-1158 . -907) 171752) ((-1098 . -860) T) ((-424 . -1128) T) ((-1070 . -23) T) ((-1040 . -858) T) ((-924 . -1065) T) ((-330 . -658) 171734) ((-711 . -238) T) ((-680 . -235) 171707) ((-1228 . -1018) 171673) ((-1190 . -934) 171652) ((-1184 . -934) 171631) ((-1184 . -830) NIL) ((-1015 . -1067) 171527) ((-981 . -1234) T) ((-924 . -249) T) ((-827 . -372) 171506) ((-394 . -23) T) ((-128 . -1116) 171484) ((-122 . -1116) 171462) ((-924 . -239) T) ((-129 . -34) T) ((-388 . -658) 171427) ((-1015 . -650) 171375) ((-880 . -727) 171362) ((-1313 . -656) 171334) ((-1062 . -152) 171299) ((-1009 . -1234) T) ((-40 . -174) T) ((-704 . -421) 171281) ((-722 . -317) 171268) ((-846 . -658) 171228) ((-837 . -658) 171202) ((-327 . -25) T) ((-327 . -21) T) ((-668 . -294) 171181) ((-590 . -1116) T) ((-574 . -1116) T) ((-505 . -1116) T) ((-251 . -296) 171158) ((-1189 . -1234) T) ((-1141 . -1234) T) ((-321 . -233) 171119) ((-1189 . -897) NIL) ((-55 . -1116) T) ((-1141 . -897) 170978) ((-130 . -860) T) ((-1189 . -1054) 170858) ((-1141 . -1054) 170741) ((-185 . -623) 170723) ((-864 . -1054) 170619) ((-792 . -294) 170546) ((-827 . -1128) T) ((-1050 . -736) T) ((-1062 . -992) 170475) ((-612 . -661) 170459) ((-1019 . -907) 170409) ((-1015 . -102) T) ((-827 . -23) T) ((-722 . -1168) 170387) ((-704 . -1074) T) ((-612 . -382) 170371) ((-360 . -462) T) ((-352 . -298) T) ((-1285 . -1116) T) ((-254 . -1116) T) ((-409 . -102) T) ((-297 . -21) T) ((-297 . -25) T) ((-370 . -736) T) ((-720 . -1116) T) ((-709 . -1116) T) ((-370 . -483) T) ((-1228 . -623) 170353) ((-1189 . -386) 170337) ((-1141 . -386) 170321) ((-1040 . -421) 170283) ((-142 . -231) 170265) ((-388 . -804) T) ((-388 . -801) T) ((-880 . -174) T) ((-388 . -736) T) ((-721 . -623) 170247) ((-722 . -38) 170076) ((-1284 . -1282) 170060) ((-360 . -412) T) ((-1284 . -1116) 170010) ((-1207 . -1116) T) ((-590 . -727) 169997) ((-574 . -727) 169984) ((-505 . -727) 169949) ((-1270 . -656) 169839) ((-324 . -639) 169818) ((-846 . -736) T) ((-837 . -736) T) ((-654 . -1234) T) ((-1096 . -649) 169766) ((-1189 . -912) 169709) ((-1141 . -912) 169693) ((-825 . -235) 169639) ((-672 . -1072) 169623) ((-108 . -649) 169605) ((-492 . -132) 169495) ((-1195 . -1128) T) ((-966 . -47) 169464) ((-633 . -1116) T) ((-672 . -111) 169443) ((-501 . -623) 169409) ((-335 . -296) 169386) ((-491 . -47) 169343) ((-1195 . -23) T) ((-118 . -1116) T) ((-103 . -102) 169321) ((-1296 . -1128) T) ((-558 . -860) T) ((-227 . -1234) T) ((-1070 . -132) T) ((-1040 . -1074) T) ((-1296 . -23) T) ((-829 . -1054) 169305) ((-1214 . -623) 169287) ((-1019 . -734) 169259) ((-1136 . -838) T) ((-709 . -727) 169224) ((-596 . -623) 169206) ((-396 . -1054) 169190) ((-363 . -1074) T) ((-394 . -132) T) ((-332 . -1054) 169174) ((-1121 . -1116) T) ((-1096 . -21) T) ((-1096 . -25) T) ((-227 . -897) 169156) ((-1020 . -934) T) ((-91 . -34) T) ((-1020 . -830) T) ((-928 . -934) T) ((-1015 . -317) 169121) ((-886 . -626) 169102) ((-497 . -1238) T) ((-724 . -658) 169062) ((-691 . -626) 169043) ((-686 . -626) 169024) ((-219 . -1238) T) ((-417 . -907) 168981) ((-227 . -1054) 168941) ((-40 . -298) T) ((-497 . -566) T) ((-488 . -626) 168922) ((-368 . -25) T) ((-324 . -656) 168577) ((-321 . -656) 168491) ((-368 . -21) T) ((-362 . -25) T) ((-362 . -21) T) ((-219 . -566) T) ((-354 . -25) T) ((-354 . -21) T) ((-327 . -235) 168437) ((-251 . -626) 168414) ((-139 . -626) 168395) ((-138 . -626) 168376) ((-134 . -626) 168357) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1074) T) ((-590 . -174) T) ((-574 . -174) T) ((-505 . -174) T) ((-1078 . -1234) T) ((-966 . -1234) T) ((-668 . -623) 168339) ((-491 . -1234) T) ((-747 . -746) 168323) ((-345 . -623) 168305) ((-68 . -392) T) ((-68 . -405) T) ((-1118 . -107) 168289) ((-1078 . -897) 168271) ((-966 . -897) 168196) ((-663 . -1128) T) ((-633 . -727) 168183) ((-491 . -897) NIL) ((-1162 . -102) T) ((-1110 . -628) 168167) ((-1078 . -1054) 168149) ((-97 . -623) 168131) ((-487 . -148) T) ((-966 . -1054) 168011) ((-118 . -727) 167956) ((-722 . -914) 167899) ((-663 . -23) T) ((-491 . -1054) 167775) ((-1103 . -624) NIL) ((-1103 . -623) 167757) ((-792 . -624) NIL) ((-792 . -623) 167718) ((-790 . -624) 167352) ((-790 . -623) 167266) ((-1129 . -649) 167172) ((-471 . -623) 167154) ((-464 . -623) 167136) ((-464 . -624) 166997) ((-1051 . -231) 166943) ((-882 . -923) 166922) ((-127 . -34) T) ((-827 . -132) T) ((-659 . -623) 166904) ((-588 . -102) T) ((-364 . -1303) 166888) ((-361 . -1303) 166872) ((-353 . -1303) 166856) ((-128 . -524) 166789) ((-122 . -524) 166722) ((-521 . -802) T) ((-521 . -805) T) ((-520 . -804) T) ((-103 . -317) 166660) ((-224 . -102) 166638) ((-709 . -174) T) ((-704 . -1116) T) ((-882 . -658) 166554) ((-65 . -393) T) ((-282 . -623) 166536) ((-65 . -405) T) ((-966 . -386) 166520) ((-880 . -298) T) ((-50 . -623) 166502) ((-1015 . -38) 166450) ((-1136 . -656) 166422) ((-591 . -623) 166404) ((-491 . -386) 166388) ((-591 . -624) 166370) ((-528 . -623) 166352) ((-924 . -1303) 166339) ((-881 . -1234) T) ((-711 . -462) T) ((-505 . -524) 166305) ((-497 . -372) T) ((-364 . -377) 166284) ((-361 . -377) 166263) ((-353 . -377) 166242) ((-724 . -736) T) ((-219 . -372) T) ((-117 . -462) T) ((-1307 . -1298) 166226) ((-881 . -895) 166203) ((-881 . -897) NIL) ((-978 . -860) 166102) ((-825 . -860) 166053) ((-1241 . -102) T) ((-664 . -666) 166037) ((-1220 . -34) T) ((-173 . -623) 166019) ((-1129 . -21) 165949) ((-1129 . -25) 165820) ((-881 . -1054) 165797) ((-966 . -912) 165778) ((-1257 . -47) 165755) ((-924 . -377) T) ((-59 . -661) 165739) ((-526 . -661) 165723) ((-491 . -912) 165700) ((-71 . -451) T) ((-71 . -405) T) ((-506 . -661) 165684) ((-59 . -382) 165668) ((-633 . -174) T) ((-526 . -382) 165652) ((-506 . -382) 165636) ((-837 . -718) 165620) ((-1189 . -315) 165599) ((-1195 . -132) T) ((-1158 . -1067) 165583) ((-118 . -174) T) ((-1158 . -650) 165515) ((-1162 . -317) 165453) ((-171 . -1234) T) ((-1296 . -132) T) ((-876 . -1067) 165423) ((-645 . -754) 165407) ((-617 . -754) 165391) ((-1269 . -934) 165370) ((-1248 . -934) 165349) ((-1248 . -830) NIL) ((-876 . -650) 165319) ((-704 . -727) 165269) ((-1247 . -923) 165222) ((-1040 . -1116) T) ((-881 . -386) 165199) ((-881 . -347) 165176) ((-919 . -1128) T) ((-171 . -895) 165160) ((-171 . -897) 165085) ((-1284 . -524) 165018) ((-1268 . -658) 164915) ((-1096 . -235) 164834) ((-497 . -1128) T) ((-363 . -1116) T) ((-219 . -1128) T) ((-76 . -451) T) ((-76 . -405) T) ((-171 . -1054) 164730) ((-302 . -907) 164687) ((-327 . -860) T) ((-1247 . -658) 164495) ((-882 . -804) 164474) ((-882 . -801) 164453) ((-882 . -736) T) ((-497 . -23) T) ((-368 . -235) 164426) ((-362 . -235) 164399) ((-354 . -235) 164372) ((-225 . -623) 164354) ((-176 . -462) T) ((-224 . -317) 164292) ((-86 . -451) T) ((-86 . -405) T) ((-108 . -235) 164279) ((-219 . -23) T) ((-1308 . -1301) 164258) ((-687 . -1054) 164242) ((-590 . -298) T) ((-574 . -298) T) ((-505 . -298) T) ((-137 . -480) 164197) ((-1257 . -1234) T) ((-664 . -656) 164156) ((-48 . -1116) T) ((-722 . -233) 164140) ((-881 . -912) NIL) ((-1257 . -897) NIL) ((-900 . -102) T) ((-896 . -102) T) ((-398 . -1116) T) ((-171 . -386) 164124) ((-171 . -347) 164108) ((-1257 . -1054) 163988) ((-865 . -1054) 163884) ((-1158 . -102) T) ((-1015 . -914) 163843) ((-672 . -802) 163822) ((-663 . -132) T) ((-672 . -805) 163801) ((-118 . -524) 163709) ((-581 . -1054) 163691) ((-302 . -1291) 163661) ((-876 . -102) T) ((-977 . -566) 163640) ((-1228 . -1072) 163523) ((-1019 . -1067) 163468) ((-492 . -649) 163374) ((-918 . -1116) T) ((-1040 . -727) 163311) ((-721 . -1072) 163276) ((-1019 . -650) 163221) ((-627 . -102) T) ((-612 . -34) T) ((-1163 . -1234) T) ((-1228 . -111) 163090) ((-484 . -658) 162987) ((-363 . -727) 162932) ((-171 . -912) 162891) ((-709 . -298) T) ((-704 . -174) T) ((-721 . -111) 162847) ((-1313 . -1074) T) ((-1257 . -386) 162831) ((-428 . -1238) 162809) ((-1134 . -623) 162791) ((-321 . -858) NIL) ((-428 . -566) T) ((-227 . -315) T) ((-1247 . -801) 162744) ((-1247 . -804) 162697) ((-1268 . -736) T) ((-1247 . -736) T) ((-48 . -727) 162662) ((-227 . -1038) T) ((-1270 . -421) 162628) ((-360 . -1291) 162605) ((-1257 . -912) 162548) ((-728 . -736) T) ((-341 . -623) 162530) ((-1228 . -626) 162412) ((-1129 . -235) 162358) ((-112 . -623) 162340) ((-112 . -624) 162322) ((-728 . -483) T) ((-721 . -626) 162272) ((-1307 . -1067) 162256) ((-492 . -21) 162186) ((-128 . -499) 162170) ((-122 . -499) 162154) ((-492 . -25) 162025) ((-1307 . -650) 161995) ((-633 . -298) T) ((-596 . -1072) 161970) ((-447 . -1116) T) ((-1078 . -315) T) ((-118 . -298) T) ((-1120 . -102) T) ((-1019 . -102) T) ((-596 . -111) 161938) ((-1158 . -317) 161876) ((-1228 . -1065) T) ((-1078 . -1038) T) ((-66 . -1234) T) ((-1070 . -25) T) ((-1070 . -21) T) ((-721 . -1065) T) ((-394 . -21) T) ((-394 . -25) T) ((-704 . -524) NIL) ((-1040 . -174) T) ((-721 . -249) T) ((-1078 . -555) T) ((-722 . -656) 161786) ((-516 . -102) T) ((-512 . -102) T) ((-363 . -174) T) ((-352 . -623) 161768) ((-417 . -1067) 161720) ((-404 . -623) 161702) ((-1136 . -858) T) ((-484 . -736) T) ((-903 . -1054) 161670) ((-417 . -650) 161622) ((-108 . -860) T) ((-668 . -1072) 161606) ((-497 . -132) T) ((-1270 . -1074) T) ((-219 . -132) T) ((-1173 . -102) 161584) ((-99 . -1116) T) ((-251 . -676) 161568) ((-251 . -661) 161552) ((-668 . -111) 161531) ((-596 . -626) 161515) ((-324 . -421) 161499) ((-251 . -382) 161483) ((-1176 . -241) 161430) ((-1015 . -233) 161414) ((-74 . -1234) T) ((-48 . -174) T) ((-711 . -397) T) ((-711 . -144) T) ((-1307 . -102) T) ((-1214 . -626) 161396) ((-1104 . -1234) T) ((-1103 . -1072) 161239) ((-1092 . -1234) T) ((-271 . -923) 161218) ((-253 . -923) 161197) ((-792 . -1072) 161020) ((-790 . -1072) 160863) ((-618 . -1234) T) ((-1181 . -623) 160845) ((-1103 . -111) 160674) ((-1062 . -102) T) ((-485 . -1234) T) ((-471 . -1072) 160645) ((-464 . -1072) 160488) ((-674 . -658) 160472) ((-881 . -315) T) ((-792 . -111) 160281) ((-790 . -111) 160110) ((-364 . -658) 160062) ((-361 . -658) 160014) ((-353 . -658) 159966) ((-271 . -658) 159855) ((-253 . -658) 159744) ((-1175 . -860) T) ((-1104 . -1054) 159728) ((-471 . -111) 159689) ((-464 . -111) 159518) ((-1092 . -1054) 159495) ((-1016 . -34) T) ((-980 . -623) 159477) ((-972 . -1234) T) ((-127 . -1026) 159461) ((-977 . -1128) T) ((-881 . -1038) NIL) ((-745 . -1128) T) ((-725 . -1128) T) ((-668 . -626) 159379) ((-1284 . -499) 159363) ((-1158 . -38) 159323) ((-977 . -23) T) ((-924 . -658) 159288) ((-875 . -1116) T) ((-853 . -102) T) ((-827 . -21) T) ((-645 . -1067) 159272) ((-617 . -1067) 159256) ((-827 . -25) T) ((-745 . -23) T) ((-725 . -23) T) ((-645 . -650) 159240) ((-110 . -671) T) ((-617 . -650) 159224) ((-591 . -1072) 159189) ((-528 . -1072) 159134) ((-229 . -57) 159092) ((-463 . -23) T) ((-417 . -102) T) ((-270 . -102) T) ((-110 . -113) T) ((-704 . -298) T) ((-876 . -38) 159062) ((-591 . -111) 159018) ((-528 . -111) 158947) ((-1103 . -626) 158683) ((-428 . -1128) T) ((-324 . -1074) 158573) ((-321 . -1074) T) ((-129 . -1234) T) ((-792 . -626) 158321) ((-790 . -626) 158087) ((-668 . -1065) T) ((-1313 . -1116) T) ((-464 . -626) 157872) ((-171 . -315) 157803) ((-428 . -23) T) ((-40 . -623) 157785) ((-40 . -624) 157769) ((-108 . -1008) 157751) ((-117 . -879) 157735) ((-659 . -626) 157719) ((-48 . -524) 157685) ((-1220 . -1026) 157669) ((-1198 . -623) 157636) ((-1206 . -34) T) ((-968 . -623) 157602) ((-935 . -623) 157584) ((-1129 . -860) 157535) ((-781 . -623) 157517) ((-682 . -623) 157499) ((-1173 . -317) 157437) ((-489 . -34) T) ((-1108 . -1234) T) ((-487 . -462) T) ((-1157 . -34) T) ((-1103 . -1065) T) ((-50 . -626) 157406) ((-792 . -1065) T) ((-790 . -1065) T) ((-657 . -241) 157390) ((-642 . -241) 157336) ((-591 . -626) 157286) ((-528 . -626) 157216) ((-492 . -235) 157162) ((-1257 . -315) 157141) ((-1103 . -334) 157102) ((-464 . -1065) T) ((-1195 . -21) T) ((-1103 . -239) 157081) ((-792 . -334) 157058) ((-792 . -239) T) ((-790 . -334) 157030) ((-741 . -1238) 157009) ((-335 . -661) 156993) ((-1195 . -25) T) ((-59 . -34) T) ((-529 . -34) T) ((-526 . -34) T) ((-464 . -334) 156972) ((-335 . -382) 156956) ((-507 . -34) T) ((-506 . -34) T) ((-1019 . -1168) NIL) ((-741 . -566) 156887) ((-645 . -102) T) ((-617 . -102) T) ((-364 . -736) T) ((-361 . -736) T) ((-353 . -736) T) ((-271 . -736) T) ((-253 . -736) T) ((-388 . -1234) T) ((-1062 . -317) 156795) ((-1296 . -21) T) ((-915 . -1116) 156773) ((-828 . -235) 156760) ((-50 . -1065) T) ((-1296 . -25) T) ((-1191 . -566) 156739) ((-1190 . -1238) 156718) ((-1190 . -566) 156669) ((-1184 . -1238) 156648) ((-1184 . -566) 156599) ((-591 . -1065) T) ((-528 . -1065) T) ((-1040 . -298) T) ((-370 . -1054) 156583) ((-330 . -1054) 156567) ((-1019 . -38) 156512) ((-388 . -897) 156494) ((-1015 . -656) 156417) ((-846 . -1234) T) ((-837 . -1234) 156396) ((-809 . -1128) T) ((-924 . -736) T) ((-591 . -249) T) ((-591 . -239) T) ((-528 . -239) T) ((-528 . -249) T) ((-1142 . -566) 156375) ((-363 . -298) T) ((-657 . -705) 156359) ((-388 . -1054) 156319) ((-302 . -1067) 156240) ((-348 . -907) 156219) ((-1136 . -1074) T) ((-103 . -126) 156203) ((-302 . -650) 156145) ((-809 . -23) T) ((-1306 . -1301) 156121) ((-1304 . -1301) 156100) ((-1284 . -294) 156052) ((-417 . -317) 156017) ((-1270 . -1116) T) ((-1158 . -914) 155976) ((-880 . -623) 155958) ((-846 . -1054) 155927) ((-205 . -797) T) ((-204 . -797) T) ((-203 . -797) T) ((-202 . -797) T) ((-201 . -797) T) ((-200 . -797) T) ((-199 . -797) T) ((-198 . -797) T) ((-197 . -797) T) ((-196 . -797) T) ((-557 . -623) 155909) ((-505 . -1018) T) ((-281 . -849) T) ((-280 . -849) T) ((-279 . -849) T) ((-278 . -849) T) ((-48 . -298) T) ((-277 . -849) T) ((-276 . -849) T) ((-275 . -849) T) ((-195 . -797) T) ((-622 . -860) T) ((-664 . -421) 155893) ((-680 . -238) 155872) ((-225 . -626) 155834) ((-110 . -860) T) ((-663 . -21) T) ((-663 . -25) T) ((-1307 . -38) 155804) ((-118 . -294) 155755) ((-1284 . -19) 155739) ((-1284 . -614) 155716) ((-1297 . -1116) T) ((-360 . -1067) 155661) ((-1093 . -1116) T) ((-1003 . -1116) T) ((-977 . -132) T) ((-827 . -235) 155648) ((-747 . -1116) T) ((-360 . -650) 155593) ((-745 . -132) T) ((-725 . -132) T) ((-521 . -803) T) ((-521 . -804) T) ((-463 . -132) T) ((-417 . -1168) 155571) ((-225 . -1065) T) ((-302 . -102) 155353) ((-142 . -1116) T) ((-709 . -1018) T) ((-1121 . -294) 155309) ((-91 . -1234) T) ((-128 . -623) 155241) ((-122 . -623) 155173) ((-1313 . -174) T) ((-1190 . -372) 155152) ((-1184 . -372) 155131) ((-324 . -1116) T) ((-428 . -132) T) ((-321 . -1116) T) ((-417 . -38) 155083) ((-1149 . -102) T) ((-1270 . -727) 154975) ((-664 . -1074) T) ((-1151 . -1279) T) ((-327 . -146) 154954) ((-327 . -148) 154933) ((-140 . -1116) T) ((-137 . -1116) T) ((-115 . -1116) T) ((-868 . -102) T) ((-590 . -623) 154915) ((-574 . -624) 154814) ((-574 . -623) 154796) ((-505 . -623) 154778) ((-505 . -624) 154723) ((-495 . -23) T) ((-492 . -860) 154674) ((-497 . -649) 154656) ((-979 . -623) 154638) ((-1019 . -914) 154590) ((-219 . -649) 154572) ((-227 . -414) T) ((-672 . -658) 154556) ((-55 . -623) 154538) ((-1189 . -934) 154517) ((-741 . -1128) T) ((-360 . -102) T) ((-1233 . -1099) T) ((-1136 . -854) T) ((-828 . -860) T) ((-741 . -23) T) ((-352 . -1072) 154462) ((-1175 . -1174) T) ((-1163 . -107) 154446) ((-1191 . -1128) T) ((-1190 . -1128) T) ((-525 . -1054) 154430) ((-1184 . -1128) T) ((-1142 . -1128) T) ((-352 . -111) 154359) ((-1020 . -1238) T) ((-127 . -1234) T) ((-928 . -1238) T) ((-704 . -294) NIL) ((-724 . -1234) T) ((-1285 . -623) 154341) ((-1191 . -23) T) ((-1190 . -23) T) ((-1184 . -23) T) ((-1158 . -233) 154325) ((-1020 . -566) T) ((-1142 . -23) T) ((-928 . -566) T) ((-1091 . -1116) T) ((-254 . -623) 154307) ((-825 . -238) 154259) ((-809 . -132) T) ((-720 . -623) 154241) ((-324 . -727) 154151) ((-321 . -727) 154080) ((-709 . -623) 154062) ((-709 . -624) 154007) ((-417 . -410) 153991) ((-448 . -1116) T) ((-497 . -25) T) ((-497 . -21) T) ((-1136 . -1116) T) ((-219 . -25) T) ((-219 . -21) T) ((-722 . -421) 153975) ((-724 . -1054) 153944) ((-1284 . -623) 153856) ((-1284 . -624) 153817) ((-1270 . -174) T) ((-1207 . -623) 153799) ((-251 . -34) T) ((-352 . -626) 153729) ((-404 . -626) 153711) ((-940 . -990) T) ((-1220 . -1234) T) ((-672 . -801) 153690) ((-672 . -804) 153669) ((-408 . -405) T) ((-533 . -102) 153647) ((-1051 . -1116) T) ((-417 . -914) 153606) ((-224 . -1011) 153590) ((-514 . -102) T) ((-633 . -623) 153572) ((-45 . -860) NIL) ((-633 . -624) 153549) ((-1051 . -620) 153524) ((-915 . -524) 153457) ((-327 . -238) 153409) ((-352 . -1065) T) ((-118 . -624) NIL) ((-118 . -623) 153391) ((-882 . -1234) T) ((-680 . -427) 153375) ((-680 . -1139) 153320) ((-510 . -152) 153302) ((-352 . -239) T) ((-352 . -249) T) ((-40 . -1072) 153247) ((-882 . -895) 153231) ((-882 . -897) 153156) ((-722 . -1074) T) ((-704 . -1018) NIL) ((-1268 . -47) 153126) ((-1247 . -47) 153103) ((-1157 . -1026) 153074) ((-3 . |UnionCategory|) T) ((-1136 . -727) 153061) ((-1121 . -623) 153043) ((-1096 . -148) 153022) ((-1096 . -146) 152973) ((-980 . -626) 152957) ((-227 . -934) T) ((-40 . -111) 152886) ((-882 . -1054) 152750) ((-1020 . -372) T) ((-1019 . -233) 152727) ((-711 . -1067) 152714) ((-928 . -372) T) ((-711 . -650) 152701) ((-327 . -1222) 152667) ((-388 . -315) T) ((-327 . -1219) 152633) ((-324 . -174) 152612) ((-321 . -174) T) ((-591 . -1303) 152599) ((-528 . -1303) 152576) ((-368 . -148) 152555) ((-117 . -1067) 152542) ((-368 . -146) 152493) ((-362 . -148) 152472) ((-362 . -146) 152423) ((-354 . -148) 152402) ((-618 . -1210) 152378) ((-117 . -650) 152365) ((-354 . -146) 152316) ((-327 . -35) 152282) ((-485 . -1210) 152261) ((0 . |EnumerationCategory|) T) ((-327 . -95) 152227) ((-388 . -1038) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 152177) ((-664 . -1116) T) ((-618 . -107) 152124) ((-495 . -132) T) ((-485 . -107) 152074) ((-246 . -1128) 152024) ((-882 . -386) 152008) ((-882 . -347) 151992) ((-246 . -23) 151882) ((-40 . -626) 151812) ((-1078 . -934) T) ((-1078 . -830) T) ((-591 . -377) T) ((-528 . -377) T) ((-1297 . -524) 151745) ((-1276 . -566) 151724) ((-1269 . -1238) 151703) ((-360 . -1168) T) ((-335 . -34) T) ((-44 . -427) 151687) ((-1198 . -626) 151623) ((-883 . -1234) T) ((-400 . -754) 151607) ((-1269 . -566) 151558) ((-1268 . -1234) T) ((-1158 . -656) 151517) ((-741 . -132) T) ((-682 . -626) 151501) ((-1248 . -1238) 151480) ((-1248 . -566) 151431) ((-1247 . -1234) T) ((-1247 . -897) 151304) ((-1247 . -895) 151274) ((-1191 . -132) T) ((-319 . -1099) T) ((-1190 . -132) T) ((-747 . -524) 151207) ((-1184 . -132) T) ((-1142 . -132) T) ((-904 . -1116) T) ((-145 . -854) T) ((-1040 . -1018) T) ((-701 . -623) 151189) ((-1020 . -23) T) ((-533 . -317) 151127) ((-1020 . -1128) T) ((-142 . -524) NIL) ((-876 . -656) 151072) ((-1019 . -358) NIL) ((-987 . -23) T) ((-928 . -1128) T) ((-360 . -38) 151037) ((-928 . -23) T) ((-882 . -912) 150996) ((-82 . -623) 150978) ((-40 . -1065) T) ((-880 . -1072) 150965) ((-880 . -111) 150950) ((-711 . -102) T) ((-704 . -623) 150932) ((-612 . -1234) T) ((-606 . -566) 150911) ((-437 . -1128) T) ((-348 . -1067) 150895) ((-215 . -1116) T) ((-176 . -1067) 150827) ((-484 . -47) 150797) ((-40 . -239) 150769) ((-40 . -249) T) ((-135 . -102) T) ((-117 . -102) T) ((-605 . -566) 150748) ((-348 . -650) 150732) ((-704 . -624) 150640) ((-324 . -524) 150606) ((-176 . -650) 150538) ((-321 . -524) 150430) ((-497 . -235) 150417) ((-1268 . -1054) 150401) ((-1247 . -1054) 150187) ((-1015 . -421) 150171) ((-219 . -235) 150158) ((-437 . -23) T) ((-1136 . -174) T) ((-1270 . -298) T) ((-664 . -727) 150128) ((-145 . -1116) T) ((-48 . -1018) T) ((-417 . -233) 150112) ((-303 . -241) 150062) ((-881 . -934) T) ((-881 . -830) NIL) ((-880 . -626) 150034) ((-874 . -860) T) ((-1247 . -347) 150004) ((-1247 . -386) 149974) ((-1096 . -238) 149899) ((-224 . -1137) 149883) ((-302 . -914) 149842) ((-1284 . -296) 149819) ((-368 . -238) 149798) ((-362 . -238) 149777) ((-484 . -1234) T) ((-354 . -238) 149756) ((-108 . -238) T) ((-1228 . -658) 149681) ((-1019 . -656) 149611) ((-977 . -21) T) ((-977 . -25) T) ((-745 . -21) T) ((-745 . -25) T) ((-725 . -21) T) ((-725 . -25) T) ((-721 . -658) 149576) ((-463 . -21) T) ((-463 . -25) T) ((-348 . -102) T) ((-176 . -102) T) ((-1015 . -1074) T) ((-880 . -1065) T) ((-784 . -102) T) ((-1269 . -372) 149555) ((-1268 . -912) 149461) ((-1248 . -372) 149440) ((-1247 . -912) 149291) ((-1040 . -623) 149273) ((-417 . -838) 149226) ((-1191 . -503) 149192) ((-171 . -934) 149123) ((-1190 . -503) 149089) ((-1184 . -503) 149055) ((-722 . -1116) T) ((-1142 . -503) 149021) ((-590 . -1072) 149008) ((-574 . -1072) 148995) ((-505 . -1072) 148960) ((-324 . -298) 148939) ((-321 . -298) T) ((-363 . -623) 148921) ((-428 . -25) T) ((-428 . -21) T) ((-99 . -294) 148900) ((-590 . -111) 148885) ((-574 . -111) 148870) ((-505 . -111) 148826) ((-1193 . -897) 148793) ((-915 . -499) 148777) ((-48 . -623) 148759) ((-48 . -624) 148704) ((-246 . -132) 148594) ((-1307 . -656) 148553) ((-1257 . -934) 148532) ((-826 . -1238) 148511) ((-398 . -500) 148492) ((-1051 . -524) 148336) ((-398 . -623) 148302) ((-826 . -566) 148233) ((-596 . -658) 148208) ((-271 . -47) 148180) ((-253 . -47) 148137) ((-541 . -519) 148114) ((-590 . -626) 148086) ((-574 . -626) 148058) ((-505 . -626) 147991) ((-1090 . -1234) T) ((-1016 . -1234) T) ((-1276 . -23) T) ((-1276 . -1128) T) ((-1269 . -1128) T) ((-709 . -1072) 147956) ((-1269 . -23) T) ((-1248 . -1128) T) ((-1248 . -23) T) ((-1228 . -736) T) ((-1136 . -298) T) ((-1019 . -379) 147928) ((-112 . -377) T) ((-484 . -912) 147834) ((-1129 . -238) 147786) ((-918 . -623) 147768) ((-55 . -626) 147750) ((-91 . -107) 147734) ((-1020 . -132) T) ((-919 . -860) 147685) ((-711 . -1168) T) ((-709 . -111) 147641) ((-853 . -656) 147558) ((-606 . -1128) T) ((-605 . -1128) T) ((-722 . -727) 147387) ((-721 . -736) T) ((-987 . -132) T) ((-928 . -132) T) ((-497 . -860) T) ((-809 . -25) T) ((-809 . -21) T) ((-590 . -1065) T) ((-219 . -860) T) ((-417 . -656) 147324) ((-574 . -1065) T) ((-546 . -1234) T) ((-505 . -1065) T) ((-606 . -23) T) ((-352 . -1303) 147301) ((-327 . -462) 147280) ((-348 . -317) 147267) ((-605 . -23) T) ((-437 . -132) T) ((-668 . -658) 147241) ((-251 . -1026) 147225) ((-882 . -315) T) ((-1308 . -1298) 147209) ((-781 . -802) T) ((-781 . -805) T) ((-711 . -38) 147196) ((-574 . -239) T) ((-505 . -249) T) ((-505 . -239) T) ((-1166 . -241) 147146) ((-1103 . -923) 147125) ((-117 . -38) 147112) ((-211 . -810) T) ((-210 . -810) T) ((-209 . -810) T) ((-208 . -810) T) ((-882 . -1038) 147090) ((-1297 . -499) 147074) ((-792 . -923) 147053) ((-790 . -923) 147032) ((-1206 . -1234) T) ((-364 . -1234) 147011) ((-361 . -1234) 146990) ((-353 . -1234) 146969) ((-271 . -1234) T) ((-253 . -1234) T) ((-464 . -923) 146948) ((-747 . -499) 146932) ((-1103 . -658) 146821) ((-709 . -626) 146756) ((-792 . -658) 146645) ((-633 . -1072) 146632) ((-489 . -1234) T) ((-352 . -377) T) ((-142 . -499) 146614) ((-790 . -658) 146503) ((-1157 . -1234) T) ((-559 . -860) T) ((-471 . -658) 146474) ((-271 . -897) 146333) ((-253 . -897) NIL) ((-118 . -1072) 146278) ((-464 . -658) 146167) ((-674 . -1054) 146144) ((-633 . -111) 146129) ((-400 . -1067) 146113) ((-364 . -1054) 146097) ((-361 . -1054) 146081) ((-353 . -1054) 146065) ((-271 . -1054) 145909) ((-253 . -1054) 145785) ((-924 . -1234) T) ((-118 . -111) 145714) ((-59 . -1234) T) ((-400 . -650) 145698) ((-631 . -1067) 145682) ((-529 . -1234) T) ((-526 . -1234) T) ((-507 . -1234) T) ((-506 . -1234) T) ((-447 . -623) 145664) ((-444 . -623) 145646) ((-631 . -650) 145630) ((-3 . -102) T) ((-1043 . -1227) 145599) ((-843 . -102) T) ((-699 . -57) 145557) ((-709 . -1065) T) ((-645 . -656) 145526) ((-617 . -656) 145495) ((-50 . -658) 145469) ((-297 . -462) T) ((-486 . -1227) 145438) ((0 . -102) T) ((-591 . -658) 145403) ((-528 . -658) 145348) ((-49 . -102) T) ((-924 . -1054) 145335) ((-709 . -249) T) ((-1096 . -419) 145314) ((-741 . -649) 145262) ((-1015 . -1116) T) ((-722 . -174) 145153) ((-633 . -626) 145048) ((-497 . -1008) 145030) ((-428 . -235) 145003) ((-271 . -386) 144987) ((-253 . -386) 144971) ((-409 . -1116) T) ((-1042 . -102) 144949) ((-348 . -38) 144933) ((-219 . -1008) 144915) ((-118 . -626) 144845) ((-176 . -38) 144777) ((-1268 . -315) 144756) ((-1247 . -315) 144735) ((-668 . -736) T) ((-99 . -623) 144717) ((-487 . -1067) 144682) ((-1184 . -649) 144634) ((-487 . -650) 144599) ((-495 . -25) T) ((-495 . -21) T) ((-1247 . -1038) 144551) ((-1073 . -1234) T) ((-633 . -1065) T) ((-388 . -414) T) ((-400 . -102) T) ((-1121 . -628) 144466) ((-271 . -912) 144412) ((-253 . -912) 144389) ((-118 . -1065) T) ((-826 . -1128) T) ((-1103 . -736) T) ((-633 . -239) 144368) ((-631 . -102) T) ((-792 . -736) T) ((-790 . -736) T) ((-423 . -1128) T) ((-118 . -249) T) ((-40 . -377) NIL) ((-118 . -239) NIL) ((-1239 . -860) T) ((-464 . -736) T) ((-826 . -23) T) ((-741 . -25) T) ((-741 . -21) T) ((-680 . -907) 144325) ((-1093 . -294) 144304) ((-78 . -406) T) ((-78 . -405) T) ((-543 . -777) 144286) ((-704 . -1072) 144236) ((-1309 . -102) T) ((-1276 . -132) T) ((-1269 . -132) T) ((-1248 . -132) T) ((-1191 . -25) T) ((-1158 . -421) 144220) ((-645 . -376) 144152) ((-617 . -376) 144084) ((-1173 . -1165) 144068) ((-103 . -1116) 144046) ((-1191 . -21) T) ((-1190 . -21) T) ((-875 . -623) 144028) ((-1015 . -727) 143976) ((-225 . -658) 143943) ((-704 . -111) 143877) ((-50 . -736) T) ((-1190 . -25) T) ((-360 . -358) T) ((-1184 . -21) T) ((-1096 . -462) 143828) ((-1184 . -25) T) ((-722 . -524) 143775) ((-591 . -736) T) ((-528 . -736) T) ((-1142 . -21) T) ((-1142 . -25) T) ((-606 . -132) T) ((-605 . -132) T) ((-302 . -656) 143510) ((-492 . -238) 143462) ((-368 . -462) T) ((-362 . -462) T) ((-354 . -462) T) ((-484 . -315) 143441) ((-1242 . -102) T) ((-321 . -294) 143376) ((-108 . -462) T) ((-79 . -451) T) ((-79 . -405) T) ((-487 . -102) T) ((-701 . -626) 143360) ((-1313 . -623) 143342) ((-1313 . -624) 143324) ((-1096 . -412) 143303) ((-1051 . -499) 143234) ((-137 . -294) 143211) ((-574 . -805) T) ((-574 . -802) T) ((-1079 . -241) 143157) ((-368 . -412) 143108) ((-362 . -412) 143059) ((-354 . -412) 143010) ((-1299 . -1128) T) ((-1308 . -1067) 142994) ((-390 . -1067) 142978) ((-1308 . -650) 142948) ((-828 . -238) T) ((-390 . -650) 142918) ((-704 . -626) 142853) ((-1299 . -23) T) ((-1286 . -102) T) ((-348 . -914) 142834) ((-177 . -623) 142816) ((-1158 . -1074) T) ((-557 . -377) T) ((-680 . -754) 142800) ((-1195 . -146) 142779) ((-1195 . -148) 142758) ((-1162 . -1116) T) ((-1162 . -1087) 142727) ((-69 . -1234) T) ((-1040 . -1072) 142664) ((-360 . -656) 142594) ((-876 . -1074) T) ((-246 . -649) 142500) ((-704 . -1065) T) ((-363 . -1072) 142445) ((-61 . -1234) T) ((-1040 . -111) 142361) ((-915 . -623) 142272) ((-704 . -249) T) ((-704 . -239) NIL) ((-853 . -858) 142251) ((-709 . -805) T) ((-709 . -802) T) ((-1019 . -421) 142228) ((-363 . -111) 142157) ((-388 . -934) T) ((-417 . -858) 142136) ((-722 . -298) 142047) ((-225 . -736) T) ((-1276 . -503) 142013) ((-1269 . -503) 141979) ((-1248 . -503) 141945) ((-588 . -1116) T) ((-324 . -1018) 141924) ((-224 . -1116) 141902) ((-1241 . -854) T) ((-327 . -989) 141864) ((-105 . -102) T) ((-48 . -1072) 141829) ((-1308 . -102) T) ((-390 . -102) T) ((-48 . -111) 141785) ((-825 . -907) 141715) ((-1020 . -649) 141697) ((-1270 . -623) 141679) ((-541 . -102) T) ((-510 . -102) T) ((-1149 . -1150) 141663) ((-153 . -1291) 141647) ((-251 . -1234) T) ((-1233 . -102) T) ((-1040 . -626) 141584) ((-827 . -238) T) ((-1189 . -1238) 141563) ((-363 . -626) 141493) ((-1141 . -1238) 141472) ((-246 . -21) 141402) ((-246 . -25) 141273) ((-128 . -120) 141257) ((-122 . -120) 141241) ((-44 . -754) 141225) ((-1189 . -566) 141136) ((-1141 . -566) 141067) ((-1241 . -1116) T) ((-1051 . -294) 141042) ((-1183 . -1099) T) ((-1010 . -1099) T) ((-826 . -132) T) ((-118 . -805) NIL) ((-118 . -802) NIL) ((-364 . -315) T) ((-361 . -315) T) ((-353 . -315) T) ((-258 . -1128) 140992) ((-257 . -1128) 140942) ((-1040 . -1065) T) ((-1019 . -1074) T) ((-48 . -626) 140875) ((-352 . -658) 140820) ((-1297 . -623) 140782) ((-631 . -38) 140766) ((-1297 . -624) 140727) ((-1191 . -235) 140680) ((-1093 . -623) 140662) ((-1040 . -249) T) ((-363 . -1065) T) ((-825 . -1291) 140632) ((-258 . -23) T) ((-257 . -23) T) ((-1003 . -623) 140614) ((-1190 . -235) 140560) ((-1184 . -235) 140441) ((-747 . -624) 140402) ((-747 . -623) 140384) ((-1176 . -152) 140331) ((-809 . -860) 140310) ((-1020 . -25) T) ((-1015 . -524) 140222) ((-363 . -239) T) ((-363 . -249) T) ((-398 . -626) 140203) ((-924 . -315) T) ((-142 . -623) 140185) ((-142 . -624) 140144) ((-327 . -907) 140048) ((-1020 . -21) T) ((-987 . -25) T) ((-928 . -21) T) ((-928 . -25) T) ((-437 . -21) T) ((-437 . -25) T) ((-853 . -421) 140032) ((-48 . -1065) T) ((-1306 . -1298) 140016) ((-1304 . -1298) 140000) ((-1051 . -614) 139975) ((-324 . -624) 139836) ((-324 . -623) 139818) ((-321 . -624) NIL) ((-321 . -623) 139800) ((-48 . -249) T) ((-48 . -239) T) ((-664 . -294) 139761) ((-560 . -241) 139711) ((-140 . -623) 139678) ((-137 . -623) 139660) ((-115 . -623) 139642) ((-487 . -38) 139607) ((-1308 . -1305) 139586) ((-1299 . -132) T) ((-1307 . -1074) T) ((-1098 . -102) T) ((-88 . -1234) T) ((-510 . -317) NIL) ((-1016 . -107) 139570) ((-900 . -1116) T) ((-896 . -1116) T) ((-1284 . -661) 139554) ((-1284 . -382) 139538) ((-335 . -1234) T) ((-603 . -860) T) ((-1158 . -1116) T) ((-1158 . -1069) 139478) ((-103 . -524) 139411) ((-941 . -623) 139393) ((-352 . -736) T) ((-30 . -623) 139375) ((-876 . -1116) T) ((-853 . -1074) 139354) ((-40 . -658) 139261) ((-227 . -1238) T) ((-417 . -1074) T) ((-1175 . -152) 139243) ((-1015 . -298) 139194) ((-627 . -1116) T) ((-227 . -566) T) ((-327 . -1265) 139178) ((-327 . -1262) 139148) ((-711 . -656) 139120) ((-1206 . -1210) 139099) ((-1091 . -623) 139081) ((-1206 . -107) 139031) ((-657 . -152) 139015) ((-642 . -152) 138961) ((-117 . -656) 138933) ((-489 . -1210) 138912) ((-497 . -148) T) ((-497 . -146) NIL) ((-1136 . -624) 138827) ((-448 . -623) 138809) ((-219 . -148) T) ((-219 . -146) NIL) ((-1136 . -623) 138791) ((-130 . -102) T) ((-52 . -102) T) ((-1248 . -649) 138743) ((-489 . -107) 138693) ((-1009 . -23) T) ((-1308 . -38) 138663) ((-1189 . -1128) T) ((-1141 . -1128) T) ((-1078 . -1238) T) ((-246 . -235) 138609) ((-319 . -102) T) ((-864 . -1128) T) ((-966 . -1238) 138588) ((-491 . -1238) 138567) ((-1078 . -566) T) ((-966 . -566) 138498) ((-1189 . -23) T) ((-1167 . -1099) T) ((-1141 . -23) T) ((-864 . -23) T) ((-491 . -566) 138429) ((-1158 . -727) 138361) ((-680 . -1067) 138345) ((-1162 . -524) 138278) ((-680 . -650) 138262) ((-1051 . -624) NIL) ((-1051 . -623) 138244) ((-96 . -1099) T) ((-1313 . -1072) 138231) ((-876 . -727) 138201) ((-1313 . -111) 138186) ((-1228 . -47) 138155) ((-1184 . -860) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1120 . -1116) T) ((-1019 . -1116) T) ((-62 . -623) 138137) ((-1096 . -907) 138068) ((-1040 . -802) T) ((-1040 . -805) T) ((-1276 . -25) T) ((-1276 . -21) T) ((-1269 . -21) T) ((-1269 . -25) T) ((-880 . -658) 138055) ((-1248 . -21) T) ((-1248 . -25) T) ((-1043 . -152) 138039) ((-1020 . -235) 138026) ((-882 . -830) 138005) ((-882 . -934) T) ((-722 . -294) 137932) ((-606 . -21) T) ((-348 . -656) 137891) ((-108 . -907) NIL) ((-606 . -25) T) ((-605 . -21) T) ((-176 . -656) 137808) ((-40 . -736) T) ((-224 . -524) 137741) ((-605 . -25) T) ((-486 . -152) 137725) ((-473 . -152) 137709) ((-935 . -804) T) ((-935 . -736) T) ((-781 . -803) T) ((-781 . -804) T) ((-516 . -1116) T) ((-512 . -1116) T) ((-781 . -736) T) ((-227 . -372) T) ((-1306 . -1067) 137693) ((-1304 . -1067) 137677) ((-1306 . -650) 137647) ((-1173 . -1116) 137625) ((-881 . -1238) T) ((-1304 . -650) 137595) ((-664 . -623) 137577) ((-881 . -566) T) ((-704 . -377) NIL) ((-44 . -1067) 137561) ((-1313 . -626) 137543) ((-1307 . -1116) T) ((-680 . -102) T) ((-368 . -1291) 137527) ((-362 . -1291) 137511) ((-44 . -650) 137495) ((-354 . -1291) 137479) ((-558 . -102) T) ((-1228 . -1234) T) ((-530 . -860) 137458) ((-497 . -238) T) ((-219 . -238) T) ((-1062 . -1116) T) ((-827 . -462) 137437) ((-153 . -1067) 137421) ((-1062 . -1087) 137350) ((-1043 . -992) 137319) ((-829 . -1128) T) ((-1019 . -727) 137264) ((-153 . -650) 137248) ((-396 . -1128) T) ((-486 . -992) 137217) ((-473 . -992) 137186) ((-110 . -152) 137168) ((-73 . -623) 137150) ((-904 . -623) 137132) ((-1096 . -734) 137111) ((-1313 . -1065) T) ((-826 . -649) 137059) ((-302 . -1074) 137001) ((-171 . -1238) 136906) ((-227 . -1128) T) ((-332 . -23) T) ((-1184 . -1008) 136858) ((-853 . -1116) T) ((-1270 . -1072) 136763) ((-1142 . -750) 136742) ((-1268 . -934) 136721) ((-1247 . -934) 136700) ((-880 . -736) T) ((-171 . -566) 136611) ((-590 . -658) 136598) ((-574 . -658) 136570) ((-417 . -1116) T) ((-270 . -1116) T) ((-215 . -623) 136552) ((-505 . -658) 136502) ((-227 . -23) T) ((-1247 . -830) 136455) ((-1306 . -102) T) ((-363 . -1303) 136432) ((-1304 . -102) T) ((-1270 . -111) 136324) ((-1129 . -907) 136254) ((-825 . -1067) 136131) ((-825 . -650) 136053) ((-145 . -623) 136035) ((-1009 . -132) T) ((-44 . -102) T) ((-246 . -860) 135986) ((-1257 . -1238) 135965) ((-103 . -499) 135949) ((-1307 . -727) 135919) ((-1103 . -47) 135880) ((-1078 . -1128) T) ((-966 . -1128) T) ((-128 . -34) T) ((-122 . -34) T) ((-792 . -47) 135857) ((-790 . -47) 135829) ((-1257 . -566) 135740) ((-363 . -377) T) ((-491 . -1128) T) ((-1189 . -132) T) ((-1141 . -132) T) ((-464 . -47) 135719) ((-881 . -372) T) ((-864 . -132) T) ((-153 . -102) T) ((-1078 . -23) T) ((-966 . -23) T) ((-581 . -566) T) ((-826 . -25) T) ((-826 . -21) T) ((-1158 . -524) 135652) ((-602 . -1099) T) ((-596 . -1054) 135636) ((-1270 . -626) 135510) ((-491 . -23) T) ((-360 . -1074) T) ((-1228 . -912) 135491) ((-680 . -317) 135429) ((-1129 . -1291) 135399) ((-709 . -658) 135364) ((-1020 . -860) T) ((-1019 . -174) T) ((-977 . -146) 135343) ((-645 . -1116) T) ((-617 . -1116) T) ((-977 . -148) 135322) ((-745 . -148) 135301) ((-745 . -146) 135280) ((-668 . -1234) T) ((-987 . -860) T) ((-1276 . -235) 135233) ((-1269 . -235) 135179) ((-1248 . -235) 135060) ((-843 . -656) 134977) ((-484 . -934) 134956) ((-327 . -1067) 134791) ((-324 . -1072) 134701) ((-321 . -1072) 134630) ((-1015 . -294) 134588) ((-417 . -727) 134540) ((-327 . -650) 134381) ((-605 . -235) 134334) ((-711 . -858) T) ((-1270 . -1065) T) ((-324 . -111) 134230) ((-321 . -111) 134143) ((-978 . -102) T) ((-825 . -102) 133933) ((-722 . -624) NIL) ((-722 . -623) 133915) ((-1270 . -334) 133859) ((-668 . -1054) 133755) ((-1103 . -1234) T) ((-1051 . -296) 133730) ((-590 . -736) T) ((-574 . -804) T) ((-171 . -372) 133681) ((-574 . -801) T) ((-574 . -736) T) ((-505 . -736) T) ((-792 . -1234) T) ((-790 . -1234) T) ((-1162 . -499) 133665) ((-464 . -1234) T) ((-1103 . -897) NIL) ((-881 . -1128) T) ((-118 . -923) NIL) ((-1306 . -1305) 133641) ((-1304 . -1305) 133620) ((-792 . -897) NIL) ((-790 . -897) 133479) ((-1299 . -25) T) ((-1299 . -21) T) ((-1231 . -102) 133457) ((-1122 . -405) T) ((-633 . -658) 133444) ((-464 . -897) NIL) ((-685 . -102) 133422) ((-1103 . -1054) 133249) ((-881 . -23) T) ((-792 . -1054) 133108) ((-790 . -1054) 132965) ((-118 . -658) 132910) ((-464 . -1054) 132786) ((-324 . -626) 132350) ((-321 . -626) 132233) ((-400 . -656) 132202) ((-659 . -1054) 132186) ((-591 . -1234) T) ((-637 . -102) T) ((-528 . -1234) T) ((-224 . -499) 132170) ((-1284 . -34) T) ((-631 . -656) 132129) ((-297 . -1067) 132116) ((-137 . -626) 132100) ((-297 . -650) 132087) ((-645 . -727) 132071) ((-617 . -727) 132055) ((-680 . -38) 132015) ((-327 . -102) T) ((-85 . -623) 131997) ((-50 . -1054) 131981) ((-1136 . -1072) 131968) ((-1103 . -386) 131952) ((-792 . -386) 131936) ((-709 . -736) T) ((-709 . -804) T) ((-709 . -801) T) ((-591 . -1054) 131923) ((-528 . -1054) 131900) ((-60 . -57) 131862) ((-332 . -132) T) ((-324 . -1065) 131752) ((-321 . -1065) T) ((-171 . -1128) T) ((-790 . -386) 131736) ((-45 . -152) 131686) ((-1020 . -1008) 131668) ((-464 . -386) 131652) ((-417 . -174) T) ((-324 . -249) 131631) ((-321 . -249) T) ((-321 . -239) NIL) ((-302 . -1116) 131413) ((-227 . -132) T) ((-1136 . -111) 131398) ((-171 . -23) T) ((-809 . -148) 131377) ((-809 . -146) 131356) ((-258 . -649) 131262) ((-257 . -649) 131168) ((-327 . -292) 131134) ((-1173 . -524) 131067) ((-487 . -656) 131017) ((-492 . -907) 130947) ((-1149 . -1116) T) ((-227 . -1076) T) ((-825 . -317) 130885) ((-1103 . -912) 130820) ((-792 . -912) 130763) ((-790 . -912) 130747) ((-1306 . -38) 130717) ((-1304 . -38) 130687) ((-1257 . -1128) T) ((-865 . -1128) T) ((-464 . -912) 130664) ((-868 . -1116) T) ((-1257 . -23) T) ((-1136 . -626) 130636) ((-1078 . -132) T) ((-581 . -1128) T) ((-865 . -23) T) ((-633 . -736) T) ((-364 . -934) T) ((-361 . -934) T) ((-297 . -102) T) ((-353 . -934) T) ((-986 . -1099) T) ((-966 . -132) T) ((-826 . -235) 130609) ((-118 . -804) NIL) ((-118 . -801) NIL) ((-118 . -736) T) ((-1062 . -524) 130510) ((-704 . -923) NIL) ((-581 . -23) T) ((-491 . -132) T) ((-428 . -238) 130489) ((-685 . -317) 130427) ((-645 . -771) T) ((-617 . -771) T) ((-1248 . -860) NIL) ((-1096 . -1067) 130337) ((-1019 . -298) T) ((-704 . -658) 130287) ((-258 . -21) T) ((-360 . -1116) T) ((-258 . -25) T) ((-257 . -21) T) ((-257 . -25) T) ((-153 . -38) 130271) ((-2 . -102) T) ((-924 . -934) T) ((-1096 . -650) 130139) ((-492 . -1291) 130109) ((-1136 . -1065) T) ((-721 . -315) T) ((-368 . -1067) 130061) ((-362 . -1067) 130013) ((-354 . -1067) 129965) ((-368 . -650) 129917) ((-225 . -1054) 129894) ((-362 . -650) 129846) ((-108 . -1067) 129796) ((-354 . -650) 129748) ((-302 . -727) 129690) ((-711 . -1074) T) ((-497 . -462) T) ((-417 . -524) 129602) ((-108 . -650) 129552) ((-219 . -462) T) ((-1136 . -239) T) ((-303 . -152) 129502) ((-1015 . -624) 129463) ((-1015 . -623) 129445) ((-1005 . -623) 129427) ((-117 . -1074) T) ((-664 . -1072) 129411) ((-227 . -503) T) ((-409 . -623) 129393) ((-409 . -624) 129370) ((-1070 . -1291) 129340) ((-664 . -111) 129319) ((-680 . -914) 129278) ((-1158 . -499) 129262) ((-1308 . -656) 129221) ((-390 . -656) 129190) ((-825 . -38) 129160) ((-63 . -451) T) ((-63 . -405) T) ((-1176 . -102) T) ((-881 . -132) T) ((-494 . -102) 129138) ((-1313 . -377) T) ((-1096 . -102) T) ((-1077 . -102) T) ((-360 . -727) 129083) ((-741 . -148) 129062) ((-741 . -146) 129041) ((-664 . -626) 128959) ((-1040 . -658) 128896) ((-533 . -1116) 128874) ((-368 . -102) T) ((-362 . -102) T) ((-354 . -102) T) ((-108 . -102) T) ((-514 . -1116) T) ((-363 . -658) 128819) ((-1189 . -649) 128767) ((-1141 . -649) 128715) ((-394 . -519) 128694) ((-843 . -858) 128673) ((-388 . -1238) T) ((-704 . -736) T) ((-1248 . -1008) 128625) ((-348 . -1074) T) ((-112 . -1234) T) ((-176 . -1074) T) ((-103 . -623) 128557) ((-1191 . -146) 128536) ((-1191 . -148) 128515) ((-388 . -566) T) ((-1190 . -148) 128494) ((-1190 . -146) 128473) ((-1184 . -146) 128380) ((-417 . -298) T) ((-1184 . -148) 128287) ((-1142 . -148) 128266) ((-1142 . -146) 128245) ((-327 . -38) 128086) ((-171 . -132) T) ((-321 . -805) NIL) ((-321 . -802) NIL) ((-664 . -1065) T) ((-48 . -658) 128036) ((-1129 . -1067) 127913) ((-904 . -626) 127890) ((-1129 . -650) 127812) ((-1183 . -102) T) ((-1010 . -102) T) ((-1009 . -21) T) ((-128 . -1026) 127796) ((-122 . -1026) 127780) ((-1009 . -25) T) ((-915 . -120) 127764) ((-1175 . -102) T) ((-1257 . -132) T) ((-1189 . -25) T) ((-352 . -1234) T) ((-1189 . -21) T) ((-865 . -132) T) ((-1141 . -25) T) ((-1141 . -21) T) ((-864 . -25) T) ((-864 . -21) T) ((-792 . -315) 127743) ((-1176 . -317) 127538) ((-1173 . -499) 127522) ((-1166 . -152) 127472) ((-657 . -102) 127450) ((-642 . -102) T) ((-1162 . -623) 127412) ((-581 . -132) T) ((-631 . -858) 127391) ((-1162 . -624) 127352) ((-1040 . -801) T) ((-1040 . -804) T) ((-1040 . -736) T) ((-825 . -914) 127284) ((-722 . -1072) 127107) ((-494 . -317) 127045) ((-463 . -427) 127015) ((-360 . -174) T) ((-297 . -38) 127002) ((-258 . -235) 126948) ((-257 . -235) 126894) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-276 . -102) T) ((-352 . -1054) 126871) ((-275 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-363 . -736) T) ((-722 . -111) 126680) ((-680 . -233) 126664) ((-591 . -315) T) ((-528 . -315) T) ((-302 . -524) 126613) ((-108 . -317) NIL) ((-72 . -405) T) ((-1129 . -102) 126403) ((-843 . -421) 126387) ((-1136 . -805) T) ((-1136 . -802) T) ((-711 . -1116) T) ((-588 . -623) 126369) ((-388 . -372) T) ((-171 . -503) 126347) ((-224 . -623) 126279) ((-135 . -1116) T) ((-117 . -1116) T) ((-980 . -1234) T) ((-48 . -736) T) ((-1062 . -499) 126244) ((-142 . -435) 126226) ((-142 . -377) T) ((-1043 . -102) T) ((-522 . -519) 126205) ((-722 . -626) 125961) ((-1191 . -238) 125920) ((-486 . -102) T) ((-473 . -102) T) ((-1190 . -238) 125872) ((-1184 . -238) 125759) ((-1050 . -1128) T) ((-327 . -914) 125665) ((-1241 . -623) 125647) ((-1198 . -1054) 125583) ((-1191 . -35) 125549) ((-1191 . -95) 125515) ((-1191 . -1222) 125481) ((-1191 . -1219) 125447) ((-1190 . -1219) 125413) ((-1190 . -1222) 125379) ((-1175 . -317) NIL) ((-89 . -406) T) ((-89 . -405) T) ((-1096 . -1168) 125358) ((-40 . -1234) 125287) ((-1190 . -95) 125253) ((-1050 . -23) T) ((-1190 . -35) 125219) ((-581 . -503) T) ((-1184 . -1219) 125185) ((-1184 . -1222) 125151) ((-1184 . -95) 125117) ((-1184 . -35) 125083) ((-370 . -1128) T) ((-368 . -1168) 125062) ((-362 . -1168) 125041) ((-354 . -1168) 125020) ((-1120 . -294) 124976) ((-1142 . -35) 124942) ((-1142 . -95) 124908) ((-108 . -1168) T) ((-1142 . -1222) 124874) ((-843 . -1074) 124853) ((-657 . -317) 124791) ((-642 . -317) 124642) ((-1142 . -1219) 124608) ((-722 . -1065) T) ((-1078 . -649) 124590) ((-1096 . -38) 124458) ((-966 . -649) 124406) ((-1020 . -148) T) ((-1020 . -146) NIL) ((-388 . -1128) T) ((-332 . -25) T) ((-330 . -23) T) ((-957 . -860) 124385) ((-722 . -334) 124362) ((-491 . -649) 124310) ((-40 . -1054) 124198) ((-722 . -239) T) ((-711 . -727) 124185) ((-348 . -1116) T) ((-176 . -1116) T) ((-339 . -860) T) ((-428 . -462) 124135) ((-388 . -23) T) ((-368 . -38) 124100) ((-362 . -38) 124065) ((-354 . -38) 124030) ((-80 . -451) T) ((-80 . -405) T) ((-227 . -25) T) ((-227 . -21) T) ((-846 . -1128) T) ((-108 . -38) 123980) ((-837 . -1128) T) ((-784 . -1116) T) ((-117 . -727) 123967) ((-682 . -1054) 123951) ((-622 . -102) T) ((-846 . -23) T) ((-837 . -23) T) ((-1173 . -294) 123903) ((-1129 . -317) 123841) ((-492 . -1067) 123718) ((-1118 . -241) 123702) ((-64 . -406) T) ((-64 . -405) T) ((-1167 . -102) T) ((-110 . -102) T) ((-492 . -650) 123624) ((-40 . -386) 123601) ((-96 . -102) T) ((-663 . -862) 123585) ((-1189 . -235) 123572) ((-1151 . -1099) T) ((-1078 . -21) T) ((-1078 . -25) T) ((-1070 . -1067) 123556) ((-825 . -233) 123525) ((-966 . -25) T) ((-966 . -21) T) ((-1070 . -650) 123467) ((-631 . -1074) T) ((-1136 . -377) T) ((-1043 . -317) 123405) ((-680 . -656) 123364) ((-491 . -25) T) ((-491 . -21) T) ((-394 . -1067) 123348) ((-900 . -623) 123330) ((-896 . -623) 123312) ((-533 . -524) 123245) ((-258 . -860) 123196) ((-257 . -860) 123147) ((-394 . -650) 123117) ((-881 . -649) 123094) ((-486 . -317) 123032) ((-473 . -317) 122970) ((-360 . -298) T) ((-1173 . -1272) 122954) ((-1158 . -623) 122916) ((-1158 . -624) 122877) ((-1156 . -102) T) ((-1015 . -1072) 122773) ((-40 . -912) 122725) ((-1173 . -614) 122702) ((-1313 . -658) 122689) ((-1079 . -152) 122635) ((-497 . -907) NIL) ((-876 . -500) 122612) ((-1015 . -111) 122494) ((-882 . -1238) T) ((-219 . -907) NIL) ((-348 . -727) 122478) ((-876 . -623) 122440) ((-176 . -727) 122372) ((-882 . -566) T) ((-417 . -294) 122330) ((-246 . -238) 122282) ((-108 . -410) 122264) ((-84 . -393) T) ((-84 . -405) T) ((-711 . -174) T) ((-627 . -623) 122246) ((-99 . -736) T) ((-492 . -102) 122036) ((-99 . -483) T) ((-117 . -174) T) ((-1306 . -656) 121995) ((-1304 . -656) 121954) ((-1129 . -38) 121924) ((-171 . -649) 121872) ((-1096 . -914) 121805) ((-1070 . -102) T) ((-1015 . -626) 121695) ((-881 . -25) T) ((-825 . -244) 121674) ((-881 . -21) T) ((-828 . -102) T) ((-44 . -656) 121617) ((-1020 . -238) T) ((-424 . -102) T) ((-394 . -102) T) ((-110 . -317) NIL) ((-229 . -102) 121595) ((-128 . -1234) T) ((-122 . -1234) T) ((-108 . -914) NIL) ((-827 . -1067) 121546) ((-827 . -650) 121488) ((-1050 . -132) T) ((-680 . -376) 121472) ((-153 . -656) 121431) ((-645 . -294) 121389) ((-617 . -294) 121347) ((-1313 . -736) T) ((-1015 . -1065) T) ((-1257 . -649) 121295) ((-1120 . -623) 121277) ((-1019 . -623) 121259) ((-574 . -1234) T) ((-505 . -1234) T) ((-525 . -23) T) ((-520 . -23) T) ((-352 . -315) T) ((-518 . -23) T) ((-330 . -132) T) ((-3 . -1116) T) ((-1019 . -624) 121243) ((-1015 . -249) 121222) ((-1015 . -239) 121201) ((-1276 . -146) 121180) ((-1276 . -148) 121159) ((-843 . -1116) T) ((-1269 . -148) 121138) ((-1269 . -146) 121117) ((-1268 . -1238) 121096) ((-1248 . -146) 121003) ((-1248 . -148) 120910) ((-1247 . -1238) 120889) ((-388 . -132) T) ((-227 . -235) 120876) ((-574 . -897) 120858) ((0 . -1116) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1116) T) ((-1270 . -658) 120763) ((-1268 . -566) 120714) ((-724 . -1128) T) ((-1247 . -566) 120665) ((-574 . -1054) 120647) ((-605 . -148) 120626) ((-605 . -146) 120605) ((-505 . -1054) 120548) ((-1151 . -1153) T) ((-87 . -393) T) ((-87 . -405) T) ((-882 . -372) T) ((-846 . -132) T) ((-837 . -132) T) ((-978 . -656) 120492) ((-724 . -23) T) ((-516 . -623) 120458) ((-512 . -623) 120440) ((-825 . -656) 120210) ((-1308 . -1074) T) ((-388 . -1076) T) ((-1042 . -1116) 120188) ((-55 . -1054) 120170) ((-915 . -34) T) ((-492 . -317) 120108) ((-602 . -102) T) ((-1173 . -624) 120069) ((-1173 . -623) 120001) ((-1195 . -1067) 119884) ((-45 . -102) T) ((-827 . -102) T) ((-1195 . -650) 119781) ((-1257 . -25) T) ((-1257 . -21) T) ((-1078 . -235) 119768) ((-865 . -25) T) ((-44 . -376) 119752) ((-865 . -21) T) ((-741 . -462) 119703) ((-1307 . -623) 119685) ((-1296 . -1067) 119655) ((-1070 . -317) 119593) ((-681 . -1099) T) ((-616 . -1099) T) ((-400 . -1116) T) ((-581 . -25) T) ((-581 . -21) T) ((-182 . -1099) T) ((-162 . -1099) T) ((-157 . -1099) T) ((-155 . -1099) T) ((-1296 . -650) 119563) ((-631 . -1116) T) ((-709 . -897) 119545) ((-1284 . -1234) T) ((-229 . -317) 119483) ((-145 . -377) T) ((-1062 . -624) 119425) ((-1062 . -623) 119368) ((-321 . -923) NIL) ((-1242 . -854) T) ((-1129 . -914) 119300) ((-709 . -1054) 119245) ((-721 . -934) T) ((-484 . -1238) 119224) ((-1190 . -462) 119203) ((-1184 . -462) 119182) ((-338 . -102) T) ((-882 . -1128) T) ((-327 . -656) 119064) ((-324 . -658) 118793) ((-321 . -658) 118722) ((-484 . -566) 118673) ((-348 . -524) 118639) ((-560 . -152) 118589) ((-40 . -315) T) ((-853 . -623) 118571) ((-711 . -298) T) ((-882 . -23) T) ((-388 . -503) T) ((-1096 . -233) 118541) ((-522 . -102) T) ((-417 . -624) 118348) ((-417 . -623) 118330) ((-270 . -623) 118312) ((-117 . -298) T) ((-1270 . -736) T) ((-633 . -1234) 118255) ((-1309 . -1116) T) ((-1268 . -372) 118234) ((-1247 . -372) 118213) ((-1297 . -34) T) ((-1242 . -1116) T) ((-118 . -1234) T) ((-108 . -233) 118195) ((-1195 . -102) T) ((-487 . -1116) T) ((-533 . -499) 118179) ((-747 . -34) T) ((-663 . -1067) 118163) ((-492 . -38) 118133) ((-663 . -650) 118103) ((-881 . -235) NIL) ((-142 . -34) T) ((-118 . -895) 118080) ((-118 . -897) NIL) ((-633 . -1054) 117963) ((-1296 . -102) T) ((-1276 . -238) 117922) ((-654 . -860) 117901) ((-1269 . -238) 117853) ((-1248 . -238) 117740) ((-303 . -102) T) ((-722 . -377) 117719) ((-118 . -1054) 117696) ((-400 . -727) 117680) ((-605 . -238) 117639) ((-631 . -727) 117623) ((-1121 . -1234) T) ((-45 . -317) 117427) ((-826 . -146) 117406) ((-826 . -148) 117385) ((-297 . -656) 117357) ((-1307 . -391) 117336) ((-829 . -860) T) ((-1286 . -1116) T) ((-1176 . -231) 117283) ((-396 . -860) 117262) ((-1276 . -35) 117228) ((-1276 . -1222) 117194) ((-1276 . -1219) 117160) ((-1269 . -1219) 117126) ((-525 . -132) T) ((-1269 . -1222) 117092) ((-1248 . -1219) 117058) ((-1248 . -1222) 117024) ((-1276 . -95) 116990) ((-1269 . -95) 116956) ((-428 . -907) 116913) ((-645 . -623) 116882) ((-617 . -623) 116851) ((-227 . -860) T) ((-1269 . -35) 116817) ((-1268 . -1128) T) ((-1248 . -95) 116783) ((-1136 . -658) 116755) ((-1248 . -35) 116721) ((-1247 . -1128) T) ((-603 . -152) 116703) ((-1096 . -358) 116682) ((-176 . -298) T) ((-118 . -386) 116659) ((-118 . -347) 116636) ((-171 . -235) 116581) ((-880 . -315) T) ((-321 . -804) NIL) ((-321 . -801) NIL) ((-324 . -736) 116430) ((-321 . -736) T) ((-484 . -372) 116409) ((-368 . -358) 116388) ((-362 . -358) 116367) ((-354 . -358) 116346) ((-324 . -483) 116325) ((-1268 . -23) T) ((-1247 . -23) T) ((-728 . -1128) T) ((-724 . -132) T) ((-663 . -102) T) ((-487 . -727) 116290) ((-45 . -290) 116240) ((-105 . -1116) T) ((-68 . -623) 116222) ((-986 . -102) T) ((-874 . -102) T) ((-633 . -912) 116181) ((-1308 . -1116) T) ((-390 . -1116) T) ((-1257 . -235) 116168) ((-82 . -1234) T) ((-1233 . -1116) T) ((-1078 . -860) T) ((-118 . -912) NIL) ((-792 . -934) 116147) ((-723 . -860) T) ((-541 . -1116) T) ((-510 . -1116) T) ((-364 . -1238) T) ((-361 . -1238) T) ((-353 . -1238) T) ((-271 . -1238) 116126) ((-253 . -1238) 116105) ((-543 . -870) T) ((-1129 . -233) 116074) ((-1175 . -838) T) ((-1158 . -1072) 116058) ((-400 . -771) T) ((-704 . -1234) T) ((-701 . -1054) 116042) ((-364 . -566) T) ((-361 . -566) T) ((-353 . -566) T) ((-271 . -566) 115973) ((-253 . -566) 115904) ((-535 . -1099) T) ((-1158 . -111) 115883) ((-463 . -754) 115853) ((-876 . -1072) 115823) ((-827 . -38) 115765) ((-704 . -895) 115747) ((-704 . -897) 115729) ((-303 . -317) 115533) ((-1173 . -296) 115510) ((-924 . -1238) T) ((-1096 . -656) 115405) ((-1020 . -462) T) ((-680 . -421) 115389) ((-876 . -111) 115354) ((-928 . -462) T) ((-704 . -1054) 115299) ((-924 . -566) T) ((-543 . -623) 115281) ((-591 . -934) T) ((-497 . -1067) 115231) ((-484 . -1128) T) ((-528 . -934) T) ((-492 . -914) 115163) ((-65 . -623) 115145) ((-219 . -1067) 115095) ((-497 . -650) 115045) ((-368 . -656) 114982) ((-362 . -656) 114919) ((-354 . -656) 114856) ((-642 . -231) 114802) ((-219 . -650) 114752) ((-108 . -656) 114702) ((-484 . -23) T) ((-1136 . -804) T) ((-882 . -132) T) ((-1136 . -801) T) ((-1299 . -1301) 114681) ((-1136 . -736) T) ((-664 . -658) 114655) ((-302 . -623) 114396) ((-1158 . -626) 114314) ((-1051 . -34) T) ((-826 . -238) 114293) ((-590 . -315) T) ((-574 . -315) T) ((-505 . -315) T) ((-1308 . -727) 114263) ((-704 . -386) 114245) ((-704 . -347) 114227) ((-487 . -174) T) ((-390 . -727) 114197) ((-876 . -626) 114132) ((-881 . -860) NIL) ((-574 . -1038) T) ((-505 . -1038) T) ((-1149 . -623) 114114) ((-1129 . -244) 114093) ((-216 . -102) T) ((-1166 . -102) T) ((-71 . -623) 114075) ((-1158 . -1065) T) ((-1195 . -38) 113972) ((-868 . -623) 113954) ((-574 . -555) T) ((-680 . -1074) T) ((-741 . -963) 113907) ((-363 . -1234) T) ((-1158 . -239) 113886) ((-1098 . -1116) T) ((-1050 . -25) T) ((-1050 . -21) T) ((-1019 . -1072) 113831) ((-919 . -102) T) ((-876 . -1065) T) ((-704 . -912) NIL) ((-364 . -337) 113815) ((-364 . -372) T) ((-361 . -337) 113799) ((-361 . -372) T) ((-353 . -337) 113783) ((-353 . -372) T) ((-497 . -102) T) ((-1296 . -38) 113753) ((-556 . -860) T) ((-533 . -697) 113703) ((-219 . -102) T) ((-1040 . -1054) 113583) ((-1019 . -111) 113512) ((-1191 . -989) 113481) ((-1190 . -989) 113443) ((-530 . -152) 113427) ((-1096 . -379) 113406) ((-360 . -623) 113388) ((-330 . -21) T) ((-363 . -1054) 113365) ((-330 . -25) T) ((-1184 . -989) 113334) ((-48 . -1234) T) ((-76 . -623) 113316) ((-1142 . -989) 113283) ((-709 . -315) T) ((-130 . -854) T) ((-924 . -372) T) ((-388 . -25) T) ((-388 . -21) T) ((-924 . -337) 113270) ((-86 . -623) 113252) ((-709 . -1038) T) ((-687 . -860) T) ((-1268 . -132) T) ((-1247 . -132) T) ((-915 . -1026) 113236) ((-846 . -21) T) ((-48 . -1054) 113179) ((-846 . -25) T) ((-837 . -25) T) ((-837 . -21) T) ((-1129 . -656) 112949) ((-1306 . -1074) T) ((-559 . -102) T) ((-1304 . -1074) T) ((-664 . -736) T) ((-1120 . -628) 112852) ((-1019 . -626) 112782) ((-1307 . -1072) 112766) ((-825 . -421) 112735) ((-103 . -120) 112719) ((-130 . -1116) T) ((-52 . -1116) T) ((-940 . -623) 112701) ((-881 . -1008) 112678) ((-833 . -102) T) ((-1307 . -111) 112657) ((-741 . -907) 112632) ((-663 . -38) 112602) ((-581 . -860) T) ((-364 . -1128) T) ((-361 . -1128) T) ((-353 . -1128) T) ((-271 . -1128) T) ((-253 . -1128) T) ((-1166 . -317) 112406) ((-633 . -315) 112385) ((-1104 . -235) 112372) ((-674 . -23) T) ((-534 . -1099) T) ((-319 . -1116) T) ((-492 . -233) 112341) ((-153 . -1074) T) ((-364 . -23) T) ((-361 . -23) T) ((-353 . -23) T) ((-118 . -315) T) ((-271 . -23) T) ((-253 . -23) T) ((-1019 . -1065) T) ((-722 . -923) 112320) ((-1191 . -907) 112231) ((-1190 . -907) 112135) ((-1184 . -907) 111966) ((-1173 . -626) 111943) ((-1019 . -239) 111915) ((-1019 . -249) T) ((-1142 . -907) 111897) ((-118 . -1038) NIL) ((-924 . -1128) T) ((-1269 . -462) 111876) ((-1248 . -462) 111855) ((-533 . -623) 111787) ((-722 . -658) 111676) ((-417 . -1072) 111628) ((-514 . -623) 111610) ((-924 . -23) T) ((-497 . -317) NIL) ((-1307 . -626) 111566) ((-484 . -132) T) ((-219 . -317) NIL) ((-417 . -111) 111504) ((-825 . -1074) 111454) ((-747 . -1114) 111438) ((-1268 . -503) 111404) ((-1247 . -503) 111370) ((-558 . -854) T) ((-142 . -1114) 111352) ((-487 . -298) T) ((-1307 . -1065) T) ((-258 . -238) 111304) ((-257 . -238) 111256) ((-1239 . -102) T) ((-1079 . -102) T) ((-853 . -626) 111124) ((-510 . -524) NIL) ((-492 . -244) 111103) ((-417 . -626) 111001) ((-977 . -1067) 110884) ((-745 . -1067) 110854) ((-977 . -650) 110751) ((-1189 . -146) 110730) ((-745 . -650) 110700) ((-463 . -1067) 110670) ((-1189 . -148) 110649) ((-1141 . -148) 110628) ((-1141 . -146) 110607) ((-645 . -1072) 110591) ((-617 . -1072) 110575) ((-463 . -650) 110545) ((-1191 . -1275) 110529) ((-1191 . -1262) 110506) ((-1190 . -1267) 110467) ((-680 . -1116) T) ((-680 . -1069) 110407) ((-1190 . -1262) 110377) ((-558 . -1116) T) ((-497 . -1168) T) ((-1190 . -1265) 110361) ((-1184 . -1246) 110322) ((-828 . -273) 110306) ((-219 . -1168) T) ((-352 . -934) T) ((-99 . -1234) T) ((-645 . -111) 110285) ((-617 . -111) 110264) ((-1184 . -1262) 110241) ((-853 . -1065) 110220) ((-1184 . -1244) 110204) ((-525 . -25) T) ((-505 . -310) T) ((-521 . -23) T) ((-520 . -25) T) ((-518 . -25) T) ((-517 . -23) T) ((-428 . -1067) 110178) ((-417 . -1065) T) ((-327 . -1074) T) ((-704 . -315) T) ((-428 . -650) 110152) ((-108 . -858) T) ((-722 . -736) T) ((-417 . -249) T) ((-417 . -239) 110131) ((-388 . -235) 110118) ((-497 . -38) 110068) ((-219 . -38) 110018) ((-484 . -503) 109984) ((-1241 . -377) T) ((-1175 . -1160) T) ((-1117 . -102) T) ((-837 . -235) 109957) ((-711 . -623) 109939) ((-711 . -624) 109854) ((-724 . -21) T) ((-724 . -25) T) ((-1151 . -102) T) ((-492 . -656) 109624) ((-246 . -907) 109554) ((-135 . -623) 109536) ((-117 . -623) 109518) ((-158 . -25) T) ((-1306 . -1116) T) ((-882 . -649) 109466) ((-1304 . -1116) T) ((-977 . -102) T) ((-745 . -102) T) ((-725 . -102) T) ((-463 . -102) T) ((-826 . -462) 109417) ((-44 . -1116) T) ((-1104 . -860) T) ((-1079 . -317) 109268) ((-674 . -132) T) ((-1070 . -656) 109237) ((-680 . -727) 109221) ((-297 . -1074) T) ((-364 . -132) T) ((-361 . -132) T) ((-353 . -132) T) ((-271 . -132) T) ((-253 . -132) T) ((-394 . -656) 109190) ((-428 . -102) T) ((-153 . -1116) T) ((-45 . -231) 109140) ((-1020 . -907) NIL) ((-809 . -1067) 109124) ((-972 . -860) 109103) ((-1015 . -658) 109005) ((-809 . -650) 108989) ((-246 . -1291) 108959) ((-1040 . -315) T) ((-302 . -1072) 108880) ((-924 . -132) T) ((-40 . -934) T) ((-497 . -410) 108862) ((-363 . -315) T) ((-219 . -410) 108844) ((-1096 . -421) 108828) ((-302 . -111) 108744) ((-1200 . -860) T) ((-1199 . -860) T) ((-882 . -25) T) ((-882 . -21) T) ((-1270 . -47) 108688) ((-348 . -623) 108670) ((-1189 . -238) T) ((-227 . -148) T) ((-176 . -623) 108652) ((-784 . -623) 108634) ((-129 . -860) T) ((-618 . -241) 108581) ((-485 . -241) 108531) ((-1306 . -727) 108501) ((-48 . -315) T) ((-1304 . -727) 108471) ((-65 . -626) 108400) ((-978 . -1116) T) ((-825 . -1116) 108190) ((-320 . -102) T) ((-915 . -1234) T) ((-48 . -1038) T) ((-1247 . -649) 108098) ((-699 . -102) 108076) ((-44 . -727) 108060) ((-560 . -102) T) ((-302 . -626) 107991) ((-67 . -392) T) ((-497 . -914) NIL) ((-67 . -405) T) ((-219 . -914) NIL) ((-672 . -23) T) ((-827 . -656) 107927) ((-680 . -771) T) ((-1231 . -1116) 107905) ((-360 . -1072) 107850) ((-685 . -1116) 107828) ((-1078 . -148) T) ((-966 . -148) 107807) ((-966 . -146) 107786) ((-809 . -102) T) ((-153 . -727) 107770) ((-491 . -148) 107749) ((-491 . -146) 107728) ((-360 . -111) 107657) ((-1096 . -1074) T) ((-330 . -860) 107636) ((-1276 . -989) 107605) ((-637 . -1116) T) ((-1269 . -989) 107567) ((-521 . -132) T) ((-517 . -132) T) ((-303 . -231) 107517) ((-368 . -1074) T) ((-362 . -1074) T) ((-354 . -1074) T) ((-302 . -1065) 107459) ((-1248 . -989) 107428) ((-388 . -860) T) ((-108 . -1074) T) ((-1015 . -736) T) ((-880 . -934) T) ((-853 . -805) 107407) ((-853 . -802) 107386) ((-428 . -317) 107325) ((-478 . -102) T) ((-605 . -989) 107294) ((-327 . -1116) T) ((-417 . -805) 107273) ((-417 . -802) 107252) ((-510 . -499) 107234) ((-1270 . -1054) 107200) ((-1268 . -21) T) ((-1268 . -25) T) ((-1247 . -21) T) ((-1247 . -25) T) ((-825 . -727) 107142) ((-360 . -626) 107072) ((-709 . -414) T) ((-1297 . -1234) T) ((-1129 . -421) 107041) ((-616 . -102) T) ((-1093 . -1234) T) ((-1019 . -377) NIL) ((-681 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1195 . -656) 106951) ((-747 . -1234) T) ((-741 . -1067) 106794) ((-44 . -771) T) ((-741 . -650) 106643) ((-603 . -102) T) ((-663 . -666) 106627) ((-77 . -406) T) ((-77 . -405) T) ((-142 . -1234) T) ((-881 . -148) T) ((-881 . -146) NIL) ((-1296 . -656) 106572) ((-1276 . -907) 106483) ((-1233 . -93) T) ((-360 . -1065) T) ((-227 . -238) T) ((-70 . -392) T) ((-70 . -405) T) ((-1182 . -102) T) ((-680 . -524) 106416) ((-1269 . -907) 106320) ((-1248 . -907) 106151) ((-699 . -317) 106089) ((-977 . -38) 105986) ((-1197 . -623) 105968) ((-745 . -38) 105938) ((-560 . -317) 105742) ((-1191 . -1067) 105625) ((-324 . -1234) T) ((-360 . -239) T) ((-360 . -249) T) ((-321 . -1234) T) ((-297 . -1116) T) ((-1190 . -1067) 105460) ((-1184 . -1067) 105250) ((-1142 . -1067) 105133) ((-1191 . -650) 105030) ((-1190 . -650) 104871) ((-721 . -1238) T) ((-1184 . -650) 104667) ((-1173 . -661) 104651) ((-1142 . -650) 104548) ((-1228 . -566) 104527) ((-829 . -395) 104511) ((-721 . -566) T) ((-605 . -907) 104422) ((-324 . -895) 104406) ((-324 . -897) 104331) ((-137 . -1234) T) ((-321 . -895) 104292) ((-321 . -897) NIL) ((-809 . -317) 104257) ((-327 . -727) 104098) ((-396 . -395) 104082) ((-332 . -331) 104059) ((-495 . -102) T) ((-484 . -25) T) ((-484 . -21) T) ((-428 . -38) 104033) ((-324 . -1054) 103696) ((-227 . -1219) T) ((-227 . -1222) T) ((-3 . -623) 103678) ((-321 . -1054) 103608) ((-882 . -235) 103581) ((-2 . -1116) T) ((-2 . |RecordCategory|) T) ((-1129 . -1074) 103531) ((-843 . -623) 103513) ((-1078 . -238) T) ((-590 . -934) T) ((-574 . -830) T) ((-574 . -934) T) ((-505 . -934) T) ((-137 . -1054) 103497) ((-227 . -95) T) ((-171 . -148) 103476) ((-75 . -451) T) ((0 . -623) 103458) ((-75 . -405) T) ((-171 . -146) 103409) ((-227 . -35) T) ((-49 . -623) 103391) ((-487 . -1074) T) ((-497 . -233) 103373) ((-494 . -984) 103357) ((-219 . -233) 103339) ((-81 . -451) T) ((-81 . -405) T) ((-1162 . -34) T) ((-825 . -174) 103318) ((-741 . -102) T) ((-663 . -656) 103277) ((-1042 . -623) 103244) ((-510 . -294) 103194) ((-324 . -386) 103163) ((-321 . -386) 103124) ((-321 . -347) 103085) ((-1101 . -623) 103067) ((-826 . -963) 103014) ((-672 . -132) T) ((-1257 . -146) 102993) ((-1257 . -148) 102972) ((-1191 . -102) T) ((-1190 . -102) T) ((-1184 . -102) T) ((-1176 . -1116) T) ((-1142 . -102) T) ((-224 . -34) T) ((-297 . -727) 102959) ((-1176 . -620) 102935) ((-603 . -317) NIL) ((-1276 . -1275) 102919) ((-494 . -1116) 102897) ((-1166 . -231) 102847) ((-400 . -623) 102829) ((-520 . -860) T) ((-1136 . -1234) T) ((-1276 . -1262) 102806) ((-1269 . -1267) 102767) ((-1269 . -1262) 102737) ((-1269 . -1265) 102721) ((-1248 . -1246) 102682) ((-1248 . -1262) 102659) ((-1248 . -1244) 102643) ((-631 . -623) 102625) ((-1191 . -292) 102591) ((-709 . -934) T) ((-1190 . -292) 102557) ((-1184 . -292) 102523) ((-1142 . -292) 102489) ((-1096 . -1116) T) ((-1077 . -1116) T) ((-48 . -310) T) ((-324 . -912) 102455) ((-321 . -912) NIL) ((-1077 . -1084) 102434) ((-1136 . -897) 102416) ((-809 . -38) 102400) ((-271 . -649) 102348) ((-253 . -649) 102296) ((-711 . -1072) 102283) ((-605 . -1262) 102260) ((-1136 . -1054) 102242) ((-327 . -174) 102173) ((-368 . -1116) T) ((-362 . -1116) T) ((-354 . -1116) T) ((-510 . -19) 102155) ((-1118 . -152) 102139) ((-881 . -238) NIL) ((-108 . -1116) T) ((-117 . -1072) 102126) ((-721 . -372) T) ((-510 . -614) 102101) ((-711 . -111) 102086) ((-1309 . -623) 102053) ((-1309 . -500) 102035) ((-1268 . -235) 101981) ((-1247 . -235) 101880) ((-446 . -102) T) ((-886 . -1279) T) ((-256 . -102) T) ((-45 . -1165) 101830) ((-117 . -111) 101815) ((-1286 . -623) 101797) ((-1257 . -238) T) ((-1242 . -623) 101779) ((-1240 . -860) T) ((-645 . -730) T) ((-617 . -730) T) ((-1228 . -1128) T) ((-1228 . -23) T) ((-1189 . -462) 101710) ((-1184 . -317) 101595) ((-1183 . -1116) T) ((-825 . -524) 101528) ((-1051 . -1234) T) ((-246 . -1067) 101405) ((-1175 . -1116) T) ((-1158 . -658) 101343) ((-957 . -152) 101327) ((-1142 . -317) 101314) ((-1141 . -462) 101265) ((-246 . -650) 101187) ((-1103 . -566) 101118) ((-1103 . -1238) 101097) ((-1096 . -727) 100965) ((-535 . -102) T) ((-530 . -102) 100915) ((-1020 . -1067) 100865) ((-1010 . -1116) T) ((-826 . -907) 100797) ((-792 . -1238) 100776) ((-790 . -1238) 100755) ((-62 . -1234) T) ((-487 . -623) 100707) ((-487 . -624) 100629) ((-792 . -566) 100540) ((-790 . -566) 100471) ((-741 . -317) 100458) ((-711 . -626) 100430) ((-492 . -421) 100399) ((-633 . -934) 100378) ((-464 . -1238) 100357) ((-685 . -524) 100290) ((-674 . -25) T) ((-408 . -623) 100272) ((-674 . -21) T) ((-464 . -566) 100203) ((-428 . -914) 100162) ((-364 . -25) T) ((-364 . -21) T) ((-361 . -25) T) ((-118 . -934) T) ((-118 . -830) NIL) ((-361 . -21) T) ((-353 . -25) T) ((-353 . -21) T) ((-271 . -25) T) ((-271 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -238) 100113) ((-83 . -393) T) ((-83 . -405) T) ((-135 . -626) 100095) ((-117 . -626) 100067) ((-1020 . -650) 100017) ((-957 . -996) 100001) ((-928 . -650) 99953) ((-928 . -1067) 99905) ((-924 . -21) T) ((-924 . -25) T) ((-882 . -860) 99856) ((-876 . -658) 99816) ((-721 . -1128) T) ((-721 . -23) T) ((-711 . -1065) T) ((-711 . -239) T) ((-297 . -174) T) ((-664 . -1234) T) ((-319 . -93) T) ((-657 . -1116) 99794) ((-642 . -620) 99769) ((-642 . -1116) T) ((-591 . -1238) T) ((-591 . -566) T) ((-528 . -1238) T) ((-528 . -566) T) ((-497 . -656) 99719) ((-484 . -235) 99665) ((-437 . -1067) 99649) ((-437 . -650) 99633) ((-368 . -727) 99585) ((-362 . -727) 99537) ((-348 . -1072) 99521) ((-354 . -727) 99473) ((-348 . -111) 99452) ((-176 . -1072) 99384) ((-219 . -656) 99334) ((-176 . -111) 99245) ((-108 . -727) 99195) ((-281 . -1116) T) ((-280 . -1116) T) ((-279 . -1116) T) ((-278 . -1116) T) ((-277 . -1116) T) ((-276 . -1116) T) ((-275 . -1116) T) ((-214 . -1116) T) ((-213 . -1116) T) ((-171 . -1222) 99173) ((-171 . -1219) 99151) ((-211 . -1116) T) ((-210 . -1116) T) ((-117 . -1065) T) ((-209 . -1116) T) ((-208 . -1116) T) ((-205 . -1116) T) ((-204 . -1116) T) ((-203 . -1116) T) ((-202 . -1116) T) ((-201 . -1116) T) ((-200 . -1116) T) ((-199 . -1116) T) ((-198 . -1116) T) ((-197 . -1116) T) ((-196 . -1116) T) ((-195 . -1116) T) ((-246 . -102) 98941) ((-171 . -35) 98919) ((-171 . -95) 98897) ((-664 . -1054) 98793) ((-492 . -1074) 98743) ((-1129 . -1116) 98533) ((-1158 . -34) T) ((-680 . -499) 98517) ((-73 . -1234) T) ((-105 . -623) 98499) ((-1308 . -623) 98481) ((-390 . -623) 98463) ((-348 . -626) 98415) ((-176 . -626) 98332) ((-1233 . -500) 98313) ((-741 . -38) 98162) ((-581 . -1222) T) ((-581 . -1219) T) ((-541 . -623) 98144) ((-530 . -317) 98082) ((-510 . -623) 98064) ((-510 . -624) 98046) ((-1233 . -623) 98012) ((-1184 . -1168) NIL) ((-1043 . -1087) 97981) ((-1043 . -1116) T) ((-1020 . -102) T) ((-987 . -102) T) ((-928 . -102) T) ((-904 . -1054) 97958) ((-1158 . -736) T) ((-1019 . -658) 97865) ((-486 . -1116) T) ((-473 . -1116) T) ((-596 . -23) T) ((-581 . -35) T) ((-581 . -95) T) ((-437 . -102) T) ((-1079 . -231) 97811) ((-1191 . -38) 97708) ((-876 . -736) T) ((-704 . -934) T) ((-521 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-1190 . -38) 97549) ((-348 . -1065) T) ((-1184 . -38) 97345) ((-1096 . -174) T) ((-176 . -1065) T) ((-1142 . -38) 97242) ((-722 . -47) 97219) ((-368 . -174) T) ((-362 . -174) T) ((-529 . -57) 97193) ((-507 . -57) 97143) ((-360 . -1303) 97120) ((-227 . -462) T) ((-327 . -298) 97071) ((-354 . -174) T) ((-176 . -249) T) ((-1247 . -860) 96970) ((-108 . -174) T) ((-882 . -1008) 96954) ((-668 . -1128) T) ((-591 . -372) T) ((-591 . -337) 96941) ((-528 . -337) 96918) ((-528 . -372) T) ((-324 . -315) 96897) ((-321 . -315) T) ((-612 . -860) 96876) ((-1129 . -727) 96818) ((-530 . -290) 96802) ((-668 . -23) T) ((-428 . -233) 96786) ((-321 . -1038) NIL) ((-345 . -23) T) ((-103 . -1026) 96770) ((-45 . -36) 96749) ((-622 . -1116) T) ((-360 . -377) T) ((-534 . -102) T) ((-505 . -27) T) ((-246 . -317) 96687) ((-1103 . -1128) T) ((-1307 . -658) 96661) ((-792 . -1128) T) ((-790 . -1128) T) ((-1195 . -421) 96645) ((-464 . -1128) T) ((-1078 . -462) T) ((-1167 . -1116) T) ((-966 . -462) 96596) ((-1131 . -1099) T) ((-110 . -1116) T) ((-1103 . -23) T) ((-1176 . -524) 96379) ((-827 . -1074) T) ((-792 . -23) T) ((-790 . -23) T) ((-491 . -462) 96330) ((-471 . -23) T) ((-390 . -391) 96309) ((-364 . -235) 96282) ((-361 . -235) 96255) ((-353 . -235) 96228) ((-464 . -23) T) ((-271 . -235) 96201) ((-258 . -907) 96131) ((-257 . -907) 96061) ((-96 . -1116) T) ((-722 . -1234) T) ((-680 . -294) 96038) ((-494 . -524) 95971) ((-1276 . -1067) 95854) ((-1276 . -650) 95751) ((-1269 . -650) 95592) ((-1269 . -1067) 95427) ((-1248 . -650) 95223) ((-297 . -298) T) ((-1248 . -1067) 95013) ((-1098 . -623) 94995) ((-1098 . -624) 94976) ((-417 . -923) 94955) ((-1228 . -132) T) ((-50 . -1128) T) ((-1184 . -410) 94907) ((-1040 . -934) T) ((-1019 . -736) T) ((-853 . -658) 94880) ((-722 . -897) NIL) ((-606 . -1067) 94840) ((-591 . -1128) T) ((-528 . -1128) T) ((-605 . -1067) 94723) ((-1173 . -34) T) ((-1020 . -317) NIL) ((-825 . -499) 94707) ((-606 . -650) 94680) ((-363 . -934) T) ((-605 . -650) 94577) ((-924 . -235) 94564) ((-417 . -658) 94480) ((-50 . -23) T) ((-721 . -132) T) ((-722 . -1054) 94360) ((-591 . -23) T) ((-108 . -524) NIL) ((-528 . -23) T) ((-171 . -419) 94331) ((-1156 . -1116) T) ((-1299 . -1298) 94315) ((-741 . -914) 94292) ((-711 . -805) T) ((-711 . -802) T) ((-1136 . -315) T) ((-388 . -148) T) ((-288 . -623) 94274) ((-287 . -623) 94256) ((-1247 . -1008) 94226) ((-48 . -934) T) ((-685 . -499) 94210) ((-258 . -1291) 94180) ((-257 . -1291) 94150) ((-1193 . -860) T) ((-1104 . -238) T) ((-1129 . -174) 94129) ((-1136 . -1038) T) ((-1062 . -34) T) ((-846 . -148) 94108) ((-846 . -146) 94087) ((-747 . -107) 94071) ((-622 . -133) T) ((-1195 . -1074) T) ((-1191 . -914) 93984) ((-492 . -1116) 93774) ((-1190 . -914) 93680) ((-1184 . -914) 93513) ((-881 . -462) T) ((-85 . -1234) T) ((-246 . -38) 93483) ((-142 . -107) 93465) ((-1142 . -914) 93449) ((-722 . -386) 93433) ((-843 . -626) 93301) ((-1307 . -736) T) ((-1296 . -1074) T) ((-1276 . -102) T) ((-1136 . -555) T) ((-589 . -102) T) ((-130 . -500) 93283) ((-1269 . -102) T) ((-400 . -1072) 93267) ((-1189 . -963) 93236) ((-44 . -294) 93213) ((-130 . -623) 93180) ((-52 . -623) 93162) ((-1141 . -963) 93129) ((-663 . -421) 93113) ((-1248 . -102) T) ((-1175 . -524) NIL) ((-672 . -25) T) ((-631 . -1072) 93097) ((-672 . -21) T) ((-977 . -656) 93007) ((-745 . -656) 92952) ((-725 . -656) 92924) ((-400 . -111) 92903) ((-224 . -261) 92887) ((-1070 . -1069) 92827) ((-1070 . -1116) T) ((-1020 . -1168) T) ((-828 . -1116) T) ((-463 . -656) 92742) ((-645 . -658) 92726) ((-352 . -1238) T) ((-631 . -111) 92705) ((-617 . -658) 92689) ((-606 . -102) T) ((-319 . -500) 92670) ((-596 . -132) T) ((-605 . -102) T) ((-424 . -1116) T) ((-394 . -1116) T) ((-319 . -623) 92636) ((-229 . -1116) 92614) ((-657 . -524) 92547) ((-642 . -524) 92391) ((-843 . -1065) 92370) ((-654 . -152) 92354) ((-352 . -566) T) ((-722 . -912) 92297) ((-560 . -231) 92247) ((-1276 . -292) 92213) ((-1269 . -292) 92179) ((-1096 . -298) 92130) ((-497 . -858) T) ((-225 . -1128) T) ((-1248 . -292) 92096) ((-1228 . -503) 92062) ((-1020 . -38) 92012) ((-219 . -858) T) ((-428 . -656) 91971) ((-928 . -38) 91923) ((-853 . -804) 91902) ((-853 . -801) 91881) ((-853 . -736) 91860) ((-368 . -298) T) ((-362 . -298) T) ((-354 . -298) T) ((-171 . -462) 91791) ((-437 . -38) 91775) ((-225 . -23) T) ((-108 . -298) T) ((-417 . -804) 91754) ((-417 . -801) 91733) ((-417 . -736) T) ((-510 . -296) 91708) ((-487 . -1072) 91673) ((-668 . -132) T) ((-631 . -626) 91642) ((-1129 . -524) 91575) ((-345 . -132) T) ((-171 . -412) 91554) ((-492 . -727) 91496) ((-825 . -294) 91473) ((-487 . -111) 91429) ((-663 . -1074) T) ((-1189 . -907) 91368) ((-1141 . -907) 91350) ((-826 . -1067) 91193) ((-1295 . -1099) T) ((-1257 . -462) 91124) ((-826 . -650) 90973) ((-1294 . -1099) T) ((-1103 . -132) T) ((-1070 . -727) 90915) ((-1043 . -524) 90848) ((-792 . -132) T) ((-790 . -132) T) ((-581 . -462) T) ((-631 . -1065) T) ((-602 . -1116) T) ((-543 . -175) T) ((-471 . -132) T) ((-464 . -132) T) ((-388 . -238) T) ((-1015 . -1234) 90761) ((-45 . -1116) T) ((-394 . -727) 90731) ((-827 . -1116) T) ((-486 . -524) 90664) ((-473 . -524) 90597) ((-1309 . -626) 90579) ((-463 . -376) 90549) ((-45 . -620) 90528) ((-324 . -310) T) ((-837 . -238) 90507) ((-487 . -626) 90457) ((-1248 . -317) 90342) ((-680 . -623) 90304) ((-59 . -860) 90283) ((-1020 . -410) 90265) ((-558 . -623) 90247) ((-809 . -656) 90206) ((-825 . -614) 90183) ((-526 . -860) 90162) ((-506 . -860) 90141) ((-1015 . -1054) 90037) ((-40 . -1238) T) ((-246 . -914) 89969) ((-50 . -132) T) ((-591 . -132) T) ((-528 . -132) T) ((-302 . -658) 89829) ((-352 . -337) 89806) ((-352 . -372) T) ((-330 . -331) 89783) ((-327 . -294) 89741) ((-40 . -566) T) ((-388 . -1219) T) ((-388 . -1222) T) ((-1051 . -1210) 89716) ((-1206 . -241) 89666) ((-1184 . -233) 89618) ((-338 . -1116) T) ((-388 . -95) T) ((-388 . -35) T) ((-1051 . -107) 89564) ((-487 . -1065) T) ((-1308 . -1072) 89548) ((-489 . -241) 89498) ((-1176 . -499) 89432) ((-1299 . -1067) 89416) ((-390 . -1072) 89400) ((-1299 . -650) 89370) ((-487 . -249) T) ((-826 . -102) T) ((-724 . -148) 89349) ((-724 . -146) 89328) ((-494 . -499) 89312) ((-495 . -344) 89281) ((-1308 . -111) 89260) ((-522 . -1116) T) ((-492 . -174) 89239) ((-1015 . -386) 89223) ((-423 . -102) T) ((-390 . -111) 89202) ((-1015 . -347) 89186) ((-286 . -999) 89170) ((-285 . -999) 89154) ((-1020 . -914) NIL) ((-1306 . -623) 89136) ((-1304 . -623) 89118) ((-110 . -524) NIL) ((-1189 . -1260) 89102) ((-864 . -862) 89086) ((-1195 . -1116) T) ((-103 . -1234) T) ((-966 . -963) 89047) ((-827 . -727) 88989) ((-1248 . -1168) NIL) ((-491 . -963) 88934) ((-1078 . -144) T) ((-60 . -102) 88912) ((-44 . -623) 88894) ((-78 . -623) 88876) ((-360 . -658) 88821) ((-1296 . -1116) T) ((-521 . -860) T) ((-297 . -294) 88800) ((-352 . -1128) T) ((-303 . -1116) T) ((-1015 . -912) 88759) ((-303 . -620) 88738) ((-1308 . -626) 88687) ((-1276 . -38) 88584) ((-1269 . -38) 88425) ((-1248 . -38) 88221) ((-497 . -1074) T) ((-390 . -626) 88205) ((-219 . -1074) T) ((-352 . -23) T) ((-153 . -623) 88187) ((-843 . -805) 88166) ((-843 . -802) 88145) ((-1233 . -626) 88126) ((-606 . -38) 88099) ((-605 . -38) 87996) ((-880 . -566) T) ((-225 . -132) T) ((-327 . -1018) 87962) ((-79 . -623) 87944) ((-722 . -315) 87923) ((-302 . -736) 87825) ((-834 . -102) T) ((-874 . -854) T) ((-302 . -483) 87804) ((-1299 . -102) T) ((-40 . -372) T) ((-882 . -148) 87783) ((-495 . -656) 87765) ((-882 . -146) 87744) ((-1175 . -499) 87726) ((-1308 . -1065) T) ((-492 . -524) 87659) ((-1162 . -1234) T) ((-978 . -623) 87641) ((-657 . -499) 87625) ((-642 . -499) 87556) ((-825 . -623) 87287) ((-48 . -27) T) ((-1195 . -727) 87184) ((-966 . -907) 87163) ((-663 . -1116) T) ((-871 . -870) T) ((-446 . -373) 87137) ((-741 . -656) 87047) ((-491 . -907) 87022) ((-1118 . -102) T) ((-986 . -1116) T) ((-874 . -1116) T) ((-826 . -317) 87009) ((-543 . -537) T) ((-543 . -586) T) ((-1304 . -391) 86981) ((-1070 . -524) 86914) ((-1176 . -294) 86890) ((-246 . -233) 86859) ((-258 . -1067) 86736) ((-257 . -1067) 86613) ((-1296 . -727) 86583) ((-1183 . -93) T) ((-1010 . -93) T) ((-827 . -174) 86562) ((-258 . -650) 86484) ((-257 . -650) 86406) ((-1231 . -500) 86383) ((-229 . -524) 86316) ((-631 . -805) 86295) ((-631 . -802) 86274) ((-1231 . -623) 86186) ((-224 . -1234) T) ((-685 . -623) 86118) ((-1191 . -656) 86028) ((-1173 . -1026) 86012) ((-957 . -102) 85962) ((-360 . -736) T) ((-871 . -623) 85944) ((-1190 . -656) 85826) ((-1184 . -656) 85663) ((-1142 . -656) 85573) ((-1248 . -410) 85525) ((-1129 . -499) 85509) ((-60 . -317) 85447) ((-339 . -102) T) ((-1228 . -21) T) ((-1228 . -25) T) ((-40 . -1128) T) ((-721 . -21) T) ((-637 . -623) 85429) ((-525 . -331) 85408) ((-721 . -25) T) ((-449 . -102) T) ((-108 . -294) NIL) ((-935 . -1128) T) ((-40 . -23) T) ((-781 . -1128) T) ((-574 . -1238) T) ((-505 . -1238) T) ((-327 . -623) 85390) ((-1020 . -233) 85372) ((-171 . -167) 85356) ((-590 . -566) T) ((-574 . -566) T) ((-505 . -566) T) ((-781 . -23) T) ((-1268 . -148) 85335) ((-1176 . -614) 85311) ((-1268 . -146) 85290) ((-1043 . -499) 85274) ((-1247 . -146) 85199) ((-1247 . -148) 85124) ((-1299 . -1305) 85103) ((-881 . -907) NIL) ((-486 . -499) 85087) ((-473 . -499) 85071) ((-533 . -34) T) ((-663 . -727) 85041) ((-1276 . -914) 84954) ((-1269 . -914) 84860) ((-1248 . -914) 84693) ((-112 . -983) T) ((-1195 . -174) 84644) ((-672 . -860) 84623) ((-374 . -102) T) ((-605 . -914) 84536) ((-246 . -244) 84515) ((-258 . -102) T) ((-257 . -102) T) ((-1257 . -963) 84484) ((-251 . -860) 84463) ((-826 . -38) 84312) ((-45 . -524) 84104) ((-1175 . -294) 84054) ((-216 . -1116) T) ((-1166 . -1116) T) ((-882 . -238) 84033) ((-1166 . -620) 84012) ((-596 . -25) T) ((-596 . -21) T) ((-1118 . -317) 83950) ((-977 . -421) 83934) ((-709 . -1238) T) ((-642 . -294) 83887) ((-1103 . -649) 83835) ((-919 . -1116) T) ((-792 . -649) 83783) ((-790 . -649) 83731) ((-352 . -132) T) ((-297 . -623) 83713) ((-880 . -1128) T) ((-709 . -566) T) ((-130 . -626) 83695) ((-464 . -649) 83643) ((-171 . -907) 83600) ((-919 . -917) 83584) ((-388 . -462) T) ((-497 . -1116) T) ((-957 . -317) 83522) ((-711 . -658) 83494) ((-559 . -854) T) ((-219 . -1116) T) ((-324 . -934) 83473) ((-321 . -934) T) ((-321 . -830) NIL) ((-400 . -730) T) ((-880 . -23) T) ((-117 . -658) 83460) ((-484 . -146) 83439) ((-428 . -421) 83423) ((-484 . -148) 83402) ((-110 . -499) 83384) ((-319 . -626) 83365) ((-2 . -623) 83347) ((-188 . -102) T) ((-1175 . -19) 83329) ((-1175 . -614) 83304) ((-668 . -21) T) ((-668 . -25) T) ((-603 . -1160) T) ((-1129 . -294) 83281) ((-345 . -25) T) ((-345 . -21) T) ((-246 . -656) 83051) ((-505 . -372) T) ((-1306 . -1072) 83035) ((-1304 . -1072) 83019) ((-1299 . -38) 82989) ((-1257 . -907) 82928) ((-1189 . -1067) 82751) ((-1158 . -1234) T) ((-1141 . -1067) 82594) ((-864 . -1067) 82578) ((-642 . -614) 82553) ((-1268 . -1219) 82519) ((-1268 . -1222) 82485) ((-1268 . -95) 82451) ((-1189 . -650) 82280) ((-1141 . -650) 82129) ((-864 . -650) 82099) ((-1268 . -238) 82051) ((-1251 . -102) 82029) ((-559 . -1116) T) ((-1103 . -25) T) ((-1103 . -21) T) ((-541 . -802) T) ((-541 . -805) T) ((-118 . -1238) T) ((-977 . -1074) T) ((-633 . -566) T) ((-792 . -25) T) ((-792 . -21) T) ((-790 . -21) T) ((-790 . -25) T) ((-745 . -1074) T) ((-725 . -1074) T) ((-680 . -1072) 82013) ((-527 . -1099) T) ((-471 . -25) T) ((-118 . -566) T) ((-471 . -21) T) ((-464 . -25) T) ((-464 . -21) T) ((-1248 . -233) 81965) ((-1167 . -93) T) ((-1158 . -1054) 81861) ((-827 . -298) 81840) ((-1247 . -1219) 81806) ((-833 . -1116) T) ((-980 . -983) T) ((-680 . -111) 81785) ((-627 . -1234) T) ((-303 . -524) 81577) ((-1247 . -1222) 81543) ((-1247 . -238) 81448) ((-1242 . -377) T) ((-258 . -317) 81386) ((-257 . -317) 81324) ((-1239 . -854) T) ((-1176 . -624) NIL) ((-1176 . -623) 81306) ((-1158 . -386) 81290) ((-1136 . -830) T) ((-1136 . -934) T) ((-96 . -93) T) ((-1129 . -614) 81267) ((-1096 . -624) 81251) ((-1096 . -623) 81233) ((-1020 . -656) 81183) ((-928 . -656) 81120) ((-825 . -296) 81097) ((-494 . -623) 81029) ((-618 . -152) 80976) ((-497 . -727) 80926) ((-428 . -1074) T) ((-492 . -499) 80910) ((-437 . -656) 80869) ((-335 . -860) 80848) ((-348 . -658) 80822) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -727) 80772) ((-171 . -734) 80743) ((-176 . -658) 80675) ((-591 . -21) T) ((-591 . -25) T) ((-528 . -25) T) ((-528 . -21) T) ((-485 . -152) 80625) ((-1077 . -623) 80607) ((-1009 . -102) T) ((-872 . -102) T) ((-826 . -914) 80543) ((-809 . -421) 80506) ((-40 . -132) T) ((-709 . -372) T) ((-711 . -736) T) ((-711 . -804) T) ((-711 . -801) T) ((-214 . -908) T) ((-590 . -1128) T) ((-574 . -1128) T) ((-505 . -1128) T) ((-368 . -623) 80488) ((-362 . -623) 80470) ((-354 . -623) 80452) ((-66 . -406) T) ((-66 . -405) T) ((-108 . -624) 80382) ((-108 . -623) 80324) ((-213 . -908) T) ((-972 . -152) 80308) ((-781 . -132) T) ((-680 . -626) 80226) ((-135 . -736) T) ((-117 . -736) T) ((-1268 . -35) 80192) ((-1070 . -499) 80176) ((-590 . -23) T) ((-574 . -23) T) ((-505 . -23) T) ((-1247 . -95) 80142) ((-1247 . -35) 80108) ((-1189 . -102) T) ((-1141 . -102) T) ((-864 . -102) T) ((-229 . -499) 80092) ((-1306 . -111) 80071) ((-1304 . -111) 80050) ((-44 . -1072) 80034) ((-1306 . -626) 79980) ((-1306 . -1065) T) ((-1304 . -626) 79909) ((-1257 . -1260) 79893) ((-1239 . -1116) T) ((-865 . -862) 79877) ((-1195 . -298) 79856) ((-1120 . -1234) T) ((-110 . -294) 79806) ((-1019 . -1234) 79735) ((-129 . -152) 79717) ((-1158 . -912) 79676) ((-44 . -111) 79655) ((-1198 . -1279) T) ((-1183 . -500) 79636) ((-1183 . -623) 79602) ((-1175 . -624) NIL) ((-680 . -1065) T) ((-1175 . -623) 79584) ((-1079 . -620) 79559) ((-484 . -238) 79511) ((-1079 . -1116) T) ((-1010 . -500) 79492) ((-74 . -451) T) ((-74 . -405) T) ((-1010 . -623) 79458) ((-153 . -1072) 79442) ((-680 . -239) 79421) ((-581 . -564) 79405) ((-364 . -148) 79384) ((-364 . -146) 79335) ((-361 . -148) 79314) ((-361 . -146) 79265) ((-353 . -148) 79244) ((-353 . -146) 79195) ((-271 . -146) 79174) ((-271 . -148) 79153) ((-258 . -38) 79123) ((-253 . -148) 79102) ((-118 . -372) T) ((-253 . -146) 79081) ((-257 . -38) 79051) ((-153 . -111) 79030) ((-1019 . -1054) 78918) ((-1184 . -858) NIL) ((-704 . -1238) T) ((-809 . -1074) T) ((-709 . -1128) T) ((-1304 . -1065) T) ((-1173 . -1234) T) ((-1019 . -386) 78895) ((-924 . -146) T) ((-924 . -148) 78877) ((-880 . -132) T) ((-825 . -1072) 78774) ((-709 . -23) T) ((-704 . -566) T) ((-227 . -1067) 78739) ((-657 . -623) 78671) ((-657 . -624) 78632) ((-642 . -624) NIL) ((-642 . -623) 78614) ((-497 . -174) T) ((-227 . -650) 78579) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-484 . -1222) 78545) ((-484 . -1219) 78511) ((-281 . -623) 78493) ((-280 . -623) 78475) ((-279 . -623) 78457) ((-278 . -623) 78439) ((-277 . -623) 78421) ((-510 . -661) 78403) ((-276 . -623) 78385) ((-348 . -736) T) ((-275 . -623) 78367) ((-110 . -19) 78349) ((-176 . -736) T) ((-510 . -382) 78331) ((-214 . -623) 78313) ((-530 . -1165) 78297) ((-510 . -124) T) ((-110 . -614) 78272) ((-213 . -623) 78254) ((-484 . -35) 78220) ((-484 . -95) 78186) ((-211 . -623) 78168) ((-210 . -623) 78150) ((-209 . -623) 78132) ((-208 . -623) 78114) ((-205 . -623) 78096) ((-204 . -623) 78078) ((-203 . -623) 78060) ((-202 . -623) 78042) ((-201 . -623) 78024) ((-200 . -623) 78006) ((-199 . -623) 77988) ((-546 . -1119) 77940) ((-198 . -623) 77922) ((-197 . -623) 77904) ((-45 . -499) 77841) ((-196 . -623) 77823) ((-195 . -623) 77805) ((-153 . -626) 77774) ((-1131 . -102) T) ((-825 . -111) 77664) ((-654 . -102) 77614) ((-492 . -294) 77591) ((-1307 . -1054) 77575) ((-1129 . -623) 77306) ((-1117 . -1116) T) ((-1062 . -1234) T) ((-1189 . -317) 77293) ((-1078 . -1067) 77280) ((-1151 . -1116) T) ((-966 . -1067) 77123) ((-1141 . -317) 77110) ((-1112 . -1099) T) ((-633 . -1128) T) ((-1078 . -650) 77097) ((-1106 . -1099) T) ((-966 . -650) 76946) ((-1103 . -235) 76919) ((-491 . -1067) 76762) ((-1089 . -1099) T) ((-1082 . -1099) T) ((-1052 . -1099) T) ((-1035 . -1099) T) ((-118 . -1128) T) ((-491 . -650) 76611) ((-792 . -235) 76598) ((-829 . -102) T) ((-636 . -1099) T) ((-633 . -23) T) ((-1166 . -524) 76390) ((-493 . -1099) T) ((-396 . -102) T) ((-332 . -102) T) ((-220 . -1099) T) ((-977 . -1116) T) ((-153 . -1065) T) ((-741 . -421) 76374) ((-118 . -23) T) ((-1019 . -912) 76326) ((-745 . -1116) T) ((-725 . -1116) T) ((-463 . -1116) T) ((-417 . -1234) T) ((-324 . -440) 76310) ((-602 . -93) T) ((-1276 . -656) 76220) ((-1043 . -624) 76181) ((-1040 . -1238) T) ((-227 . -102) T) ((-1043 . -623) 76143) ((-1269 . -656) 76025) ((-826 . -233) 76009) ((-825 . -626) 75759) ((-1248 . -656) 75596) ((-1040 . -566) T) ((-843 . -658) 75569) ((-363 . -1238) T) ((-486 . -623) 75531) ((-486 . -624) 75492) ((-473 . -624) 75453) ((-473 . -623) 75415) ((-606 . -656) 75374) ((-417 . -895) 75358) ((-327 . -1072) 75193) ((-417 . -897) 75118) ((-605 . -656) 75028) ((-853 . -1054) 74924) ((-497 . -524) NIL) ((-492 . -614) 74901) ((-591 . -235) 74888) ((-363 . -566) T) ((-528 . -235) 74875) ((-219 . -524) NIL) ((-882 . -462) T) ((-428 . -1116) T) ((-417 . -1054) 74739) ((-327 . -111) 74560) ((-704 . -372) T) ((-227 . -292) T) ((-1231 . -626) 74537) ((-48 . -1238) T) ((-1189 . -1168) 74515) ((-1176 . -296) 74491) ((-1078 . -102) T) ((-966 . -102) T) ((-825 . -1065) 74441) ((-590 . -132) T) ((-574 . -132) T) ((-505 . -132) T) ((-364 . -238) 74420) ((-361 . -238) 74399) ((-353 . -238) 74378) ((-48 . -566) T) ((-881 . -1067) 74323) ((-271 . -238) 74302) ((-825 . -239) 74254) ((-324 . -27) 74233) ((-258 . -914) 74165) ((-257 . -914) 74097) ((-255 . -845) 74079) ((-189 . -845) 74061) ((-723 . -102) T) ((-303 . -499) 73998) ((-881 . -650) 73943) ((-491 . -102) T) ((-741 . -1074) T) ((-622 . -623) 73925) ((-622 . -624) 73786) ((-417 . -386) 73770) ((-417 . -347) 73754) ((-1189 . -38) 73583) ((-1141 . -38) 73432) ((-327 . -626) 73258) ((-924 . -238) T) ((-645 . -1234) 73232) ((-617 . -1234) 73206) ((-864 . -38) 73176) ((-400 . -658) 73160) ((-654 . -317) 73098) ((-1167 . -500) 73079) ((-1167 . -623) 73045) ((-977 . -727) 72942) ((-745 . -727) 72912) ((-224 . -107) 72896) ((-45 . -294) 72796) ((-631 . -658) 72770) ((-320 . -1116) T) ((-297 . -1072) 72757) ((-110 . -623) 72739) ((-110 . -624) 72721) ((-463 . -727) 72691) ((-826 . -260) 72630) ((-699 . -1116) 72608) ((-560 . -1116) T) ((-1191 . -1074) T) ((-1190 . -1074) T) ((-96 . -500) 72589) ((-1184 . -1074) T) ((-297 . -111) 72574) ((-1142 . -1074) T) ((-560 . -620) 72553) ((-96 . -623) 72519) ((-1020 . -858) T) ((-229 . -697) 72477) ((-704 . -1128) T) ((-1228 . -750) 72453) ((-1040 . -372) T) ((-848 . -845) 72435) ((-843 . -804) 72414) ((-417 . -912) 72373) ((-327 . -1065) T) ((-352 . -25) T) ((-352 . -21) T) ((-171 . -1067) 72283) ((-68 . -1234) T) ((-843 . -801) 72262) ((-428 . -727) 72236) ((-809 . -1116) T) ((-722 . -934) 72215) ((-709 . -132) T) ((-171 . -650) 72043) ((-704 . -23) T) ((-497 . -298) T) ((-843 . -736) 72022) ((-327 . -239) 71974) ((-327 . -249) 71953) ((-219 . -298) T) ((-130 . -377) T) ((-1268 . -462) 71932) ((-1247 . -462) 71911) ((-363 . -337) 71888) ((-363 . -372) T) ((-1156 . -623) 71870) ((-45 . -1272) 71820) ((-881 . -102) T) ((-654 . -290) 71804) ((-709 . -1076) T) ((-1295 . -102) T) ((-1294 . -102) T) ((-487 . -658) 71769) ((-478 . -1116) T) ((-45 . -614) 71694) ((-1175 . -296) 71669) ((-297 . -626) 71641) ((-40 . -649) 71580) ((-1257 . -1067) 71403) ((-865 . -1067) 71387) ((-48 . -372) T) ((-1122 . -623) 71369) ((-1257 . -650) 71198) ((-865 . -650) 71168) ((-642 . -296) 71143) ((-826 . -656) 71053) ((-581 . -1067) 71040) ((-492 . -623) 70771) ((-246 . -421) 70740) ((-966 . -317) 70727) ((-581 . -650) 70714) ((-65 . -1234) T) ((-1079 . -524) 70558) ((-681 . -1116) T) ((-633 . -132) T) ((-491 . -317) 70545) ((-616 . -1116) T) ((-556 . -102) T) ((-118 . -132) T) ((-297 . -1065) T) ((-182 . -1116) T) ((-162 . -1116) T) ((-157 . -1116) T) ((-155 . -1116) T) ((-463 . -771) T) ((-31 . -1099) T) ((-977 . -174) 70496) ((-1189 . -914) 70439) ((-986 . -93) T) ((-1182 . -1116) T) ((-1096 . -1072) 70349) ((-631 . -804) 70328) ((-603 . -1116) T) ((-631 . -801) 70307) ((-631 . -736) T) ((-303 . -294) 70286) ((-302 . -1234) T) ((-1070 . -623) 70248) ((-1070 . -624) 70209) ((-1040 . -1128) T) ((-171 . -102) T) ((-282 . -860) T) ((-1141 . -914) 70193) ((-828 . -623) 70175) ((-1129 . -296) 70152) ((-1118 . -231) 70136) ((-1019 . -315) T) ((-809 . -727) 70120) ((-368 . -1072) 70072) ((-363 . -1128) T) ((-362 . -1072) 70024) ((-424 . -623) 70006) ((-394 . -623) 69988) ((-354 . -1072) 69940) ((-229 . -623) 69872) ((-1096 . -111) 69768) ((-1040 . -23) T) ((-108 . -1072) 69718) ((-911 . -102) T) ((-851 . -102) T) ((-818 . -102) T) ((-779 . -102) T) ((-687 . -102) T) ((-484 . -462) 69697) ((-428 . -174) T) ((-368 . -111) 69635) ((-362 . -111) 69573) ((-354 . -111) 69511) ((-258 . -233) 69480) ((-257 . -233) 69449) ((-363 . -23) T) ((-71 . -1234) T) ((-227 . -38) 69414) ((-108 . -111) 69348) ((-40 . -25) T) ((-40 . -21) T) ((-680 . -730) T) ((-171 . -292) 69326) ((-48 . -1128) T) ((-935 . -25) T) ((-781 . -25) T) ((-1308 . -658) 69300) ((-1166 . -499) 69237) ((-495 . -1116) T) ((-1299 . -656) 69196) ((-1257 . -102) T) ((-1078 . -1168) T) ((-865 . -102) T) ((-246 . -1074) 69146) ((-978 . -802) 69099) ((-978 . -805) 69052) ((-390 . -658) 69036) ((-48 . -23) T) ((-825 . -805) 69015) ((-825 . -802) 68994) ((-558 . -377) T) ((-303 . -614) 68973) ((-487 . -736) T) ((-581 . -102) T) ((-1096 . -626) 68791) ((-255 . -187) T) ((-189 . -187) T) ((-881 . -317) 68748) ((-663 . -294) 68727) ((-112 . -671) T) ((-360 . -1234) T) ((-368 . -626) 68664) ((-362 . -626) 68601) ((-354 . -626) 68538) ((-76 . -1234) T) ((-108 . -626) 68488) ((-112 . -113) T) ((-1078 . -38) 68475) ((-674 . -383) 68454) ((-966 . -38) 68303) ((-741 . -1116) T) ((-491 . -38) 68152) ((-86 . -1234) T) ((-602 . -500) 68133) ((-1248 . -858) NIL) ((-581 . -292) T) ((-1191 . -1116) T) ((-602 . -623) 68099) ((-1190 . -1116) T) ((-1184 . -1116) T) ((-1096 . -1065) T) ((-360 . -1054) 68076) ((-827 . -500) 68060) ((-1020 . -1074) T) ((-45 . -623) 68042) ((-45 . -624) NIL) ((-928 . -1074) T) ((-827 . -623) 68011) ((-1163 . -102) 67989) ((-1096 . -249) 67940) ((-437 . -1074) T) ((-368 . -1065) T) ((-362 . -1065) T) ((-374 . -373) 67917) ((-354 . -1065) T) ((-352 . -235) 67904) ((-258 . -244) 67883) ((-257 . -244) 67862) ((-1096 . -239) 67787) ((-1142 . -1116) T) ((-302 . -912) 67746) ((-108 . -1065) T) ((-704 . -132) T) ((-428 . -524) 67588) ((-368 . -239) 67567) ((-368 . -249) T) ((-44 . -730) T) ((-362 . -239) 67546) ((-362 . -249) T) ((-354 . -239) 67525) ((-354 . -249) T) ((-1183 . -626) 67506) ((-171 . -317) 67471) ((-108 . -249) T) ((-108 . -239) T) ((-1010 . -626) 67452) ((-327 . -802) T) ((-880 . -21) T) ((-880 . -25) T) ((-417 . -315) T) ((-510 . -34) T) ((-110 . -296) 67427) ((-1129 . -1072) 67324) ((-881 . -1168) NIL) ((-338 . -623) 67306) ((-417 . -1038) 67284) ((-1129 . -111) 67174) ((-701 . -1279) T) ((-446 . -1116) T) ((-256 . -1116) T) ((-1308 . -736) T) ((-63 . -623) 67156) ((-881 . -38) 67101) ((-533 . -1234) T) ((-612 . -152) 67085) ((-522 . -623) 67067) ((-1257 . -317) 67054) ((-741 . -727) 66903) ((-541 . -803) T) ((-541 . -804) T) ((-574 . -649) 66885) ((-505 . -649) 66845) ((-364 . -462) T) ((-361 . -462) T) ((-353 . -462) T) ((-271 . -462) 66796) ((-535 . -1116) T) ((-530 . -1116) 66746) ((-253 . -462) 66697) ((-1166 . -294) 66676) ((-1195 . -623) 66658) ((-699 . -524) 66591) ((-977 . -298) 66570) ((-560 . -524) 66362) ((-258 . -656) 66182) ((-257 . -656) 65989) ((-1296 . -623) 65958) ((-1296 . -500) 65942) ((-1191 . -727) 65839) ((-1189 . -233) 65823) ((-1129 . -626) 65573) ((-171 . -1168) 65552) ((-1190 . -727) 65393) ((-1184 . -727) 65189) ((-980 . -113) T) ((-903 . -102) T) ((-1173 . -684) 65173) ((-1142 . -727) 65070) ((-1040 . -132) T) ((-364 . -412) 65021) ((-361 . -412) 64972) ((-353 . -412) 64923) ((-978 . -377) 64876) ((-809 . -524) 64788) ((-303 . -624) NIL) ((-303 . -623) 64770) ((-924 . -462) T) ((-919 . -294) 64749) ((-825 . -377) 64728) ((-520 . -519) 64707) ((-518 . -519) 64686) ((-882 . -907) 64643) ((-497 . -294) NIL) ((-492 . -296) 64620) ((-428 . -298) T) ((-363 . -132) T) ((-219 . -294) NIL) ((-704 . -503) NIL) ((-99 . -1128) T) ((-40 . -235) 64586) ((-171 . -38) 64414) ((-966 . -914) 64395) ((-1268 . -989) 64357) ((-1163 . -317) 64295) ((-491 . -914) 64272) ((-1247 . -989) 64241) ((-924 . -412) T) ((-1129 . -1065) 64191) ((-1270 . -566) T) ((-1166 . -614) 64170) ((-112 . -860) T) ((-1079 . -499) 64101) ((-590 . -21) T) ((-590 . -25) T) ((-574 . -21) T) ((-574 . -25) T) ((-505 . -25) T) ((-505 . -21) T) ((-1257 . -1168) 64079) ((-1129 . -239) 64031) ((-48 . -132) T) ((-1215 . -102) T) ((-246 . -1116) 63821) ((-881 . -410) 63798) ((-1104 . -102) T) ((-1092 . -102) T) ((-618 . -102) T) ((-485 . -102) T) ((-1257 . -38) 63627) ((-865 . -38) 63597) ((-1050 . -1067) 63571) ((-741 . -174) 63482) ((-663 . -623) 63464) ((-655 . -1099) T) ((-1050 . -650) 63448) ((-581 . -38) 63435) ((-986 . -500) 63416) ((-986 . -623) 63382) ((-972 . -102) 63332) ((-874 . -623) 63314) ((-874 . -624) 63236) ((-603 . -524) NIL) ((-1313 . -1128) T) ((-1276 . -1074) T) ((-1269 . -1074) T) ((-1268 . -907) 63140) ((-330 . -1067) 63122) ((-1248 . -1074) T) ((-1247 . -907) 62971) ((-1228 . -148) 62950) ((-1228 . -146) 62929) ((-1201 . -102) T) ((-330 . -650) 62911) ((-711 . -1234) T) ((-1200 . -102) T) ((-1199 . -102) T) ((-1191 . -174) 62862) ((-1190 . -174) 62793) ((-606 . -1074) T) ((-605 . -1074) T) ((-1184 . -174) 62724) ((-1167 . -626) 62705) ((-388 . -1067) 62670) ((-1142 . -174) 62621) ((-1020 . -1116) T) ((-987 . -1116) T) ((-928 . -1116) T) ((-881 . -914) NIL) ((-388 . -650) 62586) ((-809 . -807) 62570) ((-709 . -25) T) ((-709 . -21) T) ((-118 . -649) 62547) ((-711 . -897) 62529) ((-437 . -1116) T) ((-324 . -1238) 62508) ((-321 . -1238) T) ((-171 . -410) 62492) ((-846 . -1067) 62462) ((-484 . -989) 62424) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -623) 62406) ((-837 . -1067) 62390) ((-108 . -805) T) ((-108 . -802) T) ((-711 . -1054) 62372) ((-324 . -566) 62351) ((-321 . -566) T) ((-846 . -650) 62321) ((-837 . -650) 62291) ((-1313 . -23) T) ((-135 . -1054) 62273) ((-96 . -626) 62254) ((-1009 . -656) 62236) ((-492 . -1072) 62133) ((-45 . -296) 62058) ((-246 . -727) 62000) ((-527 . -102) T) ((-492 . -111) 61890) ((-1108 . -102) 61860) ((-1050 . -102) T) ((-1189 . -656) 61770) ((-1141 . -656) 61680) ((-864 . -656) 61639) ((-654 . -838) 61618) ((-741 . -524) 61561) ((-1070 . -1072) 61545) ((-171 . -914) 61504) ((-1151 . -93) T) ((-1079 . -294) 61479) ((-633 . -21) T) ((-633 . -25) T) ((-534 . -1116) T) ((-680 . -658) 61417) ((-370 . -102) T) ((-330 . -102) T) ((-394 . -1072) 61401) ((-1070 . -111) 61380) ((-826 . -421) 61364) ((-118 . -25) T) ((-89 . -623) 61346) ((-118 . -21) T) ((-618 . -317) 61141) ((-485 . -317) 60945) ((-1166 . -624) NIL) ((-348 . -1234) T) ((-394 . -111) 60924) ((-388 . -102) T) ((-216 . -623) 60906) ((-1166 . -623) 60888) ((-1184 . -524) 60657) ((-1020 . -727) 60607) ((-1142 . -524) 60577) ((-928 . -727) 60529) ((-492 . -626) 60279) ((-360 . -315) T) ((-1206 . -152) 60229) ((-484 . -907) 60133) ((-972 . -317) 60071) ((-846 . -102) T) ((-437 . -727) 60055) ((-227 . -838) T) ((-837 . -102) T) ((-835 . -102) T) ((-1306 . -658) 60029) ((-1268 . -1267) 60008) ((-489 . -152) 59958) ((-1268 . -1262) 59928) ((-1136 . -1238) T) ((-348 . -1054) 59895) ((-1268 . -1265) 59879) ((-1257 . -914) 59822) ((-1247 . -1246) 59801) ((-80 . -623) 59783) ((-919 . -623) 59765) ((-1247 . -1262) 59742) ((-1136 . -566) T) ((-935 . -860) T) ((-781 . -860) T) ((-682 . -860) T) ((-497 . -624) 59672) ((-497 . -623) 59613) ((-388 . -292) T) ((-1247 . -1244) 59597) ((-1270 . -1128) T) ((-219 . -624) 59527) ((-219 . -623) 59468) ((-1079 . -614) 59443) ((-828 . -626) 59427) ((-574 . -235) 59414) ((-526 . -152) 59398) ((-59 . -152) 59382) ((-506 . -152) 59366) ((-505 . -235) 59353) ((-368 . -1303) 59337) ((-362 . -1303) 59321) ((-354 . -1303) 59305) ((-324 . -372) 59284) ((-321 . -372) T) ((-492 . -1065) 59234) ((-704 . -649) 59216) ((-1304 . -658) 59190) ((-129 . -317) NIL) ((-1270 . -23) T) ((-699 . -499) 59174) ((-64 . -623) 59156) ((-1129 . -805) 59135) ((-1129 . -802) 59114) ((-560 . -499) 59051) ((-680 . -34) T) ((-492 . -239) 59003) ((-303 . -296) 58982) ((-246 . -174) 58961) ((-826 . -1074) T) ((-44 . -658) 58919) ((-1096 . -377) 58870) ((-741 . -298) 58801) ((-530 . -524) 58734) ((-827 . -1072) 58685) ((-559 . -623) 58667) ((-368 . -377) 58646) ((-362 . -377) 58625) ((-354 . -377) 58604) ((-1103 . -146) 58583) ((-1103 . -148) 58562) ((-982 . -1234) T) ((-881 . -233) 58539) ((-827 . -111) 58481) ((-792 . -146) 58460) ((-271 . -963) 58427) ((-253 . -963) 58372) ((-792 . -148) 58351) ((-790 . -146) 58330) ((-790 . -148) 58309) ((-153 . -658) 58283) ((-589 . -1116) T) ((-463 . -294) 58246) ((-464 . -148) 58225) ((-464 . -146) 58204) ((-680 . -736) T) ((-833 . -623) 58186) ((-1276 . -1116) T) ((-1269 . -1116) T) ((-1248 . -1116) T) ((-1228 . -1222) 58152) ((-1228 . -1219) 58118) ((-1191 . -298) 58097) ((-1190 . -298) 58048) ((-1184 . -298) 57999) ((-1142 . -298) 57978) ((-348 . -912) 57959) ((-1020 . -174) T) ((-928 . -174) T) ((-704 . -21) T) ((-704 . -25) T) ((-227 . -656) 57909) ((-606 . -1116) T) ((-605 . -1116) T) ((-484 . -1265) 57893) ((-484 . -1262) 57863) ((-428 . -294) 57791) ((-557 . -860) T) ((-324 . -1128) 57640) ((-321 . -1128) T) ((-1228 . -35) 57606) ((-1228 . -95) 57572) ((-84 . -623) 57554) ((-91 . -102) 57532) ((-1313 . -132) T) ((-724 . -1067) 57502) ((-602 . -626) 57483) ((-591 . -146) T) ((-591 . -148) 57465) ((-528 . -148) 57447) ((-528 . -146) T) ((-724 . -650) 57417) ((-324 . -23) 57269) ((-40 . -351) 57243) ((-321 . -23) T) ((-827 . -626) 57157) ((-1175 . -661) 57139) ((-1299 . -1074) T) ((-1175 . -382) 57121) ((-825 . -658) 56926) ((-1112 . -102) T) ((-1106 . -102) T) ((-1089 . -102) T) ((-171 . -233) 56910) ((-1082 . -102) T) ((-1052 . -102) T) ((-1035 . -102) T) ((-603 . -499) 56892) ((-636 . -102) T) ((-246 . -524) 56825) ((-493 . -102) T) ((-1306 . -736) T) ((-1304 . -736) T) ((-220 . -102) T) ((-1195 . -1072) 56708) ((-1078 . -656) 56680) ((-966 . -656) 56590) ((-1195 . -111) 56459) ((-886 . -1099) T) ((-871 . -175) T) ((-491 . -656) 56369) ((-271 . -907) 56311) ((-253 . -907) 56286) ((-827 . -1065) T) ((-691 . -1099) T) ((-686 . -1099) T) ((-633 . -235) 56259) ((-525 . -102) T) ((-520 . -102) T) ((-48 . -649) 56219) ((-518 . -102) T) ((-488 . -1099) T) ((-1296 . -1072) 56189) ((-118 . -235) NIL) ((-139 . -1099) T) ((-138 . -1099) T) ((-134 . -1099) T) ((-1050 . -38) 56173) ((-827 . -239) T) ((-827 . -249) 56152) ((-1296 . -111) 56117) ((-1276 . -727) 56014) ((-1269 . -727) 55855) ((-560 . -294) 55834) ((-1257 . -233) 55818) ((-1239 . -623) 55800) ((-616 . -93) T) ((-1079 . -624) NIL) ((-1079 . -623) 55782) ((-681 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1248 . -727) 55578) ((-1019 . -934) T) ((-153 . -736) T) ((-1195 . -626) 55431) ((-1129 . -377) 55410) ((-1040 . -25) T) ((-1020 . -524) NIL) ((-258 . -421) 55379) ((-257 . -421) 55348) ((-1040 . -21) T) ((-882 . -1067) 55300) ((-606 . -727) 55273) ((-605 . -727) 55170) ((-809 . -294) 55128) ((-127 . -102) 55106) ((-843 . -1054) 55002) ((-171 . -838) 54981) ((-327 . -658) 54878) ((-825 . -34) T) ((-724 . -102) T) ((-1136 . -1128) T) ((-1042 . -1234) T) ((-882 . -650) 54830) ((-388 . -38) 54795) ((-363 . -25) T) ((-363 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-364 . -1291) 54779) ((-361 . -1291) 54763) ((-353 . -1291) 54747) ((-171 . -358) 54726) ((-574 . -860) T) ((-1103 . -238) 54705) ((-1136 . -23) T) ((-87 . -623) 54687) ((-792 . -238) T) ((-711 . -315) T) ((-846 . -38) 54657) ((-837 . -38) 54627) ((-1296 . -626) 54569) ((-1270 . -132) T) ((-1166 . -296) 54548) ((-978 . -736) 54447) ((-978 . -803) 54400) ((-978 . -804) 54353) ((-117 . -315) T) ((-91 . -317) 54291) ((-685 . -34) T) ((-560 . -614) 54270) ((-48 . -25) T) ((-48 . -21) T) ((-825 . -804) 54249) ((-825 . -803) 54228) ((-711 . -1038) T) ((-663 . -1072) 54212) ((-881 . -656) 54142) ((-825 . -736) 54092) ((-978 . -483) 54045) ((-492 . -805) 54024) ((-492 . -802) 54003) ((-924 . -1291) 53990) ((-1195 . -1065) T) ((-663 . -111) 53969) ((-1195 . -334) 53946) ((-1220 . -102) 53924) ((-1117 . -623) 53906) ((-711 . -555) T) ((-826 . -1116) T) ((-591 . -238) T) ((-528 . -238) T) ((-1296 . -1065) T) ((-1151 . -500) 53887) ((-1240 . -102) T) ((-423 . -1116) T) ((-1151 . -623) 53853) ((-258 . -1074) 53803) ((-257 . -1074) 53753) ((-848 . -102) T) ((-297 . -658) 53740) ((-603 . -294) 53690) ((-699 . -697) 53648) ((-977 . -623) 53630) ((-882 . -102) T) ((-745 . -623) 53612) ((-725 . -623) 53594) ((-1276 . -174) 53545) ((-1269 . -174) 53476) ((-1248 . -174) 53407) ((-709 . -860) T) ((-1020 . -298) T) ((-463 . -623) 53389) ((-637 . -736) T) ((-60 . -1116) 53367) ((-251 . -152) 53351) ((-928 . -298) T) ((-1040 . -1028) T) ((-637 . -483) T) ((-722 . -1238) 53330) ((-704 . -235) NIL) ((-663 . -626) 53248) ((-171 . -656) 53143) ((-1284 . -860) 53122) ((-606 . -174) 53101) ((-605 . -174) 53052) ((-1268 . -650) 52893) ((-1268 . -1067) 52728) ((-1247 . -650) 52542) ((-1247 . -1067) 52350) ((-722 . -566) 52261) ((-417 . -934) T) ((-417 . -830) 52240) ((-327 . -804) T) ((-986 . -626) 52221) ((-327 . -736) T) ((-654 . -1165) 52205) ((-428 . -623) 52187) ((-428 . -624) 52094) ((-110 . -661) 52076) ((-176 . -315) T) ((-127 . -317) 52014) ((-110 . -382) 51996) ((-408 . -1234) T) ((-324 . -132) 51867) ((-321 . -132) T) ((-69 . -405) T) ((-110 . -124) T) ((-530 . -499) 51851) ((-664 . -1128) T) ((-603 . -19) 51833) ((-61 . -451) T) ((-61 . -405) T) ((-834 . -1116) T) ((-603 . -614) 51808) ((-487 . -1054) 51768) ((-663 . -1065) T) ((-664 . -23) T) ((-1299 . -1116) T) ((-31 . -102) T) ((-1257 . -656) 51678) ((-865 . -656) 51637) ((-826 . -727) 51486) ((-587 . -870) T) ((-581 . -656) 51458) ((-118 . -860) NIL) ((-1189 . -421) 51442) ((-1141 . -421) 51426) ((-864 . -421) 51410) ((-883 . -102) 51361) ((-1268 . -102) T) ((-1248 . -524) 51130) ((-1247 . -102) T) ((-1220 . -317) 51068) ((-1191 . -294) 51033) ((-1190 . -294) 50991) ((-535 . -93) T) ((-1184 . -294) 50819) ((-320 . -623) 50801) ((-1118 . -1116) T) ((-1096 . -658) 50675) ((-721 . -462) T) ((-699 . -623) 50607) ((-297 . -736) T) ((-108 . -923) NIL) ((-699 . -624) 50568) ((-611 . -623) 50550) ((-587 . -623) 50532) ((-560 . -624) NIL) ((-560 . -623) 50514) ((-539 . -623) 50496) ((-521 . -519) 50475) ((-497 . -1072) 50425) ((-484 . -1067) 50260) ((-517 . -519) 50239) ((-484 . -650) 50080) ((-219 . -1072) 50030) ((-368 . -658) 49982) ((-362 . -658) 49934) ((-227 . -858) T) ((-354 . -658) 49886) ((-612 . -102) 49836) ((-497 . -111) 49770) ((-492 . -377) 49749) ((-108 . -658) 49699) ((-363 . -235) 49686) ((-246 . -499) 49670) ((-352 . -148) 49652) ((-352 . -146) T) ((-171 . -379) 49623) ((-957 . -1282) 49607) ((-219 . -111) 49541) ((-882 . -317) 49506) ((-957 . -1116) 49456) ((-809 . -624) 49417) ((-809 . -623) 49399) ((-728 . -102) T) ((-339 . -1116) T) ((-216 . -626) 49376) ((-1136 . -132) T) ((-724 . -38) 49346) ((-324 . -503) 49325) ((-510 . -1234) T) ((-1268 . -292) 49291) ((-1247 . -292) 49257) ((-335 . -152) 49241) ((-449 . -1116) T) ((-1079 . -296) 49216) ((-1299 . -727) 49186) ((-48 . -235) 49173) ((-1176 . -34) T) ((-1308 . -1054) 49150) ((-494 . -34) T) ((-478 . -623) 49132) ((-256 . -294) 49106) ((-390 . -1054) 49090) ((-1189 . -1074) T) ((-1141 . -1074) T) ((-864 . -1074) T) ((-1078 . -858) T) ((-497 . -626) 49040) ((-219 . -626) 48990) ((-826 . -174) 48901) ((-530 . -294) 48853) ((-1276 . -298) 48832) ((-1215 . -373) 48806) ((-1104 . -273) 48790) ((-681 . -500) 48771) ((-681 . -623) 48737) ((-616 . -500) 48718) ((-118 . -1008) 48695) ((-616 . -623) 48645) ((-484 . -102) T) ((-182 . -500) 48626) ((-182 . -623) 48592) ((-162 . -500) 48573) ((-162 . -623) 48539) ((-157 . -500) 48520) ((-155 . -500) 48501) ((-157 . -623) 48467) ((-374 . -1116) T) ((-258 . -1116) T) ((-257 . -1116) T) ((-155 . -623) 48433) ((-1269 . -298) 48384) ((-1248 . -298) 48335) ((-882 . -1168) 48313) ((-1191 . -1018) 48279) ((-618 . -373) 48219) ((-1190 . -1018) 48185) ((-618 . -231) 48132) ((-704 . -860) T) ((-603 . -623) 48114) ((-603 . -624) NIL) ((-485 . -231) 48064) ((-497 . -1065) T) ((-1184 . -1018) 48030) ((-88 . -450) T) ((-88 . -405) T) ((-219 . -1065) T) ((-1142 . -1018) 47996) ((-1096 . -736) T) ((-722 . -1128) T) ((-606 . -298) 47975) ((-605 . -298) 47954) ((-497 . -249) T) ((-497 . -239) T) ((-219 . -249) T) ((-219 . -239) T) ((-1182 . -623) 47936) ((-882 . -38) 47888) ((-368 . -736) T) ((-362 . -736) T) ((-354 . -736) T) ((-108 . -804) T) ((-108 . -801) T) ((-722 . -23) T) ((-108 . -736) T) ((-530 . -1272) 47872) ((-1313 . -25) T) ((-484 . -292) 47838) ((-1313 . -21) T) ((-1247 . -317) 47777) ((-1193 . -102) T) ((-40 . -146) 47749) ((-40 . -148) 47721) ((-530 . -614) 47698) ((-1129 . -658) 47503) ((-612 . -317) 47441) ((-45 . -661) 47391) ((-45 . -676) 47341) ((-45 . -382) 47291) ((-1175 . -34) T) ((-881 . -858) NIL) ((-664 . -132) T) ((-495 . -623) 47273) ((-246 . -294) 47250) ((-188 . -1116) T) ((-1103 . -462) 47201) ((-826 . -524) 47075) ((-792 . -462) 47006) ((-674 . -1067) 46990) ((-657 . -34) T) ((-642 . -34) T) ((-674 . -650) 46974) ((-364 . -1067) 46926) ((-352 . -238) T) ((-361 . -1067) 46878) ((-353 . -1067) 46830) ((-271 . -1067) 46673) ((-253 . -1067) 46516) ((-790 . -462) 46467) ((-364 . -650) 46419) ((-361 . -650) 46371) ((-353 . -650) 46323) ((-271 . -650) 46172) ((-253 . -650) 46021) ((-464 . -462) 45972) ((-966 . -421) 45956) ((-741 . -623) 45938) ((-258 . -727) 45880) ((-257 . -727) 45822) ((-741 . -624) 45683) ((-491 . -421) 45667) ((-348 . -310) T) ((-534 . -93) T) ((-360 . -934) T) ((-1016 . -102) 45645) ((-924 . -1067) 45610) ((-1040 . -860) T) ((-60 . -524) 45543) ((-924 . -650) 45508) ((-1247 . -1168) 45460) ((-1020 . -294) NIL) ((-227 . -1074) T) ((-388 . -838) T) ((-1129 . -34) T) ((-591 . -462) T) ((-528 . -462) T) ((-1251 . -1109) 45444) ((-1251 . -1116) 45422) ((-246 . -614) 45399) ((-1251 . -1111) 45356) ((-1191 . -623) 45338) ((-1190 . -623) 45320) ((-1184 . -623) 45302) ((-1184 . -624) NIL) ((-1142 . -623) 45284) ((-882 . -410) 45268) ((-607 . -102) T) ((-595 . -102) T) ((-546 . -102) T) ((-1268 . -38) 45109) ((-1247 . -38) 44923) ((-880 . -148) T) ((-591 . -412) T) ((-528 . -412) T) ((-1280 . -102) T) ((-1270 . -21) T) ((-1270 . -25) T) ((-1129 . -804) 44902) ((-1129 . -803) 44881) ((-1009 . -1116) T) ((-1043 . -34) T) ((-872 . -1116) T) ((-1129 . -736) 44831) ((-674 . -102) T) ((-655 . -102) T) ((-560 . -296) 44810) ((-1206 . -102) T) ((-486 . -34) T) ((-473 . -34) T) ((-364 . -102) T) ((-361 . -102) T) ((-353 . -102) T) ((-271 . -102) T) ((-253 . -102) T) ((-487 . -315) T) ((-1078 . -1074) T) ((-966 . -1074) T) ((-324 . -649) 44716) ((-321 . -649) 44677) ((-1189 . -1116) T) ((-491 . -1074) T) ((-489 . -102) T) ((-446 . -623) 44659) ((-1141 . -1116) T) ((-256 . -623) 44641) ((-864 . -1116) T) ((-1157 . -102) T) ((-826 . -298) 44572) ((-977 . -1072) 44455) ((-487 . -1038) T) ((-882 . -914) 44414) ((-745 . -1072) 44384) ((-1050 . -656) 44343) ((-1163 . -1137) 44327) ((-463 . -1072) 44297) ((-1118 . -524) 44230) ((-977 . -111) 44099) ((-924 . -102) T) ((-40 . -238) 44071) ((-745 . -111) 44036) ((-535 . -500) 44017) ((-535 . -623) 43983) ((-59 . -102) 43933) ((-530 . -624) 43894) ((-530 . -623) 43806) ((-529 . -102) 43784) ((-526 . -102) 43734) ((-507 . -102) 43712) ((-506 . -102) 43662) ((-463 . -111) 43625) ((-258 . -174) 43604) ((-257 . -174) 43583) ((-330 . -656) 43565) ((-428 . -1072) 43539) ((-1228 . -989) 43501) ((-1015 . -1128) T) ((-388 . -656) 43451) ((-1151 . -626) 43432) ((-957 . -524) 43365) ((-497 . -805) T) ((-484 . -38) 43206) ((-428 . -111) 43173) ((-497 . -802) T) ((-1016 . -317) 43111) ((-219 . -805) T) ((-219 . -802) T) ((-1015 . -23) T) ((-722 . -132) T) ((-1247 . -410) 43081) ((-846 . -656) 43026) ((-837 . -656) 42985) ((-324 . -25) 42837) ((-171 . -421) 42821) ((-324 . -21) 42692) ((-321 . -25) T) ((-321 . -21) T) ((-874 . -377) T) ((-977 . -626) 42545) ((-110 . -34) T) ((-745 . -626) 42501) ((-725 . -626) 42483) ((-492 . -658) 42288) ((-881 . -1074) T) ((-603 . -296) 42263) ((-590 . -148) T) ((-574 . -148) T) ((-505 . -148) T) ((-1189 . -727) 42092) ((-1073 . -102) 42070) ((-1141 . -727) 41919) ((-1136 . -649) 41901) ((-864 . -727) 41871) ((-680 . -1234) T) ((-1 . -102) T) ((-428 . -626) 41779) ((-246 . -623) 41510) ((-1131 . -1116) T) ((-1257 . -421) 41494) ((-1206 . -317) 41298) ((-977 . -1065) T) ((-745 . -1065) T) ((-725 . -1065) T) ((-654 . -1116) 41248) ((-1070 . -658) 41232) ((-865 . -421) 41216) ((-521 . -102) T) ((-517 . -102) T) ((-271 . -317) 41203) ((-253 . -317) 41190) ((-1268 . -914) 41096) ((-977 . -334) 41075) ((-1247 . -914) 40926) ((-394 . -658) 40910) ((-680 . -1054) 40806) ((-489 . -317) 40610) ((-258 . -524) 40543) ((-257 . -524) 40476) ((-1157 . -317) 40402) ((-1228 . -907) 40381) ((-829 . -1116) T) ((-809 . -1072) 40365) ((-1276 . -294) 40330) ((-1269 . -294) 40288) ((-1248 . -294) 40116) ((-396 . -1116) T) ((-332 . -1116) T) ((-428 . -1065) T) ((-171 . -1074) T) ((-59 . -317) 40054) ((-809 . -111) 40033) ((-605 . -294) 39998) ((-529 . -317) 39936) ((-526 . -317) 39874) ((-507 . -317) 39812) ((-506 . -317) 39750) ((-428 . -239) 39729) ((-492 . -34) T) ((-227 . -1116) T) ((-1020 . -624) 39659) ((-1020 . -623) 39619) ((-987 . -623) 39579) ((-928 . -623) 39561) ((-709 . -148) T) ((-711 . -934) T) ((-711 . -830) T) ((-437 . -623) 39543) ((-1136 . -21) T) ((-1136 . -25) T) ((-680 . -386) 39527) ((-117 . -934) T) ((-882 . -233) 39511) ((-44 . -1234) T) ((-78 . -1234) T) ((-127 . -126) 39495) ((-1070 . -34) T) ((-1306 . -1054) 39469) ((-1304 . -1054) 39426) ((-1257 . -1074) T) ((-865 . -1074) T) ((-364 . -1168) 39405) ((-361 . -1168) 39384) ((-353 . -1168) 39363) ((-492 . -804) 39342) ((-492 . -803) 39321) ((-229 . -34) T) ((-492 . -736) 39271) ((-809 . -626) 39117) ((-672 . -1067) 39101) ((-60 . -499) 39085) ((-581 . -1074) T) ((-1189 . -174) 38976) ((-672 . -650) 38960) ((-484 . -914) 38866) ((-1141 . -174) 38777) ((-1078 . -1116) T) ((-1103 . -963) 38722) ((-966 . -1116) T) ((-827 . -658) 38673) ((-792 . -963) 38642) ((-723 . -1116) T) ((-790 . -963) 38609) ((-526 . -290) 38593) ((-680 . -912) 38552) ((-491 . -1116) T) ((-464 . -963) 38519) ((-79 . -1234) T) ((-364 . -38) 38484) ((-361 . -38) 38449) ((-353 . -38) 38414) ((-271 . -38) 38263) ((-253 . -38) 38112) ((-924 . -1168) T) ((-534 . -500) 38093) ((-633 . -148) 38072) ((-633 . -146) 38051) ((-534 . -623) 38017) ((-118 . -148) T) ((-118 . -146) NIL) ((-424 . -736) T) ((-809 . -1065) T) ((-574 . -238) T) ((-505 . -238) T) ((-352 . -462) T) ((-1276 . -1018) 37983) ((-1269 . -1018) 37949) ((-1248 . -1018) 37915) ((-924 . -38) 37880) ((-227 . -727) 37845) ((-327 . -47) 37815) ((-40 . -419) 37787) ((-141 . -623) 37769) ((-1015 . -132) T) ((-825 . -1234) T) ((-176 . -934) T) ((-559 . -377) T) ((-724 . -656) 37714) ((-616 . -626) 37695) ((-352 . -412) T) ((-681 . -626) 37676) ((-321 . -235) NIL) ((-182 . -626) 37657) ((-162 . -626) 37638) ((-157 . -626) 37619) ((-155 . -626) 37600) ((-530 . -296) 37577) ((-1247 . -233) 37547) ((-1195 . -658) 37472) ((-886 . -102) T) ((-825 . -1054) 37299) ((-45 . -34) T) ((-691 . -102) T) ((-686 . -102) T) ((-672 . -102) T) ((-664 . -21) T) ((-664 . -25) T) ((-1118 . -499) 37283) ((-685 . -1234) T) ((-488 . -102) T) ((-251 . -102) 37233) ((-556 . -854) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-1103 . -907) 37164) ((-881 . -1116) T) ((-1189 . -524) 37111) ((-1078 . -727) 37098) ((-792 . -907) 37037) ((-741 . -1072) 36880) ((-790 . -907) 36862) ((-966 . -727) 36711) ((-1141 . -524) 36663) ((-1295 . -1116) T) ((-1294 . -1116) T) ((-464 . -907) 36638) ((-491 . -727) 36487) ((-67 . -623) 36469) ((-741 . -111) 36298) ((-957 . -499) 36282) ((-1296 . -658) 36242) ((-1191 . -1072) 36125) ((-827 . -736) T) ((-1190 . -1072) 35960) ((-1184 . -1072) 35750) ((-327 . -1234) T) ((-1142 . -1072) 35633) ((-1019 . -1238) T) ((-1110 . -102) 35611) ((-825 . -386) 35580) ((-589 . -623) 35562) ((-556 . -1116) T) ((-1019 . -566) T) ((-1191 . -111) 35431) ((-1190 . -111) 35252) ((-1184 . -111) 35021) ((-1142 . -111) 34890) ((-1121 . -1119) 34854) ((-388 . -858) T) ((-1276 . -623) 34836) ((-1269 . -623) 34818) ((-882 . -656) 34755) ((-1248 . -623) 34737) ((-1248 . -624) NIL) ((-246 . -296) 34714) ((-40 . -462) T) ((-227 . -174) T) ((-171 . -1116) T) ((-741 . -626) 34499) ((-704 . -148) T) ((-704 . -146) NIL) ((-606 . -623) 34481) ((-605 . -623) 34463) ((-1136 . -235) 34450) ((-911 . -1116) T) ((-851 . -1116) T) ((-818 . -1116) T) ((-271 . -914) 34396) ((-253 . -914) 34373) ((-779 . -1116) T) ((-687 . -1116) T) ((-668 . -862) 34357) ((-633 . -238) 34336) ((-825 . -912) 34268) ((-1239 . -377) T) ((-40 . -412) NIL) ((-118 . -238) NIL) ((-1191 . -626) 34150) ((-1136 . -671) T) ((-881 . -727) 34095) ((-258 . -499) 34079) ((-257 . -499) 34063) ((-1190 . -626) 33806) ((-1184 . -626) 33601) ((-722 . -649) 33549) ((-663 . -658) 33523) ((-1142 . -626) 33405) ((-303 . -34) T) ((-1136 . -113) T) ((-741 . -1065) T) ((-591 . -1291) 33392) ((-528 . -1291) 33369) ((-1257 . -1116) T) ((-1189 . -298) 33280) ((-1141 . -298) 33211) ((-1078 . -174) T) ((-297 . -1234) T) ((-865 . -1116) T) ((-966 . -174) 33122) ((-792 . -1260) 33106) ((-654 . -524) 33039) ((-77 . -623) 33021) ((-741 . -334) 32986) ((-1195 . -736) T) ((-581 . -1116) T) ((-491 . -174) 32897) ((-251 . -317) 32835) ((-1158 . -1128) T) ((-70 . -623) 32817) ((-1296 . -736) T) ((-1191 . -1065) T) ((-1190 . -1065) T) ((-335 . -102) 32767) ((-1184 . -1065) T) ((-1158 . -23) T) ((-1142 . -1065) T) ((-91 . -1137) 32751) ((-876 . -1128) T) ((-1191 . -239) 32710) ((-1190 . -249) 32689) ((-1190 . -239) 32641) ((-1184 . -239) 32528) ((-1184 . -249) 32507) ((-327 . -912) 32413) ((-876 . -23) T) ((-171 . -727) 32241) ((-417 . -1238) T) ((-1117 . -377) T) ((-1019 . -372) T) ((-880 . -462) T) ((-1040 . -148) T) ((-957 . -294) 32193) ((-321 . -860) NIL) ((-1268 . -656) 32075) ((-884 . -102) T) ((-1247 . -656) 31930) ((-722 . -25) T) ((-417 . -566) T) ((-722 . -21) T) ((-535 . -626) 31911) ((-363 . -148) 31893) ((-363 . -146) T) ((-1163 . -1116) 31871) ((-463 . -730) T) ((-75 . -623) 31853) ((-115 . -860) T) ((-251 . -290) 31837) ((-246 . -1072) 31734) ((-81 . -623) 31716) ((-745 . -377) 31669) ((-1193 . -838) T) ((-747 . -241) 31653) ((-1176 . -1234) T) ((-142 . -241) 31635) ((-246 . -111) 31525) ((-1257 . -727) 31354) ((-48 . -148) T) ((-881 . -174) T) ((-865 . -727) 31324) ((-494 . -1234) T) ((-966 . -524) 31271) ((-663 . -736) T) ((-581 . -727) 31258) ((-1050 . -1074) T) ((-704 . -238) NIL) ((-491 . -524) 31201) ((-957 . -19) 31185) ((-957 . -614) 31162) ((-1096 . -1234) 31033) ((-826 . -624) NIL) ((-826 . -623) 31015) ((-1228 . -1067) 30898) ((-1020 . -1072) 30848) ((-423 . -623) 30830) ((-258 . -294) 30807) ((-368 . -1234) 30786) ((-362 . -1234) 30765) ((-354 . -1234) 30744) ((-257 . -294) 30721) ((-497 . -923) NIL) ((-324 . -29) 30691) ((-108 . -1234) T) ((-1019 . -1128) T) ((-219 . -923) NIL) ((-1228 . -650) 30588) ((-928 . -1072) 30540) ((-1096 . -1054) 30436) ((-1020 . -111) 30370) ((-721 . -1067) 30335) ((-1019 . -23) T) ((-928 . -111) 30273) ((-747 . -705) 30257) ((-721 . -650) 30222) ((-271 . -233) 30206) ((-437 . -1072) 30190) ((-388 . -1074) T) ((-246 . -626) 29940) ((-704 . -1222) NIL) ((-497 . -658) 29890) ((-484 . -656) 29772) ((-108 . -895) 29754) ((-108 . -897) 29736) ((-704 . -1219) NIL) ((-219 . -658) 29686) ((-368 . -1054) 29670) ((-362 . -1054) 29654) ((-335 . -317) 29592) ((-354 . -1054) 29576) ((-227 . -298) T) ((-437 . -111) 29555) ((-60 . -623) 29487) ((-171 . -174) T) ((-1136 . -860) T) ((-108 . -1054) 29447) ((-903 . -1116) T) ((-846 . -1074) T) ((-837 . -1074) T) ((-704 . -35) NIL) ((-704 . -95) NIL) ((-321 . -1008) 29408) ((-185 . -102) T) ((-590 . -462) T) ((-574 . -462) T) ((-505 . -462) T) ((-417 . -372) T) ((-246 . -1065) 29358) ((-1166 . -34) T) ((-487 . -934) T) ((-1015 . -649) 29306) ((-258 . -614) 29283) ((-257 . -614) 29260) ((-1096 . -386) 29244) ((-881 . -524) 29152) ((-246 . -239) 29104) ((-1175 . -1234) T) ((-1020 . -626) 29054) ((-928 . -626) 28991) ((-834 . -623) 28973) ((-1307 . -1128) T) ((-1299 . -623) 28955) ((-1257 . -174) 28846) ((-437 . -626) 28815) ((-108 . -386) 28797) ((-108 . -347) 28779) ((-1078 . -298) T) ((-966 . -298) 28710) ((-809 . -377) 28689) ((-657 . -1234) T) ((-642 . -1234) T) ((-1307 . -23) T) ((-596 . -1067) 28664) ((-491 . -298) 28595) ((-581 . -174) T) ((-335 . -290) 28579) ((-363 . -238) T) ((-1228 . -102) T) ((-1215 . -1116) T) ((-1104 . -1116) T) ((-1092 . -1116) T) ((-596 . -650) 28554) ((-83 . -623) 28536) ((-1200 . -854) T) ((-1199 . -854) T) ((-721 . -102) T) ((-364 . -358) 28515) ((-618 . -1116) T) ((-361 . -358) 28494) ((-353 . -358) 28473) ((-485 . -1116) T) ((-1206 . -231) 28423) ((-271 . -260) 28385) ((-1158 . -132) T) ((-618 . -620) 28361) ((-1096 . -912) 28294) ((-1020 . -1065) T) ((-928 . -1065) T) ((-485 . -620) 28273) ((-1184 . -802) NIL) ((-1184 . -805) NIL) ((-1118 . -624) 28234) ((-1118 . -623) 28216) ((-489 . -231) 28166) ((-1020 . -249) T) ((-1020 . -239) T) ((-972 . -1116) 28116) ((-437 . -1065) T) ((-928 . -249) T) ((-876 . -132) T) ((-48 . -238) T) ((-709 . -462) T) ((-853 . -1128) 28095) ((-108 . -912) NIL) ((-1228 . -292) 28061) ((-1129 . -1234) T) ((-882 . -858) 28040) ((-1015 . -25) T) ((-919 . -736) T) ((-171 . -524) 27952) ((-1015 . -21) T) ((-919 . -483) T) ((-417 . -1128) T) ((-497 . -804) T) ((-497 . -801) T) ((-924 . -358) T) ((-497 . -736) T) ((-219 . -804) T) ((-219 . -801) T) ((-722 . -235) 27939) ((-219 . -736) T) ((-853 . -23) 27891) ((-1201 . -1116) T) ((-668 . -1067) 27875) ((-1200 . -1116) T) ((-534 . -626) 27856) ((-1199 . -1116) T) ((-327 . -315) 27835) ((-1051 . -241) 27781) ((-668 . -650) 27751) ((-417 . -23) T) ((-957 . -624) 27712) ((-957 . -623) 27624) ((-654 . -499) 27608) ((-45 . -1026) 27558) ((-1129 . -1054) 27385) ((-627 . -983) T) ((-501 . -102) T) ((-339 . -623) 27367) ((-1009 . -294) 27334) ((-603 . -661) 27316) ((-131 . -1116) T) ((-129 . -1116) T) ((-603 . -382) 27298) ((-352 . -1291) 27275) ((-449 . -623) 27257) ((-1257 . -524) 27204) ((-1103 . -1067) 27047) ((-1043 . -1234) T) ((-881 . -298) T) ((-1189 . -294) 26974) ((-1103 . -650) 26823) ((-1016 . -1011) 26807) ((-792 . -1067) 26630) ((-790 . -1067) 26473) ((-792 . -650) 26302) ((-790 . -650) 26151) ((-486 . -1234) T) ((-473 . -1234) T) ((-596 . -102) T) ((-471 . -1067) 26122) ((-464 . -1067) 25965) ((-674 . -656) 25934) ((-633 . -462) 25913) ((-471 . -650) 25884) ((-464 . -650) 25733) ((-364 . -656) 25670) ((-361 . -656) 25607) ((-353 . -656) 25544) ((-271 . -656) 25454) ((-253 . -656) 25364) ((-1299 . -391) 25336) ((-527 . -1116) T) ((-118 . -462) T) ((-1214 . -102) T) ((-1108 . -1116) 25306) ((-1050 . -1116) T) ((-1131 . -93) T) ((-904 . -860) T) ((-1276 . -111) 25175) ((-360 . -1238) T) ((-1276 . -1072) 25058) ((-1129 . -386) 25027) ((-1269 . -1072) 24862) ((-1248 . -1072) 24652) ((-1269 . -111) 24473) ((-1248 . -111) 24242) ((-1228 . -317) 24229) ((-1019 . -132) T) ((-924 . -656) 24179) ((-374 . -623) 24161) ((-360 . -566) T) ((-297 . -315) T) ((-606 . -1072) 24121) ((-605 . -1072) 24004) ((-591 . -1067) 23969) ((-528 . -1067) 23914) ((-370 . -1116) T) ((-330 . -1116) T) ((-258 . -623) 23875) ((-257 . -623) 23836) ((-591 . -650) 23801) ((-528 . -650) 23746) ((-704 . -419) 23713) ((-645 . -23) T) ((-617 . -23) T) ((-40 . -907) 23663) ((-668 . -102) T) ((-606 . -111) 23616) ((-605 . -111) 23485) ((-388 . -1116) T) ((-345 . -102) T) ((-171 . -298) 23396) ((-1247 . -858) 23349) ((-724 . -1074) T) ((-1163 . -524) 23282) ((-1207 . -845) 23266) ((-1129 . -912) 23198) ((-846 . -1116) T) ((-837 . -1116) T) ((-835 . -1116) T) ((-97 . -102) T) ((-145 . -860) T) ((-622 . -895) 23182) ((-110 . -1234) T) ((-1103 . -102) T) ((-1079 . -34) T) ((-792 . -102) T) ((-790 . -102) T) ((-1276 . -626) 23064) ((-1269 . -626) 22807) ((-471 . -102) T) ((-464 . -102) T) ((-1248 . -626) 22602) ((-246 . -805) 22581) ((-246 . -802) 22560) ((-659 . -102) T) ((-606 . -626) 22518) ((-605 . -626) 22400) ((-1257 . -298) 22311) ((-674 . -644) 22295) ((-188 . -623) 22277) ((-654 . -294) 22229) ((-1050 . -727) 22213) ((-581 . -298) T) ((-977 . -658) 22138) ((-1307 . -132) T) ((-745 . -658) 22098) ((-725 . -658) 22085) ((-282 . -102) T) ((-463 . -658) 22015) ((-50 . -102) T) ((-591 . -102) T) ((-528 . -102) T) ((-1276 . -1065) T) ((-1269 . -1065) T) ((-1248 . -1065) T) ((-517 . -656) 21997) ((-330 . -727) 21979) ((-1276 . -239) 21938) ((-1269 . -249) 21917) ((-1269 . -239) 21869) ((-1248 . -239) 21756) ((-1248 . -249) 21735) ((-1228 . -38) 21632) ((-606 . -1065) T) ((-605 . -1065) T) ((-1020 . -805) T) ((-1020 . -802) T) ((-987 . -805) T) ((-987 . -802) T) ((-882 . -1074) T) ((-109 . -623) 21614) ((-704 . -462) T) ((-388 . -727) 21579) ((-428 . -658) 21553) ((-880 . -879) 21537) ((-721 . -38) 21502) ((-605 . -239) 21461) ((-40 . -734) 21433) ((-360 . -337) 21410) ((-360 . -372) T) ((-1096 . -315) 21361) ((-302 . -1128) 21242) ((-1122 . -1234) T) ((-1015 . -235) 21215) ((-173 . -102) T) ((-1251 . -623) 21182) ((-853 . -132) 21134) ((-654 . -1272) 21118) ((-846 . -727) 21088) ((-837 . -727) 21058) ((-492 . -1234) T) ((-368 . -315) T) ((-362 . -315) T) ((-354 . -315) T) ((-654 . -614) 21035) ((-417 . -132) T) ((-530 . -676) 21019) ((-108 . -315) T) ((-302 . -23) 20902) ((-530 . -661) 20886) ((-704 . -412) NIL) ((-530 . -382) 20870) ((-299 . -623) 20852) ((-91 . -1116) 20830) ((-108 . -1038) T) ((-574 . -144) T) ((-1284 . -152) 20814) ((-492 . -1054) 20641) ((-1270 . -146) 20602) ((-1270 . -148) 20563) ((-1070 . -1234) T) ((-1009 . -623) 20545) ((-828 . -1234) T) ((-872 . -623) 20527) ((-826 . -1072) 20370) ((-1295 . -93) T) ((-1294 . -93) T) ((-1189 . -624) NIL) ((-1112 . -1116) T) ((-1106 . -1116) T) ((-1103 . -317) 20357) ((-1089 . -1116) T) ((-229 . -1234) T) ((-1082 . -1116) T) ((-1052 . -1116) T) ((-1035 . -1116) T) ((-792 . -317) 20344) ((-790 . -317) 20331) ((-1189 . -623) 20313) ((-826 . -111) 20142) ((-1141 . -623) 20124) ((-636 . -1116) T) ((-587 . -175) T) ((-539 . -175) T) ((-464 . -317) 20111) ((-493 . -1116) T) ((-1141 . -624) 19859) ((-1050 . -174) T) ((-957 . -296) 19836) ((-220 . -1116) T) ((-864 . -623) 19818) ((-618 . -524) 19601) ((-81 . -626) 19542) ((-828 . -1054) 19526) ((-485 . -524) 19318) ((-977 . -736) T) ((-745 . -736) T) ((-725 . -736) T) ((-360 . -1128) T) ((-1196 . -623) 19300) ((-225 . -102) T) ((-492 . -386) 19269) ((-525 . -1116) T) ((-520 . -1116) T) ((-518 . -1116) T) ((-809 . -658) 19243) ((-1040 . -462) T) ((-972 . -524) 19176) ((-360 . -23) T) ((-645 . -132) T) ((-617 . -132) T) ((-363 . -462) T) ((-246 . -377) 19155) ((-388 . -174) T) ((-1268 . -1074) T) ((-1247 . -1074) T) ((-227 . -1018) T) ((-826 . -626) 18892) ((-709 . -397) T) ((-428 . -736) T) ((-711 . -1238) T) ((-1158 . -649) 18840) ((-590 . -879) 18824) ((-1299 . -1072) 18808) ((-1176 . -1210) 18784) ((-711 . -566) T) ((-127 . -1116) 18762) ((-724 . -1116) T) ((-668 . -38) 18732) ((-492 . -912) 18664) ((-255 . -1116) T) ((-189 . -1116) T) ((-363 . -412) T) ((-324 . -148) 18643) ((-324 . -146) 18622) ((-129 . -524) NIL) ((-117 . -566) T) ((-321 . -148) 18578) ((-321 . -146) 18534) ((-48 . -462) T) ((-163 . -1116) T) ((-158 . -1116) T) ((-1176 . -107) 18481) ((-792 . -1168) 18459) ((-699 . -34) T) ((-1299 . -111) 18438) ((-560 . -34) T) ((-494 . -107) 18422) ((-258 . -296) 18399) ((-257 . -296) 18376) ((-1240 . -854) T) ((-881 . -294) 18327) ((-45 . -1234) T) ((-1228 . -914) 18308) ((-827 . -1234) T) ((-826 . -1065) T) ((-672 . -656) 18277) ((-1195 . -47) 18254) ((-826 . -334) 18216) ((-1103 . -38) 18065) ((-826 . -239) 18044) ((-792 . -38) 17873) ((-790 . -38) 17722) ((-1131 . -500) 17703) ((-464 . -38) 17552) ((-1131 . -623) 17518) ((-1134 . -102) T) ((-654 . -624) 17479) ((-654 . -623) 17391) ((-591 . -1168) T) ((-528 . -1168) T) ((-1163 . -499) 17375) ((-352 . -1067) 17320) ((-1220 . -1116) 17298) ((-1158 . -25) T) ((-1158 . -21) T) ((-352 . -650) 17243) ((-1299 . -626) 17192) ((-484 . -1074) T) ((-1240 . -1116) T) ((-1248 . -802) NIL) ((-1248 . -805) NIL) ((-1015 . -860) 17171) ((-848 . -1116) T) ((-829 . -623) 17153) ((-876 . -21) T) ((-876 . -25) T) ((-809 . -736) T) ((-176 . -1238) T) ((-591 . -38) 17118) ((-528 . -38) 17083) ((-396 . -623) 17065) ((-341 . -102) T) ((-332 . -623) 17047) ((-171 . -294) 17005) ((-63 . -1234) T) ((-112 . -102) T) ((-882 . -1116) T) ((-176 . -566) T) ((-724 . -727) 16975) ((-302 . -132) 16858) ((-227 . -623) 16840) ((-227 . -624) 16770) ((-1019 . -649) 16709) ((-1299 . -1065) T) ((-1136 . -148) T) ((-642 . -1210) 16684) ((-741 . -923) 16663) ((-603 . -34) T) ((-657 . -107) 16647) ((-642 . -107) 16593) ((-633 . -907) 16550) ((-1257 . -294) 16477) ((-741 . -658) 16366) ((-303 . -1234) T) ((-1195 . -1054) 16262) ((-957 . -628) 16239) ((-587 . -586) T) ((-587 . -537) T) ((-539 . -537) T) ((-118 . -907) NIL) ((-1184 . -923) NIL) ((-1078 . -624) 16154) ((-1078 . -623) 16136) ((-966 . -623) 16118) ((-723 . -500) 16068) ((-352 . -102) T) ((-258 . -1072) 15965) ((-257 . -1072) 15862) ((-404 . -102) T) ((-31 . -1116) T) ((-966 . -624) 15723) ((-723 . -623) 15658) ((-1297 . -1227) 15627) ((-491 . -623) 15609) ((-491 . -624) 15470) ((-271 . -421) 15454) ((-253 . -421) 15438) ((-321 . -238) NIL) ((-258 . -111) 15328) ((-257 . -111) 15218) ((-1191 . -658) 15143) ((-1190 . -658) 15040) ((-1184 . -658) 14892) ((-1142 . -658) 14817) ((-360 . -132) T) ((-82 . -451) T) ((-82 . -405) T) ((-1019 . -25) T) ((-1019 . -21) T) ((-883 . -1116) 14768) ((-40 . -1067) 14713) ((-882 . -727) 14665) ((-40 . -650) 14610) ((-388 . -298) T) ((-171 . -1018) 14561) ((-1103 . -914) 14496) ((-704 . -397) T) ((-1015 . -1013) 14480) ((-711 . -1128) T) ((-704 . -167) 14462) ((-792 . -914) 14405) ((-790 . -914) 14389) ((-1268 . -1116) T) ((-1247 . -1116) T) ((-1181 . -102) T) ((-324 . -1219) 14368) ((-324 . -1222) 14347) ((-464 . -914) 14324) ((-324 . -973) 14303) ((-135 . -1128) T) ((-117 . -1128) T) ((-663 . -1234) T) ((-612 . -1282) 14287) ((-711 . -23) T) ((-612 . -1116) 14237) ((-324 . -95) 14216) ((-91 . -524) 14149) ((-176 . -372) T) ((-258 . -626) 13899) ((-257 . -626) 13649) ((-324 . -35) 13628) ((-618 . -499) 13562) ((-135 . -23) T) ((-117 . -23) T) ((-980 . -102) T) ((-728 . -1116) T) ((-485 . -499) 13499) ((-417 . -649) 13447) ((-663 . -1054) 13343) ((-972 . -499) 13327) ((-364 . -1074) T) ((-361 . -1074) T) ((-353 . -1074) T) ((-271 . -1074) T) ((-253 . -1074) T) ((-881 . -624) NIL) ((-881 . -623) 13309) ((-1295 . -500) 13290) ((-1294 . -500) 13271) ((-1307 . -21) T) ((-1295 . -623) 13237) ((-1294 . -623) 13203) ((-581 . -1018) T) ((-741 . -736) T) ((-1307 . -25) T) ((-258 . -1065) 13153) ((-257 . -1065) 13103) ((-72 . -1234) T) ((-1158 . -235) 13076) ((-258 . -239) 13028) ((-257 . -239) 12980) ((-1136 . -238) T) ((-40 . -102) T) ((-924 . -1074) T) ((-704 . -907) NIL) ((-1198 . -102) T) ((-129 . -499) 12962) ((-1191 . -736) T) ((-1190 . -736) T) ((-1184 . -736) T) ((-1184 . -801) NIL) ((-1184 . -804) NIL) ((-968 . -102) T) ((-935 . -102) T) ((-880 . -1067) 12949) ((-1142 . -736) T) ((-781 . -102) T) ((-682 . -102) T) ((-880 . -650) 12936) ((-556 . -623) 12918) ((-484 . -1116) T) ((-348 . -1128) T) ((-176 . -1128) T) ((-327 . -934) 12897) ((-1268 . -727) 12738) ((-882 . -174) T) ((-1247 . -727) 12552) ((-853 . -21) 12504) ((-853 . -25) 12456) ((-251 . -1165) 12440) ((-127 . -524) 12373) ((-417 . -25) T) ((-417 . -21) T) ((-348 . -23) T) ((-171 . -624) 12139) ((-171 . -623) 12121) ((-176 . -23) T) ((-654 . -296) 12098) ((-530 . -34) T) ((-911 . -623) 12080) ((-89 . -1234) T) ((-851 . -623) 12062) ((-818 . -623) 12044) ((-779 . -623) 12026) ((-687 . -623) 12008) ((-246 . -658) 11813) ((-627 . -113) T) ((-1193 . -1116) T) ((-1189 . -1072) 11636) ((-1166 . -1234) T) ((-1141 . -1072) 11479) ((-864 . -1072) 11463) ((-1251 . -628) 11447) ((-1189 . -111) 11256) ((-1141 . -111) 11085) ((-864 . -111) 11064) ((-1241 . -860) T) ((-1257 . -624) NIL) ((-1257 . -623) 11046) ((-352 . -1168) T) ((-865 . -623) 11028) ((-1092 . -294) 11007) ((-80 . -1234) T) ((-919 . -1234) T) ((-1020 . -923) NIL) ((-1228 . -656) 10917) ((-618 . -294) 10893) ((-1220 . -524) 10826) ((-497 . -1234) T) ((-581 . -623) 10808) ((-485 . -294) 10787) ((-1103 . -233) 10771) ((-527 . -93) T) ((-1020 . -658) 10721) ((-219 . -1234) T) ((-1019 . -235) 10687) ((-972 . -294) 10639) ((-297 . -934) T) ((-827 . -315) 10618) ((-880 . -102) T) ((-792 . -233) 10602) ((-928 . -658) 10554) ((-721 . -656) 10504) ((-704 . -734) 10471) ((-645 . -21) T) ((-645 . -25) T) ((-617 . -21) T) ((-557 . -102) T) ((-352 . -38) 10436) ((-497 . -895) 10418) ((-497 . -897) 10400) ((-484 . -727) 10241) ((-219 . -895) 10223) ((-64 . -1234) T) ((-219 . -897) 10205) ((-617 . -25) T) ((-437 . -658) 10179) ((-1189 . -626) 9948) ((-497 . -1054) 9908) ((-882 . -524) 9820) ((-1141 . -626) 9612) ((-864 . -626) 9530) ((-219 . -1054) 9490) ((-246 . -34) T) ((-1016 . -1116) 9468) ((-590 . -1067) 9455) ((-574 . -1067) 9442) ((-505 . -1067) 9407) ((-1268 . -174) 9338) ((-1247 . -174) 9269) ((-590 . -650) 9256) ((-574 . -650) 9243) ((-505 . -650) 9208) ((-722 . -146) 9187) ((-722 . -148) 9166) ((-711 . -132) T) ((-137 . -475) 9143) ((-1163 . -623) 9075) ((-668 . -666) 9059) ((-129 . -294) 9009) ((-117 . -132) T) ((-487 . -1238) T) ((-618 . -614) 8985) ((-485 . -614) 8964) ((-345 . -344) 8933) ((-607 . -1116) T) ((-595 . -1116) T) ((-546 . -1116) T) ((-487 . -566) T) ((-1189 . -1065) T) ((-1141 . -1065) T) ((-864 . -1065) T) ((-246 . -804) 8912) ((-246 . -803) 8891) ((-1189 . -334) 8868) ((-246 . -736) 8818) ((-972 . -19) 8802) ((-497 . -386) 8784) ((-497 . -347) 8766) ((-1141 . -334) 8738) ((-363 . -1291) 8715) ((-219 . -386) 8697) ((-219 . -347) 8679) ((-972 . -614) 8656) ((-1189 . -239) T) ((-1280 . -1116) T) ((-674 . -1116) T) ((-655 . -1116) T) ((-1206 . -1116) T) ((-1103 . -260) 8593) ((-596 . -656) 8553) ((-364 . -1116) T) ((-361 . -1116) T) ((-353 . -1116) T) ((-271 . -1116) T) ((-253 . -1116) T) ((-84 . -1234) T) ((-128 . -102) 8531) ((-122 . -102) 8509) ((-1247 . -524) 8369) ((-1206 . -620) 8348) ((-1157 . -1116) T) ((-1131 . -626) 8329) ((-1096 . -934) 8280) ((-489 . -1116) T) ((-1020 . -804) T) ((-1020 . -801) T) ((-489 . -620) 8259) ((-258 . -805) 8238) ((-258 . -802) 8217) ((-257 . -805) 8196) ((-40 . -1168) NIL) ((-257 . -802) 8175) ((-1020 . -736) T) ((-129 . -19) 8157) ((-987 . -804) T) ((-709 . -1067) 8122) ((-928 . -736) T) ((-924 . -1116) T) ((-903 . -623) 8104) ((-129 . -614) 8079) ((-709 . -650) 8044) ((-91 . -499) 8028) ((-497 . -912) NIL) ((-882 . -298) T) ((-227 . -1072) 7993) ((-846 . -294) 7972) ((-219 . -912) NIL) ((-843 . -1128) 7951) ((-59 . -1116) 7901) ((-529 . -1116) 7879) ((-526 . -1116) 7829) ((-507 . -1116) 7807) ((-506 . -1116) 7757) ((-590 . -102) T) ((-574 . -102) T) ((-505 . -102) T) ((-484 . -174) 7688) ((-368 . -934) T) ((-362 . -934) T) ((-354 . -934) T) ((-227 . -111) 7644) ((-843 . -23) 7596) ((-437 . -736) T) ((-108 . -934) T) ((-40 . -38) 7541) ((-108 . -830) T) ((-591 . -358) T) ((-528 . -358) T) ((-668 . -656) 7500) ((-324 . -462) 7479) ((-321 . -462) T) ((-612 . -524) 7412) ((-417 . -235) 7385) ((-348 . -132) T) ((-176 . -132) T) ((-302 . -25) 7249) ((-302 . -21) 7132) ((-45 . -1210) 7111) ((-66 . -623) 7093) ((-55 . -102) T) ((-345 . -656) 7075) ((-1285 . -102) T) ((-1284 . -102) 7025) ((-45 . -107) 6975) ((-829 . -626) 6959) ((-1276 . -658) 6884) ((-1269 . -658) 6781) ((-1248 . -658) 6633) ((-1248 . -923) NIL) ((-1215 . -623) 6615) ((-1118 . -435) 6599) ((-1118 . -377) 6578) ((-396 . -626) 6562) ((-332 . -626) 6546) ((-1207 . -102) T) ((-1112 . -93) T) ((-1079 . -1234) T) ((-1103 . -656) 6456) ((-1078 . -1072) 6443) ((-1078 . -111) 6428) ((-966 . -1072) 6271) ((-966 . -111) 6100) ((-792 . -656) 6010) ((-790 . -656) 5920) ((-633 . -1067) 5907) ((-674 . -727) 5891) ((-633 . -650) 5878) ((-491 . -1072) 5721) ((-487 . -372) T) ((-471 . -656) 5677) ((-464 . -656) 5587) ((-227 . -626) 5537) ((-364 . -727) 5489) ((-361 . -727) 5441) ((-118 . -1067) 5386) ((-353 . -727) 5338) ((-271 . -727) 5187) ((-253 . -727) 5036) ((-1106 . -93) T) ((-1089 . -93) T) ((-118 . -650) 4981) ((-1082 . -93) T) ((-957 . -661) 4965) ((-1073 . -1116) 4943) ((-491 . -111) 4772) ((-1052 . -93) T) ((-1035 . -93) T) ((-957 . -382) 4756) ((-254 . -102) T) ((-977 . -47) 4735) ((-74 . -623) 4717) ((-722 . -238) T) ((-720 . -102) T) ((-709 . -102) T) ((-1 . -1116) T) ((-631 . -1128) T) ((-1104 . -623) 4699) ((-636 . -93) T) ((-1092 . -623) 4681) ((-924 . -727) 4646) ((-127 . -499) 4630) ((-493 . -93) T) ((-631 . -23) T) ((-400 . -23) T) ((-87 . -1234) T) ((-220 . -93) T) ((-618 . -623) 4612) ((-618 . -624) NIL) ((-485 . -624) NIL) ((-485 . -623) 4594) ((-360 . -25) T) ((-360 . -21) T) ((-50 . -656) 4553) ((-521 . -1116) T) ((-517 . -1116) T) ((-128 . -317) 4491) ((-122 . -317) 4429) ((-606 . -658) 4403) ((-605 . -658) 4328) ((-591 . -656) 4278) ((-227 . -1065) T) ((-528 . -656) 4208) ((-388 . -1018) T) ((-227 . -249) T) ((-227 . -239) T) ((-1078 . -626) 4180) ((-1078 . -628) 4161) ((-972 . -624) 4122) ((-972 . -623) 4034) ((-966 . -626) 3823) ((-880 . -38) 3810) ((-723 . -626) 3760) ((-1268 . -298) 3711) ((-1247 . -298) 3662) ((-491 . -626) 3447) ((-1136 . -462) T) ((-512 . -860) T) ((-324 . -1155) 3426) ((-1015 . -148) 3405) ((-1015 . -146) 3384) ((-505 . -317) 3371) ((-303 . -1210) 3350) ((-1201 . -623) 3332) ((-1200 . -623) 3314) ((-1199 . -623) 3296) ((-881 . -1072) 3241) ((-487 . -1128) T) ((-140 . -845) 3223) ((-115 . -845) 3204) ((-633 . -102) T) ((-1220 . -499) 3188) ((-258 . -377) 3167) ((-257 . -377) 3146) ((-1078 . -1065) T) ((-303 . -107) 3096) ((-131 . -623) 3078) ((-129 . -624) NIL) ((-129 . -623) 3022) ((-118 . -102) T) ((-966 . -1065) T) ((-881 . -111) 2951) ((-487 . -23) T) ((-463 . -1234) T) ((-491 . -1065) T) ((-1078 . -239) T) ((-966 . -334) 2920) ((-40 . -914) 2872) ((-491 . -334) 2829) ((-364 . -174) T) ((-361 . -174) T) ((-353 . -174) T) ((-271 . -174) 2740) ((-253 . -174) 2651) ((-977 . -1054) 2547) ((-527 . -500) 2528) ((-745 . -1054) 2499) ((-527 . -623) 2465) ((-428 . -1234) 2354) ((-1121 . -102) T) ((-1108 . -623) 2313) ((-1050 . -623) 2295) ((-704 . -1067) 2245) ((-1297 . -152) 2229) ((-1295 . -626) 2210) ((-1294 . -626) 2191) ((-1289 . -623) 2173) ((-1276 . -736) T) ((-704 . -650) 2123) ((-1269 . -736) T) ((-1248 . -801) NIL) ((-1248 . -804) NIL) ((-171 . -1072) 2033) ((-924 . -174) T) ((-881 . -626) 1963) ((-1248 . -736) T) ((-1019 . -351) 1937) ((-225 . -656) 1889) ((-1016 . -524) 1822) ((-853 . -860) 1801) ((-574 . -1168) T) ((-484 . -298) 1752) ((-606 . -736) T) ((-370 . -623) 1734) ((-330 . -623) 1716) ((-428 . -1054) 1612) ((-605 . -736) T) ((-417 . -860) 1563) ((-171 . -111) 1459) ((-843 . -132) 1411) ((-747 . -152) 1395) ((-1284 . -317) 1333) ((-497 . -315) T) ((-388 . -623) 1300) ((-530 . -1026) 1284) ((-388 . -624) 1198) ((-219 . -315) T) ((-142 . -152) 1180) ((-724 . -294) 1159) ((-497 . -1038) T) ((-590 . -38) 1146) ((-574 . -38) 1133) ((-505 . -38) 1098) ((-219 . -1038) T) ((-881 . -1065) T) ((-846 . -623) 1080) ((-837 . -623) 1062) ((-835 . -623) 1044) ((-826 . -923) 1023) ((-1308 . -1128) T) ((-1257 . -1072) 846) ((-865 . -1072) 830) ((-881 . -249) T) ((-881 . -239) NIL) ((-699 . -1234) T) ((-1308 . -23) T) ((-826 . -658) 719) ((-560 . -1234) T) ((-428 . -347) 703) ((-581 . -1072) 690) ((-1257 . -111) 499) ((-711 . -649) 481) ((-865 . -111) 460) ((-390 . -23) T) ((-171 . -626) 238) ((-1206 . -524) 30) ((-886 . -1116) T) ((-691 . -1116) T) ((-686 . -1116) T) ((-672 . -1116) T)) \ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index ffcf7e03..247ad883 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3485733142) -(4461 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3485743638) +(4462 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -332,8 +332,9 @@ |PartialDifferentialDomain&| |PartialDifferentialDomain| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| - |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| - |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| + |PartialDifferentialRing| |PartialDifferentialSpace&| + |PartialDifferentialSpace| |PendantTree| |Permanent| + |PermutationCategory| |PermutationGroup| |Permutation| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| @@ -486,665 +487,664 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |delete!| |probablyZeroDim?| |morphism| - |exprToGenUPS| |rightExactQuotient| |bezoutDiscriminant| |e01sbf| - |parents| |quotientByP| |systemCommand| |inv| |ravel| |match?| - |doubleDisc| |prinshINFO| |plus!| |integralRepresents| |red| |gensym| - |HermiteIntegrate| |autoCoerce| |rotatez| |computeBasis| - |fillPascalTriangle| |rk4| |ground?| |reshape| |split!| |randomLC| - |SturmHabichtMultiple| |Is| |UpTriBddDenomInv| |cSin| |nullary?| - |setClosed| |figureUnits| |nextItem| |ground| |commutative?| |irForm| - |numberOfImproperPartitions| |c05nbf| |permutationGroup| |froot| - |increasePrecision| |makeGraphImage| |genericRightTraceForm| - |maxPoints3D| |leadingMonomial| |normal| |linSolve| |restorePrecision| - |indicialEquationAtInfinity| |nextPrimitiveNormalPoly| - |viewWriteAvailable| |univariatePolynomialsGcds| |modularFactor| - |gbasis| |edf2efi| |hue| |leadingCoefficient| |setTex!| |cycleElt| - |adaptive3D?| |normalDeriv| |bivariate?| |constantOpIfCan| - |mkIntegral| |getConstant| |norm| |fixedPointExquo| - |primitiveMonomials| |close| |d02bhf| |s14aaf| |OMconnOutDevice| - |alphanumeric| |listYoungTableaus| F |distdfact| |zeroOf| |powmod| - |divideIfCan!| |integralLastSubResultant| |reductum| |update| - |algDsolve| |middle| |invmultisect| |digit| |inverseIntegralMatrix| - |toScale| |leftMult| |aspFilename| |saturate| |lquo| |display| - |OMReadError?| |elColumn2!| |isEquiv| |createPrimitiveElement| - |revert| |intermediateResultsIF| |vectorise| |universe| - |indiceSubResultantEuclidean| |airyBi| |OMgetError| - |explicitlyFinite?| |quasiComponent| |normalize| |domainTemplate| - |cycleSplit!| |virtualDegree| |backOldPos| |e01bef| |d02bbf| - |OMgetVariable| |univariateSolve| |showIntensityFunctions| - |algebraicVariables| |rewriteIdealWithHeadRemainder| |bumprow| - |FormatArabic| |nlde| |countRealRootsMultiple| |tubeRadius| |palgint0| - |createMultiplicationTable| |gcdcofactprim| |contains?| |moebiusMu| - |reciprocalPolynomial| |fibonacci| |position| |space| |argument| - |intersect| |expr| |singleFactorBound| |fixPredicate| |normFactors| - |rightFactorCandidate| |degreePartition| |iprint| |input| ** - |OMputVariable| |OMunhandledSymbol| |karatsubaDivide| - |ScanFloatIgnoreSpacesIfCan| |operation| |algebraic?| - |brillhartIrreducible?| |callForm?| |e02aef| |tanAn| |library| - |loopPoints| |cycleEntry| |intensity| |f04faf| |midpoints| - |factorAndSplit| |subNodeOf?| |column| |LiePolyIfCan| |remainder| - |prinb| |factorList| |whitePoint| |oneDimensionalArray| - |doubleComplex?| |pseudoRemainder| |sizePascalTriangle| |signAround| - |frobenius| |modifyPoint| |legendre| |size| |variable| - |symmetricSquare| |sdf2lst| |fprindINFO| |pdf2df| |acscIfCan| - |minimumDegree| |mesh?| |useSingleFactorBound| |rowEchelonLocal| - |generalizedInverse| |iterators| |primitivePart| |goodPoint| - |nextIrreduciblePoly| |cCot| |normalise| |swapRows!| - |semiLastSubResultantEuclidean| |set| - |unprotectedRemoveRedundantFactors| |logGamma| |rational?| |lyndon?| - |kroneckerDelta| |binary| |ran| |quoByVar| |errorKind| |setEpilogue!| - |unit?| |expextendedint| |getMatch| |tab| |basisOfRightNucleus| - |previous| |conditionP| |fi2df| |cycleRagits| |wrregime| - |invertibleElseSplit?| |deepestTail| |characteristicPolynomial| - |generalTwoFactor| |binarySearchTree| |push| |getExplanations| - |fTable| |extendedSubResultantGcd| |sqfree| |elements| |headReduced?| - |createNormalElement| |cdr| |pascalTriangle| |notelem| |initTable!| - |commaSeparate| |integralBasis| |bandedHessian| - |removeRedundantFactorsInPols| |c06fqf| |totolex| |trapezoidalo| - |uniform| |iidsum| |sPol| |schema| |primPartElseUnitCanonical| - |purelyAlgebraic?| |say| |basisOfCommutingElements| |changeNameToObjf| - |cAsinh| |true| |printTypes| |arguments| |partialQuotients| |e01daf| - |initiallyReduce| |isPlus| |integrate| |preprocess| |genericPosition| - |s18aef| |colorFunction| |category| |leftAlternative?| |adaptive| - |lazyPseudoQuotient| |autoReduced?| |yCoord| |reset| |lllip| |node| - |ode| |max| |mindegTerm| |fortranLogical| |domain| |subtractIfCan| - |insertBottom!| |iilog| |lSpaceBasis| |clipPointsDefault| - |SturmHabichtCoefficients| |insert| |f02akf| |symbolTableOf| - |PDESolve| |package| |fortranLinkerArgs| |diagonal?| - |generalInfiniteProduct| |write| |radix| |showScalarValues| |inc| - |pair?| |f2df| |selectSumOfSquaresRoutines| |exp| |byteBuffer| - |setImagSteps| |save| |cAcsch| |acoshIfCan| |primextintfrac| |tab1| - |listOfLists| |show| |shellSort| |padecf| |multisect| |distFact| - |leadingCoefficientRicDE| |showAll?| |null?| |clikeUniv| |extractTop!| - |rootPoly| |block| |expPot| |iiatan| |setButtonValue| - |genericRightMinimalPolynomial| |wordInGenerators| - |leftRankPolynomial| |trace| |createIrreduciblePoly| |physicalLength| - |argumentList!| |eof?| |partitions| |algebraicCoefficients?| - |basisOfRightAnnihilator| |fixedPoints| |regime| |eigenvector| - |mergeDifference| |f04qaf| |dihedralGroup| |printCode| |interpolate| - |partialNumerators| |directSum| |rk4f| |varList| |delay| |idealiser| - |e02dff| |rubiksGroup| |mapMatrixIfCan| |RemainderList| - |leftScalarTimes!| |e02bdf| |e04gcf| |positiveRemainder| |clipSurface| - |lazy?| |separateFactors| |cap| |generalizedEigenvector| |minordet| - |OMputObject| |thetaCoord| |readLine!| |open| |removeZero| - |lookupFunction| |fmecg| |dflist| |collectUpper| |dmpToHdmp| - |deepestInitial| |useSingleFactorBound?| |deleteRoutine!| - |OMgetEndBVar| |rowEch| |psolve| |nonSingularModel| |extractProperty| - |splitDenominator| |drawComplex| |cSinh| |addMatchRestricted| - |OMgetString| |obj| |retractIfCan| |finiteBound| |putColorInfo| |bits| - |double| |resultantReduit| |ratPoly| |eyeDistance| |dmp2rfi| |cache| - |constant| |e02dcf| |semiDegreeSubResultantEuclidean| - |numberOfNormalPoly| |addBadValue| |separate| |zeroSetSplit| |dfRange| - |uniform01| |operations| |zeroSquareMatrix| |patternMatchTimes| - |closedCurve?| |outputArgs| |mainValue| |genericLeftDiscriminant| - |cfirst| |df2ef| |showTheRoutinesTable| |imaginary| |iiabs| |euler| - |dmpToP| |discriminant| |root| |iidprod| |safeFloor| |log10| |heap| - |sinIfCan| |toseInvertibleSet| |module| |denomRicDE| |inspect| - |drawToScale| |mainPrimitivePart| |support| |bitand| |f02abf| - |infinity| |internalIntegrate0| |color| |makeSeries| |cosSinInfo| - |reify| |outputFixed| |unrankImproperPartitions1| |coth2trigh| - |bitior| |groebner| |dimensionOfIrreducibleRepresentation| - |explicitlyEmpty?| |minIndex| |constantRight| |s17ajf| - |raisePolynomial| |nsqfree| |keys| |setAdaptive| |partition| - |elliptic| |definingInequation| |singularitiesOf| |antiCommutative?| - |e01bff| |radicalRoots| |setScreenResolution| |prime?| |kernel| - |Lazard| |useEisensteinCriterion?| |map| |taylorRep| |sts2stst| - |isQuotient| |initializeGroupForWordProblem| |tubeRadiusDefault| - |viewport2D| |constantIfCan| |derivative| |numericalOptimization| - |LazardQuotient| |list| |unknownEndian| |perfectNthPower?| - |horizConcat| |OMgetEndAtp| |print| |mainVariable| |lhs| |maxrank| - |setelt!| |imagK| |negative?| |draw| |isTimes| |dihedral| - |checkForZero| |inputOutputBinaryFile| |sinhIfCan| |resolve| - |currentScope| |f04mbf| |rhs| |noLinearFactor?| |repeating| - |csch2sinh| |irVar| |OMgetAttr| |solveRetract| |lexTriangular| - |exponential1| |OMencodingBinary| |ParCondList| |pointColor| - |complexZeros| |cyclicEqual?| |binomial| |resetAttributeButtons| - |distribute| |nullity| |currentEnv| |numberOfVariables| - |lowerPolynomial| |matrixConcat3D| |derivationCoordinates| |moduleSum| - |associates?| |multiEuclideanTree| |SFunction| |convert| |bitTruth| - |height| |rootDirectory| |complexElementary| |pushup| |hasoln| - |argumentListOf| |stirling2| |monomials| |makeObject| |sechIfCan| - |optAttributes| |realZeros| |shallowExpand| |row| |setColumn!| - |palglimint| |continuedFraction| |companionBlocks| |imagJ| |rootPower| - |coef| |listConjugateBases| |primintfldpoly| |child?| |hostPlatform| - |shiftRoots| |parts| |repeatUntilLoop| |solid?| |jacobiIdentity?| - |quasiRegular?| |dom| |inverseLaplace| |prepareDecompose| |iiperm| - |inR?| |complement| |invertible?| |s13acf| |getPickedPoints| - |schwerpunkt| |listexp| |simplify| Y |clipBoolean| - |showFortranOutputStack| |pleskenSplit| |cylindrical| |makeSin| - |subResultantChain| |alternating| |lastSubResultantEuclidean| - |enterInCache| |sqfrFactor| |tryFunctionalDecomposition| - |numberOfIrreduciblePoly| |characteristicSerie| |rightGcd| |stFunc2| - |curveColor| |label| |homogeneous?| |lintgcd| |groebnerFactorize| - |lflimitedint| |primitiveElement| |positive?| |hexDigit| |bothWays| - |jordanAlgebra?| |entry| |divergence| |axesColorDefault| |sncndn| - |completeEchelonBasis| |asecIfCan| |infiniteProduct| |f02wef| |list?| - |critpOrder| |iiacsch| |determinant| |pile| |possiblyInfinite?| - |exprHasWeightCosWXorSinWX| |ffactor| |fortranTypeOf| - |nativeModuleExtension| |leadingIndex| |addmod| |realSolve| |tubePlot| - |coleman| |generators| |remove!| |hex| |LyndonWordsList| |tanNa| - |decomposeFunc| |binaryTree| |meshFun2Var| |basisOfNucleus| - |localIntegralBasis| |minimalPolynomial| |lowerCase!| |readInt16!| - |showAllElements| |newSubProgram| |rationalIfCan| |quatern| - |tanintegrate| |smith| |numberOfHues| |LyndonBasis| |repSq| |e02zaf| - |incr| |dAndcExp| |transcendent?| |cyclic?| - |genericLeftMinimalPolynomial| |permanent| |polyRDE| |swap| - |extensionDegree| |OMputInteger| |constructor| |outputMeasure| |hi| - |real?| |qualifier| |moduloP| |tail| |evaluate| |hdmpToDmp| |d01bbf| - |numberOfChildren| |elRow1!| |palgRDE| |contract| |cSec| - |multiplyCoefficients| |option| |subTriSet?| |stoseInvertibleSet| - |rightUnit| |complexEigenvalues| |bezoutResultant| |showSummary| - |antisymmetric?| |prevPrime| |diagonalMatrix| |constantKernel| - |every?| |ricDsolve| |stosePrepareSubResAlgo| |mappingMode| - |resetVariableOrder| |rules| |units| |multinomial| |HenselLift| - |npcoef| |minset| |top| |compound?| |cycleTail| |LyndonWordsList1| - |monicRightDivide| |showAttributes| |exponent| |matrixDimensions| - |putProperty| |e01bhf| |region| |continue| |cPower| |completeSmith| - |rootRadius| |mathieu11| |composites| |integral| |anticoord| - |solveLinear| |bracket| |bsolve| |tubePointsDefault| |fractRadix| - |status| |removeSuperfluousQuasiComponents| |binomThmExpt| - |rightTraceMatrix| |mappingAst| |name| |gcdcofact| |unknown| - |setAttributeButtonStep| |palgRDE0| |powerAssociative?| - |contractSolve| |applyRules| |comment| |tanhIfCan| |interReduce| - |body| |mesh| |signatureAst| |vark| |acothIfCan| |key?| - |multiplyExponents| |code| |internalDecompose| |hostByteOrder| - |complexForm| |listLoops| |bumptab1| |subscriptedVariables| - |numberOfFractionalTerms| |minimumExponent| |cosIfCan| |ramified?| - |getIdentifier| |createZechTable| |c05adf| |addiag| |null| - |conditionsForIdempotents| |generalSqFr| |primlimintfrac| - |closedCurve| |modulus| |box| |mainVariable?| |leftOne| |OMreceive| - |vedf2vef| |delta| |not| EQ |associator| |OMsend| |complex?| - |extractIfCan| |groebSolve| |cTanh| |s20acf| |OMputEndAtp| |zag| |and| - |mapCoef| |removeDuplicates!| |trigs2explogs| |totalfract| |ipow| - |weight| |generate| |intcompBasis| |seed| |stoseInvertible?sqfreg| - |or| |polyRicDE| |OMputEndObject| |indicialEquations| |relativeApprox| - |badNum| |e02bef| |f02axf| |extend| |paren| |setLength!| |xor| - |assert| |denominator| |certainlySubVariety?| |deriv| |ScanArabic| - |algSplitSimple| |incrementBy| |quasiAlgebraicSet| |modularGcd| |port| - |selectFiniteRoutines| |pattern| |case| |nthRoot| |invertibleSet| - |lfintegrate| |makingStats?| |Hausdorff| |dioSolve| |expand| |e01sef| - |mapmult| |leastAffineMultiple| |Zero| |exponents| |s13aaf| |nary?| - |squareFreeLexTriangular| |graphState| |localUnquote| |filterWhile| - |hasPredicate?| |t| |outputForm| |pointLists| |One| |simplifyPower| - |cAcos| |setnext!| |oddInfiniteProduct| |nextPrimitivePoly| - |filterUntil| |algebraicSort| |irreducibleRepresentation| |reverse!| - |ode2| |lambda| |bezoutMatrix| |elaborateFile| |univcase| |reflect| - |LiePoly| |search| |clearTheIFTable| |select| |insertionSort!| - |iiGamma| |createThreeSpace| |leftPower| |message| |measure2Result| - |cAcsc| |redmat| |rightAlternative?| |tRange| |knownInfBasis| - |twoFactor| |f07fdf| |B1solve| |doubleRank| |makeop| - |expressIdealMember| |basis| |acosIfCan| |stoseLastSubResultant| - |leftRemainder| |safeCeiling| |selectODEIVPRoutines| - |genericLeftTrace| |nrows| |rightTrace| |extendIfCan| |coord| - |conjugate| |OMgetObject| |curry| |getGraph| |curryLeft| |ncols| |elt| - |scopes| |atanhIfCan| |lifting1| |usingTable?| - |mainDefiningPolynomial| |testDim| |LyndonCoordinates| |retract| - |OMconnectTCP| |makeprod| |patternVariable| - |semiDiscriminantEuclidean| |primintegrate| |curve?| |dilog| |more?| - |symmetricPower| |zero| |leftQuotient| |composite| |setAdaptive3D| - |generalPosition| |member?| |Ci| |deepCopy| |cons| |reverseLex| - |removeRoughlyRedundantFactorsInContents| |sin| |makeRecord| - |zeroMatrix| |square?| |cubic| |setDifference| |nothing| - |fractionPart| |And| |graphStates| |members| |cos| |computePowers| - |dimensions| |subMatrix| |numberOfComputedEntries| |iteratedInitials| - |htrigs| |setOrder| |ocf2ocdf| |Or| |compose| |tan| - |decreasePrecision| |qqq| |c06gqf| |kmax| |resultantEuclideannaif| - |pow| |exponential| |Not| |push!| |cot| |basicSet| |f02aef| - |allRootsOf| |s19abf| |generalizedEigenvectors| |check| |e02agf| - |monicDecomposeIfCan| |condition| |replace| |iicoth| |sec| |mapSolve| - |f01qdf| |numberOfFactors| |radicalSimplify| |setErrorBound| - |firstSubsetGray| |finiteBasis| |csc| |definingPolynomial| - |oddintegers| |transpose| |badValues| |find| |solve1| |s17dcf| |root?| - |interpret| |source| |asin| |hasHi| |sizeMultiplication| |d01aqf| - |rangeIsFinite| |lyndonIfCan| |subResultantGcdEuclidean| |approxSqrt| - |changeBase| |quadratic?| |dec| |acos| |useNagFunctions| |s18dcf| - |tryFunctionalDecomposition?| |copyInto!| |d03faf| |iicos| - |extendedEuclidean| |atan| |plusInfinity| |outputBinaryFile| - |OMsupportsSymbol?| |unitNormalize| |power!| |edf2df| |infRittWu?| - |leftTrace| |toseSquareFreePart| |acot| |OMcloseConn| |minusInfinity| - |ptFunc| |char| |rombergo| |findBinding| |isList| |repeating?| - |lazyVariations| |asec| |central?| |invertIfCan| |finite?| |droot| - |pade| |rationalPoint?| |sin2csc| |lieAlgebra?| |acsc| |target| - |f04arf| |mindeg| |solveLinearPolynomialEquation| |csubst| |digits| - |resetBadValues| |inconsistent?| |sinh| |putProperties| - |lazyIrreducibleFactors| |categoryFrame| |PollardSmallFactor| |ef2edf| - |elseBranch| |s21bdf| |commonDenominator| |ord| |cosh| |s21baf| - |deref| |OMgetType| |primes| |bitLength| |removeCoshSq| |palgextint| - |definingEquations| |type| |qPot| |tanh| |entries| |subPolSet?| - |cyclotomicDecomposition| |nthFactor| |outputList| - |sumOfKthPowerDivisors| |Lazard2| |expintfldpoly| |nonQsign| FG2F - |coth| |totalDifferential| |maxRowIndex| |algintegrate| |fintegrate| - |mulmod| |float| |randnum| |initiallyReduced?| |newTypeLists| |qelt| - |withPredicates| |createPrimitivePoly| |c06ekf| |sech| |log2| - |packageCall| |atanIfCan| |second| |mkcomm| |rightScalarTimes!| - |f04mcf| |qsetelt| |read!| |cycle| |setFormula!| |sturmVariationsOf| - |csch| |e04ucf| |currentSubProgram| |property| |third| - |printStatement| |mainForm| |clearTheSymbolTable| |increment| |xRange| - |ldf2lst| |asinh| |lineColorDefault| |maxIndex| - |semiSubResultantGcdEuclidean1| |redPol| |reduction| |compile| - |hasSolution?| |OMParseError?| |OMread| |llprop| |yRange| - |screenResolution3D| |void| |lazyEvaluate| |acosh| |queue| LODO2FUN - |lazyPseudoRemainder| |imagI| |top!| |integralBasisAtInfinity| - |supersub| |roughBase?| |zRange| |decrease| |sn| |recoverAfterFail| - |atanh| |solveLinearPolynomialEquationByFractions| |selectPolynomials| - |genus| |OMputEndBVar| |iiacos| |map!| |stoseInvertible?reg| |f01ref| - |rur| |ratDenom| |acoth| |viewZoomDefault| |antisymmetricTensors| - |subresultantSequence| |dimensionsOf| |rdHack1| |qsetelt!| - |clearFortranOutputStack| |removeRedundantFactors| |rst| |linears| - |bernoulliB| |nullary| |asech| |triangulate| |stoseSquareFreePart| - |clip| |halfExtendedResultant1| |rightRecip| |viewport3D| - |blankSeparate| |extractSplittingLeaf| |s20adf| |isAnd| |palglimint0| - |lexico| |readUInt16!| |setFieldInfo| |insertRoot!| |iiasinh| - |complementaryBasis| GE |transcendenceDegree| |OMgetEndBind| - |multiple| |nil?| |reindex| |elaborate| |cExp| |drawStyle| |write!| - |cAcosh| |FormatRoman| |coerceListOfPairs| GT |singular?| |applyQuote| - |viewPhiDefault| |solve| |monicRightFactorIfCan| |expIfCan| |cscIfCan| - |iroot| |iiacosh| |e02ddf| |univariatePolynomials| LE |pmintegrate| - |f02fjf| |bombieriNorm| |lyndon| |splitLinear| |leastMonomial| - |predicate| |iflist2Result| |setPoly| |s19aaf| |arity| LT |acsch| - |augment| |basisOfLeftNucloid| |mapDown!| |jokerMode| |OMgetEndApp| - |tableForDiscreteLogarithm| |overbar| |makeFR| |eigenMatrix| - |critMonD1| |selectsecond| |changeThreshhold| |groebner?| |ruleset| - |basisOfCenter| |select!| |innerEigenvectors| |shufflein| |chebyshevT| - |create3Space| |primlimitedint| |traverse| |subst| |addPoint| - |removeDuplicates| |quickSort| |rightMult| |pushdown| |exactQuotient!| - |solveInField| |setchildren!| |expandPower| |integerIfCan| |iFTable| - |diagonalProduct| |computeCycleLength| |findConstructor| |polyPart| - |d02ejf| |linearMatrix| |se2rfi| |iiasin| |getStream| |monicModulo| - |algebraicDecompose| |directory| |cyclicGroup| |graeffe| - |symmetricTensors| |suchThat| |nonLinearPart| - |permutationRepresentation| |structuralConstants| |tree| |index| - |cAsec| |OMgetSymbol| |e01saf| |cyclotomic| |divideExponents| - |stirling1| |leftTraceMatrix| |OMgetBVar| |imports| |besselY| - |setRealSteps| |lfinfieldint| |s01eaf| |upperBound| |initial| - |wronskianMatrix| |equality| |isNot| |insert!| |eigenvalues| - |nthRootIfCan| |f07adf| |fractRagits| |leftNorm| |youngDiagram| - |tValues| |symbolIfCan| |upDateBranches| |d01gaf| |sup| |polyred| - |RittWuCompare| |pair| |palginfieldint| |wholeRagits| |palgintegrate| - |symmetricDifference| |d02cjf| |objects| |taylorIfCan| |rightTrim| - |trapezoidal| |bright| |semiIndiceSubResultantEuclidean| - |prefixRagits| |leftExactQuotient| |bumptab| |parameters| - |collectUnder| |internalZeroSetSplit| |irreducibleFactor| - |OMputString| |base| |sturmSequence| |leftTrim| |subSet| |c06gsf| - |s17akf| |fortranInteger| |vertConcat| |arg1| |setRow!| |vspace| - |enqueue!| |tanSum| |asechIfCan| |extractClosed| |showArrayValues| - |internalLastSubResultant| |eval| |node?| |SturmHabicht| |arg2| |inf| - |rationalPower| |f07aef| |purelyTranscendental?| |computeCycleEntry| - |position!| |fixedPoint| |mainMonomials| |binaryTournament| - |readInt32!| |simpsono| |selectNonFiniteRoutines| |poisson| - |linearlyDependentOverZ?| |flexible?| |normalizeIfCan| |intChoose| - |lexGroebner| |unravel| |lowerBound| |conditions| |getBadValues| - |subspace| |completeHermite| |makeViewport3D| |qinterval| - |basisOfMiddleNucleus| |leftRecip| |error| |torsionIfCan| - |extractBottom!| |reopen!| |basisOfLeftNucleus| |match| |d03edf| - |internalSubPolSet?| |c02aff| |removeSinhSq| |jacobi| - |numberOfComponents| |equation| |countRealRoots| |coHeight| - |modularGcdPrimitive| |resultantEuclidean| |iisqrt3| |d03eef| - |getCurve| |iitanh| |zeroDimPrime?| |getOperands| |dequeue| |frst| - |meshPar1Var| |setprevious!| |tan2trig| |generic| |setStatus!| |shade| - |iExquo| |function| |order| |optimize| |graphImage| |connectTo| - |OMopenFile| |ScanRoman| |pastel| |hexDigit?| |s13adf| |nthCoef| - |expt| |constant?| |GospersMethod| |identityMatrix| |gramschmidt| - |mainVariables| |toseInvertible?| |OMgetApp| - |factorSquareFreePolynomial| |bigEndian| |pointPlot| |cycleLength| BY - |back| |argscript| |showTheSymbolTable| |localReal?| |readUInt32!| - |ceiling| |evenlambert| |systemSizeIF| |factorSquareFreeByRecursion| - |inrootof| |standardBasisOfCyclicSubmodule| |duplicates?| |connect| - |associatedEquations| |postfix| |getCode| |entry?| |processTemplate| - |moebius| |pushdterm| |skewSFunction| |approximants| - |viewWriteDefault| |linearDependence| |reducedDiscriminant| - |isImplies| |expandTrigProducts| |chvar| |rename!| - |fullPartialFraction| |d01anf| |twist| |setMinPoints| |elaboration| - |overlap| |iisech| |redpps| |sort| |idealSimplify| |tableau| |Beta| - |mathieu22| |comparison| |OMputEndBind| |e02akf| |besselK| - |disjunction| |trunc| |option?| |purelyAlgebraicLeadingMonomial?| - |accuracyIF| |rem| |integers| |leftDivide| |prologue| |iisin| - |eisensteinIrreducible?| |properties| |problemPoints| |critM| - |hasTopPredicate?| |laurentIfCan| |curryRight| |quo| |constDsolve| - |polar| |abelianGroup| |e01baf| |pseudoQuotient| |id| |size?| NOT - |irDef| |lazyPremWithDefault| |translate| |dual| |boundOfCauchy| - |over| |identity| |s15adf| |cyclePartition| |typeList| |lo| |nor| OR - |empty| |random| |localAbs| |coefficients| |style| |makeTerm| |div| - |firstNumer| |colorDef| |chineseRemainder| |modifyPointData| - |rationalPoints| AND |rightUnits| |e02gaf| |lcm| |splitNodeOf!| - |eulerPhi| |changeName| |exquo| |delete| |f01brf| |exprex| - |doubleFloatFormat| |merge!| |rCoord| |nthFractionalTerm| - |roughEqualIdeals?| |separateDegrees| |curve| ~= |cTan| - |var1StepsDefault| |extension| |polygamma| |lift| |extendedIntegrate| - |append| |move| |calcRanges| |radicalEigenvectors| |ldf2vmf| - |coordinate| |#| |makeUnit| |c02agf| |ref| |empty?| |reduce| |goto| - |minPoints| |OMputError| |cotIfCan| |gcd| |rroot| |mapUp!| ~ |c06eaf| - |subResultantGcd| |monicLeftDivide| |Frobenius| |neglist| |false| - |componentUpperBound| |var2Steps| |nodes| |nextNormalPrimitivePoly| - |prinpolINFO| |uncouplingMatrices| |writeInt8!| |leftDiscriminant| - |diag| |quadraticNorm| |primaryDecomp| |getProperties| |infLex?| - |ksec| |writeBytes!| |apply| |bipolarCylindrical| |factorsOfDegree| - |simpson| |rarrow| |pmComplexintegrate| |randomR| |characteristicSet| - |represents| |qfactor| |interval| |/\\| |matrix| |first| - |createNormalPrimitivePoly| |ddFact| |branchIfCan| |userOrdered?| - |coercePreimagesImages| |coefficient| |noncommutativeJordanAlgebra?| - |powers| |\\/| |rest| |character?| |getGoodPrime| |iicsch| |lp| - |shiftLeft| |inRadical?| |irreducibleFactors| |bytes| |zoom| |lllp| - RF2UTS |numberOfOperations| |refine| |d01fcf| |OMputEndApp| |coerce| * - |startPolynomial| |invmod| |divisorCascade| |nextPrime| - |antiAssociative?| |rspace| |divisor| |linear?| |recolor| - |semiResultantEuclidean2| |construct| |exteriorDifferential| |csc2sin| - |normal01| |airyAi| |inverseIntegralMatrixAtInfinity| |mvar| - |constantOperator| |numer| |lastSubResultant| - |generalizedContinuumHypothesisAssumed| |perfectSquare?| |logpart| - |generator| |setlast!| |topFortranOutputStack| |appendPoint| |iiacot| - |any?| |denom| |euclideanGroebner| |groebnerIdeal| |leadingSupport| = - |tensorProduct| |hMonic| |lighting| |reduceBasisAtInfinity| |bat| - |fortranReal| |getSyntaxFormsFromFile| |reduceLODE| - |incrementKthElement| |arrayStack| - |solveLinearPolynomialEquationByRecursion| |scripted?| |d02gbf| - |rotatey| |setScreenResolution3D| |e02adf| |e04ycf| |pi| |byte| - |alternative?| |atrapezoidal| |implies| |Vectorise| < |rightOne| - |sign| |UP2ifCan| |secIfCan| |hclf| |width| |nthFlag| |OMreadFile| > - |quoted?| |fractionFreeGauss!| |f02agf| |charpol| |cot2tan| - |drawComplexVectorField| |f04atf| |setleft!| - |genericRightDiscriminant| |perfectNthRoot| <= |equiv| - |normalizedAssociate| |specialTrigs| |iiasech| |limitPlus| |subCase?| - |dot| |leastPower| |pol| |exQuo| |e02def| >= |createRandomElement| - |getOperator| |mapBivariate| |associatorDependence| |nilFactor| - |encodingDirectory| |complexRoots| |expenseOfEvaluation| |hermiteH| - |rdregime| |subQuasiComponent?| |quadratic| |ScanFloatIgnoreSpaces| - |cschIfCan| |particularSolution| |infinityNorm| |meshPar2Var| - |interactiveEnv| |fullDisplay| |rotate| |buildSyntax| |principalIdeal| - |rootNormalize| |nextColeman| |numberOfPrimitivePoly| |bit?| - |balancedFactorisation| |irreducible?| |littleEndian| |index?| - |mainSquareFreePart| |presub| + |selectMultiDimensionalRoutines| - |UnVectorise| |df2mf| |value| |mainCharacterization| |clearCache| - |headRemainder| |internalSubQuasiComponent?| |splitSquarefree| - |numeric| |arbitrary| |int| |exponentialOrder| |s17ahf| - - |conjunction| |genericLeftNorm| |createMultiplicationMatrix| - |inverseColeman| |f07fef| |triangularSystems| |radical| |isConnected?| - / |optional| |OMputEndError| |setref| - |rewriteIdealWithQuasiMonicGenerators| |subresultantVector| |bipolar| - |just| |orbits| |scalarMatrix| |matrixGcd| |messagePrint| |iiasec| - |assign| |log| |leadingTerm| |build| |constantCoefficientRicDE| - |setOfMinN| |fortranCharacter| |bivariateSLPEBR| |gcdprim| - |generalLambert| |sortConstraints| |d02gaf| |extendedResultant| - |asinIfCan| |d01akf| |quotedOperators| |combineFeatureCompatibility| - |lex| |sumOfDivisors| |closed| |signature| |adjoint| |acschIfCan| - |setelt| |torsion?| |printInfo!| |varselect| |solid| |ranges| |Si| - |isOp| |stopTableInvSet!| |oblateSpheroidal| |transform| - |scalarTypeOf| |hermite| |semiResultantEuclidean1| |declare!| - |rightRankPolynomial| |rootProduct| |changeWeightLevel| - |pointColorPalette| |resultantReduitEuclidean| |OMputApp| - |rewriteSetByReducingWithParticularGenerators| |copy| |antiCommutator| - |medialSet| |unparse| |setsubMatrix!| |generic?| - |semiResultantReduitEuclidean| |low| |simplifyExp| |conjug| |maxrow| - |expandLog| |setrest!| |slex| |coshIfCan| |sec2cos| |lagrange| - |isOpen?| |makeYoungTableau| |datalist| |consnewpol| |outputAsTex| - |decimal| |dn| |bag| |diophantineSystem| |errorInfo| |positiveSolve| - |mapUnivariateIfCan| |coth2tanh| |shiftRight| |isobaric?| |legendreP| - |opeval| |normalForm| |sub| |evenInfiniteProduct| |palgLODE| |slash| - |inputBinaryFile| |unitVector| |minGbasis| |options| |f2st| GF2FG - |leftMinimalPolynomial| |vconcat| |toroidal| |rightPower| - |integerBound| |iterationVar| |beauzamyBound| |d01gbf| - |rightRemainder| |surface| |light| UTS2UP |leftZero| |lazyPrem| - |leftUnit| |OMputAttr| |capacity| |OMlistSymbols| |parent| - |removeSinSq| |symmetricProduct| |pr2dmp| |setProperties| |segment| - |nand| |iifact| |in?| |indices| |categoryMode| |output| |string| - |yellow| |lieAdmissible?| |lowerCase| |superscript| - |discriminantEuclidean| |genericLeftTraceForm| |numberOfDivisors| - |digamma| |laplace| |numberOfMonomials| |rischNormalize| |algebraicOf| - |recur| |rk4a| |conjugates| |charthRoot| |call| |minPoints3D| - |ellipticCylindrical| |factorFraction| |predicates| |scaleRoots| - |satisfy?| |pop!| |writeLine!| |monomial?| |radicalOfLeftTraceForm| - |partialFraction| |bounds| |squareMatrix| |sumOfSquares| |cond| - |writable?| |removeCosSq| |getRef| |isPower| |socf2socdf| - |clearTable!| |leftRank| |lookup| |rightNorm| |innerSolve| - |stopMusserTrials| |superHeight| |anfactor| |exptMod| |trivialIdeal?| - |univariate?| |maxColIndex| |prod| |maximumExponent| |blue| - |nullSpace| |multiEuclidean| |halfExtendedSubResultantGcd1| |swap!| - |laguerreL| |factorial| |contours| |zeroDimensional?| |digit?| - |convergents| |operators| |s21bcf| |squareFreePart| |roughSubIdeal?| - |sh| |setright!| |tubePoints| |midpoint| |indiceSubResultant| - |integralCoordinates| |part?| |critB| |abs| |insertTop!| - |getVariableOrder| |rightLcm| |remove| |integralDerivationMatrix| - |minRowIndex| |radicalEigenvalues| |symFunc| |imagk| |lambert| - |escape| |cyclicParents| |identitySquareMatrix| |groebgen| - |factorSFBRlcUnit| |rationalApproximation| |primitivePart!| |df2st| - |OMgetEndAttr| |complexLimit| |xCoord| |sumSquares| |evaluateInverse| - |fortranLiteralLine| |complexExpand| |center| |last| |xn| - |totalDegree| |OMgetInteger| |isMult| |updatF| |linearDependenceOverZ| - |createNormalPoly| |mapGen| |assoc| |harmonic| |f01bsf| - |outputSpacing| |cos2sec| |voidMode| |mathieu24| |curveColorPalette| - |OMclose| |addPoint2| |viewDefaults| |formula| |element?| |cCosh| - |rootOf| |clearDenominator| |biRank| |rightQuotient| |corrPoly| - |OMreadStr| |range| |linearAssociatedOrder| |euclideanSize| |f02ajf| - |findCycle| |zeroVector| |var2StepsDefault| |reduced?| |acotIfCan| - |wreath| |one?| |f04jgf| |complexEigenvectors| |fortranComplex| - |symmetricGroup| |setMaxPoints3D| |bitCoef| |rightFactorIfCan| - |palgint| |controlPanel| |compactFraction| |returnType!| - |parabolicCylindrical| |mathieu12| |collect| |scale| - |createPrimitiveNormalPoly| |squareFreeFactors| |cosh2sech| |head| - |representationType| |d01amf| |Nul| |screenResolution| |unary?| - |OMsetEncoding| |explogs2trigs| |removeRoughlyRedundantFactorsInPol| - |pack!| |leftCharacteristicPolynomial| |aLinear| |oddlambert| |isExpt| - |crushedSet| |s19acf| |logIfCan| |balancedBinaryTree| |s18acf| |critT| - |heapSort| |palgextint0| |atoms| |rightDiscriminant| |subset?| - |ReduceOrder| |mdeg| |var1Steps| |minPol| |s19adf| |lfextendedint| - |euclideanNormalForm| |cAtanh| |romberg| |linearPolynomials| |c06fpf| - |startTableInvSet!| |mkPrim| |viewSizeDefault| |thenBranch| - |exactQuotient| |cCoth| |mix| |normalElement| |createGenericMatrix| - F2FG |interpretString| |cCsch| |stFuncN| |lifting| - |basisOfLeftAnnihilator| |s17dgf| |removeSquaresIfCan| |divide| - |nextLatticePermutation| |removeRoughlyRedundantFactorsInPols| - |makeViewport2D| |parseString| |LazardQuotient2| |mirror| |setleaves!| - |fortranCompilerName| |realEigenvectors| |string?| |quasiRegular| - |elliptic?| |chebyshevU| |diagonals| |squareFreePrim| |f02awf| - |bfEntry| |reducedQPowers| |increase| |removeSuperfluousCases| - |reducedSystem| |mainContent| |monomialIntPoly| |times!| - |cyclicSubmodule| |sincos| |floor| |lepol| |unmakeSUP| - |exportedOperators| |differentialVariables| |fortranCarriageReturn| - |laplacian| |taylorQuoByVar| |realEigenvalues| |dimension| |leaves| - |henselFact| |ridHack1| |extract!| |e01sff| |mergeFactors| |hspace| - |principal?| |singularAtInfinity?| |commutator| |normInvertible?| - |OMputBVar| |rationalFunction| |nil| |unrankImproperPartitions0| - |resultant| |tanIfCan| |baseRDEsys| |macroExpand| |associative?| - |s18def| |rowEchelon| |headReduce| |hcrf| UP2UTS |iicsc| |innerSolve1| - |bindings| |prime| |rightZero| |c06fuf| |odd?| |polygon?| |computeInt| - |clipParametric| |baseRDE| |birth| |plenaryPower| |lazyGintegrate| - |zero?| |setCondition!| |stronglyReduced?| |denominators| - |approximate| |rowEchLocal| |numFunEvals3D| |ignore?| |iicot| - |zeroDim?| |d01asf| |OMbindTCP| |fixedDivisor| |const| |sum| |complex| - |numerator| |polygon| |df2fi| |readIfCan!| |front| |lazyResidueClass| - |tanh2trigh| |subscript| |limitedint| |approxNthRoot| - |setTopPredicate| |rotatex| |edf2ef| |iibinom| |bottom!| - |factorOfDegree| |patternMatch| |leftExtendedGcd| |alphabetic?| - |branchPoint?| |regularRepresentation| |rank| |mapExponents| - |pushuconst| |factorGroebnerBasis| |iitan| |checkRur| |s17dhf| |point| - |sort!| |OMgetEndObject| |bfKeys| |cn| |OMlistCDs| |updateStatus!| - |is?| |debug| |e01bgf| |failed| |numberOfComposites| |setfirst!| - |multiple?| |gcdPolynomial| |stoseInvertible?| |sinhcosh| - |gcdPrimitive| |factorset| D |degree| |closed?| |complexIntegrate| - |largest| |trace2PowMod| |copy!| |f01mcf| |setPosition| |Gamma| - |cyclic| |mkAnswer| |resetNew| |series| |zerosOf| |pointColorDefault| - |doubleResultant| |factorsOfCyclicGroupSize| |jordanAdmissible?| - |printHeader| |OMUnknownCD?| |f02aaf| |infinite?| |expintegrate| - |rightExtendedGcd| |leadingIdeal| |genericRightTrace| - |numericalIntegration| |attributeData| |c05pbf| - |wordInStrongGenerators| |components| |pToHdmp| |changeMeasure| - |removeIrreducibleRedundantFactors| |separant| |OMencodingUnknown| - |po| |integralAtInfinity?| |s17aef| |direction| |super| |less?| - |lists| |hyperelliptic| |rename| |has?| |reducedForm| |content| |min| - |padicallyExpand| |kovacic| |upperCase| |leftUnits| |janko2| - |stoseIntegralLastSubResultant| |binaryFunction| |cCos| |totalLex| - |printInfo| |viewPosDefault| |traceMatrix| |qroot| |submod| |ideal| - |unitCanonical| |headAst| |meatAxe| |whatInfinity| |cyclicEntries| - |critBonD| |divideIfCan| |conical| |sizeLess?| |rk4qc| |flexibleArray| - |explimitedint| |checkPrecision| |cSech| |ODESolve| |normDeriv2| - |substring?| |rewriteSetWithReduction| |key| |dictionary| - |externalList| |orbit| |stoseInvertibleSetreg| |jacobian| |c06ecf| - |halfExtendedResultant2| |permutations| |crest| |s17def| |atom?| - |ode1| |leader| |leftRegularRepresentation| |s17dlf| |unvectorise| - |untab| |suffix?| |imagE| |filename| |c06ebf| |showTheFTable| |graphs| - |weighted| |elRow2!| |readInt8!| |f01maf| |even?| |tube| |symbolTable| - |loadNativeModule| |stopTableGcd!| |functorData| |e04dgf| |high| - |exprHasLogarithmicWeights| |semiResultantEuclideannaif| - |seriesToOutputForm| |setPrologue!| |prefix?| |makeSUP| |epilogue| - |parse| |OMgetBind| |setMinPoints3D| |gderiv| |numerators| |fortran| - |rootOfIrreduciblePoly| |bandedJacobian| |insertMatch| - |defineProperty| |plus| |omError| |pushFortranOutputStack| - |critMTonD1| |exists?| |primPartElseUnitCanonical!| |associatedSystem| - |makeCos| |elementary| |difference| |generateIrredPoly| |car| - |popFortranOutputStack| |lfextlimint| |e04mbf| |solveLinearlyOverQ| - |deepExpand| |wholeRadix| |unitNormal| |trailingCoefficient| - |summation| |expint| |outputAsFortran| |partialDenominators| |normal?| - |weierstrass| |number?| |fortranDoubleComplex| |tablePow| - |factorSquareFree| |split| |internalAugment| |table| |att2Result| - |cLog| |printingInfo?| |prem| |useEisensteinCriterion| |redPo| - |s17adf| |precision| |subResultantsChain| |times| |normalized?| |new| - |sin?| |permutation| |ratpart| |basisOfCentroid| |getlo| |multiset| - |symmetricRemainder| |stoseInternalLastSubResultant| |addPointLast| - |infix?| |ptree| |unit| |spherical| |branchPointAtInfinity?| - |asinhIfCan| |rootSplit| |flatten| |semicolonSeparate| |sayLength| - |showClipRegion| |mask| |stripCommentsAndBlanks| |terms| - |commutativeEquality| |sylvesterSequence| |shape| |gradient| |init| - |outputFloating| |quadraticForm| |makeCrit| |mathieu23| - |constantToUnaryFunction| |reorder| |upperCase!| |doublyTransitive?| - |optpair| |supRittWu?| |topPredicate| |strongGenerators| - |nextPartition| |monom| |newLine| |exprHasAlgebraicWeight| - |idealiserMatrix| |OMgetAtp| |polarCoordinates| - |monicCompleteDecompose| |aQuartic| |unitsColorDefault| |triangular?| - |rule| |iicosh| |double?| |s15aef| |enumerate| |minimize| - |getZechTable| |external?| |paraboloidal| |extractIndex| - |radicalEigenvector| |cCsc| |roman| |writeUInt8!| |common| |credPol| - |sample| |mainExpression| |createLowComplexityTable| |overset?| - |replaceKthElement| |e02baf| |minrank| |before?| |script| - |BumInSepFFE| |shrinkable| |truncate| |pureLex| |makeResult| |f01qcf| - |normalizeAtInfinity| |leftFactorIfCan| - |removeRedundantFactorsInContents| |selectOrPolynomials| |title| - |makeFloatFunction| |besselI| |endOfFile?| |inGroundField?| - |monomRDEsys| |getMultiplicationTable| |f04adf| |OMputAtp| |unexpand| - |cRationalPower| |myDegree| |fortranDouble| |selectAndPolynomials| - |left| |vector| |rightMinimalPolynomial| |sequence| |limitedIntegrate| - |nodeOf?| |tex| |trigs| |outerProduct| |primitive?| |ratDsolve| - |duplicates| |OMUnknownSymbol?| |right| |differentiate| |safetyMargin| - |innerint| |discreteLog| |rischDE| |e| |logical?| |stronglyReduce| - |rangePascalTriangle| |lazyPseudoDivide| |factor1| - |toseLastSubResultant| |squareTop| |updatD| |removeZeroes| |round| - |close!| |OMgetEndError| |optional?| |stopTable!| |dark| - |viewDeltaYDefault| |tracePowMod| |Ei| |radicalSolve| - |physicalLength!| |stoseInvertibleSetsqfreg| |selectfirst| |setvalue!| - |coefChoose| |rotate!| |bat1| |coerceP| |recip| |realRoots| |tan2cot| - |forLoop| |internal?| |setEmpty!| |outlineRender| |modTree| - |sparsityIF| |minus!| |relationsIdeal| |multMonom| |musserTrials| - |monomRDE| |cartesian| |infix| |iiatanh| |palgLODE0| |trim| - |decompose| |radPoly| |shift| |principalAncestors| |d01ajf| - |supDimElseRittWu?| |subNode?| |any| |pole?| |hash| |makeSketch| - |unaryFunction| |e02ahf| |setClipValue| |d01alf| |latex| |KrullNumber| - |dominantTerm| |count| |degreeSubResultant| - |functionIsContinuousAtEndPoints| |OMsupportsCD?| |next| - |functionIsFracPolynomial?| |squareFree| |primextendedint| |maxdeg| - |mapUnivariate| |child| |fortranLiteral| |pseudoDivide| |triangSolve| - |pushucoef| |irCtor| |cAsin| |d02kef| |setPredicates| - |quasiMonicPolynomials| |OMconnInDevice| |infieldIntegrate| - |maxPoints| |listBranches| |environment| |elem?| |BasicMethod| - |phiCoord| |compiledFunction| |listRepresentation| |symbol| - |nextSublist| |stiffnessAndStabilityFactor| |initials| |readByte!| - |whileLoop| |infieldint| |c06gcf| |chiSquare| |parabolic| - |numericIfCan| |expression| |reducedContinuedFraction| - |stiffnessAndStabilityOfODEIF| |iisinh| |c06frf| |algint| - |leadingExponent| |hdmpToP| |completeHensel| |LowTriBddDenomInv| - |integer| |quartic| |relerror| |s17aff| |open?| |youngGroup| - |possiblyNewVariety?| |startTableGcd!| |linear| - |generalizedContinuumHypothesisAssumed?| |enterPointData| - |rewriteIdealWithRemainder| |returnTypeOf| |points| |makeEq| - |outputAsScript| |e04fdf| |padicFraction| |changeVar| |wholePart| - |characteristic| |exprToXXP| |s21bbf| |substitute| - |ramifiedAtInfinity?| |bringDown| |polynomial| |univariatePolynomial| - |leftGcd| |selectIntegrationRoutines| |isAtom| - |cyclotomicFactorization| |indicialEquation| |compdegd| |btwFact| - |deleteProperty!| |createLowComplexityNormalBasis| |f02aff| - |reduceByQuasiMonic| |selectPDERoutines| |rootKerSimp| |retractable?| - |s14baf| |dualSignature| |erf| |f01rcf| |s14abf| |result| |mat| - |cot2trig| |powerSum| |iisec| |zCoord| |intPatternMatch| |li| - |removeConstantTerm| |squareFreePolynomial| |drawCurves| |OMwrite| - |pquo| |host| |limit| |LagrangeInterpolation| |resultantnaif| |stack| - |tower| |choosemon| |nthExpon| |d01apf| |ParCond| |leaf?| - |nextNormalPoly| |quote| |cyclicCopy| |cAcot| |normalDenom| - |mightHaveRoots| |factorByRecursion| |plotPolar| |complexNumericIfCan| - |cothIfCan| |prepareSubResAlgo| |mapExpon| |create| - |functionIsOscillatory| |polCase| |countable?| |iiacoth| - |nextsousResultant2| |totalGroebner| |orthonormalBasis| |perspective| - |coerceL| |f02adf| |startTable!| |getOrder| |eq| |karatsubaOnce| - |lazyPquo| |diagonal| |denomLODE| |outputGeneral| |lowerCase?| - |getProperty| |clearTheFTable| |iter| |dim| |stFunc1| - |integralMatrixAtInfinity| |length| |linGenPos| |nthr| - |rightCharacteristicPolynomial| |setStatus| |integralMatrix| - |OMputSymbol| |karatsuba| |cAtan| |complexNumeric| |readable?| - |nextSubsetGray| |step| |scripts| |divisors| |printStats!| |shuffle| - |typeLists| |exp1| |addMatch| |newReduc| |diff| |mainMonomial| - |concat| |compBound| |bernoulli| |scanOneDimSubspaces| |alphabetic| - |getMultiplicationMatrix| |test| |kernels| |gethi| - |linearAssociatedExp| |monomialIntegrate| |hypergeometric0F1| - |setUnion| |routines| |extractPoint| |normalizedDivide| |OMserve| - |graphCurves| |factorials| |operator| |pointSizeDefault| - |highCommonTerms| |f04asf| |ListOfTerms| |octon| |listOfMonoms| - |startStats!| |primeFrobenius| |rectangularMatrix| |leadingBasisTerm| - |rootBound| |integral?| |rootsOf| |hconcat| |pToDmp| - |transcendentalDecompose| |Aleph| |cardinality| |s18adf| - |linkToFortran| |univariate| |semiSubResultantGcdEuclidean2| |imagi| - |parametric?| |brillhartTrials| |plot| |leftLcm| |subHeight| - |prindINFO| |areEquivalent?| |mapdiv| |component| |s17agf| |s18aff| - |float?| |monic?| |seriesSolve| |rational| - |rightRegularRepresentation| |zeroDimPrimary?| |makeVariable| - |leviCivitaSymbol| |nextsubResultant2| |halfExtendedSubResultantGcd2| - |weakBiRank| |prefix| |failed?| |eq?| |lfunc| |factor| |OMputFloat| - |OMencodingSGML| |writeByte!| |f04maf| - |zeroSetSplitIntoTriangularSystems| |singRicDE| |belong?| |iisqrt2| - |complete| |shallowCopy| |sqrt| |isAbsolutelyIrreducible?| |asimpson| - |scan| |setLegalFortranSourceExtensions| |chiSquare1| |monicDivide| - |maxint| |coerceS| |OMmakeConn| |setValue!| |real| |closeComponent| - |cup| |reseed| |concat!| |iipow| |constantLeft| |f04axf| - |setMaxPoints| |absolutelyIrreducible?| |complexNormalize| |imag| - |complexSolve| |declare| |lprop| |cross| |noValueMode| |stop| - |flagFactor| |roughUnitIdeal?| |alphanumeric?| |laguerre| - |numberOfCycles| |showRegion| |directProduct| |prolateSpheroidal| - |inHallBasis?| |debug3D| |symbol?| |e04naf| |mr| |edf2fi| - |endSubProgram| |simpleBounds?| |firstDenom| |cycles| - |lastSubResultantElseSplit| |pushNewContour| |measure| |axes| |iiexp| - |variable?| SEGMENT |bubbleSort!| |fracPart| |firstUncouplingMatrix| - |brace| |kind| |resize| |e02bcf| |product| |pdct| |viewpoint| - |getButtonValue| |fill!| |freeOf?| |readLineIfCan!| |factors| - |categories| |destruct| |e02daf| |viewDeltaXDefault| |op| |sequences| - |iiacsc| |OMgetFloat| |rightRank| |extendedint| |mantissa| |eulerE| - |depth| |iomode| |c06gbf| |tanQ| |linearPart| |merge| - |expenseOfEvaluationIF| |rischDEsys| |typeForm| |power| |weights| - |pdf2ef| |f02bbf| |showTheIFTable| |mainCoefficients| |coerceImages| - |powern| |currentCategoryFrame| |tanh2coth| |minPoly| |level| - |parametersOf| |viewThetaDefault| |explicitEntries?| |magnitude| - |integer?| |readBytes!| |symmetric?| |laurentRep| |internalInfRittWu?| - |swapColumns!| |setProperty| |degreeSubResultantEuclidean| - |sylvesterMatrix| |An| |monomial| |e02ajf| |internalIntegrate| - |collectQuasiMonic| |sorted?| |solveid| |inverse| |completeEval| - |alternatingGroup| |readUInt8!| |OMopenString| |multivariate| - |goodnessOfFit| |fglmIfCan| |green| |rightDivide| |OMputEndAttr| - |noKaratsuba| |OMputBind| |coordinates| |validExponential| - |testModulus| |variables| |linearlyDependent?| - |selectOptimizationRoutines| |union| |hitherPlane| |trueEqual| - |geometric| |presuper| |e04jaf| |aromberg| |lazyIntegrate| |sech2cosh| - |rootSimp| |setLabelValue| |roughBasicSet| |hessian| |f01qef| - |charClass| |mainKernel| |rquo| |iCompose| |f02bjf| |s17acf| - |genericRightNorm| |besselJ| |shanksDiscLogAlgorithm| |primeFactor| - |eigenvectors| |upperCase?| |minColIndex| |clipWithRanges| |f02xef| - |leftFactor| |ip4Address| |numFunEvals| |simplifyLog| |quasiMonic?| - |binding| |perfectSqrt| |moreAlgebraic?| |pomopo!| |nthExponent| - |SturmHabichtSequence| |aCubic| |mpsode| |returns| |aQuadratic| - |getDatabase| |realElementary| |variationOfParameters| |cAcoth| - |chainSubResultants| |taylor| |yCoordinates| |isOr| |comp| |imagj| - |setIntersection| |setVariableOrder| |copies| |cAsech| |getMeasure| - |exprToUPS| |f01rdf| |laurent| |children| |quotient| |d02raf| - |polynomialZeros| |distance| |identification| |bivariatePolynomials| - |putGraph| |makeMulti| |OMencodingXML| |reverse| |puiseux| - |linearAssociatedLog| |someBasis| |factorPolynomial| |splitConstant| - |pointData| |basisOfRightNucloid| |dequeue!| |point?| |e02bbf| - |adaptive?| |wordsForStrongGenerators| |overlabel| |sinh2csch| |nil| + |Record| |Union| |genericLeftDiscriminant| |nullary| |parents| + |leftTraceMatrix| |OMgetBVar| |laplace| |resultantnaif| |solveLinear| + |setEmpty!| |systemCommand| |inv| |ravel| |match?| + |irreducibleFactors| |cartesian| |complexEigenvectors| |d02gaf| + |s19acf| |safeCeiling| |autoCoerce| |coth2trigh| |zeroSquareMatrix| + |getPickedPoints| |dequeue| |f02bbf| |ground?| |reshape| |c02agf| + |fractionFreeGauss!| |transcendent?| |normalize| |OMputEndApp| + |transform| |leadingExponent| |cubic| |multiEuclideanTree| + |subResultantGcdEuclidean| |ground| |digit?| |powerAssociative?| + |complexExpand| |besselK| |iFTable| |ran| |padicFraction| + |stripCommentsAndBlanks| |cSec| |OMgetInteger| |leadingMonomial| + |normal| |realEigenvalues| |combineFeatureCompatibility| |move| + |cyclotomic| |selectAndPolynomials| |sec2cos| |prod| |exactQuotient!| + |OMgetError| |decompose| |leadingCoefficient| |structuralConstants| + |isobaric?| |nullSpace| |supRittWu?| |OMencodingXML| + |numberOfChildren| |coordinates| |determinant| |bezoutDiscriminant| + |quadraticNorm| |primitiveMonomials| |close| |paren| |nilFactor| + |indices| |iipow| |listBranches| F |c06eaf| |credPol| |unitVector| + |numberOfFractionalTerms| |monicCompleteDecompose| |reductum| |update| + |incrementKthElement| |brillhartTrials| |reduceBasisAtInfinity| + |basisOfLeftNucloid| |split| |parametric?| |s14abf| |s18aff| |tRange| + |realSolve| |display| |removeRedundantFactorsInContents| |infieldint| + |halfExtendedSubResultantGcd1| |mightHaveRoots| |toroidal| + |linearPart| |makeop| |e01bhf| |collectUpper| |subResultantsChain| + |column| |fixedPointExquo| |hconcat| |divideIfCan| + |certainlySubVariety?| |rowEchelon| |zero?| |prepareDecompose| + |e02akf| |exteriorDifferential| |d01apf| + |rewriteSetByReducingWithParticularGenerators| |trivialIdeal?| + |monicRightDivide| |tryFunctionalDecomposition| |qPot| + |branchPointAtInfinity?| |lazyPremWithDefault| |divideIfCan!| + |representationType| |polygamma| |stoseInvertibleSet| |midpoint| + |groebner?| |lllp| |iiatan| |internalInfRittWu?| |position| + |character?| |d01ajf| |expr| |lagrange| |loopPoints| + |createPrimitiveNormalPoly| |sinhIfCan| |airyAi| |polyRDE| + |extractClosed| |input| ** |lowerCase?| |showFortranOutputStack| + |OMgetEndError| |unexpand| |operation| |stoseInternalLastSubResultant| + |yCoordinates| |inHallBasis?| |makeSin| |pushNewContour| |library| + |viewpoint| |charpol| |prevPrime| |identification| |OMgetBind| + |GospersMethod| |nodes| |unprotectedRemoveRedundantFactors| |deepCopy| + |inverseIntegralMatrix| |cCos| |OMputEndObject| |meatAxe| |latex| + |headAst| |OMputObject| |flexibleArray| |normalForm| |morphism| + |sqfree| |size| |listLoops| |variable| |sPol| |accuracyIF| + |insertionSort!| |scripted?| |pointData| |triangSolve| |chvar| + |index?| |f02aff| |iterators| |besselJ| |modulus| + |initializeGroupForWordProblem| |modifyPointData| |tracePowMod| + |factorsOfCyclicGroupSize| |set| |dihedral| |e02zaf| |stopTable!| + |rightTraceMatrix| |leftRank| |sequences| |cAtanh| |d01anf| |revert| + |completeHermite| |removeSinhSq| |yellow| |normalizedAssociate| + |acscIfCan| |arbitrary| |unravel| |checkForZero| |previous| + |csch2sinh| |aQuadratic| |graphCurves| |readInt16!| |composites| + |simplify| |weight| |bezoutMatrix| |changeName| |realEigenvectors| + |addMatch| |conjugates| |toseLastSubResultant| |makeEq| + |mergeDifference| |addPointLast| |OMgetAttr| |numberOfFactors| + |getCurve| |c06gsf| |showAll?| |monomial?| |green| + |lastSubResultantEuclidean| |associatedSystem| |chiSquare| |reify| + |callForm?| |genericRightDiscriminant| |normFactors| |toseInvertible?| + |subresultantVector| |say| |attributeData| |ramified?| + |cyclePartition| |true| |readLineIfCan!| |arguments| |writable?| + |expintegrate| |e01saf| |f04atf| |rarrow| |radix| |skewSFunction| + |leaf?| |genericPosition| |category| |lfinfieldint| |explicitEntries?| + |linears| |optpair| |splitNodeOf!| |reset| |components| |node| + |physicalLength!| |sumOfDivisors| |normalise| |curry| |domain| + |mapUp!| |expenseOfEvaluation| |safeFloor| |ranges| |s17ajf| + |extractProperty| |insert| |genericRightTrace| |gradient| |expandLog| + |package| |makeCrit| |listConjugateBases| |f02bjf| |squareFree| + |mainValue| |write| |inc| |taylorQuoByVar| |rightGcd| |cyclicGroup| + |exp| |seriesToOutputForm| |extendedEuclidean| |save| |rombergo| + |makeResult| |finite?| |overbar| |permutationRepresentation| |show| + |c05nbf| |realZeros| |s17dlf| |iiabs| |normalDenom| |over| |d01fcf| + |coefficients| |leftFactorIfCan| |useSingleFactorBound| |sechIfCan| + |relativeApprox| |ellipticCylindrical| |clip| |heapSort| + |algebraicVariables| |bsolve| |trace| |rangePascalTriangle| + |setTopPredicate| |purelyTranscendental?| |pr2dmp| |operators| + |OMParseError?| |expextendedint| |split!| |less?| |changeBase| + |createLowComplexityTable| |meshFun2Var| |rightRecip| |sqfrFactor| + |f01rcf| |option?| |trigs2explogs| |setMaxPoints3D| |varList| + |mainCharacterization| |iiacsc| |d01aqf| |e01sff| |infinite?| + |digamma| |iisech| |collectUnder| |selectFiniteRoutines| + |lazyEvaluate| |selectSumOfSquaresRoutines| + |functionIsFracPolynomial?| |fortranCompilerName| |traverse| + |outputForm| |maxPoints| |rightScalarTimes!| |norm| |lighting| + |basisOfLeftAnnihilator| |open| |algint| |chainSubResultants| + |extendedint| |cyclicCopy| |nextPartition| |pdct| |OMputApp| |equiv| + |rightLcm| |normal01| |maxColIndex| |rootKerSimp| |shiftRoots| + |maxIndex| |mappingMode| |powers| |monomRDE| |basisOfCentroid| |obj| + |retractIfCan| |pushdown| |minordet| |cCoth| |double| + |zeroDimensional?| |variable?| |triangularSystems| |moduloP| |cache| + |constant| |inputBinaryFile| |supersub| |setRealSteps| |complexRoots| + |nthFactor| |isTimes| |clipBoolean| |commutativeEquality| |operations| + |RittWuCompare| |safetyMargin| |OMgetSymbol| |inverseLaplace| + |ScanRoman| |crushedSet| |c02aff| |close!| |ParCond| |makingStats?| + |generalizedEigenvectors| |chineseRemainder| |localAbs| + |semiLastSubResultantEuclidean| |quartic| |log10| + |semiResultantEuclidean2| |primPartElseUnitCanonical!| + |algebraicDecompose| |exp1| |solveLinearPolynomialEquationByRecursion| + |invertIfCan| |cycleLength| |edf2fi| |pushdterm| |lowerCase!| |bitand| + |shiftRight| |infinity| |internalLastSubResultant| |att2Result| + |fullPartialFraction| |showIntensityFunctions| |subspace| + |lazyResidueClass| |monic?| UP2UTS |diagonalMatrix| |bitior| |tanAn| + |exprHasLogarithmicWeights| |changeThreshhold| |returns| + |getMultiplicationMatrix| |fortranDouble| |outputGeneral| |repSq| + |keys| |typeList| |OMputAtp| |hexDigit| |uniform01| |fglmIfCan| + |factor1| |ffactor| |generalInfiniteProduct| |binaryTree| |tanNa| + |kernel| |nextColeman| |iidprod| |map| |zoom| |isQuotient| + |symmetricGroup| |semiIndiceSubResultantEuclidean| |approxNthRoot| + |makeMulti| |makeTerm| |listexp| |mathieu11| |list| |printStats!| + |prolateSpheroidal| |cyclic| |updatD| |primlimitedint| |hspace| + |airyBi| |print| |lhs| |torsion?| |paraboloidal| |characteristicSerie| + |iidsum| |draw| |doublyTransitive?| |doubleResultant| |resolve| + |ptFunc| |rhs| |quote| |cyclicEntries| |csubst| |d01asf| + |specialTrigs| |call| |preprocess| |fill!| |odd?| |hasPredicate?| + |polygon| |chiSquare1| |chebyshevU| |s17adf| |prinpolINFO| + |numericalIntegration| |reducedSystem| |solid| |currentEnv| |plus!| + |splitConstant| |opeval| |exprToXXP| |stopTableInvSet!| |symbolIfCan| + |fracPart| |makeGraphImage| |OMputEndAttr| |rk4qc| |convert| + |selectfirst| |conjunction| |height| |asecIfCan| |pomopo!| + |numberOfVariables| |points| |testModulus| |graphImage| |makeObject| + |rewriteIdealWithRemainder| |pureLex| |reduced?| |fortranReal| + |iCompose| |Aleph| |hdmpToDmp| |indiceSubResultantEuclidean| + |optAttributes| |s15adf| |ipow| |coef| |matrixGcd| |f04axf| |froot| + |viewDeltaYDefault| |parts| |untab| |cosIfCan| |lex| |mainExpression| + |irVar| |dom| |torsionIfCan| |definingEquations| |remainder| + |laurentRep| |dioSolve| |iteratedInitials| |polar| |rotatez| + |complex?| |saturate| |splitSquarefree| Y |rk4| |clipSurface| + |setClipValue| |readInt32!| |powmod| |duplicates?| |cSech| |times!| + |fixPredicate| |iicsch| |lastSubResultantElseSplit| |blankSeparate| + |extendedSubResultantGcd| |mainSquareFreePart| |inverseColeman| + |ef2edf| |label| |boundOfCauchy| |pair?| |rightRank| |permanent| + |e02daf| |rdHack1| |basisOfLeftNucleus| |shufflein| |OMgetObject| + |entry| |subset?| |constant?| |lintgcd| |rightExactQuotient| + |property| |SturmHabichtMultiple| |select!| |stFunc2| |iiacoth| + |rootPower| |linearAssociatedExp| |tableForDiscreteLogarithm| + |wordInStrongGenerators| |initTable!| |just| |iroot| |deleteProperty!| + |cap| |HenselLift| |oddInfiniteProduct| |constantRight| + |quadraticForm| |cycleTail| |OMputVariable| |crest| + |computeCycleEntry| |clipPointsDefault| |linear?| |maxrank| |smith| + |OMgetString| |symmetricTensors| |gcdcofact| |exponential1| + |evenInfiniteProduct| |f02akf| |imagj| |symmetricProduct| + |setAttributeButtonStep| |cAcot| |initials| |imaginary| |row| + |vertConcat| |incr| |addPoint2| |monomials| |shape| + |halfExtendedResultant1| |setRow!| |primeFactor| |sup| |edf2df| + |selectPDERoutines| |viewThetaDefault| |constructor| |lfextlimint| + |hi| |overset?| |invertibleSet| |lifting| |tail| + |primPartElseUnitCanonical| |real?| |unit?| |e02bef| |rroot| + |twoFactor| |eigenvector| |viewport2D| |surface| |option| |goto| + |idealSimplify| |brillhartIrreducible?| + |semiDegreeSubResultantEuclidean| |showSummary| |predicates| + |primeFrobenius| |gensym| |e01baf| |upperBound| |polynomialZeros| + |e02def| |numericIfCan| |nodeOf?| |semiSubResultantGcdEuclidean2| + |rules| |units| |mainCoefficients| |inrootof| |redPo| + |getVariableOrder| |top| |ocf2ocdf| |randnum| + |rewriteIdealWithQuasiMonicGenerators| |listOfLists| |setImagSteps| + |showAttributes| |separate| |f07adf| |externalList| |any?| |continue| + |trace2PowMod| |indicialEquation| |flagFactor| |rationalFunction| + |rightCharacteristicPolynomial| |extensionDegree| |leadingIdeal| + |lprop| |rootDirectory| |deepExpand| |hasoln| |lazyIrreducibleFactors| + |subCase?| |setright!| |members| |changeMeasure| |prem| |name| |cCsc| + |unknown| |numFunEvals3D| |cycleSplit!| |getMeasure| |closeComponent| + |summation| |getProperties| |comment| |f01bsf| |body| + |setVariableOrder| |tanh2trigh| |conjug| |clearTable!| + |reducedQPowers| |viewPosDefault| |code| |slex| + |constantToUnaryFunction| |makeCos| |expIfCan| |sparsityIF| |s15aef| + |subSet| |stopMusserTrials| |ricDsolve| |kroneckerDelta| |e04jaf| + |gcdPolynomial| |sinIfCan| |localReal?| |null| |newSubProgram| + |userOrdered?| |critT| |gcdPrimitive| |makeSUP| |box| |radicalSolve| + |derivative| |readLine!| |iomode| |delta| |not| EQ |colorFunction| + |complexLimit| |removeDuplicates!| |lowerCase| |elliptic| + |gcdcofactprim| |clipParametric| |sizeMultiplication| |UP2ifCan| |and| + |cCosh| |curryLeft| |euclideanSize| + |removeRoughlyRedundantFactorsInPols| |f04adf| |functorData| + |generate| |expenseOfEvaluationIF| |stronglyReduce| |coHeight| |or| + |makeSeries| |besselI| |UnVectorise| |prologue| |goodPoint| + |bitLength| |getZechTable| |internalSubPolSet?| |bfKeys| |totolex| + |xor| |se2rfi| |poisson| |even?| |assert| |leftMinimalPolynomial| + |genericRightMinimalPolynomial| |incrementBy| |port| |minColIndex| + |stoseInvertibleSetreg| |atoms| |pattern| |case| |orthonormalBasis| + |leastMonomial| |has?| |lineColorDefault| |c06gqf| |expand| |laguerre| + |printTypes| |complexNormalize| |postfix| |Zero| |complexEigenvalues| + |viewZoomDefault| |groebgen| |interpretString| |intChoose| |module| + |irCtor| |filterWhile| |withPredicates| |t| |cardinality| |One| |is?| + |removeSuperfluousQuasiComponents| |drawToScale| FG2F + |stoseLastSubResultant| |s13adf| |filterUntil| |OMencodingSGML| + |fractionPart| |host| |lambda| |nand| |printStatement| + |collectQuasiMonic| |topFortranOutputStack| |e02bcf| |commutative?| + |search| |select| |continuedFraction| |var1Steps| |cos2sec| + |triangular?| |message| |meshPar2Var| |laurentIfCan| |ode1| |adjoint| + |ode2| |find| |deepestInitial| |selectOptimizationRoutines| + |setfirst!| |multisect| |balancedFactorisation| |more?| + |OMlistSymbols| |univariatePolynomials| |completeEval| |modifyPoint| + |selectPolynomials| |recoverAfterFail| |roughEqualIdeals?| |nrows| + |setFormula!| |evenlambert| |readable?| |minrank| |integerIfCan| + |probablyZeroDim?| |eyeDistance| |FormatRoman| |ncols| |elt| + |writeBytes!| |removeSquaresIfCan| |deref| |cyclicEqual?| + |OMputEndBind| |symmetricSquare| |retract| |fixedPoints| |head| + |setClosed| |isAbsolutelyIrreducible?| |minRowIndex| |critB| |bumptab| + |dilog| |s13aaf| |e04gcf| |zero| |power| |clikeUniv| |inGroundField?| + |key?| |sech2cosh| |push!| |localIntegralBasis| |primlimintfrac| + |cons| |sin| |graphs| |makeRecord| |escape| |changeNameToObjf| + |toseSquareFreePart| |computeCycleLength| |nothing| |Vectorise| |And| + |rightQuotient| |firstDenom| |cos| |f02xef| |lazyPseudoQuotient| + |useEisensteinCriterion?| |monomialIntPoly| |setOrder| + |functionIsOscillatory| |initiallyReduce| |coerceP| |minimumExponent| + |Or| |tan| |nor| |floor| |rowEchelonLocal| |aspFilename| |imagJ| + |constantOpIfCan| |fortranCarriageReturn| |hessian| |Not| |OMclose| + |cot| |lookupFunction| |maxdeg| |zeroVector| |pushup| + |selectNonFiniteRoutines| |fortranLinkerArgs| |univariatePolynomial| + |condition| |multiset| |cSinh| |sec| |physicalLength| |principal?| + |setProperties| |mainVariable| |generateIrredPoly| + |setScreenResolution| |collect| |jokerMode| |csc| |logical?| |sincos| + |basisOfMiddleNucleus| |critBonD| |integralDerivationMatrix| + |palgextint| |factorOfDegree| |interpret| + |zeroSetSplitIntoTriangularSystems| |source| |RemainderList| |asin| + |startStats!| |pascalTriangle| |findBinding| |complement| |prinshINFO| + |atom?| |vedf2vef| |reducedDiscriminant| |randomLC| |dec| |acos| + |unitNormal| |numberOfComposites| |entries| |double?| |scalarMatrix| + |balancedBinaryTree| |computeInt| |atan| |plusInfinity| + |subresultantSequence| |f04mbf| |singleFactorBound| |bit?| |capacity| + |s21baf| |external?| |readBytes!| |acot| |minusInfinity| |red| + |isAtom| |char| |rst| |s17dgf| |leftDivide| |setref| + |ScanFloatIgnoreSpacesIfCan| |asec| |wreath| |orbit| + |degreeSubResultantEuclidean| |singular?| |ksec| + |linearAssociatedOrder| |selectMultiDimensionalRoutines| + |primaryDecomp| |acsc| |target| |minimize| |OMputError| |perfectSqrt| + |d02raf| |e01daf| |OMputBVar| |sub| |sinh| |basisOfCommutingElements| + |setIntersection| |rationalApproximation| |pquo| |splitLinear| + |totalGroebner| F2FG |diagonalProduct| |frobenius| |cosh| + |SturmHabichtCoefficients| |printingInfo?| |decimal| |content| + |extendedResultant| |solveLinearlyOverQ| |inspect| |c06fqf| |type| + |OMmakeConn| |tanh| |setLabelValue| |jordanAlgebra?| |bitTruth| + |padicallyExpand| |outputList| |rowEchLocal| |cycleEntry| |PDESolve| + |nonQsign| |inconsistent?| |coth| |basis| |newTypeLists| |palgextint0| + |discriminant| |bringDown| |fixedPoint| |OMUnknownSymbol?| |status| + |float| |qelt| |sh| |digit| |addBadValue| |sech| |btwFact| + |HermiteIntegrate| |radicalEigenvector| |second| |qsetelt| |eof?| + |internalIntegrate| |reverse!| |sinhcosh| |nextItem| |insertRoot!| + |rightNorm| |csch| |nthRootIfCan| |monicRightFactorIfCan| |belong?| + |third| |mapCoef| |integralLastSubResultant| |remove!| |e02baf| + |xRange| |constantOperator| |unitNormalize| |asinh| + |hypergeometric0F1| |standardBasisOfCyclicSubmodule| |f02aef| |extend| + |complexZeros| |compile| |s21bdf| |OMgetEndAttr| + |nextLatticePermutation| |yRange| |lyndon?| |void| |OMputAttr| |acosh| + |constDsolve| |setAdaptive| |duplicates| |showTheSymbolTable| + |leftNorm| |d02kef| |getGraph| |cAtan| |zRange| |leftMult| |hexDigit?| + |modTree| |atanh| |outputSpacing| |e02agf| |sn| |nextSublist| + |insertBottom!| |map!| |color| |f01maf| |restorePrecision| |direction| + |pushucoef| |acoth| |factorSquareFreeByRecursion| |toseInvertibleSet| + |baseRDEsys| |sign| |qsetelt!| |acothIfCan| |lazyIntegrate| + |identitySquareMatrix| |exponential| |exponents| |linSolve| |asech| + |upperCase?| |abelianGroup| |patternVariable| |mesh| |omError| + |largest| |ip4Address| |squareFreePolynomial| |generalSqFr| + |createGenericMatrix| |getConstant| |regime| |iiacot| |quasiMonic?| + |differentialVariables| |f04asf| |updateStatus!| |create| GE |qqq| + |multiple| |hue| |getStream| |rischDEsys| |binding| |cAcosh| + |intcompBasis| |mathieu24| |simplifyExp| |nextPrime| GT + |nonSingularModel| |applyQuote| |parseString| |coerceL| |s17aef| + |Lazard| |mainContent| |pack!| |f04maf| |hasTopPredicate?| LE + |setlast!| |e02gaf| |zag| |eq?| |createPrimitivePoly| + |leftExtendedGcd| |expandTrigProducts| |predicate| |equality| + |degreeSubResultant| |difference| |powern| LT |acsch| |outputArgs| + |tubePoints| |f02wef| |tensorProduct| |graphStates| |isPower| + |findCycle| |ceiling| |curve?| |rootsOf| |LazardQuotient| + |mapMatrixIfCan| |mathieu23| |ruleset| |backOldPos| |minPol| + |numberOfPrimitivePoly| |unitsColorDefault| |hclf| |d02bhf| |bottom!| + |makeVariable| |subst| |badValues| |algSplitSimple| |bits| |qinterval| + |OMputFloat| |LyndonWordsList1| |shuffle| |relationsIdeal| |cycle| + |rightTrace| |c06ecf| |expandPower| |ratPoly| |removeConstantTerm| + |whileLoop| |nthExponent| |fortranLogical| |nthFractionalTerm| + |createNormalPoly| |deleteRoutine!| |represents| |leftExactQuotient| + |directory| |repeating| |rootSplit| |removeRedundantFactorsInPols| + |suchThat| |extractTop!| |sinh2csch| |makeUnit| |tree| |index| + |diophantineSystem| |shallowCopy| |LyndonCoordinates| |maxPoints3D| + |writeLine!| |primes| |adaptive| |cosh2sech| |subtractIfCan| + |OMgetEndObject| |An| |nlde| |implies| |ode| |initial| |simpson| + |radicalSimplify| |isEquiv| |atanhIfCan| |selectIntegrationRoutines| + |fintegrate| |sin?| |SturmHabicht| |applyRules| |packageCall| + |strongGenerators| |lepol| |internalZeroSetSplit| |mapUnivariateIfCan| + |prime| |node?| |lastSubResultant| |pair| |leftRankPolynomial| + |entry?| |numerators| |dimensions| |objects| + |solveLinearPolynomialEquation| |leftZero| |rightTrim| |mapUnivariate| + |monicLeftDivide| |bright| |getOperator| |areEquivalent?| + |complexElementary| |parameters| |regularRepresentation| |delay| + |push| |possiblyNewVariety?| |base| |bat1| |leftTrim| |f01rdf| + |characteristicPolynomial| |antisymmetric?| + |createNormalPrimitivePoly| |BumInSepFFE| |arg1| |normDeriv2| + |subNode?| |trueEqual| |Frobenius| |cyclotomicDecomposition| + |hermiteH| |invertibleElseSplit?| |removeZero| |eval| |doubleDisc| + |dequeue!| |arg2| |iiacsch| |adaptive?| |lexico| |OMputEndBVar| + |iicos| |integralCoordinates| |checkRur| |midpoints| |cPower| |light| + |doubleComplex?| |LagrangeInterpolation| |BasicMethod| |anticoord| + |mathieu12| |atrapezoidal| |reindex| |f04jgf| |inR?| |generators| + |conditions| |curve| |henselFact| |pdf2ef| |OMreceive| |e04naf| + |basisOfRightAnnihilator| |algebraicOf| |error| |hasHi| |alternating| + |meshPar1Var| |binary| |match| |generic| |startTableInvSet!| + |putProperty| |dihedralGroup| |front| |halfExtendedSubResultantGcd2| + |setchildren!| |coefficient| |equation| |setProperty| |updatF| + |d01bbf| |square?| |headReduced?| |Ci| |part?| |myDegree| + |partialNumerators| |associatorDependence| |nthExpon| + |sortConstraints| |zeroMatrix| |fi2df| |function| |numberOfComponents| + |radicalEigenvectors| |makeYoungTableau| |exprHasWeightCosWXorSinWX| + |optimize| |stiffnessAndStabilityOfODEIF| |startTable!| |symFunc| + |nextsousResultant2| |imagI| |finiteBasis| |OMputBind| |contract| + |diag| |mainVariables| |dominantTerm| |measure2Result| |OMReadError?| + |problemPoints| |OMlistCDs| |e04fdf| |writeUInt8!| |bivariate?| + |lazyPquo| |exactQuotient| BY |support| |internalDecompose| + |repeating?| |createIrreduciblePoly| |defineProperty| |empty?| + |transcendenceDegree| |dflist| |radicalRoots| |hostPlatform| |qroot| + |cExp| |blue| |horizConcat| |listRepresentation| |tanQ| + |clearTheFTable| |rightAlternative?| |leftLcm| |elliptic?| + |elaboration| |compBound| |quotedOperators| |eigenMatrix| + |listYoungTableaus| |s18def| |quadratic| |addmod| |lazyGintegrate| + |isExpt| |genericLeftTrace| |in?| |replace| |ODESolve| + |changeWeightLevel| |doubleRank| |setleft!| |sort| |iterationVar| + |medialSet| |refine| |matrixDimensions| |normalDeriv| |modularFactor| + |realElementary| |extractIfCan| |s13acf| |sin2csc| |Nul| + |doubleFloatFormat| |iprint| |rem| |generic?| |littleEndian| + |binaryFunction| |removeDuplicates| |subTriSet?| |properties| + |var2Steps| |denominator| |expPot| |semiResultantEuclidean1| + |stoseSquareFreePart| |inRadical?| |quo| |multiEuclidean| |diff| + |removeRoughlyRedundantFactorsInContents| |tab| |id| |spherical| NOT + |cSin| |showClipRegion| |translate| |totalDegree| |trunc| + |OMsetEncoding| |extension| |univariatePolynomialsGcds| |bag| + |quasiComponent| |lo| |groebnerIdeal| OR |s18dcf| |random| + |associates?| |trim| |infinityNorm| |e01bff| |div| |quoted?| + |rational| |simplifyPower| |linearDependenceOverZ| + |subscriptedVariables| AND |clearTheIFTable| |controlPanel| |lcm| + |bivariateSLPEBR| |putGraph| |dAndcExp| |exquo| |iExquo| |delete| + |cycleElt| |coerceListOfPairs| |OMencodingUnknown| |sts2stst| |iicsc| + |pseudoDivide| |powerSum| |ScanArabic| ~= |c06gcf| |janko2| |redPol| + |noKaratsuba| |lift| |sumOfSquares| |createZechTable| |s17agf| + |euclideanNormalForm| |append| |arity| |prepareSubResAlgo| |#| + |f02agf| |f07aef| |f01ref| |printHeader| |reduce| |polarCoordinates| + |unitCanonical| |leadingCoefficientRicDE| |laguerreL| |gcd| + |plotPolar| |substitute| ~ |infix| |createThreeSpace| |nullity| + |factorSquareFree| |OMserve| |false| |buildSyntax| |characteristic| + |integer?| |polyRicDE| |complexForm| |iicosh| |dmpToP| + |rationalPoint?| |limit| |number?| |irDef| |LowTriBddDenomInv| + |KrullNumber| |factorGroebnerBasis| |axesColorDefault| |apply| + |exptMod| |wronskianMatrix| |minus!| |complete| |lyndonIfCan| + |internal?| |groebSolve| |eigenvalues| |normalizeAtInfinity| |/\\| + |optional?| |matrix| |first| |sylvesterMatrix| |insertMatch| + |oneDimensionalArray| |sayLength| |f01qdf| |getOperands| + |transcendentalDecompose| |intPatternMatch| |\\/| |rest| |vark| |axes| + |generalizedEigenvector| |low| |lp| |cylindrical| |elRow2!| + |lexTriangular| |indicialEquationAtInfinity| |algebraicCoefficients?| + |returnType!| |OMsupportsCD?| |tanIfCan| |palgint| + |componentUpperBound| |coerce| * |drawComplexVectorField| |asechIfCan| + |stirling1| |OMputSymbol| |musserTrials| |elColumn2!| + |cyclotomicFactorization| |coleman| |LiePoly| + |removeRoughlyRedundantFactorsInPol| |construct| |bernoulliB| |queue| + |unrankImproperPartitions1| |numerator| |pile| |divide| + |genericRightNorm| |numer| |stronglyReduced?| |ref| |pointSizeDefault| + |generator| |setScreenResolution3D| |indiceSubResultant| |iiexp| + |addiag| |complementaryBasis| |denom| |concat!| |branchPoint?| |ideal| + |swap!| = |isOpen?| |Gamma| |iitanh| |shade| |squareFreePart| + |readUInt32!| |algintegrate| |distFact| |dimension| |palgRDE| |fmecg| + |iisqrt3| |elRow1!| |exists?| |viewSizeDefault| |univcase| |c06gbf| + |pi| |byte| |convergents| |normalizedDivide| |e02bbf| < |youngGroup| + |leadingTerm| |quoByVar| |elaborate| |wrregime| |rangeIsFinite| + |width| |c06fpf| |secIfCan| |categoryMode| > |wholeRagits| + |subResultantGcd| |numberOfMonomials| |stoseInvertible?sqfreg| + |tablePow| |coordinate| |setLength!| |genericRightTraceForm| + |invertible?| <= |integral| UTS2UP |integral?| + |inverseIntegralMatrixAtInfinity| |nil?| |asinhIfCan| |mindegTerm| + |radicalOfLeftTraceForm| |linearMatrix| |nextNormalPoly| |jacobi| >= + |plot| |mesh?| |scalarTypeOf| |LyndonWordsList| |hdmpToP| + |swapColumns!| |presuper| |pdf2df| |fortranComplex| |bytes| + |leadingIndex| |cAcsch| |fullDisplay| |solveInField| |llprop| + |contours| |generalLambert| |forLoop| |rightDiscriminant| + |outputAsScript| |vconcat| |calcRanges| |symbol?| |rightPower| |iitan| + |choosemon| |stoseInvertible?reg| |explicitlyFinite?| + |supDimElseRittWu?| |tan2trig| |expint| + |currentScope| |hermite| + |pToDmp| |distribute| |value| |setMinPoints| |clearCache| |mat| + |var1StepsDefault| |primitive?| |numeric| |getProperty| |int| + |encodingDirectory| |conditionP| - |contractSolve| |disjunction| + |basisOfRightNucloid| |selectODEIVPRoutines| |lSpaceBasis| + |coefChoose| |bipolar| |radical| |moduleSum| |optional| |cAsec| + |bumprow| / |legendreP| |whatInfinity| |invmod| |deriv| |terms| + |showTheIFTable| |setTex!| |arrayStack| |component| |log| + |lfextendedint| |gderiv| |bivariatePolynomials| |setMinPoints3D| + |iiGamma| |changeVar| |jordanAdmissible?| |isMult| |s19abf| |elements| + |indicialEquations| |redmat| |setPosition| |antiCommutative?| + |rationalPower| RF2UTS |subResultantChain| |makeViewport3D| + |signature| |numberOfDivisors| |argumentList!| |setelt| |localUnquote| + |univariateSolve| |cot2trig| |exponent| |moebius| |debug3D| + |functionIsContinuousAtEndPoints| |getDatabase| |leftRecip| + |normalized?| |size?| |OMgetAtp| |getlo| |declare!| |f01brf| + |divergence| |float?| |dn| |bandedJacobian| |c06frf| |f02aaf| |copy| + |pleskenSplit| |rotate| |fortranInteger| |mainVariable?| |dictionary| + |adaptive3D?| |droot| |getMatch| |lfintegrate| |csc2sin| |exprex| + |f04qaf| |tanintegrate| |nativeModuleExtension| |primintfldpoly| + |headReduce| |style| |measure| |datalist| |cAcoth| |enterInCache| + |getBadValues| |mapSolve| |degreePartition| |negative?| |schwerpunkt| + |d02gbf| |pointLists| |setCondition!| |oblateSpheroidal| + |getButtonValue| |kovacic| |zeroDimPrime?| |cot2tan| |minimumDegree| + |makeViewport2D| |gbasis| |OMreadFile| |alphabetic?| |tubePlot| + |options| |commaSeparate| |getIdentifier| |OMcloseConn| |trapezoidal| + |completeEchelonBasis| |outputFixed| |setOfMinN| |increasePrecision| + |twist| |setButtonValue| |semiSubResultantGcdEuclidean1| + |dualSignature| |univariate?| |bumptab1| |tanSum| |solveRetract| + |open?| |iiasec| |harmonic| |swap| |makeFR| |distdfact| |B1solve| + |approximants| |dark| |divideExponents| |segment| |validExponential| + |hcrf| |exponentialOrder| |s17acf| |reverseLex| |output| |string| + |associative?| |rename!| |swapRows!| |bat| |s19aaf| |bigEndian| + |maximumExponent| |rightFactorCandidate| |euler| |pToHdmp| + |UpTriBddDenomInv| |var2StepsDefault| |sizeLess?| |LiePolyIfCan| + |isOp| |conical| |monicModulo| |sample| |elaborateFile| |neglist| + |irForm| |outputMeasure| |selectsecond| |fillPascalTriangle| + |pointPlot| |mappingAst| |cond| |zeroDim?| |discreteLog| + |hostByteOrder| |showArrayValues| |signatureAst| |build| + |complexNumericIfCan| |d01gaf| |internalAugment| |parabolic| + |weierstrass| |s17ahf| |normal?| |newReduc| |Si| |Ei| |e02aef| + |palgintegrate| |separant| |euclideanGroebner| |d01amf| + |quasiRegular?| |evaluate| |tan2cot| |setPoly| |insert!| |rootBound| + |dmpToHdmp| |exQuo| |slash| |homogeneous?| |mpsode| |e02ahf| + |nextsubResultant2| |basisOfCenter| |seriesSolve| |factorials| + |removeCosSq| |root| |showScalarValues| |c05pbf| |goodnessOfFit| + |factorFraction| |derivationCoordinates| |numberOfIrreduciblePoly| + |f01qcf| |iiasinh| |explimitedint| |multinomial| |e02adf| |squareTop| + |remove| |graeffe| |weighted| |factors| |enqueue!| |solveid| + |fibonacci| |bitCoef| |resultant| |monicDivide| |minPoints3D| + |stoseInvertibleSetsqfreg| |outputFloating| |exprToGenUPS| + |limitedint| |screenResolution3D| |setDifference| |quatern| |reseed| + |stopTableGcd!| |gethi| |truncate| |center| |last| |factorPolynomial| + |empty| |mergeFactors| |jacobiIdentity?| |sumSquares| |isOr| + |polyPart| |integrate| |assoc| |setnext!| |rectangularMatrix| + |besselY| |reduceByQuasiMonic| |setLegalFortranSourceExtensions| + |idealiserMatrix| |thetaCoord| |stoseIntegralLastSubResultant| + |maxRowIndex| |addPoint| |formula| |setleaves!| + |stiffnessAndStabilityFactor| |lieAdmissible?| |OMgetEndApp| + |compound?| |imports| |round| |coth2tanh| |setprevious!| |anfactor| + |hasSolution?| |e01sef| |sturmSequence| |lazyPseudoDivide| |rquo| + |setrest!| |dimensionsOf| |f01mcf| |tubeRadiusDefault| |pol| + |rightDivide| |alphabetic| |shanksDiscLogAlgorithm| + |internalSubQuasiComponent?| |imagi| |permutationGroup| + |palginfieldint| |lowerBound| |lookup| |minset| |palglimint| + |totalfract| |rightMult| |constantLeft| |positiveRemainder| + |getGoodPrime| |assign| |setsubMatrix!| |createMultiplicationMatrix| + |imagK| |sdf2lst| |romberg| |element?| |mulmod| |symmetric?| + |create3Space| |cotIfCan| |moebiusMu| |rootRadius| |merge| + |eisensteinIrreducible?| |rewriteIdealWithHeadRemainder| |expt| + |positive?| |cycles| |limitPlus| |Hausdorff| |OMopenString| + |perfectNthRoot| |leftQuotient| |divisors| |mapdiv| |varselect| |Beta| + |OMopenFile| |squareMatrix| |viewport3D| |taylorIfCan| + |rightExtendedGcd| |charthRoot| |alphanumeric?| |s01eaf| |dual| + |colorDef| |minIndex| |totalLex| |biRank| |universe| |stirling2| + |sylvesterSequence| |leastPower| |PollardSmallFactor| |ratDenom| + |invmultisect| |shallowExpand| |OMgetFloat| |currentSubProgram| + |zerosOf| |nextNormalPrimitivePoly| |bubbleSort!| |d02ejf| |uniform| + |domainTemplate| |legendre| |every?| |addMatchRestricted| |notelem| + |mainKernel| |flexible?| |heap| |semicolonSeparate| + |removeSuperfluousCases| |socf2socdf| |dfRange| |badNum| + |pointColorDefault| |setStatus| |trailingCoefficient| + |createMultiplicationTable| |fprindINFO| |scan| |divisor| |f02fjf| + |basisOfNucleus| |s18aef| |high| |showTheRoutinesTable| + |viewDeltaXDefault| |resultantEuclidean| |bracket| |iicot| |mdeg| + |separateFactors| |reduceLODE| |power!| |branchIfCan| + |showAllElements| |e02dcf| |leaves| |unvectorise| |decrease| + |resultantReduitEuclidean| |factorList| |removeSinSq| |typeLists| + |showRegion| |genericLeftMinimalPolynomial| |setEpilogue!| + |setPrologue!| |s17dcf| |nil| |f07fef| |algebraicSort| |critM| + |e01sbf| |macroExpand| |inputOutputBinaryFile| |schema| |noValueMode| + |algebraic?| |comparison| |vspace| |LyndonBasis| |decomposeFunc| + |eulerE| |allRootsOf| |rightUnit| |upperCase!| |putProperties| + |removeRedundantFactors| |partition| |singularitiesOf| |unaryFunction| + |null?| |OMsend| |point?| |limitedIntegrate| |rename| |linkToFortran| + |alphanumeric| |approximate| |absolutelyIrreducible?| |nthRoot| + |principalAncestors| |insertTop!| |printInfo!| |ldf2lst| |cAsech| + |byteBuffer| |cCot| |sum| |complex| |uncouplingMatrices| |reopen!| + |lflimitedint| |stFuncN| |clearFortranOutputStack| |tab1| |resize| + |nthr| |partialDenominators| |primextendedint| |order| |countable?| + |variationOfParameters| |shrinkable| |closed| |setValue!| + |normalizeIfCan| |exprHasAlgebraicWeight| |leftTrace| + |primitiveElement| |Is| |rank| |bfEntry| |e02ddf| |acosIfCan| + |realRoots| |messagePrint| |roughBase?| |point| |retractable?| + |enterPointData| |cn| |OMputInteger| |innerSolve| |linearDependence| + |debug| |moreAlgebraic?| |palgint0| |failed| |innerint| + |rationalIfCan| |associatedEquations| |imagE| |degree| |headRemainder| + |leadingBasisTerm| |s18acf| D |parametersOf| |SturmHabichtSequence| + |makeSketch| |numberOfHues| |resetAttributeButtons| |scaleRoots| + |discriminantEuclidean| |quickSort| |inverse| |startPolynomial| + |freeOf?| |acotIfCan| |series| |cAcos| |rightRemainder| |palgLODE| + |curveColor| |bounds| |createPrimitiveElement| |readUInt8!| + |extractBottom!| |modularGcd| |reduction| |padecf| |f07fdf| + |someBasis| |chebyshevT| |getMultiplicationTable| |vectorise| + |setMaxPoints| |distance| |ddFact| |conjugate| |htrigs| |iiacosh| + |useEisensteinCriterion| |primitivePart| |charClass| |iflist2Result| + |fixedDivisor| |super| |resetVariableOrder| |lists| + |innerEigenvectors| |connectTo| |infieldIntegrate| |solid?| |iiasin| + |npcoef| |min| |cup| |pastel| |OMgetEndAtp| |firstUncouplingMatrix| + |aCubic| GF2FG |squareFreeLexTriangular| |setelt!| |cyclicSubmodule| + |printInfo| |categoryFrame| |infiniteProduct| |OMbindTCP| + |constantKernel| |linearlyDependent?| |roughBasicSet| + |factorSquareFreePolynomial| |binomThmExpt| |ReduceOrder| |setColumn!| + |increase| |zeroSetSplit| |multiple?| |replaceKthElement| + |leftRegularRepresentation| |checkPrecision| |acoshIfCan| |prinb| + |removeZeroes| |lazy?| |substring?| |s17def| |key| |constantIfCan| + |computeBasis| |getCode| |listOfMonoms| |polygon?| |qualifier| + |numberOfNormalPoly| |superHeight| |orbits| |presub| |graphState| + |subscript| |leader| |reducedContinuedFraction| + |numberOfImproperPartitions| |nextPrimitivePoly| |symmetricPower| + |suffix?| |parent| |filename| |removeIrreducibleRedundantFactors| + |primextintfrac| |scanOneDimSubspaces| |decreasePrecision| |e02bdf| + |f2df| |genericLeftNorm| |iisin| |tube| |symbolTable| + |loadNativeModule| |nthCoef| |iiasech| |explicitlyEmpty?| |e04ucf| + |reducedForm| |s17aff| |rk4a| |check| |prefix?| |selectOrPolynomials| + |viewDefaults| |parse| |complexSolve| |cross| |separateDegrees| + |mkIntegral| |fortran| |simpleBounds?| |shellSort| |d01alf| + |cosSinInfo| |plus| |roughUnitIdeal?| |pushFortranOutputStack| + |e04mbf| |elementary| |const| |elseBranch| |mapDown!| |cLog| |copy!| + |nonLinearPart| |unrankImproperPartitions0| |popFortranOutputStack| + |firstNumer| |copies| |d03edf| |modularGcdPrimitive| |partialFraction| + |bothWays| |wholeRadix| |exprToUPS| |cCsch| |outputAsFortran| + |denominators| |df2ef| |symbolTableOf| |minPoly| |linearAssociatedLog| + |ignore?| |initiallyReduced?| |pmintegrate| |trapezoidalo| |table| + |contains?| |createLowComplexityNormalBasis| |stoseInvertible?| + |s17akf| |totalDifferential| |leadingSupport| |OMreadStr| |precision| + |maxrow| |times| |getSyntaxFormsFromFile| |new| |removeCoshSq| + |cscIfCan| |viewWriteDefault| |mathieu22| + |generalizedContinuumHypothesisAssumed?| |drawComplex| |polyred| + |argumentListOf| |f02axf| |infix?| |ptree| |e04dgf| + |solveLinearPolynomialEquationByFractions| |pseudoQuotient| |roman| + |edf2efi| |virtualDegree| |flatten| |appendPoint| + |semiResultantEuclideannaif| |mask| |OMgetType| |upDateBranches| + |sequence| |jacobian| |s18adf| |init| |cfirst| |integralRepresents| + |xCoord| |interpolate| |extractIndex| |numberOfCycles| |range| + |OMputEndError| |linGenPos| |extract!| |matrixConcat3D| |systemSizeIF| + |trigs| |shiftLeft| |monom| |reorder| |partialQuotients| |increment| + |clearDenominator| |groebnerFactorize| |OMsupportsSymbol?| |readByte!| + |rootOf| |nextSubsetGray| |rule| |cAsin| |clipWithRanges| |leftFactor| + |figureUnits| |karatsubaDivide| |eigenvectors| |asimpson| |f02ajf| + |isPlus| |simpsono| |reciprocalPolynomial| |position!| |rubiksGroup| + |rightOne| |rightMinimalPolynomial| |purelyAlgebraic?| + |linearlyDependentOverZ?| |common| |traceMatrix| |companionBlocks| + |cAsinh| |voidMode| |rational?| |script| |normalElement| + |antisymmetricTensors| |createRandomElement| |coord| + |mainPrimitivePart| |rur| |expintfldpoly| |writeByte!| |monomRDEsys| + |dimensionOfIrreducibleRepresentation| |title| |ratpart| |perspective| + |polCase| |factorset| |mirror| |denomRicDE| |baseRDE| |taylorRep| + |resultantEuclideannaif| |sorted?| |compdegd| |rspace| |acschIfCan| + |left| |vector| |OMputString| |pow| |numericalOptimization| + |generalizedInverse| |tex| |signAround| |outerProduct| |e01bgf| + |tanh2coth| |superscript| |infRittWu?| |right| |differentiate| + |coerceImages| |testDim| |integers| |f2st| |e| |iisec| |resetNew| + |monomialIntegrate| |minPoints| |unary?| |connect| |intersect| + |normInvertible?| |dmp2rfi| |factorsOfDegree| |squareFreePrim| + |augment| |curryRight| |sturmVariationsOf| |df2mf| |binomial| + |quotient| |fractRagits| |usingTable?| |psolve| |showTheFTable| + |coercePreimagesImages| |compose| |d01gbf| |factorSFBRlcUnit| + |infLex?| |cyclic?| |autoReduced?| |roughSubIdeal?| |logIfCan| + |rootSimp| |enumerate| |basicSet| |dot| |complexIntegrate| |f02awf| + |lllip| |closedCurve?| |leftUnit| |ord| |rationalPoints| |mkcomm| + |OMwrite| |aromberg| |ramifiedAtInfinity?| |tableau| + |parabolicCylindrical| |rischNormalize| |shift| |tubeRadius| |scopes| + |abs| |product| |any| |highCommonTerms| |hash| |exportedOperators| + |errorKind| |d03faf| |environment| |logGamma| |leftUnits| |singRicDE| + |interReduce| |count| |failed?| |computePowers| |d02bbf| + |noLinearFactor?| |next| |commutator| |makeFloatFunction| |e02dff| + |SFunction| |stosePrepareSubResAlgo| |rk4f| |binarySearchTree| + |pointColor| |integralBasisAtInfinity| |coerceS| |integralAtInfinity?| + |multiplyExponents| |leftGcd| |isImplies| |wordInGenerators| |elem?| + |hitherPlane| |leastAffineMultiple| |bezoutResultant| |resetBadValues| + |bipolarCylindrical| |cTanh| |getRef| |prime?| |symbol| |df2st| + |genus| |karatsuba| |conditionsForIdempotents| + |integralMatrixAtInfinity| |perfectSquare?| |extractSplittingLeaf| + |solve| |setFieldInfo| |minimalPolynomial| |expression| |read!| + |fortranLiteralLine| |zeroDimPrimary?| |OMconnInDevice| |Lazard2| + |iifact| |rowEch| |interval| |approxSqrt| |integer| |critpOrder| + |weights| |lambert| |rightUnits| |putColorInfo| |d02cjf| |cdr| + |linear| |findConstructor| |associator| |useSingleFactorBound?| + |readInt8!| |mapExpon| |thenBranch| |OMputEndAtp| |zeroOf| |octon| + |rootProduct| |makeprod| |lyndon| |xn| |logpart| |subPolSet?| + |alternative?| |overlabel| |rischDE| |polynomial| |binaryTournament| + |rCoord| |FormatArabic| |irreducibleRepresentation| |cyclicParents| + |transpose| |randomR| |leftAlternative?| |copyInto!| |laplacian| + |outputAsTex| |fractRadix| |log2| |routines| |oddlambert| |erf| + |clearTheSymbolTable| |result| |radicalEigenvalues| |oddintegers| + |write!| |diagonal?| |useNagFunctions| |iibinom| |leftDiscriminant| + |li| |triangulate| |bandedHessian| |nsqfree| |redpps| |fTable| + |algDsolve| |firstSubsetGray| |integerBound| |central?| |c06fuf| + |stack| |bindings| |minGbasis| |lquo| |tower| |before?| + |primintegrate| |toScale| |characteristicSet| |pop!| |digits| + |quasiMonicPolynomials| |positiveSolve| |quotientByP| |patternMatch| + |internalIntegrate0| |extendedIntegrate| |plenaryPower| |topPredicate| + |lowerPolynomial| |identity| |f04arf| |recolor| |compiledFunction| + |subQuasiComponent?| |block| |setAdaptive3D| |particularSolution| + |sumOfKthPowerDivisors| |d01akf| |eq| |expressIdealMember| + |permutations| |aQuartic| |unit| |antiCommutator| |rotate!| + |outputBinaryFile| |radPoly| |sizePascalTriangle| |iter| |f04faf| + |dim| |region| |setErrorBound| |length| |divisorCascade| |palgLODE0| + |mindeg| |endSubProgram| |pushuconst| |complexNumeric| + |resultantReduit| |simplifyLog| |outlineRender| |fortranCharacter| + |LazardQuotient2| |step| |scripts| |leftRemainder| |prefixRagits| + |quasiRegular| |purelyAlgebraicLeadingMonomial?| |irreducible?| + |aLinear| |knownInfBasis| |frst| |irreducibleFactor| |concat| + |coshIfCan| |member?| |subNodeOf?| |numberOfOperations| |groebner| + |test| |kernels| |sort!| |numberOfComputedEntries| |argument| |solve1| + |palglimint0| |endOfFile?| |wholePart| |OMconnOutDevice| |ListOfTerms| + |upperCase| |operator| |denomLODE| |multiplyCoefficients| |rdregime| + |leftOne| |fortranLiteral| |epilogue| |readIfCan!| |mkAnswer| + |permutation| |asinIfCan| |lazyPseudoRemainder| |car| |children| + |nextPrimitiveNormalPoly| |definingInequation| |karatsubaOnce| + |cRationalPower| |mix| |leftCharacteristicPolynomial| |viewPhiDefault| + |prindINFO| |perfectNthPower?| |univariate| |bombieriNorm| + |nextIrreduciblePoly| |gramschmidt| |diagonals| |currentCategoryFrame| + |intensity| |rootNormalize| |ratDsolve| |pade| |lfunc| |c06ekf| |kmax| + |possiblyInfinite?| |generalizedContinuumHypothesisAssumed| + |finiteBound| |pole?| |tValues| |argscript| |recur| |writeInt8!| + |isList| |closedCurve| |rotatey| |prefix| |c06ebf| |hex| + |setPredicates| |iiperm| |factor| |returnTypeOf| |weakBiRank| + |setUnion| |birth| |eulerPhi| |child?| |OMunhandledSymbol| + |wordsForStrongGenerators| |ridHack1| |sqrt| |quadratic?| |s17dhf| + |ParCondList| |lexGroebner| |factorByRecursion| |rotatex| + |createNormalElement| |multMonom| |leviCivitaSymbol| |qfactor| |real| + |rightFactorIfCan| |rootPoly| |one?| |symmetricRemainder| + |completeHensel| |interactiveEnv| |OMgetEndBVar| |commonDenominator| + |printCode| |extendIfCan| |imag| |declare| |semiDiscriminantEuclidean| + |bernoulli| |squareFreeFactors| |alternatingGroup| |stop| |mvar| + |singularAtInfinity?| |iilog| |countRealRootsMultiple| + |halfExtendedResultant2| |drawCurves| |directProduct| |f02abf| + |lifting1| |yCoord| |scale| |maxint| |mr| |errorInfo| |countRealRoots| + |consnewpol| |OMconnectTCP| |list?| |evaluateInverse| + |mainDefiningPolynomial| |intermediateResultsIF| |top!| |critMTonD1| + |e04ycf| |idealiser| SEGMENT |rootOfIrreduciblePoly| |numFunEvals| + |brace| |kind| |linearPolynomials| |mapBivariate| |s19adf| |nary?| + |satisfy?| |curveColorPalette| |cothIfCan| |e02ajf| |compactFraction| + |antiAssociative?| |categories| |destruct| |f02adf| |closed?| |op| + |child| |newLine| |pointColorPalette| |raisePolynomial| |mantissa| + |s21bbf| |processTemplate| |depth| |innerSolve1| |atanIfCan| + |whitePoint| |hMonic| |unmakeSUP| |critMonD1| |corrPoly| |typeForm| + |symmetricDifference| |mapExponents| |s14aaf| |readUInt16!| + |getExplanations| |quasiAlgebraicSet| |leftPower| |generalTwoFactor| + |f01qef| |patternMatchTimes| |s20acf| |level| |nthFlag| |stFunc1| + |beauzamyBound| |mainMonomials| |semiResultantReduitEuclidean| + |e01bef| |extractPoint| |basisOfRightNucleus| |recip| + |OMencodingBinary| |lieAlgebra?| |isNot| |unknownEndian| |phiCoord| + |monomial| |iisinh| |iicoth| |edf2ef| |space| |df2fi| |mainForm| + |s21bcf| |partitions| |fortranDoubleComplex| |unparse| |multivariate| + |directSum| |root?| |drawStyle| |d03eef| |middle| |fortranTypeOf| + |cTan| |pseudoRemainder| |screenResolution| |merge!| |variables| + |iiatanh| |primitivePart!| |union| |monicDecomposeIfCan| |rightZero| + |relerror| |zCoord| |nullary?| |mapGen| |tanhIfCan| |youngDiagram| + |iisqrt2| |isConnected?| |imagk| |leftScalarTimes!| |mapmult| + |integralBasis| |tryFunctionalDecomposition?| |setStatus!| |ldf2vmf| + |gcdprim| |overlap| |generalPosition| |composite| |hyperelliptic| + |identityMatrix| |palgRDE0| |inf| |definingPolynomial| |max| + |startTableGcd!| |submod| |sncndn| |deepestTail| |delete!| |cschIfCan| + |constantCoefficientRicDE| |po| |cycleRagits| |subMatrix| LODO2FUN + |f04mcf| |getOrder| |viewWriteAvailable| |pmComplexintegrate| + |OMUnknownCD?| |magnitude| |mkPrim| |seed| |subHeight| |diagonal| + |taylor| |factorAndSplit| |genericLeftTraceForm| |cAcsc| |comp| + |completeSmith| |OMgetApp| |lazyPrem| |c05adf| |OMgetEndBind| + |factorial| |principalIdeal| |laurent| |s14baf| |lazyVariations| + |isAnd| |repeatUntilLoop| |string?| |s20adf| |ScanFloatIgnoreSpaces| + |OMread| |back| |geometric| |reverse| |puiseux| |tubePointsDefault| + |noncommutativeJordanAlgebra?| |OMgetVariable| |reflect| + |splitDenominator| |integralMatrix| |setvalue!| + |rewriteSetWithReduction| |iiacos| |rightRankPolynomial| + |explogs2trigs| |rightRegularRepresentation| |mainMonomial| |nil| |infinite| |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index f78a1329..20c9d342 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5419 +1,5424 @@ -(3235829 . 3485733166) -((-4331 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-3565 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3134 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-1250 (-574)) |#2|) 44)) (-2163 (($ $) 80)) (-2881 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-1451 (((-574) (-1 (-112) |#2|) $) 27) (((-574) |#2| $) NIL) (((-574) |#2| $ (-574)) 96)) (-1873 (((-654 |#2|) $) 13)) (-4297 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2461 (($ (-1 |#2| |#2|) $) 37)) (-1786 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1603 (($ |#2| $ (-574)) NIL) (($ $ $ (-574)) 67)) (-2294 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2000 (((-112) (-1 (-112) |#2|) $) 23)) (-2208 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL) (($ $ (-1250 (-574))) 66)) (-2853 (($ $ (-574)) 76) (($ $ (-1250 (-574))) 75)) (-3948 (((-781) (-1 (-112) |#2|) $) 34) (((-781) |#2| $) NIL)) (-2315 (($ $ $ (-574)) 69)) (-3156 (($ $) 68)) (-2962 (($ (-654 |#2|)) 73)) (-4131 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-654 $)) 85)) (-2950 (((-872) $) 92)) (-2980 (((-112) (-1 (-112) |#2|) $) 22)) (-2985 (((-112) $ $) 95)) (-3009 (((-112) $ $) 99))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -3565 (|#1| |#1|)) (-15 -3565 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2163 (|#1| |#1|)) (-15 -2315 (|#1| |#1| |#1| (-574))) (-15 -4331 ((-112) |#1|)) (-15 -4297 (|#1| |#1| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -4331 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4297 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3134 (|#2| |#1| (-1250 (-574)) |#2|)) (-15 -1603 (|#1| |#1| |#1| (-574))) (-15 -1603 (|#1| |#2| |#1| (-574))) (-15 -2853 (|#1| |#1| (-1250 (-574)))) (-15 -2853 (|#1| |#1| (-574))) (-15 -1786 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -2208 (|#1| |#1| (-1250 (-574)))) (-15 -2962 (|#1| (-654 |#2|))) (-15 -2294 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2208 (|#2| |#1| (-574))) (-15 -2208 (|#2| |#1| (-574) |#2|)) (-15 -3134 (|#2| |#1| (-574) |#2|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -1873 ((-654 |#2|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2000 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3156 (|#1| |#1|))) (-19 |#2|) (-1233)) (T -18)) +(3238821 . 3485743662) +((-3861 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-4140 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3135 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-1251 (-574)) |#2|) 44)) (-2412 (($ $) 80)) (-2882 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-1452 (((-574) (-1 (-112) |#2|) $) 27) (((-574) |#2| $) NIL) (((-574) |#2| $ (-574)) 96)) (-1871 (((-654 |#2|) $) 13)) (-3404 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2462 (($ (-1 |#2| |#2|) $) 37)) (-1785 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1602 (($ |#2| $ (-574)) NIL) (($ $ $ (-574)) 67)) (-2183 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3449 (((-112) (-1 (-112) |#2|) $) 23)) (-2207 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL) (($ $ (-1251 (-574))) 66)) (-2855 (($ $ (-574)) 76) (($ $ (-1251 (-574))) 75)) (-3949 (((-781) (-1 (-112) |#2|) $) 34) (((-781) |#2| $) NIL)) (-4036 (($ $ $ (-574)) 69)) (-3157 (($ $) 68)) (-2963 (($ (-654 |#2|)) 73)) (-4132 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-654 $)) 85)) (-2951 (((-872) $) 92)) (-2020 (((-112) (-1 (-112) |#2|) $) 22)) (-2986 (((-112) $ $) 95)) (-3009 (((-112) $ $) 99))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4140 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2412 (|#1| |#1|)) (-15 -4036 (|#1| |#1| |#1| (-574))) (-15 -3861 ((-112) |#1|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -3861 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3404 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3135 (|#2| |#1| (-1251 (-574)) |#2|)) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2963 (|#1| (-654 |#2|))) (-15 -2183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -3135 (|#2| |#1| (-574) |#2|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -1871 ((-654 |#2|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3449 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 (|#1| |#1|))) (-19 |#2|) (-1234)) (T -18)) NIL -(-10 -8 (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -3565 (|#1| |#1|)) (-15 -3565 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2163 (|#1| |#1|)) (-15 -2315 (|#1| |#1| |#1| (-574))) (-15 -4331 ((-112) |#1|)) (-15 -4297 (|#1| |#1| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -4331 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4297 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3134 (|#2| |#1| (-1250 (-574)) |#2|)) (-15 -1603 (|#1| |#1| |#1| (-574))) (-15 -1603 (|#1| |#2| |#1| (-574))) (-15 -2853 (|#1| |#1| (-1250 (-574)))) (-15 -2853 (|#1| |#1| (-574))) (-15 -1786 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -2208 (|#1| |#1| (-1250 (-574)))) (-15 -2962 (|#1| (-654 |#2|))) (-15 -2294 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2208 (|#2| |#1| (-574))) (-15 -2208 (|#2| |#1| (-574) |#2|)) (-15 -3134 (|#2| |#1| (-574) |#2|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -1873 ((-654 |#2|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2000 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2461 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3156 (|#1| |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3287 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2163 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2560 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1451 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1115)))) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 70)) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| |#1| (-860)))) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 45 (|has| (-574) (-860)))) (-1593 (($ $ $) 89 (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1603 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-3228 (((-654 (-574)) $) 47)) (-3071 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4276 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) 49)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-2853 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2315 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1845 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 72)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-19 |#1|) (-141) (-1233)) (T -19)) +(-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4140 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2412 (|#1| |#1|)) (-15 -4036 (|#1| |#1| |#1| (-574))) (-15 -3861 ((-112) |#1|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -3861 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3404 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3135 (|#2| |#1| (-1251 (-574)) |#2|)) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2963 (|#1| (-654 |#2|))) (-15 -2183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -3135 (|#2| |#1| (-574) |#2|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -1871 ((-654 |#2|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3449 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 (|#1| |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2985 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2412 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-2804 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1452 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 70)) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| |#1| (-860)))) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 45 (|has| (-574) (-860)))) (-4380 (($ $ $) 89 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1393 (((-654 (-574)) $) 47)) (-1506 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1822 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) 49)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-4036 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 72)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3030 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-19 |#1|) (-141) (-1234)) (T -19)) NIL -(-13 (-382 |t#1|) (-10 -7 (-6 -4459))) -(((-34) . T) ((-102) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1115) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-1233) . T)) -((-1597 (((-3 $ "failed") $ $) 12)) (-3089 (($ $) NIL) (($ $ $) 9)) (* (($ (-934) $) NIL) (($ (-781) $) 16) (($ (-574) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -1597 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) (-21)) (T -20)) +(-13 (-382 |t#1|) (-10 -7 (-6 -4460))) +(((-34) . T) ((-102) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1116) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-1234) . T)) +((-2600 (((-3 $ "failed") $ $) 12)) (-3090 (($ $) NIL) (($ $ $) 9)) (* (($ (-935) $) NIL) (($ (-781) $) 16) (($ (-574) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2600 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -1597 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24))) +(-10 -8 (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2600 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24))) (((-21) (-141)) (T -21)) -((-3089 (*1 *1 *1) (-4 *1 (-21))) (-3089 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-132) (-656 (-574)) (-10 -8 (-15 -3089 ($ $)) (-15 -3089 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1115) . T)) -((-3520 (((-112) $) 10)) (-3831 (($) 15)) (* (($ (-934) $) 14) (($ (-781) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -3520 ((-112) |#1|)) (-15 -3831 (|#1|)) (-15 * (|#1| (-934) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -3520 ((-112) |#1|)) (-15 -3831 (|#1|)) (-15 * (|#1| (-934) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3831 (($) 18 T CONST)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16))) +((-3090 (*1 *1 *1) (-4 *1 (-21))) (-3090 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-132) (-656 (-574)) (-10 -8 (-15 -3090 ($ $)) (-15 -3090 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1116) . T)) +((-1431 (((-112) $) 10)) (-3250 (($) 15)) (* (($ (-935) $) 14) (($ (-781) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -1431 ((-112) |#1|)) (-15 -3250 (|#1|)) (-15 * (|#1| (-935) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -1431 ((-112) |#1|)) (-15 -3250 (|#1|)) (-15 * (|#1| (-935) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-3250 (($) 18 T CONST)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16))) (((-23) (-141)) (T -23)) -((-2142 (*1 *1) (-4 *1 (-23))) (-3831 (*1 *1) (-4 *1 (-23))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-781))))) -(-13 (-25) (-10 -8 (-15 (-2142) ($) -1715) (-15 -3831 ($) -1715) (-15 -3520 ((-112) $)) (-15 * ($ (-781) $)))) -(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((* (($ (-934) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-934) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-934) |#1|))) -((-2863 (((-112) $ $) 7)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14))) +((-2141 (*1 *1) (-4 *1 (-23))) (-3250 (*1 *1) (-4 *1 (-23))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-781))))) +(-13 (-25) (-10 -8 (-15 (-2141) ($) -1714) (-15 -3250 ($) -1714) (-15 -1431 ((-112) $)) (-15 * ($ (-781) $)))) +(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((* (($ (-935) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-935) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-935) |#1|))) +((-2864 (((-112) $ $) 7)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14))) (((-25) (-141)) (T -25)) -((-3074 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-934))))) -(-13 (-1115) (-10 -8 (-15 -3074 ($ $ $)) (-15 * ($ (-934) $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-3597 (((-654 $) (-965 $)) 32) (((-654 $) (-1188 $)) 16) (((-654 $) (-1188 $) (-1192)) 20)) (-1397 (($ (-965 $)) 30) (($ (-1188 $)) 11) (($ (-1188 $) (-1192)) 60)) (-4163 (((-654 $) (-965 $)) 33) (((-654 $) (-1188 $)) 18) (((-654 $) (-1188 $) (-1192)) 19)) (-3356 (($ (-965 $)) 31) (($ (-1188 $)) 13) (($ (-1188 $) (-1192)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3597 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -3597 ((-654 |#1|) (-1188 |#1|))) (-15 -3597 ((-654 |#1|) (-965 |#1|))) (-15 -1397 (|#1| (-1188 |#1|) (-1192))) (-15 -1397 (|#1| (-1188 |#1|))) (-15 -1397 (|#1| (-965 |#1|))) (-15 -4163 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -4163 ((-654 |#1|) (-1188 |#1|))) (-15 -4163 ((-654 |#1|) (-965 |#1|))) (-15 -3356 (|#1| (-1188 |#1|) (-1192))) (-15 -3356 (|#1| (-1188 |#1|))) (-15 -3356 (|#1| (-965 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3597 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -3597 ((-654 |#1|) (-1188 |#1|))) (-15 -3597 ((-654 |#1|) (-965 |#1|))) (-15 -1397 (|#1| (-1188 |#1|) (-1192))) (-15 -1397 (|#1| (-1188 |#1|))) (-15 -1397 (|#1| (-965 |#1|))) (-15 -4163 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -4163 ((-654 |#1|) (-1188 |#1|))) (-15 -4163 ((-654 |#1|) (-965 |#1|))) (-15 -3356 (|#1| (-1188 |#1|) (-1192))) (-15 -3356 (|#1| (-1188 |#1|))) (-15 -3356 (|#1| (-965 |#1|)))) -((-2863 (((-112) $ $) 7)) (-3597 (((-654 $) (-965 $)) 88) (((-654 $) (-1188 $)) 87) (((-654 $) (-1188 $) (-1192)) 86)) (-1397 (($ (-965 $)) 91) (($ (-1188 $)) 90) (($ (-1188 $) (-1192)) 89)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 81)) (-3954 (((-428 $) $) 80)) (-4211 (($ $) 100)) (-3656 (((-112) $ $) 65)) (-3831 (($) 18 T CONST)) (-4163 (((-654 $) (-965 $)) 94) (((-654 $) (-1188 $)) 93) (((-654 $) (-1188 $) (-1192)) 92)) (-3356 (($ (-965 $)) 97) (($ (-1188 $)) 96) (($ (-1188 $) (-1192)) 95)) (-2799 (($ $ $) 61)) (-3911 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1782 (((-112) $) 79)) (-3372 (((-112) $) 35)) (-2132 (($ $ (-574)) 99)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-4200 (((-428 $) $) 82)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3364 (((-781) $) 64)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +((-3074 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-935))))) +(-13 (-1116) (-10 -8 (-15 -3074 ($ $ $)) (-15 * ($ (-935) $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-3442 (((-654 $) (-966 $)) 32) (((-654 $) (-1189 $)) 16) (((-654 $) (-1189 $) (-1193)) 20)) (-4016 (($ (-966 $)) 30) (($ (-1189 $)) 11) (($ (-1189 $) (-1193)) 60)) (-2546 (((-654 $) (-966 $)) 33) (((-654 $) (-1189 $)) 18) (((-654 $) (-1189 $) (-1193)) 19)) (-3814 (($ (-966 $)) 31) (($ (-1189 $)) 13) (($ (-1189 $) (-1193)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -3442 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -3442 ((-654 |#1|) (-1189 |#1|))) (-15 -3442 ((-654 |#1|) (-966 |#1|))) (-15 -4016 (|#1| (-1189 |#1|) (-1193))) (-15 -4016 (|#1| (-1189 |#1|))) (-15 -4016 (|#1| (-966 |#1|))) (-15 -2546 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -2546 ((-654 |#1|) (-1189 |#1|))) (-15 -2546 ((-654 |#1|) (-966 |#1|))) (-15 -3814 (|#1| (-1189 |#1|) (-1193))) (-15 -3814 (|#1| (-1189 |#1|))) (-15 -3814 (|#1| (-966 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -3442 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -3442 ((-654 |#1|) (-1189 |#1|))) (-15 -3442 ((-654 |#1|) (-966 |#1|))) (-15 -4016 (|#1| (-1189 |#1|) (-1193))) (-15 -4016 (|#1| (-1189 |#1|))) (-15 -4016 (|#1| (-966 |#1|))) (-15 -2546 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -2546 ((-654 |#1|) (-1189 |#1|))) (-15 -2546 ((-654 |#1|) (-966 |#1|))) (-15 -3814 (|#1| (-1189 |#1|) (-1193))) (-15 -3814 (|#1| (-1189 |#1|))) (-15 -3814 (|#1| (-966 |#1|)))) +((-2864 (((-112) $ $) 7)) (-3442 (((-654 $) (-966 $)) 88) (((-654 $) (-1189 $)) 87) (((-654 $) (-1189 $) (-1193)) 86)) (-4016 (($ (-966 $)) 91) (($ (-1189 $)) 90) (($ (-1189 $) (-1193)) 89)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 81)) (-1610 (((-428 $) $) 80)) (-4212 (($ $) 100)) (-3245 (((-112) $ $) 65)) (-3250 (($) 18 T CONST)) (-2546 (((-654 $) (-966 $)) 94) (((-654 $) (-1189 $)) 93) (((-654 $) (-1189 $) (-1193)) 92)) (-3814 (($ (-966 $)) 97) (($ (-1189 $)) 96) (($ (-1189 $) (-1193)) 95)) (-2800 (($ $ $) 61)) (-4322 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3978 (((-112) $) 79)) (-4226 (((-112) $) 35)) (-3527 (($ $ (-574)) 99)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-4202 (((-428 $) $) 82)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2098 (((-781) $) 64)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) (((-27) (-141)) (T -27)) -((-3356 (*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) (-3356 (*1 *1 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-27)))) (-3356 (*1 *1 *2 *3) (-12 (-5 *2 (-1188 *1)) (-5 *3 (-1192)) (-4 *1 (-27)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-1188 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-4163 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *1)) (-5 *4 (-1192)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-27)))) (-1397 (*1 *1 *2 *3) (-12 (-5 *2 (-1188 *1)) (-5 *3 (-1192)) (-4 *1 (-27)))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-1188 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *1)) (-5 *4 (-1192)) (-4 *1 (-27)) (-5 *2 (-654 *1))))) -(-13 (-372) (-1017) (-10 -8 (-15 -3356 ($ (-965 $))) (-15 -3356 ($ (-1188 $))) (-15 -3356 ($ (-1188 $) (-1192))) (-15 -4163 ((-654 $) (-965 $))) (-15 -4163 ((-654 $) (-1188 $))) (-15 -4163 ((-654 $) (-1188 $) (-1192))) (-15 -1397 ($ (-965 $))) (-15 -1397 ($ (-1188 $))) (-15 -1397 ($ (-1188 $) (-1192))) (-15 -3597 ((-654 $) (-965 $))) (-15 -3597 ((-654 $) (-1188 $))) (-15 -3597 ((-654 $) (-1188 $) (-1192))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1017) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) -((-3597 (((-654 $) (-965 $)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-1188 $) (-1192)) 55) (((-654 $) $) 22) (((-654 $) $ (-1192)) 46)) (-1397 (($ (-965 $)) NIL) (($ (-1188 $)) NIL) (($ (-1188 $) (-1192)) 57) (($ $) 20) (($ $ (-1192)) 40)) (-4163 (((-654 $) (-965 $)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-1188 $) (-1192)) 53) (((-654 $) $) 18) (((-654 $) $ (-1192)) 48)) (-3356 (($ (-965 $)) NIL) (($ (-1188 $)) NIL) (($ (-1188 $) (-1192)) NIL) (($ $) 15) (($ $ (-1192)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3597 ((-654 |#1|) |#1| (-1192))) (-15 -1397 (|#1| |#1| (-1192))) (-15 -3597 ((-654 |#1|) |#1|)) (-15 -1397 (|#1| |#1|)) (-15 -4163 ((-654 |#1|) |#1| (-1192))) (-15 -3356 (|#1| |#1| (-1192))) (-15 -4163 ((-654 |#1|) |#1|)) (-15 -3356 (|#1| |#1|)) (-15 -3597 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -3597 ((-654 |#1|) (-1188 |#1|))) (-15 -3597 ((-654 |#1|) (-965 |#1|))) (-15 -1397 (|#1| (-1188 |#1|) (-1192))) (-15 -1397 (|#1| (-1188 |#1|))) (-15 -1397 (|#1| (-965 |#1|))) (-15 -4163 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -4163 ((-654 |#1|) (-1188 |#1|))) (-15 -4163 ((-654 |#1|) (-965 |#1|))) (-15 -3356 (|#1| (-1188 |#1|) (-1192))) (-15 -3356 (|#1| (-1188 |#1|))) (-15 -3356 (|#1| (-965 |#1|)))) (-29 |#2|) (-566)) (T -28)) -NIL -(-10 -8 (-15 -3597 ((-654 |#1|) |#1| (-1192))) (-15 -1397 (|#1| |#1| (-1192))) (-15 -3597 ((-654 |#1|) |#1|)) (-15 -1397 (|#1| |#1|)) (-15 -4163 ((-654 |#1|) |#1| (-1192))) (-15 -3356 (|#1| |#1| (-1192))) (-15 -4163 ((-654 |#1|) |#1|)) (-15 -3356 (|#1| |#1|)) (-15 -3597 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -3597 ((-654 |#1|) (-1188 |#1|))) (-15 -3597 ((-654 |#1|) (-965 |#1|))) (-15 -1397 (|#1| (-1188 |#1|) (-1192))) (-15 -1397 (|#1| (-1188 |#1|))) (-15 -1397 (|#1| (-965 |#1|))) (-15 -4163 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -4163 ((-654 |#1|) (-1188 |#1|))) (-15 -4163 ((-654 |#1|) (-965 |#1|))) (-15 -3356 (|#1| (-1188 |#1|) (-1192))) (-15 -3356 (|#1| (-1188 |#1|))) (-15 -3356 (|#1| (-965 |#1|)))) -((-2863 (((-112) $ $) 7)) (-3597 (((-654 $) (-965 $)) 88) (((-654 $) (-1188 $)) 87) (((-654 $) (-1188 $) (-1192)) 86) (((-654 $) $) 136) (((-654 $) $ (-1192)) 134)) (-1397 (($ (-965 $)) 91) (($ (-1188 $)) 90) (($ (-1188 $) (-1192)) 89) (($ $) 137) (($ $ (-1192)) 135)) (-3520 (((-112) $) 17)) (-4349 (((-654 (-1192)) $) 205)) (-4171 (((-417 (-1188 $)) $ (-622 $)) 237 (|has| |#1| (-566)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-4064 (((-654 (-622 $)) $) 168)) (-1597 (((-3 $ "failed") $ $) 20)) (-2558 (($ $ (-654 (-622 $)) (-654 $)) 158) (($ $ (-654 (-302 $))) 157) (($ $ (-302 $)) 156)) (-3296 (($ $) 81)) (-3954 (((-428 $) $) 80)) (-4211 (($ $) 100)) (-3656 (((-112) $ $) 65)) (-3831 (($) 18 T CONST)) (-4163 (((-654 $) (-965 $)) 94) (((-654 $) (-1188 $)) 93) (((-654 $) (-1188 $) (-1192)) 92) (((-654 $) $) 140) (((-654 $) $ (-1192)) 138)) (-3356 (($ (-965 $)) 97) (($ (-1188 $)) 96) (($ (-1188 $) (-1192)) 95) (($ $) 141) (($ $ (-1192)) 139)) (-1705 (((-3 (-965 |#1|) "failed") $) 255 (|has| |#1| (-1064))) (((-3 (-417 (-965 |#1|)) "failed") $) 239 (|has| |#1| (-566))) (((-3 |#1| "failed") $) 201) (((-3 (-574) "failed") $) 198 (|has| |#1| (-1053 (-574)))) (((-3 (-1192) "failed") $) 192) (((-3 (-622 $) "failed") $) 143) (((-3 (-417 (-574)) "failed") $) 131 (-2832 (-12 (|has| |#1| (-1053 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1053 (-417 (-574))))))) (-2216 (((-965 |#1|) $) 254 (|has| |#1| (-1064))) (((-417 (-965 |#1|)) $) 238 (|has| |#1| (-566))) ((|#1| $) 200) (((-574) $) 199 (|has| |#1| (-1053 (-574)))) (((-1192) $) 191) (((-622 $) $) 142) (((-417 (-574)) $) 132 (-2832 (-12 (|has| |#1| (-1053 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1053 (-417 (-574))))))) (-2799 (($ $ $) 61)) (-3465 (((-699 |#1|) (-1283 $)) 245 (|has| |#1| (-1064))) (((-699 |#1|) (-699 $)) 244 (|has| |#1| (-1064))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 243 (|has| |#1| (-1064))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 130 (-2832 (-2096 (|has| |#1| (-1064)) (|has| |#1| (-649 (-574)))) (-2096 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (((-699 (-574)) (-699 $)) 129 (-2832 (-2096 (|has| |#1| (-1064)) (|has| |#1| (-649 (-574)))) (-2096 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (((-699 (-574)) (-1283 $)) 128 (-2832 (-2096 (|has| |#1| (-1064)) (|has| |#1| (-649 (-574)))) (-2096 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))))) (-3911 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1782 (((-112) $) 79)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 197 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 196 (|has| |#1| (-897 (-574))))) (-2116 (($ (-654 $)) 162) (($ $) 161)) (-3294 (((-654 (-115)) $) 169)) (-4150 (((-115) (-115)) 170)) (-3372 (((-112) $) 35)) (-3512 (((-112) $) 190 (|has| $ (-1053 (-574))))) (-3536 (($ $) 222 (|has| |#1| (-1064)))) (-2970 (((-1140 |#1| (-622 $)) $) 221 (|has| |#1| (-1064)))) (-2132 (($ $ (-574)) 99)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-4311 (((-1188 $) (-622 $)) 187 (|has| $ (-1064)))) (-1786 (($ (-1 $ $) (-622 $)) 176)) (-4367 (((-3 (-622 $) "failed") $) 166)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-4138 (((-654 (-622 $)) $) 167)) (-1783 (($ (-115) (-654 $)) 175) (($ (-115) $) 174)) (-1810 (((-3 (-654 $) "failed") $) 216 (|has| |#1| (-1127)))) (-3267 (((-3 (-2 (|:| |val| $) (|:| -2017 (-574))) "failed") $) 225 (|has| |#1| (-1064)))) (-1577 (((-3 (-654 $) "failed") $) 218 (|has| |#1| (-25)))) (-3337 (((-3 (-2 (|:| -1867 (-574)) (|:| |var| (-622 $))) "failed") $) 219 (|has| |#1| (-25)))) (-3404 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $ (-1192)) 224 (|has| |#1| (-1064))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $ (-115)) 223 (|has| |#1| (-1064))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $) 217 (|has| |#1| (-1127)))) (-3571 (((-112) $ (-1192)) 173) (((-112) $ (-115)) 172)) (-1327 (($ $) 78)) (-1847 (((-781) $) 165)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 203)) (-1354 ((|#1| $) 204)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-4277 (((-112) $ (-1192)) 178) (((-112) $ $) 177)) (-4200 (((-428 $) $) 82)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3694 (((-112) $) 189 (|has| $ (-1053 (-574))))) (-2660 (($ $ (-1192) (-781) (-1 $ $)) 229 (|has| |#1| (-1064))) (($ $ (-1192) (-781) (-1 $ (-654 $))) 228 (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 227 (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ $))) 226 (|has| |#1| (-1064))) (($ $ (-654 (-115)) (-654 $) (-1192)) 215 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1192)) 214 (|has| |#1| (-624 (-546)))) (($ $) 213 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1192))) 212 (|has| |#1| (-624 (-546)))) (($ $ (-1192)) 211 (|has| |#1| (-624 (-546)))) (($ $ (-115) (-1 $ $)) 186) (($ $ (-115) (-1 $ (-654 $))) 185) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 184) (($ $ (-654 (-115)) (-654 (-1 $ $))) 183) (($ $ (-1192) (-1 $ $)) 182) (($ $ (-1192) (-1 $ (-654 $))) 181) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) 180) (($ $ (-654 (-1192)) (-654 (-1 $ $))) 179) (($ $ (-654 $) (-654 $)) 150) (($ $ $ $) 149) (($ $ (-302 $)) 148) (($ $ (-654 (-302 $))) 147) (($ $ (-654 (-622 $)) (-654 $)) 146) (($ $ (-622 $) $) 145)) (-3364 (((-781) $) 64)) (-2208 (($ (-115) (-654 $)) 155) (($ (-115) $ $ $ $) 154) (($ (-115) $ $ $) 153) (($ (-115) $ $) 152) (($ (-115) $) 151)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-1834 (($ $ $) 164) (($ $) 163)) (-3878 (($ $ (-1192)) 253 (|has| |#1| (-1064))) (($ $ (-654 (-1192))) 252 (|has| |#1| (-1064))) (($ $ (-1192) (-781)) 251 (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) 250 (|has| |#1| (-1064)))) (-2120 (($ $) 232 (|has| |#1| (-566)))) (-2981 (((-1140 |#1| (-622 $)) $) 231 (|has| |#1| (-566)))) (-2290 (($ $) 188 (|has| $ (-1064)))) (-1845 (((-546) $) 259 (|has| |#1| (-624 (-546)))) (($ (-428 $)) 230 (|has| |#1| (-566))) (((-903 (-388)) $) 195 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 194 (|has| |#1| (-624 (-903 (-574)))))) (-2202 (($ $ $) 258 (|has| |#1| (-483)))) (-3490 (($ $ $) 257 (|has| |#1| (-483)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-965 |#1|)) 256 (|has| |#1| (-1064))) (($ (-417 (-965 |#1|))) 240 (|has| |#1| (-566))) (($ (-417 (-965 (-417 |#1|)))) 236 (|has| |#1| (-566))) (($ (-965 (-417 |#1|))) 235 (|has| |#1| (-566))) (($ (-417 |#1|)) 234 (|has| |#1| (-566))) (($ (-1140 |#1| (-622 $))) 220 (|has| |#1| (-1064))) (($ |#1|) 202) (($ (-1192)) 193) (($ (-622 $)) 144)) (-3247 (((-3 $ "failed") $) 242 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-2079 (($ (-654 $)) 160) (($ $) 159)) (-4207 (((-112) (-115)) 171)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2512 (($ (-1192) (-654 $)) 210) (($ (-1192) $ $ $ $) 209) (($ (-1192) $ $ $) 208) (($ (-1192) $ $) 207) (($ (-1192) $) 206)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-1192)) 249 (|has| |#1| (-1064))) (($ $ (-654 (-1192))) 248 (|has| |#1| (-1064))) (($ $ (-1192) (-781)) 247 (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) 246 (|has| |#1| (-1064)))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ $) 73) (($ (-1140 |#1| (-622 $)) (-1140 |#1| (-622 $))) 233 (|has| |#1| (-566)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 241 (|has| |#1| (-174))) (($ |#1| $) 133 (|has| |#1| (-1064))))) +((-3814 (*1 *1 *2) (-12 (-5 *2 (-966 *1)) (-4 *1 (-27)))) (-3814 (*1 *1 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-27)))) (-3814 (*1 *1 *2 *3) (-12 (-5 *2 (-1189 *1)) (-5 *3 (-1193)) (-4 *1 (-27)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-1189 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *1)) (-5 *4 (-1193)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-4016 (*1 *1 *2) (-12 (-5 *2 (-966 *1)) (-4 *1 (-27)))) (-4016 (*1 *1 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-27)))) (-4016 (*1 *1 *2 *3) (-12 (-5 *2 (-1189 *1)) (-5 *3 (-1193)) (-4 *1 (-27)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-1189 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *1)) (-5 *4 (-1193)) (-4 *1 (-27)) (-5 *2 (-654 *1))))) +(-13 (-372) (-1018) (-10 -8 (-15 -3814 ($ (-966 $))) (-15 -3814 ($ (-1189 $))) (-15 -3814 ($ (-1189 $) (-1193))) (-15 -2546 ((-654 $) (-966 $))) (-15 -2546 ((-654 $) (-1189 $))) (-15 -2546 ((-654 $) (-1189 $) (-1193))) (-15 -4016 ($ (-966 $))) (-15 -4016 ($ (-1189 $))) (-15 -4016 ($ (-1189 $) (-1193))) (-15 -3442 ((-654 $) (-966 $))) (-15 -3442 ((-654 $) (-1189 $))) (-15 -3442 ((-654 $) (-1189 $) (-1193))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1018) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T)) +((-3442 (((-654 $) (-966 $)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-1189 $) (-1193)) 55) (((-654 $) $) 22) (((-654 $) $ (-1193)) 46)) (-4016 (($ (-966 $)) NIL) (($ (-1189 $)) NIL) (($ (-1189 $) (-1193)) 57) (($ $) 20) (($ $ (-1193)) 40)) (-2546 (((-654 $) (-966 $)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-1189 $) (-1193)) 53) (((-654 $) $) 18) (((-654 $) $ (-1193)) 48)) (-3814 (($ (-966 $)) NIL) (($ (-1189 $)) NIL) (($ (-1189 $) (-1193)) NIL) (($ $) 15) (($ $ (-1193)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -3442 ((-654 |#1|) |#1| (-1193))) (-15 -4016 (|#1| |#1| (-1193))) (-15 -3442 ((-654 |#1|) |#1|)) (-15 -4016 (|#1| |#1|)) (-15 -2546 ((-654 |#1|) |#1| (-1193))) (-15 -3814 (|#1| |#1| (-1193))) (-15 -2546 ((-654 |#1|) |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3442 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -3442 ((-654 |#1|) (-1189 |#1|))) (-15 -3442 ((-654 |#1|) (-966 |#1|))) (-15 -4016 (|#1| (-1189 |#1|) (-1193))) (-15 -4016 (|#1| (-1189 |#1|))) (-15 -4016 (|#1| (-966 |#1|))) (-15 -2546 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -2546 ((-654 |#1|) (-1189 |#1|))) (-15 -2546 ((-654 |#1|) (-966 |#1|))) (-15 -3814 (|#1| (-1189 |#1|) (-1193))) (-15 -3814 (|#1| (-1189 |#1|))) (-15 -3814 (|#1| (-966 |#1|)))) (-29 |#2|) (-566)) (T -28)) +NIL +(-10 -8 (-15 -3442 ((-654 |#1|) |#1| (-1193))) (-15 -4016 (|#1| |#1| (-1193))) (-15 -3442 ((-654 |#1|) |#1|)) (-15 -4016 (|#1| |#1|)) (-15 -2546 ((-654 |#1|) |#1| (-1193))) (-15 -3814 (|#1| |#1| (-1193))) (-15 -2546 ((-654 |#1|) |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3442 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -3442 ((-654 |#1|) (-1189 |#1|))) (-15 -3442 ((-654 |#1|) (-966 |#1|))) (-15 -4016 (|#1| (-1189 |#1|) (-1193))) (-15 -4016 (|#1| (-1189 |#1|))) (-15 -4016 (|#1| (-966 |#1|))) (-15 -2546 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -2546 ((-654 |#1|) (-1189 |#1|))) (-15 -2546 ((-654 |#1|) (-966 |#1|))) (-15 -3814 (|#1| (-1189 |#1|) (-1193))) (-15 -3814 (|#1| (-1189 |#1|))) (-15 -3814 (|#1| (-966 |#1|)))) +((-2864 (((-112) $ $) 7)) (-3442 (((-654 $) (-966 $)) 88) (((-654 $) (-1189 $)) 87) (((-654 $) (-1189 $) (-1193)) 86) (((-654 $) $) 137) (((-654 $) $ (-1193)) 135)) (-4016 (($ (-966 $)) 91) (($ (-1189 $)) 90) (($ (-1189 $) (-1193)) 89) (($ $) 138) (($ $ (-1193)) 136)) (-1431 (((-112) $) 17)) (-4350 (((-654 (-1193)) $) 206)) (-4173 (((-417 (-1189 $)) $ (-622 $)) 238 (|has| |#1| (-566)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-4068 (((-654 (-622 $)) $) 169)) (-2600 (((-3 $ "failed") $ $) 20)) (-2559 (($ $ (-654 (-622 $)) (-654 $)) 159) (($ $ (-654 (-302 $))) 158) (($ $ (-302 $)) 157)) (-2991 (($ $) 81)) (-1610 (((-428 $) $) 80)) (-4212 (($ $) 100)) (-3245 (((-112) $ $) 65)) (-3250 (($) 18 T CONST)) (-2546 (((-654 $) (-966 $)) 94) (((-654 $) (-1189 $)) 93) (((-654 $) (-1189 $) (-1193)) 92) (((-654 $) $) 141) (((-654 $) $ (-1193)) 139)) (-3814 (($ (-966 $)) 97) (($ (-1189 $)) 96) (($ (-1189 $) (-1193)) 95) (($ $) 142) (($ $ (-1193)) 140)) (-1704 (((-3 (-966 |#1|) "failed") $) 256 (|has| |#1| (-1065))) (((-3 (-417 (-966 |#1|)) "failed") $) 240 (|has| |#1| (-566))) (((-3 |#1| "failed") $) 202) (((-3 (-574) "failed") $) 199 (|has| |#1| (-1054 (-574)))) (((-3 (-1193) "failed") $) 193) (((-3 (-622 $) "failed") $) 144) (((-3 (-417 (-574)) "failed") $) 132 (-2833 (-12 (|has| |#1| (-1054 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1054 (-417 (-574))))))) (-2214 (((-966 |#1|) $) 255 (|has| |#1| (-1065))) (((-417 (-966 |#1|)) $) 239 (|has| |#1| (-566))) ((|#1| $) 201) (((-574) $) 200 (|has| |#1| (-1054 (-574)))) (((-1193) $) 192) (((-622 $) $) 143) (((-417 (-574)) $) 133 (-2833 (-12 (|has| |#1| (-1054 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1054 (-417 (-574))))))) (-2800 (($ $ $) 61)) (-1831 (((-699 |#1|) (-1284 $)) 246 (|has| |#1| (-1065))) (((-699 |#1|) (-699 $)) 245 (|has| |#1| (-1065))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 244 (|has| |#1| (-1065))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 131 (-2833 (-2095 (|has| |#1| (-1065)) (|has| |#1| (-649 (-574)))) (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (((-699 (-574)) (-699 $)) 130 (-2833 (-2095 (|has| |#1| (-1065)) (|has| |#1| (-649 (-574)))) (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (((-699 (-574)) (-1284 $)) 129 (-2833 (-2095 (|has| |#1| (-1065)) (|has| |#1| (-649 (-574)))) (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))))) (-4322 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3978 (((-112) $) 79)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 198 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 197 (|has| |#1| (-897 (-574))))) (-1391 (($ (-654 $)) 163) (($ $) 162)) (-1649 (((-654 (-115)) $) 170)) (-4150 (((-115) (-115)) 171)) (-4226 (((-112) $) 35)) (-1823 (((-112) $) 191 (|has| $ (-1054 (-574))))) (-2967 (($ $) 223 (|has| |#1| (-1065)))) (-2971 (((-1141 |#1| (-622 $)) $) 222 (|has| |#1| (-1065)))) (-3527 (($ $ (-574)) 99)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3746 (((-1189 $) (-622 $)) 188 (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) 177)) (-3452 (((-3 (-622 $) "failed") $) 167)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-4139 (((-654 (-622 $)) $) 168)) (-1782 (($ (-115) (-654 $)) 176) (($ (-115) $) 175)) (-1720 (((-3 (-654 $) "failed") $) 217 (|has| |#1| (-1128)))) (-2542 (((-3 (-2 (|:| |val| $) (|:| -3139 (-574))) "failed") $) 226 (|has| |#1| (-1065)))) (-3825 (((-3 (-654 $) "failed") $) 219 (|has| |#1| (-25)))) (-3121 (((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 $))) "failed") $) 220 (|has| |#1| (-25)))) (-2778 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $ (-1193)) 225 (|has| |#1| (-1065))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $ (-115)) 224 (|has| |#1| (-1065))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $) 218 (|has| |#1| (-1128)))) (-2154 (((-112) $ (-1193)) 174) (((-112) $ (-115)) 173)) (-1328 (($ $) 78)) (-1847 (((-781) $) 166)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 204)) (-1355 ((|#1| $) 205)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-3595 (((-112) $ (-1193)) 179) (((-112) $ $) 178)) (-4202 (((-428 $) $) 82)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2120 (((-112) $) 190 (|has| $ (-1054 (-574))))) (-2661 (($ $ (-1193) (-781) (-1 $ $)) 230 (|has| |#1| (-1065))) (($ $ (-1193) (-781) (-1 $ (-654 $))) 229 (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 228 (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ $))) 227 (|has| |#1| (-1065))) (($ $ (-654 (-115)) (-654 $) (-1193)) 216 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1193)) 215 (|has| |#1| (-624 (-546)))) (($ $) 214 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1193))) 213 (|has| |#1| (-624 (-546)))) (($ $ (-1193)) 212 (|has| |#1| (-624 (-546)))) (($ $ (-115) (-1 $ $)) 187) (($ $ (-115) (-1 $ (-654 $))) 186) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 185) (($ $ (-654 (-115)) (-654 (-1 $ $))) 184) (($ $ (-1193) (-1 $ $)) 183) (($ $ (-1193) (-1 $ (-654 $))) 182) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) 181) (($ $ (-654 (-1193)) (-654 (-1 $ $))) 180) (($ $ (-654 $) (-654 $)) 151) (($ $ $ $) 150) (($ $ (-302 $)) 149) (($ $ (-654 (-302 $))) 148) (($ $ (-654 (-622 $)) (-654 $)) 147) (($ $ (-622 $) $) 146)) (-2098 (((-781) $) 64)) (-2207 (($ (-115) (-654 $)) 156) (($ (-115) $ $ $ $) 155) (($ (-115) $ $ $) 154) (($ (-115) $ $) 153) (($ (-115) $) 152)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-3078 (($ $ $) 165) (($ $) 164)) (-3879 (($ $ (-654 (-1193)) (-654 (-781))) 251 (|has| |#1| (-1065))) (($ $ (-1193) (-781)) 250 (|has| |#1| (-1065))) (($ $ (-654 (-1193))) 249 (|has| |#1| (-1065))) (($ $ (-1193)) 247 (|has| |#1| (-1065)))) (-2808 (($ $) 233 (|has| |#1| (-566)))) (-2981 (((-1141 |#1| (-622 $)) $) 232 (|has| |#1| (-566)))) (-4379 (($ $) 189 (|has| $ (-1065)))) (-1844 (((-546) $) 260 (|has| |#1| (-624 (-546)))) (($ (-428 $)) 231 (|has| |#1| (-566))) (((-903 (-388)) $) 196 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 195 (|has| |#1| (-624 (-903 (-574)))))) (-3617 (($ $ $) 259 (|has| |#1| (-483)))) (-3955 (($ $ $) 258 (|has| |#1| (-483)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-966 |#1|)) 257 (|has| |#1| (-1065))) (($ (-417 (-966 |#1|))) 241 (|has| |#1| (-566))) (($ (-417 (-966 (-417 |#1|)))) 237 (|has| |#1| (-566))) (($ (-966 (-417 |#1|))) 236 (|has| |#1| (-566))) (($ (-417 |#1|)) 235 (|has| |#1| (-566))) (($ (-1141 |#1| (-622 $))) 221 (|has| |#1| (-1065))) (($ |#1|) 203) (($ (-1193)) 194) (($ (-622 $)) 145)) (-3424 (((-3 $ "failed") $) 243 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-2078 (($ (-654 $)) 161) (($ $) 160)) (-2420 (((-112) (-115)) 172)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2513 (($ (-1193) (-654 $)) 211) (($ (-1193) $ $ $ $) 210) (($ (-1193) $ $ $) 209) (($ (-1193) $ $) 208) (($ (-1193) $) 207)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-654 (-1193)) (-654 (-781))) 254 (|has| |#1| (-1065))) (($ $ (-1193) (-781)) 253 (|has| |#1| (-1065))) (($ $ (-654 (-1193))) 252 (|has| |#1| (-1065))) (($ $ (-1193)) 248 (|has| |#1| (-1065)))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ $) 73) (($ (-1141 |#1| (-622 $)) (-1141 |#1| (-622 $))) 234 (|has| |#1| (-566)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 242 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1065))))) (((-29 |#1|) (-141) (-566)) (T -29)) -((-3356 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-4163 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-3356 (*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-4163 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4)))) (-1397 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-3597 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-3597 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-440 |t#1|) (-10 -8 (-15 -3356 ($ $)) (-15 -4163 ((-654 $) $)) (-15 -3356 ($ $ (-1192))) (-15 -4163 ((-654 $) $ (-1192))) (-15 -1397 ($ $)) (-15 -3597 ((-654 $) $)) (-15 -1397 ($ $ (-1192))) (-15 -3597 ((-654 $) $ (-1192))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 #1=(-417 (-965 |#1|))) |has| |#1| (-566)) ((-626 (-574)) . T) ((-626 #2=(-622 $)) . T) ((-626 #3=(-965 |#1|)) |has| |#1| (-1064)) ((-626 #4=(-1192)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) . T) ((-298) . T) ((-315) . T) ((-317 $) . T) ((-310) . T) ((-372) . T) ((-386 |#1|) |has| |#1| (-1064)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-440 |#1|) . T) ((-462) . T) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) -2832 (|has| |#1| (-1064)) (|has| |#1| (-174))) ((-656 $) . T) ((-658 #0#) . T) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))) ((-658 |#1|) -2832 (|has| |#1| (-1064)) (|has| |#1| (-174))) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) . T) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))) ((-649 |#1|) |has| |#1| (-1064)) ((-727 #0#) . T) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) . T) ((-736) . T) ((-913 (-1192)) |has| |#1| (-1064)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-933) . T) ((-1017) . T) ((-1053 (-417 (-574))) -2832 (|has| |#1| (-1053 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))))) ((-1053 #1#) |has| |#1| (-566)) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 #2#) . T) ((-1053 #3#) |has| |#1| (-1064)) ((-1053 #4#) . T) ((-1053 |#1|) . T) ((-1066 #0#) . T) ((-1066 |#1|) |has| |#1| (-174)) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 |#1|) |has| |#1| (-174)) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) . T) ((-1237) . T)) -((-2438 (((-1109 (-227)) $) NIL)) (-2425 (((-1109 (-227)) $) NIL)) (-2947 (($ $ (-227)) 164)) (-3940 (($ (-965 (-574)) (-1192) (-1192) (-1109 (-417 (-574))) (-1109 (-417 (-574)))) 104)) (-3971 (((-654 (-654 (-956 (-227)))) $) 180)) (-2950 (((-872) $) 194))) -(((-30) (-13 (-968) (-10 -8 (-15 -3940 ($ (-965 (-574)) (-1192) (-1192) (-1109 (-417 (-574))) (-1109 (-417 (-574))))) (-15 -2947 ($ $ (-227)))))) (T -30)) -((-3940 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-965 (-574))) (-5 *3 (-1192)) (-5 *4 (-1109 (-417 (-574)))) (-5 *1 (-30)))) (-2947 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) -(-13 (-968) (-10 -8 (-15 -3940 ($ (-965 (-574)) (-1192) (-1192) (-1109 (-417 (-574))) (-1109 (-417 (-574))))) (-15 -2947 ($ $ (-227))))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2051 (((-1150) $) 11)) (-3838 (((-112) $ $) NIL)) (-2643 (((-1150) $) 9)) (-2985 (((-112) $ $) NIL))) -(((-31) (-13 (-1098) (-10 -8 (-15 -2643 ((-1150) $)) (-15 -2051 ((-1150) $))))) (T -31)) -((-2643 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-31)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-31))))) -(-13 (-1098) (-10 -8 (-15 -2643 ((-1150) $)) (-15 -2051 ((-1150) $)))) -((-3356 ((|#2| (-1188 |#2|) (-1192)) 41)) (-4150 (((-115) (-115)) 55)) (-4311 (((-1188 |#2|) (-622 |#2|)) 149 (|has| |#1| (-1053 (-574))))) (-2518 ((|#2| |#1| (-574)) 137 (|has| |#1| (-1053 (-574))))) (-2757 ((|#2| (-1188 |#2|) |#2|) 29)) (-2343 (((-872) (-654 |#2|)) 86)) (-2290 ((|#2| |#2|) 144 (|has| |#1| (-1053 (-574))))) (-4207 (((-112) (-115)) 17)) (** ((|#2| |#2| (-417 (-574))) 103 (|has| |#1| (-1053 (-574)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3356 (|#2| (-1188 |#2|) (-1192))) (-15 -4150 ((-115) (-115))) (-15 -4207 ((-112) (-115))) (-15 -2757 (|#2| (-1188 |#2|) |#2|)) (-15 -2343 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1053 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -4311 ((-1188 |#2|) (-622 |#2|))) (-15 -2290 (|#2| |#2|)) (-15 -2518 (|#2| |#1| (-574)))) |%noBranch|)) (-566) (-440 |#1|)) (T -32)) -((-2518 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1053 *4)) (-4 *3 (-566)))) (-2290 (*1 *2 *2) (-12 (-4 *3 (-1053 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2)) (-4 *2 (-440 *3)))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1053 (-574))) (-4 *4 (-566)) (-5 *2 (-1188 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1053 (-574))) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)) (-4 *2 (-440 *4)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566)) (-5 *2 (-872)) (-5 *1 (-32 *4 *5)))) (-2757 (*1 *2 *3 *2) (-12 (-5 *3 (-1188 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-440 *4)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-32 *3 *4)) (-4 *4 (-440 *3)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *2)) (-5 *4 (-1192)) (-4 *2 (-440 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-566))))) -(-10 -7 (-15 -3356 (|#2| (-1188 |#2|) (-1192))) (-15 -4150 ((-115) (-115))) (-15 -4207 ((-112) (-115))) (-15 -2757 (|#2| (-1188 |#2|) |#2|)) (-15 -2343 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1053 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -4311 ((-1188 |#2|) (-622 |#2|))) (-15 -2290 (|#2| |#2|)) (-15 -2518 (|#2| |#1| (-574)))) |%noBranch|)) -((-2818 (((-112) $ (-781)) 20)) (-3831 (($) 10)) (-2224 (((-112) $ (-781)) 19)) (-3625 (((-112) $ (-781)) 17)) (-4198 (((-112) $ $) 8)) (-2880 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -3831 (|#1|)) (-15 -2818 ((-112) |#1| (-781))) (-15 -2224 ((-112) |#1| (-781))) (-15 -3625 ((-112) |#1| (-781))) (-15 -2880 ((-112) |#1|)) (-15 -4198 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3831 (|#1|)) (-15 -2818 ((-112) |#1| (-781))) (-15 -2224 ((-112) |#1| (-781))) (-15 -3625 ((-112) |#1| (-781))) (-15 -2880 ((-112) |#1|)) (-15 -4198 ((-112) |#1| |#1|))) -((-2818 (((-112) $ (-781)) 8)) (-3831 (($) 7 T CONST)) (-2224 (((-112) $ (-781)) 9)) (-3625 (((-112) $ (-781)) 10)) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3156 (($ $) 13)) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +((-3814 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-2546 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-2546 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4)))) (-4016 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-3442 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-4016 (*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-440 |t#1|) (-10 -8 (-15 -3814 ($ $)) (-15 -2546 ((-654 $) $)) (-15 -3814 ($ $ (-1193))) (-15 -2546 ((-654 $) $ (-1193))) (-15 -4016 ($ $)) (-15 -3442 ((-654 $) $)) (-15 -4016 ($ $ (-1193))) (-15 -3442 ((-654 $) $ (-1193))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 #1=(-417 (-966 |#1|))) |has| |#1| (-566)) ((-626 (-574)) . T) ((-626 #2=(-622 $)) . T) ((-626 #3=(-966 |#1|)) |has| |#1| (-1065)) ((-626 #4=(-1193)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) . T) ((-298) . T) ((-315) . T) ((-317 $) . T) ((-310) . T) ((-372) . T) ((-386 |#1|) |has| |#1| (-1065)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-440 |#1|) . T) ((-462) . T) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) -2833 (|has| |#1| (-1065)) (|has| |#1| (-174))) ((-656 $) . T) ((-658 #0#) . T) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))) ((-658 |#1|) -2833 (|has| |#1| (-1065)) (|has| |#1| (-174))) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) . T) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))) ((-649 |#1|) |has| |#1| (-1065)) ((-727 #0#) . T) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) . T) ((-736) . T) ((-907 $ #6=(-1193)) |has| |#1| (-1065)) ((-912 #6#) |has| |#1| (-1065)) ((-914 #6#) |has| |#1| (-1065)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-934) . T) ((-1018) . T) ((-1054 (-417 (-574))) -2833 (|has| |#1| (-1054 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))))) ((-1054 #1#) |has| |#1| (-566)) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 #2#) . T) ((-1054 #3#) |has| |#1| (-1065)) ((-1054 #4#) . T) ((-1054 |#1|) . T) ((-1067 #0#) . T) ((-1067 |#1|) |has| |#1| (-174)) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T) ((-1238) . T)) +((-2439 (((-1110 (-227)) $) NIL)) (-2426 (((-1110 (-227)) $) NIL)) (-2789 (($ $ (-227)) 164)) (-3587 (($ (-966 (-574)) (-1193) (-1193) (-1110 (-417 (-574))) (-1110 (-417 (-574)))) 104)) (-1395 (((-654 (-654 (-957 (-227)))) $) 180)) (-2951 (((-872) $) 194))) +(((-30) (-13 (-969) (-10 -8 (-15 -3587 ($ (-966 (-574)) (-1193) (-1193) (-1110 (-417 (-574))) (-1110 (-417 (-574))))) (-15 -2789 ($ $ (-227)))))) (T -30)) +((-3587 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-966 (-574))) (-5 *3 (-1193)) (-5 *4 (-1110 (-417 (-574)))) (-5 *1 (-30)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) +(-13 (-969) (-10 -8 (-15 -3587 ($ (-966 (-574)) (-1193) (-1193) (-1110 (-417 (-574))) (-1110 (-417 (-574))))) (-15 -2789 ($ $ (-227))))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2050 (((-1151) $) 11)) (-4069 (((-112) $ $) NIL)) (-2644 (((-1151) $) 9)) (-2986 (((-112) $ $) NIL))) +(((-31) (-13 (-1099) (-10 -8 (-15 -2644 ((-1151) $)) (-15 -2050 ((-1151) $))))) (T -31)) +((-2644 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-31)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-31))))) +(-13 (-1099) (-10 -8 (-15 -2644 ((-1151) $)) (-15 -2050 ((-1151) $)))) +((-3814 ((|#2| (-1189 |#2|) (-1193)) 41)) (-4150 (((-115) (-115)) 55)) (-3746 (((-1189 |#2|) (-622 |#2|)) 149 (|has| |#1| (-1054 (-574))))) (-1932 ((|#2| |#1| (-574)) 137 (|has| |#1| (-1054 (-574))))) (-2007 ((|#2| (-1189 |#2|) |#2|) 29)) (-3164 (((-872) (-654 |#2|)) 86)) (-4379 ((|#2| |#2|) 144 (|has| |#1| (-1054 (-574))))) (-2420 (((-112) (-115)) 17)) (** ((|#2| |#2| (-417 (-574))) 103 (|has| |#1| (-1054 (-574)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3814 (|#2| (-1189 |#2|) (-1193))) (-15 -4150 ((-115) (-115))) (-15 -2420 ((-112) (-115))) (-15 -2007 (|#2| (-1189 |#2|) |#2|)) (-15 -3164 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1054 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -3746 ((-1189 |#2|) (-622 |#2|))) (-15 -4379 (|#2| |#2|)) (-15 -1932 (|#2| |#1| (-574)))) |%noBranch|)) (-566) (-440 |#1|)) (T -32)) +((-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1054 *4)) (-4 *3 (-566)))) (-4379 (*1 *2 *2) (-12 (-4 *3 (-1054 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2)) (-4 *2 (-440 *3)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1054 (-574))) (-4 *4 (-566)) (-5 *2 (-1189 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1054 (-574))) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)) (-4 *2 (-440 *4)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566)) (-5 *2 (-872)) (-5 *1 (-32 *4 *5)))) (-2007 (*1 *2 *3 *2) (-12 (-5 *3 (-1189 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-440 *4)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-32 *3 *4)) (-4 *4 (-440 *3)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *2)) (-5 *4 (-1193)) (-4 *2 (-440 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-566))))) +(-10 -7 (-15 -3814 (|#2| (-1189 |#2|) (-1193))) (-15 -4150 ((-115) (-115))) (-15 -2420 ((-112) (-115))) (-15 -2007 (|#2| (-1189 |#2|) |#2|)) (-15 -3164 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1054 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -3746 ((-1189 |#2|) (-622 |#2|))) (-15 -4379 (|#2| |#2|)) (-15 -1932 (|#2| |#1| (-574)))) |%noBranch|)) +((-3146 (((-112) $ (-781)) 20)) (-3250 (($) 10)) (-2189 (((-112) $ (-781)) 19)) (-1653 (((-112) $ (-781)) 17)) (-2526 (((-112) $ $) 8)) (-2754 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -3250 (|#1|)) (-15 -3146 ((-112) |#1| (-781))) (-15 -2189 ((-112) |#1| (-781))) (-15 -1653 ((-112) |#1| (-781))) (-15 -2754 ((-112) |#1|)) (-15 -2526 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3250 (|#1|)) (-15 -3146 ((-112) |#1| (-781))) (-15 -2189 ((-112) |#1| (-781))) (-15 -1653 ((-112) |#1| (-781))) (-15 -2754 ((-112) |#1|)) (-15 -2526 ((-112) |#1| |#1|))) +((-3146 (((-112) $ (-781)) 8)) (-3250 (($) 7 T CONST)) (-2189 (((-112) $ (-781)) 9)) (-1653 (((-112) $ (-781)) 10)) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-3157 (($ $) 13)) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) (((-34) (-141)) (T -34)) -((-4198 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3156 (*1 *1 *1) (-4 *1 (-34))) (-2833 (*1 *1) (-4 *1 (-34))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3625 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-2818 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-3831 (*1 *1) (-4 *1 (-34))) (-2876 (*1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-34)) (-5 *2 (-781))))) -(-13 (-1233) (-10 -8 (-15 -4198 ((-112) $ $)) (-15 -3156 ($ $)) (-15 -2833 ($)) (-15 -2880 ((-112) $)) (-15 -3625 ((-112) $ (-781))) (-15 -2224 ((-112) $ (-781))) (-15 -2818 ((-112) $ (-781))) (-15 -3831 ($) -1715) (IF (|has| $ (-6 -4458)) (-15 -2876 ((-781) $)) |%noBranch|))) -(((-1233) . T)) -((-2455 (($ $) 11)) (-2427 (($ $) 10)) (-2479 (($ $) 9)) (-2535 (($ $) 8)) (-2466 (($ $) 7)) (-2442 (($ $) 6))) +((-2526 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3157 (*1 *1 *1) (-4 *1 (-34))) (-3336 (*1 *1) (-4 *1 (-34))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-2189 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-3146 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-3250 (*1 *1) (-4 *1 (-34))) (-2877 (*1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-34)) (-5 *2 (-781))))) +(-13 (-1234) (-10 -8 (-15 -2526 ((-112) $ $)) (-15 -3157 ($ $)) (-15 -3336 ($)) (-15 -2754 ((-112) $)) (-15 -1653 ((-112) $ (-781))) (-15 -2189 ((-112) $ (-781))) (-15 -3146 ((-112) $ (-781))) (-15 -3250 ($) -1714) (IF (|has| $ (-6 -4459)) (-15 -2877 ((-781) $)) |%noBranch|))) +(((-1234) . T)) +((-2456 (($ $) 11)) (-2429 (($ $) 10)) (-2480 (($ $) 9)) (-2536 (($ $) 8)) (-2468 (($ $) 7)) (-2443 (($ $) 6))) (((-35) (-141)) (T -35)) -((-2455 (*1 *1 *1) (-4 *1 (-35))) (-2427 (*1 *1 *1) (-4 *1 (-35))) (-2479 (*1 *1 *1) (-4 *1 (-35))) (-2535 (*1 *1 *1) (-4 *1 (-35))) (-2466 (*1 *1 *1) (-4 *1 (-35))) (-2442 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -2442 ($ $)) (-15 -2466 ($ $)) (-15 -2535 ($ $)) (-15 -2479 ($ $)) (-15 -2427 ($ $)) (-15 -2455 ($ $)))) -((-2863 (((-112) $ $) 19 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-3078 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 127)) (-2420 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 150)) (-1979 (($ $) 148)) (-3751 (($) 73) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 72)) (-3287 (((-1288) $ |#1| |#1|) 100 (|has| $ (-6 -4459))) (((-1288) $ (-574) (-574)) 180 (|has| $ (-6 -4459)))) (-1344 (($ $ (-574)) 161 (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-3565 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 202 (|has| $ (-6 -4459))) (($ $) 201 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2818 (((-112) $ (-781)) 8)) (-3906 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 136 (|has| $ (-6 -4459)))) (-3168 (($ $ $) 157 (|has| $ (-6 -4459)))) (-2976 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 159 (|has| $ (-6 -4459)))) (-3576 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 155 (|has| $ (-6 -4459)))) (-3134 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 191 (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-1250 (-574)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 162 (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "last" (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 160 (|has| $ (-6 -4459))) (($ $ "rest" $) 158 (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "first" (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 156 (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "value" (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 135 (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) 134 (|has| $ (-6 -4459)))) (-2551 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 46 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 218)) (-2173 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 56 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 177 (|has| $ (-6 -4458)))) (-2407 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 149)) (-2171 (((-3 |#2| "failed") |#1| $) 62)) (-3831 (($) 7 T CONST)) (-2163 (($ $) 203 (|has| $ (-6 -4459)))) (-4424 (($ $) 213)) (-2934 (($ $ (-781)) 144) (($ $) 142)) (-2098 (($ $) 216 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-2560 (($ $) 59 (-2832 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458))) (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))))) (-1941 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 47 (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 222) (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 217 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 55 (|has| $ (-6 -4458))) (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 176 (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 57 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 54 (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 53 (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 178 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 175 (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 174 (|has| $ (-6 -4458)))) (-2472 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 192 (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) 89) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574)) 190)) (-1930 (((-112) $) 194)) (-1451 (((-574) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 210) (((-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 209 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))) (((-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574)) 208 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-1873 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 31 (|has| $ (-6 -4458))) (((-654 |#2|) $) 80 (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 116 (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) 125)) (-2661 (((-112) $ $) 133 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-3763 (($ (-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 170)) (-2224 (((-112) $ (-781)) 9)) (-1767 ((|#1| $) 97 (|has| |#1| (-860))) (((-574) $) 182 (|has| (-574) (-860)))) (-3632 (($ $ $) 200 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2857 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-4297 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2247 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 30 (|has| $ (-6 -4458))) (((-654 |#2|) $) 81 (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 117 (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458)))) (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458))))) (-2429 ((|#1| $) 96 (|has| |#1| (-860))) (((-574) $) 183 (|has| (-574) (-860)))) (-1593 (($ $ $) 199 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 35 (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4459))) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 112 (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 111)) (-1797 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 227)) (-3625 (((-112) $ (-781)) 10)) (-3481 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 130)) (-4069 (((-112) $) 126)) (-3945 (((-1174) $) 22 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-3333 (($ $ (-781)) 147) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 145)) (-1772 (((-654 |#1|) $) 64)) (-2056 (((-112) |#1| $) 65)) (-1748 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 40)) (-2609 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 41) (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574)) 221) (($ $ $ (-574)) 220)) (-1603 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574)) 164) (($ $ $ (-574)) 163)) (-3228 (((-654 |#1|) $) 94) (((-654 (-574)) $) 185)) (-3071 (((-112) |#1| $) 93) (((-112) (-574) $) 186)) (-3939 (((-1135) $) 21 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-2924 ((|#2| $) 98 (|has| |#1| (-860))) (($ $ (-781)) 141) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 139)) (-2294 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 52) (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 173)) (-4276 (($ $ |#2|) 99 (|has| $ (-6 -4459))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 181 (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 42)) (-1425 (((-112) $) 193)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 33 (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 114 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) 27 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 26 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 25 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 24 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 123 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 122 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 121 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) 120 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 184 (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-2379 (((-654 |#2|) $) 92) (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 187)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 189) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574)) 188) (($ $ (-1250 (-574))) 171) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "first") 140) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "value") 128)) (-4418 (((-574) $ $) 131)) (-3667 (($) 50) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 49)) (-1317 (($ $ (-574)) 224) (($ $ (-1250 (-574))) 223)) (-2853 (($ $ (-574)) 166) (($ $ (-1250 (-574))) 165)) (-1966 (((-112) $) 129)) (-2013 (($ $) 153)) (-1429 (($ $) 154 (|has| $ (-6 -4459)))) (-2746 (((-781) $) 152)) (-1476 (($ $) 151)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 32 (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 115 (|has| $ (-6 -4458)))) (-2315 (($ $ $ (-574)) 204 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1845 (((-546) $) 60 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546)))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 51) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 172)) (-4226 (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 226) (($ $ $) 225)) (-4131 (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 169) (($ (-654 $)) 168) (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 138) (($ $ $) 137)) (-2950 (((-872) $) 18 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872)))))) (-4414 (((-654 $) $) 124)) (-1870 (((-112) $ $) 132 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-3838 (((-112) $ $) 23 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 43)) (-3342 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") |#1| $) 110)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 34 (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 113 (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) 197 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-3018 (((-112) $ $) 196 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2985 (((-112) $ $) 20 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-3029 (((-112) $ $) 198 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-3009 (((-112) $ $) 195 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-36 |#1| |#2|) (-141) (-1115) (-1115)) (T -36)) -((-3342 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-5 *2 (-2 (|:| -3666 *3) (|:| -1917 *4)))))) -(-13 (-1209 |t#1| |t#2|) (-676 (-2 (|:| -3666 |t#1|) (|:| -1917 |t#2|))) (-10 -8 (-15 -3342 ((-3 (-2 (|:| -3666 |t#1|) (|:| -1917 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T) ((-102) -2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860))) ((-623 (-872)) -2832 (|has| |#2| (-1115)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872)))) ((-152 #1=(-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T) ((-624 (-546)) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 #2=(-574) #1#) . T) ((-294 (-1250 (-574)) $) . T) ((-294 |#1| |#2|) . T) ((-296 #2# #1#) . T) ((-296 |#1| |#2|) . T) ((-317 #1#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-290 #1#) . T) ((-382 #1#) . T) ((-499 #1#) . T) ((-499 |#2|) . T) ((-614 #2# #1#) . T) ((-614 |#1| |#2|) . T) ((-524 #1# #1#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-620 |#1| |#2|) . T) ((-661 #1#) . T) ((-676 #1#) . T) ((-860) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)) ((-1025 #1#) . T) ((-1115) -2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860))) ((-1164 #1#) . T) ((-1209 |#1| |#2|) . T) ((-1233) . T) ((-1271 #1#) . T)) -((-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-38 |#2|) (-174)) (T -37)) -NIL -(-10 -8 (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-2456 (*1 *1 *1) (-4 *1 (-35))) (-2429 (*1 *1 *1) (-4 *1 (-35))) (-2480 (*1 *1 *1) (-4 *1 (-35))) (-2536 (*1 *1 *1) (-4 *1 (-35))) (-2468 (*1 *1 *1) (-4 *1 (-35))) (-2443 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -2443 ($ $)) (-15 -2468 ($ $)) (-15 -2536 ($ $)) (-15 -2480 ($ $)) (-15 -2429 ($ $)) (-15 -2456 ($ $)))) +((-2864 (((-112) $ $) 19 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3079 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 127)) (-2421 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 150)) (-1978 (($ $) 148)) (-3752 (($) 73) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 72)) (-2985 (((-1289) $ |#1| |#1|) 100 (|has| $ (-6 -4460))) (((-1289) $ (-574) (-574)) 180 (|has| $ (-6 -4460)))) (-1652 (($ $ (-574)) 161 (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-4140 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 202 (|has| $ (-6 -4460))) (($ $) 201 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3146 (((-112) $ (-781)) 8)) (-4433 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 136 (|has| $ (-6 -4460)))) (-3370 (($ $ $) 157 (|has| $ (-6 -4460)))) (-2523 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 159 (|has| $ (-6 -4460)))) (-2186 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 155 (|has| $ (-6 -4460)))) (-3135 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 191 (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-1251 (-574)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 162 (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "last" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 160 (|has| $ (-6 -4460))) (($ $ "rest" $) 158 (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "first" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 156 (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "value" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 135 (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) 134 (|has| $ (-6 -4460)))) (-1923 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 46 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 218)) (-2172 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 56 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 177 (|has| $ (-6 -4459)))) (-2408 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 149)) (-2171 (((-3 |#2| "failed") |#1| $) 62)) (-3250 (($) 7 T CONST)) (-2412 (($ $) 203 (|has| $ (-6 -4460)))) (-4425 (($ $) 213)) (-2935 (($ $ (-781)) 144) (($ $) 142)) (-2088 (($ $) 216 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-2804 (($ $) 59 (-2833 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))) (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))))) (-2424 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 47 (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 222) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 217 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 55 (|has| $ (-6 -4459))) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 176 (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 57 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 54 (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 53 (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 178 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 175 (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 174 (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 192 (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) 89) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) 190)) (-4186 (((-112) $) 194)) (-1452 (((-574) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 210) (((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 209 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) (((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) 208 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 31 (|has| $ (-6 -4459))) (((-654 |#2|) $) 80 (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 116 (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) 125)) (-2622 (((-112) $ $) 133 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-3764 (($ (-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 170)) (-2189 (((-112) $ (-781)) 9)) (-3429 ((|#1| $) 97 (|has| |#1| (-860))) (((-574) $) 182 (|has| (-574) (-860)))) (-3634 (($ $ $) 200 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-4349 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3404 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2036 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 30 (|has| $ (-6 -4459))) (((-654 |#2|) $) 81 (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 117 (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459)))) (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))))) (-1698 ((|#1| $) 96 (|has| |#1| (-860))) (((-574) $) 183 (|has| (-574) (-860)))) (-4380 (($ $ $) 199 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 35 (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4460))) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 112 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 111)) (-1795 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 227)) (-1653 (((-112) $ (-781)) 10)) (-3483 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 130)) (-1580 (((-112) $) 126)) (-1489 (((-1175) $) 22 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3334 (($ $ (-781)) 147) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 145)) (-1771 (((-654 |#1|) $) 64)) (-2229 (((-112) |#1| $) 65)) (-2375 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 40)) (-3285 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 41) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) 221) (($ $ $ (-574)) 220)) (-1602 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) 164) (($ $ $ (-574)) 163)) (-1393 (((-654 |#1|) $) 94) (((-654 (-574)) $) 185)) (-1506 (((-112) |#1| $) 93) (((-112) (-574) $) 186)) (-3940 (((-1136) $) 21 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2925 ((|#2| $) 98 (|has| |#1| (-860))) (($ $ (-781)) 141) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 139)) (-2183 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 52) (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 173)) (-1822 (($ $ |#2|) 99 (|has| $ (-6 -4460))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 181 (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 42)) (-3070 (((-112) $) 193)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 33 (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 114 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) 27 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 26 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 25 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 24 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 123 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 122 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 121 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) 120 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 184 (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2315 (((-654 |#2|) $) 92) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 187)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 189) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) 188) (($ $ (-1251 (-574))) 171) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "first") 140) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "value") 128)) (-3615 (((-574) $ $) 131)) (-3162 (($) 50) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 49)) (-4385 (($ $ (-574)) 224) (($ $ (-1251 (-574))) 223)) (-2855 (($ $ (-574)) 166) (($ $ (-1251 (-574))) 165)) (-3911 (((-112) $) 129)) (-1939 (($ $) 153)) (-2043 (($ $) 154 (|has| $ (-6 -4460)))) (-1746 (((-781) $) 152)) (-2386 (($ $) 151)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 32 (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 115 (|has| $ (-6 -4459)))) (-4036 (($ $ $ (-574)) 204 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546)))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 51) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 172)) (-2982 (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 226) (($ $ $) 225)) (-4132 (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 169) (($ (-654 $)) 168) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 138) (($ $ $) 137)) (-2951 (((-872) $) 18 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872)))))) (-4163 (((-654 $) $) 124)) (-4208 (((-112) $ $) 132 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-4069 (((-112) $ $) 23 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 43)) (-3343 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") |#1| $) 110)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 34 (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 113 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 197 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3020 (((-112) $ $) 196 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2986 (((-112) $ $) 20 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3030 (((-112) $ $) 198 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3009 (((-112) $ $) 195 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-36 |#1| |#2|) (-141) (-1116) (-1116)) (T -36)) +((-3343 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-5 *2 (-2 (|:| -3667 *3) (|:| -1916 *4)))))) +(-13 (-1210 |t#1| |t#2|) (-676 (-2 (|:| -3667 |t#1|) (|:| -1916 |t#2|))) (-10 -8 (-15 -3343 ((-3 (-2 (|:| -3667 |t#1|) (|:| -1916 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((-102) -2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860))) ((-623 (-872)) -2833 (|has| |#2| (-1116)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872)))) ((-152 #1=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((-624 (-546)) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 #2=(-574) #1#) . T) ((-294 (-1251 (-574)) $) . T) ((-294 |#1| |#2|) . T) ((-296 #2# #1#) . T) ((-296 |#1| |#2|) . T) ((-317 #1#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-290 #1#) . T) ((-382 #1#) . T) ((-499 #1#) . T) ((-499 |#2|) . T) ((-614 #2# #1#) . T) ((-614 |#1| |#2|) . T) ((-524 #1# #1#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-620 |#1| |#2|) . T) ((-661 #1#) . T) ((-676 #1#) . T) ((-860) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)) ((-1026 #1#) . T) ((-1116) -2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860))) ((-1165 #1#) . T) ((-1210 |#1| |#2|) . T) ((-1234) . T) ((-1272 #1#) . T)) +((-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-38 |#2|) (-174)) (T -37)) +NIL +(-10 -8 (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-141) (-174)) (T -38)) NIL -(-13 (-1064) (-727 |t#1|) (-626 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-3749 (((-428 |#1|) |#1|) 41)) (-4200 (((-428 |#1|) |#1|) 30) (((-428 |#1|) |#1| (-654 (-48))) 33)) (-3799 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -4200 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3749 ((-428 |#1|) |#1|)) (-15 -3799 ((-112) |#1|))) (-1259 (-48))) (T -39)) -((-3799 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48))))) (-3749 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48))))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48))))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48)))))) -(-10 -7 (-15 -4200 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3749 ((-428 |#1|) |#1|)) (-15 -3799 ((-112) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4402 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-3648 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1527 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3644 (((-699 (-417 |#2|)) (-1283 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1645 (((-417 |#2|) $) NIL)) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3954 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3656 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1496 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-3489 (((-112)) NIL)) (-2511 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| (-417 |#2|) (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-2919 (($ (-1283 (-417 |#2|)) (-1283 $)) NIL) (($ (-1283 (-417 |#2|))) 61) (($ (-1283 |#2|) |#2|) 131)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2799 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3556 (((-699 (-417 |#2|)) $ (-1283 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-417 |#2|))) (|:| |vec| (-1283 (-417 |#2|)))) (-699 $) (-1283 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1283 $)) NIL)) (-2989 (((-1283 $) (-1283 $)) NIL)) (-2881 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-3911 (((-3 $ "failed") $) NIL)) (-2844 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-2345 (((-112) |#1| |#1|) NIL)) (-3557 (((-934)) NIL)) (-2834 (($) NIL (|has| (-417 |#2|) (-377)))) (-4023 (((-112)) NIL)) (-2068 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2811 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-1509 (($ $) NIL)) (-1912 (($) NIL (|has| (-417 |#2|) (-358)))) (-3873 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-4158 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-1782 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-2725 (((-934) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-934)) $) NIL (|has| (-417 |#2|) (-358)))) (-3372 (((-112) $) NIL)) (-2703 (((-781)) NIL)) (-3846 (((-1283 $) (-1283 $)) 106)) (-1386 (((-417 |#2|) $) NIL)) (-1697 (((-654 (-965 |#1|)) (-1192)) NIL (|has| |#1| (-372)))) (-1353 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1950 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-3271 (((-934) $) NIL (|has| (-417 |#2|) (-377)))) (-2868 ((|#3| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3945 (((-1174) $) NIL)) (-2184 (((-1288) (-781)) 84)) (-2967 (((-699 (-417 |#2|))) 56)) (-1407 (((-699 (-417 |#2|))) 49)) (-1327 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1333 (($ (-1283 |#2|) |#2|) 132)) (-4107 (((-699 (-417 |#2|))) 50)) (-4113 (((-699 (-417 |#2|))) 48)) (-3311 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-3303 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) 68)) (-2448 (((-1283 $)) 47)) (-1555 (((-1283 $)) 46)) (-3621 (((-112) $) NIL)) (-4162 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3791 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2590 (($ (-934)) NIL (|has| (-417 |#2|) (-377)))) (-3627 (((-3 |#2| "failed")) NIL)) (-3939 (((-1135) $) NIL)) (-2458 (((-781)) NIL)) (-2975 (($) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| (-417 |#2|) (-372)))) (-2886 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4200 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3364 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2208 ((|#1| $ |#1| |#1|) NIL)) (-1775 (((-3 |#2| "failed")) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1738 (((-417 |#2|) (-1283 $)) NIL) (((-417 |#2|)) 44)) (-3881 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3878 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-1840 (((-699 (-417 |#2|)) (-1283 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-2290 ((|#3|) 55)) (-1417 (($) NIL (|has| (-417 |#2|) (-358)))) (-4346 (((-1283 (-417 |#2|)) $ (-1283 $)) NIL) (((-699 (-417 |#2|)) (-1283 $) (-1283 $)) NIL) (((-1283 (-417 |#2|)) $) 62) (((-699 (-417 |#2|)) (-1283 $)) 107)) (-1845 (((-1283 (-417 |#2|)) $) NIL) (($ (-1283 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-2496 (((-1283 $) (-1283 $)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2832 (|has| (-417 |#2|) (-1053 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3247 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-1539 ((|#3| $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3777 (((-112)) 42)) (-3555 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL)) (-1842 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2124 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4231 (((-112)) NIL)) (-2142 (($) 17 T CONST)) (-2154 (($) 27 T CONST)) (-3583 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -2184 ((-1288) (-781))))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) |#3|) (T -40)) -((-2184 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1259 *4)) (-5 *2 (-1288)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1259 (-417 *5))) (-14 *7 *6)))) -(-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -2184 ((-1288) (-781))))) -((-3779 ((|#2| |#2|) 47)) (-4361 ((|#2| |#2|) 139 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1053 (-574))))))) (-3150 ((|#2| |#2|) 100 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1053 (-574))))))) (-1866 ((|#2| |#2|) 101 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1053 (-574))))))) (-4039 ((|#2| (-115) |#2| (-781)) 135 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1053 (-574))))))) (-1711 (((-1188 |#2|) |#2|) 44)) (-2465 ((|#2| |#2| (-654 (-622 |#2|))) 18) ((|#2| |#2| (-654 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -3779 (|#2| |#2|)) (-15 -2465 (|#2| |#2|)) (-15 -2465 (|#2| |#2| |#2|)) (-15 -2465 (|#2| |#2| (-654 |#2|))) (-15 -2465 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -1711 ((-1188 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1053 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -1866 (|#2| |#2|)) (-15 -3150 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -4039 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|)) (-566) (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 |#1| (-622 $)) $)) (-15 -2981 ((-1140 |#1| (-622 $)) $)) (-15 -2950 ($ (-1140 |#1| (-622 $))))))) (T -41)) -((-4039 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1053 (-574)))) (-4 *5 (-566)) (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *5 (-622 $)) $)) (-15 -2981 ((-1140 *5 (-622 $)) $)) (-15 -2950 ($ (-1140 *5 (-622 $))))))))) (-4361 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $))))))))) (-3150 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $))))))))) (-1866 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $))))))))) (-1711 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1188 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) (-15 -2981 ((-1140 *4 (-622 $)) $)) (-15 -2950 ($ (-1140 *4 (-622 $))))))))) (-2465 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-622 *2))) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) (-15 -2981 ((-1140 *4 (-622 $)) $)) (-15 -2950 ($ (-1140 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-2465 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) (-15 -2981 ((-1140 *4 (-622 $)) $)) (-15 -2950 ($ (-1140 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-2465 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $))))))))) (-2465 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $))))))))) (-3779 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $)))))))))) -(-10 -7 (-15 -3779 (|#2| |#2|)) (-15 -2465 (|#2| |#2|)) (-15 -2465 (|#2| |#2| |#2|)) (-15 -2465 (|#2| |#2| (-654 |#2|))) (-15 -2465 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -1711 ((-1188 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1053 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -1866 (|#2| |#2|)) (-15 -3150 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -4039 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|)) -((-4200 (((-428 (-1188 |#3|)) (-1188 |#3|) (-654 (-48))) 23) (((-428 |#3|) |#3| (-654 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4200 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4200 ((-428 (-1188 |#3|)) (-1188 |#3|) (-654 (-48))))) (-860) (-803) (-962 (-48) |#2| |#1|)) (T -42)) -((-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *7 (-962 (-48) *6 *5)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-962 (-48) *6 *5))))) -(-10 -7 (-15 -4200 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4200 ((-428 (-1188 |#3|)) (-1188 |#3|) (-654 (-48))))) -((-4195 (((-781) |#2|) 70)) (-4288 (((-781) |#2|) 74)) (-3258 (((-654 |#2|)) 37)) (-3270 (((-781) |#2|) 73)) (-2188 (((-781) |#2|) 69)) (-3358 (((-781) |#2|) 72)) (-4431 (((-654 (-699 |#1|))) 65)) (-1531 (((-654 |#2|)) 60)) (-1652 (((-654 |#2|) |#2|) 48)) (-1948 (((-654 |#2|)) 62)) (-2690 (((-654 |#2|)) 61)) (-2537 (((-654 (-699 |#1|))) 53)) (-2696 (((-654 |#2|)) 59)) (-3441 (((-654 |#2|) |#2|) 47)) (-1568 (((-654 |#2|)) 55)) (-3767 (((-654 (-699 |#1|))) 66)) (-2550 (((-654 |#2|)) 64)) (-2191 (((-1283 |#2|) (-1283 |#2|)) 99 (|has| |#1| (-315))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -3270 ((-781) |#2|)) (-15 -4288 ((-781) |#2|)) (-15 -2188 ((-781) |#2|)) (-15 -4195 ((-781) |#2|)) (-15 -3358 ((-781) |#2|)) (-15 -1568 ((-654 |#2|))) (-15 -3441 ((-654 |#2|) |#2|)) (-15 -1652 ((-654 |#2|) |#2|)) (-15 -2696 ((-654 |#2|))) (-15 -1531 ((-654 |#2|))) (-15 -2690 ((-654 |#2|))) (-15 -1948 ((-654 |#2|))) (-15 -2550 ((-654 |#2|))) (-15 -2537 ((-654 (-699 |#1|)))) (-15 -4431 ((-654 (-699 |#1|)))) (-15 -3767 ((-654 (-699 |#1|)))) (-15 -3258 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -2191 ((-1283 |#2|) (-1283 |#2|))) |%noBranch|)) (-566) (-427 |#1|)) (T -43)) -((-2191 (*1 *2 *2) (-12 (-5 *2 (-1283 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-43 *3 *4)))) (-3258 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3767 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-4431 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2537 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2550 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1948 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2690 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1531 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2696 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-3441 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1568 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3358 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-4195 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-2188 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-4288 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-3270 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4))))) -(-10 -7 (-15 -3270 ((-781) |#2|)) (-15 -4288 ((-781) |#2|)) (-15 -2188 ((-781) |#2|)) (-15 -4195 ((-781) |#2|)) (-15 -3358 ((-781) |#2|)) (-15 -1568 ((-654 |#2|))) (-15 -3441 ((-654 |#2|) |#2|)) (-15 -1652 ((-654 |#2|) |#2|)) (-15 -2696 ((-654 |#2|))) (-15 -1531 ((-654 |#2|))) (-15 -2690 ((-654 |#2|))) (-15 -1948 ((-654 |#2|))) (-15 -2550 ((-654 |#2|))) (-15 -2537 ((-654 (-699 |#1|)))) (-15 -4431 ((-654 (-699 |#1|)))) (-15 -3767 ((-654 (-699 |#1|)))) (-15 -3258 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -2191 ((-1283 |#2|) (-1283 |#2|))) |%noBranch|)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3775 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-2588 (((-1283 (-699 |#1|)) (-1283 $)) NIL) (((-1283 (-699 |#1|))) 24)) (-4427 (((-1283 $)) 52)) (-3831 (($) NIL T CONST)) (-2846 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-1992 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-2038 (((-699 |#1|) (-1283 $)) NIL) (((-699 |#1|)) NIL)) (-2199 ((|#1| $) NIL)) (-4189 (((-699 |#1|) $ (-1283 $)) NIL) (((-699 |#1|) $) NIL)) (-2484 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-3149 (((-1188 (-965 |#1|))) NIL (|has| |#1| (-372)))) (-3204 (($ $ (-934)) NIL)) (-3272 ((|#1| $) NIL)) (-3866 (((-1188 |#1|) $) NIL (|has| |#1| (-566)))) (-3414 ((|#1| (-1283 $)) NIL) ((|#1|) NIL)) (-4111 (((-1188 |#1|) $) NIL)) (-2182 (((-112)) 99)) (-2919 (($ (-1283 |#1|) (-1283 $)) NIL) (($ (-1283 |#1|)) NIL)) (-3911 (((-3 $ "failed") $) 14 (|has| |#1| (-566)))) (-3557 (((-934)) 53)) (-2045 (((-112)) NIL)) (-3518 (($ $ (-934)) NIL)) (-2931 (((-112)) NIL)) (-2347 (((-112)) NIL)) (-3233 (((-112)) 101)) (-3636 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-3215 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-2597 (((-699 |#1|) (-1283 $)) NIL) (((-699 |#1|)) NIL)) (-2327 ((|#1| $) NIL)) (-3680 (((-699 |#1|) $ (-1283 $)) NIL) (((-699 |#1|) $) NIL)) (-2691 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-1644 (((-1188 (-965 |#1|))) NIL (|has| |#1| (-372)))) (-2177 (($ $ (-934)) NIL)) (-2614 ((|#1| $) NIL)) (-3201 (((-1188 |#1|) $) NIL (|has| |#1| (-566)))) (-2903 ((|#1| (-1283 $)) NIL) ((|#1|) NIL)) (-3401 (((-1188 |#1|) $) NIL)) (-1584 (((-112)) 98)) (-3945 (((-1174) $) NIL)) (-1916 (((-112)) 106)) (-3601 (((-112)) 105)) (-1876 (((-112)) 107)) (-3939 (((-1135) $) NIL)) (-2678 (((-112)) 100)) (-2208 ((|#1| $ (-574)) 55)) (-4346 (((-1283 |#1|) $ (-1283 $)) 48) (((-699 |#1|) (-1283 $) (-1283 $)) NIL) (((-1283 |#1|) $) 28) (((-699 |#1|) (-1283 $)) NIL)) (-1845 (((-1283 |#1|) $) NIL) (($ (-1283 |#1|)) NIL)) (-2074 (((-654 (-965 |#1|)) (-1283 $)) NIL) (((-654 (-965 |#1|))) NIL)) (-3490 (($ $ $) NIL)) (-1355 (((-112)) 95)) (-2950 (((-872) $) 71) (($ (-1283 |#1|)) 22)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) 51)) (-3045 (((-654 (-1283 |#1|))) NIL (|has| |#1| (-566)))) (-2087 (($ $ $ $) NIL)) (-3500 (((-112)) 91)) (-2911 (($ (-699 |#1|) $) 18)) (-3157 (($ $ $) NIL)) (-1778 (((-112)) 97)) (-2956 (((-112)) 92)) (-3005 (((-112)) 90)) (-2142 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1157 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-427 |#1|) (-658 (-1157 |#2| |#1|)) (-10 -8 (-15 -2950 ($ (-1283 |#1|))))) (-372) (-934) (-654 (-1192)) (-1283 (-699 |#1|))) (T -44)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-372)) (-14 *6 (-1283 (-699 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-934)) (-14 *5 (-654 (-1192)))))) -(-13 (-427 |#1|) (-658 (-1157 |#2| |#1|)) (-10 -8 (-15 -2950 ($ (-1283 |#1|))))) -((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3078 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2420 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-1979 (($ $) NIL)) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3287 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459))) (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-1344 (($ $ (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-3565 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860))))) (-2785 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3906 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4459)))) (-3168 (($ $ $) 33 (|has| $ (-6 -4459)))) (-2976 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4459)))) (-3576 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 35 (|has| $ (-6 -4459)))) (-3134 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-1250 (-574)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "last" (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4459))) (($ $ "rest" $) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "first" (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "value" (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-2551 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL)) (-2173 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2407 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2171 (((-3 |#2| "failed") |#1| $) 43)) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2934 (($ $ (-781)) NIL) (($ $) 29)) (-2098 (($ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-1941 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574)) NIL)) (-1930 (((-112) $) NIL)) (-1451 (((-574) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (((-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))) (((-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574)) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-1873 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 20 (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 20 (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) NIL)) (-2661 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-3763 (($ (-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 38 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2857 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-4297 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2247 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-2429 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 40 (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL)) (-1797 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3481 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL)) (-4069 (((-112) $) NIL)) (-3945 (((-1174) $) 49 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3333 (($ $ (-781)) NIL) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-1772 (((-654 |#1|) $) 22)) (-2056 (((-112) |#1| $) NIL)) (-1748 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2609 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL) (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1603 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-3228 (((-654 |#1|) $) NIL) (((-654 (-574)) $) NIL)) (-3071 (((-112) |#1| $) NIL) (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860))) (($ $ (-781)) NIL) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 27)) (-2294 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL)) (-4276 (($ $ |#2|) NIL (|has| $ (-6 -4459))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-1425 (((-112) $) NIL)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-2379 (((-654 |#2|) $) NIL) (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 19)) (-2880 (((-112) $) 18)) (-2833 (($) 14)) (-2208 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ (-574)) NIL) (($ $ (-1250 (-574))) NIL) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "first") NIL) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $ "value") NIL)) (-4418 (((-574) $ $) NIL)) (-3667 (($) 13) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-1317 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-1966 (((-112) $) NIL)) (-2013 (($ $) NIL)) (-1429 (($ $) NIL (|has| $ (-6 -4459)))) (-2746 (((-781) $) NIL)) (-1476 (($ $) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-4226 (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL) (($ $ $) NIL)) (-4131 (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL) (($ (-654 $)) NIL) (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 31) (($ $ $) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4414 (((-654 $) $) NIL)) (-1870 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-3838 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3342 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") |#1| $) 51)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3029 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-860)))) (-2876 (((-781) $) 25 (|has| $ (-6 -4458))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1115) (-1115)) (T -45)) +(-13 (-1065) (-727 |t#1|) (-626 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-1408 (((-428 |#1|) |#1|) 41)) (-4202 (((-428 |#1|) |#1|) 30) (((-428 |#1|) |#1| (-654 (-48))) 33)) (-1810 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -4202 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -1408 ((-428 |#1|) |#1|)) (-15 -1810 ((-112) |#1|))) (-1260 (-48))) (T -39)) +((-1810 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48))))) (-1408 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48))))) (-4202 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48))))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48)))))) +(-10 -7 (-15 -4202 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -1408 ((-428 |#1|) |#1|)) (-15 -1810 ((-112) |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-1471 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-2884 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1981 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3835 (((-699 (-417 |#2|)) (-1284 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1644 (((-417 |#2|) $) NIL)) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1610 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3245 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1496 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-4242 (((-112)) NIL)) (-2344 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| (-417 |#2|) (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-2580 (($ (-1284 (-417 |#2|)) (-1284 $)) NIL) (($ (-1284 (-417 |#2|))) 61) (($ (-1284 |#2|) |#2|) 131)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2800 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2640 (((-699 (-417 |#2|)) $ (-1284 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-417 |#2|))) (|:| |vec| (-1284 (-417 |#2|)))) (-699 $) (-1284 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1284 $)) NIL)) (-1406 (((-1284 $) (-1284 $)) NIL)) (-2882 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-4322 (((-3 $ "failed") $) NIL)) (-3925 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-2904 (((-112) |#1| |#1|) NIL)) (-3558 (((-935)) NIL)) (-2835 (($) NIL (|has| (-417 |#2|) (-377)))) (-3929 (((-112)) NIL)) (-1568 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2813 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-3621 (($ $) NIL)) (-3556 (($) NIL (|has| (-417 |#2|) (-358)))) (-3084 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-1995 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-3978 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3547 (((-935) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-935)) $) NIL (|has| (-417 |#2|) (-358)))) (-4226 (((-112) $) NIL)) (-2723 (((-781)) NIL)) (-2921 (((-1284 $) (-1284 $)) 106)) (-1681 (((-417 |#2|) $) NIL)) (-2512 (((-654 (-966 |#1|)) (-1193)) NIL (|has| |#1| (-372)))) (-2414 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3989 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-3383 (((-935) $) NIL (|has| (-417 |#2|) (-377)))) (-2869 ((|#3| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1489 (((-1175) $) NIL)) (-4129 (((-1289) (-781)) 84)) (-3034 (((-699 (-417 |#2|))) 56)) (-1485 (((-699 (-417 |#2|))) 49)) (-1328 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3793 (($ (-1284 |#2|) |#2|) 132)) (-3984 (((-699 (-417 |#2|))) 50)) (-4432 (((-699 (-417 |#2|))) 48)) (-2294 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-2670 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) 68)) (-3963 (((-1284 $)) 47)) (-4367 (((-1284 $)) 46)) (-3965 (((-112) $) NIL)) (-3033 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3791 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2591 (($ (-935)) NIL (|has| (-417 |#2|) (-377)))) (-4375 (((-3 |#2| "failed")) NIL)) (-3940 (((-1136) $) NIL)) (-3981 (((-781)) NIL)) (-2975 (($) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| (-417 |#2|) (-372)))) (-2887 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4202 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2853 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-2098 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2207 ((|#1| $ |#1| |#1|) NIL)) (-2090 (((-3 |#2| "failed")) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2394 (((-417 |#2|) (-1284 $)) NIL) (((-417 |#2|)) 44)) (-3261 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3879 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-1193)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3303 (((-699 (-417 |#2|)) (-1284 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-4379 ((|#3|) 55)) (-3603 (($) NIL (|has| (-417 |#2|) (-358)))) (-1385 (((-1284 (-417 |#2|)) $ (-1284 $)) NIL) (((-699 (-417 |#2|)) (-1284 $) (-1284 $)) NIL) (((-1284 (-417 |#2|)) $) 62) (((-699 (-417 |#2|)) (-1284 $)) 107)) (-1844 (((-1284 (-417 |#2|)) $) NIL) (($ (-1284 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-2980 (((-1284 $) (-1284 $)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2833 (|has| (-417 |#2|) (-1054 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3424 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-2648 ((|#3| $) NIL)) (-2898 (((-781)) NIL T CONST)) (-1441 (((-112)) 42)) (-2983 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL)) (-2836 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2561 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3526 (((-112)) NIL)) (-2141 (($) 17 T CONST)) (-2153 (($) 27 T CONST)) (-3584 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1193)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -4129 ((-1289) (-781))))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) |#3|) (T -40)) +((-4129 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1260 *4)) (-5 *2 (-1289)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1260 (-417 *5))) (-14 *7 *6)))) +(-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -4129 ((-1289) (-781))))) +((-2584 ((|#2| |#2|) 47)) (-3915 ((|#2| |#2|) 139 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1054 (-574))))))) (-4018 ((|#2| |#2|) 100 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1054 (-574))))))) (-1926 ((|#2| |#2|) 101 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1054 (-574))))))) (-1696 ((|#2| (-115) |#2| (-781)) 135 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1054 (-574))))))) (-2572 (((-1189 |#2|) |#2|) 44)) (-3437 ((|#2| |#2| (-654 (-622 |#2|))) 18) ((|#2| |#2| (-654 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2584 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -3437 (|#2| |#2| |#2|)) (-15 -3437 (|#2| |#2| (-654 |#2|))) (-15 -3437 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -2572 ((-1189 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1054 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -1926 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -1696 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|)) (-566) (-13 (-372) (-310) (-10 -8 (-15 -2971 ((-1141 |#1| (-622 $)) $)) (-15 -2981 ((-1141 |#1| (-622 $)) $)) (-15 -2951 ($ (-1141 |#1| (-622 $))))))) (T -41)) +((-1696 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1054 (-574)))) (-4 *5 (-566)) (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2971 ((-1141 *5 (-622 $)) $)) (-15 -2981 ((-1141 *5 (-622 $)) $)) (-15 -2951 ($ (-1141 *5 (-622 $))))))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) (-15 -2981 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $))))))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) (-15 -2981 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $))))))))) (-1926 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) (-15 -2981 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $))))))))) (-2572 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1189 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-372) (-310) (-10 -8 (-15 -2971 ((-1141 *4 (-622 $)) $)) (-15 -2981 ((-1141 *4 (-622 $)) $)) (-15 -2951 ($ (-1141 *4 (-622 $))))))))) (-3437 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-622 *2))) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2971 ((-1141 *4 (-622 $)) $)) (-15 -2981 ((-1141 *4 (-622 $)) $)) (-15 -2951 ($ (-1141 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-3437 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2971 ((-1141 *4 (-622 $)) $)) (-15 -2981 ((-1141 *4 (-622 $)) $)) (-15 -2951 ($ (-1141 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-3437 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) (-15 -2981 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $))))))))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) (-15 -2981 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $))))))))) (-2584 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) (-15 -2981 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $)))))))))) +(-10 -7 (-15 -2584 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -3437 (|#2| |#2| |#2|)) (-15 -3437 (|#2| |#2| (-654 |#2|))) (-15 -3437 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -2572 ((-1189 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1054 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -1926 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -1696 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|)) +((-4202 (((-428 (-1189 |#3|)) (-1189 |#3|) (-654 (-48))) 23) (((-428 |#3|) |#3| (-654 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4202 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4202 ((-428 (-1189 |#3|)) (-1189 |#3|) (-654 (-48))))) (-860) (-803) (-963 (-48) |#2| |#1|)) (T -42)) +((-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *7 (-963 (-48) *6 *5)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-963 (-48) *6 *5))))) +(-10 -7 (-15 -4202 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4202 ((-428 (-1189 |#3|)) (-1189 |#3|) (-654 (-48))))) +((-4204 (((-781) |#2|) 70)) (-1909 (((-781) |#2|) 74)) (-3038 (((-654 |#2|)) 37)) (-1520 (((-781) |#2|) 73)) (-2784 (((-781) |#2|) 69)) (-3431 (((-781) |#2|) 72)) (-3093 (((-654 (-699 |#1|))) 65)) (-4321 (((-654 |#2|)) 60)) (-2691 (((-654 |#2|) |#2|) 48)) (-3468 (((-654 |#2|)) 62)) (-2292 (((-654 |#2|)) 61)) (-1407 (((-654 (-699 |#1|))) 53)) (-1913 (((-654 |#2|)) 59)) (-1683 (((-654 |#2|) |#2|) 47)) (-2359 (((-654 |#2|)) 55)) (-1702 (((-654 (-699 |#1|))) 66)) (-3294 (((-654 |#2|)) 64)) (-2391 (((-1284 |#2|) (-1284 |#2|)) 99 (|has| |#1| (-315))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1520 ((-781) |#2|)) (-15 -1909 ((-781) |#2|)) (-15 -2784 ((-781) |#2|)) (-15 -4204 ((-781) |#2|)) (-15 -3431 ((-781) |#2|)) (-15 -2359 ((-654 |#2|))) (-15 -1683 ((-654 |#2|) |#2|)) (-15 -2691 ((-654 |#2|) |#2|)) (-15 -1913 ((-654 |#2|))) (-15 -4321 ((-654 |#2|))) (-15 -2292 ((-654 |#2|))) (-15 -3468 ((-654 |#2|))) (-15 -3294 ((-654 |#2|))) (-15 -1407 ((-654 (-699 |#1|)))) (-15 -3093 ((-654 (-699 |#1|)))) (-15 -1702 ((-654 (-699 |#1|)))) (-15 -3038 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -2391 ((-1284 |#2|) (-1284 |#2|))) |%noBranch|)) (-566) (-427 |#1|)) (T -43)) +((-2391 (*1 *2 *2) (-12 (-5 *2 (-1284 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-43 *3 *4)))) (-3038 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1702 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3093 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1407 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3294 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3468 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2292 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-4321 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1913 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2691 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1683 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-2359 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3431 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-4204 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-2784 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1909 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1520 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4))))) +(-10 -7 (-15 -1520 ((-781) |#2|)) (-15 -1909 ((-781) |#2|)) (-15 -2784 ((-781) |#2|)) (-15 -4204 ((-781) |#2|)) (-15 -3431 ((-781) |#2|)) (-15 -2359 ((-654 |#2|))) (-15 -1683 ((-654 |#2|) |#2|)) (-15 -2691 ((-654 |#2|) |#2|)) (-15 -1913 ((-654 |#2|))) (-15 -4321 ((-654 |#2|))) (-15 -2292 ((-654 |#2|))) (-15 -3468 ((-654 |#2|))) (-15 -3294 ((-654 |#2|))) (-15 -1407 ((-654 (-699 |#1|)))) (-15 -3093 ((-654 (-699 |#1|)))) (-15 -1702 ((-654 (-699 |#1|)))) (-15 -3038 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -2391 ((-1284 |#2|) (-1284 |#2|))) |%noBranch|)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4098 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-1379 (((-1284 (-699 |#1|)) (-1284 $)) NIL) (((-1284 (-699 |#1|))) 24)) (-3610 (((-1284 $)) 52)) (-3250 (($) NIL T CONST)) (-4004 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-3511 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-1519 (((-699 |#1|) (-1284 $)) NIL) (((-699 |#1|)) NIL)) (-2569 ((|#1| $) NIL)) (-4438 (((-699 |#1|) $ (-1284 $)) NIL) (((-699 |#1|) $) NIL)) (-1657 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-4436 (((-1189 (-966 |#1|))) NIL (|has| |#1| (-372)))) (-3066 (($ $ (-935)) NIL)) (-2416 ((|#1| $) NIL)) (-3831 (((-1189 |#1|) $) NIL (|has| |#1| (-566)))) (-3061 ((|#1| (-1284 $)) NIL) ((|#1|) NIL)) (-2026 (((-1189 |#1|) $) NIL)) (-2766 (((-112)) 99)) (-2580 (($ (-1284 |#1|) (-1284 $)) NIL) (($ (-1284 |#1|)) NIL)) (-4322 (((-3 $ "failed") $) 14 (|has| |#1| (-566)))) (-3558 (((-935)) 53)) (-1357 (((-112)) NIL)) (-4081 (($ $ (-935)) NIL)) (-4428 (((-112)) NIL)) (-4324 (((-112)) NIL)) (-3357 (((-112)) 101)) (-3946 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-3923 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-1321 (((-699 |#1|) (-1284 $)) NIL) (((-699 |#1|)) NIL)) (-3555 ((|#1| $) NIL)) (-3659 (((-699 |#1|) $ (-1284 $)) NIL) (((-699 |#1|) $) NIL)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-2625 (((-1189 (-966 |#1|))) NIL (|has| |#1| (-372)))) (-4308 (($ $ (-935)) NIL)) (-2448 ((|#1| $) NIL)) (-2122 (((-1189 |#1|) $) NIL (|has| |#1| (-566)))) (-4052 ((|#1| (-1284 $)) NIL) ((|#1|) NIL)) (-4169 (((-1189 |#1|) $) NIL)) (-4035 (((-112)) 98)) (-1489 (((-1175) $) NIL)) (-2381 (((-112)) 106)) (-3120 (((-112)) 105)) (-3338 (((-112)) 107)) (-3940 (((-1136) $) NIL)) (-3453 (((-112)) 100)) (-2207 ((|#1| $ (-574)) 55)) (-1385 (((-1284 |#1|) $ (-1284 $)) 48) (((-699 |#1|) (-1284 $) (-1284 $)) NIL) (((-1284 |#1|) $) 28) (((-699 |#1|) (-1284 $)) NIL)) (-1844 (((-1284 |#1|) $) NIL) (($ (-1284 |#1|)) NIL)) (-3983 (((-654 (-966 |#1|)) (-1284 $)) NIL) (((-654 (-966 |#1|))) NIL)) (-3955 (($ $ $) NIL)) (-2170 (((-112)) 95)) (-2951 (((-872) $) 71) (($ (-1284 |#1|)) 22)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) 51)) (-2717 (((-654 (-1284 |#1|))) NIL (|has| |#1| (-566)))) (-4010 (($ $ $ $) NIL)) (-3233 (((-112)) 91)) (-2912 (($ (-699 |#1|) $) 18)) (-4099 (($ $ $) NIL)) (-3127 (((-112)) 97)) (-4280 (((-112)) 92)) (-4024 (((-112)) 90)) (-2141 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1158 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-427 |#1|) (-658 (-1158 |#2| |#1|)) (-10 -8 (-15 -2951 ($ (-1284 |#1|))))) (-372) (-935) (-654 (-1193)) (-1284 (-699 |#1|))) (T -44)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-372)) (-14 *6 (-1284 (-699 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-935)) (-14 *5 (-654 (-1193)))))) +(-13 (-427 |#1|) (-658 (-1158 |#2| |#1|)) (-10 -8 (-15 -2951 ($ (-1284 |#1|))))) +((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3079 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-2421 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1978 (($ $) NIL)) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2985 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460))) (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1652 (($ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-4140 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860))))) (-2786 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-4433 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460)))) (-3370 (($ $ $) 33 (|has| $ (-6 -4460)))) (-2523 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460)))) (-2186 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 35 (|has| $ (-6 -4460)))) (-3135 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-1251 (-574)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "last" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460))) (($ $ "rest" $) NIL (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "first" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "value" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-1923 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-2172 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2408 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-2171 (((-3 |#2| "failed") |#1| $) 43)) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2935 (($ $ (-781)) NIL) (($ $) 29)) (-2088 (($ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2424 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) NIL)) (-4186 (((-112) $) NIL)) (-1452 (((-574) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) (((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 20 (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 20 (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) NIL)) (-2622 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-3764 (($ (-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 38 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-4349 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3404 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2036 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-1698 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 40 (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1795 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-3483 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1580 (((-112) $) NIL)) (-1489 (((-1175) $) 49 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3334 (($ $ (-781)) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1771 (((-654 |#1|) $) 22)) (-2229 (((-112) |#1| $) NIL)) (-2375 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3285 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1602 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1393 (((-654 |#1|) $) NIL) (((-654 (-574)) $) NIL)) (-1506 (((-112) |#1| $) NIL) (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860))) (($ $ (-781)) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 27)) (-2183 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1822 (($ $ |#2|) NIL (|has| $ (-6 -4460))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3070 (((-112) $) NIL)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2315 (((-654 |#2|) $) NIL) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 19)) (-2754 (((-112) $) 18)) (-3336 (($) 14)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) NIL) (($ $ (-1251 (-574))) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "first") NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "value") NIL)) (-3615 (((-574) $ $) NIL)) (-3162 (($) 13) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-4385 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3911 (((-112) $) NIL)) (-1939 (($ $) NIL)) (-2043 (($ $) NIL (|has| $ (-6 -4460)))) (-1746 (((-781) $) NIL)) (-2386 (($ $) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2982 (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL) (($ $ $) NIL)) (-4132 (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL) (($ (-654 $)) NIL) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 31) (($ $ $) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4163 (((-654 $) $) NIL)) (-4208 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-4069 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3343 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") |#1| $) 51)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3030 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2877 (((-781) $) 25 (|has| $ (-6 -4459))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1116) (-1116)) (T -45)) NIL (-36 |#1| |#2|) -((-3257 (((-112) $) 12)) (-1786 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-417 (-574)) $) 25) (($ $ (-417 (-574))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3257 ((-112) |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) (-47 |#2| |#3|) (-1064) (-802)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3257 ((-112) |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-3648 (($ $) 64 (|has| |#1| (-566)))) (-1527 (((-112) $) 66 (|has| |#1| (-566)))) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-1401 (($ $) 72)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3257 (((-112) $) 74)) (-4327 (($ |#1| |#2|) 73)) (-1786 (($ (-1 |#1| |#1|) $) 75)) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-3584 ((|#2| $) 76)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2930 ((|#1| $ |#2|) 71)) (-3247 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-47 |#1| |#2|) (-141) (-1064) (-802)) (T -47)) -((-1377 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) (-1365 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-112)))) (-4327 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) (-1401 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) (-2930 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) (-3098 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) (-4 *2 (-372))))) -(-13 (-1064) (-111 |t#1| |t#1|) (-10 -8 (-15 -1377 (|t#1| $)) (-15 -1365 ($ $)) (-15 -3584 (|t#2| $)) (-15 -1786 ($ (-1 |t#1| |t#1|) $)) (-15 -3257 ((-112) $)) (-15 -4327 ($ |t#1| |t#2|)) (-15 -1401 ($ $)) (-15 -2930 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-372)) (-15 -3098 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-566)) (-6 (-566)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-6 (-38 (-417 (-574)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3597 (((-654 $) (-1188 $) (-1192)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-965 $)) NIL)) (-1397 (($ (-1188 $) (-1192)) NIL) (($ (-1188 $)) NIL) (($ (-965 $)) NIL)) (-3520 (((-112) $) 9)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-4064 (((-654 (-622 $)) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-2558 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-4211 (($ $) NIL)) (-3656 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-4163 (((-654 $) (-1188 $) (-1192)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-965 $)) NIL)) (-3356 (($ (-1188 $) (-1192)) NIL) (($ (-1188 $)) NIL) (($ (-965 $)) NIL)) (-1705 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2799 (($ $ $) NIL)) (-3465 (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL) (((-2 (|:| -4047 (-699 (-417 (-574)))) (|:| |vec| (-1283 (-417 (-574))))) (-699 $) (-1283 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1283 $)) NIL)) (-2881 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-2116 (($ $) NIL) (($ (-654 $)) NIL)) (-3294 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) NIL)) (-3372 (((-112) $) 11)) (-3512 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2970 (((-1140 (-574) (-622 $)) $) NIL)) (-2132 (($ $ (-574)) NIL)) (-1386 (((-1188 $) (-1188 $) (-622 $)) NIL) (((-1188 $) (-1188 $) (-654 (-622 $))) NIL) (($ $ (-622 $)) NIL) (($ $ (-654 (-622 $))) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4311 (((-1188 $) (-622 $)) NIL (|has| $ (-1064)))) (-1786 (($ (-1 $ $) (-622 $)) NIL)) (-4367 (((-3 (-622 $) "failed") $) NIL)) (-2848 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-4138 (((-654 (-622 $)) $) NIL)) (-1783 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-3571 (((-112) $ (-115)) NIL) (((-112) $ (-1192)) NIL)) (-1327 (($ $) NIL)) (-1847 (((-781) $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4277 (((-112) $ $) NIL) (((-112) $ (-1192)) NIL)) (-4200 (((-428 $) $) NIL)) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3694 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1192) (-1 $ (-654 $))) NIL) (($ $ (-1192) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3364 (((-781) $) NIL)) (-2208 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-1834 (($ $) NIL) (($ $ $) NIL)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-2981 (((-1140 (-574) (-622 $)) $) NIL)) (-2290 (($ $) NIL (|has| $ (-1064)))) (-1845 (((-388) $) NIL) (((-227) $) NIL) (((-171 (-388)) $) NIL)) (-2950 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1140 (-574) (-622 $))) NIL)) (-4019 (((-781)) NIL T CONST)) (-2079 (($ $) NIL) (($ (-654 $)) NIL)) (-4207 (((-112) (-115)) NIL)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-2142 (($) 6 T CONST)) (-2154 (($) 10 T CONST)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2985 (((-112) $ $) 13)) (-3098 (($ $ $) NIL)) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) NIL) (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL))) -(((-48) (-13 (-310) (-27) (-1053 (-574)) (-1053 (-417 (-574))) (-649 (-574)) (-1037) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2950 ($ (-1140 (-574) (-622 $)))) (-15 -2970 ((-1140 (-574) (-622 $)) $)) (-15 -2981 ((-1140 (-574) (-622 $)) $)) (-15 -2881 ($ $)) (-15 -1386 ((-1188 $) (-1188 $) (-622 $))) (-15 -1386 ((-1188 $) (-1188 $) (-654 (-622 $)))) (-15 -1386 ($ $ (-622 $))) (-15 -1386 ($ $ (-654 (-622 $))))))) (T -48)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2881 (*1 *1 *1) (-5 *1 (-48))) (-1386 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48)))) (-1386 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48)))) (-1386 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48)))) (-1386 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48))))) -(-13 (-310) (-27) (-1053 (-574)) (-1053 (-417 (-574))) (-649 (-574)) (-1037) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2950 ($ (-1140 (-574) (-622 $)))) (-15 -2970 ((-1140 (-574) (-622 $)) $)) (-15 -2981 ((-1140 (-574) (-622 $)) $)) (-15 -2881 ($ $)) (-15 -1386 ((-1188 $) (-1188 $) (-622 $))) (-15 -1386 ((-1188 $) (-1188 $) (-654 (-622 $)))) (-15 -1386 ($ $ (-622 $))) (-15 -1386 ($ $ (-654 (-622 $)))))) -((-2863 (((-112) $ $) NIL)) (-2638 (((-654 (-516)) $) 17)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 7)) (-2051 (((-1197) $) 18)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-49) (-13 (-1115) (-10 -8 (-15 -2638 ((-654 (-516)) $)) (-15 -2051 ((-1197) $))))) (T -49)) -((-2638 (*1 *2 *1) (-12 (-5 *2 (-654 (-516))) (-5 *1 (-49)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-49))))) -(-13 (-1115) (-10 -8 (-15 -2638 ((-654 (-516)) $)) (-15 -2051 ((-1197) $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 85)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-4040 (((-112) $) 30)) (-1705 (((-3 |#1| "failed") $) 33)) (-2216 ((|#1| $) 34)) (-1401 (($ $) 40)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-1377 ((|#1| $) 31)) (-4160 (($ $) 74)) (-3945 (((-1174) $) NIL)) (-1908 (((-112) $) 43)) (-3939 (((-1135) $) NIL)) (-2975 (($ (-781)) 72)) (-1618 (($ (-654 (-574))) 73)) (-3584 (((-781) $) 44)) (-2950 (((-872) $) 91) (($ (-574)) 69) (($ |#1|) 67)) (-2930 ((|#1| $ $) 28)) (-4019 (((-781)) 71 T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 45 T CONST)) (-2154 (($) 17 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 64)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) -(((-50 |#1| |#2|) (-13 (-630 |#1|) (-1053 |#1|) (-10 -8 (-15 -1377 (|#1| $)) (-15 -4160 ($ $)) (-15 -1401 ($ $)) (-15 -2930 (|#1| $ $)) (-15 -2975 ($ (-781))) (-15 -1618 ($ (-654 (-574)))) (-15 -1908 ((-112) $)) (-15 -4040 ((-112) $)) (-15 -3584 ((-781) $)) (-15 -1786 ($ (-1 |#1| |#1|) $)))) (-1064) (-654 (-1192))) (T -50)) -((-1377 (*1 *2 *1) (-12 (-4 *2 (-1064)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1192))))) (-4160 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1064)) (-14 *3 (-654 (-1192))))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1064)) (-14 *3 (-654 (-1192))))) (-2930 (*1 *2 *1 *1) (-12 (-4 *2 (-1064)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1192))))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) (-14 *4 (-654 (-1192))))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) (-14 *4 (-654 (-1192))))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) (-14 *4 (-654 (-1192))))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) (-14 *4 (-654 (-1192))))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) (-14 *4 (-654 (-1192))))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-50 *3 *4)) (-14 *4 (-654 (-1192)))))) -(-13 (-630 |#1|) (-1053 |#1|) (-10 -8 (-15 -1377 (|#1| $)) (-15 -4160 ($ $)) (-15 -1401 ($ $)) (-15 -2930 (|#1| $ $)) (-15 -2975 ($ (-781))) (-15 -1618 ($ (-654 (-574)))) (-15 -1908 ((-112) $)) (-15 -4040 ((-112) $)) (-15 -3584 ((-781) $)) (-15 -1786 ($ (-1 |#1| |#1|) $)))) -((-4040 (((-112) (-52)) 18)) (-1705 (((-3 |#1| "failed") (-52)) 20)) (-2216 ((|#1| (-52)) 21)) (-2950 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -2950 ((-52) |#1|)) (-15 -1705 ((-3 |#1| "failed") (-52))) (-15 -4040 ((-112) (-52))) (-15 -2216 (|#1| (-52)))) (-1233)) (T -51)) -((-2216 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1233)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1233)))) (-1705 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1233)))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1233))))) -(-10 -7 (-15 -2950 ((-52) |#1|)) (-15 -1705 ((-3 |#1| "failed") (-52))) (-15 -4040 ((-112) (-52))) (-15 -2216 (|#1| (-52)))) -((-2863 (((-112) $ $) NIL)) (-1704 (((-784) $) 8)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1878 (((-1119) $) 10)) (-2950 (((-872) $) 15)) (-3838 (((-112) $ $) NIL)) (-3937 (($ (-1119) (-784)) 16)) (-2985 (((-112) $ $) 12))) -(((-52) (-13 (-1115) (-10 -8 (-15 -3937 ($ (-1119) (-784))) (-15 -1878 ((-1119) $)) (-15 -1704 ((-784) $))))) (T -52)) -((-3937 (*1 *1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *3 (-784)) (-5 *1 (-52)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-52)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52))))) -(-13 (-1115) (-10 -8 (-15 -3937 ($ (-1119) (-784))) (-15 -1878 ((-1119) $)) (-15 -1704 ((-784) $)))) -((-2911 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2911 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1064) (-658 |#1|) (-862 |#1|)) (T -53)) -((-2911 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1064)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-862 *5))))) -(-10 -7 (-15 -2911 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2148 ((|#3| |#3| (-654 (-1192))) 44)) (-2047 ((|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3| (-934)) 32) ((|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2047 (|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3|)) (-15 -2047 (|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3| (-934))) (-15 -2148 (|#3| |#3| (-654 (-1192))))) (-1115) (-13 (-1064) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -54)) -((-2148 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2047 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 (-1091 *5 *6 *2))) (-5 *4 (-934)) (-4 *5 (-1115)) (-4 *6 (-13 (-1064) (-897 *5) (-624 (-903 *5)))) (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2047 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-1091 *4 *5 *2))) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -2047 (|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3|)) (-15 -2047 (|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3| (-934))) (-15 -2148 (|#3| |#3| (-654 (-1192))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 14)) (-1705 (((-3 (-781) "failed") $) 34)) (-2216 (((-781) $) NIL)) (-3372 (((-112) $) 16)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) 18)) (-2950 (((-872) $) 23) (($ (-781)) 29)) (-3838 (((-112) $ $) NIL)) (-3085 (($) 11 T CONST)) (-2985 (((-112) $ $) 20))) -(((-55) (-13 (-1115) (-1053 (-781)) (-10 -8 (-15 -3085 ($) -1715) (-15 -3520 ((-112) $)) (-15 -3372 ((-112) $))))) (T -55)) -((-3085 (*1 *1) (-5 *1 (-55))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3372 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1115) (-1053 (-781)) (-10 -8 (-15 -3085 ($) -1715) (-15 -3520 ((-112) $)) (-15 -3372 ((-112) $)))) -((-2818 (((-112) $ (-781)) 27)) (-2652 (($ $ (-574) |#3|) 66)) (-1861 (($ $ (-574) |#4|) 70)) (-1860 ((|#3| $ (-574)) 79)) (-1873 (((-654 |#2|) $) 47)) (-2224 (((-112) $ (-781)) 31)) (-2231 (((-112) |#2| $) 74)) (-2461 (($ (-1 |#2| |#2|) $) 55)) (-1786 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-3625 (((-112) $ (-781)) 29)) (-4276 (($ $ |#2|) 52)) (-2000 (((-112) (-1 (-112) |#2|) $) 21)) (-2208 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) 35)) (-3948 (((-781) (-1 (-112) |#2|) $) 41) (((-781) |#2| $) 76)) (-3156 (($ $) 51)) (-1482 ((|#4| $ (-574)) 82)) (-2950 (((-872) $) 88)) (-2980 (((-112) (-1 (-112) |#2|) $) 20)) (-2985 (((-112) $ $) 73)) (-2876 (((-781) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1786 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2461 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1861 (|#1| |#1| (-574) |#4|)) (-15 -2652 (|#1| |#1| (-574) |#3|)) (-15 -1873 ((-654 |#2|) |#1|)) (-15 -1482 (|#4| |#1| (-574))) (-15 -1860 (|#3| |#1| (-574))) (-15 -2208 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574) (-574))) (-15 -4276 (|#1| |#1| |#2|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2231 ((-112) |#2| |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2000 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -2818 ((-112) |#1| (-781))) (-15 -2224 ((-112) |#1| (-781))) (-15 -3625 ((-112) |#1| (-781))) (-15 -3156 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1233) (-382 |#2|) (-382 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1786 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2461 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1861 (|#1| |#1| (-574) |#4|)) (-15 -2652 (|#1| |#1| (-574) |#3|)) (-15 -1873 ((-654 |#2|) |#1|)) (-15 -1482 (|#4| |#1| (-574))) (-15 -1860 (|#3| |#1| (-574))) (-15 -2208 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574) (-574))) (-15 -4276 (|#1| |#1| |#2|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2231 ((-112) |#2| |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2000 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -2818 ((-112) |#1| (-781))) (-15 -2224 ((-112) |#1| (-781))) (-15 -3625 ((-112) |#1| (-781))) (-15 -3156 (|#1| |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) (-574) |#1|) 45)) (-2652 (($ $ (-574) |#2|) 43)) (-1861 (($ $ (-574) |#3|) 42)) (-3831 (($) 7 T CONST)) (-1860 ((|#2| $ (-574)) 47)) (-2472 ((|#1| $ (-574) (-574) |#1|) 44)) (-2399 ((|#1| $ (-574) (-574)) 49)) (-1873 (((-654 |#1|) $) 31)) (-2198 (((-781) $) 52)) (-3763 (($ (-781) (-781) |#1|) 58)) (-2207 (((-781) $) 51)) (-2224 (((-112) $ (-781)) 9)) (-3312 (((-574) $) 56)) (-4378 (((-574) $) 54)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2391 (((-574) $) 55)) (-3280 (((-574) $) 53)) (-2461 (($ (-1 |#1| |#1|) $) 35)) (-1786 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-4276 (($ $ |#1|) 57)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1482 ((|#3| $ (-574)) 46)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-57 |#1| |#2| |#3|) (-141) (-1233) (-382 |t#1|) (-382 |t#1|)) (T -57)) -((-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3763 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1233)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-4276 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2208 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1233)))) (-2399 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1233)))) (-2208 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-1860 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1233)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-1482 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1233)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 *3)))) (-3134 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-2472 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-2652 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-382 *4)) (-4 *5 (-382 *4)))) (-1861 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1233)) (-4 *5 (-382 *4)) (-4 *3 (-382 *4)))) (-2461 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1786 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1786 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) -(-13 (-499 |t#1|) (-10 -8 (-6 -4459) (-6 -4458) (-15 -3763 ($ (-781) (-781) |t#1|)) (-15 -4276 ($ $ |t#1|)) (-15 -3312 ((-574) $)) (-15 -2391 ((-574) $)) (-15 -4378 ((-574) $)) (-15 -3280 ((-574) $)) (-15 -2198 ((-781) $)) (-15 -2207 ((-781) $)) (-15 -2208 (|t#1| $ (-574) (-574))) (-15 -2399 (|t#1| $ (-574) (-574))) (-15 -2208 (|t#1| $ (-574) (-574) |t#1|)) (-15 -1860 (|t#2| $ (-574))) (-15 -1482 (|t#3| $ (-574))) (-15 -1873 ((-654 |t#1|) $)) (-15 -3134 (|t#1| $ (-574) (-574) |t#1|)) (-15 -2472 (|t#1| $ (-574) (-574) |t#1|)) (-15 -2652 ($ $ (-574) |t#2|)) (-15 -1861 ($ $ (-574) |t#3|)) (-15 -1786 ($ (-1 |t#1| |t#1|) $)) (-15 -2461 ($ (-1 |t#1| |t#1|) $)) (-15 -1786 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1786 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-4214 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2881 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1786 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -4214 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1786 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1233) (-1233)) (T -58)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-58 *5 *2)))) (-4214 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1233)) (-4 *5 (-1233)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -4214 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1786 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-1488 (($ (-654 |#1|)) 11) (($ (-781) |#1|) 14)) (-3763 (($ (-781) |#1|) 13)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1603 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4276 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 10)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1488 ($ (-654 |#1|))) (-15 -1488 ($ (-781) |#1|)))) (-1233)) (T -59)) -((-1488 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-59 *3)))) (-1488 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1233))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1488 ($ (-654 |#1|))) (-15 -1488 ($ (-781) |#1|)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2652 (($ $ (-574) (-59 |#1|)) NIL)) (-1861 (($ $ (-574) (-59 |#1|)) NIL)) (-3831 (($) NIL T CONST)) (-1860 (((-59 |#1|) $ (-574)) NIL)) (-2472 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2399 ((|#1| $ (-574) (-574)) NIL)) (-1873 (((-654 |#1|) $) NIL)) (-2198 (((-781) $) NIL)) (-3763 (($ (-781) (-781) |#1|) NIL)) (-2207 (((-781) $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-3312 (((-574) $) NIL)) (-4378 (((-574) $) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2391 (((-574) $) NIL)) (-3280 (((-574) $) NIL)) (-2461 (($ (-1 |#1| |#1|) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4276 (($ $ |#1|) NIL)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-1482 (((-59 |#1|) $ (-574)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4459))) (-1233)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4459))) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 74) (((-3 $ "failed") (-1283 (-324 (-574)))) 63) (((-3 $ "failed") (-1283 (-965 (-388)))) 94) (((-3 $ "failed") (-1283 (-965 (-574)))) 84) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 52) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 39)) (-2216 (($ (-1283 (-324 (-388)))) 70) (($ (-1283 (-324 (-574)))) 59) (($ (-1283 (-965 (-388)))) 90) (($ (-1283 (-965 (-574)))) 80) (($ (-1283 (-417 (-965 (-388))))) 48) (($ (-1283 (-417 (-965 (-574))))) 32)) (-3741 (((-1288) $) 124)) (-2950 (((-872) $) 118) (($ (-654 (-338))) 103) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 101) (($ (-1283 (-348 (-2962 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2962) (-709)))) 31))) -(((-61 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2962) (-709))))))) (-1192)) (T -61)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2962) (-709)))) (-5 *1 (-61 *3)) (-14 *3 (-1192))))) -(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2962) (-709))))))) -((-3741 (((-1288) $) 54) (((-1288)) 55)) (-2950 (((-872) $) 51))) -(((-62 |#1|) (-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) (-1192)) (T -62)) -((-3741 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-62 *3)) (-14 *3 (-1192))))) -(-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 150) (((-3 $ "failed") (-1283 (-324 (-574)))) 140) (((-3 $ "failed") (-1283 (-965 (-388)))) 170) (((-3 $ "failed") (-1283 (-965 (-574)))) 160) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 129) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 117)) (-2216 (($ (-1283 (-324 (-388)))) 146) (($ (-1283 (-324 (-574)))) 136) (($ (-1283 (-965 (-388)))) 166) (($ (-1283 (-965 (-574)))) 156) (($ (-1283 (-417 (-965 (-388))))) 125) (($ (-1283 (-417 (-965 (-574))))) 110)) (-3741 (((-1288) $) 103)) (-2950 (((-872) $) 97) (($ (-654 (-338))) 30) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 33) (($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709)))) 95))) -(((-63 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709))))))) (-1192)) (T -63)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709)))) (-5 *1 (-63 *3)) (-14 *3 (-1192))))) -(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709))))))) -((-1705 (((-3 $ "failed") (-324 (-388))) 41) (((-3 $ "failed") (-324 (-574))) 46) (((-3 $ "failed") (-965 (-388))) 50) (((-3 $ "failed") (-965 (-574))) 54) (((-3 $ "failed") (-417 (-965 (-388)))) 36) (((-3 $ "failed") (-417 (-965 (-574)))) 29)) (-2216 (($ (-324 (-388))) 39) (($ (-324 (-574))) 44) (($ (-965 (-388))) 48) (($ (-965 (-574))) 52) (($ (-417 (-965 (-388)))) 34) (($ (-417 (-965 (-574)))) 26)) (-3741 (((-1288) $) 76)) (-2950 (((-872) $) 69) (($ (-654 (-338))) 61) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 64) (($ (-348 (-2962 (QUOTE X)) (-2962) (-709))) 25))) -(((-64 |#1|) (-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962 (QUOTE X)) (-2962) (-709)))))) (-1192)) (T -64)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-348 (-2962 (QUOTE X)) (-2962) (-709))) (-5 *1 (-64 *3)) (-14 *3 (-1192))))) -(-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962 (QUOTE X)) (-2962) (-709)))))) -((-1705 (((-3 $ "failed") (-699 (-324 (-388)))) 111) (((-3 $ "failed") (-699 (-324 (-574)))) 99) (((-3 $ "failed") (-699 (-965 (-388)))) 133) (((-3 $ "failed") (-699 (-965 (-574)))) 122) (((-3 $ "failed") (-699 (-417 (-965 (-388))))) 87) (((-3 $ "failed") (-699 (-417 (-965 (-574))))) 73)) (-2216 (($ (-699 (-324 (-388)))) 107) (($ (-699 (-324 (-574)))) 95) (($ (-699 (-965 (-388)))) 129) (($ (-699 (-965 (-574)))) 118) (($ (-699 (-417 (-965 (-388))))) 83) (($ (-699 (-417 (-965 (-574))))) 66)) (-3741 (((-1288) $) 141)) (-2950 (((-872) $) 135) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 32) (($ (-699 (-348 (-2962) (-2962 (QUOTE X) (QUOTE HESS)) (-709)))) 56))) -(((-65 |#1|) (-13 (-393) (-626 (-699 (-348 (-2962) (-2962 (QUOTE X) (QUOTE HESS)) (-709))))) (-1192)) (T -65)) -NIL -(-13 (-393) (-626 (-699 (-348 (-2962) (-2962 (QUOTE X) (QUOTE HESS)) (-709))))) -((-1705 (((-3 $ "failed") (-324 (-388))) 60) (((-3 $ "failed") (-324 (-574))) 65) (((-3 $ "failed") (-965 (-388))) 69) (((-3 $ "failed") (-965 (-574))) 73) (((-3 $ "failed") (-417 (-965 (-388)))) 55) (((-3 $ "failed") (-417 (-965 (-574)))) 48)) (-2216 (($ (-324 (-388))) 58) (($ (-324 (-574))) 63) (($ (-965 (-388))) 67) (($ (-965 (-574))) 71) (($ (-417 (-965 (-388)))) 53) (($ (-417 (-965 (-574)))) 45)) (-3741 (((-1288) $) 82)) (-2950 (((-872) $) 76) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 32) (($ (-348 (-2962) (-2962 (QUOTE XC)) (-709))) 40))) -(((-66 |#1|) (-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE XC)) (-709)))))) (-1192)) (T -66)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-348 (-2962) (-2962 (QUOTE XC)) (-709))) (-5 *1 (-66 *3)) (-14 *3 (-1192))))) -(-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE XC)) (-709)))))) -((-3741 (((-1288) $) 65)) (-2950 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 50) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 55))) -(((-67 |#1|) (-392) (-1192)) (T -67)) +((-1555 (((-112) $) 12)) (-1785 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-417 (-574)) $) 25) (($ $ (-417 (-574))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -1555 ((-112) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) (-47 |#2| |#3|) (-1065) (-802)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -1555 ((-112) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2884 (($ $) 64 (|has| |#1| (-566)))) (-1981 (((-112) $) 66 (|has| |#1| (-566)))) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1402 (($ $) 72)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1555 (((-112) $) 74)) (-4328 (($ |#1| |#2|) 73)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-3580 ((|#2| $) 76)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2706 ((|#1| $ |#2|) 71)) (-3424 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-47 |#1| |#2|) (-141) (-1065) (-802)) (T -47)) +((-1378 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))) (-1366 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)))) (-1555 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-112)))) (-4328 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))) (-1402 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))) (-2706 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *2 (-372))))) +(-13 (-1065) (-111 |t#1| |t#1|) (-10 -8 (-15 -1378 (|t#1| $)) (-15 -1366 ($ $)) (-15 -3580 (|t#2| $)) (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (-15 -1555 ((-112) $)) (-15 -4328 ($ |t#1| |t#2|)) (-15 -1402 ($ $)) (-15 -2706 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-372)) (-15 -3103 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-566)) (-6 (-566)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-6 (-38 (-417 (-574)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-3442 (((-654 $) (-1189 $) (-1193)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-966 $)) NIL)) (-4016 (($ (-1189 $) (-1193)) NIL) (($ (-1189 $)) NIL) (($ (-966 $)) NIL)) (-1431 (((-112) $) 9)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-4068 (((-654 (-622 $)) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2559 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-4212 (($ $) NIL)) (-3245 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-2546 (((-654 $) (-1189 $) (-1193)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-966 $)) NIL)) (-3814 (($ (-1189 $) (-1193)) NIL) (($ (-1189 $)) NIL) (($ (-966 $)) NIL)) (-1704 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2214 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2800 (($ $ $) NIL)) (-1831 (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL) (((-2 (|:| -3082 (-699 (-417 (-574)))) (|:| |vec| (-1284 (-417 (-574))))) (-699 $) (-1284 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1284 $)) NIL)) (-2882 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-1391 (($ $) NIL) (($ (-654 $)) NIL)) (-1649 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) NIL)) (-4226 (((-112) $) 11)) (-1823 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2971 (((-1141 (-574) (-622 $)) $) NIL)) (-3527 (($ $ (-574)) NIL)) (-1681 (((-1189 $) (-1189 $) (-622 $)) NIL) (((-1189 $) (-1189 $) (-654 (-622 $))) NIL) (($ $ (-622 $)) NIL) (($ $ (-654 (-622 $))) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3746 (((-1189 $) (-622 $)) NIL (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) NIL)) (-3452 (((-3 (-622 $) "failed") $) NIL)) (-2849 (($ (-654 $)) NIL) (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-4139 (((-654 (-622 $)) $) NIL)) (-1782 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-2154 (((-112) $ (-115)) NIL) (((-112) $ (-1193)) NIL)) (-1328 (($ $) NIL)) (-1847 (((-781) $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3595 (((-112) $ $) NIL) (((-112) $ (-1193)) NIL)) (-4202 (((-428 $) $) NIL)) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2120 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1193) (-1 $ (-654 $))) NIL) (($ $ (-1193) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2098 (((-781) $) NIL)) (-2207 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3078 (($ $) NIL) (($ $ $) NIL)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-2981 (((-1141 (-574) (-622 $)) $) NIL)) (-4379 (($ $) NIL (|has| $ (-1065)))) (-1844 (((-388) $) NIL) (((-227) $) NIL) (((-171 (-388)) $) NIL)) (-2951 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1141 (-574) (-622 $))) NIL)) (-2898 (((-781)) NIL T CONST)) (-2078 (($ $) NIL) (($ (-654 $)) NIL)) (-2420 (((-112) (-115)) NIL)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-2141 (($) 6 T CONST)) (-2153 (($) 10 T CONST)) (-3584 (($ $) NIL) (($ $ (-781)) NIL)) (-2986 (((-112) $ $) 13)) (-3103 (($ $ $) NIL)) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) NIL) (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL))) +(((-48) (-13 (-310) (-27) (-1054 (-574)) (-1054 (-417 (-574))) (-649 (-574)) (-1038) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2951 ($ (-1141 (-574) (-622 $)))) (-15 -2971 ((-1141 (-574) (-622 $)) $)) (-15 -2981 ((-1141 (-574) (-622 $)) $)) (-15 -2882 ($ $)) (-15 -1681 ((-1189 $) (-1189 $) (-622 $))) (-15 -1681 ((-1189 $) (-1189 $) (-654 (-622 $)))) (-15 -1681 ($ $ (-622 $))) (-15 -1681 ($ $ (-654 (-622 $))))))) (T -48)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2882 (*1 *1 *1) (-5 *1 (-48))) (-1681 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48)))) (-1681 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48)))) (-1681 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48)))) (-1681 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48))))) +(-13 (-310) (-27) (-1054 (-574)) (-1054 (-417 (-574))) (-649 (-574)) (-1038) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2951 ($ (-1141 (-574) (-622 $)))) (-15 -2971 ((-1141 (-574) (-622 $)) $)) (-15 -2981 ((-1141 (-574) (-622 $)) $)) (-15 -2882 ($ $)) (-15 -1681 ((-1189 $) (-1189 $) (-622 $))) (-15 -1681 ((-1189 $) (-1189 $) (-654 (-622 $)))) (-15 -1681 ($ $ (-622 $))) (-15 -1681 ($ $ (-654 (-622 $)))))) +((-2864 (((-112) $ $) NIL)) (-2639 (((-654 (-516)) $) 17)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 7)) (-2050 (((-1198) $) 18)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-49) (-13 (-1116) (-10 -8 (-15 -2639 ((-654 (-516)) $)) (-15 -2050 ((-1198) $))))) (T -49)) +((-2639 (*1 *2 *1) (-12 (-5 *2 (-654 (-516))) (-5 *1 (-49)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-49))))) +(-13 (-1116) (-10 -8 (-15 -2639 ((-654 (-516)) $)) (-15 -2050 ((-1198) $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 85)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-3566 (((-112) $) 30)) (-1704 (((-3 |#1| "failed") $) 33)) (-2214 ((|#1| $) 34)) (-1402 (($ $) 40)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1378 ((|#1| $) 31)) (-3582 (($ $) 74)) (-1489 (((-1175) $) NIL)) (-3290 (((-112) $) 43)) (-3940 (((-1136) $) NIL)) (-2975 (($ (-781)) 72)) (-1617 (($ (-654 (-574))) 73)) (-3580 (((-781) $) 44)) (-2951 (((-872) $) 91) (($ (-574)) 69) (($ |#1|) 67)) (-2706 ((|#1| $ $) 28)) (-2898 (((-781)) 71 T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 45 T CONST)) (-2153 (($) 17 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 64)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) +(((-50 |#1| |#2|) (-13 (-630 |#1|) (-1054 |#1|) (-10 -8 (-15 -1378 (|#1| $)) (-15 -3582 ($ $)) (-15 -1402 ($ $)) (-15 -2706 (|#1| $ $)) (-15 -2975 ($ (-781))) (-15 -1617 ($ (-654 (-574)))) (-15 -3290 ((-112) $)) (-15 -3566 ((-112) $)) (-15 -3580 ((-781) $)) (-15 -1785 ($ (-1 |#1| |#1|) $)))) (-1065) (-654 (-1193))) (T -50)) +((-1378 (*1 *2 *1) (-12 (-4 *2 (-1065)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1193))))) (-3582 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1065)) (-14 *3 (-654 (-1193))))) (-1402 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1065)) (-14 *3 (-654 (-1193))))) (-2706 (*1 *2 *1 *1) (-12 (-4 *2 (-1065)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1193))))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) (-14 *4 (-654 (-1193))))) (-1617 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) (-14 *4 (-654 (-1193))))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) (-14 *4 (-654 (-1193))))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) (-14 *4 (-654 (-1193))))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) (-14 *4 (-654 (-1193))))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-50 *3 *4)) (-14 *4 (-654 (-1193)))))) +(-13 (-630 |#1|) (-1054 |#1|) (-10 -8 (-15 -1378 (|#1| $)) (-15 -3582 ($ $)) (-15 -1402 ($ $)) (-15 -2706 (|#1| $ $)) (-15 -2975 ($ (-781))) (-15 -1617 ($ (-654 (-574)))) (-15 -3290 ((-112) $)) (-15 -3566 ((-112) $)) (-15 -3580 ((-781) $)) (-15 -1785 ($ (-1 |#1| |#1|) $)))) +((-3566 (((-112) (-52)) 18)) (-1704 (((-3 |#1| "failed") (-52)) 20)) (-2214 ((|#1| (-52)) 21)) (-2951 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -2951 ((-52) |#1|)) (-15 -1704 ((-3 |#1| "failed") (-52))) (-15 -3566 ((-112) (-52))) (-15 -2214 (|#1| (-52)))) (-1234)) (T -51)) +((-2214 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1234)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1234)))) (-1704 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1234)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1234))))) +(-10 -7 (-15 -2951 ((-52) |#1|)) (-15 -1704 ((-3 |#1| "failed") (-52))) (-15 -3566 ((-112) (-52))) (-15 -2214 (|#1| (-52)))) +((-2864 (((-112) $ $) NIL)) (-1703 (((-784) $) 8)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1877 (((-1120) $) 10)) (-2951 (((-872) $) 15)) (-4069 (((-112) $ $) NIL)) (-3938 (($ (-1120) (-784)) 16)) (-2986 (((-112) $ $) 12))) +(((-52) (-13 (-1116) (-10 -8 (-15 -3938 ($ (-1120) (-784))) (-15 -1877 ((-1120) $)) (-15 -1703 ((-784) $))))) (T -52)) +((-3938 (*1 *1 *2 *3) (-12 (-5 *2 (-1120)) (-5 *3 (-784)) (-5 *1 (-52)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-52)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52))))) +(-13 (-1116) (-10 -8 (-15 -3938 ($ (-1120) (-784))) (-15 -1877 ((-1120) $)) (-15 -1703 ((-784) $)))) +((-2912 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2912 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1065) (-658 |#1|) (-862 |#1|)) (T -53)) +((-2912 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1065)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-862 *5))))) +(-10 -7 (-15 -2912 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-3136 ((|#3| |#3| (-654 (-1193))) 44)) (-2615 ((|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3| (-935)) 32) ((|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2615 (|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3|)) (-15 -2615 (|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3| (-935))) (-15 -3136 (|#3| |#3| (-654 (-1193))))) (-1116) (-13 (-1065) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -54)) +((-3136 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2615 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 (-1092 *5 *6 *2))) (-5 *4 (-935)) (-4 *5 (-1116)) (-4 *6 (-13 (-1065) (-897 *5) (-624 (-903 *5)))) (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2615 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-1092 *4 *5 *2))) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -2615 (|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3|)) (-15 -2615 (|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3| (-935))) (-15 -3136 (|#3| |#3| (-654 (-1193))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 14)) (-1704 (((-3 (-781) "failed") $) 34)) (-2214 (((-781) $) NIL)) (-4226 (((-112) $) 16)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) 18)) (-2951 (((-872) $) 23) (($ (-781)) 29)) (-4069 (((-112) $ $) NIL)) (-1530 (($) 11 T CONST)) (-2986 (((-112) $ $) 20))) +(((-55) (-13 (-1116) (-1054 (-781)) (-10 -8 (-15 -1530 ($) -1714) (-15 -1431 ((-112) $)) (-15 -4226 ((-112) $))))) (T -55)) +((-1530 (*1 *1) (-5 *1 (-55))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-4226 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1116) (-1054 (-781)) (-10 -8 (-15 -1530 ($) -1714) (-15 -1431 ((-112) $)) (-15 -4226 ((-112) $)))) +((-3146 (((-112) $ (-781)) 27)) (-1966 (($ $ (-574) |#3|) 66)) (-3654 (($ $ (-574) |#4|) 70)) (-1959 ((|#3| $ (-574)) 79)) (-1871 (((-654 |#2|) $) 47)) (-2189 (((-112) $ (-781)) 31)) (-4134 (((-112) |#2| $) 74)) (-2462 (($ (-1 |#2| |#2|) $) 55)) (-1785 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-1653 (((-112) $ (-781)) 29)) (-1822 (($ $ |#2|) 52)) (-3449 (((-112) (-1 (-112) |#2|) $) 21)) (-2207 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) 35)) (-3949 (((-781) (-1 (-112) |#2|) $) 41) (((-781) |#2| $) 76)) (-3157 (($ $) 51)) (-1425 ((|#4| $ (-574)) 82)) (-2951 (((-872) $) 88)) (-2020 (((-112) (-1 (-112) |#2|) $) 20)) (-2986 (((-112) $ $) 73)) (-2877 (((-781) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3654 (|#1| |#1| (-574) |#4|)) (-15 -1966 (|#1| |#1| (-574) |#3|)) (-15 -1871 ((-654 |#2|) |#1|)) (-15 -1425 (|#4| |#1| (-574))) (-15 -1959 (|#3| |#1| (-574))) (-15 -2207 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574))) (-15 -1822 (|#1| |#1| |#2|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -4134 ((-112) |#2| |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3449 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -3146 ((-112) |#1| (-781))) (-15 -2189 ((-112) |#1| (-781))) (-15 -1653 ((-112) |#1| (-781))) (-15 -3157 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1234) (-382 |#2|) (-382 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3654 (|#1| |#1| (-574) |#4|)) (-15 -1966 (|#1| |#1| (-574) |#3|)) (-15 -1871 ((-654 |#2|) |#1|)) (-15 -1425 (|#4| |#1| (-574))) (-15 -1959 (|#3| |#1| (-574))) (-15 -2207 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574))) (-15 -1822 (|#1| |#1| |#2|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -4134 ((-112) |#2| |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3449 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -3146 ((-112) |#1| (-781))) (-15 -2189 ((-112) |#1| (-781))) (-15 -1653 ((-112) |#1| (-781))) (-15 -3157 (|#1| |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) (-574) |#1|) 45)) (-1966 (($ $ (-574) |#2|) 43)) (-3654 (($ $ (-574) |#3|) 42)) (-3250 (($) 7 T CONST)) (-1959 ((|#2| $ (-574)) 47)) (-2473 ((|#1| $ (-574) (-574) |#1|) 44)) (-2400 ((|#1| $ (-574) (-574)) 49)) (-1871 (((-654 |#1|) $) 31)) (-2197 (((-781) $) 52)) (-3764 (($ (-781) (-781) |#1|) 58)) (-2206 (((-781) $) 51)) (-2189 (((-112) $ (-781)) 9)) (-2219 (((-574) $) 56)) (-2126 (((-574) $) 54)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3352 (((-574) $) 55)) (-1695 (((-574) $) 53)) (-2462 (($ (-1 |#1| |#1|) $) 35)) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-1822 (($ $ |#1|) 57)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1425 ((|#3| $ (-574)) 46)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-57 |#1| |#2| |#3|) (-141) (-1234) (-382 |t#1|) (-382 |t#1|)) (T -57)) +((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3764 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1234)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1822 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2207 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1234)))) (-2400 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1234)))) (-2207 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-1959 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1234)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-1425 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1234)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 *3)))) (-3135 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-2473 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-1966 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-382 *4)) (-4 *5 (-382 *4)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1234)) (-4 *5 (-382 *4)) (-4 *3 (-382 *4)))) (-2462 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1785 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) +(-13 (-499 |t#1|) (-10 -8 (-6 -4460) (-6 -4459) (-15 -3764 ($ (-781) (-781) |t#1|)) (-15 -1822 ($ $ |t#1|)) (-15 -2219 ((-574) $)) (-15 -3352 ((-574) $)) (-15 -2126 ((-574) $)) (-15 -1695 ((-574) $)) (-15 -2197 ((-781) $)) (-15 -2206 ((-781) $)) (-15 -2207 (|t#1| $ (-574) (-574))) (-15 -2400 (|t#1| $ (-574) (-574))) (-15 -2207 (|t#1| $ (-574) (-574) |t#1|)) (-15 -1959 (|t#2| $ (-574))) (-15 -1425 (|t#3| $ (-574))) (-15 -1871 ((-654 |t#1|) $)) (-15 -3135 (|t#1| $ (-574) (-574) |t#1|)) (-15 -2473 (|t#1| $ (-574) (-574) |t#1|)) (-15 -1966 ($ $ (-574) |t#2|)) (-15 -3654 ($ $ (-574) |t#3|)) (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (-15 -2462 ($ (-1 |t#1| |t#1|) $)) (-15 -1785 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1785 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-3465 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2882 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1785 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -3465 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1785 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1234) (-1234)) (T -58)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-58 *5 *2)))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1234)) (-4 *5 (-1234)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -3465 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1785 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2928 (($ (-654 |#1|)) 11) (($ (-781) |#1|) 14)) (-3764 (($ (-781) |#1|) 13)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1822 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 10)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2928 ($ (-654 |#1|))) (-15 -2928 ($ (-781) |#1|)))) (-1234)) (T -59)) +((-2928 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-59 *3)))) (-2928 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1234))))) +(-13 (-19 |#1|) (-10 -8 (-15 -2928 ($ (-654 |#1|))) (-15 -2928 ($ (-781) |#1|)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) NIL)) (-1966 (($ $ (-574) (-59 |#1|)) NIL)) (-3654 (($ $ (-574) (-59 |#1|)) NIL)) (-3250 (($) NIL T CONST)) (-1959 (((-59 |#1|) $ (-574)) NIL)) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2400 ((|#1| $ (-574) (-574)) NIL)) (-1871 (((-654 |#1|) $) NIL)) (-2197 (((-781) $) NIL)) (-3764 (($ (-781) (-781) |#1|) NIL)) (-2206 (((-781) $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-2219 (((-574) $) NIL)) (-2126 (((-574) $) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3352 (((-574) $) NIL)) (-1695 (((-574) $) NIL)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1822 (($ $ |#1|) NIL)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-1425 (((-59 |#1|) $ (-574)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4460))) (-1234)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4460))) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 74) (((-3 $ "failed") (-1284 (-324 (-574)))) 63) (((-3 $ "failed") (-1284 (-966 (-388)))) 94) (((-3 $ "failed") (-1284 (-966 (-574)))) 84) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 52) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 39)) (-2214 (($ (-1284 (-324 (-388)))) 70) (($ (-1284 (-324 (-574)))) 59) (($ (-1284 (-966 (-388)))) 90) (($ (-1284 (-966 (-574)))) 80) (($ (-1284 (-417 (-966 (-388))))) 48) (($ (-1284 (-417 (-966 (-574))))) 32)) (-3742 (((-1289) $) 124)) (-2951 (((-872) $) 118) (($ (-654 (-338))) 103) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 101) (($ (-1284 (-348 (-2963 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2963) (-709)))) 31))) +(((-61 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2963) (-709))))))) (-1193)) (T -61)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2963) (-709)))) (-5 *1 (-61 *3)) (-14 *3 (-1193))))) +(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2963) (-709))))))) +((-3742 (((-1289) $) 54) (((-1289)) 55)) (-2951 (((-872) $) 51))) +(((-62 |#1|) (-13 (-405) (-10 -7 (-15 -3742 ((-1289))))) (-1193)) (T -62)) +((-3742 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-62 *3)) (-14 *3 (-1193))))) +(-13 (-405) (-10 -7 (-15 -3742 ((-1289))))) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 150) (((-3 $ "failed") (-1284 (-324 (-574)))) 140) (((-3 $ "failed") (-1284 (-966 (-388)))) 170) (((-3 $ "failed") (-1284 (-966 (-574)))) 160) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 129) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 117)) (-2214 (($ (-1284 (-324 (-388)))) 146) (($ (-1284 (-324 (-574)))) 136) (($ (-1284 (-966 (-388)))) 166) (($ (-1284 (-966 (-574)))) 156) (($ (-1284 (-417 (-966 (-388))))) 125) (($ (-1284 (-417 (-966 (-574))))) 110)) (-3742 (((-1289) $) 103)) (-2951 (((-872) $) 97) (($ (-654 (-338))) 30) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 33) (($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709)))) 95))) +(((-63 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709))))))) (-1193)) (T -63)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709)))) (-5 *1 (-63 *3)) (-14 *3 (-1193))))) +(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709))))))) +((-1704 (((-3 $ "failed") (-324 (-388))) 41) (((-3 $ "failed") (-324 (-574))) 46) (((-3 $ "failed") (-966 (-388))) 50) (((-3 $ "failed") (-966 (-574))) 54) (((-3 $ "failed") (-417 (-966 (-388)))) 36) (((-3 $ "failed") (-417 (-966 (-574)))) 29)) (-2214 (($ (-324 (-388))) 39) (($ (-324 (-574))) 44) (($ (-966 (-388))) 48) (($ (-966 (-574))) 52) (($ (-417 (-966 (-388)))) 34) (($ (-417 (-966 (-574)))) 26)) (-3742 (((-1289) $) 76)) (-2951 (((-872) $) 69) (($ (-654 (-338))) 61) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 64) (($ (-348 (-2963 (QUOTE X)) (-2963) (-709))) 25))) +(((-64 |#1|) (-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963 (QUOTE X)) (-2963) (-709)))))) (-1193)) (T -64)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-348 (-2963 (QUOTE X)) (-2963) (-709))) (-5 *1 (-64 *3)) (-14 *3 (-1193))))) +(-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963 (QUOTE X)) (-2963) (-709)))))) +((-1704 (((-3 $ "failed") (-699 (-324 (-388)))) 111) (((-3 $ "failed") (-699 (-324 (-574)))) 99) (((-3 $ "failed") (-699 (-966 (-388)))) 133) (((-3 $ "failed") (-699 (-966 (-574)))) 122) (((-3 $ "failed") (-699 (-417 (-966 (-388))))) 87) (((-3 $ "failed") (-699 (-417 (-966 (-574))))) 73)) (-2214 (($ (-699 (-324 (-388)))) 107) (($ (-699 (-324 (-574)))) 95) (($ (-699 (-966 (-388)))) 129) (($ (-699 (-966 (-574)))) 118) (($ (-699 (-417 (-966 (-388))))) 83) (($ (-699 (-417 (-966 (-574))))) 66)) (-3742 (((-1289) $) 141)) (-2951 (((-872) $) 135) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 32) (($ (-699 (-348 (-2963) (-2963 (QUOTE X) (QUOTE HESS)) (-709)))) 56))) +(((-65 |#1|) (-13 (-393) (-626 (-699 (-348 (-2963) (-2963 (QUOTE X) (QUOTE HESS)) (-709))))) (-1193)) (T -65)) +NIL +(-13 (-393) (-626 (-699 (-348 (-2963) (-2963 (QUOTE X) (QUOTE HESS)) (-709))))) +((-1704 (((-3 $ "failed") (-324 (-388))) 60) (((-3 $ "failed") (-324 (-574))) 65) (((-3 $ "failed") (-966 (-388))) 69) (((-3 $ "failed") (-966 (-574))) 73) (((-3 $ "failed") (-417 (-966 (-388)))) 55) (((-3 $ "failed") (-417 (-966 (-574)))) 48)) (-2214 (($ (-324 (-388))) 58) (($ (-324 (-574))) 63) (($ (-966 (-388))) 67) (($ (-966 (-574))) 71) (($ (-417 (-966 (-388)))) 53) (($ (-417 (-966 (-574)))) 45)) (-3742 (((-1289) $) 82)) (-2951 (((-872) $) 76) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 32) (($ (-348 (-2963) (-2963 (QUOTE XC)) (-709))) 40))) +(((-66 |#1|) (-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE XC)) (-709)))))) (-1193)) (T -66)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-348 (-2963) (-2963 (QUOTE XC)) (-709))) (-5 *1 (-66 *3)) (-14 *3 (-1193))))) +(-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE XC)) (-709)))))) +((-3742 (((-1289) $) 65)) (-2951 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 50) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 55))) +(((-67 |#1|) (-392) (-1193)) (T -67)) NIL (-392) -((-3741 (((-1288) $) 66)) (-2950 (((-872) $) 60) (($ (-699 (-709))) 52) (($ (-654 (-338))) 51) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 57))) -(((-68 |#1|) (-392) (-1192)) (T -68)) +((-3742 (((-1289) $) 66)) (-2951 (((-872) $) 60) (($ (-699 (-709))) 52) (($ (-654 (-338))) 51) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 57))) +(((-68 |#1|) (-392) (-1193)) (T -68)) NIL (-392) -((-3741 (((-1288) $) NIL) (((-1288)) 33)) (-2950 (((-872) $) NIL))) -(((-69 |#1|) (-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) (-1192)) (T -69)) -((-3741 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-69 *3)) (-14 *3 (-1192))))) -(-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) -((-3741 (((-1288) $) 75)) (-2950 (((-872) $) 69) (($ (-699 (-709))) 61) (($ (-654 (-338))) 63) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 60))) -(((-70 |#1|) (-392) (-1192)) (T -70)) +((-3742 (((-1289) $) NIL) (((-1289)) 33)) (-2951 (((-872) $) NIL))) +(((-69 |#1|) (-13 (-405) (-10 -7 (-15 -3742 ((-1289))))) (-1193)) (T -69)) +((-3742 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-69 *3)) (-14 *3 (-1193))))) +(-13 (-405) (-10 -7 (-15 -3742 ((-1289))))) +((-3742 (((-1289) $) 75)) (-2951 (((-872) $) 69) (($ (-699 (-709))) 61) (($ (-654 (-338))) 63) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 60))) +(((-70 |#1|) (-392) (-1193)) (T -70)) NIL (-392) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 109) (((-3 $ "failed") (-1283 (-324 (-574)))) 98) (((-3 $ "failed") (-1283 (-965 (-388)))) 129) (((-3 $ "failed") (-1283 (-965 (-574)))) 119) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 87) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 74)) (-2216 (($ (-1283 (-324 (-388)))) 105) (($ (-1283 (-324 (-574)))) 94) (($ (-1283 (-965 (-388)))) 125) (($ (-1283 (-965 (-574)))) 115) (($ (-1283 (-417 (-965 (-388))))) 83) (($ (-1283 (-417 (-965 (-574))))) 67)) (-3741 (((-1288) $) 142)) (-2950 (((-872) $) 136) (($ (-654 (-338))) 131) (($ (-338)) 134) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 59) (($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709)))) 60))) -(((-71 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709))))))) (-1192)) (T -71)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709)))) (-5 *1 (-71 *3)) (-14 *3 (-1192))))) -(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709))))))) -((-3741 (((-1288) $) 33) (((-1288)) 32)) (-2950 (((-872) $) 36))) -(((-72 |#1|) (-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) (-1192)) (T -72)) -((-3741 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-72 *3)) (-14 *3 (-1192))))) -(-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) -((-3741 (((-1288) $) 65)) (-2950 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 53) (($ (-338)) 56) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 50))) -(((-73 |#1|) (-392) (-1192)) (T -73)) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 109) (((-3 $ "failed") (-1284 (-324 (-574)))) 98) (((-3 $ "failed") (-1284 (-966 (-388)))) 129) (((-3 $ "failed") (-1284 (-966 (-574)))) 119) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 87) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 74)) (-2214 (($ (-1284 (-324 (-388)))) 105) (($ (-1284 (-324 (-574)))) 94) (($ (-1284 (-966 (-388)))) 125) (($ (-1284 (-966 (-574)))) 115) (($ (-1284 (-417 (-966 (-388))))) 83) (($ (-1284 (-417 (-966 (-574))))) 67)) (-3742 (((-1289) $) 142)) (-2951 (((-872) $) 136) (($ (-654 (-338))) 131) (($ (-338)) 134) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 59) (($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))) 60))) +(((-71 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709))))))) (-1193)) (T -71)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))) (-5 *1 (-71 *3)) (-14 *3 (-1193))))) +(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709))))))) +((-3742 (((-1289) $) 33) (((-1289)) 32)) (-2951 (((-872) $) 36))) +(((-72 |#1|) (-13 (-405) (-10 -7 (-15 -3742 ((-1289))))) (-1193)) (T -72)) +((-3742 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-72 *3)) (-14 *3 (-1193))))) +(-13 (-405) (-10 -7 (-15 -3742 ((-1289))))) +((-3742 (((-1289) $) 65)) (-2951 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 53) (($ (-338)) 56) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 50))) +(((-73 |#1|) (-392) (-1193)) (T -73)) NIL (-392) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 127) (((-3 $ "failed") (-1283 (-324 (-574)))) 117) (((-3 $ "failed") (-1283 (-965 (-388)))) 147) (((-3 $ "failed") (-1283 (-965 (-574)))) 137) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 107) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 95)) (-2216 (($ (-1283 (-324 (-388)))) 123) (($ (-1283 (-324 (-574)))) 113) (($ (-1283 (-965 (-388)))) 143) (($ (-1283 (-965 (-574)))) 133) (($ (-1283 (-417 (-965 (-388))))) 103) (($ (-1283 (-417 (-965 (-574))))) 88)) (-3741 (((-1288) $) 80)) (-2950 (((-872) $) 28) (($ (-654 (-338))) 70) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 73) (($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) 67))) -(((-74 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))))) (-1192)) (T -74)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) (-5 *1 (-74 *3)) (-14 *3 (-1192))))) -(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))))) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 132) (((-3 $ "failed") (-1283 (-324 (-574)))) 121) (((-3 $ "failed") (-1283 (-965 (-388)))) 152) (((-3 $ "failed") (-1283 (-965 (-574)))) 142) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 110) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 97)) (-2216 (($ (-1283 (-324 (-388)))) 128) (($ (-1283 (-324 (-574)))) 117) (($ (-1283 (-965 (-388)))) 148) (($ (-1283 (-965 (-574)))) 138) (($ (-1283 (-417 (-965 (-388))))) 106) (($ (-1283 (-417 (-965 (-574))))) 90)) (-3741 (((-1288) $) 82)) (-2950 (((-872) $) 74) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) NIL) (($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE EPS)) (-2962 (QUOTE -1890)) (-709)))) 69))) -(((-75 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE EPS)) (-2962 (QUOTE -1890)) (-709))))))) (-1192) (-1192) (-1192)) (T -75)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE X) (QUOTE EPS)) (-2962 (QUOTE -1890)) (-709)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1192)) (-14 *4 (-1192)) (-14 *5 (-1192))))) -(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE EPS)) (-2962 (QUOTE -1890)) (-709))))))) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 138) (((-3 $ "failed") (-1283 (-324 (-574)))) 127) (((-3 $ "failed") (-1283 (-965 (-388)))) 158) (((-3 $ "failed") (-1283 (-965 (-574)))) 148) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 116) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 103)) (-2216 (($ (-1283 (-324 (-388)))) 134) (($ (-1283 (-324 (-574)))) 123) (($ (-1283 (-965 (-388)))) 154) (($ (-1283 (-965 (-574)))) 144) (($ (-1283 (-417 (-965 (-388))))) 112) (($ (-1283 (-417 (-965 (-574))))) 96)) (-3741 (((-1288) $) 88)) (-2950 (((-872) $) 80) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) NIL) (($ (-1283 (-348 (-2962 (QUOTE EPS)) (-2962 (QUOTE YA) (QUOTE YB)) (-709)))) 75))) -(((-76 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE EPS)) (-2962 (QUOTE YA) (QUOTE YB)) (-709))))))) (-1192) (-1192) (-1192)) (T -76)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE EPS)) (-2962 (QUOTE YA) (QUOTE YB)) (-709)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1192)) (-14 *4 (-1192)) (-14 *5 (-1192))))) -(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE EPS)) (-2962 (QUOTE YA) (QUOTE YB)) (-709))))))) -((-1705 (((-3 $ "failed") (-324 (-388))) 83) (((-3 $ "failed") (-324 (-574))) 88) (((-3 $ "failed") (-965 (-388))) 92) (((-3 $ "failed") (-965 (-574))) 96) (((-3 $ "failed") (-417 (-965 (-388)))) 78) (((-3 $ "failed") (-417 (-965 (-574)))) 71)) (-2216 (($ (-324 (-388))) 81) (($ (-324 (-574))) 86) (($ (-965 (-388))) 90) (($ (-965 (-574))) 94) (($ (-417 (-965 (-388)))) 76) (($ (-417 (-965 (-574)))) 68)) (-3741 (((-1288) $) 63)) (-2950 (((-872) $) 51) (($ (-654 (-338))) 47) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 55) (($ (-348 (-2962) (-2962 (QUOTE X)) (-709))) 48))) -(((-77 |#1|) (-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE X)) (-709)))))) (-1192)) (T -77)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-348 (-2962) (-2962 (QUOTE X)) (-709))) (-5 *1 (-77 *3)) (-14 *3 (-1192))))) -(-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE X)) (-709)))))) -((-1705 (((-3 $ "failed") (-324 (-388))) 47) (((-3 $ "failed") (-324 (-574))) 52) (((-3 $ "failed") (-965 (-388))) 56) (((-3 $ "failed") (-965 (-574))) 60) (((-3 $ "failed") (-417 (-965 (-388)))) 42) (((-3 $ "failed") (-417 (-965 (-574)))) 35)) (-2216 (($ (-324 (-388))) 45) (($ (-324 (-574))) 50) (($ (-965 (-388))) 54) (($ (-965 (-574))) 58) (($ (-417 (-965 (-388)))) 40) (($ (-417 (-965 (-574)))) 32)) (-3741 (((-1288) $) 81)) (-2950 (((-872) $) 75) (($ (-654 (-338))) 67) (($ (-338)) 72) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 70) (($ (-348 (-2962) (-2962 (QUOTE X)) (-709))) 31))) -(((-78 |#1|) (-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE X)) (-709)))))) (-1192)) (T -78)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-348 (-2962) (-2962 (QUOTE X)) (-709))) (-5 *1 (-78 *3)) (-14 *3 (-1192))))) -(-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE X)) (-709)))))) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 90) (((-3 $ "failed") (-1283 (-324 (-574)))) 79) (((-3 $ "failed") (-1283 (-965 (-388)))) 110) (((-3 $ "failed") (-1283 (-965 (-574)))) 100) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 68) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 55)) (-2216 (($ (-1283 (-324 (-388)))) 86) (($ (-1283 (-324 (-574)))) 75) (($ (-1283 (-965 (-388)))) 106) (($ (-1283 (-965 (-574)))) 96) (($ (-1283 (-417 (-965 (-388))))) 64) (($ (-1283 (-417 (-965 (-574))))) 48)) (-3741 (((-1288) $) 126)) (-2950 (((-872) $) 120) (($ (-654 (-338))) 113) (($ (-338)) 38) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 116) (($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709)))) 39))) -(((-79 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709))))))) (-1192)) (T -79)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709)))) (-5 *1 (-79 *3)) (-14 *3 (-1192))))) -(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709))))))) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 151) (((-3 $ "failed") (-1283 (-324 (-574)))) 141) (((-3 $ "failed") (-1283 (-965 (-388)))) 171) (((-3 $ "failed") (-1283 (-965 (-574)))) 161) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 131) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 119)) (-2216 (($ (-1283 (-324 (-388)))) 147) (($ (-1283 (-324 (-574)))) 137) (($ (-1283 (-965 (-388)))) 167) (($ (-1283 (-965 (-574)))) 157) (($ (-1283 (-417 (-965 (-388))))) 127) (($ (-1283 (-417 (-965 (-574))))) 112)) (-3741 (((-1288) $) 105)) (-2950 (((-872) $) 99) (($ (-654 (-338))) 90) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 95) (($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) 91))) -(((-80 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))))) (-1192)) (T -80)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) (-5 *1 (-80 *3)) (-14 *3 (-1192))))) -(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))))) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 79) (((-3 $ "failed") (-1283 (-324 (-574)))) 68) (((-3 $ "failed") (-1283 (-965 (-388)))) 99) (((-3 $ "failed") (-1283 (-965 (-574)))) 89) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 57) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 44)) (-2216 (($ (-1283 (-324 (-388)))) 75) (($ (-1283 (-324 (-574)))) 64) (($ (-1283 (-965 (-388)))) 95) (($ (-1283 (-965 (-574)))) 85) (($ (-1283 (-417 (-965 (-388))))) 53) (($ (-1283 (-417 (-965 (-574))))) 37)) (-3741 (((-1288) $) 125)) (-2950 (((-872) $) 119) (($ (-654 (-338))) 110) (($ (-338)) 116) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 114) (($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) 36))) -(((-81 |#1|) (-13 (-451) (-626 (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))) (-1192)) (T -81)) -NIL -(-13 (-451) (-626 (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 98) (((-3 $ "failed") (-1283 (-324 (-574)))) 87) (((-3 $ "failed") (-1283 (-965 (-388)))) 118) (((-3 $ "failed") (-1283 (-965 (-574)))) 108) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 76) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 63)) (-2216 (($ (-1283 (-324 (-388)))) 94) (($ (-1283 (-324 (-574)))) 83) (($ (-1283 (-965 (-388)))) 114) (($ (-1283 (-965 (-574)))) 104) (($ (-1283 (-417 (-965 (-388))))) 72) (($ (-1283 (-417 (-965 (-574))))) 56)) (-3741 (((-1288) $) 48)) (-2950 (((-872) $) 42) (($ (-654 (-338))) 32) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 38) (($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE -1890)) (-2962) (-709)))) 33))) -(((-82 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE -1890)) (-2962) (-709))))))) (-1192)) (T -82)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE X) (QUOTE -1890)) (-2962) (-709)))) (-5 *1 (-82 *3)) (-14 *3 (-1192))))) -(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE -1890)) (-2962) (-709))))))) -((-1705 (((-3 $ "failed") (-699 (-324 (-388)))) 118) (((-3 $ "failed") (-699 (-324 (-574)))) 107) (((-3 $ "failed") (-699 (-965 (-388)))) 140) (((-3 $ "failed") (-699 (-965 (-574)))) 129) (((-3 $ "failed") (-699 (-417 (-965 (-388))))) 96) (((-3 $ "failed") (-699 (-417 (-965 (-574))))) 83)) (-2216 (($ (-699 (-324 (-388)))) 114) (($ (-699 (-324 (-574)))) 103) (($ (-699 (-965 (-388)))) 136) (($ (-699 (-965 (-574)))) 125) (($ (-699 (-417 (-965 (-388))))) 92) (($ (-699 (-417 (-965 (-574))))) 76)) (-3741 (((-1288) $) 66)) (-2950 (((-872) $) 53) (($ (-654 (-338))) 60) (($ (-338)) 49) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 58) (($ (-699 (-348 (-2962 (QUOTE X) (QUOTE -1890)) (-2962) (-709)))) 50))) -(((-83 |#1|) (-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE X) (QUOTE -1890)) (-2962) (-709))))))) (-1192)) (T -83)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2962 (QUOTE X) (QUOTE -1890)) (-2962) (-709)))) (-5 *1 (-83 *3)) (-14 *3 (-1192))))) -(-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE X) (QUOTE -1890)) (-2962) (-709))))))) -((-1705 (((-3 $ "failed") (-699 (-324 (-388)))) 113) (((-3 $ "failed") (-699 (-324 (-574)))) 101) (((-3 $ "failed") (-699 (-965 (-388)))) 135) (((-3 $ "failed") (-699 (-965 (-574)))) 124) (((-3 $ "failed") (-699 (-417 (-965 (-388))))) 89) (((-3 $ "failed") (-699 (-417 (-965 (-574))))) 75)) (-2216 (($ (-699 (-324 (-388)))) 109) (($ (-699 (-324 (-574)))) 97) (($ (-699 (-965 (-388)))) 131) (($ (-699 (-965 (-574)))) 120) (($ (-699 (-417 (-965 (-388))))) 85) (($ (-699 (-417 (-965 (-574))))) 68)) (-3741 (((-1288) $) 60)) (-2950 (((-872) $) 54) (($ (-654 (-338))) 48) (($ (-338)) 51) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 45) (($ (-699 (-348 (-2962 (QUOTE X)) (-2962) (-709)))) 46))) -(((-84 |#1|) (-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE X)) (-2962) (-709))))))) (-1192)) (T -84)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2962 (QUOTE X)) (-2962) (-709)))) (-5 *1 (-84 *3)) (-14 *3 (-1192))))) -(-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE X)) (-2962) (-709))))))) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 105) (((-3 $ "failed") (-1283 (-324 (-574)))) 94) (((-3 $ "failed") (-1283 (-965 (-388)))) 125) (((-3 $ "failed") (-1283 (-965 (-574)))) 115) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 83) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 70)) (-2216 (($ (-1283 (-324 (-388)))) 101) (($ (-1283 (-324 (-574)))) 90) (($ (-1283 (-965 (-388)))) 121) (($ (-1283 (-965 (-574)))) 111) (($ (-1283 (-417 (-965 (-388))))) 79) (($ (-1283 (-417 (-965 (-574))))) 63)) (-3741 (((-1288) $) 47)) (-2950 (((-872) $) 41) (($ (-654 (-338))) 50) (($ (-338)) 37) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 53) (($ (-1283 (-348 (-2962 (QUOTE X)) (-2962) (-709)))) 38))) -(((-85 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962) (-709))))))) (-1192)) (T -85)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE X)) (-2962) (-709)))) (-5 *1 (-85 *3)) (-14 *3 (-1192))))) -(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962) (-709))))))) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 80) (((-3 $ "failed") (-1283 (-324 (-574)))) 69) (((-3 $ "failed") (-1283 (-965 (-388)))) 100) (((-3 $ "failed") (-1283 (-965 (-574)))) 90) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 58) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 45)) (-2216 (($ (-1283 (-324 (-388)))) 76) (($ (-1283 (-324 (-574)))) 65) (($ (-1283 (-965 (-388)))) 96) (($ (-1283 (-965 (-574)))) 86) (($ (-1283 (-417 (-965 (-388))))) 54) (($ (-1283 (-417 (-965 (-574))))) 38)) (-3741 (((-1288) $) 126)) (-2950 (((-872) $) 120) (($ (-654 (-338))) 111) (($ (-338)) 117) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 115) (($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709)))) 37))) -(((-86 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709))))))) (-1192)) (T -86)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709)))) (-5 *1 (-86 *3)) (-14 *3 (-1192))))) -(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709))))))) -((-1705 (((-3 $ "failed") (-699 (-324 (-388)))) 117) (((-3 $ "failed") (-699 (-324 (-574)))) 105) (((-3 $ "failed") (-699 (-965 (-388)))) 139) (((-3 $ "failed") (-699 (-965 (-574)))) 128) (((-3 $ "failed") (-699 (-417 (-965 (-388))))) 93) (((-3 $ "failed") (-699 (-417 (-965 (-574))))) 79)) (-2216 (($ (-699 (-324 (-388)))) 113) (($ (-699 (-324 (-574)))) 101) (($ (-699 (-965 (-388)))) 135) (($ (-699 (-965 (-574)))) 124) (($ (-699 (-417 (-965 (-388))))) 89) (($ (-699 (-417 (-965 (-574))))) 72)) (-3741 (((-1288) $) 63)) (-2950 (((-872) $) 57) (($ (-654 (-338))) 47) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 52) (($ (-699 (-348 (-2962 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2962) (-709)))) 48))) -(((-87 |#1|) (-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2962) (-709))))))) (-1192)) (T -87)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2962 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2962) (-709)))) (-5 *1 (-87 *3)) (-14 *3 (-1192))))) -(-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2962) (-709))))))) -((-3741 (((-1288) $) 45)) (-2950 (((-872) $) 39) (($ (-1283 (-709))) 100) (($ (-654 (-338))) 31) (($ (-338)) 36) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 34))) -(((-88 |#1|) (-450) (-1192)) (T -88)) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 127) (((-3 $ "failed") (-1284 (-324 (-574)))) 117) (((-3 $ "failed") (-1284 (-966 (-388)))) 147) (((-3 $ "failed") (-1284 (-966 (-574)))) 137) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 107) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 95)) (-2214 (($ (-1284 (-324 (-388)))) 123) (($ (-1284 (-324 (-574)))) 113) (($ (-1284 (-966 (-388)))) 143) (($ (-1284 (-966 (-574)))) 133) (($ (-1284 (-417 (-966 (-388))))) 103) (($ (-1284 (-417 (-966 (-574))))) 88)) (-3742 (((-1289) $) 80)) (-2951 (((-872) $) 28) (($ (-654 (-338))) 70) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 73) (($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) 67))) +(((-74 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709))))))) (-1193)) (T -74)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) (-5 *1 (-74 *3)) (-14 *3 (-1193))))) +(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709))))))) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 132) (((-3 $ "failed") (-1284 (-324 (-574)))) 121) (((-3 $ "failed") (-1284 (-966 (-388)))) 152) (((-3 $ "failed") (-1284 (-966 (-574)))) 142) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 110) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 97)) (-2214 (($ (-1284 (-324 (-388)))) 128) (($ (-1284 (-324 (-574)))) 117) (($ (-1284 (-966 (-388)))) 148) (($ (-1284 (-966 (-574)))) 138) (($ (-1284 (-417 (-966 (-388))))) 106) (($ (-1284 (-417 (-966 (-574))))) 90)) (-3742 (((-1289) $) 82)) (-2951 (((-872) $) 74) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) NIL) (($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE EPS)) (-2963 (QUOTE -1889)) (-709)))) 69))) +(((-75 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE EPS)) (-2963 (QUOTE -1889)) (-709))))))) (-1193) (-1193) (-1193)) (T -75)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE X) (QUOTE EPS)) (-2963 (QUOTE -1889)) (-709)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1193)) (-14 *4 (-1193)) (-14 *5 (-1193))))) +(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE EPS)) (-2963 (QUOTE -1889)) (-709))))))) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 138) (((-3 $ "failed") (-1284 (-324 (-574)))) 127) (((-3 $ "failed") (-1284 (-966 (-388)))) 158) (((-3 $ "failed") (-1284 (-966 (-574)))) 148) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 116) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 103)) (-2214 (($ (-1284 (-324 (-388)))) 134) (($ (-1284 (-324 (-574)))) 123) (($ (-1284 (-966 (-388)))) 154) (($ (-1284 (-966 (-574)))) 144) (($ (-1284 (-417 (-966 (-388))))) 112) (($ (-1284 (-417 (-966 (-574))))) 96)) (-3742 (((-1289) $) 88)) (-2951 (((-872) $) 80) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) NIL) (($ (-1284 (-348 (-2963 (QUOTE EPS)) (-2963 (QUOTE YA) (QUOTE YB)) (-709)))) 75))) +(((-76 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE EPS)) (-2963 (QUOTE YA) (QUOTE YB)) (-709))))))) (-1193) (-1193) (-1193)) (T -76)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE EPS)) (-2963 (QUOTE YA) (QUOTE YB)) (-709)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1193)) (-14 *4 (-1193)) (-14 *5 (-1193))))) +(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE EPS)) (-2963 (QUOTE YA) (QUOTE YB)) (-709))))))) +((-1704 (((-3 $ "failed") (-324 (-388))) 83) (((-3 $ "failed") (-324 (-574))) 88) (((-3 $ "failed") (-966 (-388))) 92) (((-3 $ "failed") (-966 (-574))) 96) (((-3 $ "failed") (-417 (-966 (-388)))) 78) (((-3 $ "failed") (-417 (-966 (-574)))) 71)) (-2214 (($ (-324 (-388))) 81) (($ (-324 (-574))) 86) (($ (-966 (-388))) 90) (($ (-966 (-574))) 94) (($ (-417 (-966 (-388)))) 76) (($ (-417 (-966 (-574)))) 68)) (-3742 (((-1289) $) 63)) (-2951 (((-872) $) 51) (($ (-654 (-338))) 47) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 55) (($ (-348 (-2963) (-2963 (QUOTE X)) (-709))) 48))) +(((-77 |#1|) (-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE X)) (-709)))))) (-1193)) (T -77)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-348 (-2963) (-2963 (QUOTE X)) (-709))) (-5 *1 (-77 *3)) (-14 *3 (-1193))))) +(-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE X)) (-709)))))) +((-1704 (((-3 $ "failed") (-324 (-388))) 47) (((-3 $ "failed") (-324 (-574))) 52) (((-3 $ "failed") (-966 (-388))) 56) (((-3 $ "failed") (-966 (-574))) 60) (((-3 $ "failed") (-417 (-966 (-388)))) 42) (((-3 $ "failed") (-417 (-966 (-574)))) 35)) (-2214 (($ (-324 (-388))) 45) (($ (-324 (-574))) 50) (($ (-966 (-388))) 54) (($ (-966 (-574))) 58) (($ (-417 (-966 (-388)))) 40) (($ (-417 (-966 (-574)))) 32)) (-3742 (((-1289) $) 81)) (-2951 (((-872) $) 75) (($ (-654 (-338))) 67) (($ (-338)) 72) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 70) (($ (-348 (-2963) (-2963 (QUOTE X)) (-709))) 31))) +(((-78 |#1|) (-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE X)) (-709)))))) (-1193)) (T -78)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-348 (-2963) (-2963 (QUOTE X)) (-709))) (-5 *1 (-78 *3)) (-14 *3 (-1193))))) +(-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE X)) (-709)))))) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 90) (((-3 $ "failed") (-1284 (-324 (-574)))) 79) (((-3 $ "failed") (-1284 (-966 (-388)))) 110) (((-3 $ "failed") (-1284 (-966 (-574)))) 100) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 68) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 55)) (-2214 (($ (-1284 (-324 (-388)))) 86) (($ (-1284 (-324 (-574)))) 75) (($ (-1284 (-966 (-388)))) 106) (($ (-1284 (-966 (-574)))) 96) (($ (-1284 (-417 (-966 (-388))))) 64) (($ (-1284 (-417 (-966 (-574))))) 48)) (-3742 (((-1289) $) 126)) (-2951 (((-872) $) 120) (($ (-654 (-338))) 113) (($ (-338)) 38) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 116) (($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709)))) 39))) +(((-79 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709))))))) (-1193)) (T -79)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709)))) (-5 *1 (-79 *3)) (-14 *3 (-1193))))) +(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709))))))) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 151) (((-3 $ "failed") (-1284 (-324 (-574)))) 141) (((-3 $ "failed") (-1284 (-966 (-388)))) 171) (((-3 $ "failed") (-1284 (-966 (-574)))) 161) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 131) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 119)) (-2214 (($ (-1284 (-324 (-388)))) 147) (($ (-1284 (-324 (-574)))) 137) (($ (-1284 (-966 (-388)))) 167) (($ (-1284 (-966 (-574)))) 157) (($ (-1284 (-417 (-966 (-388))))) 127) (($ (-1284 (-417 (-966 (-574))))) 112)) (-3742 (((-1289) $) 105)) (-2951 (((-872) $) 99) (($ (-654 (-338))) 90) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 95) (($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) 91))) +(((-80 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709))))))) (-1193)) (T -80)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) (-5 *1 (-80 *3)) (-14 *3 (-1193))))) +(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709))))))) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 79) (((-3 $ "failed") (-1284 (-324 (-574)))) 68) (((-3 $ "failed") (-1284 (-966 (-388)))) 99) (((-3 $ "failed") (-1284 (-966 (-574)))) 89) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 57) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 44)) (-2214 (($ (-1284 (-324 (-388)))) 75) (($ (-1284 (-324 (-574)))) 64) (($ (-1284 (-966 (-388)))) 95) (($ (-1284 (-966 (-574)))) 85) (($ (-1284 (-417 (-966 (-388))))) 53) (($ (-1284 (-417 (-966 (-574))))) 37)) (-3742 (((-1289) $) 125)) (-2951 (((-872) $) 119) (($ (-654 (-338))) 110) (($ (-338)) 116) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 114) (($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) 36))) +(((-81 |#1|) (-13 (-451) (-626 (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709))))) (-1193)) (T -81)) +NIL +(-13 (-451) (-626 (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709))))) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 98) (((-3 $ "failed") (-1284 (-324 (-574)))) 87) (((-3 $ "failed") (-1284 (-966 (-388)))) 118) (((-3 $ "failed") (-1284 (-966 (-574)))) 108) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 76) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 63)) (-2214 (($ (-1284 (-324 (-388)))) 94) (($ (-1284 (-324 (-574)))) 83) (($ (-1284 (-966 (-388)))) 114) (($ (-1284 (-966 (-574)))) 104) (($ (-1284 (-417 (-966 (-388))))) 72) (($ (-1284 (-417 (-966 (-574))))) 56)) (-3742 (((-1289) $) 48)) (-2951 (((-872) $) 42) (($ (-654 (-338))) 32) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 38) (($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709)))) 33))) +(((-82 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709))))))) (-1193)) (T -82)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709)))) (-5 *1 (-82 *3)) (-14 *3 (-1193))))) +(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709))))))) +((-1704 (((-3 $ "failed") (-699 (-324 (-388)))) 118) (((-3 $ "failed") (-699 (-324 (-574)))) 107) (((-3 $ "failed") (-699 (-966 (-388)))) 140) (((-3 $ "failed") (-699 (-966 (-574)))) 129) (((-3 $ "failed") (-699 (-417 (-966 (-388))))) 96) (((-3 $ "failed") (-699 (-417 (-966 (-574))))) 83)) (-2214 (($ (-699 (-324 (-388)))) 114) (($ (-699 (-324 (-574)))) 103) (($ (-699 (-966 (-388)))) 136) (($ (-699 (-966 (-574)))) 125) (($ (-699 (-417 (-966 (-388))))) 92) (($ (-699 (-417 (-966 (-574))))) 76)) (-3742 (((-1289) $) 66)) (-2951 (((-872) $) 53) (($ (-654 (-338))) 60) (($ (-338)) 49) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 58) (($ (-699 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709)))) 50))) +(((-83 |#1|) (-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709))))))) (-1193)) (T -83)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709)))) (-5 *1 (-83 *3)) (-14 *3 (-1193))))) +(-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709))))))) +((-1704 (((-3 $ "failed") (-699 (-324 (-388)))) 113) (((-3 $ "failed") (-699 (-324 (-574)))) 101) (((-3 $ "failed") (-699 (-966 (-388)))) 135) (((-3 $ "failed") (-699 (-966 (-574)))) 124) (((-3 $ "failed") (-699 (-417 (-966 (-388))))) 89) (((-3 $ "failed") (-699 (-417 (-966 (-574))))) 75)) (-2214 (($ (-699 (-324 (-388)))) 109) (($ (-699 (-324 (-574)))) 97) (($ (-699 (-966 (-388)))) 131) (($ (-699 (-966 (-574)))) 120) (($ (-699 (-417 (-966 (-388))))) 85) (($ (-699 (-417 (-966 (-574))))) 68)) (-3742 (((-1289) $) 60)) (-2951 (((-872) $) 54) (($ (-654 (-338))) 48) (($ (-338)) 51) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 45) (($ (-699 (-348 (-2963 (QUOTE X)) (-2963) (-709)))) 46))) +(((-84 |#1|) (-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE X)) (-2963) (-709))))))) (-1193)) (T -84)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2963 (QUOTE X)) (-2963) (-709)))) (-5 *1 (-84 *3)) (-14 *3 (-1193))))) +(-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE X)) (-2963) (-709))))))) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 105) (((-3 $ "failed") (-1284 (-324 (-574)))) 94) (((-3 $ "failed") (-1284 (-966 (-388)))) 125) (((-3 $ "failed") (-1284 (-966 (-574)))) 115) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 83) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 70)) (-2214 (($ (-1284 (-324 (-388)))) 101) (($ (-1284 (-324 (-574)))) 90) (($ (-1284 (-966 (-388)))) 121) (($ (-1284 (-966 (-574)))) 111) (($ (-1284 (-417 (-966 (-388))))) 79) (($ (-1284 (-417 (-966 (-574))))) 63)) (-3742 (((-1289) $) 47)) (-2951 (((-872) $) 41) (($ (-654 (-338))) 50) (($ (-338)) 37) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 53) (($ (-1284 (-348 (-2963 (QUOTE X)) (-2963) (-709)))) 38))) +(((-85 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963) (-709))))))) (-1193)) (T -85)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE X)) (-2963) (-709)))) (-5 *1 (-85 *3)) (-14 *3 (-1193))))) +(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963) (-709))))))) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 80) (((-3 $ "failed") (-1284 (-324 (-574)))) 69) (((-3 $ "failed") (-1284 (-966 (-388)))) 100) (((-3 $ "failed") (-1284 (-966 (-574)))) 90) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 58) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 45)) (-2214 (($ (-1284 (-324 (-388)))) 76) (($ (-1284 (-324 (-574)))) 65) (($ (-1284 (-966 (-388)))) 96) (($ (-1284 (-966 (-574)))) 86) (($ (-1284 (-417 (-966 (-388))))) 54) (($ (-1284 (-417 (-966 (-574))))) 38)) (-3742 (((-1289) $) 126)) (-2951 (((-872) $) 120) (($ (-654 (-338))) 111) (($ (-338)) 117) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 115) (($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))) 37))) +(((-86 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709))))))) (-1193)) (T -86)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))) (-5 *1 (-86 *3)) (-14 *3 (-1193))))) +(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709))))))) +((-1704 (((-3 $ "failed") (-699 (-324 (-388)))) 117) (((-3 $ "failed") (-699 (-324 (-574)))) 105) (((-3 $ "failed") (-699 (-966 (-388)))) 139) (((-3 $ "failed") (-699 (-966 (-574)))) 128) (((-3 $ "failed") (-699 (-417 (-966 (-388))))) 93) (((-3 $ "failed") (-699 (-417 (-966 (-574))))) 79)) (-2214 (($ (-699 (-324 (-388)))) 113) (($ (-699 (-324 (-574)))) 101) (($ (-699 (-966 (-388)))) 135) (($ (-699 (-966 (-574)))) 124) (($ (-699 (-417 (-966 (-388))))) 89) (($ (-699 (-417 (-966 (-574))))) 72)) (-3742 (((-1289) $) 63)) (-2951 (((-872) $) 57) (($ (-654 (-338))) 47) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 52) (($ (-699 (-348 (-2963 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2963) (-709)))) 48))) +(((-87 |#1|) (-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2963) (-709))))))) (-1193)) (T -87)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2963 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2963) (-709)))) (-5 *1 (-87 *3)) (-14 *3 (-1193))))) +(-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2963) (-709))))))) +((-3742 (((-1289) $) 45)) (-2951 (((-872) $) 39) (($ (-1284 (-709))) 100) (($ (-654 (-338))) 31) (($ (-338)) 36) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 34))) +(((-88 |#1|) (-450) (-1193)) (T -88)) NIL (-450) -((-1705 (((-3 $ "failed") (-324 (-388))) 48) (((-3 $ "failed") (-324 (-574))) 53) (((-3 $ "failed") (-965 (-388))) 57) (((-3 $ "failed") (-965 (-574))) 61) (((-3 $ "failed") (-417 (-965 (-388)))) 43) (((-3 $ "failed") (-417 (-965 (-574)))) 36)) (-2216 (($ (-324 (-388))) 46) (($ (-324 (-574))) 51) (($ (-965 (-388))) 55) (($ (-965 (-574))) 59) (($ (-417 (-965 (-388)))) 41) (($ (-417 (-965 (-574)))) 33)) (-3741 (((-1288) $) 91)) (-2950 (((-872) $) 85) (($ (-654 (-338))) 79) (($ (-338)) 82) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 77) (($ (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709))) 32))) -(((-89 |#1|) (-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709)))))) (-1192)) (T -89)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709))) (-5 *1 (-89 *3)) (-14 *3 (-1192))))) -(-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1890)) (-709)))))) -((-2901 (((-1283 (-699 |#1|)) (-699 |#1|)) 61)) (-3725 (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 (-654 (-934))))) |#2| (-934)) 49)) (-2761 (((-2 (|:| |minor| (-654 (-934))) (|:| -4095 |#2|) (|:| |minors| (-654 (-654 (-934)))) (|:| |ops| (-654 |#2|))) |#2| (-934)) 72 (|has| |#1| (-372))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -3725 ((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 (-654 (-934))))) |#2| (-934))) (-15 -2901 ((-1283 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -2761 ((-2 (|:| |minor| (-654 (-934))) (|:| -4095 |#2|) (|:| |minors| (-654 (-654 (-934)))) (|:| |ops| (-654 |#2|))) |#2| (-934))) |%noBranch|)) (-566) (-666 |#1|)) (T -90)) -((-2761 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |minor| (-654 (-934))) (|:| -4095 *3) (|:| |minors| (-654 (-654 (-934)))) (|:| |ops| (-654 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-934)) (-4 *3 (-666 *5)))) (-2901 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1283 (-699 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-699 *4)) (-4 *5 (-666 *4)))) (-3725 (*1 *2 *3 *4) (-12 (-4 *5 (-566)) (-5 *2 (-2 (|:| -4047 (-699 *5)) (|:| |vec| (-1283 (-654 (-934)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-934)) (-4 *3 (-666 *5))))) -(-10 -7 (-15 -3725 ((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 (-654 (-934))))) |#2| (-934))) (-15 -2901 ((-1283 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -2761 ((-2 (|:| |minor| (-654 (-934))) (|:| -4095 |#2|) (|:| |minors| (-654 (-654 (-934)))) (|:| |ops| (-654 |#2|))) |#2| (-934))) |%noBranch|)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2011 ((|#1| $) 40)) (-2818 (((-112) $ (-781)) NIL)) (-3831 (($) NIL T CONST)) (-2268 ((|#1| |#1| $) 35)) (-3255 ((|#1| $) 33)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1748 ((|#1| $) NIL)) (-2609 (($ |#1| $) 36)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-3484 ((|#1| $) 34)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 18)) (-2833 (($) 45)) (-4292 (((-781) $) 31)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 17)) (-2950 (((-872) $) 30 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) NIL)) (-2995 (($ (-654 |#1|)) 42)) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 15 (|has| |#1| (-1115)))) (-2876 (((-781) $) 12 (|has| $ (-6 -4458))))) -(((-91 |#1|) (-13 (-1136 |#1|) (-10 -8 (-15 -2995 ($ (-654 |#1|))))) (-1115)) (T -91)) -((-2995 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-91 *3))))) -(-13 (-1136 |#1|) (-10 -8 (-15 -2995 ($ (-654 |#1|))))) -((-2950 (((-872) $) 13) (($ (-1197)) 9) (((-1197) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -2950 ((-1197) |#1|)) (-15 -2950 (|#1| (-1197))) (-15 -2950 ((-872) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -2950 ((-1197) |#1|)) (-15 -2950 (|#1| (-1197))) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-1197)) 17) (((-1197) $) 16)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +((-1704 (((-3 $ "failed") (-324 (-388))) 48) (((-3 $ "failed") (-324 (-574))) 53) (((-3 $ "failed") (-966 (-388))) 57) (((-3 $ "failed") (-966 (-574))) 61) (((-3 $ "failed") (-417 (-966 (-388)))) 43) (((-3 $ "failed") (-417 (-966 (-574)))) 36)) (-2214 (($ (-324 (-388))) 46) (($ (-324 (-574))) 51) (($ (-966 (-388))) 55) (($ (-966 (-574))) 59) (($ (-417 (-966 (-388)))) 41) (($ (-417 (-966 (-574)))) 33)) (-3742 (((-1289) $) 91)) (-2951 (((-872) $) 85) (($ (-654 (-338))) 79) (($ (-338)) 82) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 77) (($ (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709))) 32))) +(((-89 |#1|) (-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))))) (-1193)) (T -89)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709))) (-5 *1 (-89 *3)) (-14 *3 (-1193))))) +(-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))))) +((-3537 (((-1284 (-699 |#1|)) (-699 |#1|)) 61)) (-1558 (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 (-654 (-935))))) |#2| (-935)) 49)) (-3578 (((-2 (|:| |minor| (-654 (-935))) (|:| -4094 |#2|) (|:| |minors| (-654 (-654 (-935)))) (|:| |ops| (-654 |#2|))) |#2| (-935)) 72 (|has| |#1| (-372))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -1558 ((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 (-654 (-935))))) |#2| (-935))) (-15 -3537 ((-1284 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -3578 ((-2 (|:| |minor| (-654 (-935))) (|:| -4094 |#2|) (|:| |minors| (-654 (-654 (-935)))) (|:| |ops| (-654 |#2|))) |#2| (-935))) |%noBranch|)) (-566) (-666 |#1|)) (T -90)) +((-3578 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |minor| (-654 (-935))) (|:| -4094 *3) (|:| |minors| (-654 (-654 (-935)))) (|:| |ops| (-654 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-935)) (-4 *3 (-666 *5)))) (-3537 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1284 (-699 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-699 *4)) (-4 *5 (-666 *4)))) (-1558 (*1 *2 *3 *4) (-12 (-4 *5 (-566)) (-5 *2 (-2 (|:| -3082 (-699 *5)) (|:| |vec| (-1284 (-654 (-935)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-935)) (-4 *3 (-666 *5))))) +(-10 -7 (-15 -1558 ((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 (-654 (-935))))) |#2| (-935))) (-15 -3537 ((-1284 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -3578 ((-2 (|:| |minor| (-654 (-935))) (|:| -4094 |#2|) (|:| |minors| (-654 (-654 (-935)))) (|:| |ops| (-654 |#2|))) |#2| (-935))) |%noBranch|)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2010 ((|#1| $) 40)) (-3146 (((-112) $ (-781)) NIL)) (-3250 (($) NIL T CONST)) (-2231 ((|#1| |#1| $) 35)) (-4073 ((|#1| $) 33)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-2375 ((|#1| $) NIL)) (-3285 (($ |#1| $) 36)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-3801 ((|#1| $) 34)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 18)) (-3336 (($) 45)) (-4293 (((-781) $) 31)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 17)) (-2951 (((-872) $) 30 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) NIL)) (-3111 (($ (-654 |#1|)) 42)) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 15 (|has| |#1| (-1116)))) (-2877 (((-781) $) 12 (|has| $ (-6 -4459))))) +(((-91 |#1|) (-13 (-1137 |#1|) (-10 -8 (-15 -3111 ($ (-654 |#1|))))) (-1116)) (T -91)) +((-3111 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-91 *3))))) +(-13 (-1137 |#1|) (-10 -8 (-15 -3111 ($ (-654 |#1|))))) +((-2951 (((-872) $) 13) (($ (-1198)) 9) (((-1198) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -2951 ((-1198) |#1|)) (-15 -2951 (|#1| (-1198))) (-15 -2951 ((-872) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -2951 ((-1198) |#1|)) (-15 -2951 (|#1| (-1198))) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-1198)) 17) (((-1198) $) 16)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) (((-93) (-141)) (T -93)) NIL -(-13 (-1115) (-500 (-1197))) -(((-102) . T) ((-626 #0=(-1197)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1115) . T)) -((-2339 (($ $) 10)) (-2348 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -2348 (|#1| |#1|)) (-15 -2339 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1116) (-500 (-1198))) +(((-102) . T) ((-626 #0=(-1198)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1116) . T)) +((-2340 (($ $) 10)) (-2349 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -2349 (|#1| |#1|)) (-15 -2340 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -2348 (|#1| |#1|)) (-15 -2339 (|#1| |#1|))) -((-2319 (($ $) 11)) (-2300 (($ $) 10)) (-2339 (($ $) 9)) (-2348 (($ $) 8)) (-2329 (($ $) 7)) (-2311 (($ $) 6))) +(-10 -8 (-15 -2349 (|#1| |#1|)) (-15 -2340 (|#1| |#1|))) +((-2320 (($ $) 11)) (-2301 (($ $) 10)) (-2340 (($ $) 9)) (-2349 (($ $) 8)) (-2330 (($ $) 7)) (-2312 (($ $) 6))) (((-95) (-141)) (T -95)) -((-2319 (*1 *1 *1) (-4 *1 (-95))) (-2300 (*1 *1 *1) (-4 *1 (-95))) (-2339 (*1 *1 *1) (-4 *1 (-95))) (-2348 (*1 *1 *1) (-4 *1 (-95))) (-2329 (*1 *1 *1) (-4 *1 (-95))) (-2311 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -2311 ($ $)) (-15 -2329 ($ $)) (-15 -2348 ($ $)) (-15 -2339 ($ $)) (-15 -2300 ($ $)) (-15 -2319 ($ $)))) -((-2863 (((-112) $ $) NIL)) (-2040 (((-1150) $) 9)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-96) (-13 (-1098) (-10 -8 (-15 -2040 ((-1150) $))))) (T -96)) -((-2040 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-96))))) -(-13 (-1098) (-10 -8 (-15 -2040 ((-1150) $)))) -((-2863 (((-112) $ $) NIL)) (-1641 (((-388) (-1174) (-388)) 46) (((-388) (-1174) (-1174) (-388)) 44)) (-2043 (((-388) (-388)) 35)) (-1833 (((-1288)) 37)) (-3945 (((-1174) $) NIL)) (-3463 (((-388) (-1174) (-1174)) 50) (((-388) (-1174)) 52)) (-3939 (((-1135) $) NIL)) (-4275 (((-388) (-1174) (-1174)) 51)) (-2452 (((-388) (-1174) (-1174)) 53) (((-388) (-1174)) 54)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-97) (-13 (-1115) (-10 -7 (-15 -3463 ((-388) (-1174) (-1174))) (-15 -3463 ((-388) (-1174))) (-15 -2452 ((-388) (-1174) (-1174))) (-15 -2452 ((-388) (-1174))) (-15 -4275 ((-388) (-1174) (-1174))) (-15 -1833 ((-1288))) (-15 -2043 ((-388) (-388))) (-15 -1641 ((-388) (-1174) (-388))) (-15 -1641 ((-388) (-1174) (-1174) (-388))) (-6 -4458)))) (T -97)) -((-3463 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) (-2452 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) (-4275 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) (-1833 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-97)))) (-2043 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97)))) (-1641 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1174)) (-5 *1 (-97)))) (-1641 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1174)) (-5 *1 (-97))))) -(-13 (-1115) (-10 -7 (-15 -3463 ((-388) (-1174) (-1174))) (-15 -3463 ((-388) (-1174))) (-15 -2452 ((-388) (-1174) (-1174))) (-15 -2452 ((-388) (-1174))) (-15 -4275 ((-388) (-1174) (-1174))) (-15 -1833 ((-1288))) (-15 -2043 ((-388) (-388))) (-15 -1641 ((-388) (-1174) (-388))) (-15 -1641 ((-388) (-1174) (-1174) (-388))) (-6 -4458))) +((-2320 (*1 *1 *1) (-4 *1 (-95))) (-2301 (*1 *1 *1) (-4 *1 (-95))) (-2340 (*1 *1 *1) (-4 *1 (-95))) (-2349 (*1 *1 *1) (-4 *1 (-95))) (-2330 (*1 *1 *1) (-4 *1 (-95))) (-2312 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -2312 ($ $)) (-15 -2330 ($ $)) (-15 -2349 ($ $)) (-15 -2340 ($ $)) (-15 -2301 ($ $)) (-15 -2320 ($ $)))) +((-2864 (((-112) $ $) NIL)) (-2039 (((-1151) $) 9)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-96) (-13 (-1099) (-10 -8 (-15 -2039 ((-1151) $))))) (T -96)) +((-2039 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-96))))) +(-13 (-1099) (-10 -8 (-15 -2039 ((-1151) $)))) +((-2864 (((-112) $ $) NIL)) (-3208 (((-388) (-1175) (-388)) 46) (((-388) (-1175) (-1175) (-388)) 44)) (-1955 (((-388) (-388)) 35)) (-3589 (((-1289)) 37)) (-1489 (((-1175) $) NIL)) (-3655 (((-388) (-1175) (-1175)) 50) (((-388) (-1175)) 52)) (-3940 (((-1136) $) NIL)) (-3188 (((-388) (-1175) (-1175)) 51)) (-3485 (((-388) (-1175) (-1175)) 53) (((-388) (-1175)) 54)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-97) (-13 (-1116) (-10 -7 (-15 -3655 ((-388) (-1175) (-1175))) (-15 -3655 ((-388) (-1175))) (-15 -3485 ((-388) (-1175) (-1175))) (-15 -3485 ((-388) (-1175))) (-15 -3188 ((-388) (-1175) (-1175))) (-15 -3589 ((-1289))) (-15 -1955 ((-388) (-388))) (-15 -3208 ((-388) (-1175) (-388))) (-15 -3208 ((-388) (-1175) (-1175) (-388))) (-6 -4459)))) (T -97)) +((-3655 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) (-3485 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) (-3188 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) (-3589 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-97)))) (-1955 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97)))) (-3208 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1175)) (-5 *1 (-97)))) (-3208 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1175)) (-5 *1 (-97))))) +(-13 (-1116) (-10 -7 (-15 -3655 ((-388) (-1175) (-1175))) (-15 -3655 ((-388) (-1175))) (-15 -3485 ((-388) (-1175) (-1175))) (-15 -3485 ((-388) (-1175))) (-15 -3188 ((-388) (-1175) (-1175))) (-15 -3589 ((-1289))) (-15 -1955 ((-388) (-388))) (-15 -3208 ((-388) (-1175) (-388))) (-15 -3208 ((-388) (-1175) (-1175) (-388))) (-6 -4459))) NIL (((-98) (-141)) (T -98)) NIL -(-13 (-10 -7 (-6 -4458) (-6 (-4460 "*")) (-6 -4459) (-6 -4455) (-6 -4453) (-6 -4452) (-6 -4451) (-6 -4456) (-6 -4450) (-6 -4449) (-6 -4448) (-6 -4447) (-6 -4446) (-6 -4454) (-6 -4457) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4445))) -((-2863 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) NIL)) (-1319 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-574))) 24)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 16)) (-3939 (((-1135) $) NIL)) (-2208 ((|#1| $ |#1|) 13)) (-2202 (($ $ $) NIL)) (-3490 (($ $ $) NIL)) (-2950 (((-872) $) 22)) (-3838 (((-112) $ $) NIL)) (-2154 (($) 8 T CONST)) (-2985 (((-112) $ $) 10)) (-3098 (($ $ $) NIL)) (** (($ $ (-934)) 32) (($ $ (-781)) NIL) (($ $ (-574)) 18)) (* (($ $ $) 33))) -(((-99 |#1|) (-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -1319 ($ (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1| (-574)))))) (-1064)) (T -99)) -((-1319 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-99 *3)))) (-1319 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-99 *3)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1064)) (-5 *1 (-99 *3))))) -(-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -1319 ($ (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1| (-574)))))) -((-3068 (((-428 |#2|) |#2| (-654 |#2|)) 10) (((-428 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -3068 ((-428 |#2|) |#2| |#2|)) (-15 -3068 ((-428 |#2|) |#2| (-654 |#2|)))) (-13 (-462) (-148)) (-1259 |#1|)) (T -100)) -((-3068 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3)))) (-3068 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1259 *4))))) -(-10 -7 (-15 -3068 ((-428 |#2|) |#2| |#2|)) (-15 -3068 ((-428 |#2|) |#2| (-654 |#2|)))) -((-2863 (((-112) $ $) 10))) -(((-101 |#1|) (-10 -8 (-15 -2863 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2863 ((-112) |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-2985 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4459) (-6 (-4461 "*")) (-6 -4460) (-6 -4456) (-6 -4454) (-6 -4453) (-6 -4452) (-6 -4457) (-6 -4451) (-6 -4450) (-6 -4449) (-6 -4448) (-6 -4447) (-6 -4455) (-6 -4458) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4446))) +((-2864 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) NIL)) (-1494 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-574))) 24)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 16)) (-3940 (((-1136) $) NIL)) (-2207 ((|#1| $ |#1|) 13)) (-3617 (($ $ $) NIL)) (-3955 (($ $ $) NIL)) (-2951 (((-872) $) 22)) (-4069 (((-112) $ $) NIL)) (-2153 (($) 8 T CONST)) (-2986 (((-112) $ $) 10)) (-3103 (($ $ $) NIL)) (** (($ $ (-935)) 32) (($ $ (-781)) NIL) (($ $ (-574)) 18)) (* (($ $ $) 33))) +(((-99 |#1|) (-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -1494 ($ (-1 |#1| |#1|))) (-15 -1494 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1494 ($ (-1 |#1| |#1| (-574)))))) (-1065)) (T -99)) +((-1494 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-99 *3)))) (-1494 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-99 *3)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1065)) (-5 *1 (-99 *3))))) +(-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -1494 ($ (-1 |#1| |#1|))) (-15 -1494 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1494 ($ (-1 |#1| |#1| (-574)))))) +((-2188 (((-428 |#2|) |#2| (-654 |#2|)) 10) (((-428 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -2188 ((-428 |#2|) |#2| |#2|)) (-15 -2188 ((-428 |#2|) |#2| (-654 |#2|)))) (-13 (-462) (-148)) (-1260 |#1|)) (T -100)) +((-2188 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3)))) (-2188 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1260 *4))))) +(-10 -7 (-15 -2188 ((-428 |#2|) |#2| |#2|)) (-15 -2188 ((-428 |#2|) |#2| (-654 |#2|)))) +((-2864 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -2864 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2864 ((-112) |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-2986 (((-112) $ $) 6))) (((-102) (-141)) (T -102)) -((-2863 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2985 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2985 ((-112) $ $)) (-15 -2863 ((-112) $ $)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-3906 ((|#1| $ |#1|) 24 (|has| $ (-6 -4459)))) (-3299 (($ $ $) NIL (|has| $ (-6 -4459)))) (-3026 (($ $ $) NIL (|has| $ (-6 -4459)))) (-3451 (($ $ (-654 |#1|)) 30)) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "left" $) NIL (|has| $ (-6 -4459))) (($ $ "right" $) NIL (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-3877 (($ $) 12)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) NIL)) (-2661 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1591 (($ $ |#1| $) 32)) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2888 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-2538 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|)) 49)) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3864 (($ $) 11)) (-3481 (((-654 |#1|) $) NIL)) (-4069 (((-112) $) 13)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 9)) (-2833 (($) 31)) (-2208 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4418 (((-574) $ $) NIL)) (-1966 (((-112) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) NIL)) (-1870 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3408 (($ (-781) |#1|) 33)) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -3408 ($ (-781) |#1|)) (-15 -3451 ($ $ (-654 |#1|))) (-15 -2888 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2888 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2538 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2538 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|))))) (-1115)) (T -103)) -((-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1115)))) (-3451 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-103 *3)))) (-2888 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1115)))) (-2888 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-103 *3)))) (-2538 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1115)) (-5 *1 (-103 *2)))) (-2538 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1115)) (-5 *1 (-103 *2))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -3408 ($ (-781) |#1|)) (-15 -3451 ($ $ (-654 |#1|))) (-15 -2888 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2888 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2538 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2538 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|))))) -((-4325 ((|#3| |#2| |#2|) 34)) (-1994 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4460 "*"))))) (-2166 ((|#3| |#2| |#2|) 36)) (-1322 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4460 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4325 (|#3| |#2| |#2|)) (-15 -2166 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4460 "*"))) (PROGN (-15 -1994 (|#1| |#2| |#2|)) (-15 -1322 (|#1| |#2|))) |%noBranch|)) (-1064) (-1259 |#1|) (-697 |#1| |#4| |#5|) (-382 |#1|) (-382 |#1|)) (T -104)) -((-1322 (*1 *2 *3) (-12 (|has| *2 (-6 (-4460 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1064)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1259 *2)) (-4 *4 (-697 *2 *5 *6)))) (-1994 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4460 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1064)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1259 *2)) (-4 *4 (-697 *2 *5 *6)))) (-2166 (*1 *2 *3 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1259 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)))) (-4325 (*1 *2 *3 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1259 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))))) -(-10 -7 (-15 -4325 (|#3| |#2| |#2|)) (-15 -2166 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4460 "*"))) (PROGN (-15 -1994 (|#1| |#2| |#2|)) (-15 -1322 (|#1| |#2|))) |%noBranch|)) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3567 (((-654 (-1192))) 37)) (-3461 (((-2 (|:| |zeros| (-1172 (-227))) (|:| |ones| (-1172 (-227))) (|:| |singularities| (-1172 (-227)))) (-1192)) 39)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-105) (-13 (-1115) (-10 -7 (-15 -3567 ((-654 (-1192)))) (-15 -3461 ((-2 (|:| |zeros| (-1172 (-227))) (|:| |ones| (-1172 (-227))) (|:| |singularities| (-1172 (-227)))) (-1192))) (-6 -4458)))) (T -105)) -((-3567 (*1 *2) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-105)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-2 (|:| |zeros| (-1172 (-227))) (|:| |ones| (-1172 (-227))) (|:| |singularities| (-1172 (-227))))) (-5 *1 (-105))))) -(-13 (-1115) (-10 -7 (-15 -3567 ((-654 (-1192)))) (-15 -3461 ((-2 (|:| |zeros| (-1172 (-227))) (|:| |ones| (-1172 (-227))) (|:| |singularities| (-1172 (-227)))) (-1192))) (-6 -4458))) -((-3180 (($ (-654 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -3180 (|#1| (-654 |#2|)))) (-107 |#2|) (-1233)) (T -106)) -NIL -(-10 -8 (-15 -3180 (|#1| (-654 |#2|)))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) 8)) (-3831 (($) 7 T CONST)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1748 ((|#1| $) 40)) (-2609 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-3484 ((|#1| $) 42)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) 43)) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-107 |#1|) (-141) (-1233)) (T -107)) -((-3180 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-107 *3)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233)))) (-2609 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233))))) -(-13 (-499 |t#1|) (-10 -8 (-6 -4459) (-15 -3180 ($ (-654 |t#1|))) (-15 -3484 (|t#1| $)) (-15 -2609 ($ |t#1| $)) (-15 -1748 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4018 (((-574) $) NIL (|has| (-574) (-315)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL (|has| (-574) (-830)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-574) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1053 (-574))))) (-2216 (((-574) $) NIL) (((-1192) $) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-574) (-1053 (-574)))) (((-574) $) NIL (|has| (-574) (-1053 (-574))))) (-2799 (($ $ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-574) (-555)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1913 (((-112) $) NIL (|has| (-574) (-830)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3372 (((-112) $) NIL)) (-3536 (($ $) NIL)) (-2970 (((-574) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| (-574) (-1167)))) (-1808 (((-112) $) NIL (|has| (-574) (-830)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| (-574) (-860)))) (-1786 (($ (-1 (-574) (-574)) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-3471 (((-574) $) NIL (|has| (-574) (-555)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1192)) (-654 (-574))) NIL (|has| (-574) (-524 (-1192) (-574)))) (($ $ (-1192) (-574)) NIL (|has| (-574) (-524 (-1192) (-574))))) (-3364 (((-781) $) NIL)) (-2208 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2120 (($ $) NIL)) (-2981 (((-574) $) NIL)) (-1845 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1037))) (((-227) $) NIL (|has| (-574) (-1037)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1192)) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL) (((-1019 2) $) 10)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-574) (-922))) (|has| (-574) (-146))))) (-4019 (((-781)) NIL T CONST)) (-2753 (((-574) $) NIL (|has| (-574) (-555)))) (-1522 (($ (-417 (-574))) 9)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3306 (($ $) NIL (|has| (-574) (-830)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3098 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) -(((-108) (-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 2)) (-10 -8 (-15 -2244 ((-417 (-574)) $)) (-15 -1522 ($ (-417 (-574))))))) (T -108)) -((-2244 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108))))) -(-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 2)) (-10 -8 (-15 -2244 ((-417 (-574)) $)) (-15 -1522 ($ (-417 (-574)))))) -((-2805 (((-654 (-978)) $) 13)) (-2040 (((-516) $) 9)) (-2950 (((-872) $) 20)) (-4386 (($ (-516) (-654 (-978))) 15))) -(((-109) (-13 (-623 (-872)) (-10 -8 (-15 -2040 ((-516) $)) (-15 -2805 ((-654 (-978)) $)) (-15 -4386 ($ (-516) (-654 (-978))))))) (T -109)) -((-2040 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-109)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-654 (-978))) (-5 *1 (-109)))) (-4386 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-978))) (-5 *1 (-109))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2040 ((-516) $)) (-15 -2805 ((-654 (-978)) $)) (-15 -4386 ($ (-516) (-654 (-978)))))) -((-2863 (((-112) $ $) NIL)) (-2889 (($ $) NIL)) (-2118 (($ $ $) NIL)) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3565 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2785 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-3134 (((-112) $ (-1250 (-574)) (-112)) NIL (|has| $ (-6 -4459))) (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-3310 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2881 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2472 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4459)))) (-2399 (((-112) $ (-574)) NIL)) (-1451 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1115))) (((-574) (-112) $) NIL (|has| (-112) (-1115))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1873 (((-654 (-112)) $) NIL (|has| $ (-6 -4458)))) (-2107 (($ $ $) NIL)) (-2085 (($ $) NIL)) (-2831 (($ $ $) NIL)) (-3763 (($ (-781) (-112)) 10)) (-3225 (($ $ $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL)) (-4297 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2247 (((-654 (-112)) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL)) (-2461 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-1603 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-112) $) NIL (|has| (-574) (-860)))) (-2294 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4276 (($ $ (-112)) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2379 (((-654 (-112)) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 (($ $ (-1250 (-574))) NIL) (((-112) $ (-574)) NIL) (((-112) $ (-574) (-112)) NIL)) (-2853 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-3948 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2962 (($ (-654 (-112))) NIL)) (-4131 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2950 (((-872) $) NIL)) (-1708 (($ (-781) (-112)) 11)) (-3838 (((-112) $ $) NIL)) (-2980 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-2096 (($ $ $) NIL)) (-2933 (($ $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2922 (($ $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-110) (-13 (-124) (-10 -8 (-15 -1708 ($ (-781) (-112)))))) (T -110)) -((-1708 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-124) (-10 -8 (-15 -1708 ($ (-781) (-112))))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-141) (-1064) (-1064)) (T -111)) -NIL -(-13 (-658 |t#1|) (-1071 |t#2|) (-10 -7 (-6 -4453) (-6 -4452))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1066 |#2|) . T) ((-1071 |#2|) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-2889 (($ $) 10)) (-2118 (($ $ $) 15)) (-1571 (($) 7 T CONST)) (-4137 (($ $) 6)) (-1496 (((-781)) 24)) (-2834 (($) 32)) (-2107 (($ $ $) 13)) (-2085 (($ $) 9)) (-2831 (($ $ $) 16)) (-3225 (($ $ $) 17)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-1593 (($ $ $) NIL) (($) NIL T CONST)) (-3271 (((-934) $) 30)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) 28)) (-3007 (($ $ $) 20)) (-3939 (((-1135) $) NIL)) (-2895 (($) 8 T CONST)) (-3030 (($ $ $) 21)) (-1845 (((-546) $) 34)) (-2950 (((-872) $) 36)) (-3838 (((-112) $ $) NIL)) (-2096 (($ $ $) 11)) (-2933 (($ $ $) 14)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 19)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 22)) (-2922 (($ $ $) 12))) -(((-112) (-13 (-854) (-671) (-982) (-624 (-546)) (-10 -8 (-15 -2118 ($ $ $)) (-15 -3225 ($ $ $)) (-15 -2831 ($ $ $)) (-15 -4137 ($ $))))) (T -112)) -((-2118 (*1 *1 *1 *1) (-5 *1 (-112))) (-3225 (*1 *1 *1 *1) (-5 *1 (-112))) (-2831 (*1 *1 *1 *1) (-5 *1 (-112))) (-4137 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-854) (-671) (-982) (-624 (-546)) (-10 -8 (-15 -2118 ($ $ $)) (-15 -3225 ($ $ $)) (-15 -2831 ($ $ $)) (-15 -4137 ($ $)))) -((-2107 (($ $ $) 6)) (-2085 (($ $) 8)) (-2096 (($ $ $) 7))) +((-2864 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2986 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2986 ((-112) $ $)) (-15 -2864 ((-112) $ $)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-4433 ((|#1| $ |#1|) 24 (|has| $ (-6 -4460)))) (-2035 (($ $ $) NIL (|has| $ (-6 -4460)))) (-2785 (($ $ $) NIL (|has| $ (-6 -4460)))) (-3355 (($ $ (-654 |#1|)) 30)) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "left" $) NIL (|has| $ (-6 -4460))) (($ $ "right" $) NIL (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-3878 (($ $) 12)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) NIL)) (-2622 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1590 (($ $ |#1| $) 32)) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1596 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-3727 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|)) 49)) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-3865 (($ $) 11)) (-3483 (((-654 |#1|) $) NIL)) (-1580 (((-112) $) 13)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 9)) (-3336 (($) 31)) (-2207 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3615 (((-574) $ $) NIL)) (-3911 (((-112) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) NIL)) (-4208 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2318 (($ (-781) |#1|) 33)) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -2318 ($ (-781) |#1|)) (-15 -3355 ($ $ (-654 |#1|))) (-15 -1596 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1596 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3727 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3727 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|))))) (-1116)) (T -103)) +((-2318 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1116)))) (-3355 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-103 *3)))) (-1596 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1116)))) (-1596 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-103 *3)))) (-3727 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1116)) (-5 *1 (-103 *2)))) (-3727 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1116)) (-5 *1 (-103 *2))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -2318 ($ (-781) |#1|)) (-15 -3355 ($ $ (-654 |#1|))) (-15 -1596 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1596 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3727 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3727 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|))))) +((-2926 ((|#3| |#2| |#2|) 34)) (-3973 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4461 "*"))))) (-1541 ((|#3| |#2| |#2|) 36)) (-1387 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4461 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2926 (|#3| |#2| |#2|)) (-15 -1541 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4461 "*"))) (PROGN (-15 -3973 (|#1| |#2| |#2|)) (-15 -1387 (|#1| |#2|))) |%noBranch|)) (-1065) (-1260 |#1|) (-697 |#1| |#4| |#5|) (-382 |#1|) (-382 |#1|)) (T -104)) +((-1387 (*1 *2 *3) (-12 (|has| *2 (-6 (-4461 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1065)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1260 *2)) (-4 *4 (-697 *2 *5 *6)))) (-3973 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4461 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1065)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1260 *2)) (-4 *4 (-697 *2 *5 *6)))) (-1541 (*1 *2 *3 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1260 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)))) (-2926 (*1 *2 *3 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1260 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))))) +(-10 -7 (-15 -2926 (|#3| |#2| |#2|)) (-15 -1541 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4461 "*"))) (PROGN (-15 -3973 (|#1| |#2| |#2|)) (-15 -1387 (|#1| |#2|))) |%noBranch|)) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2115 (((-654 (-1193))) 37)) (-3559 (((-2 (|:| |zeros| (-1173 (-227))) (|:| |ones| (-1173 (-227))) (|:| |singularities| (-1173 (-227)))) (-1193)) 39)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-105) (-13 (-1116) (-10 -7 (-15 -2115 ((-654 (-1193)))) (-15 -3559 ((-2 (|:| |zeros| (-1173 (-227))) (|:| |ones| (-1173 (-227))) (|:| |singularities| (-1173 (-227)))) (-1193))) (-6 -4459)))) (T -105)) +((-2115 (*1 *2) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-105)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-2 (|:| |zeros| (-1173 (-227))) (|:| |ones| (-1173 (-227))) (|:| |singularities| (-1173 (-227))))) (-5 *1 (-105))))) +(-13 (-1116) (-10 -7 (-15 -2115 ((-654 (-1193)))) (-15 -3559 ((-2 (|:| |zeros| (-1173 (-227))) (|:| |ones| (-1173 (-227))) (|:| |singularities| (-1173 (-227)))) (-1193))) (-6 -4459))) +((-2829 (($ (-654 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -2829 (|#1| (-654 |#2|)))) (-107 |#2|) (-1234)) (T -106)) +NIL +(-10 -8 (-15 -2829 (|#1| (-654 |#2|)))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) 8)) (-3250 (($) 7 T CONST)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-2375 ((|#1| $) 40)) (-3285 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3801 ((|#1| $) 42)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) 43)) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-107 |#1|) (-141) (-1234)) (T -107)) +((-2829 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-107 *3)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234)))) (-3285 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234))))) +(-13 (-499 |t#1|) (-10 -8 (-6 -4460) (-15 -2829 ($ (-654 |t#1|))) (-15 -3801 (|t#1| $)) (-15 -3285 ($ |t#1| $)) (-15 -2375 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4146 (((-574) $) NIL (|has| (-574) (-315)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL (|has| (-574) (-830)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-574) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1054 (-574))))) (-2214 (((-574) $) NIL) (((-1193) $) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-574) (-1054 (-574)))) (((-574) $) NIL (|has| (-574) (-1054 (-574))))) (-2800 (($ $ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-574) (-555)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3408 (((-112) $) NIL (|has| (-574) (-830)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-4226 (((-112) $) NIL)) (-2967 (($ $) NIL)) (-2971 (((-574) $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| (-574) (-1168)))) (-3182 (((-112) $) NIL (|has| (-574) (-830)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| (-574) (-860)))) (-1785 (($ (-1 (-574) (-574)) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-2260 (((-574) $) NIL (|has| (-574) (-555)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1193)) (-654 (-574))) NIL (|has| (-574) (-524 (-1193) (-574)))) (($ $ (-1193) (-574)) NIL (|has| (-574) (-524 (-1193) (-574))))) (-2098 (((-781) $) NIL)) (-2207 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2808 (($ $) NIL)) (-2981 (((-574) $) NIL)) (-1844 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1038))) (((-227) $) NIL (|has| (-574) (-1038)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1193)) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL) (((-1020 2) $) 10)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-574) (-923))) (|has| (-574) (-146))))) (-2898 (((-781)) NIL T CONST)) (-2544 (((-574) $) NIL (|has| (-574) (-555)))) (-2697 (($ (-417 (-574))) 9)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3936 (($ $) NIL (|has| (-574) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3103 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) +(((-108) (-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 2)) (-10 -8 (-15 -2162 ((-417 (-574)) $)) (-15 -2697 ($ (-417 (-574))))))) (T -108)) +((-2162 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) (-2697 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108))))) +(-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 2)) (-10 -8 (-15 -2162 ((-417 (-574)) $)) (-15 -2697 ($ (-417 (-574)))))) +((-2806 (((-654 (-979)) $) 13)) (-2039 (((-516) $) 9)) (-2951 (((-872) $) 20)) (-2505 (($ (-516) (-654 (-979))) 15))) +(((-109) (-13 (-623 (-872)) (-10 -8 (-15 -2039 ((-516) $)) (-15 -2806 ((-654 (-979)) $)) (-15 -2505 ($ (-516) (-654 (-979))))))) (T -109)) +((-2039 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-109)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-654 (-979))) (-5 *1 (-109)))) (-2505 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-979))) (-5 *1 (-109))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2039 ((-516) $)) (-15 -2806 ((-654 (-979)) $)) (-15 -2505 ($ (-516) (-654 (-979)))))) +((-2864 (((-112) $ $) NIL)) (-2890 (($ $) NIL)) (-2117 (($ $ $) NIL)) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4140 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-2786 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-3135 (((-112) $ (-1251 (-574)) (-112)) NIL (|has| $ (-6 -4460))) (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-3311 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2882 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2473 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4460)))) (-2400 (((-112) $ (-574)) NIL)) (-1452 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1116))) (((-574) (-112) $) NIL (|has| (-112) (-1116))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1871 (((-654 (-112)) $) NIL (|has| $ (-6 -4459)))) (-2106 (($ $ $) NIL)) (-2084 (($ $) NIL)) (-2259 (($ $ $) NIL)) (-3764 (($ (-781) (-112)) 10)) (-2165 (($ $ $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL)) (-3404 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2036 (((-654 (-112)) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL)) (-2462 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-112) $) NIL (|has| (-574) (-860)))) (-2183 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1822 (($ $ (-112)) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2315 (((-654 (-112)) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 (($ $ (-1251 (-574))) NIL) (((-112) $ (-574)) NIL) (((-112) $ (-574) (-112)) NIL)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-3949 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2963 (($ (-654 (-112))) NIL)) (-4132 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2951 (((-872) $) NIL)) (-2562 (($ (-781) (-112)) 11)) (-4069 (((-112) $ $) NIL)) (-2020 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2095 (($ $ $) NIL)) (-2934 (($ $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2922 (($ $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-110) (-13 (-124) (-10 -8 (-15 -2562 ($ (-781) (-112)))))) (T -110)) +((-2562 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-124) (-10 -8 (-15 -2562 ($ (-781) (-112))))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-141) (-1065) (-1065)) (T -111)) +NIL +(-13 (-658 |t#1|) (-1072 |t#2|) (-10 -7 (-6 -4454) (-6 -4453))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1067 |#2|) . T) ((-1072 |#2|) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-2890 (($ $) 10)) (-2117 (($ $ $) 15)) (-1570 (($) 7 T CONST)) (-4138 (($ $) 6)) (-1496 (((-781)) 24)) (-2835 (($) 32)) (-2106 (($ $ $) 13)) (-2084 (($ $) 9)) (-2259 (($ $ $) 16)) (-2165 (($ $ $) 17)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-4380 (($ $ $) NIL) (($) NIL T CONST)) (-3383 (((-935) $) 30)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) 28)) (-2604 (($ $ $) 20)) (-3940 (((-1136) $) NIL)) (-2896 (($) 8 T CONST)) (-1692 (($ $ $) 21)) (-1844 (((-546) $) 34)) (-2951 (((-872) $) 36)) (-4069 (((-112) $ $) NIL)) (-2095 (($ $ $) 11)) (-2934 (($ $ $) 14)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 19)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 22)) (-2922 (($ $ $) 12))) +(((-112) (-13 (-854) (-671) (-983) (-624 (-546)) (-10 -8 (-15 -2117 ($ $ $)) (-15 -2165 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -4138 ($ $))))) (T -112)) +((-2117 (*1 *1 *1 *1) (-5 *1 (-112))) (-2165 (*1 *1 *1 *1) (-5 *1 (-112))) (-2259 (*1 *1 *1 *1) (-5 *1 (-112))) (-4138 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-854) (-671) (-983) (-624 (-546)) (-10 -8 (-15 -2117 ($ $ $)) (-15 -2165 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -4138 ($ $)))) +((-2106 (($ $ $) 6)) (-2084 (($ $) 8)) (-2095 (($ $ $) 7))) (((-113) (-141)) (T -113)) -((-2085 (*1 *1 *1) (-4 *1 (-113))) (-2096 (*1 *1 *1 *1) (-4 *1 (-113))) (-2107 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-1233) (-10 -8 (-15 -2085 ($ $)) (-15 -2096 ($ $ $)) (-15 -2107 ($ $ $)))) -(((-1233) . T)) -((-1980 (((-3 (-1 |#1| (-654 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-654 |#1|))) 11) (((-3 |#1| "failed") (-115) (-654 |#1|)) 25)) (-1794 (((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-654 (-1 |#1| (-654 |#1|)))) 30)) (-2969 (((-115) |#1|) 63)) (-1383 (((-3 |#1| "failed") (-115)) 58))) -(((-114 |#1|) (-10 -7 (-15 -1980 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -1980 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -1980 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1980 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -1794 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -1794 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1794 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -2969 ((-115) |#1|)) (-15 -1383 ((-3 |#1| "failed") (-115)))) (-1115)) (T -114)) -((-1383 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1115)))) (-2969 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1115)))) (-1794 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1115)))) (-1794 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1115)) (-5 *1 (-114 *4)))) (-1794 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1115)) (-5 *1 (-114 *4)))) (-1980 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1115)))) (-1980 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1115)) (-5 *1 (-114 *4)))) (-1980 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1115)) (-5 *1 (-114 *4)))) (-1980 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1115))))) -(-10 -7 (-15 -1980 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -1980 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -1980 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1980 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -1794 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -1794 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1794 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -2969 ((-115) |#1|)) (-15 -1383 ((-3 |#1| "failed") (-115)))) -((-2863 (((-112) $ $) NIL)) (-2102 (((-781) $) 91) (($ $ (-781)) 37)) (-3396 (((-112) $) 41)) (-4323 (($ $ (-1174) (-784)) 58) (($ $ (-516) (-784)) 33)) (-3223 (($ $ (-45 (-1174) (-784))) 16)) (-2419 (((-3 (-784) "failed") $ (-1174)) 27) (((-701 (-784)) $ (-516)) 32)) (-2805 (((-45 (-1174) (-784)) $) 15)) (-4150 (($ (-1192)) 20) (($ (-1192) (-781)) 23) (($ (-1192) (-55)) 24)) (-1350 (((-112) $) 39)) (-2145 (((-112) $) 43)) (-2040 (((-1192) $) 8)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3571 (((-112) $ (-1192)) 11)) (-1462 (($ $ (-1 (-546) (-654 (-546)))) 64) (((-3 (-1 (-546) (-654 (-546))) "failed") $) 71)) (-3939 (((-1135) $) NIL)) (-3629 (((-112) $ (-516)) 36)) (-2607 (($ $ (-1 (-112) $ $)) 45)) (-1413 (((-3 (-1 (-872) (-654 (-872))) "failed") $) 69) (($ $ (-1 (-872) (-654 (-872)))) 51) (($ $ (-1 (-872) (-872))) 53)) (-4034 (($ $ (-1174)) 55) (($ $ (-516)) 56)) (-3156 (($ $) 77)) (-2790 (($ $ (-1 (-112) $ $)) 46)) (-2950 (((-872) $) 60)) (-3838 (((-112) $ $) NIL)) (-2119 (($ $ (-516)) 34)) (-2533 (((-55) $) 72)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 89)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 103))) -(((-115) (-13 (-860) (-845 (-1192)) (-10 -8 (-15 -2805 ((-45 (-1174) (-784)) $)) (-15 -3156 ($ $)) (-15 -4150 ($ (-1192))) (-15 -4150 ($ (-1192) (-781))) (-15 -4150 ($ (-1192) (-55))) (-15 -1350 ((-112) $)) (-15 -3396 ((-112) $)) (-15 -2145 ((-112) $)) (-15 -2102 ((-781) $)) (-15 -2102 ($ $ (-781))) (-15 -2607 ($ $ (-1 (-112) $ $))) (-15 -2790 ($ $ (-1 (-112) $ $))) (-15 -1413 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1413 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1413 ($ $ (-1 (-872) (-872)))) (-15 -1462 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1462 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -3629 ((-112) $ (-516))) (-15 -2119 ($ $ (-516))) (-15 -4034 ($ $ (-1174))) (-15 -4034 ($ $ (-516))) (-15 -2419 ((-3 (-784) "failed") $ (-1174))) (-15 -2419 ((-701 (-784)) $ (-516))) (-15 -4323 ($ $ (-1174) (-784))) (-15 -4323 ($ $ (-516) (-784))) (-15 -3223 ($ $ (-45 (-1174) (-784))))))) (T -115)) -((-2805 (*1 *2 *1) (-12 (-5 *2 (-45 (-1174) (-784))) (-5 *1 (-115)))) (-3156 (*1 *1 *1) (-5 *1 (-115))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-115)))) (-4150 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *1 (-115)))) (-4150 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-55)) (-5 *1 (-115)))) (-1350 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-2102 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1413 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1413 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1413 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-872))) (-5 *1 (-115)))) (-1462 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-1462 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-3629 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2119 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-4034 (*1 *1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-115)))) (-4034 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-2419 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1174)) (-5 *2 (-784)) (-5 *1 (-115)))) (-2419 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115)))) (-4323 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-784)) (-5 *1 (-115)))) (-4323 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1174) (-784))) (-5 *1 (-115))))) -(-13 (-860) (-845 (-1192)) (-10 -8 (-15 -2805 ((-45 (-1174) (-784)) $)) (-15 -3156 ($ $)) (-15 -4150 ($ (-1192))) (-15 -4150 ($ (-1192) (-781))) (-15 -4150 ($ (-1192) (-55))) (-15 -1350 ((-112) $)) (-15 -3396 ((-112) $)) (-15 -2145 ((-112) $)) (-15 -2102 ((-781) $)) (-15 -2102 ($ $ (-781))) (-15 -2607 ($ $ (-1 (-112) $ $))) (-15 -2790 ($ $ (-1 (-112) $ $))) (-15 -1413 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1413 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1413 ($ $ (-1 (-872) (-872)))) (-15 -1462 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1462 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -3629 ((-112) $ (-516))) (-15 -2119 ($ $ (-516))) (-15 -4034 ($ $ (-1174))) (-15 -4034 ($ $ (-516))) (-15 -2419 ((-3 (-784) "failed") $ (-1174))) (-15 -2419 ((-701 (-784)) $ (-516))) (-15 -4323 ($ $ (-1174) (-784))) (-15 -4323 ($ $ (-516) (-784))) (-15 -3223 ($ $ (-45 (-1174) (-784)))))) -((-3205 (((-574) |#2|) 41))) -(((-116 |#1| |#2|) (-10 -7 (-15 -3205 ((-574) |#2|))) (-13 (-372) (-1053 (-417 (-574)))) (-1259 |#1|)) (T -116)) -((-3205 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-1053 (-417 *2)))) (-5 *2 (-574)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1259 *4))))) -(-10 -7 (-15 -3205 ((-574) |#2|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ (-574)) NIL)) (-3656 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-1739 (($ (-1188 (-574)) (-574)) NIL)) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1325 (($ $) NIL)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-2725 (((-781) $) NIL)) (-3372 (((-112) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2078 (((-574)) NIL)) (-1978 (((-574) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2115 (($ $ (-574)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-2354 (((-1172 (-574)) $) NIL)) (-4209 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3524 (((-574) $ (-574)) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) +((-2084 (*1 *1 *1) (-4 *1 (-113))) (-2095 (*1 *1 *1 *1) (-4 *1 (-113))) (-2106 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-1234) (-10 -8 (-15 -2084 ($ $)) (-15 -2095 ($ $ $)) (-15 -2106 ($ $ $)))) +(((-1234) . T)) +((-3282 (((-3 (-1 |#1| (-654 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-654 |#1|))) 11) (((-3 |#1| "failed") (-115) (-654 |#1|)) 25)) (-2080 (((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-654 (-1 |#1| (-654 |#1|)))) 30)) (-2427 (((-115) |#1|) 63)) (-2264 (((-3 |#1| "failed") (-115)) 58))) +(((-114 |#1|) (-10 -7 (-15 -3282 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -3282 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -3282 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3282 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -2080 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2080 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2080 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -2427 ((-115) |#1|)) (-15 -2264 ((-3 |#1| "failed") (-115)))) (-1116)) (T -114)) +((-2264 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1116)))) (-2427 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1116)))) (-2080 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1116)))) (-2080 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1116)) (-5 *1 (-114 *4)))) (-2080 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1116)) (-5 *1 (-114 *4)))) (-3282 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1116)))) (-3282 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1116)) (-5 *1 (-114 *4)))) (-3282 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1116)) (-5 *1 (-114 *4)))) (-3282 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1116))))) +(-10 -7 (-15 -3282 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -3282 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -3282 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3282 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -2080 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2080 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2080 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -2427 ((-115) |#1|)) (-15 -2264 ((-3 |#1| "failed") (-115)))) +((-2864 (((-112) $ $) NIL)) (-1540 (((-781) $) 91) (($ $ (-781)) 37)) (-3889 (((-112) $) 41)) (-2708 (($ $ (-1175) (-784)) 58) (($ $ (-516) (-784)) 33)) (-2283 (($ $ (-45 (-1175) (-784))) 16)) (-1921 (((-3 (-784) "failed") $ (-1175)) 27) (((-701 (-784)) $ (-516)) 32)) (-2806 (((-45 (-1175) (-784)) $) 15)) (-4150 (($ (-1193)) 20) (($ (-1193) (-781)) 23) (($ (-1193) (-55)) 24)) (-4358 (((-112) $) 39)) (-4274 (((-112) $) 43)) (-2039 (((-1193) $) 8)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-2154 (((-112) $ (-1193)) 11)) (-1463 (($ $ (-1 (-546) (-654 (-546)))) 64) (((-3 (-1 (-546) (-654 (-546))) "failed") $) 71)) (-3940 (((-1136) $) NIL)) (-2133 (((-112) $ (-516)) 36)) (-2531 (($ $ (-1 (-112) $ $)) 45)) (-1414 (((-3 (-1 (-872) (-654 (-872))) "failed") $) 69) (($ $ (-1 (-872) (-654 (-872)))) 51) (($ $ (-1 (-872) (-872))) 53)) (-1933 (($ $ (-1175)) 55) (($ $ (-516)) 56)) (-3157 (($ $) 77)) (-3505 (($ $ (-1 (-112) $ $)) 46)) (-2951 (((-872) $) 60)) (-4069 (((-112) $ $) NIL)) (-2121 (($ $ (-516)) 34)) (-2875 (((-55) $) 72)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 89)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 103))) +(((-115) (-13 (-860) (-845 (-1193)) (-10 -8 (-15 -2806 ((-45 (-1175) (-784)) $)) (-15 -3157 ($ $)) (-15 -4150 ($ (-1193))) (-15 -4150 ($ (-1193) (-781))) (-15 -4150 ($ (-1193) (-55))) (-15 -4358 ((-112) $)) (-15 -3889 ((-112) $)) (-15 -4274 ((-112) $)) (-15 -1540 ((-781) $)) (-15 -1540 ($ $ (-781))) (-15 -2531 ($ $ (-1 (-112) $ $))) (-15 -3505 ($ $ (-1 (-112) $ $))) (-15 -1414 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1414 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1414 ($ $ (-1 (-872) (-872)))) (-15 -1463 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1463 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -2133 ((-112) $ (-516))) (-15 -2121 ($ $ (-516))) (-15 -1933 ($ $ (-1175))) (-15 -1933 ($ $ (-516))) (-15 -1921 ((-3 (-784) "failed") $ (-1175))) (-15 -1921 ((-701 (-784)) $ (-516))) (-15 -2708 ($ $ (-1175) (-784))) (-15 -2708 ($ $ (-516) (-784))) (-15 -2283 ($ $ (-45 (-1175) (-784))))))) (T -115)) +((-2806 (*1 *2 *1) (-12 (-5 *2 (-45 (-1175) (-784))) (-5 *1 (-115)))) (-3157 (*1 *1 *1) (-5 *1 (-115))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-115)))) (-4150 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *1 (-115)))) (-4150 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-55)) (-5 *1 (-115)))) (-4358 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-2531 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3505 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1414 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1414 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1414 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-872))) (-5 *1 (-115)))) (-1463 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-1463 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-2133 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2121 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-1933 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-115)))) (-1933 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-1921 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1175)) (-5 *2 (-784)) (-5 *1 (-115)))) (-1921 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115)))) (-2708 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-784)) (-5 *1 (-115)))) (-2708 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115)))) (-2283 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1175) (-784))) (-5 *1 (-115))))) +(-13 (-860) (-845 (-1193)) (-10 -8 (-15 -2806 ((-45 (-1175) (-784)) $)) (-15 -3157 ($ $)) (-15 -4150 ($ (-1193))) (-15 -4150 ($ (-1193) (-781))) (-15 -4150 ($ (-1193) (-55))) (-15 -4358 ((-112) $)) (-15 -3889 ((-112) $)) (-15 -4274 ((-112) $)) (-15 -1540 ((-781) $)) (-15 -1540 ($ $ (-781))) (-15 -2531 ($ $ (-1 (-112) $ $))) (-15 -3505 ($ $ (-1 (-112) $ $))) (-15 -1414 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1414 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1414 ($ $ (-1 (-872) (-872)))) (-15 -1463 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1463 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -2133 ((-112) $ (-516))) (-15 -2121 ($ $ (-516))) (-15 -1933 ($ $ (-1175))) (-15 -1933 ($ $ (-516))) (-15 -1921 ((-3 (-784) "failed") $ (-1175))) (-15 -1921 ((-701 (-784)) $ (-516))) (-15 -2708 ($ $ (-1175) (-784))) (-15 -2708 ($ $ (-516) (-784))) (-15 -2283 ($ $ (-45 (-1175) (-784)))))) +((-4061 (((-574) |#2|) 41))) +(((-116 |#1| |#2|) (-10 -7 (-15 -4061 ((-574) |#2|))) (-13 (-372) (-1054 (-417 (-574)))) (-1260 |#1|)) (T -116)) +((-4061 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-1054 (-417 *2)))) (-5 *2 (-574)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1260 *4))))) +(-10 -7 (-15 -4061 ((-574) |#2|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $ (-574)) NIL)) (-3245 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-3298 (($ (-1189 (-574)) (-574)) NIL)) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-4077 (($ $) NIL)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3547 (((-781) $) NIL)) (-4226 (((-112) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1510 (((-574)) NIL)) (-1712 (((-574) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2433 (($ $ (-574)) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-4074 (((-1173 (-574)) $) NIL)) (-2916 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3525 (((-574) $ (-574)) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) (((-117 |#1|) (-879 |#1|) (-574)) (T -117)) NIL (-879 |#1|) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4018 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-315)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-117 |#1|) (-922)))) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-117 |#1|) (-922)))) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL (|has| (-117 |#1|) (-830)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-117 |#1|) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-117 |#1|) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-117 |#1|) (-1053 (-574))))) (-2216 (((-117 |#1|) $) NIL) (((-1192) $) NIL (|has| (-117 |#1|) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-117 |#1|) (-1053 (-574)))) (((-574) $) NIL (|has| (-117 |#1|) (-1053 (-574))))) (-3892 (($ $) NIL) (($ (-574) $) NIL)) (-2799 (($ $ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-117 |#1|))) (|:| |vec| (-1283 (-117 |#1|)))) (-699 $) (-1283 $)) NIL) (((-699 (-117 |#1|)) (-699 $)) NIL) (((-699 (-117 |#1|)) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-117 |#1|) (-555)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1913 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-117 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-117 |#1|) (-897 (-388))))) (-3372 (((-112) $) NIL)) (-3536 (($ $) NIL)) (-2970 (((-117 |#1|) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1167)))) (-1808 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-1593 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-1786 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-117 |#1|) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) NIL (|has| (-117 |#1|) (-315)))) (-3471 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-117 |#1|) (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-117 |#1|) (-922)))) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-117 |#1|)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-302 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-302 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-1192)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-524 (-1192) (-117 |#1|)))) (($ $ (-1192) (-117 |#1|)) NIL (|has| (-117 |#1|) (-524 (-1192) (-117 |#1|))))) (-3364 (((-781) $) NIL)) (-2208 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-294 (-117 |#1|) (-117 |#1|))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-1192)) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-2120 (($ $) NIL)) (-2981 (((-117 |#1|) $) NIL)) (-1845 (((-903 (-574)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-117 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-117 |#1|) (-1037))) (((-227) $) NIL (|has| (-117 |#1|) (-1037)))) (-1863 (((-176 (-417 (-574))) $) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-117 |#1|)) NIL) (($ (-1192)) NIL (|has| (-117 |#1|) (-1053 (-1192))))) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-922))) (|has| (-117 |#1|) (-146))))) (-4019 (((-781)) NIL T CONST)) (-2753 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3524 (((-417 (-574)) $ (-574)) NIL)) (-3306 (($ $) NIL (|has| (-117 |#1|) (-830)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-1192)) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3098 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) -(((-118 |#1|) (-13 (-1007 (-117 |#1|)) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -1863 ((-176 (-417 (-574))) $)) (-15 -3892 ($ $)) (-15 -3892 ($ (-574) $)))) (-574)) (T -118)) -((-3524 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574)))) (-3892 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574)))) (-3892 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2)))) -(-13 (-1007 (-117 |#1|)) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -1863 ((-176 (-417 (-574))) $)) (-15 -3892 ($ $)) (-15 -3892 ($ (-574) $)))) -((-3134 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2898 (((-654 $) $) 31)) (-2661 (((-112) $ $) 36)) (-2231 (((-112) |#2| $) 40)) (-3481 (((-654 |#2|) $) 25)) (-4069 (((-112) $) 18)) (-2208 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1966 (((-112) $) 57)) (-2950 (((-872) $) 47)) (-4414 (((-654 $) $) 32)) (-2985 (((-112) $ $) 38)) (-2876 (((-781) $) 50))) -(((-119 |#1| |#2|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -3134 (|#1| |#1| "right" |#1|)) (-15 -3134 (|#1| |#1| "left" |#1|)) (-15 -2208 (|#1| |#1| "right")) (-15 -2208 (|#1| |#1| "left")) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -2661 ((-112) |#1| |#1|)) (-15 -3481 ((-654 |#2|) |#1|)) (-15 -1966 ((-112) |#1|)) (-15 -2208 (|#2| |#1| "value")) (-15 -4069 ((-112) |#1|)) (-15 -2898 ((-654 |#1|) |#1|)) (-15 -4414 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2231 ((-112) |#2| |#1|)) (-15 -2876 ((-781) |#1|))) (-120 |#2|) (-1233)) (T -119)) -NIL -(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -3134 (|#1| |#1| "right" |#1|)) (-15 -3134 (|#1| |#1| "left" |#1|)) (-15 -2208 (|#1| |#1| "right")) (-15 -2208 (|#1| |#1| "left")) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -2661 ((-112) |#1| |#1|)) (-15 -3481 ((-654 |#2|) |#1|)) (-15 -1966 ((-112) |#1|)) (-15 -2208 (|#2| |#1| "value")) (-15 -4069 ((-112) |#1|)) (-15 -2898 ((-654 |#1|) |#1|)) (-15 -4414 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2231 ((-112) |#2| |#1|)) (-15 -2876 ((-781) |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-2818 (((-112) $ (-781)) 8)) (-3906 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-3299 (($ $ $) 53 (|has| $ (-6 -4459)))) (-3026 (($ $ $) 55 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) (($ $ "left" $) 56 (|has| $ (-6 -4459))) (($ $ "right" $) 54 (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-3831 (($) 7 T CONST)) (-3877 (($ $) 58)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) 51)) (-2661 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3864 (($ $) 60)) (-3481 (((-654 |#1|) $) 46)) (-4069 (((-112) $) 50)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4418 (((-574) $ $) 45)) (-1966 (((-112) $) 47)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) 52)) (-1870 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-120 |#1|) (-141) (-1233)) (T -120)) -((-3864 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1233)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1233)))) (-3877 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1233)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1233)))) (-3134 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4459)) (-4 *1 (-120 *3)) (-4 *3 (-1233)))) (-3026 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-120 *2)) (-4 *2 (-1233)))) (-3134 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4459)) (-4 *1 (-120 *3)) (-4 *3 (-1233)))) (-3299 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-120 *2)) (-4 *2 (-1233))))) -(-13 (-1025 |t#1|) (-10 -8 (-15 -3864 ($ $)) (-15 -2208 ($ $ "left")) (-15 -3877 ($ $)) (-15 -2208 ($ $ "right")) (IF (|has| $ (-6 -4459)) (PROGN (-15 -3134 ($ $ "left" $)) (-15 -3026 ($ $ $)) (-15 -3134 ($ $ "right" $)) (-15 -3299 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-1819 (((-112) |#1|) 29)) (-4175 (((-781) (-781)) 28) (((-781)) 27)) (-1470 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-121 |#1|) (-10 -7 (-15 -1470 ((-112) |#1|)) (-15 -1470 ((-112) |#1| (-112))) (-15 -4175 ((-781))) (-15 -4175 ((-781) (-781))) (-15 -1819 ((-112) |#1|))) (-1259 (-574))) (T -121)) -((-1819 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) (-4175 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) (-1470 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) (-1470 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574)))))) -(-10 -7 (-15 -1470 ((-112) |#1|)) (-15 -1470 ((-112) |#1| (-112))) (-15 -4175 ((-781))) (-15 -4175 ((-781) (-781))) (-15 -1819 ((-112) |#1|))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) 18)) (-3749 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2818 (((-112) $ (-781)) NIL)) (-3906 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3299 (($ $ $) 21 (|has| $ (-6 -4459)))) (-3026 (($ $ $) 23 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "left" $) NIL (|has| $ (-6 -4459))) (($ $ "right" $) NIL (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-3877 (($ $) 20)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) NIL)) (-2661 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1591 (($ $ |#1| $) 27)) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3864 (($ $) 22)) (-3481 (((-654 |#1|) $) NIL)) (-4069 (((-112) $) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-2494 (($ |#1| $) 28)) (-2609 (($ |#1| $) 15)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 17)) (-2833 (($) 11)) (-2208 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4418 (((-574) $ $) NIL)) (-1966 (((-112) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) NIL)) (-1870 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1541 (($ (-654 |#1|)) 16)) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4459) (-6 -4458) (-15 -1541 ($ (-654 |#1|))) (-15 -2609 ($ |#1| $)) (-15 -2494 ($ |#1| $)) (-15 -3749 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-860)) (T -122)) -((-1541 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3)))) (-2609 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-2494 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-3749 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-860))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4459) (-6 -4458) (-15 -1541 ($ (-654 |#1|))) (-15 -2609 ($ |#1| $)) (-15 -2494 ($ |#1| $)) (-15 -3749 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2889 (($ $) 13)) (-2085 (($ $) 11)) (-2831 (($ $ $) 23)) (-3225 (($ $ $) 21)) (-2933 (($ $ $) 19)) (-2922 (($ $ $) 17))) -(((-123 |#1|) (-10 -8 (-15 -2831 (|#1| |#1| |#1|)) (-15 -3225 (|#1| |#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1|))) (-124)) (T -123)) -NIL -(-10 -8 (-15 -2831 (|#1| |#1| |#1|)) (-15 -3225 (|#1| |#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-2889 (($ $) 103)) (-2118 (($ $ $) 28)) (-3287 (((-1288) $ (-574) (-574)) 66 (|has| $ (-6 -4459)))) (-4331 (((-112) $) 98 (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3565 (($ $) 102 (-12 (|has| (-112) (-860)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4459)))) (-2785 (($ $) 97 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2818 (((-112) $ (-781)) 37)) (-3134 (((-112) $ (-1250 (-574)) (-112)) 88 (|has| $ (-6 -4459))) (((-112) $ (-574) (-112)) 54 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4458)))) (-3831 (($) 38 T CONST)) (-2163 (($ $) 100 (|has| $ (-6 -4459)))) (-4424 (($ $) 90)) (-2560 (($ $) 68 (-12 (|has| (-112) (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4458))) (($ (-112) $) 69 (-12 (|has| (-112) (-1115)) (|has| $ (-6 -4458))))) (-2881 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1115)) (|has| $ (-6 -4458))))) (-2472 (((-112) $ (-574) (-112)) 53 (|has| $ (-6 -4459)))) (-2399 (((-112) $ (-574)) 55)) (-1451 (((-574) (-112) $ (-574)) 95 (|has| (-112) (-1115))) (((-574) (-112) $) 94 (|has| (-112) (-1115))) (((-574) (-1 (-112) (-112)) $) 93)) (-1873 (((-654 (-112)) $) 45 (|has| $ (-6 -4458)))) (-2107 (($ $ $) 108)) (-2085 (($ $) 106)) (-2831 (($ $ $) 29)) (-3763 (($ (-781) (-112)) 78)) (-3225 (($ $ $) 30)) (-2224 (((-112) $ (-781)) 36)) (-1767 (((-574) $) 63 (|has| (-574) (-860)))) (-3632 (($ $ $) 14)) (-4297 (($ $ $) 96 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2247 (((-654 (-112)) $) 46 (|has| $ (-6 -4458)))) (-2231 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 62 (|has| (-574) (-860)))) (-1593 (($ $ $) 15)) (-2461 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-3625 (((-112) $ (-781)) 35)) (-3945 (((-1174) $) 10)) (-1603 (($ $ $ (-574)) 87) (($ (-112) $ (-574)) 86)) (-3228 (((-654 (-574)) $) 60)) (-3071 (((-112) (-574) $) 59)) (-3939 (((-1135) $) 11)) (-2924 (((-112) $) 64 (|has| (-574) (-860)))) (-2294 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-4276 (($ $ (-112)) 65 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-112)) (-654 (-112))) 52 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-302 (-112))) 50 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-654 (-302 (-112)))) 49 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115))))) (-4198 (((-112) $ $) 31)) (-2764 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2379 (((-654 (-112)) $) 58)) (-2880 (((-112) $) 34)) (-2833 (($) 33)) (-2208 (($ $ (-1250 (-574))) 77) (((-112) $ (-574)) 57) (((-112) $ (-574) (-112)) 56)) (-2853 (($ $ (-1250 (-574))) 85) (($ $ (-574)) 84)) (-3948 (((-781) (-112) $) 47 (-12 (|has| (-112) (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4458)))) (-2315 (($ $ $ (-574)) 99 (|has| $ (-6 -4459)))) (-3156 (($ $) 32)) (-1845 (((-546) $) 67 (|has| (-112) (-624 (-546))))) (-2962 (($ (-654 (-112))) 76)) (-4131 (($ (-654 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2980 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4458)))) (-2096 (($ $ $) 107)) (-2933 (($ $ $) 105)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-2922 (($ $ $) 104)) (-2876 (((-781) $) 39 (|has| $ (-6 -4458))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4146 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-315)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-117 |#1|) (-923)))) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-117 |#1|) (-923)))) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL (|has| (-117 |#1|) (-830)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-117 |#1|) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-117 |#1|) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-117 |#1|) (-1054 (-574))))) (-2214 (((-117 |#1|) $) NIL) (((-1193) $) NIL (|has| (-117 |#1|) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-117 |#1|) (-1054 (-574)))) (((-574) $) NIL (|has| (-117 |#1|) (-1054 (-574))))) (-3663 (($ $) NIL) (($ (-574) $) NIL)) (-2800 (($ $ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-117 |#1|))) (|:| |vec| (-1284 (-117 |#1|)))) (-699 $) (-1284 $)) NIL) (((-699 (-117 |#1|)) (-699 $)) NIL) (((-699 (-117 |#1|)) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-117 |#1|) (-555)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3408 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-117 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-117 |#1|) (-897 (-388))))) (-4226 (((-112) $) NIL)) (-2967 (($ $) NIL)) (-2971 (((-117 |#1|) $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1168)))) (-3182 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-4380 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-1785 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| (-117 |#1|) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) NIL (|has| (-117 |#1|) (-315)))) (-2260 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-117 |#1|) (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-117 |#1|) (-923)))) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-117 |#1|)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-302 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-302 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-1193)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-524 (-1193) (-117 |#1|)))) (($ $ (-1193) (-117 |#1|)) NIL (|has| (-117 |#1|) (-524 (-1193) (-117 |#1|))))) (-2098 (((-781) $) NIL)) (-2207 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-294 (-117 |#1|) (-117 |#1|))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-2808 (($ $) NIL)) (-2981 (((-117 |#1|) $) NIL)) (-1844 (((-903 (-574)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-117 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-117 |#1|) (-1038))) (((-227) $) NIL (|has| (-117 |#1|) (-1038)))) (-2173 (((-176 (-417 (-574))) $) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-117 |#1|)) NIL) (($ (-1193)) NIL (|has| (-117 |#1|) (-1054 (-1193))))) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-923))) (|has| (-117 |#1|) (-146))))) (-2898 (((-781)) NIL T CONST)) (-2544 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3525 (((-417 (-574)) $ (-574)) NIL)) (-3936 (($ $) NIL (|has| (-117 |#1|) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3103 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) +(((-118 |#1|) (-13 (-1008 (-117 |#1|)) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -2173 ((-176 (-417 (-574))) $)) (-15 -3663 ($ $)) (-15 -3663 ($ (-574) $)))) (-574)) (T -118)) +((-3525 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574)))) (-3663 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574)))) (-3663 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2)))) +(-13 (-1008 (-117 |#1|)) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -2173 ((-176 (-417 (-574))) $)) (-15 -3663 ($ $)) (-15 -3663 ($ (-574) $)))) +((-3135 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-1482 (((-654 $) $) 31)) (-2622 (((-112) $ $) 36)) (-4134 (((-112) |#2| $) 40)) (-3483 (((-654 |#2|) $) 25)) (-1580 (((-112) $) 18)) (-2207 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3911 (((-112) $) 57)) (-2951 (((-872) $) 47)) (-4163 (((-654 $) $) 32)) (-2986 (((-112) $ $) 38)) (-2877 (((-781) $) 50))) +(((-119 |#1| |#2|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -3135 (|#1| |#1| "right" |#1|)) (-15 -3135 (|#1| |#1| "left" |#1|)) (-15 -2207 (|#1| |#1| "right")) (-15 -2207 (|#1| |#1| "left")) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -2622 ((-112) |#1| |#1|)) (-15 -3483 ((-654 |#2|) |#1|)) (-15 -3911 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -1580 ((-112) |#1|)) (-15 -1482 ((-654 |#1|) |#1|)) (-15 -4163 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -4134 ((-112) |#2| |#1|)) (-15 -2877 ((-781) |#1|))) (-120 |#2|) (-1234)) (T -119)) +NIL +(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -3135 (|#1| |#1| "right" |#1|)) (-15 -3135 (|#1| |#1| "left" |#1|)) (-15 -2207 (|#1| |#1| "right")) (-15 -2207 (|#1| |#1| "left")) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -2622 ((-112) |#1| |#1|)) (-15 -3483 ((-654 |#2|) |#1|)) (-15 -3911 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -1580 ((-112) |#1|)) (-15 -1482 ((-654 |#1|) |#1|)) (-15 -4163 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -4134 ((-112) |#2| |#1|)) (-15 -2877 ((-781) |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-3146 (((-112) $ (-781)) 8)) (-4433 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-2035 (($ $ $) 53 (|has| $ (-6 -4460)))) (-2785 (($ $ $) 55 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) (($ $ "left" $) 56 (|has| $ (-6 -4460))) (($ $ "right" $) 54 (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-3250 (($) 7 T CONST)) (-3878 (($ $) 58)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) 51)) (-2622 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-3865 (($ $) 60)) (-3483 (((-654 |#1|) $) 46)) (-1580 (((-112) $) 50)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3615 (((-574) $ $) 45)) (-3911 (((-112) $) 47)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) 52)) (-4208 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-120 |#1|) (-141) (-1234)) (T -120)) +((-3865 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1234)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1234)))) (-3878 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1234)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1234)))) (-3135 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4460)) (-4 *1 (-120 *3)) (-4 *3 (-1234)))) (-2785 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-120 *2)) (-4 *2 (-1234)))) (-3135 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4460)) (-4 *1 (-120 *3)) (-4 *3 (-1234)))) (-2035 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-120 *2)) (-4 *2 (-1234))))) +(-13 (-1026 |t#1|) (-10 -8 (-15 -3865 ($ $)) (-15 -2207 ($ $ "left")) (-15 -3878 ($ $)) (-15 -2207 ($ $ "right")) (IF (|has| $ (-6 -4460)) (PROGN (-15 -3135 ($ $ "left" $)) (-15 -2785 ($ $ $)) (-15 -3135 ($ $ "right" $)) (-15 -2035 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-3953 (((-112) |#1|) 29)) (-1405 (((-781) (-781)) 28) (((-781)) 27)) (-1991 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-121 |#1|) (-10 -7 (-15 -1991 ((-112) |#1|)) (-15 -1991 ((-112) |#1| (-112))) (-15 -1405 ((-781))) (-15 -1405 ((-781) (-781))) (-15 -3953 ((-112) |#1|))) (-1260 (-574))) (T -121)) +((-3953 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))) (-1405 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))) (-1405 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))) (-1991 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))) (-1991 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574)))))) +(-10 -7 (-15 -1991 ((-112) |#1|)) (-15 -1991 ((-112) |#1| (-112))) (-15 -1405 ((-781))) (-15 -1405 ((-781) (-781))) (-15 -3953 ((-112) |#1|))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) 18)) (-1408 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3146 (((-112) $ (-781)) NIL)) (-4433 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-2035 (($ $ $) 21 (|has| $ (-6 -4460)))) (-2785 (($ $ $) 23 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "left" $) NIL (|has| $ (-6 -4460))) (($ $ "right" $) NIL (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-3878 (($ $) 20)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) NIL)) (-2622 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1590 (($ $ |#1| $) 27)) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-3865 (($ $) 22)) (-3483 (((-654 |#1|) $) NIL)) (-1580 (((-112) $) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-2415 (($ |#1| $) 28)) (-3285 (($ |#1| $) 15)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 17)) (-3336 (($) 11)) (-2207 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3615 (((-574) $ $) NIL)) (-3911 (((-112) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) NIL)) (-4208 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3961 (($ (-654 |#1|)) 16)) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4460) (-6 -4459) (-15 -3961 ($ (-654 |#1|))) (-15 -3285 ($ |#1| $)) (-15 -2415 ($ |#1| $)) (-15 -1408 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-860)) (T -122)) +((-3961 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3)))) (-3285 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-2415 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-1408 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-860))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4460) (-6 -4459) (-15 -3961 ($ (-654 |#1|))) (-15 -3285 ($ |#1| $)) (-15 -2415 ($ |#1| $)) (-15 -1408 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2890 (($ $) 13)) (-2084 (($ $) 11)) (-2259 (($ $ $) 23)) (-2165 (($ $ $) 21)) (-2934 (($ $ $) 19)) (-2922 (($ $ $) 17))) +(((-123 |#1|) (-10 -8 (-15 -2259 (|#1| |#1| |#1|)) (-15 -2165 (|#1| |#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2934 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1|))) (-124)) (T -123)) +NIL +(-10 -8 (-15 -2259 (|#1| |#1| |#1|)) (-15 -2165 (|#1| |#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2934 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-2890 (($ $) 103)) (-2117 (($ $ $) 28)) (-2985 (((-1289) $ (-574) (-574)) 66 (|has| $ (-6 -4460)))) (-3861 (((-112) $) 98 (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-4140 (($ $) 102 (-12 (|has| (-112) (-860)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4460)))) (-2786 (($ $) 97 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3146 (((-112) $ (-781)) 37)) (-3135 (((-112) $ (-1251 (-574)) (-112)) 88 (|has| $ (-6 -4460))) (((-112) $ (-574) (-112)) 54 (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4459)))) (-3250 (($) 38 T CONST)) (-2412 (($ $) 100 (|has| $ (-6 -4460)))) (-4425 (($ $) 90)) (-2804 (($ $) 68 (-12 (|has| (-112) (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4459))) (($ (-112) $) 69 (-12 (|has| (-112) (-1116)) (|has| $ (-6 -4459))))) (-2882 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1116)) (|has| $ (-6 -4459))))) (-2473 (((-112) $ (-574) (-112)) 53 (|has| $ (-6 -4460)))) (-2400 (((-112) $ (-574)) 55)) (-1452 (((-574) (-112) $ (-574)) 95 (|has| (-112) (-1116))) (((-574) (-112) $) 94 (|has| (-112) (-1116))) (((-574) (-1 (-112) (-112)) $) 93)) (-1871 (((-654 (-112)) $) 45 (|has| $ (-6 -4459)))) (-2106 (($ $ $) 108)) (-2084 (($ $) 106)) (-2259 (($ $ $) 29)) (-3764 (($ (-781) (-112)) 78)) (-2165 (($ $ $) 30)) (-2189 (((-112) $ (-781)) 36)) (-3429 (((-574) $) 63 (|has| (-574) (-860)))) (-3634 (($ $ $) 14)) (-3404 (($ $ $) 96 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2036 (((-654 (-112)) $) 46 (|has| $ (-6 -4459)))) (-4134 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 62 (|has| (-574) (-860)))) (-4380 (($ $ $) 15)) (-2462 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-1653 (((-112) $ (-781)) 35)) (-1489 (((-1175) $) 10)) (-1602 (($ $ $ (-574)) 87) (($ (-112) $ (-574)) 86)) (-1393 (((-654 (-574)) $) 60)) (-1506 (((-112) (-574) $) 59)) (-3940 (((-1136) $) 11)) (-2925 (((-112) $) 64 (|has| (-574) (-860)))) (-2183 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-1822 (($ $ (-112)) 65 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-112)) (-654 (-112))) 52 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-302 (-112))) 50 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-654 (-302 (-112)))) 49 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116))))) (-2526 (((-112) $ $) 31)) (-2626 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2315 (((-654 (-112)) $) 58)) (-2754 (((-112) $) 34)) (-3336 (($) 33)) (-2207 (($ $ (-1251 (-574))) 77) (((-112) $ (-574)) 57) (((-112) $ (-574) (-112)) 56)) (-2855 (($ $ (-1251 (-574))) 85) (($ $ (-574)) 84)) (-3949 (((-781) (-112) $) 47 (-12 (|has| (-112) (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4459)))) (-4036 (($ $ $ (-574)) 99 (|has| $ (-6 -4460)))) (-3157 (($ $) 32)) (-1844 (((-546) $) 67 (|has| (-112) (-624 (-546))))) (-2963 (($ (-654 (-112))) 76)) (-4132 (($ (-654 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2020 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4459)))) (-2095 (($ $ $) 107)) (-2934 (($ $ $) 105)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-2922 (($ $ $) 104)) (-2877 (((-781) $) 39 (|has| $ (-6 -4459))))) (((-124) (-141)) (T -124)) -((-3225 (*1 *1 *1 *1) (-4 *1 (-124))) (-2831 (*1 *1 *1 *1) (-4 *1 (-124))) (-2118 (*1 *1 *1 *1) (-4 *1 (-124)))) -(-13 (-860) (-113) (-671) (-19 (-112)) (-10 -8 (-15 -3225 ($ $ $)) (-15 -2831 ($ $ $)) (-15 -2118 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-152 #0=(-112)) . T) ((-624 (-546)) |has| (-112) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115))) ((-661 #0#) . T) ((-671) . T) ((-19 #0#) . T) ((-860) . T) ((-1115) . T) ((-1233) . T)) -((-2461 (($ (-1 |#2| |#2|) $) 22)) (-3156 (($ $) 16)) (-2876 (((-781) $) 25))) -(((-125 |#1| |#2|) (-10 -8 (-15 -2461 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -3156 (|#1| |#1|))) (-126 |#2|) (-1115)) (T -125)) -NIL -(-10 -8 (-15 -2461 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -3156 (|#1| |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-2818 (((-112) $ (-781)) 8)) (-3906 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-3299 (($ $ $) 53 (|has| $ (-6 -4459)))) (-3026 (($ $ $) 55 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) (($ $ "left" $) 56 (|has| $ (-6 -4459))) (($ $ "right" $) 54 (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-3831 (($) 7 T CONST)) (-3877 (($ $) 58)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) 51)) (-2661 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-1591 (($ $ |#1| $) 61)) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3864 (($ $) 60)) (-3481 (((-654 |#1|) $) 46)) (-4069 (((-112) $) 50)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4418 (((-574) $ $) 45)) (-1966 (((-112) $) 47)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) 52)) (-1870 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-126 |#1|) (-141) (-1115)) (T -126)) -((-1591 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1115))))) -(-13 (-120 |t#1|) (-10 -8 (-6 -4459) (-6 -4458) (-15 -1591 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-120 |#1|) . T) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) 18)) (-2818 (((-112) $ (-781)) NIL)) (-3906 ((|#1| $ |#1|) 22 (|has| $ (-6 -4459)))) (-3299 (($ $ $) 23 (|has| $ (-6 -4459)))) (-3026 (($ $ $) 21 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "left" $) NIL (|has| $ (-6 -4459))) (($ $ "right" $) NIL (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-3877 (($ $) 24)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) NIL)) (-2661 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1591 (($ $ |#1| $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3864 (($ $) NIL)) (-3481 (((-654 |#1|) $) NIL)) (-4069 (((-112) $) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-2609 (($ |#1| $) 15)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 17)) (-2833 (($) 11)) (-2208 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4418 (((-574) $ $) NIL)) (-1966 (((-112) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 20)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) NIL)) (-1870 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2672 (($ (-654 |#1|)) 16)) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4459) (-15 -2672 ($ (-654 |#1|))) (-15 -2609 ($ |#1| $)))) (-860)) (T -127)) -((-2672 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3)))) (-2609 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4459) (-15 -2672 ($ (-654 |#1|))) (-15 -2609 ($ |#1| $)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) 30)) (-2818 (((-112) $ (-781)) NIL)) (-3906 ((|#1| $ |#1|) 32 (|has| $ (-6 -4459)))) (-3299 (($ $ $) 36 (|has| $ (-6 -4459)))) (-3026 (($ $ $) 34 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "left" $) NIL (|has| $ (-6 -4459))) (($ $ "right" $) NIL (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-3877 (($ $) 23)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) NIL)) (-2661 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1591 (($ $ |#1| $) 16)) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3864 (($ $) 22)) (-3481 (((-654 |#1|) $) NIL)) (-4069 (((-112) $) 25)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 20)) (-2833 (($) 11)) (-2208 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4418 (((-574) $ $) NIL)) (-1966 (((-112) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) NIL)) (-1870 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1946 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 10 (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -1946 ($ |#1|)) (-15 -1946 ($ $ |#1| $)))) (-1115)) (T -128)) -((-1946 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1115)))) (-1946 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1115))))) -(-13 (-126 |#1|) (-10 -8 (-15 -1946 ($ |#1|)) (-15 -1946 ($ $ |#1| $)))) -((-2863 (((-112) $ $) NIL (|has| (-130) (-1115)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-860)))) (-3565 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-860))))) (-2785 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 (((-130) $ (-574) (-130)) 26 (|has| $ (-6 -4459))) (((-130) $ (-1250 (-574)) (-130)) NIL (|has| $ (-6 -4459)))) (-2117 (((-781) $ (-781)) 34)) (-2173 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115))))) (-3310 (($ (-130) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4458))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4458)))) (-2472 (((-130) $ (-574) (-130)) 25 (|has| $ (-6 -4459)))) (-2399 (((-130) $ (-574)) 20)) (-1451 (((-574) (-1 (-112) (-130)) $) NIL) (((-574) (-130) $) NIL (|has| (-130) (-1115))) (((-574) (-130) $ (-574)) NIL (|has| (-130) (-1115)))) (-1873 (((-654 (-130)) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) (-130)) 14)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) 27 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| (-130) (-860)))) (-4297 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-860)))) (-2247 (((-654 (-130)) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115))))) (-2429 (((-574) $) 30 (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| (-130) (-860)))) (-2461 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| (-130) (-1115)))) (-1603 (($ (-130) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| (-130) (-1115)))) (-2924 (((-130) $) NIL (|has| (-574) (-860)))) (-2294 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-4276 (($ $ (-130)) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-130)))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1115)))) (($ $ (-302 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1115)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1115)))) (($ $ (-654 (-130)) (-654 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115))))) (-2379 (((-654 (-130)) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) 12)) (-2208 (((-130) $ (-574) (-130)) NIL) (((-130) $ (-574)) 23) (($ $ (-1250 (-574))) NIL)) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4458))) (((-781) (-130) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-130) (-624 (-546))))) (-2962 (($ (-654 (-130))) 46)) (-4131 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-654 $)) NIL)) (-2950 (((-971 (-130)) $) 35) (((-1174) $) 43) (((-872) $) NIL (|has| (-130) (-623 (-872))))) (-3217 (((-781) $) 18)) (-1619 (($ (-781)) 8)) (-3838 (((-112) $ $) NIL (|has| (-130) (-1115)))) (-2980 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2985 (((-112) $ $) 32 (|has| (-130) (-1115)))) (-3029 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2876 (((-781) $) 15 (|has| $ (-6 -4458))))) -(((-129) (-13 (-19 (-130)) (-623 (-971 (-130))) (-623 (-1174)) (-10 -8 (-15 -1619 ($ (-781))) (-15 -3217 ((-781) $)) (-15 -2117 ((-781) $ (-781))) (-6 -4458)))) (T -129)) -((-1619 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-2117 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) -(-13 (-19 (-130)) (-623 (-971 (-130))) (-623 (-1174)) (-10 -8 (-15 -1619 ($ (-781))) (-15 -3217 ((-781) $)) (-15 -2117 ((-781) $ (-781))) (-6 -4458))) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) 26)) (-3831 (($) NIL T CONST)) (-2834 (($) 35)) (-3632 (($ $ $) NIL) (($) 24 T CONST)) (-1593 (($ $ $) NIL) (($) 25 T CONST)) (-3271 (((-934) $) 33)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) 31)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3004 (($ (-781)) 8)) (-1763 (($ $ $) 37)) (-1752 (($ $ $) 36)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) 22)) (-3018 (((-112) $ $) 20)) (-2985 (((-112) $ $) 18)) (-3029 (((-112) $ $) 21)) (-3009 (((-112) $ $) 19))) -(((-130) (-13 (-854) (-500 (-145)) (-10 -8 (-15 -3004 ($ (-781))) (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715)))) (T -130)) -((-3004 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-130)))) (-1752 (*1 *1 *1 *1) (-5 *1 (-130))) (-1763 (*1 *1 *1 *1) (-5 *1 (-130))) (-3831 (*1 *1) (-5 *1 (-130)))) -(-13 (-854) (-500 (-145)) (-10 -8 (-15 -3004 ($ (-781))) (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715))) +((-2165 (*1 *1 *1 *1) (-4 *1 (-124))) (-2259 (*1 *1 *1 *1) (-4 *1 (-124))) (-2117 (*1 *1 *1 *1) (-4 *1 (-124)))) +(-13 (-860) (-113) (-671) (-19 (-112)) (-10 -8 (-15 -2165 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -2117 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-152 #0=(-112)) . T) ((-624 (-546)) |has| (-112) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116))) ((-661 #0#) . T) ((-671) . T) ((-19 #0#) . T) ((-860) . T) ((-1116) . T) ((-1234) . T)) +((-2462 (($ (-1 |#2| |#2|) $) 22)) (-3157 (($ $) 16)) (-2877 (((-781) $) 25))) +(((-125 |#1| |#2|) (-10 -8 (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -3157 (|#1| |#1|))) (-126 |#2|) (-1116)) (T -125)) +NIL +(-10 -8 (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -3157 (|#1| |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-3146 (((-112) $ (-781)) 8)) (-4433 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-2035 (($ $ $) 53 (|has| $ (-6 -4460)))) (-2785 (($ $ $) 55 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) (($ $ "left" $) 56 (|has| $ (-6 -4460))) (($ $ "right" $) 54 (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-3250 (($) 7 T CONST)) (-3878 (($ $) 58)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) 51)) (-2622 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-1590 (($ $ |#1| $) 61)) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-3865 (($ $) 60)) (-3483 (((-654 |#1|) $) 46)) (-1580 (((-112) $) 50)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3615 (((-574) $ $) 45)) (-3911 (((-112) $) 47)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) 52)) (-4208 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-126 |#1|) (-141) (-1116)) (T -126)) +((-1590 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1116))))) +(-13 (-120 |t#1|) (-10 -8 (-6 -4460) (-6 -4459) (-15 -1590 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-120 |#1|) . T) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) 18)) (-3146 (((-112) $ (-781)) NIL)) (-4433 ((|#1| $ |#1|) 22 (|has| $ (-6 -4460)))) (-2035 (($ $ $) 23 (|has| $ (-6 -4460)))) (-2785 (($ $ $) 21 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "left" $) NIL (|has| $ (-6 -4460))) (($ $ "right" $) NIL (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-3878 (($ $) 24)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) NIL)) (-2622 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1590 (($ $ |#1| $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-3865 (($ $) NIL)) (-3483 (((-654 |#1|) $) NIL)) (-1580 (((-112) $) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3285 (($ |#1| $) 15)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 17)) (-3336 (($) 11)) (-2207 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3615 (((-574) $ $) NIL)) (-3911 (((-112) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 20)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) NIL)) (-4208 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4028 (($ (-654 |#1|)) 16)) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4460) (-15 -4028 ($ (-654 |#1|))) (-15 -3285 ($ |#1| $)))) (-860)) (T -127)) +((-4028 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3)))) (-3285 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4460) (-15 -4028 ($ (-654 |#1|))) (-15 -3285 ($ |#1| $)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) 30)) (-3146 (((-112) $ (-781)) NIL)) (-4433 ((|#1| $ |#1|) 32 (|has| $ (-6 -4460)))) (-2035 (($ $ $) 36 (|has| $ (-6 -4460)))) (-2785 (($ $ $) 34 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "left" $) NIL (|has| $ (-6 -4460))) (($ $ "right" $) NIL (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-3878 (($ $) 23)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) NIL)) (-2622 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1590 (($ $ |#1| $) 16)) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-3865 (($ $) 22)) (-3483 (((-654 |#1|) $) NIL)) (-1580 (((-112) $) 25)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 20)) (-3336 (($) 11)) (-2207 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3615 (((-574) $ $) NIL)) (-3911 (((-112) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) NIL)) (-4208 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1780 (($ |#1|) 18) (($ $ |#1| $) 17)) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 10 (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -1780 ($ |#1|)) (-15 -1780 ($ $ |#1| $)))) (-1116)) (T -128)) +((-1780 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1116)))) (-1780 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1116))))) +(-13 (-126 |#1|) (-10 -8 (-15 -1780 ($ |#1|)) (-15 -1780 ($ $ |#1| $)))) +((-2864 (((-112) $ $) NIL (|has| (-130) (-1116)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-860)))) (-4140 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-860))))) (-2786 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 (((-130) $ (-574) (-130)) 26 (|has| $ (-6 -4460))) (((-130) $ (-1251 (-574)) (-130)) NIL (|has| $ (-6 -4460)))) (-3027 (((-781) $ (-781)) 34)) (-2172 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116))))) (-3311 (($ (-130) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4459))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4459)))) (-2473 (((-130) $ (-574) (-130)) 25 (|has| $ (-6 -4460)))) (-2400 (((-130) $ (-574)) 20)) (-1452 (((-574) (-1 (-112) (-130)) $) NIL) (((-574) (-130) $) NIL (|has| (-130) (-1116))) (((-574) (-130) $ (-574)) NIL (|has| (-130) (-1116)))) (-1871 (((-654 (-130)) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) (-130)) 14)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) 27 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| (-130) (-860)))) (-3404 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-860)))) (-2036 (((-654 (-130)) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116))))) (-1698 (((-574) $) 30 (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| (-130) (-860)))) (-2462 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| (-130) (-1116)))) (-1602 (($ (-130) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| (-130) (-1116)))) (-2925 (((-130) $) NIL (|has| (-574) (-860)))) (-2183 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-1822 (($ $ (-130)) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-130)))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1116)))) (($ $ (-302 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1116)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1116)))) (($ $ (-654 (-130)) (-654 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116))))) (-2315 (((-654 (-130)) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) 12)) (-2207 (((-130) $ (-574) (-130)) NIL) (((-130) $ (-574)) 23) (($ $ (-1251 (-574))) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4459))) (((-781) (-130) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-130) (-624 (-546))))) (-2963 (($ (-654 (-130))) 46)) (-4132 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-654 $)) NIL)) (-2951 (((-972 (-130)) $) 35) (((-1175) $) 43) (((-872) $) NIL (|has| (-130) (-623 (-872))))) (-2326 (((-781) $) 18)) (-3533 (($ (-781)) 8)) (-4069 (((-112) $ $) NIL (|has| (-130) (-1116)))) (-2020 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2986 (((-112) $ $) 32 (|has| (-130) (-1116)))) (-3030 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2877 (((-781) $) 15 (|has| $ (-6 -4459))))) +(((-129) (-13 (-19 (-130)) (-623 (-972 (-130))) (-623 (-1175)) (-10 -8 (-15 -3533 ($ (-781))) (-15 -2326 ((-781) $)) (-15 -3027 ((-781) $ (-781))) (-6 -4459)))) (T -129)) +((-3533 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-3027 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) +(-13 (-19 (-130)) (-623 (-972 (-130))) (-623 (-1175)) (-10 -8 (-15 -3533 ($ (-781))) (-15 -2326 ((-781) $)) (-15 -3027 ((-781) $ (-781))) (-6 -4459))) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) 26)) (-3250 (($) NIL T CONST)) (-2835 (($) 35)) (-3634 (($ $ $) NIL) (($) 24 T CONST)) (-4380 (($ $ $) NIL) (($) 25 T CONST)) (-3383 (((-935) $) 33)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) 31)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3005 (($ (-781)) 8)) (-1762 (($ $ $) 37)) (-1750 (($ $ $) 36)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) 22)) (-3020 (((-112) $ $) 20)) (-2986 (((-112) $ $) 18)) (-3030 (((-112) $ $) 21)) (-3009 (((-112) $ $) 19))) +(((-130) (-13 (-854) (-500 (-145)) (-10 -8 (-15 -3005 ($ (-781))) (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714)))) (T -130)) +((-3005 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-130)))) (-1750 (*1 *1 *1 *1) (-5 *1 (-130))) (-1762 (*1 *1 *1 *1) (-5 *1 (-130))) (-3250 (*1 *1) (-5 *1 (-130)))) +(-13 (-854) (-500 (-145)) (-10 -8 (-15 -3005 ($ (-781))) (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-2863 (((-112) $ $) NIL)) (-1798 (($) 6 T CONST)) (-3070 (($) 7 T CONST)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 14)) (-2744 (($) 8 T CONST)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 10))) -(((-131) (-13 (-1115) (-10 -8 (-15 -3070 ($) -1715) (-15 -2744 ($) -1715) (-15 -1798 ($) -1715)))) (T -131)) -((-3070 (*1 *1) (-5 *1 (-131))) (-2744 (*1 *1) (-5 *1 (-131))) (-1798 (*1 *1) (-5 *1 (-131)))) -(-13 (-1115) (-10 -8 (-15 -3070 ($) -1715) (-15 -2744 ($) -1715) (-15 -1798 ($) -1715))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16))) +((-2864 (((-112) $ $) NIL)) (-4326 (($) 6 T CONST)) (-2802 (($) 7 T CONST)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 14)) (-3238 (($) 8 T CONST)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 10))) +(((-131) (-13 (-1116) (-10 -8 (-15 -2802 ($) -1714) (-15 -3238 ($) -1714) (-15 -4326 ($) -1714)))) (T -131)) +((-2802 (*1 *1) (-5 *1 (-131))) (-3238 (*1 *1) (-5 *1 (-131))) (-4326 (*1 *1) (-5 *1 (-131)))) +(-13 (-1116) (-10 -8 (-15 -2802 ($) -1714) (-15 -3238 ($) -1714) (-15 -4326 ($) -1714))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16))) (((-132) (-141)) (T -132)) -((-1597 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-23) (-10 -8 (-15 -1597 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2863 (((-112) $ $) 7)) (-3591 (((-1288) $ (-781)) 14)) (-1451 (((-781) $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +((-2600 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-23) (-10 -8 (-15 -2600 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2864 (((-112) $ $) 7)) (-3126 (((-1289) $ (-781)) 14)) (-1452 (((-781) $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) (((-133) (-141)) (T -133)) -((-1451 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-781)))) (-3591 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1288))))) -(-13 (-1115) (-10 -8 (-15 -1451 ((-781) $)) (-15 -3591 ((-1288) $ (-781))))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 16) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2051 (((-654 (-1150)) $) 10)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-134) (-13 (-1098) (-10 -8 (-15 -2051 ((-654 (-1150)) $))))) (T -134)) -((-2051 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-134))))) -(-13 (-1098) (-10 -8 (-15 -2051 ((-654 (-1150)) $)))) -((-2863 (((-112) $ $) 49)) (-3520 (((-112) $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-781) "failed") $) 58)) (-2216 (((-781) $) 56)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) 37)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4008 (((-112)) 59)) (-2972 (((-112) (-112)) 61)) (-2342 (((-112) $) 30)) (-4085 (((-112) $) 55)) (-2950 (((-872) $) 28) (($ (-781)) 20)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 18 T CONST)) (-2154 (($) 19 T CONST)) (-4167 (($ (-781)) 21)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 40)) (-2985 (((-112) $ $) 32)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 35)) (-3089 (((-3 $ "failed") $ $) 42)) (-3074 (($ $ $) 38)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL) (($ $ $) 54)) (* (($ (-781) $) 48) (($ (-934) $) NIL) (($ $ $) 45))) -(((-135) (-13 (-860) (-23) (-736) (-1053 (-781)) (-10 -8 (-6 (-4460 "*")) (-15 -3089 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4167 ($ (-781))) (-15 -2342 ((-112) $)) (-15 -4085 ((-112) $)) (-15 -4008 ((-112))) (-15 -2972 ((-112) (-112)))))) (T -135)) -((-3089 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-4167 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4008 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2972 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(-13 (-860) (-23) (-736) (-1053 (-781)) (-10 -8 (-6 (-4460 "*")) (-15 -3089 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4167 ($ (-781))) (-15 -2342 ((-112) $)) (-15 -4085 ((-112) $)) (-15 -4008 ((-112))) (-15 -2972 ((-112) (-112))))) -((-1343 (((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1786 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1343 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1786 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-574) (-781) (-174) (-174)) (T -136)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-1343 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -1343 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1786 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-2863 (((-112) $ $) NIL)) (-2682 (($ (-654 |#3|)) 61)) (-2292 (($ $) 123) (($ $ (-574) (-574)) 122)) (-3831 (($) 20)) (-1705 (((-3 |#3| "failed") $) 83)) (-2216 ((|#3| $) NIL)) (-2502 (($ $ (-654 (-574))) 124)) (-1328 (((-654 |#3|) $) 56)) (-3557 (((-781) $) 66)) (-4272 (($ $ $) 117)) (-4192 (($) 65)) (-3945 (((-1174) $) NIL)) (-1521 (($) 19)) (-3939 (((-1135) $) NIL)) (-2208 ((|#3| $ (-574)) 69) ((|#3| $) 68) ((|#3| $ (-574) (-574)) 70) ((|#3| $ (-574) (-574) (-574)) 71) ((|#3| $ (-574) (-574) (-574) (-574)) 72) ((|#3| $ (-654 (-574))) 73)) (-3584 (((-781) $) 67)) (-1986 (($ $ (-574) $ (-574)) 118) (($ $ (-574) (-574)) 120)) (-2950 (((-872) $) 91) (($ |#3|) 92) (($ (-246 |#2| |#3|)) 99) (($ (-1157 |#2| |#3|)) 102) (($ (-654 |#3|)) 74) (($ (-654 $)) 80)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 93 T CONST)) (-2154 (($) 94 T CONST)) (-2985 (((-112) $ $) 104)) (-3089 (($ $) 110) (($ $ $) 108)) (-3074 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-574)) 113) (($ (-574) $) 112) (($ $ $) 119))) -(((-137 |#1| |#2| |#3|) (-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2950 ($ (-246 |#2| |#3|))) (-15 -2950 ($ (-1157 |#2| |#3|))) (-15 -2950 ($ (-654 |#3|))) (-15 -2950 ($ (-654 $))) (-15 -3557 ((-781) $)) (-15 -2208 (|#3| $)) (-15 -2208 (|#3| $ (-574) (-574))) (-15 -2208 (|#3| $ (-574) (-574) (-574))) (-15 -2208 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2208 (|#3| $ (-654 (-574)))) (-15 -4272 ($ $ $)) (-15 * ($ $ $)) (-15 -1986 ($ $ (-574) $ (-574))) (-15 -1986 ($ $ (-574) (-574))) (-15 -2292 ($ $)) (-15 -2292 ($ $ (-574) (-574))) (-15 -2502 ($ $ (-654 (-574)))) (-15 -1521 ($)) (-15 -4192 ($)) (-15 -1328 ((-654 |#3|) $)) (-15 -2682 ($ (-654 |#3|))) (-15 -3831 ($)))) (-574) (-781) (-174)) (T -137)) -((-4272 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1157 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 *2) (-4 *5 (-174)))) (-2208 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2208 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2208 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2208 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-574))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-574)) (-14 *5 (-781)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-1986 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-1986 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-2292 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2292 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-2502 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-1521 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-4192 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-654 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-3831 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174))))) -(-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2950 ($ (-246 |#2| |#3|))) (-15 -2950 ($ (-1157 |#2| |#3|))) (-15 -2950 ($ (-654 |#3|))) (-15 -2950 ($ (-654 $))) (-15 -3557 ((-781) $)) (-15 -2208 (|#3| $)) (-15 -2208 (|#3| $ (-574) (-574))) (-15 -2208 (|#3| $ (-574) (-574) (-574))) (-15 -2208 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2208 (|#3| $ (-654 (-574)))) (-15 -4272 ($ $ $)) (-15 * ($ $ $)) (-15 -1986 ($ $ (-574) $ (-574))) (-15 -1986 ($ $ (-574) (-574))) (-15 -2292 ($ $)) (-15 -2292 ($ $ (-574) (-574))) (-15 -2502 ($ $ (-654 (-574)))) (-15 -1521 ($)) (-15 -4192 ($)) (-15 -1328 ((-654 |#3|) $)) (-15 -2682 ($ (-654 |#3|))) (-15 -3831 ($)))) -((-2863 (((-112) $ $) NIL)) (-1818 (((-1150) $) 11)) (-1804 (((-1150) $) 9)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-138) (-13 (-1098) (-10 -8 (-15 -1804 ((-1150) $)) (-15 -1818 ((-1150) $))))) (T -138)) -((-1804 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-138)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-138))))) -(-13 (-1098) (-10 -8 (-15 -1804 ((-1150) $)) (-15 -1818 ((-1150) $)))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-4269 (((-188) $) 10)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 20) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2051 (((-654 (-1150)) $) 13)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-139) (-13 (-1098) (-10 -8 (-15 -4269 ((-188) $)) (-15 -2051 ((-654 (-1150)) $))))) (T -139)) -((-4269 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-139))))) -(-13 (-1098) (-10 -8 (-15 -4269 ((-188) $)) (-15 -2051 ((-654 (-1150)) $)))) -((-2863 (((-112) $ $) NIL)) (-1724 (((-654 (-875)) $) NIL)) (-2040 (((-516) $) NIL)) (-3945 (((-1174) $) NIL)) (-4269 (((-188) $) NIL)) (-3571 (((-112) $ (-516)) NIL)) (-3939 (((-1135) $) NIL)) (-4042 (((-654 (-112)) $) NIL)) (-2950 (((-872) $) NIL) (((-189) $) 6)) (-3838 (((-112) $ $) NIL)) (-2533 (((-55) $) NIL)) (-2985 (((-112) $ $) NIL))) +((-1452 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-781)))) (-3126 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1289))))) +(-13 (-1116) (-10 -8 (-15 -1452 ((-781) $)) (-15 -3126 ((-1289) $ (-781))))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 16) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2050 (((-654 (-1151)) $) 10)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-134) (-13 (-1099) (-10 -8 (-15 -2050 ((-654 (-1151)) $))))) (T -134)) +((-2050 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-134))))) +(-13 (-1099) (-10 -8 (-15 -2050 ((-654 (-1151)) $)))) +((-2864 (((-112) $ $) 49)) (-1431 (((-112) $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-781) "failed") $) 58)) (-2214 (((-781) $) 56)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) 37)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3769 (((-112)) 59)) (-4187 (((-112) (-112)) 61)) (-1623 (((-112) $) 30)) (-3548 (((-112) $) 55)) (-2951 (((-872) $) 28) (($ (-781)) 20)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 18 T CONST)) (-2153 (($) 19 T CONST)) (-1860 (($ (-781)) 21)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) 40)) (-2986 (((-112) $ $) 32)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 35)) (-3090 (((-3 $ "failed") $ $) 42)) (-3074 (($ $ $) 38)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL) (($ $ $) 54)) (* (($ (-781) $) 48) (($ (-935) $) NIL) (($ $ $) 45))) +(((-135) (-13 (-860) (-23) (-736) (-1054 (-781)) (-10 -8 (-6 (-4461 "*")) (-15 -3090 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1860 ($ (-781))) (-15 -1623 ((-112) $)) (-15 -3548 ((-112) $)) (-15 -3769 ((-112))) (-15 -4187 ((-112) (-112)))))) (T -135)) +((-3090 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-1860 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3769 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4187 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(-13 (-860) (-23) (-736) (-1054 (-781)) (-10 -8 (-6 (-4461 "*")) (-15 -3090 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1860 ($ (-781))) (-15 -1623 ((-112) $)) (-15 -3548 ((-112) $)) (-15 -3769 ((-112))) (-15 -4187 ((-112) (-112))))) +((-1344 (((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1785 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1785 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-574) (-781) (-174) (-174)) (T -136)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -1344 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1785 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-2864 (((-112) $ $) NIL)) (-1531 (($ (-654 |#3|)) 61)) (-4033 (($ $) 123) (($ $ (-574) (-574)) 122)) (-3250 (($) 20)) (-1704 (((-3 |#3| "failed") $) 83)) (-2214 ((|#3| $) NIL)) (-2681 (($ $ (-654 (-574))) 124)) (-1329 (((-654 |#3|) $) 56)) (-3558 (((-781) $) 66)) (-3937 (($ $ $) 117)) (-4221 (($) 65)) (-1489 (((-1175) $) NIL)) (-2067 (($) 19)) (-3940 (((-1136) $) NIL)) (-2207 ((|#3| $ (-574)) 69) ((|#3| $) 68) ((|#3| $ (-574) (-574)) 70) ((|#3| $ (-574) (-574) (-574)) 71) ((|#3| $ (-574) (-574) (-574) (-574)) 72) ((|#3| $ (-654 (-574))) 73)) (-3580 (((-781) $) 67)) (-2735 (($ $ (-574) $ (-574)) 118) (($ $ (-574) (-574)) 120)) (-2951 (((-872) $) 91) (($ |#3|) 92) (($ (-246 |#2| |#3|)) 99) (($ (-1158 |#2| |#3|)) 102) (($ (-654 |#3|)) 74) (($ (-654 $)) 80)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 93 T CONST)) (-2153 (($) 94 T CONST)) (-2986 (((-112) $ $) 104)) (-3090 (($ $) 110) (($ $ $) 108)) (-3074 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-574)) 113) (($ (-574) $) 112) (($ $ $) 119))) +(((-137 |#1| |#2| |#3|) (-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2951 ($ (-246 |#2| |#3|))) (-15 -2951 ($ (-1158 |#2| |#3|))) (-15 -2951 ($ (-654 |#3|))) (-15 -2951 ($ (-654 $))) (-15 -3558 ((-781) $)) (-15 -2207 (|#3| $)) (-15 -2207 (|#3| $ (-574) (-574))) (-15 -2207 (|#3| $ (-574) (-574) (-574))) (-15 -2207 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2207 (|#3| $ (-654 (-574)))) (-15 -3937 ($ $ $)) (-15 * ($ $ $)) (-15 -2735 ($ $ (-574) $ (-574))) (-15 -2735 ($ $ (-574) (-574))) (-15 -4033 ($ $)) (-15 -4033 ($ $ (-574) (-574))) (-15 -2681 ($ $ (-654 (-574)))) (-15 -2067 ($)) (-15 -4221 ($)) (-15 -1329 ((-654 |#3|) $)) (-15 -1531 ($ (-654 |#3|))) (-15 -3250 ($)))) (-574) (-781) (-174)) (T -137)) +((-3937 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1158 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 *2) (-4 *5 (-174)))) (-2207 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2207 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2207 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2207 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-574))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-574)) (-14 *5 (-781)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2735 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-2735 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-4033 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-4033 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2067 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-4221 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-654 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-1531 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-3250 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174))))) +(-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2951 ($ (-246 |#2| |#3|))) (-15 -2951 ($ (-1158 |#2| |#3|))) (-15 -2951 ($ (-654 |#3|))) (-15 -2951 ($ (-654 $))) (-15 -3558 ((-781) $)) (-15 -2207 (|#3| $)) (-15 -2207 (|#3| $ (-574) (-574))) (-15 -2207 (|#3| $ (-574) (-574) (-574))) (-15 -2207 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2207 (|#3| $ (-654 (-574)))) (-15 -3937 ($ $ $)) (-15 * ($ $ $)) (-15 -2735 ($ $ (-574) $ (-574))) (-15 -2735 ($ $ (-574) (-574))) (-15 -4033 ($ $)) (-15 -4033 ($ $ (-574) (-574))) (-15 -2681 ($ $ (-654 (-574)))) (-15 -2067 ($)) (-15 -4221 ($)) (-15 -1329 ((-654 |#3|) $)) (-15 -1531 ($ (-654 |#3|))) (-15 -3250 ($)))) +((-2864 (((-112) $ $) NIL)) (-1814 (((-1151) $) 11)) (-1804 (((-1151) $) 9)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-138) (-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1814 ((-1151) $))))) (T -138)) +((-1804 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-138)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-138))))) +(-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1814 ((-1151) $)))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-4270 (((-188) $) 10)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 20) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2050 (((-654 (-1151)) $) 13)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-139) (-13 (-1099) (-10 -8 (-15 -4270 ((-188) $)) (-15 -2050 ((-654 (-1151)) $))))) (T -139)) +((-4270 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-139))))) +(-13 (-1099) (-10 -8 (-15 -4270 ((-188) $)) (-15 -2050 ((-654 (-1151)) $)))) +((-2864 (((-112) $ $) NIL)) (-1723 (((-654 (-875)) $) NIL)) (-2039 (((-516) $) NIL)) (-1489 (((-1175) $) NIL)) (-4270 (((-188) $) NIL)) (-2154 (((-112) $ (-516)) NIL)) (-3940 (((-1136) $) NIL)) (-3210 (((-654 (-112)) $) NIL)) (-2951 (((-872) $) NIL) (((-189) $) 6)) (-4069 (((-112) $ $) NIL)) (-2875 (((-55) $) NIL)) (-2986 (((-112) $ $) NIL))) (((-140) (-13 (-187) (-623 (-189)))) (T -140)) NIL (-13 (-187) (-623 (-189))) -((-3933 (((-654 (-185 (-140))) $) 13)) (-1324 (((-654 (-185 (-140))) $) 14)) (-3474 (((-654 (-848)) $) 10)) (-1973 (((-140) $) 7)) (-2950 (((-872) $) 16))) -(((-141) (-13 (-623 (-872)) (-10 -8 (-15 -1973 ((-140) $)) (-15 -3474 ((-654 (-848)) $)) (-15 -3933 ((-654 (-185 (-140))) $)) (-15 -1324 ((-654 (-185 (-140))) $))))) (T -141)) -((-1973 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) -(-13 (-623 (-872)) (-10 -8 (-15 -1973 ((-140) $)) (-15 -3474 ((-654 (-848)) $)) (-15 -3933 ((-654 (-185 (-140))) $)) (-15 -1324 ((-654 (-185 (-140))) $)))) -((-2863 (((-112) $ $) NIL)) (-3635 (($) 17 T CONST)) (-1421 (($) NIL (|has| (-145) (-377)))) (-4352 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-2627 (($ $ $) NIL)) (-3415 (((-112) $ $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| (-145) (-377)))) (-1516 (($) NIL) (($ (-654 (-145))) NIL)) (-2551 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-1941 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458))) (($ (-145) $) 60 (|has| $ (-6 -4458)))) (-3310 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2881 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2834 (($) NIL (|has| (-145) (-377)))) (-1873 (((-654 (-145)) $) 69 (|has| $ (-6 -4458)))) (-3304 (((-112) $ $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-3632 (((-145) $) NIL (|has| (-145) (-860)))) (-2247 (((-654 (-145)) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-1593 (((-145) $) NIL (|has| (-145) (-860)))) (-2461 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-145) (-145)) $) 64)) (-3234 (($) 18 T CONST)) (-3271 (((-934) $) NIL (|has| (-145) (-377)))) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-1454 (($ $ $) 30)) (-1748 (((-145) $) 61)) (-2609 (($ (-145) $) 59)) (-2590 (($ (-934)) NIL (|has| (-145) (-377)))) (-1914 (($) 16 T CONST)) (-3939 (((-1135) $) NIL)) (-2294 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3484 (((-145) $) 62)) (-2000 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) 57)) (-1406 (($) 15 T CONST)) (-3728 (($ $ $) 32) (($ $ (-145)) NIL)) (-3667 (($ (-654 (-145))) NIL) (($) NIL)) (-3948 (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115)))) (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-1174) $) 37) (((-546) $) NIL (|has| (-145) (-624 (-546)))) (((-654 (-145)) $) 35)) (-2962 (($ (-654 (-145))) NIL)) (-1883 (($ $) 33 (|has| (-145) (-377)))) (-2950 (((-872) $) 53)) (-4366 (($ (-1174)) 14) (($ (-654 (-145))) 50)) (-4168 (((-781) $) NIL)) (-4268 (($) 58) (($ (-654 (-145))) NIL)) (-3838 (((-112) $ $) NIL)) (-3180 (($ (-654 (-145))) NIL)) (-2980 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-1393 (($) 21 T CONST)) (-4135 (($) 20 T CONST)) (-2985 (((-112) $ $) 24)) (-2876 (((-781) $) 56 (|has| $ (-6 -4458))))) -(((-142) (-13 (-1115) (-624 (-1174)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -4366 ($ (-1174))) (-15 -4366 ($ (-654 (-145)))) (-15 -1406 ($) -1715) (-15 -1914 ($) -1715) (-15 -3635 ($) -1715) (-15 -3234 ($) -1715) (-15 -4135 ($) -1715) (-15 -1393 ($) -1715)))) (T -142)) -((-4366 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-142)))) (-4366 (*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142)))) (-1406 (*1 *1) (-5 *1 (-142))) (-1914 (*1 *1) (-5 *1 (-142))) (-3635 (*1 *1) (-5 *1 (-142))) (-3234 (*1 *1) (-5 *1 (-142))) (-4135 (*1 *1) (-5 *1 (-142))) (-1393 (*1 *1) (-5 *1 (-142)))) -(-13 (-1115) (-624 (-1174)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -4366 ($ (-1174))) (-15 -4366 ($ (-654 (-145)))) (-15 -1406 ($) -1715) (-15 -1914 ($) -1715) (-15 -3635 ($) -1715) (-15 -3234 ($) -1715) (-15 -4135 ($) -1715) (-15 -1393 ($) -1715))) -((-1699 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2365 ((|#1| |#3|) 9)) (-3357 ((|#3| |#3|) 15))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -2365 (|#1| |#3|)) (-15 -3357 (|#3| |#3|)) (-15 -1699 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1007 |#1|) (-382 |#2|)) (T -143)) -((-1699 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-382 *5)))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1007 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-382 *4)))) (-2365 (*1 *2 *3) (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-382 *4))))) -(-10 -7 (-15 -2365 (|#1| |#3|)) (-15 -3357 (|#3| |#3|)) (-15 -1699 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3765 (($ $ $) 8)) (-3289 (($ $) 7)) (-1832 (($ $ $) 6))) +((-3528 (((-654 (-185 (-140))) $) 13)) (-1320 (((-654 (-185 (-140))) $) 14)) (-3941 (((-654 (-848)) $) 10)) (-1972 (((-140) $) 7)) (-2951 (((-872) $) 16))) +(((-141) (-13 (-623 (-872)) (-10 -8 (-15 -1972 ((-140) $)) (-15 -3941 ((-654 (-848)) $)) (-15 -3528 ((-654 (-185 (-140))) $)) (-15 -1320 ((-654 (-185 (-140))) $))))) (T -141)) +((-1972 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) +(-13 (-623 (-872)) (-10 -8 (-15 -1972 ((-140) $)) (-15 -3941 ((-654 (-848)) $)) (-15 -3528 ((-654 (-185 (-140))) $)) (-15 -1320 ((-654 (-185 (-140))) $)))) +((-2864 (((-112) $ $) NIL)) (-4149 (($) 17 T CONST)) (-3432 (($) NIL (|has| (-145) (-377)))) (-4353 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-4302 (($ $ $) NIL)) (-1917 (((-112) $ $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| (-145) (-377)))) (-1515 (($) NIL) (($ (-654 (-145))) NIL)) (-1923 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2424 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459))) (($ (-145) $) 60 (|has| $ (-6 -4459)))) (-3311 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2882 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2835 (($) NIL (|has| (-145) (-377)))) (-1871 (((-654 (-145)) $) 69 (|has| $ (-6 -4459)))) (-2714 (((-112) $ $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3634 (((-145) $) NIL (|has| (-145) (-860)))) (-2036 (((-654 (-145)) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-4380 (((-145) $) NIL (|has| (-145) (-860)))) (-2462 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-145) (-145)) $) 64)) (-2089 (($) 18 T CONST)) (-3383 (((-935) $) NIL (|has| (-145) (-377)))) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-3891 (($ $ $) 30)) (-2375 (((-145) $) 61)) (-3285 (($ (-145) $) 59)) (-2591 (($ (-935)) NIL (|has| (-145) (-377)))) (-1774 (($) 16 T CONST)) (-3940 (((-1136) $) NIL)) (-2183 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3801 (((-145) $) 62)) (-3449 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) 57)) (-2402 (($) 15 T CONST)) (-2533 (($ $ $) 32) (($ $ (-145)) NIL)) (-3162 (($ (-654 (-145))) NIL) (($) NIL)) (-3949 (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116)))) (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-1175) $) 37) (((-546) $) NIL (|has| (-145) (-624 (-546)))) (((-654 (-145)) $) 35)) (-2963 (($ (-654 (-145))) NIL)) (-2305 (($ $) 33 (|has| (-145) (-377)))) (-2951 (((-872) $) 53)) (-3622 (($ (-1175)) 14) (($ (-654 (-145))) 50)) (-2152 (((-781) $) NIL)) (-4269 (($) 58) (($ (-654 (-145))) NIL)) (-4069 (((-112) $ $) NIL)) (-2829 (($ (-654 (-145))) NIL)) (-2020 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-3524 (($) 21 T CONST)) (-3376 (($) 20 T CONST)) (-2986 (((-112) $ $) 24)) (-2877 (((-781) $) 56 (|has| $ (-6 -4459))))) +(((-142) (-13 (-1116) (-624 (-1175)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -3622 ($ (-1175))) (-15 -3622 ($ (-654 (-145)))) (-15 -2402 ($) -1714) (-15 -1774 ($) -1714) (-15 -4149 ($) -1714) (-15 -2089 ($) -1714) (-15 -3376 ($) -1714) (-15 -3524 ($) -1714)))) (T -142)) +((-3622 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-142)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142)))) (-2402 (*1 *1) (-5 *1 (-142))) (-1774 (*1 *1) (-5 *1 (-142))) (-4149 (*1 *1) (-5 *1 (-142))) (-2089 (*1 *1) (-5 *1 (-142))) (-3376 (*1 *1) (-5 *1 (-142))) (-3524 (*1 *1) (-5 *1 (-142)))) +(-13 (-1116) (-624 (-1175)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -3622 ($ (-1175))) (-15 -3622 ($ (-654 (-145)))) (-15 -2402 ($) -1714) (-15 -1774 ($) -1714) (-15 -4149 ($) -1714) (-15 -2089 ($) -1714) (-15 -3376 ($) -1714) (-15 -3524 ($) -1714))) +((-4431 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4231 ((|#1| |#3|) 9)) (-3810 ((|#3| |#3|) 15))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -4231 (|#1| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -4431 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1008 |#1|) (-382 |#2|)) (T -143)) +((-4431 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-382 *5)))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1008 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-382 *4)))) (-4231 (*1 *2 *3) (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-382 *4))))) +(-10 -7 (-15 -4231 (|#1| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -4431 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4159 (($ $ $) 8)) (-4412 (($ $) 7)) (-3900 (($ $ $) 6))) (((-144) (-141)) (T -144)) -((-3765 (*1 *1 *1 *1) (-4 *1 (-144))) (-3289 (*1 *1 *1) (-4 *1 (-144))) (-1832 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -1832 ($ $ $)) (-15 -3289 ($ $)) (-15 -3765 ($ $ $)))) -((-2863 (((-112) $ $) NIL)) (-4377 (((-112) $) 39)) (-3635 (($ $) 55)) (-1452 (($) 26 T CONST)) (-1496 (((-781)) 13)) (-2834 (($) 25)) (-4071 (($) 27 T CONST)) (-2366 (((-781) $) 21)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-1593 (($ $ $) NIL) (($) NIL T CONST)) (-4101 (((-112) $) 41)) (-3234 (($ $) 56)) (-3271 (((-934) $) 23)) (-3945 (((-1174) $) 49)) (-2590 (($ (-934)) 20)) (-2732 (((-112) $) 37)) (-3939 (((-1135) $) NIL)) (-3317 (($) 28 T CONST)) (-3292 (((-112) $) 35)) (-2950 (((-872) $) 30)) (-2333 (($ (-781)) 19) (($ (-1174)) 54)) (-3838 (((-112) $ $) NIL)) (-4242 (((-112) $) 45)) (-3554 (((-112) $) 43)) (-3041 (((-112) $ $) 11)) (-3018 (((-112) $ $) 9)) (-2985 (((-112) $ $) 7)) (-3029 (((-112) $ $) 10)) (-3009 (((-112) $ $) 8))) -(((-145) (-13 (-854) (-10 -8 (-15 -2366 ((-781) $)) (-15 -2333 ($ (-781))) (-15 -2333 ($ (-1174))) (-15 -1452 ($) -1715) (-15 -4071 ($) -1715) (-15 -3317 ($) -1715) (-15 -3635 ($ $)) (-15 -3234 ($ $)) (-15 -3292 ((-112) $)) (-15 -2732 ((-112) $)) (-15 -3554 ((-112) $)) (-15 -4377 ((-112) $)) (-15 -4101 ((-112) $)) (-15 -4242 ((-112) $))))) (T -145)) -((-2366 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2333 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2333 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-145)))) (-1452 (*1 *1) (-5 *1 (-145))) (-4071 (*1 *1) (-5 *1 (-145))) (-3317 (*1 *1) (-5 *1 (-145))) (-3635 (*1 *1 *1) (-5 *1 (-145))) (-3234 (*1 *1 *1) (-5 *1 (-145))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2732 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(-13 (-854) (-10 -8 (-15 -2366 ((-781) $)) (-15 -2333 ($ (-781))) (-15 -2333 ($ (-1174))) (-15 -1452 ($) -1715) (-15 -4071 ($) -1715) (-15 -3317 ($) -1715) (-15 -3635 ($ $)) (-15 -3234 ($ $)) (-15 -3292 ((-112) $)) (-15 -2732 ((-112) $)) (-15 -3554 ((-112) $)) (-15 -4377 ((-112) $)) (-15 -4101 ((-112) $)) (-15 -4242 ((-112) $)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-3247 (((-3 $ "failed") $) 39)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-4159 (*1 *1 *1 *1) (-4 *1 (-144))) (-4412 (*1 *1 *1) (-4 *1 (-144))) (-3900 (*1 *1 *1 *1) (-4 *1 (-144)))) +(-13 (-10 -8 (-15 -3900 ($ $ $)) (-15 -4412 ($ $)) (-15 -4159 ($ $ $)))) +((-2864 (((-112) $ $) NIL)) (-2481 (((-112) $) 39)) (-4149 (($ $) 55)) (-4332 (($) 26 T CONST)) (-1496 (((-781)) 13)) (-2835 (($) 25)) (-1815 (($) 27 T CONST)) (-3924 (((-781) $) 21)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-4380 (($ $ $) NIL) (($) NIL T CONST)) (-1465 (((-112) $) 41)) (-2089 (($ $) 56)) (-3383 (((-935) $) 23)) (-1489 (((-1175) $) 49)) (-2591 (($ (-935)) 20)) (-2454 (((-112) $) 37)) (-3940 (((-1136) $) NIL)) (-2238 (($) 28 T CONST)) (-1356 (((-112) $) 35)) (-2951 (((-872) $) 30)) (-2334 (($ (-781)) 19) (($ (-1175)) 54)) (-4069 (((-112) $ $) NIL)) (-3425 (((-112) $) 45)) (-3196 (((-112) $) 43)) (-3042 (((-112) $ $) 11)) (-3020 (((-112) $ $) 9)) (-2986 (((-112) $ $) 7)) (-3030 (((-112) $ $) 10)) (-3009 (((-112) $ $) 8))) +(((-145) (-13 (-854) (-10 -8 (-15 -3924 ((-781) $)) (-15 -2334 ($ (-781))) (-15 -2334 ($ (-1175))) (-15 -4332 ($) -1714) (-15 -1815 ($) -1714) (-15 -2238 ($) -1714) (-15 -4149 ($ $)) (-15 -2089 ($ $)) (-15 -1356 ((-112) $)) (-15 -2454 ((-112) $)) (-15 -3196 ((-112) $)) (-15 -2481 ((-112) $)) (-15 -1465 ((-112) $)) (-15 -3425 ((-112) $))))) (T -145)) +((-3924 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2334 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2334 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-145)))) (-4332 (*1 *1) (-5 *1 (-145))) (-1815 (*1 *1) (-5 *1 (-145))) (-2238 (*1 *1) (-5 *1 (-145))) (-4149 (*1 *1 *1) (-5 *1 (-145))) (-2089 (*1 *1 *1) (-5 *1 (-145))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2454 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3196 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2481 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1465 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(-13 (-854) (-10 -8 (-15 -3924 ((-781) $)) (-15 -2334 ($ (-781))) (-15 -2334 ($ (-1175))) (-15 -4332 ($) -1714) (-15 -1815 ($) -1714) (-15 -2238 ($) -1714) (-15 -4149 ($ $)) (-15 -2089 ($ $)) (-15 -1356 ((-112) $)) (-15 -2454 ((-112) $)) (-15 -3196 ((-112) $)) (-15 -2481 ((-112) $)) (-15 -1465 ((-112) $)) (-15 -3425 ((-112) $)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-3424 (((-3 $ "failed") $) 39)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-146) (-141)) (T -146)) -((-3247 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1064) (-10 -8 (-15 -3247 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-1539 ((|#1| (-699 |#1|) |#1|) 19))) -(((-147 |#1|) (-10 -7 (-15 -1539 (|#1| (-699 |#1|) |#1|))) (-174)) (T -147)) -((-1539 (*1 *2 *3 *2) (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -1539 (|#1| (-699 |#1|) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-3424 (*1 *1 *1) (|partial| -4 *1 (-146)))) +(-13 (-1065) (-10 -8 (-15 -3424 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2648 ((|#1| (-699 |#1|) |#1|) 19))) +(((-147 |#1|) (-10 -7 (-15 -2648 (|#1| (-699 |#1|) |#1|))) (-174)) (T -147)) +((-2648 (*1 *2 *3 *2) (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) +(-10 -7 (-15 -2648 (|#1| (-699 |#1|) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-148) (-141)) (T -148)) NIL -(-13 (-1064)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-1637 (((-2 (|:| -2017 (-781)) (|:| -1867 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781)) 76)) (-3931 (((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|) 56)) (-1384 (((-2 (|:| -1867 (-417 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1510 ((|#1| |#3| |#3|) 44)) (-2660 ((|#3| |#3| (-417 |#2|) (-417 |#2|)) 20)) (-2775 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|) 53))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -1384 ((-2 (|:| -1867 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3931 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -1637 ((-2 (|:| -2017 (-781)) (|:| -1867 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -1510 (|#1| |#3| |#3|)) (-15 -2660 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -2775 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|))) (-1237) (-1259 |#1|) (-1259 (-417 |#2|))) (T -149)) -((-2775 (*1 *2 *3 *3) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5)) (|:| |c2| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5))))) (-2660 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1259 *3)))) (-1510 (*1 *2 *3 *3) (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1237)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1259 (-417 *4))))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *6)) (-4 *5 (-1237)) (-4 *6 (-1259 *5)) (-5 *2 (-2 (|:| -2017 (-781)) (|:| -1867 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1259 *3)))) (-3931 (*1 *2 *3) (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5))))) (-1384 (*1 *2 *3) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| -1867 (-417 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5)))))) -(-10 -7 (-15 -1384 ((-2 (|:| -1867 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3931 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -1637 ((-2 (|:| -2017 (-781)) (|:| -1867 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -1510 (|#1| |#3| |#3|)) (-15 -2660 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -2775 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|))) -((-2352 (((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|)) 35))) -(((-150 |#1| |#2|) (-10 -7 (-15 -2352 ((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|)))) (-555) (-167 |#1|)) (T -150)) -((-2352 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 *5))) (-5 *3 (-1188 *5)) (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -2352 ((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|)))) -((-2173 (($ (-1 (-112) |#2|) $) 37)) (-2560 (($ $) 44)) (-3310 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2881 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-2294 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-2000 (((-112) (-1 (-112) |#2|) $) 24)) (-3948 (((-781) (-1 (-112) |#2|) $) 18) (((-781) |#2| $) NIL)) (-2980 (((-112) (-1 (-112) |#2|) $) 21)) (-2876 (((-781) $) 12))) -(((-151 |#1| |#2|) (-10 -8 (-15 -2560 (|#1| |#1|)) (-15 -3310 (|#1| |#2| |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2173 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3310 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2294 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2000 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|))) (-152 |#2|) (-1233)) (T -151)) -NIL -(-10 -8 (-15 -2560 (|#1| |#1|)) (-15 -3310 (|#1| |#2| |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2173 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3310 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2294 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2000 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) 8)) (-2173 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2560 (($ $) 42 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458))) (($ |#1| $) 43 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 41 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 50)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-152 |#1|) (-141) (-1233)) (T -152)) -((-2962 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-152 *3)))) (-2294 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1233)))) (-2881 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)))) (-2881 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *3)) (-4 *3 (-1233)))) (-2173 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *3)) (-4 *3 (-1233)))) (-2881 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1115)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)))) (-3310 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)) (-4 *2 (-1115)))) (-2560 (*1 *1 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)) (-4 *2 (-1115))))) -(-13 (-499 |t#1|) (-10 -8 (-15 -2962 ($ (-654 |t#1|))) (-15 -2294 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4458)) (PROGN (-15 -2881 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2881 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3310 ($ (-1 (-112) |t#1|) $)) (-15 -2173 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1115)) (PROGN (-15 -2881 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3310 ($ |t#1| $)) (-15 -2560 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) 111)) (-3372 (((-112) $) NIL)) (-4327 (($ |#2| (-654 (-934))) 71)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3883 (($ (-934)) 57)) (-3480 (((-135)) 23)) (-2950 (((-872) $) 86) (($ (-574)) 53) (($ |#2|) 54)) (-2930 ((|#2| $ (-654 (-934))) 74)) (-4019 (((-781)) 20 T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 47 T CONST)) (-2154 (($) 51 T CONST)) (-2985 (((-112) $ $) 33)) (-3098 (($ $ |#2|) NIL)) (-3089 (($ $) 42) (($ $ $) 40)) (-3074 (($ $ $) 38)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) -(((-153 |#1| |#2| |#3|) (-13 (-1064) (-38 |#2|) (-1290 |#2|) (-10 -8 (-15 -3883 ($ (-934))) (-15 -4327 ($ |#2| (-654 (-934)))) (-15 -2930 (|#2| $ (-654 (-934)))) (-15 -3911 ((-3 $ "failed") $)))) (-934) (-372) (-1008 |#1| |#2|)) (T -153)) -((-3911 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-934)) (-4 *3 (-372)) (-14 *4 (-1008 *2 *3)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-372)) (-14 *5 (-1008 *3 *4)))) (-4327 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-934)) (-4 *2 (-372)) (-14 *5 (-1008 *4 *2)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-934))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-934)) (-14 *5 (-1008 *4 *2))))) -(-13 (-1064) (-38 |#2|) (-1290 |#2|) (-10 -8 (-15 -3883 ($ (-934))) (-15 -4327 ($ |#2| (-654 (-934)))) (-15 -2930 (|#2| $ (-654 (-934)))) (-15 -3911 ((-3 $ "failed") $)))) -((-4379 (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-3515 (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574))) 95) (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940)) 96)) (-2482 (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227))))) 99) (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-956 (-227)))) 98) (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574))) 90) (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940)) 91))) -(((-154) (-10 -7 (-15 -2482 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940))) (-15 -2482 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574)))) (-15 -3515 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940))) (-15 -3515 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574)))) (-15 -4379 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2482 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-956 (-227))))) (-15 -2482 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227)))))))) (T -154)) -((-2482 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-956 (-227))))))) (-2482 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-956 (-227)))))) (-4379 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 *4)))) (|:| |xValues| (-1109 *4)) (|:| |yValues| (-1109 *4)))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-956 *4)))))) (-3515 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154)))) (-2482 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154))))) -(-10 -7 (-15 -2482 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940))) (-15 -2482 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574)))) (-15 -3515 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940))) (-15 -3515 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574)))) (-15 -4379 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2482 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-956 (-227))))) (-15 -2482 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227))))))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-1508 (((-654 (-1150)) $) 20)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 27) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2051 (((-1150) $) 9)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-155) (-13 (-1098) (-10 -8 (-15 -1508 ((-654 (-1150)) $)) (-15 -2051 ((-1150) $))))) (T -155)) -((-1508 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-155)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-155))))) -(-13 (-1098) (-10 -8 (-15 -1508 ((-654 (-1150)) $)) (-15 -2051 ((-1150) $)))) -((-1830 (((-654 (-171 |#2|)) |#1| |#2|) 50))) -(((-156 |#1| |#2|) (-10 -7 (-15 -1830 ((-654 (-171 |#2|)) |#1| |#2|))) (-1259 (-171 (-574))) (-13 (-372) (-858))) (T -156)) -((-1830 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1259 (-171 (-574)))) (-4 *4 (-13 (-372) (-858)))))) -(-10 -7 (-15 -1830 ((-654 (-171 |#2|)) |#1| |#2|))) -((-2863 (((-112) $ $) NIL)) (-1818 (((-1232) $) 12)) (-1804 (((-1150) $) 9)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 19) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-157) (-13 (-1098) (-10 -8 (-15 -1804 ((-1150) $)) (-15 -1818 ((-1232) $))))) (T -157)) -((-1804 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-157)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-157))))) -(-13 (-1098) (-10 -8 (-15 -1804 ((-1150) $)) (-15 -1818 ((-1232) $)))) -((-2863 (((-112) $ $) NIL)) (-3232 (($) 41)) (-1334 (($) 40)) (-1959 (((-934)) 46)) (-3945 (((-1174) $) NIL)) (-1376 (((-574) $) 44)) (-3939 (((-1135) $) NIL)) (-4341 (($) 42)) (-1756 (($ (-574)) 47)) (-2950 (((-872) $) 53)) (-3283 (($) 43)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 38)) (-3074 (($ $ $) 35)) (* (($ (-934) $) 45) (($ (-227) $) 11))) -(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-934) $)) (-15 * ($ (-227) $)) (-15 -3074 ($ $ $)) (-15 -1334 ($)) (-15 -3232 ($)) (-15 -4341 ($)) (-15 -3283 ($)) (-15 -1376 ((-574) $)) (-15 -1959 ((-934))) (-15 -1756 ($ (-574)))))) (T -158)) -((-3074 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-1334 (*1 *1) (-5 *1 (-158))) (-3232 (*1 *1) (-5 *1 (-158))) (-4341 (*1 *1) (-5 *1 (-158))) (-3283 (*1 *1) (-5 *1 (-158))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) (-1959 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-158)))) (-1756 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158))))) -(-13 (-25) (-10 -8 (-15 * ($ (-934) $)) (-15 * ($ (-227) $)) (-15 -3074 ($ $ $)) (-15 -1334 ($)) (-15 -3232 ($)) (-15 -4341 ($)) (-15 -3283 ($)) (-15 -1376 ((-574) $)) (-15 -1959 ((-934))) (-15 -1756 ($ (-574))))) -((-3739 ((|#2| |#2| (-1107 |#2|)) 98) ((|#2| |#2| (-1192)) 75)) (-4272 ((|#2| |#2| (-1107 |#2|)) 97) ((|#2| |#2| (-1192)) 74)) (-3765 ((|#2| |#2| |#2|) 25)) (-4150 (((-115) (-115)) 111)) (-2101 ((|#2| (-654 |#2|)) 130)) (-4227 ((|#2| (-654 |#2|)) 151)) (-1881 ((|#2| (-654 |#2|)) 138)) (-3226 ((|#2| |#2|) 136)) (-1562 ((|#2| (-654 |#2|)) 124)) (-1740 ((|#2| (-654 |#2|)) 125)) (-3549 ((|#2| (-654 |#2|)) 149)) (-4149 ((|#2| |#2| (-1192)) 63) ((|#2| |#2|) 62)) (-3289 ((|#2| |#2|) 21)) (-1832 ((|#2| |#2| |#2|) 24)) (-4207 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-159 |#1| |#2|) (-10 -7 (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1832 (|#2| |#2| |#2|)) (-15 -3765 (|#2| |#2| |#2|)) (-15 -3289 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4149 (|#2| |#2| (-1192))) (-15 -3739 (|#2| |#2| (-1192))) (-15 -3739 (|#2| |#2| (-1107 |#2|))) (-15 -4272 (|#2| |#2| (-1192))) (-15 -4272 (|#2| |#2| (-1107 |#2|))) (-15 -3226 (|#2| |#2|)) (-15 -3549 (|#2| (-654 |#2|))) (-15 -1881 (|#2| (-654 |#2|))) (-15 -4227 (|#2| (-654 |#2|))) (-15 -1562 (|#2| (-654 |#2|))) (-15 -1740 (|#2| (-654 |#2|))) (-15 -2101 (|#2| (-654 |#2|)))) (-566) (-440 |#1|)) (T -159)) -((-2101 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-3226 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-4272 (*1 *2 *2 *3) (-12 (-5 *3 (-1107 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-4272 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-3739 (*1 *2 *2 *3) (-12 (-5 *3 (-1107 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-3739 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-4149 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-3289 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-3765 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-1832 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-159 *3 *4)) (-4 *4 (-440 *3)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4))))) -(-10 -7 (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1832 (|#2| |#2| |#2|)) (-15 -3765 (|#2| |#2| |#2|)) (-15 -3289 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4149 (|#2| |#2| (-1192))) (-15 -3739 (|#2| |#2| (-1192))) (-15 -3739 (|#2| |#2| (-1107 |#2|))) (-15 -4272 (|#2| |#2| (-1192))) (-15 -4272 (|#2| |#2| (-1107 |#2|))) (-15 -3226 (|#2| |#2|)) (-15 -3549 (|#2| (-654 |#2|))) (-15 -1881 (|#2| (-654 |#2|))) (-15 -4227 (|#2| (-654 |#2|))) (-15 -1562 (|#2| (-654 |#2|))) (-15 -1740 (|#2| (-654 |#2|))) (-15 -2101 (|#2| (-654 |#2|)))) -((-1853 ((|#1| |#1| |#1|) 64)) (-2596 ((|#1| |#1| |#1|) 61)) (-3765 ((|#1| |#1| |#1|) 55)) (-1774 ((|#1| |#1|) 42)) (-2007 ((|#1| |#1| (-654 |#1|)) 53)) (-3289 ((|#1| |#1|) 46)) (-1832 ((|#1| |#1| |#1|) 49))) -(((-160 |#1|) (-10 -7 (-15 -1832 (|#1| |#1| |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -2007 (|#1| |#1| (-654 |#1|))) (-15 -1774 (|#1| |#1|)) (-15 -3765 (|#1| |#1| |#1|)) (-15 -2596 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|))) (-555)) (T -160)) -((-1853 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-2596 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-3765 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-1774 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-2007 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2)))) (-3289 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-1832 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) -(-10 -7 (-15 -1832 (|#1| |#1| |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -2007 (|#1| |#1| (-654 |#1|))) (-15 -1774 (|#1| |#1|)) (-15 -3765 (|#1| |#1| |#1|)) (-15 -2596 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|))) -((-3739 (($ $ (-1192)) 12) (($ $ (-1107 $)) 11)) (-4272 (($ $ (-1192)) 10) (($ $ (-1107 $)) 9)) (-3765 (($ $ $) 8)) (-4149 (($ $) 14) (($ $ (-1192)) 13)) (-3289 (($ $) 7)) (-1832 (($ $ $) 6))) +(-13 (-1065)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-4225 (((-2 (|:| -3139 (-781)) (|:| -1866 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781)) 76)) (-4102 (((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|) 56)) (-3714 (((-2 (|:| -1866 (-417 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-2111 ((|#1| |#3| |#3|) 44)) (-2661 ((|#3| |#3| (-417 |#2|) (-417 |#2|)) 20)) (-1505 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|) 53))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3714 ((-2 (|:| -1866 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4102 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -4225 ((-2 (|:| -3139 (-781)) (|:| -1866 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -2111 (|#1| |#3| |#3|)) (-15 -2661 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -1505 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|))) (-1238) (-1260 |#1|) (-1260 (-417 |#2|))) (T -149)) +((-1505 (*1 *2 *3 *3) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5)) (|:| |c2| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5))))) (-2661 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1260 *3)))) (-2111 (*1 *2 *3 *3) (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1238)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1260 (-417 *4))))) (-4225 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *6)) (-4 *5 (-1238)) (-4 *6 (-1260 *5)) (-5 *2 (-2 (|:| -3139 (-781)) (|:| -1866 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1260 *3)))) (-4102 (*1 *2 *3) (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5))))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| -1866 (-417 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5)))))) +(-10 -7 (-15 -3714 ((-2 (|:| -1866 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4102 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -4225 ((-2 (|:| -3139 (-781)) (|:| -1866 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -2111 (|#1| |#3| |#3|)) (-15 -2661 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -1505 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|))) +((-2630 (((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|)) 35))) +(((-150 |#1| |#2|) (-10 -7 (-15 -2630 ((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|)))) (-555) (-167 |#1|)) (T -150)) +((-2630 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 *5))) (-5 *3 (-1189 *5)) (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5))))) +(-10 -7 (-15 -2630 ((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|)))) +((-2172 (($ (-1 (-112) |#2|) $) 37)) (-2804 (($ $) 44)) (-3311 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2882 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-2183 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-3449 (((-112) (-1 (-112) |#2|) $) 24)) (-3949 (((-781) (-1 (-112) |#2|) $) 18) (((-781) |#2| $) NIL)) (-2020 (((-112) (-1 (-112) |#2|) $) 21)) (-2877 (((-781) $) 12))) +(((-151 |#1| |#2|) (-10 -8 (-15 -2804 (|#1| |#1|)) (-15 -3311 (|#1| |#2| |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2172 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3311 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3449 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|))) (-152 |#2|) (-1234)) (T -151)) +NIL +(-10 -8 (-15 -2804 (|#1| |#1|)) (-15 -3311 (|#1| |#2| |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2172 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3311 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3449 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) 8)) (-2172 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2804 (($ $) 42 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459))) (($ |#1| $) 43 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 41 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 50)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-152 |#1|) (-141) (-1234)) (T -152)) +((-2963 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-152 *3)))) (-2183 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1234)))) (-2882 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)))) (-2882 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)))) (-3311 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *3)) (-4 *3 (-1234)))) (-2172 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *3)) (-4 *3 (-1234)))) (-2882 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1116)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)))) (-3311 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)) (-4 *2 (-1116)))) (-2804 (*1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)) (-4 *2 (-1116))))) +(-13 (-499 |t#1|) (-10 -8 (-15 -2963 ($ (-654 |t#1|))) (-15 -2183 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4459)) (PROGN (-15 -2882 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2882 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3311 ($ (-1 (-112) |t#1|) $)) (-15 -2172 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1116)) (PROGN (-15 -2882 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3311 ($ |t#1| $)) (-15 -2804 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) 111)) (-4226 (((-112) $) NIL)) (-4328 (($ |#2| (-654 (-935))) 71)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3884 (($ (-935)) 57)) (-2995 (((-135)) 23)) (-2951 (((-872) $) 86) (($ (-574)) 53) (($ |#2|) 54)) (-2706 ((|#2| $ (-654 (-935))) 74)) (-2898 (((-781)) 20 T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 47 T CONST)) (-2153 (($) 51 T CONST)) (-2986 (((-112) $ $) 33)) (-3103 (($ $ |#2|) NIL)) (-3090 (($ $) 42) (($ $ $) 40)) (-3074 (($ $ $) 38)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) +(((-153 |#1| |#2| |#3|) (-13 (-1065) (-38 |#2|) (-1291 |#2|) (-10 -8 (-15 -3884 ($ (-935))) (-15 -4328 ($ |#2| (-654 (-935)))) (-15 -2706 (|#2| $ (-654 (-935)))) (-15 -4322 ((-3 $ "failed") $)))) (-935) (-372) (-1009 |#1| |#2|)) (T -153)) +((-4322 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-935)) (-4 *3 (-372)) (-14 *4 (-1009 *2 *3)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-372)) (-14 *5 (-1009 *3 *4)))) (-4328 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-935)) (-4 *2 (-372)) (-14 *5 (-1009 *4 *2)))) (-2706 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-935))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-935)) (-14 *5 (-1009 *4 *2))))) +(-13 (-1065) (-38 |#2|) (-1291 |#2|) (-10 -8 (-15 -3884 ($ (-935))) (-15 -4328 ($ |#2| (-654 (-935)))) (-15 -2706 (|#2| $ (-654 (-935)))) (-15 -4322 ((-3 $ "failed") $)))) +((-3818 (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-2092 (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574))) 95) (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941)) 96)) (-1640 (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227))))) 99) (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-957 (-227)))) 98) (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574))) 90) (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941)) 91))) +(((-154) (-10 -7 (-15 -1640 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941))) (-15 -1640 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574)))) (-15 -2092 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941))) (-15 -2092 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574)))) (-15 -3818 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1640 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-957 (-227))))) (-15 -1640 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227)))))))) (T -154)) +((-1640 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-957 (-227))))))) (-1640 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-957 (-227)))))) (-3818 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 *4)))) (|:| |xValues| (-1110 *4)) (|:| |yValues| (-1110 *4)))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-957 *4)))))) (-2092 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-941)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154)))) (-1640 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-941)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154))))) +(-10 -7 (-15 -1640 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941))) (-15 -1640 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574)))) (-15 -2092 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941))) (-15 -2092 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574)))) (-15 -3818 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1640 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-957 (-227))))) (-15 -1640 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227))))))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-1508 (((-654 (-1151)) $) 20)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 27) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2050 (((-1151) $) 9)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-155) (-13 (-1099) (-10 -8 (-15 -1508 ((-654 (-1151)) $)) (-15 -2050 ((-1151) $))))) (T -155)) +((-1508 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-155)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-155))))) +(-13 (-1099) (-10 -8 (-15 -1508 ((-654 (-1151)) $)) (-15 -2050 ((-1151) $)))) +((-2434 (((-654 (-171 |#2|)) |#1| |#2|) 50))) +(((-156 |#1| |#2|) (-10 -7 (-15 -2434 ((-654 (-171 |#2|)) |#1| |#2|))) (-1260 (-171 (-574))) (-13 (-372) (-858))) (T -156)) +((-2434 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1260 (-171 (-574)))) (-4 *4 (-13 (-372) (-858)))))) +(-10 -7 (-15 -2434 ((-654 (-171 |#2|)) |#1| |#2|))) +((-2864 (((-112) $ $) NIL)) (-1814 (((-1233) $) 12)) (-1804 (((-1151) $) 9)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 19) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-157) (-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1814 ((-1233) $))))) (T -157)) +((-1804 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-157)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-157))))) +(-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1814 ((-1233) $)))) +((-2864 (((-112) $ $) NIL)) (-1527 (($) 41)) (-2332 (($) 40)) (-3588 (((-935)) 46)) (-1489 (((-1175) $) NIL)) (-2502 (((-574) $) 44)) (-3940 (((-1136) $) NIL)) (-1556 (($) 42)) (-2463 (($ (-574)) 47)) (-2951 (((-872) $) 53)) (-2761 (($) 43)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 38)) (-3074 (($ $ $) 35)) (* (($ (-935) $) 45) (($ (-227) $) 11))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-935) $)) (-15 * ($ (-227) $)) (-15 -3074 ($ $ $)) (-15 -2332 ($)) (-15 -1527 ($)) (-15 -1556 ($)) (-15 -2761 ($)) (-15 -2502 ((-574) $)) (-15 -3588 ((-935))) (-15 -2463 ($ (-574)))))) (T -158)) +((-3074 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-2332 (*1 *1) (-5 *1 (-158))) (-1527 (*1 *1) (-5 *1 (-158))) (-1556 (*1 *1) (-5 *1 (-158))) (-2761 (*1 *1) (-5 *1 (-158))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) (-3588 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-158)))) (-2463 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-935) $)) (-15 * ($ (-227) $)) (-15 -3074 ($ $ $)) (-15 -2332 ($)) (-15 -1527 ($)) (-15 -1556 ($)) (-15 -2761 ($)) (-15 -2502 ((-574) $)) (-15 -3588 ((-935))) (-15 -2463 ($ (-574))))) +((-2046 ((|#2| |#2| (-1108 |#2|)) 98) ((|#2| |#2| (-1193)) 75)) (-3937 ((|#2| |#2| (-1108 |#2|)) 97) ((|#2| |#2| (-1193)) 74)) (-4159 ((|#2| |#2| |#2|) 25)) (-4150 (((-115) (-115)) 111)) (-1865 ((|#2| (-654 |#2|)) 130)) (-1394 ((|#2| (-654 |#2|)) 151)) (-4201 ((|#2| (-654 |#2|)) 138)) (-3996 ((|#2| |#2|) 136)) (-1808 ((|#2| (-654 |#2|)) 124)) (-1784 ((|#2| (-654 |#2|)) 125)) (-4051 ((|#2| (-654 |#2|)) 149)) (-3296 ((|#2| |#2| (-1193)) 63) ((|#2| |#2|) 62)) (-4412 ((|#2| |#2|) 21)) (-3900 ((|#2| |#2| |#2|) 24)) (-2420 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-159 |#1| |#2|) (-10 -7 (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3900 (|#2| |#2| |#2|)) (-15 -4159 (|#2| |#2| |#2|)) (-15 -4412 (|#2| |#2|)) (-15 -3296 (|#2| |#2|)) (-15 -3296 (|#2| |#2| (-1193))) (-15 -2046 (|#2| |#2| (-1193))) (-15 -2046 (|#2| |#2| (-1108 |#2|))) (-15 -3937 (|#2| |#2| (-1193))) (-15 -3937 (|#2| |#2| (-1108 |#2|))) (-15 -3996 (|#2| |#2|)) (-15 -4051 (|#2| (-654 |#2|))) (-15 -4201 (|#2| (-654 |#2|))) (-15 -1394 (|#2| (-654 |#2|))) (-15 -1808 (|#2| (-654 |#2|))) (-15 -1784 (|#2| (-654 |#2|))) (-15 -1865 (|#2| (-654 |#2|)))) (-566) (-440 |#1|)) (T -159)) +((-1865 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-3937 (*1 *2 *2 *3) (-12 (-5 *3 (-1108 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-3937 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-2046 (*1 *2 *2 *3) (-12 (-5 *3 (-1108 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-2046 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-3296 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-3296 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-4412 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-4159 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-3900 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-159 *3 *4)) (-4 *4 (-440 *3)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4))))) +(-10 -7 (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3900 (|#2| |#2| |#2|)) (-15 -4159 (|#2| |#2| |#2|)) (-15 -4412 (|#2| |#2|)) (-15 -3296 (|#2| |#2|)) (-15 -3296 (|#2| |#2| (-1193))) (-15 -2046 (|#2| |#2| (-1193))) (-15 -2046 (|#2| |#2| (-1108 |#2|))) (-15 -3937 (|#2| |#2| (-1193))) (-15 -3937 (|#2| |#2| (-1108 |#2|))) (-15 -3996 (|#2| |#2|)) (-15 -4051 (|#2| (-654 |#2|))) (-15 -4201 (|#2| (-654 |#2|))) (-15 -1394 (|#2| (-654 |#2|))) (-15 -1808 (|#2| (-654 |#2|))) (-15 -1784 (|#2| (-654 |#2|))) (-15 -1865 (|#2| (-654 |#2|)))) +((-3433 ((|#1| |#1| |#1|) 64)) (-2955 ((|#1| |#1| |#1|) 61)) (-4159 ((|#1| |#1| |#1|) 55)) (-3515 ((|#1| |#1|) 42)) (-3308 ((|#1| |#1| (-654 |#1|)) 53)) (-4412 ((|#1| |#1|) 46)) (-3900 ((|#1| |#1| |#1|) 49))) +(((-160 |#1|) (-10 -7 (-15 -3900 (|#1| |#1| |#1|)) (-15 -4412 (|#1| |#1|)) (-15 -3308 (|#1| |#1| (-654 |#1|))) (-15 -3515 (|#1| |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -2955 (|#1| |#1| |#1|)) (-15 -3433 (|#1| |#1| |#1|))) (-555)) (T -160)) +((-3433 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-2955 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-4159 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-3515 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-3308 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2)))) (-4412 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-3900 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) +(-10 -7 (-15 -3900 (|#1| |#1| |#1|)) (-15 -4412 (|#1| |#1|)) (-15 -3308 (|#1| |#1| (-654 |#1|))) (-15 -3515 (|#1| |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -2955 (|#1| |#1| |#1|)) (-15 -3433 (|#1| |#1| |#1|))) +((-2046 (($ $ (-1193)) 12) (($ $ (-1108 $)) 11)) (-3937 (($ $ (-1193)) 10) (($ $ (-1108 $)) 9)) (-4159 (($ $ $) 8)) (-3296 (($ $) 14) (($ $ (-1193)) 13)) (-4412 (($ $) 7)) (-3900 (($ $ $) 6))) (((-161) (-141)) (T -161)) -((-4149 (*1 *1 *1) (-4 *1 (-161))) (-4149 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192)))) (-3739 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192)))) (-3739 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-161)))) (-4272 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192)))) (-4272 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-161))))) -(-13 (-144) (-10 -8 (-15 -4149 ($ $)) (-15 -4149 ($ $ (-1192))) (-15 -3739 ($ $ (-1192))) (-15 -3739 ($ $ (-1107 $))) (-15 -4272 ($ $ (-1192))) (-15 -4272 ($ $ (-1107 $))))) +((-3296 (*1 *1 *1) (-4 *1 (-161))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193)))) (-2046 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-161)))) (-3937 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193)))) (-3937 (*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-161))))) +(-13 (-144) (-10 -8 (-15 -3296 ($ $)) (-15 -3296 ($ $ (-1193))) (-15 -2046 ($ $ (-1193))) (-15 -2046 ($ $ (-1108 $))) (-15 -3937 ($ $ (-1193))) (-15 -3937 ($ $ (-1108 $))))) (((-144) . T)) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 16) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2051 (((-654 (-1150)) $) 10)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-162) (-13 (-1098) (-10 -8 (-15 -2051 ((-654 (-1150)) $))))) (T -162)) -((-2051 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-162))))) -(-13 (-1098) (-10 -8 (-15 -2051 ((-654 (-1150)) $)))) -((-2863 (((-112) $ $) NIL)) (-2408 (($ (-574)) 14) (($ $ $) 15)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 18)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9))) -(((-163) (-13 (-1115) (-10 -8 (-15 -2408 ($ (-574))) (-15 -2408 ($ $ $))))) (T -163)) -((-2408 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163)))) (-2408 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1115) (-10 -8 (-15 -2408 ($ (-574))) (-15 -2408 ($ $ $)))) -((-4150 (((-115) (-1192)) 102))) -(((-164) (-10 -7 (-15 -4150 ((-115) (-1192))))) (T -164)) -((-4150 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-115)) (-5 *1 (-164))))) -(-10 -7 (-15 -4150 ((-115) (-1192)))) -((-1970 ((|#3| |#3|) 19))) -(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -1970 (|#3| |#3|))) (-1064) (-1259 |#1|) (-1259 |#2|)) (T -165)) -((-1970 (*1 *2 *2) (-12 (-4 *3 (-1064)) (-4 *4 (-1259 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1259 *4))))) -(-10 -7 (-15 -1970 (|#3| |#3|))) -((-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 223)) (-1645 ((|#2| $) 102)) (-2378 (($ $) 256)) (-2259 (($ $) 250)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 47)) (-2357 (($ $) 254)) (-2237 (($ $) 248)) (-1705 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 144)) (-2799 (($ $ $) 229)) (-3465 (((-699 (-574)) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 160) (((-699 |#2|) (-699 $)) 154) (((-699 |#2|) (-1283 $)) NIL)) (-2881 (($ (-1188 |#2|)) 125) (((-3 $ "failed") (-417 (-1188 |#2|))) NIL)) (-3911 (((-3 $ "failed") $) 214)) (-1955 (((-3 (-417 (-574)) "failed") $) 204)) (-1519 (((-112) $) 199)) (-4188 (((-417 (-574)) $) 202)) (-3557 (((-934)) 96)) (-2811 (($ $ $) 231)) (-3810 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-3003 (($) 245)) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 193) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 198)) (-1386 ((|#2| $) 100)) (-1950 (((-1188 |#2|) $) 127)) (-1786 (($ (-1 |#2| |#2|) $) 108)) (-3112 (($ $) 247)) (-2868 (((-1188 |#2|) $) 126)) (-1327 (($ $) 207)) (-1734 (($) 103)) (-2743 (((-428 (-1188 $)) (-1188 $)) 95)) (-4428 (((-428 (-1188 $)) (-1188 $)) 64)) (-2852 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-1618 (($ $) 246)) (-3364 (((-781) $) 226)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 236)) (-1738 ((|#2| (-1283 $)) NIL) ((|#2|) 98)) (-3878 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2290 (((-1188 |#2|)) 120)) (-2367 (($ $) 255)) (-2248 (($ $) 249)) (-4346 (((-1283 |#2|) $ (-1283 $)) 136) (((-699 |#2|) (-1283 $) (-1283 $)) NIL) (((-1283 |#2|) $) 116) (((-699 |#2|) (-1283 $)) NIL)) (-1845 (((-1283 |#2|) $) NIL) (($ (-1283 |#2|)) NIL) (((-1188 |#2|) $) NIL) (($ (-1188 |#2|)) NIL) (((-903 (-574)) $) 184) (((-903 (-388)) $) 188) (((-171 (-388)) $) 172) (((-171 (-227)) $) 167) (((-546) $) 180)) (-2202 (($ $) 104)) (-2950 (((-872) $) 143) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-417 (-574))) NIL) (($ $) NIL)) (-1539 (((-1188 |#2|) $) 32)) (-4019 (((-781)) 106)) (-3838 (((-112) $ $) 13)) (-2455 (($ $) 259)) (-2319 (($ $) 253)) (-2427 (($ $) 257)) (-2300 (($ $) 251)) (-1453 ((|#2| $) 242)) (-2442 (($ $) 258)) (-2311 (($ $) 252)) (-3306 (($ $) 162)) (-2985 (((-112) $ $) 110)) (-3089 (($ $) 112) (($ $ $) NIL)) (-3074 (($ $ $) 111)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) 276) (($ $ $) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL))) -(((-166 |#1| |#2|) (-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -2950 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3737 ((-2 (|:| -3775 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3364 ((-781) |#1|)) (-15 -3444 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2799 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1845 ((-546) |#1|)) (-15 -1845 ((-171 (-227)) |#1|)) (-15 -1845 ((-171 (-388)) |#1|)) (-15 -2259 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2248 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3112 (|#1| |#1|)) (-15 -1618 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3003 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -4428 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2743 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2352 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -1955 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4188 ((-417 (-574)) |#1|)) (-15 -1519 ((-112) |#1|)) (-15 -3810 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1453 (|#2| |#1|)) (-15 -3306 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2202 (|#1| |#1|)) (-15 -1734 (|#1|)) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -3552 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -3552 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2881 ((-3 |#1| "failed") (-417 (-1188 |#2|)))) (-15 -2868 ((-1188 |#2|) |#1|)) (-15 -1845 (|#1| (-1188 |#2|))) (-15 -2881 (|#1| (-1188 |#2|))) (-15 -2290 ((-1188 |#2|))) (-15 -3465 ((-699 |#2|) (-1283 |#1|))) (-15 -3465 ((-699 |#2|) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -1845 ((-1188 |#2|) |#1|)) (-15 -1738 (|#2|)) (-15 -1845 (|#1| (-1283 |#2|))) (-15 -1845 ((-1283 |#2|) |#1|)) (-15 -4346 ((-699 |#2|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1|)) (-15 -1950 ((-1188 |#2|) |#1|)) (-15 -1539 ((-1188 |#2|) |#1|)) (-15 -1738 (|#2| (-1283 |#1|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -1386 (|#2| |#1|)) (-15 -1645 (|#2| |#1|)) (-15 -3557 ((-934))) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4019 ((-781))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -3911 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -3838 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) -((-4019 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3557 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-934)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1738 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-2290 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1188 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) -(-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -2950 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3737 ((-2 (|:| -3775 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3364 ((-781) |#1|)) (-15 -3444 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2799 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1845 ((-546) |#1|)) (-15 -1845 ((-171 (-227)) |#1|)) (-15 -1845 ((-171 (-388)) |#1|)) (-15 -2259 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2248 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3112 (|#1| |#1|)) (-15 -1618 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3003 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -4428 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2743 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2352 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -1955 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4188 ((-417 (-574)) |#1|)) (-15 -1519 ((-112) |#1|)) (-15 -3810 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1453 (|#2| |#1|)) (-15 -3306 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2202 (|#1| |#1|)) (-15 -1734 (|#1|)) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -3552 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -3552 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2881 ((-3 |#1| "failed") (-417 (-1188 |#2|)))) (-15 -2868 ((-1188 |#2|) |#1|)) (-15 -1845 (|#1| (-1188 |#2|))) (-15 -2881 (|#1| (-1188 |#2|))) (-15 -2290 ((-1188 |#2|))) (-15 -3465 ((-699 |#2|) (-1283 |#1|))) (-15 -3465 ((-699 |#2|) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -1845 ((-1188 |#2|) |#1|)) (-15 -1738 (|#2|)) (-15 -1845 (|#1| (-1283 |#2|))) (-15 -1845 ((-1283 |#2|) |#1|)) (-15 -4346 ((-699 |#2|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1|)) (-15 -1950 ((-1188 |#2|) |#1|)) (-15 -1539 ((-1188 |#2|) |#1|)) (-15 -1738 (|#2| (-1283 |#1|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -1386 (|#2| |#1|)) (-15 -1645 (|#2| |#1|)) (-15 -3557 ((-934))) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4019 ((-781))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -3911 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -3838 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 103 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-3648 (($ $) 104 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-1527 (((-112) $) 106 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-3644 (((-699 |#1|) (-1283 $)) 53) (((-699 |#1|)) 68)) (-1645 ((|#1| $) 59)) (-2378 (($ $) 232 (|has| |#1| (-1218)))) (-2259 (($ $) 215 (|has| |#1| (-1218)))) (-2541 (((-1205 (-934) (-781)) (-574)) 156 (|has| |#1| (-358)))) (-1597 (((-3 $ "failed") $ $) 20)) (-4055 (((-428 (-1188 $)) (-1188 $)) 246 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-3296 (($ $) 123 (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-3954 (((-428 $) $) 124 (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-4211 (($ $) 245 (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218))))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 249 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-3656 (((-112) $ $) 114 (|has| |#1| (-315)))) (-1496 (((-781)) 97 (|has| |#1| (-377)))) (-2357 (($ $) 231 (|has| |#1| (-1218)))) (-2237 (($ $) 216 (|has| |#1| (-1218)))) (-2403 (($ $) 230 (|has| |#1| (-1218)))) (-2281 (($ $) 217 (|has| |#1| (-1218)))) (-3831 (($) 18 T CONST)) (-1705 (((-3 (-574) "failed") $) 181 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 176)) (-2216 (((-574) $) 180 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 178 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 177)) (-2919 (($ (-1283 |#1|) (-1283 $)) 55) (($ (-1283 |#1|)) 71)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-358)))) (-2799 (($ $ $) 118 (|has| |#1| (-315)))) (-3556 (((-699 |#1|) $ (-1283 $)) 60) (((-699 |#1|) $) 66)) (-3465 (((-699 (-574)) (-1283 $)) 175 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 173 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 172) (((-699 |#1|) (-699 $)) 171) (((-699 |#1|) (-1283 $)) 170)) (-2881 (($ (-1188 |#1|)) 167) (((-3 $ "failed") (-417 (-1188 |#1|))) 164 (|has| |#1| (-372)))) (-3911 (((-3 $ "failed") $) 37)) (-4222 ((|#1| $) 257)) (-1955 (((-3 (-417 (-574)) "failed") $) 250 (|has| |#1| (-555)))) (-1519 (((-112) $) 252 (|has| |#1| (-555)))) (-4188 (((-417 (-574)) $) 251 (|has| |#1| (-555)))) (-3557 (((-934)) 61)) (-2834 (($) 100 (|has| |#1| (-377)))) (-2811 (($ $ $) 117 (|has| |#1| (-315)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 112 (|has| |#1| (-315)))) (-1912 (($) 158 (|has| |#1| (-358)))) (-3873 (((-112) $) 159 (|has| |#1| (-358)))) (-4158 (($ $ (-781)) 150 (|has| |#1| (-358))) (($ $) 149 (|has| |#1| (-358)))) (-1782 (((-112) $) 125 (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-3810 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 253 (-12 (|has| |#1| (-1075)) (|has| |#1| (-1218))))) (-3003 (($) 242 (|has| |#1| (-1218)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 265 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 264 (|has| |#1| (-897 (-388))))) (-2725 (((-934) $) 161 (|has| |#1| (-358))) (((-843 (-934)) $) 147 (|has| |#1| (-358)))) (-3372 (((-112) $) 35)) (-2132 (($ $ (-574)) 244 (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218))))) (-1386 ((|#1| $) 58)) (-1353 (((-3 $ "failed") $) 151 (|has| |#1| (-358)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| |#1| (-315)))) (-1950 (((-1188 |#1|) $) 51 (|has| |#1| (-372)))) (-1786 (($ (-1 |#1| |#1|) $) 266)) (-3271 (((-934) $) 99 (|has| |#1| (-377)))) (-3112 (($ $) 239 (|has| |#1| (-1218)))) (-2868 (((-1188 |#1|) $) 165)) (-2848 (($ (-654 $)) 110 (-2832 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (($ $ $) 109 (-2832 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-3945 (((-1174) $) 10)) (-1327 (($ $) 126 (|has| |#1| (-372)))) (-3791 (($) 152 (|has| |#1| (-358)) CONST)) (-2590 (($ (-934)) 98 (|has| |#1| (-377)))) (-1734 (($) 261)) (-4233 ((|#1| $) 258)) (-3939 (((-1135) $) 11)) (-2975 (($) 169)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 111 (-2832 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-2886 (($ (-654 $)) 108 (-2832 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (($ $ $) 107 (-2832 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) 155 (|has| |#1| (-358)))) (-2743 (((-428 (-1188 $)) (-1188 $)) 248 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-4428 (((-428 (-1188 $)) (-1188 $)) 247 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-4200 (((-428 $) $) 122 (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 119 (|has| |#1| (-315)))) (-2852 (((-3 $ "failed") $ |#1|) 256 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 102 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| |#1| (-315)))) (-1618 (($ $) 240 (|has| |#1| (-1218)))) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) 272 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 271 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 270 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 269 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 268 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) 267 (|has| |#1| (-524 (-1192) |#1|)))) (-3364 (((-781) $) 115 (|has| |#1| (-315)))) (-2208 (($ $ |#1|) 273 (|has| |#1| (-294 |#1| |#1|)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 116 (|has| |#1| (-315)))) (-1738 ((|#1| (-1283 $)) 54) ((|#1|) 67)) (-3881 (((-781) $) 160 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 148 (|has| |#1| (-358)))) (-3878 (($ $ (-1 |#1| |#1|) (-781)) 132) (($ $ (-1 |#1| |#1|)) 131) (($ $ (-654 (-1192)) (-654 (-781))) 139 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 140 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 141 (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) 142 (|has| |#1| (-913 (-1192)))) (($ $) 143 (-2832 (-2096 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2096 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $ (-781)) 145 (-2832 (-2096 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2096 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-1840 (((-699 |#1|) (-1283 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-372)))) (-2290 (((-1188 |#1|)) 168)) (-2416 (($ $) 229 (|has| |#1| (-1218)))) (-2289 (($ $) 218 (|has| |#1| (-1218)))) (-1417 (($) 157 (|has| |#1| (-358)))) (-2389 (($ $) 228 (|has| |#1| (-1218)))) (-2269 (($ $) 219 (|has| |#1| (-1218)))) (-2367 (($ $) 227 (|has| |#1| (-1218)))) (-2248 (($ $) 220 (|has| |#1| (-1218)))) (-4346 (((-1283 |#1|) $ (-1283 $)) 57) (((-699 |#1|) (-1283 $) (-1283 $)) 56) (((-1283 |#1|) $) 73) (((-699 |#1|) (-1283 $)) 72)) (-1845 (((-1283 |#1|) $) 70) (($ (-1283 |#1|)) 69) (((-1188 |#1|) $) 182) (($ (-1188 |#1|)) 166) (((-903 (-574)) $) 263 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 262 (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) 214 (|has| |#1| (-1037))) (((-171 (-227)) $) 213 (|has| |#1| (-1037))) (((-546) $) 212 (|has| |#1| (-624 (-546))))) (-2202 (($ $) 260)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 154 (-2832 (-2096 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))) (|has| |#1| (-358))))) (-3535 (($ |#1| |#1|) 259)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 96 (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) 101 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-3247 (($ $) 153 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (-2832 (-2096 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))) (|has| |#1| (-146))))) (-1539 (((-1188 |#1|) $) 52)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2191 (((-1283 $)) 74)) (-2455 (($ $) 238 (|has| |#1| (-1218)))) (-2319 (($ $) 226 (|has| |#1| (-1218)))) (-1842 (((-112) $ $) 105 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-2427 (($ $) 237 (|has| |#1| (-1218)))) (-2300 (($ $) 225 (|has| |#1| (-1218)))) (-2479 (($ $) 236 (|has| |#1| (-1218)))) (-2339 (($ $) 224 (|has| |#1| (-1218)))) (-1453 ((|#1| $) 254 (|has| |#1| (-1218)))) (-2535 (($ $) 235 (|has| |#1| (-1218)))) (-2348 (($ $) 223 (|has| |#1| (-1218)))) (-2466 (($ $) 234 (|has| |#1| (-1218)))) (-2329 (($ $) 222 (|has| |#1| (-1218)))) (-2442 (($ $) 233 (|has| |#1| (-1218)))) (-2311 (($ $) 221 (|has| |#1| (-1218)))) (-3306 (($ $) 255 (|has| |#1| (-1075)))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-1 |#1| |#1|) (-781)) 134) (($ $ (-1 |#1| |#1|)) 133) (($ $ (-654 (-1192)) (-654 (-781))) 135 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 136 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 137 (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) 138 (|has| |#1| (-913 (-1192)))) (($ $) 144 (-2832 (-2096 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2096 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $ (-781)) 146 (-2832 (-2096 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2096 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ $) 130 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-417 (-574))) 243 (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218)))) (($ $ $) 241 (|has| |#1| (-1218))) (($ $ (-574)) 127 (|has| |#1| (-372)))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 129 (|has| |#1| (-372))) (($ $ (-417 (-574))) 128 (|has| |#1| (-372))))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 16) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2050 (((-654 (-1151)) $) 10)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-162) (-13 (-1099) (-10 -8 (-15 -2050 ((-654 (-1151)) $))))) (T -162)) +((-2050 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-162))))) +(-13 (-1099) (-10 -8 (-15 -2050 ((-654 (-1151)) $)))) +((-2864 (((-112) $ $) NIL)) (-3926 (($ (-574)) 14) (($ $ $) 15)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 18)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9))) +(((-163) (-13 (-1116) (-10 -8 (-15 -3926 ($ (-574))) (-15 -3926 ($ $ $))))) (T -163)) +((-3926 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163)))) (-3926 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1116) (-10 -8 (-15 -3926 ($ (-574))) (-15 -3926 ($ $ $)))) +((-4150 (((-115) (-1193)) 102))) +(((-164) (-10 -7 (-15 -4150 ((-115) (-1193))))) (T -164)) +((-4150 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-115)) (-5 *1 (-164))))) +(-10 -7 (-15 -4150 ((-115) (-1193)))) +((-3218 ((|#3| |#3|) 19))) +(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3218 (|#3| |#3|))) (-1065) (-1260 |#1|) (-1260 |#2|)) (T -165)) +((-3218 (*1 *2 *2) (-12 (-4 *3 (-1065)) (-4 *4 (-1260 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1260 *4))))) +(-10 -7 (-15 -3218 (|#3| |#3|))) +((-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 223)) (-1644 ((|#2| $) 102)) (-2379 (($ $) 256)) (-2258 (($ $) 250)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 47)) (-2358 (($ $) 254)) (-2235 (($ $) 248)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2214 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 144)) (-2800 (($ $ $) 229)) (-1831 (((-699 (-574)) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 160) (((-699 |#2|) (-699 $)) 154) (((-699 |#2|) (-1284 $)) NIL)) (-2882 (($ (-1189 |#2|)) 125) (((-3 $ "failed") (-417 (-1189 |#2|))) NIL)) (-4322 (((-3 $ "failed") $) 214)) (-3577 (((-3 (-417 (-574)) "failed") $) 204)) (-3839 (((-112) $) 199)) (-2842 (((-417 (-574)) $) 202)) (-3558 (((-935)) 96)) (-2813 (($ $ $) 231)) (-2883 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-3004 (($) 245)) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 193) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 198)) (-1681 ((|#2| $) 100)) (-3989 (((-1189 |#2|) $) 127)) (-1785 (($ (-1 |#2| |#2|) $) 108)) (-3113 (($ $) 247)) (-2869 (((-1189 |#2|) $) 126)) (-1328 (($ $) 207)) (-1958 (($) 103)) (-3651 (((-428 (-1189 $)) (-1189 $)) 95)) (-3335 (((-428 (-1189 $)) (-1189 $)) 64)) (-2853 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-1617 (($ $) 246)) (-2098 (((-781) $) 226)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 236)) (-2394 ((|#2| (-1284 $)) NIL) ((|#2|) 98)) (-3879 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-4379 (((-1189 |#2|)) 120)) (-2368 (($ $) 255)) (-2247 (($ $) 249)) (-1385 (((-1284 |#2|) $ (-1284 $)) 136) (((-699 |#2|) (-1284 $) (-1284 $)) NIL) (((-1284 |#2|) $) 116) (((-699 |#2|) (-1284 $)) NIL)) (-1844 (((-1284 |#2|) $) NIL) (($ (-1284 |#2|)) NIL) (((-1189 |#2|) $) NIL) (($ (-1189 |#2|)) NIL) (((-903 (-574)) $) 184) (((-903 (-388)) $) 188) (((-171 (-388)) $) 172) (((-171 (-227)) $) 167) (((-546) $) 180)) (-3617 (($ $) 104)) (-2951 (((-872) $) 143) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-417 (-574))) NIL) (($ $) NIL)) (-2648 (((-1189 |#2|) $) 32)) (-2898 (((-781)) 106)) (-4069 (((-112) $ $) 13)) (-2456 (($ $) 259)) (-2320 (($ $) 253)) (-2429 (($ $) 257)) (-2301 (($ $) 251)) (-4142 ((|#2| $) 242)) (-2443 (($ $) 258)) (-2312 (($ $) 252)) (-3936 (($ $) 162)) (-2986 (((-112) $ $) 110)) (-3090 (($ $) 112) (($ $ $) NIL)) (-3074 (($ $ $) 111)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) 276) (($ $ $) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL))) +(((-166 |#1| |#2|) (-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2313 ((-2 (|:| -4098 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -2098 ((-781) |#1|)) (-15 -2969 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-171 (-227)) |#1|)) (-15 -1844 ((-171 (-388)) |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2235 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -1617 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3004 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3335 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3651 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -2630 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -3577 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2842 ((-417 (-574)) |#1|)) (-15 -3839 ((-112) |#1|)) (-15 -2883 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4142 (|#2| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3617 (|#1| |#1|)) (-15 -1958 (|#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -4078 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4078 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2882 ((-3 |#1| "failed") (-417 (-1189 |#2|)))) (-15 -2869 ((-1189 |#2|) |#1|)) (-15 -1844 (|#1| (-1189 |#2|))) (-15 -2882 (|#1| (-1189 |#2|))) (-15 -4379 ((-1189 |#2|))) (-15 -1831 ((-699 |#2|) (-1284 |#1|))) (-15 -1831 ((-699 |#2|) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 ((-1189 |#2|) |#1|)) (-15 -2394 (|#2|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -1385 ((-699 |#2|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1|)) (-15 -3989 ((-1189 |#2|) |#1|)) (-15 -2648 ((-1189 |#2|) |#1|)) (-15 -2394 (|#2| (-1284 |#1|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -1681 (|#2| |#1|)) (-15 -1644 (|#2| |#1|)) (-15 -3558 ((-935))) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2898 ((-781))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -4322 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -4069 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) +((-2898 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3558 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-935)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-2394 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-4379 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1189 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) +(-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2313 ((-2 (|:| -4098 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -2098 ((-781) |#1|)) (-15 -2969 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-171 (-227)) |#1|)) (-15 -1844 ((-171 (-388)) |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2235 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -1617 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3004 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3335 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3651 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -2630 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -3577 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2842 ((-417 (-574)) |#1|)) (-15 -3839 ((-112) |#1|)) (-15 -2883 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4142 (|#2| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3617 (|#1| |#1|)) (-15 -1958 (|#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -4078 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4078 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2882 ((-3 |#1| "failed") (-417 (-1189 |#2|)))) (-15 -2869 ((-1189 |#2|) |#1|)) (-15 -1844 (|#1| (-1189 |#2|))) (-15 -2882 (|#1| (-1189 |#2|))) (-15 -4379 ((-1189 |#2|))) (-15 -1831 ((-699 |#2|) (-1284 |#1|))) (-15 -1831 ((-699 |#2|) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 ((-1189 |#2|) |#1|)) (-15 -2394 (|#2|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -1385 ((-699 |#2|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1|)) (-15 -3989 ((-1189 |#2|) |#1|)) (-15 -2648 ((-1189 |#2|) |#1|)) (-15 -2394 (|#2| (-1284 |#1|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -1681 (|#2| |#1|)) (-15 -1644 (|#2| |#1|)) (-15 -3558 ((-935))) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2898 ((-781))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -4322 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -4069 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 104 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-2884 (($ $) 105 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-1981 (((-112) $) 107 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-3835 (((-699 |#1|) (-1284 $)) 53) (((-699 |#1|)) 68)) (-1644 ((|#1| $) 59)) (-2379 (($ $) 233 (|has| |#1| (-1219)))) (-2258 (($ $) 216 (|has| |#1| (-1219)))) (-1928 (((-1206 (-935) (-781)) (-574)) 157 (|has| |#1| (-358)))) (-2600 (((-3 $ "failed") $ $) 20)) (-2488 (((-428 (-1189 $)) (-1189 $)) 247 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-2991 (($ $) 124 (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-1610 (((-428 $) $) 125 (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-4212 (($ $) 246 (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219))))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 250 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-3245 (((-112) $ $) 115 (|has| |#1| (-315)))) (-1496 (((-781)) 98 (|has| |#1| (-377)))) (-2358 (($ $) 232 (|has| |#1| (-1219)))) (-2235 (($ $) 217 (|has| |#1| (-1219)))) (-2404 (($ $) 231 (|has| |#1| (-1219)))) (-2280 (($ $) 218 (|has| |#1| (-1219)))) (-3250 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 182 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 180 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 177)) (-2214 (((-574) $) 181 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 179 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 178)) (-2580 (($ (-1284 |#1|) (-1284 $)) 55) (($ (-1284 |#1|)) 71)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| |#1| (-358)))) (-2800 (($ $ $) 119 (|has| |#1| (-315)))) (-2640 (((-699 |#1|) $ (-1284 $)) 60) (((-699 |#1|) $) 66)) (-1831 (((-699 (-574)) (-1284 $)) 176 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 175 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 173) (((-699 |#1|) (-699 $)) 172) (((-699 |#1|) (-1284 $)) 171)) (-2882 (($ (-1189 |#1|)) 168) (((-3 $ "failed") (-417 (-1189 |#1|))) 165 (|has| |#1| (-372)))) (-4322 (((-3 $ "failed") $) 37)) (-4223 ((|#1| $) 258)) (-3577 (((-3 (-417 (-574)) "failed") $) 251 (|has| |#1| (-555)))) (-3839 (((-112) $) 253 (|has| |#1| (-555)))) (-2842 (((-417 (-574)) $) 252 (|has| |#1| (-555)))) (-3558 (((-935)) 61)) (-2835 (($) 101 (|has| |#1| (-377)))) (-2813 (($ $ $) 118 (|has| |#1| (-315)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 113 (|has| |#1| (-315)))) (-3556 (($) 159 (|has| |#1| (-358)))) (-3084 (((-112) $) 160 (|has| |#1| (-358)))) (-1995 (($ $ (-781)) 151 (|has| |#1| (-358))) (($ $) 150 (|has| |#1| (-358)))) (-3978 (((-112) $) 126 (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-2883 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 254 (-12 (|has| |#1| (-1076)) (|has| |#1| (-1219))))) (-3004 (($) 243 (|has| |#1| (-1219)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 266 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 265 (|has| |#1| (-897 (-388))))) (-3547 (((-935) $) 162 (|has| |#1| (-358))) (((-843 (-935)) $) 148 (|has| |#1| (-358)))) (-4226 (((-112) $) 35)) (-3527 (($ $ (-574)) 245 (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219))))) (-1681 ((|#1| $) 58)) (-2414 (((-3 $ "failed") $) 152 (|has| |#1| (-358)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 122 (|has| |#1| (-315)))) (-3989 (((-1189 |#1|) $) 51 (|has| |#1| (-372)))) (-1785 (($ (-1 |#1| |#1|) $) 267)) (-3383 (((-935) $) 100 (|has| |#1| (-377)))) (-3113 (($ $) 240 (|has| |#1| (-1219)))) (-2869 (((-1189 |#1|) $) 166)) (-2849 (($ (-654 $)) 111 (-2833 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (($ $ $) 110 (-2833 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-1489 (((-1175) $) 10)) (-1328 (($ $) 127 (|has| |#1| (-372)))) (-3791 (($) 153 (|has| |#1| (-358)) CONST)) (-2591 (($ (-935)) 99 (|has| |#1| (-377)))) (-1958 (($) 262)) (-4234 ((|#1| $) 259)) (-3940 (((-1136) $) 11)) (-2975 (($) 170)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 112 (-2833 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-2887 (($ (-654 $)) 109 (-2833 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (($ $ $) 108 (-2833 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) 156 (|has| |#1| (-358)))) (-3651 (((-428 (-1189 $)) (-1189 $)) 249 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-3335 (((-428 (-1189 $)) (-1189 $)) 248 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-4202 (((-428 $) $) 123 (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 120 (|has| |#1| (-315)))) (-2853 (((-3 $ "failed") $ |#1|) 257 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 103 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 114 (|has| |#1| (-315)))) (-1617 (($ $) 241 (|has| |#1| (-1219)))) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) 273 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 272 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 271 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 270 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 269 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) 268 (|has| |#1| (-524 (-1193) |#1|)))) (-2098 (((-781) $) 116 (|has| |#1| (-315)))) (-2207 (($ $ |#1|) 274 (|has| |#1| (-294 |#1| |#1|)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 117 (|has| |#1| (-315)))) (-2394 ((|#1| (-1284 $)) 54) ((|#1|) 67)) (-3261 (((-781) $) 161 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 149 (|has| |#1| (-358)))) (-3879 (($ $ (-1 |#1| |#1|) (-781)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-1193)) 136 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 138 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 139 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 140 (|has| |#1| (-912 (-1193)))) (($ $) 144 (-2833 (-2095 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $ (-781)) 146 (-2833 (-2095 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2095 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-3303 (((-699 |#1|) (-1284 $) (-1 |#1| |#1|)) 164 (|has| |#1| (-372)))) (-4379 (((-1189 |#1|)) 169)) (-2417 (($ $) 230 (|has| |#1| (-1219)))) (-2289 (($ $) 219 (|has| |#1| (-1219)))) (-3603 (($) 158 (|has| |#1| (-358)))) (-2390 (($ $) 229 (|has| |#1| (-1219)))) (-2269 (($ $) 220 (|has| |#1| (-1219)))) (-2368 (($ $) 228 (|has| |#1| (-1219)))) (-2247 (($ $) 221 (|has| |#1| (-1219)))) (-1385 (((-1284 |#1|) $ (-1284 $)) 57) (((-699 |#1|) (-1284 $) (-1284 $)) 56) (((-1284 |#1|) $) 73) (((-699 |#1|) (-1284 $)) 72)) (-1844 (((-1284 |#1|) $) 70) (($ (-1284 |#1|)) 69) (((-1189 |#1|) $) 183) (($ (-1189 |#1|)) 167) (((-903 (-574)) $) 264 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 263 (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) 215 (|has| |#1| (-1038))) (((-171 (-227)) $) 214 (|has| |#1| (-1038))) (((-546) $) 213 (|has| |#1| (-624 (-546))))) (-3617 (($ $) 261)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 155 (-2833 (-2095 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))) (|has| |#1| (-358))))) (-3536 (($ |#1| |#1|) 260)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 97 (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) 102 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-3424 (($ $) 154 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (-2833 (-2095 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))) (|has| |#1| (-146))))) (-2648 (((-1189 |#1|) $) 52)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2391 (((-1284 $)) 74)) (-2456 (($ $) 239 (|has| |#1| (-1219)))) (-2320 (($ $) 227 (|has| |#1| (-1219)))) (-2836 (((-112) $ $) 106 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-2429 (($ $) 238 (|has| |#1| (-1219)))) (-2301 (($ $) 226 (|has| |#1| (-1219)))) (-2480 (($ $) 237 (|has| |#1| (-1219)))) (-2340 (($ $) 225 (|has| |#1| (-1219)))) (-4142 ((|#1| $) 255 (|has| |#1| (-1219)))) (-2536 (($ $) 236 (|has| |#1| (-1219)))) (-2349 (($ $) 224 (|has| |#1| (-1219)))) (-2468 (($ $) 235 (|has| |#1| (-1219)))) (-2330 (($ $) 223 (|has| |#1| (-1219)))) (-2443 (($ $) 234 (|has| |#1| (-1219)))) (-2312 (($ $) 222 (|has| |#1| (-1219)))) (-3936 (($ $) 256 (|has| |#1| (-1076)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-1 |#1| |#1|) (-781)) 135) (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1193)) 137 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 141 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 142 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 143 (|has| |#1| (-912 (-1193)))) (($ $) 145 (-2833 (-2095 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $ (-781)) 147 (-2833 (-2095 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2095 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ $) 131 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-417 (-574))) 244 (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219)))) (($ $ $) 242 (|has| |#1| (-1219))) (($ $ (-574)) 128 (|has| |#1| (-372)))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 130 (|has| |#1| (-372))) (($ $ (-417 (-574))) 129 (|has| |#1| (-372))))) (((-167 |#1|) (-141) (-174)) (T -167)) -((-1386 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1734 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2202 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3535 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-3306 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) (-1453 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1218)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1075)) (-4 *3 (-1218)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1955 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574)))))) -(-13 (-734 |t#1| (-1188 |t#1|)) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-410 |t#1|) (-895 |t#1|) (-386 |t#1|) (-174) (-10 -8 (-6 -3535) (-15 -1734 ($)) (-15 -2202 ($ $)) (-15 -3535 ($ |t#1| |t#1|)) (-15 -4233 (|t#1| $)) (-15 -4222 (|t#1| $)) (-15 -1386 (|t#1| $)) (IF (|has| |t#1| (-566)) (PROGN (-6 (-566)) (-15 -2852 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-315)) (-6 (-315)) |%noBranch|) (IF (|has| |t#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |t#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1037)) (PROGN (-6 (-624 (-171 (-227)))) (-6 (-624 (-171 (-388))))) |%noBranch|) (IF (|has| |t#1| (-1075)) (-15 -3306 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1218)) (PROGN (-6 (-1218)) (-15 -1453 (|t#1| $)) (IF (|has| |t#1| (-1017)) (-6 (-1017)) |%noBranch|) (IF (|has| |t#1| (-1075)) (-15 -3810 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -1519 ((-112) $)) (-15 -4188 ((-417 (-574)) $)) (-15 -1955 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-922)) (IF (|has| |t#1| (-315)) (-6 (-922)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-35) |has| |#1| (-1218)) ((-95) |has| |#1| (-1218)) ((-102) . T) ((-111 #0# #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2832 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-623 (-872)) . T) ((-174) . T) ((-624 (-171 (-227))) |has| |#1| (-1037)) ((-624 (-171 (-388))) |has| |#1| (-1037)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-624 #1=(-1188 |#1|)) . T) ((-235 $) -2832 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -2832 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-238) -2832 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-249) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-292) |has| |#1| (-1218)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-315) -2832 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2832 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| #1#) . T) ((-419 |#1| #1#) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-503) |has| |#1| (-1218)) ((-524 (-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-656 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-734 |#1| #1#) . T) ((-736) . T) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-922) -12 (|has| |#1| (-315)) (|has| |#1| (-922))) ((-933) -2832 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-1017) -12 (|has| |#1| (-1017)) (|has| |#1| (-1218))) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1066 |#1|) . T) ((-1066 $) . T) ((-1071 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| |#1| (-358)) ((-1218) |has| |#1| (-1218)) ((-1221) |has| |#1| (-1218)) ((-1233) . T) ((-1237) -2832 (|has| |#1| (-358)) (|has| |#1| (-372)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) -((-4200 (((-428 |#2|) |#2|) 67))) -(((-168 |#1| |#2|) (-10 -7 (-15 -4200 ((-428 |#2|) |#2|))) (-315) (-1259 (-171 |#1|))) (T -168)) -((-4200 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) -(-10 -7 (-15 -4200 ((-428 |#2|) |#2|))) -((-3499 (((-1150) (-1150) (-299)) 8)) (-2167 (((-654 (-701 (-288))) (-1174)) 81)) (-2503 (((-701 (-288)) (-1150)) 76))) -(((-169) (-13 (-1233) (-10 -7 (-15 -3499 ((-1150) (-1150) (-299))) (-15 -2503 ((-701 (-288)) (-1150))) (-15 -2167 ((-654 (-701 (-288))) (-1174)))))) (T -169)) -((-3499 (*1 *2 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-299)) (-5 *1 (-169)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-701 (-288))) (-5 *1 (-169)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169))))) -(-13 (-1233) (-10 -7 (-15 -3499 ((-1150) (-1150) (-299))) (-15 -2503 ((-701 (-288)) (-1150))) (-15 -2167 ((-654 (-701 (-288))) (-1174))))) -((-1786 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) -(((-170 |#1| |#2|) (-10 -7 (-15 -1786 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) -(-10 -7 (-15 -1786 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 34)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-3648 (($ $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-1527 (((-112) $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-3644 (((-699 |#1|) (-1283 $)) NIL) (((-699 |#1|)) NIL)) (-1645 ((|#1| $) NIL)) (-2378 (($ $) NIL (|has| |#1| (-1218)))) (-2259 (($ $) NIL (|has| |#1| (-1218)))) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-3296 (($ $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-3954 (((-428 $) $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-4211 (($ $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218))))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-3656 (((-112) $ $) NIL (|has| |#1| (-315)))) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-2357 (($ $) NIL (|has| |#1| (-1218)))) (-2237 (($ $) NIL (|has| |#1| (-1218)))) (-2403 (($ $) NIL (|has| |#1| (-1218)))) (-2281 (($ $) NIL (|has| |#1| (-1218)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-2919 (($ (-1283 |#1|) (-1283 $)) NIL) (($ (-1283 |#1|)) NIL)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2799 (($ $ $) NIL (|has| |#1| (-315)))) (-3556 (((-699 |#1|) $ (-1283 $)) NIL) (((-699 |#1|) $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2881 (($ (-1188 |#1|)) NIL) (((-3 $ "failed") (-417 (-1188 |#1|))) NIL (|has| |#1| (-372)))) (-3911 (((-3 $ "failed") $) NIL)) (-4222 ((|#1| $) 13)) (-1955 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-1519 (((-112) $) NIL (|has| |#1| (-555)))) (-4188 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-3557 (((-934)) NIL)) (-2834 (($) NIL (|has| |#1| (-377)))) (-2811 (($ $ $) NIL (|has| |#1| (-315)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-315)))) (-1912 (($) NIL (|has| |#1| (-358)))) (-3873 (((-112) $) NIL (|has| |#1| (-358)))) (-4158 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-1782 (((-112) $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-3810 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1075)) (|has| |#1| (-1218))))) (-3003 (($) NIL (|has| |#1| (-1218)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-2725 (((-934) $) NIL (|has| |#1| (-358))) (((-843 (-934)) $) NIL (|has| |#1| (-358)))) (-3372 (((-112) $) 36)) (-2132 (($ $ (-574)) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218))))) (-1386 ((|#1| $) 47)) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-1950 (((-1188 |#1|) $) NIL (|has| |#1| (-372)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3271 (((-934) $) NIL (|has| |#1| (-377)))) (-3112 (($ $) NIL (|has| |#1| (-1218)))) (-2868 (((-1188 |#1|) $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-3791 (($) NIL (|has| |#1| (-358)) CONST)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-1734 (($) NIL)) (-4233 ((|#1| $) 15)) (-3939 (((-1135) $) NIL)) (-2975 (($) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-315)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| |#1| (-358)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-4200 (((-428 $) $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-315)))) (-2852 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 48 (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-1618 (($ $) NIL (|has| |#1| (-1218)))) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-524 (-1192) |#1|)))) (-3364 (((-781) $) NIL (|has| |#1| (-315)))) (-2208 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-315)))) (-1738 ((|#1| (-1283 $)) NIL) ((|#1|) NIL)) (-3881 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3878 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-1840 (((-699 |#1|) (-1283 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2290 (((-1188 |#1|)) NIL)) (-2416 (($ $) NIL (|has| |#1| (-1218)))) (-2289 (($ $) NIL (|has| |#1| (-1218)))) (-1417 (($) NIL (|has| |#1| (-358)))) (-2389 (($ $) NIL (|has| |#1| (-1218)))) (-2269 (($ $) NIL (|has| |#1| (-1218)))) (-2367 (($ $) NIL (|has| |#1| (-1218)))) (-2248 (($ $) NIL (|has| |#1| (-1218)))) (-4346 (((-1283 |#1|) $ (-1283 $)) NIL) (((-699 |#1|) (-1283 $) (-1283 $)) NIL) (((-1283 |#1|) $) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-1845 (((-1283 |#1|) $) NIL) (($ (-1283 |#1|)) NIL) (((-1188 |#1|) $) NIL) (($ (-1188 |#1|)) NIL) (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) NIL (|has| |#1| (-1037))) (((-171 (-227)) $) NIL (|has| |#1| (-1037))) (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2202 (($ $) 46)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-358))))) (-3535 (($ |#1| |#1|) 38)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 37) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-3247 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-1539 (((-1188 |#1|) $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL)) (-2455 (($ $) NIL (|has| |#1| (-1218)))) (-2319 (($ $) NIL (|has| |#1| (-1218)))) (-1842 (((-112) $ $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-2427 (($ $) NIL (|has| |#1| (-1218)))) (-2300 (($ $) NIL (|has| |#1| (-1218)))) (-2479 (($ $) NIL (|has| |#1| (-1218)))) (-2339 (($ $) NIL (|has| |#1| (-1218)))) (-1453 ((|#1| $) NIL (|has| |#1| (-1218)))) (-2535 (($ $) NIL (|has| |#1| (-1218)))) (-2348 (($ $) NIL (|has| |#1| (-1218)))) (-2466 (($ $) NIL (|has| |#1| (-1218)))) (-2329 (($ $) NIL (|has| |#1| (-1218)))) (-2442 (($ $) NIL (|has| |#1| (-1218)))) (-2311 (($ $) NIL (|has| |#1| (-1218)))) (-3306 (($ $) NIL (|has| |#1| (-1075)))) (-2142 (($) 28 T CONST)) (-2154 (($) 30 T CONST)) (-4057 (((-1174) $) 23 (|has| |#1| (-838))) (((-1174) $ (-112)) 25 (|has| |#1| (-838))) (((-1288) (-832) $) 26 (|has| |#1| (-838))) (((-1288) (-832) $ (-112)) 27 (|has| |#1| (-838)))) (-3583 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 40)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218)))) (($ $ $) NIL (|has| |#1| (-1218))) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))))) +((-1681 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1958 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3617 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3536 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2853 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-3936 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1076)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1219)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1076)) (-4 *3 (-1219)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-3577 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574)))))) +(-13 (-734 |t#1| (-1189 |t#1|)) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-410 |t#1|) (-895 |t#1|) (-386 |t#1|) (-174) (-10 -8 (-6 -3536) (-15 -1958 ($)) (-15 -3617 ($ $)) (-15 -3536 ($ |t#1| |t#1|)) (-15 -4234 (|t#1| $)) (-15 -4223 (|t#1| $)) (-15 -1681 (|t#1| $)) (IF (|has| |t#1| (-566)) (PROGN (-6 (-566)) (-15 -2853 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-315)) (-6 (-315)) |%noBranch|) (IF (|has| |t#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |t#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1038)) (PROGN (-6 (-624 (-171 (-227)))) (-6 (-624 (-171 (-388))))) |%noBranch|) (IF (|has| |t#1| (-1076)) (-15 -3936 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1219)) (PROGN (-6 (-1219)) (-15 -4142 (|t#1| $)) (IF (|has| |t#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |t#1| (-1076)) (-15 -2883 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -3839 ((-112) $)) (-15 -2842 ((-417 (-574)) $)) (-15 -3577 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-923)) (IF (|has| |t#1| (-315)) (-6 (-923)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-35) |has| |#1| (-1219)) ((-95) |has| |#1| (-1219)) ((-102) . T) ((-111 #0# #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2833 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-623 (-872)) . T) ((-174) . T) ((-624 (-171 (-227))) |has| |#1| (-1038)) ((-624 (-171 (-388))) |has| |#1| (-1038)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-624 #1=(-1189 |#1|)) . T) ((-235 $) -2833 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -2833 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-238) -2833 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-249) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-292) |has| |#1| (-1219)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-315) -2833 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2833 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| #1#) . T) ((-419 |#1| #1#) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-503) |has| |#1| (-1219)) ((-524 (-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-656 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-734 |#1| #1#) . T) ((-736) . T) ((-907 $ #3=(-1193)) |has| |#1| (-912 (-1193))) ((-912 #3#) |has| |#1| (-912 (-1193))) ((-914 #3#) |has| |#1| (-912 (-1193))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-923) -12 (|has| |#1| (-315)) (|has| |#1| (-923))) ((-934) -2833 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-1018) -12 (|has| |#1| (-1018)) (|has| |#1| (-1219))) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1072 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| |#1| (-358)) ((-1219) |has| |#1| (-1219)) ((-1222) |has| |#1| (-1219)) ((-1234) . T) ((-1238) -2833 (|has| |#1| (-358)) (|has| |#1| (-372)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) +((-4202 (((-428 |#2|) |#2|) 67))) +(((-168 |#1| |#2|) (-10 -7 (-15 -4202 ((-428 |#2|) |#2|))) (-315) (-1260 (-171 |#1|))) (T -168)) +((-4202 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1260 (-171 *4)))))) +(-10 -7 (-15 -4202 ((-428 |#2|) |#2|))) +((-3500 (((-1151) (-1151) (-299)) 8)) (-3251 (((-654 (-701 (-288))) (-1175)) 81)) (-3013 (((-701 (-288)) (-1151)) 76))) +(((-169) (-13 (-1234) (-10 -7 (-15 -3500 ((-1151) (-1151) (-299))) (-15 -3013 ((-701 (-288)) (-1151))) (-15 -3251 ((-654 (-701 (-288))) (-1175)))))) (T -169)) +((-3500 (*1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-299)) (-5 *1 (-169)))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-701 (-288))) (-5 *1 (-169)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169))))) +(-13 (-1234) (-10 -7 (-15 -3500 ((-1151) (-1151) (-299))) (-15 -3013 ((-701 (-288)) (-1151))) (-15 -3251 ((-654 (-701 (-288))) (-1175))))) +((-1785 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) +(((-170 |#1| |#2|) (-10 -7 (-15 -1785 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -1785 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 34)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-2884 (($ $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-1981 (((-112) $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-3835 (((-699 |#1|) (-1284 $)) NIL) (((-699 |#1|)) NIL)) (-1644 ((|#1| $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-1219)))) (-2258 (($ $) NIL (|has| |#1| (-1219)))) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-2991 (($ $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-1610 (((-428 $) $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-4212 (($ $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219))))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-3245 (((-112) $ $) NIL (|has| |#1| (-315)))) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-2358 (($ $) NIL (|has| |#1| (-1219)))) (-2235 (($ $) NIL (|has| |#1| (-1219)))) (-2404 (($ $) NIL (|has| |#1| (-1219)))) (-2280 (($ $) NIL (|has| |#1| (-1219)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-2580 (($ (-1284 |#1|) (-1284 $)) NIL) (($ (-1284 |#1|)) NIL)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2800 (($ $ $) NIL (|has| |#1| (-315)))) (-2640 (((-699 |#1|) $ (-1284 $)) NIL) (((-699 |#1|) $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-2882 (($ (-1189 |#1|)) NIL) (((-3 $ "failed") (-417 (-1189 |#1|))) NIL (|has| |#1| (-372)))) (-4322 (((-3 $ "failed") $) NIL)) (-4223 ((|#1| $) 13)) (-3577 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-3839 (((-112) $) NIL (|has| |#1| (-555)))) (-2842 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-3558 (((-935)) NIL)) (-2835 (($) NIL (|has| |#1| (-377)))) (-2813 (($ $ $) NIL (|has| |#1| (-315)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-315)))) (-3556 (($) NIL (|has| |#1| (-358)))) (-3084 (((-112) $) NIL (|has| |#1| (-358)))) (-1995 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-3978 (((-112) $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-2883 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1076)) (|has| |#1| (-1219))))) (-3004 (($) NIL (|has| |#1| (-1219)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-3547 (((-935) $) NIL (|has| |#1| (-358))) (((-843 (-935)) $) NIL (|has| |#1| (-358)))) (-4226 (((-112) $) 36)) (-3527 (($ $ (-574)) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219))))) (-1681 ((|#1| $) 47)) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-3989 (((-1189 |#1|) $) NIL (|has| |#1| (-372)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3383 (((-935) $) NIL (|has| |#1| (-377)))) (-3113 (($ $) NIL (|has| |#1| (-1219)))) (-2869 (((-1189 |#1|) $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3791 (($) NIL (|has| |#1| (-358)) CONST)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-1958 (($) NIL)) (-4234 ((|#1| $) 15)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-315)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| |#1| (-358)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-4202 (((-428 $) $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-315)))) (-2853 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 48 (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-1617 (($ $) NIL (|has| |#1| (-1219)))) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-524 (-1193) |#1|)))) (-2098 (((-781) $) NIL (|has| |#1| (-315)))) (-2207 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-315)))) (-2394 ((|#1| (-1284 $)) NIL) ((|#1|) NIL)) (-3261 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3879 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-3303 (((-699 |#1|) (-1284 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-4379 (((-1189 |#1|)) NIL)) (-2417 (($ $) NIL (|has| |#1| (-1219)))) (-2289 (($ $) NIL (|has| |#1| (-1219)))) (-3603 (($) NIL (|has| |#1| (-358)))) (-2390 (($ $) NIL (|has| |#1| (-1219)))) (-2269 (($ $) NIL (|has| |#1| (-1219)))) (-2368 (($ $) NIL (|has| |#1| (-1219)))) (-2247 (($ $) NIL (|has| |#1| (-1219)))) (-1385 (((-1284 |#1|) $ (-1284 $)) NIL) (((-699 |#1|) (-1284 $) (-1284 $)) NIL) (((-1284 |#1|) $) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-1844 (((-1284 |#1|) $) NIL) (($ (-1284 |#1|)) NIL) (((-1189 |#1|) $) NIL) (($ (-1189 |#1|)) NIL) (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) NIL (|has| |#1| (-1038))) (((-171 (-227)) $) NIL (|has| |#1| (-1038))) (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-3617 (($ $) 46)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-358))))) (-3536 (($ |#1| |#1|) 38)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 37) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-3424 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2648 (((-1189 |#1|) $) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL)) (-2456 (($ $) NIL (|has| |#1| (-1219)))) (-2320 (($ $) NIL (|has| |#1| (-1219)))) (-2836 (((-112) $ $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-2429 (($ $) NIL (|has| |#1| (-1219)))) (-2301 (($ $) NIL (|has| |#1| (-1219)))) (-2480 (($ $) NIL (|has| |#1| (-1219)))) (-2340 (($ $) NIL (|has| |#1| (-1219)))) (-4142 ((|#1| $) NIL (|has| |#1| (-1219)))) (-2536 (($ $) NIL (|has| |#1| (-1219)))) (-2349 (($ $) NIL (|has| |#1| (-1219)))) (-2468 (($ $) NIL (|has| |#1| (-1219)))) (-2330 (($ $) NIL (|has| |#1| (-1219)))) (-2443 (($ $) NIL (|has| |#1| (-1219)))) (-2312 (($ $) NIL (|has| |#1| (-1219)))) (-3936 (($ $) NIL (|has| |#1| (-1076)))) (-2141 (($) 28 T CONST)) (-2153 (($) 30 T CONST)) (-3927 (((-1175) $) 23 (|has| |#1| (-838))) (((-1175) $ (-112)) 25 (|has| |#1| (-838))) (((-1289) (-832) $) 26 (|has| |#1| (-838))) (((-1289) (-832) $ (-112)) 27 (|has| |#1| (-838)))) (-3584 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 40)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219)))) (($ $ $) NIL (|has| |#1| (-1219))) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))))) (((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) (-174)) (T -171)) NIL (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) -((-1845 (((-903 |#1|) |#3|) 22))) -(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1845 ((-903 |#1|) |#3|))) (-1115) (-13 (-624 (-903 |#1|)) (-174)) (-167 |#2|)) (T -172)) -((-1845 (*1 *2 *3) (-12 (-4 *5 (-13 (-624 *2) (-174))) (-5 *2 (-903 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1115)) (-4 *3 (-167 *5))))) -(-10 -7 (-15 -1845 ((-903 |#1|) |#3|))) -((-2863 (((-112) $ $) NIL)) (-1875 (((-112) $) 9)) (-3138 (((-112) $ (-112)) 11)) (-3763 (($) 13)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3156 (($ $) 14)) (-2950 (((-872) $) 18)) (-3585 (((-112) $) 8)) (-1389 (((-112) $ (-112)) 10)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-173) (-13 (-1115) (-10 -8 (-15 -3763 ($)) (-15 -3585 ((-112) $)) (-15 -1875 ((-112) $)) (-15 -1389 ((-112) $ (-112))) (-15 -3138 ((-112) $ (-112))) (-15 -3156 ($ $))))) (T -173)) -((-3763 (*1 *1) (-5 *1 (-173))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1389 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3138 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3156 (*1 *1 *1) (-5 *1 (-173)))) -(-13 (-1115) (-10 -8 (-15 -3763 ($)) (-15 -3585 ((-112) $)) (-15 -1875 ((-112) $)) (-15 -1389 ((-112) $ (-112))) (-15 -3138 ((-112) $ (-112))) (-15 -3156 ($ $)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-1844 (((-903 |#1|) |#3|) 22))) +(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1844 ((-903 |#1|) |#3|))) (-1116) (-13 (-624 (-903 |#1|)) (-174)) (-167 |#2|)) (T -172)) +((-1844 (*1 *2 *3) (-12 (-4 *5 (-13 (-624 *2) (-174))) (-5 *2 (-903 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1116)) (-4 *3 (-167 *5))))) +(-10 -7 (-15 -1844 ((-903 |#1|) |#3|))) +((-2864 (((-112) $ $) NIL)) (-3631 (((-112) $) 9)) (-1832 (((-112) $ (-112)) 11)) (-3764 (($) 13)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3157 (($ $) 14)) (-2951 (((-872) $) 18)) (-4284 (((-112) $) 8)) (-1390 (((-112) $ (-112)) 10)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-173) (-13 (-1116) (-10 -8 (-15 -3764 ($)) (-15 -4284 ((-112) $)) (-15 -3631 ((-112) $)) (-15 -1390 ((-112) $ (-112))) (-15 -1832 ((-112) $ (-112))) (-15 -3157 ($ $))))) (T -173)) +((-3764 (*1 *1) (-5 *1 (-173))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1390 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1832 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3157 (*1 *1 *1) (-5 *1 (-173)))) +(-13 (-1116) (-10 -8 (-15 -3764 ($)) (-15 -4284 ((-112) $)) (-15 -3631 ((-112) $)) (-15 -1390 ((-112) $ (-112))) (-15 -1832 ((-112) $ (-112))) (-15 -3157 ($ $)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-174) (-141)) (T -174)) NIL -(-13 (-1064) (-111 $ $) (-10 -7 (-6 (-4460 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-3894 (($ $) 6))) +(-13 (-1065) (-111 $ $) (-10 -7 (-6 (-4461 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-1731 (($ $) 6))) (((-175) (-141)) (T -175)) -((-3894 (*1 *1 *1) (-4 *1 (-175)))) -(-13 (-10 -8 (-15 -3894 ($ $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4018 ((|#1| $) 81)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-2799 (($ $ $) NIL)) (-3630 (($ $) 21)) (-3990 (($ |#1| (-1172 |#1|)) 50)) (-3911 (((-3 $ "failed") $) 123)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1574 (((-1172 |#1|) $) 88)) (-1661 (((-1172 |#1|) $) 85)) (-3742 (((-1172 |#1|) $) 86)) (-3372 (((-112) $) NIL)) (-3713 (((-1172 |#1|) $) 94)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2848 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4200 (((-428 $) $) NIL)) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2115 (($ $ (-574)) 97)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3523 (((-1172 |#1|) $) 95)) (-3293 (((-1172 (-417 |#1|)) $) 14)) (-1863 (($ (-417 |#1|)) 17) (($ |#1| (-1172 |#1|) (-1172 |#1|)) 40)) (-4209 (($ $) 99)) (-2950 (((-872) $) 139) (($ (-574)) 53) (($ |#1|) 54) (($ (-417 |#1|)) 38) (($ (-417 (-574))) NIL) (($ $) NIL)) (-4019 (((-781)) 69 T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-2769 (((-1172 (-417 |#1|)) $) 20)) (-2142 (($) 27 T CONST)) (-2154 (($) 30 T CONST)) (-2985 (((-112) $ $) 37)) (-3098 (($ $ $) 121)) (-3089 (($ $) 112) (($ $ $) 109)) (-3074 (($ $ $) 107)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-417 |#1|) $) 117) (($ $ (-417 |#1|)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL))) -(((-176 |#1|) (-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -1863 ($ (-417 |#1|))) (-15 -1863 ($ |#1| (-1172 |#1|) (-1172 |#1|))) (-15 -3990 ($ |#1| (-1172 |#1|))) (-15 -1661 ((-1172 |#1|) $)) (-15 -3742 ((-1172 |#1|) $)) (-15 -1574 ((-1172 |#1|) $)) (-15 -4018 (|#1| $)) (-15 -3630 ($ $)) (-15 -2769 ((-1172 (-417 |#1|)) $)) (-15 -3293 ((-1172 (-417 |#1|)) $)) (-15 -3713 ((-1172 |#1|) $)) (-15 -3523 ((-1172 |#1|) $)) (-15 -2115 ($ $ (-574))) (-15 -4209 ($ $)))) (-315)) (T -176)) -((-1863 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3)))) (-1863 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1172 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-3990 (*1 *1 *2 *3) (-12 (-5 *3 (-1172 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-1661 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-4018 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-3630 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-1172 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-1172 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-4209 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))) -(-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -1863 ($ (-417 |#1|))) (-15 -1863 ($ |#1| (-1172 |#1|) (-1172 |#1|))) (-15 -3990 ($ |#1| (-1172 |#1|))) (-15 -1661 ((-1172 |#1|) $)) (-15 -3742 ((-1172 |#1|) $)) (-15 -1574 ((-1172 |#1|) $)) (-15 -4018 (|#1| $)) (-15 -3630 ($ $)) (-15 -2769 ((-1172 (-417 |#1|)) $)) (-15 -3293 ((-1172 (-417 |#1|)) $)) (-15 -3713 ((-1172 |#1|) $)) (-15 -3523 ((-1172 |#1|) $)) (-15 -2115 ($ $ (-574))) (-15 -4209 ($ $)))) -((-1542 (($ (-109) $) 15)) (-2335 (((-701 (-109)) (-516) $) 14)) (-2950 (((-872) $) 18)) (-3508 (((-654 (-109)) $) 8))) -(((-177) (-13 (-623 (-872)) (-10 -8 (-15 -3508 ((-654 (-109)) $)) (-15 -1542 ($ (-109) $)) (-15 -2335 ((-701 (-109)) (-516) $))))) (T -177)) -((-3508 (*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177)))) (-1542 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2335 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177))))) -(-13 (-623 (-872)) (-10 -8 (-15 -3508 ((-654 (-109)) $)) (-15 -1542 ($ (-109) $)) (-15 -2335 ((-701 (-109)) (-516) $)))) -((-3203 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 38)) (-3776 (((-956 |#1|) (-956 |#1|)) 22)) (-4247 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 34)) (-2813 (((-956 |#1|) (-956 |#1|)) 20)) (-3823 (((-956 |#1|) (-956 |#1|)) 28)) (-3384 (((-956 |#1|) (-956 |#1|)) 27)) (-3987 (((-956 |#1|) (-956 |#1|)) 26)) (-3143 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 35)) (-3250 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 33)) (-1775 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 32)) (-1894 (((-956 |#1|) (-956 |#1|)) 21)) (-3655 (((-1 (-956 |#1|) (-956 |#1|)) |#1| |#1|) 41)) (-3925 (((-956 |#1|) (-956 |#1|)) 8)) (-2912 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 37)) (-3104 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 36))) -(((-178 |#1|) (-10 -7 (-15 -3925 ((-956 |#1|) (-956 |#1|))) (-15 -2813 ((-956 |#1|) (-956 |#1|))) (-15 -1894 ((-956 |#1|) (-956 |#1|))) (-15 -3776 ((-956 |#1|) (-956 |#1|))) (-15 -3987 ((-956 |#1|) (-956 |#1|))) (-15 -3384 ((-956 |#1|) (-956 |#1|))) (-15 -3823 ((-956 |#1|) (-956 |#1|))) (-15 -1775 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3250 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -4247 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3143 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3104 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -2912 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3203 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3655 ((-1 (-956 |#1|) (-956 |#1|)) |#1| |#1|))) (-13 (-372) (-1218) (-1017))) (T -178)) -((-3655 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-3203 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-2912 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-3104 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-3143 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-4247 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-3250 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-1775 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-3987 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-3776 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-2813 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -3925 ((-956 |#1|) (-956 |#1|))) (-15 -2813 ((-956 |#1|) (-956 |#1|))) (-15 -1894 ((-956 |#1|) (-956 |#1|))) (-15 -3776 ((-956 |#1|) (-956 |#1|))) (-15 -3987 ((-956 |#1|) (-956 |#1|))) (-15 -3384 ((-956 |#1|) (-956 |#1|))) (-15 -3823 ((-956 |#1|) (-956 |#1|))) (-15 -1775 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3250 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -4247 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3143 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3104 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -2912 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3203 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3655 ((-1 (-956 |#1|) (-956 |#1|)) |#1| |#1|))) -((-1539 ((|#2| |#3|) 28))) -(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -1539 (|#2| |#3|))) (-174) (-1259 |#1|) (-734 |#1| |#2|)) (T -179)) -((-1539 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1259 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-734 *4 *2))))) -(-10 -7 (-15 -1539 (|#2| |#3|))) -((-3552 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 44 (|has| (-965 |#2|) (-897 |#1|))))) -(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-965 |#2|) (-897 |#1|)) (-15 -3552 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|)) (-1115) (-13 (-897 |#1|) (-174)) (-167 |#2|)) (T -180)) -((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-4 *3 (-167 *6)) (-4 (-965 *6) (-897 *5)) (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) -(-10 -7 (IF (|has| (-965 |#2|) (-897 |#1|)) (-15 -3552 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|)) -((-1843 (((-654 |#1|) (-654 |#1|) |#1|) 41)) (-3918 (((-654 |#1|) |#1| (-654 |#1|)) 20)) (-2842 (((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|)) 36) ((|#1| (-654 |#1|) (-654 |#1|)) 32))) -(((-181 |#1|) (-10 -7 (-15 -3918 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -2842 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -2842 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -1843 ((-654 |#1|) (-654 |#1|) |#1|))) (-315)) (T -181)) -((-1843 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))) (-2842 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315)) (-5 *1 (-181 *4)))) (-2842 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315)))) (-3918 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) -(-10 -7 (-15 -3918 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -2842 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -2842 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -1843 ((-654 |#1|) (-654 |#1|) |#1|))) -((-2863 (((-112) $ $) NIL)) (-2349 (((-1232) $) 13)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 10)) (-2950 (((-872) $) 20) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-182) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $))))) (T -182)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-182)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-182))))) -(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $)))) -((-2952 (((-2 (|:| |start| |#2|) (|:| -4279 (-428 |#2|))) |#2|) 66)) (-2286 ((|#1| |#1|) 58)) (-1887 (((-171 |#1|) |#2|) 93)) (-2025 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-1449 ((|#2| |#2|) 91)) (-1893 (((-428 |#2|) |#2| |#1|) 118) (((-428 |#2|) |#2| |#1| (-112)) 88)) (-1386 ((|#1| |#2|) 117)) (-2583 ((|#2| |#2|) 130)) (-4200 (((-428 |#2|) |#2|) 153) (((-428 |#2|) |#2| |#1|) 33) (((-428 |#2|) |#2| |#1| (-112)) 152)) (-2954 (((-654 (-2 (|:| -4279 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2|) 151) (((-654 (-2 (|:| -4279 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2| (-112)) 81)) (-1830 (((-654 (-171 |#1|)) |#2| |#1|) 42) (((-654 (-171 |#1|)) |#2|) 43))) -(((-183 |#1| |#2|) (-10 -7 (-15 -1830 ((-654 (-171 |#1|)) |#2|)) (-15 -1830 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -2954 ((-654 (-2 (|:| -4279 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2| (-112))) (-15 -2954 ((-654 (-2 (|:| -4279 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2|)) (-15 -4200 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4200 ((-428 |#2|) |#2| |#1|)) (-15 -4200 ((-428 |#2|) |#2|)) (-15 -2583 (|#2| |#2|)) (-15 -1386 (|#1| |#2|)) (-15 -1893 ((-428 |#2|) |#2| |#1| (-112))) (-15 -1893 ((-428 |#2|) |#2| |#1|)) (-15 -1449 (|#2| |#2|)) (-15 -2025 (|#1| |#2| |#1|)) (-15 -2025 (|#1| |#2|)) (-15 -1887 ((-171 |#1|) |#2|)) (-15 -2286 (|#1| |#1|)) (-15 -2952 ((-2 (|:| |start| |#2|) (|:| -4279 (-428 |#2|))) |#2|))) (-13 (-372) (-858)) (-1259 (-171 |#1|))) (T -183)) -((-2952 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-2 (|:| |start| *3) (|:| -4279 (-428 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-2286 (*1 *2 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1259 (-171 *2))))) (-1887 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1259 *2)))) (-2025 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1259 (-171 *2))))) (-2025 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1259 (-171 *2))))) (-1449 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1259 (-171 *3))))) (-1893 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-1893 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-1386 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1259 (-171 *2))))) (-2583 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1259 (-171 *3))))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-4200 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-4200 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-2954 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -4279 (-654 *3)) (|:| -2692 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-2954 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -4279 (-654 *3)) (|:| -2692 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1259 (-171 *5))))) (-1830 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-1830 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) -(-10 -7 (-15 -1830 ((-654 (-171 |#1|)) |#2|)) (-15 -1830 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -2954 ((-654 (-2 (|:| -4279 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2| (-112))) (-15 -2954 ((-654 (-2 (|:| -4279 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2|)) (-15 -4200 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4200 ((-428 |#2|) |#2| |#1|)) (-15 -4200 ((-428 |#2|) |#2|)) (-15 -2583 (|#2| |#2|)) (-15 -1386 (|#1| |#2|)) (-15 -1893 ((-428 |#2|) |#2| |#1| (-112))) (-15 -1893 ((-428 |#2|) |#2| |#1|)) (-15 -1449 (|#2| |#2|)) (-15 -2025 (|#1| |#2| |#1|)) (-15 -2025 (|#1| |#2|)) (-15 -1887 ((-171 |#1|) |#2|)) (-15 -2286 (|#1| |#1|)) (-15 -2952 ((-2 (|:| |start| |#2|) (|:| -4279 (-428 |#2|))) |#2|))) -((-1379 (((-3 |#2| "failed") |#2|) 16)) (-2571 (((-781) |#2|) 18)) (-2668 ((|#2| |#2| |#2|) 20))) -(((-184 |#1| |#2|) (-10 -7 (-15 -1379 ((-3 |#2| "failed") |#2|)) (-15 -2571 ((-781) |#2|)) (-15 -2668 (|#2| |#2| |#2|))) (-1233) (-684 |#1|)) (T -184)) -((-2668 (*1 *2 *2 *2) (-12 (-4 *3 (-1233)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3)))) (-2571 (*1 *2 *3) (-12 (-4 *4 (-1233)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3)) (-4 *3 (-684 *4)))) (-1379 (*1 *2 *2) (|partial| -12 (-4 *3 (-1233)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3))))) -(-10 -7 (-15 -1379 ((-3 |#2| "failed") |#2|)) (-15 -2571 ((-781) |#2|)) (-15 -2668 (|#2| |#2| |#2|))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1973 ((|#1| $) 7)) (-2950 (((-872) $) 14)) (-3838 (((-112) $ $) NIL)) (-1573 (((-654 (-1197)) $) 10)) (-2985 (((-112) $ $) 12))) -(((-185 |#1|) (-13 (-1115) (-10 -8 (-15 -1973 (|#1| $)) (-15 -1573 ((-654 (-1197)) $)))) (-187)) (T -185)) -((-1973 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1573 (*1 *2 *1) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(-13 (-1115) (-10 -8 (-15 -1973 (|#1| $)) (-15 -1573 ((-654 (-1197)) $)))) -((-1724 (((-654 (-875)) $) 16)) (-4269 (((-188) $) 8)) (-4042 (((-654 (-112)) $) 13)) (-2533 (((-55) $) 10))) -(((-186 |#1|) (-10 -8 (-15 -1724 ((-654 (-875)) |#1|)) (-15 -4042 ((-654 (-112)) |#1|)) (-15 -4269 ((-188) |#1|)) (-15 -2533 ((-55) |#1|))) (-187)) (T -186)) -NIL -(-10 -8 (-15 -1724 ((-654 (-875)) |#1|)) (-15 -4042 ((-654 (-112)) |#1|)) (-15 -4269 ((-188) |#1|)) (-15 -2533 ((-55) |#1|))) -((-2863 (((-112) $ $) 7)) (-1724 (((-654 (-875)) $) 19)) (-2040 (((-516) $) 16)) (-3945 (((-1174) $) 10)) (-4269 (((-188) $) 21)) (-3571 (((-112) $ (-516)) 14)) (-3939 (((-1135) $) 11)) (-4042 (((-654 (-112)) $) 20)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2533 (((-55) $) 15)) (-2985 (((-112) $ $) 6))) +((-1731 (*1 *1 *1) (-4 *1 (-175)))) +(-13 (-10 -8 (-15 -1731 ($ $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4146 ((|#1| $) 81)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-3703 (($ $) 21)) (-3681 (($ |#1| (-1173 |#1|)) 50)) (-4322 (((-3 $ "failed") $) 123)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3808 (((-1173 |#1|) $) 88)) (-2716 (((-1173 |#1|) $) 85)) (-3545 (((-1173 |#1|) $) 86)) (-4226 (((-112) $) NIL)) (-2627 (((-1173 |#1|) $) 94)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2849 (($ (-654 $)) NIL) (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4202 (((-428 $) $) NIL)) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2433 (($ $ (-574)) 97)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3743 (((-1173 |#1|) $) 95)) (-3006 (((-1173 (-417 |#1|)) $) 14)) (-2173 (($ (-417 |#1|)) 17) (($ |#1| (-1173 |#1|) (-1173 |#1|)) 40)) (-2916 (($ $) 99)) (-2951 (((-872) $) 139) (($ (-574)) 53) (($ |#1|) 54) (($ (-417 |#1|)) 38) (($ (-417 (-574))) NIL) (($ $) NIL)) (-2898 (((-781)) 69 T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3222 (((-1173 (-417 |#1|)) $) 20)) (-2141 (($) 27 T CONST)) (-2153 (($) 30 T CONST)) (-2986 (((-112) $ $) 37)) (-3103 (($ $ $) 121)) (-3090 (($ $) 112) (($ $ $) 109)) (-3074 (($ $ $) 107)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-417 |#1|) $) 117) (($ $ (-417 |#1|)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL))) +(((-176 |#1|) (-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -2173 ($ (-417 |#1|))) (-15 -2173 ($ |#1| (-1173 |#1|) (-1173 |#1|))) (-15 -3681 ($ |#1| (-1173 |#1|))) (-15 -2716 ((-1173 |#1|) $)) (-15 -3545 ((-1173 |#1|) $)) (-15 -3808 ((-1173 |#1|) $)) (-15 -4146 (|#1| $)) (-15 -3703 ($ $)) (-15 -3222 ((-1173 (-417 |#1|)) $)) (-15 -3006 ((-1173 (-417 |#1|)) $)) (-15 -2627 ((-1173 |#1|) $)) (-15 -3743 ((-1173 |#1|) $)) (-15 -2433 ($ $ (-574))) (-15 -2916 ($ $)))) (-315)) (T -176)) +((-2173 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3)))) (-2173 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1173 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-3681 (*1 *1 *2 *3) (-12 (-5 *3 (-1173 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-2716 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-4146 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-3703 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-1173 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-1173 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2433 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2916 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))) +(-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -2173 ($ (-417 |#1|))) (-15 -2173 ($ |#1| (-1173 |#1|) (-1173 |#1|))) (-15 -3681 ($ |#1| (-1173 |#1|))) (-15 -2716 ((-1173 |#1|) $)) (-15 -3545 ((-1173 |#1|) $)) (-15 -3808 ((-1173 |#1|) $)) (-15 -4146 (|#1| $)) (-15 -3703 ($ $)) (-15 -3222 ((-1173 (-417 |#1|)) $)) (-15 -3006 ((-1173 (-417 |#1|)) $)) (-15 -2627 ((-1173 |#1|) $)) (-15 -3743 ((-1173 |#1|) $)) (-15 -2433 ($ $ (-574))) (-15 -2916 ($ $)))) +((-2642 (($ (-109) $) 15)) (-2304 (((-701 (-109)) (-516) $) 14)) (-2951 (((-872) $) 18)) (-4065 (((-654 (-109)) $) 8))) +(((-177) (-13 (-623 (-872)) (-10 -8 (-15 -4065 ((-654 (-109)) $)) (-15 -2642 ($ (-109) $)) (-15 -2304 ((-701 (-109)) (-516) $))))) (T -177)) +((-4065 (*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177)))) (-2642 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2304 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177))))) +(-13 (-623 (-872)) (-10 -8 (-15 -4065 ((-654 (-109)) $)) (-15 -2642 ($ (-109) $)) (-15 -2304 ((-701 (-109)) (-516) $)))) +((-1419 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 38)) (-2819 (((-957 |#1|) (-957 |#1|)) 22)) (-1797 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 34)) (-1884 (((-957 |#1|) (-957 |#1|)) 20)) (-1806 (((-957 |#1|) (-957 |#1|)) 28)) (-3931 (((-957 |#1|) (-957 |#1|)) 27)) (-3269 (((-957 |#1|) (-957 |#1|)) 26)) (-3187 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 35)) (-1639 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 33)) (-2090 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 32)) (-2941 (((-957 |#1|) (-957 |#1|)) 21)) (-3248 (((-1 (-957 |#1|) (-957 |#1|)) |#1| |#1|) 41)) (-1332 (((-957 |#1|) (-957 |#1|)) 8)) (-3975 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 37)) (-3097 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 36))) +(((-178 |#1|) (-10 -7 (-15 -1332 ((-957 |#1|) (-957 |#1|))) (-15 -1884 ((-957 |#1|) (-957 |#1|))) (-15 -2941 ((-957 |#1|) (-957 |#1|))) (-15 -2819 ((-957 |#1|) (-957 |#1|))) (-15 -3269 ((-957 |#1|) (-957 |#1|))) (-15 -3931 ((-957 |#1|) (-957 |#1|))) (-15 -1806 ((-957 |#1|) (-957 |#1|))) (-15 -2090 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -1639 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -1797 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3187 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3097 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3975 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -1419 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3248 ((-1 (-957 |#1|) (-957 |#1|)) |#1| |#1|))) (-13 (-372) (-1219) (-1018))) (T -178)) +((-3248 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-1419 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-3975 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-3097 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-3187 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-1797 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-1639 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-2090 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-1806 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-3931 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-3269 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-2819 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-2941 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-1884 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -1332 ((-957 |#1|) (-957 |#1|))) (-15 -1884 ((-957 |#1|) (-957 |#1|))) (-15 -2941 ((-957 |#1|) (-957 |#1|))) (-15 -2819 ((-957 |#1|) (-957 |#1|))) (-15 -3269 ((-957 |#1|) (-957 |#1|))) (-15 -3931 ((-957 |#1|) (-957 |#1|))) (-15 -1806 ((-957 |#1|) (-957 |#1|))) (-15 -2090 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -1639 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -1797 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3187 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3097 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3975 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -1419 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3248 ((-1 (-957 |#1|) (-957 |#1|)) |#1| |#1|))) +((-2648 ((|#2| |#3|) 28))) +(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2648 (|#2| |#3|))) (-174) (-1260 |#1|) (-734 |#1| |#2|)) (T -179)) +((-2648 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1260 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-734 *4 *2))))) +(-10 -7 (-15 -2648 (|#2| |#3|))) +((-4078 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 44 (|has| (-966 |#2|) (-897 |#1|))))) +(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-966 |#2|) (-897 |#1|)) (-15 -4078 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|)) (-1116) (-13 (-897 |#1|) (-174)) (-167 |#2|)) (T -180)) +((-4078 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-4 *3 (-167 *6)) (-4 (-966 *6) (-897 *5)) (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) +(-10 -7 (IF (|has| (-966 |#2|) (-897 |#1|)) (-15 -4078 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|)) +((-1353 (((-654 |#1|) (-654 |#1|) |#1|) 41)) (-2455 (((-654 |#1|) |#1| (-654 |#1|)) 20)) (-1735 (((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|)) 36) ((|#1| (-654 |#1|) (-654 |#1|)) 32))) +(((-181 |#1|) (-10 -7 (-15 -2455 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -1735 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -1735 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -1353 ((-654 |#1|) (-654 |#1|) |#1|))) (-315)) (T -181)) +((-1353 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))) (-1735 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315)) (-5 *1 (-181 *4)))) (-1735 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315)))) (-2455 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) +(-10 -7 (-15 -2455 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -1735 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -1735 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -1353 ((-654 |#1|) (-654 |#1|) |#1|))) +((-2864 (((-112) $ $) NIL)) (-2350 (((-1233) $) 13)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 10)) (-2951 (((-872) $) 20) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-182) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $))))) (T -182)) +((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-182)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-182))))) +(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $)))) +((-3594 (((-2 (|:| |start| |#2|) (|:| -3314 (-428 |#2|))) |#2|) 66)) (-4108 ((|#1| |#1|) 58)) (-3183 (((-171 |#1|) |#2|) 93)) (-3403 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-3827 ((|#2| |#2|) 91)) (-3158 (((-428 |#2|) |#2| |#1|) 118) (((-428 |#2|) |#2| |#1| (-112)) 88)) (-1681 ((|#1| |#2|) 117)) (-3312 ((|#2| |#2|) 130)) (-4202 (((-428 |#2|) |#2|) 153) (((-428 |#2|) |#2| |#1|) 33) (((-428 |#2|) |#2| |#1| (-112)) 152)) (-4110 (((-654 (-2 (|:| -3314 (-654 |#2|)) (|:| -2693 |#1|))) |#2| |#2|) 151) (((-654 (-2 (|:| -3314 (-654 |#2|)) (|:| -2693 |#1|))) |#2| |#2| (-112)) 81)) (-2434 (((-654 (-171 |#1|)) |#2| |#1|) 42) (((-654 (-171 |#1|)) |#2|) 43))) +(((-183 |#1| |#2|) (-10 -7 (-15 -2434 ((-654 (-171 |#1|)) |#2|)) (-15 -2434 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -4110 ((-654 (-2 (|:| -3314 (-654 |#2|)) (|:| -2693 |#1|))) |#2| |#2| (-112))) (-15 -4110 ((-654 (-2 (|:| -3314 (-654 |#2|)) (|:| -2693 |#1|))) |#2| |#2|)) (-15 -4202 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4202 ((-428 |#2|) |#2| |#1|)) (-15 -4202 ((-428 |#2|) |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -1681 (|#1| |#2|)) (-15 -3158 ((-428 |#2|) |#2| |#1| (-112))) (-15 -3158 ((-428 |#2|) |#2| |#1|)) (-15 -3827 (|#2| |#2|)) (-15 -3403 (|#1| |#2| |#1|)) (-15 -3403 (|#1| |#2|)) (-15 -3183 ((-171 |#1|) |#2|)) (-15 -4108 (|#1| |#1|)) (-15 -3594 ((-2 (|:| |start| |#2|) (|:| -3314 (-428 |#2|))) |#2|))) (-13 (-372) (-858)) (-1260 (-171 |#1|))) (T -183)) +((-3594 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-2 (|:| |start| *3) (|:| -3314 (-428 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-4108 (*1 *2 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1260 (-171 *2))))) (-3183 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1260 *2)))) (-3403 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1260 (-171 *2))))) (-3403 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1260 (-171 *2))))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1260 (-171 *3))))) (-3158 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-3158 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-1681 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1260 (-171 *2))))) (-3312 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1260 (-171 *3))))) (-4202 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-4202 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-4202 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-4110 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -3314 (-654 *3)) (|:| -2693 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-4110 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -3314 (-654 *3)) (|:| -2693 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1260 (-171 *5))))) (-2434 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-2434 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4)))))) +(-10 -7 (-15 -2434 ((-654 (-171 |#1|)) |#2|)) (-15 -2434 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -4110 ((-654 (-2 (|:| -3314 (-654 |#2|)) (|:| -2693 |#1|))) |#2| |#2| (-112))) (-15 -4110 ((-654 (-2 (|:| -3314 (-654 |#2|)) (|:| -2693 |#1|))) |#2| |#2|)) (-15 -4202 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4202 ((-428 |#2|) |#2| |#1|)) (-15 -4202 ((-428 |#2|) |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -1681 (|#1| |#2|)) (-15 -3158 ((-428 |#2|) |#2| |#1| (-112))) (-15 -3158 ((-428 |#2|) |#2| |#1|)) (-15 -3827 (|#2| |#2|)) (-15 -3403 (|#1| |#2| |#1|)) (-15 -3403 (|#1| |#2|)) (-15 -3183 ((-171 |#1|) |#2|)) (-15 -4108 (|#1| |#1|)) (-15 -3594 ((-2 (|:| |start| |#2|) (|:| -3314 (-428 |#2|))) |#2|))) +((-2856 (((-3 |#2| "failed") |#2|) 16)) (-2241 (((-781) |#2|) 18)) (-1942 ((|#2| |#2| |#2|) 20))) +(((-184 |#1| |#2|) (-10 -7 (-15 -2856 ((-3 |#2| "failed") |#2|)) (-15 -2241 ((-781) |#2|)) (-15 -1942 (|#2| |#2| |#2|))) (-1234) (-684 |#1|)) (T -184)) +((-1942 (*1 *2 *2 *2) (-12 (-4 *3 (-1234)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3)))) (-2241 (*1 *2 *3) (-12 (-4 *4 (-1234)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3)) (-4 *3 (-684 *4)))) (-2856 (*1 *2 *2) (|partial| -12 (-4 *3 (-1234)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3))))) +(-10 -7 (-15 -2856 ((-3 |#2| "failed") |#2|)) (-15 -2241 ((-781) |#2|)) (-15 -1942 (|#2| |#2| |#2|))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1972 ((|#1| $) 7)) (-2951 (((-872) $) 14)) (-4069 (((-112) $ $) NIL)) (-1572 (((-654 (-1198)) $) 10)) (-2986 (((-112) $ $) 12))) +(((-185 |#1|) (-13 (-1116) (-10 -8 (-15 -1972 (|#1| $)) (-15 -1572 ((-654 (-1198)) $)))) (-187)) (T -185)) +((-1972 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1116) (-10 -8 (-15 -1972 (|#1| $)) (-15 -1572 ((-654 (-1198)) $)))) +((-1723 (((-654 (-875)) $) 16)) (-4270 (((-188) $) 8)) (-3210 (((-654 (-112)) $) 13)) (-2875 (((-55) $) 10))) +(((-186 |#1|) (-10 -8 (-15 -1723 ((-654 (-875)) |#1|)) (-15 -3210 ((-654 (-112)) |#1|)) (-15 -4270 ((-188) |#1|)) (-15 -2875 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -1723 ((-654 (-875)) |#1|)) (-15 -3210 ((-654 (-112)) |#1|)) (-15 -4270 ((-188) |#1|)) (-15 -2875 ((-55) |#1|))) +((-2864 (((-112) $ $) 7)) (-1723 (((-654 (-875)) $) 19)) (-2039 (((-516) $) 16)) (-1489 (((-1175) $) 10)) (-4270 (((-188) $) 21)) (-2154 (((-112) $ (-516)) 14)) (-3940 (((-1136) $) 11)) (-3210 (((-654 (-112)) $) 20)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2875 (((-55) $) 15)) (-2986 (((-112) $ $) 6))) (((-187) (-141)) (T -187)) -((-4269 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112))))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875)))))) -(-13 (-845 (-516)) (-10 -8 (-15 -4269 ((-188) $)) (-15 -4042 ((-654 (-112)) $)) (-15 -1724 ((-654 (-875)) $)))) -(((-102) . T) ((-623 (-872)) . T) ((-845 (-516)) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-8 (($) 7 T CONST)) (-2950 (((-872) $) 12)) (-9 (($) 6 T CONST)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 10))) -(((-188) (-13 (-1115) (-10 -8 (-15 -9 ($) -1715) (-15 -8 ($) -1715) (-15 -7 ($) -1715)))) (T -188)) +((-4270 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112))))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875)))))) +(-13 (-845 (-516)) (-10 -8 (-15 -4270 ((-188) $)) (-15 -3210 ((-654 (-112)) $)) (-15 -1723 ((-654 (-875)) $)))) +(((-102) . T) ((-623 (-872)) . T) ((-845 (-516)) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-8 (($) 7 T CONST)) (-2951 (((-872) $) 12)) (-9 (($) 6 T CONST)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 10))) +(((-188) (-13 (-1116) (-10 -8 (-15 -9 ($) -1714) (-15 -8 ($) -1714) (-15 -7 ($) -1714)))) (T -188)) ((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) -(-13 (-1115) (-10 -8 (-15 -9 ($) -1715) (-15 -8 ($) -1715) (-15 -7 ($) -1715))) -((-2863 (((-112) $ $) NIL)) (-1724 (((-654 (-875)) $) NIL)) (-2040 (((-516) $) 8)) (-3945 (((-1174) $) NIL)) (-4269 (((-188) $) 10)) (-3571 (((-112) $ (-516)) NIL)) (-3939 (((-1135) $) NIL)) (-2572 (((-701 $) (-516)) 17)) (-4042 (((-654 (-112)) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2533 (((-55) $) 12)) (-2985 (((-112) $ $) NIL))) -(((-189) (-13 (-187) (-10 -8 (-15 -2572 ((-701 $) (-516)))))) (T -189)) -((-2572 (*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189))))) -(-13 (-187) (-10 -8 (-15 -2572 ((-701 $) (-516))))) -((-3871 ((|#2| |#2|) 28)) (-1976 (((-112) |#2|) 19)) (-4222 (((-324 |#1|) |#2|) 12)) (-4233 (((-324 |#1|) |#2|) 14)) (-4232 ((|#2| |#2| (-1192)) 69) ((|#2| |#2|) 70)) (-2061 (((-171 (-324 |#1|)) |#2|) 10)) (-1849 ((|#2| |#2| (-1192)) 66) ((|#2| |#2|) 60))) -(((-190 |#1| |#2|) (-10 -7 (-15 -4232 (|#2| |#2|)) (-15 -4232 (|#2| |#2| (-1192))) (-15 -1849 (|#2| |#2|)) (-15 -1849 (|#2| |#2| (-1192))) (-15 -4222 ((-324 |#1|) |#2|)) (-15 -4233 ((-324 |#1|) |#2|)) (-15 -1976 ((-112) |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -2061 ((-171 (-324 |#1|)) |#2|))) (-13 (-566) (-1053 (-574))) (-13 (-27) (-1218) (-440 (-171 |#1|)))) (T -190)) -((-2061 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-171 (-324 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3)))))) (-1976 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-4233 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-4222 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-1849 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3)))))) (-4232 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-4232 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3))))))) -(-10 -7 (-15 -4232 (|#2| |#2|)) (-15 -4232 (|#2| |#2| (-1192))) (-15 -1849 (|#2| |#2|)) (-15 -1849 (|#2| |#2| (-1192))) (-15 -4222 ((-324 |#1|) |#2|)) (-15 -4233 ((-324 |#1|) |#2|)) (-15 -1976 ((-112) |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -2061 ((-171 (-324 |#1|)) |#2|))) -((-3910 (((-1283 (-699 (-965 |#1|))) (-1283 (-699 |#1|))) 26)) (-2950 (((-1283 (-699 (-417 (-965 |#1|)))) (-1283 (-699 |#1|))) 37))) -(((-191 |#1|) (-10 -7 (-15 -3910 ((-1283 (-699 (-965 |#1|))) (-1283 (-699 |#1|)))) (-15 -2950 ((-1283 (-699 (-417 (-965 |#1|)))) (-1283 (-699 |#1|))))) (-174)) (T -191)) -((-2950 (*1 *2 *3) (-12 (-5 *3 (-1283 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1283 (-699 (-417 (-965 *4))))) (-5 *1 (-191 *4)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-1283 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1283 (-699 (-965 *4)))) (-5 *1 (-191 *4))))) -(-10 -7 (-15 -3910 ((-1283 (-699 (-965 |#1|))) (-1283 (-699 |#1|)))) (-15 -2950 ((-1283 (-699 (-417 (-965 |#1|)))) (-1283 (-699 |#1|))))) -((-3371 (((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574)))) 93)) (-2768 (((-1194 (-417 (-574))) (-654 (-574)) (-654 (-574))) 107)) (-4049 (((-1194 (-417 (-574))) (-934)) 54)) (-3689 (((-1194 (-417 (-574))) (-934)) 79)) (-2660 (((-417 (-574)) (-1194 (-417 (-574)))) 89)) (-3727 (((-1194 (-417 (-574))) (-934)) 37)) (-1811 (((-1194 (-417 (-574))) (-934)) 66)) (-3593 (((-1194 (-417 (-574))) (-934)) 61)) (-4224 (((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574)))) 87)) (-4209 (((-1194 (-417 (-574))) (-934)) 29)) (-1678 (((-417 (-574)) (-1194 (-417 (-574))) (-1194 (-417 (-574)))) 91)) (-1897 (((-1194 (-417 (-574))) (-934)) 35)) (-1844 (((-1194 (-417 (-574))) (-654 (-934))) 100))) -(((-192) (-10 -7 (-15 -4209 ((-1194 (-417 (-574))) (-934))) (-15 -4049 ((-1194 (-417 (-574))) (-934))) (-15 -3727 ((-1194 (-417 (-574))) (-934))) (-15 -1897 ((-1194 (-417 (-574))) (-934))) (-15 -3593 ((-1194 (-417 (-574))) (-934))) (-15 -1811 ((-1194 (-417 (-574))) (-934))) (-15 -3689 ((-1194 (-417 (-574))) (-934))) (-15 -1678 ((-417 (-574)) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -4224 ((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -2660 ((-417 (-574)) (-1194 (-417 (-574))))) (-15 -3371 ((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -1844 ((-1194 (-417 (-574))) (-654 (-934)))) (-15 -2768 ((-1194 (-417 (-574))) (-654 (-574)) (-654 (-574)))))) (T -192)) -((-2768 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-3371 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-1194 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-4224 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-1678 (*1 *2 *3 *3) (-12 (-5 *3 (-1194 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) -(-10 -7 (-15 -4209 ((-1194 (-417 (-574))) (-934))) (-15 -4049 ((-1194 (-417 (-574))) (-934))) (-15 -3727 ((-1194 (-417 (-574))) (-934))) (-15 -1897 ((-1194 (-417 (-574))) (-934))) (-15 -3593 ((-1194 (-417 (-574))) (-934))) (-15 -1811 ((-1194 (-417 (-574))) (-934))) (-15 -3689 ((-1194 (-417 (-574))) (-934))) (-15 -1678 ((-417 (-574)) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -4224 ((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -2660 ((-417 (-574)) (-1194 (-417 (-574))))) (-15 -3371 ((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -1844 ((-1194 (-417 (-574))) (-654 (-934)))) (-15 -2768 ((-1194 (-417 (-574))) (-654 (-574)) (-654 (-574))))) -((-4030 (((-428 (-1188 (-574))) (-574)) 38)) (-2381 (((-654 (-1188 (-574))) (-574)) 33)) (-2594 (((-1188 (-574)) (-574)) 28))) -(((-193) (-10 -7 (-15 -2381 ((-654 (-1188 (-574))) (-574))) (-15 -2594 ((-1188 (-574)) (-574))) (-15 -4030 ((-428 (-1188 (-574))) (-574))))) (T -193)) -((-4030 (*1 *2 *3) (-12 (-5 *2 (-428 (-1188 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))) (-2594 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-193)) (-5 *3 (-574)))) (-2381 (*1 *2 *3) (-12 (-5 *2 (-654 (-1188 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) -(-10 -7 (-15 -2381 ((-654 (-1188 (-574))) (-574))) (-15 -2594 ((-1188 (-574)) (-574))) (-15 -4030 ((-428 (-1188 (-574))) (-574)))) -((-1777 (((-1172 (-227)) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-1499 (((-654 (-1174)) (-1172 (-227))) NIL)) (-2304 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2806 (((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227)))) NIL)) (-2426 (((-654 (-1174)) (-654 (-227))) NIL)) (-3768 (((-227) (-1109 (-853 (-227)))) 31)) (-4139 (((-227) (-1109 (-853 (-227)))) 32)) (-4083 (((-388) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-3950 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3324 (((-1174) (-227)) NIL)) (-1554 (((-1174) (-654 (-1174))) 27)) (-2851 (((-1050) (-1192) (-1192) (-1050)) 13))) -(((-194) (-10 -7 (-15 -2304 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3950 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3768 ((-227) (-1109 (-853 (-227))))) (-15 -4139 ((-227) (-1109 (-853 (-227))))) (-15 -4083 ((-388) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2806 ((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227))))) (-15 -1777 ((-1172 (-227)) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3324 ((-1174) (-227))) (-15 -2426 ((-654 (-1174)) (-654 (-227)))) (-15 -1499 ((-654 (-1174)) (-1172 (-227)))) (-15 -1554 ((-1174) (-654 (-1174)))) (-15 -2851 ((-1050) (-1192) (-1192) (-1050))))) (T -194)) -((-2851 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1050)) (-5 *3 (-1192)) (-5 *1 (-194)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-194)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-194)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-194)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-194)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-194)))) (-2806 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1192)) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-194)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) -(-10 -7 (-15 -2304 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3950 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3768 ((-227) (-1109 (-853 (-227))))) (-15 -4139 ((-227) (-1109 (-853 (-227))))) (-15 -4083 ((-388) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2806 ((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227))))) (-15 -1777 ((-1172 (-227)) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3324 ((-1174) (-227))) (-15 -2426 ((-654 (-1174)) (-654 (-227)))) (-15 -1499 ((-654 (-1174)) (-1172 (-227)))) (-15 -1554 ((-1174) (-654 (-1174)))) (-15 -2851 ((-1050) (-1192) (-1192) (-1050)))) -((-2863 (((-112) $ $) NIL)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 61) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(-13 (-1116) (-10 -8 (-15 -9 ($) -1714) (-15 -8 ($) -1714) (-15 -7 ($) -1714))) +((-2864 (((-112) $ $) NIL)) (-1723 (((-654 (-875)) $) NIL)) (-2039 (((-516) $) 8)) (-1489 (((-1175) $) NIL)) (-4270 (((-188) $) 10)) (-2154 (((-112) $ (-516)) NIL)) (-3940 (((-1136) $) NIL)) (-4009 (((-701 $) (-516)) 17)) (-3210 (((-654 (-112)) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2875 (((-55) $) 12)) (-2986 (((-112) $ $) NIL))) +(((-189) (-13 (-187) (-10 -8 (-15 -4009 ((-701 $) (-516)))))) (T -189)) +((-4009 (*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189))))) +(-13 (-187) (-10 -8 (-15 -4009 ((-701 $) (-516))))) +((-3804 ((|#2| |#2|) 28)) (-1980 (((-112) |#2|) 19)) (-4223 (((-324 |#1|) |#2|) 12)) (-4234 (((-324 |#1|) |#2|) 14)) (-2139 ((|#2| |#2| (-1193)) 69) ((|#2| |#2|) 70)) (-2901 (((-171 (-324 |#1|)) |#2|) 10)) (-2638 ((|#2| |#2| (-1193)) 66) ((|#2| |#2|) 60))) +(((-190 |#1| |#2|) (-10 -7 (-15 -2139 (|#2| |#2|)) (-15 -2139 (|#2| |#2| (-1193))) (-15 -2638 (|#2| |#2|)) (-15 -2638 (|#2| |#2| (-1193))) (-15 -4223 ((-324 |#1|) |#2|)) (-15 -4234 ((-324 |#1|) |#2|)) (-15 -1980 ((-112) |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -2901 ((-171 (-324 |#1|)) |#2|))) (-13 (-566) (-1054 (-574))) (-13 (-27) (-1219) (-440 (-171 |#1|)))) (T -190)) +((-2901 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-171 (-324 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3)))))) (-1980 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-4234 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-4223 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-2638 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3)))))) (-2139 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-2139 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3))))))) +(-10 -7 (-15 -2139 (|#2| |#2|)) (-15 -2139 (|#2| |#2| (-1193))) (-15 -2638 (|#2| |#2|)) (-15 -2638 (|#2| |#2| (-1193))) (-15 -4223 ((-324 |#1|) |#2|)) (-15 -4234 ((-324 |#1|) |#2|)) (-15 -1980 ((-112) |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -2901 ((-171 (-324 |#1|)) |#2|))) +((-2255 (((-1284 (-699 (-966 |#1|))) (-1284 (-699 |#1|))) 26)) (-2951 (((-1284 (-699 (-417 (-966 |#1|)))) (-1284 (-699 |#1|))) 37))) +(((-191 |#1|) (-10 -7 (-15 -2255 ((-1284 (-699 (-966 |#1|))) (-1284 (-699 |#1|)))) (-15 -2951 ((-1284 (-699 (-417 (-966 |#1|)))) (-1284 (-699 |#1|))))) (-174)) (T -191)) +((-2951 (*1 *2 *3) (-12 (-5 *3 (-1284 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1284 (-699 (-417 (-966 *4))))) (-5 *1 (-191 *4)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-1284 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1284 (-699 (-966 *4)))) (-5 *1 (-191 *4))))) +(-10 -7 (-15 -2255 ((-1284 (-699 (-966 |#1|))) (-1284 (-699 |#1|)))) (-15 -2951 ((-1284 (-699 (-417 (-966 |#1|)))) (-1284 (-699 |#1|))))) +((-2341 (((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574)))) 93)) (-1579 (((-1195 (-417 (-574))) (-654 (-574)) (-654 (-574))) 107)) (-2862 (((-1195 (-417 (-574))) (-935)) 54)) (-2236 (((-1195 (-417 (-574))) (-935)) 79)) (-2661 (((-417 (-574)) (-1195 (-417 (-574)))) 89)) (-3724 (((-1195 (-417 (-574))) (-935)) 37)) (-1516 (((-1195 (-417 (-574))) (-935)) 66)) (-1798 (((-1195 (-417 (-574))) (-935)) 61)) (-3635 (((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574)))) 87)) (-2916 (((-1195 (-417 (-574))) (-935)) 29)) (-1934 (((-417 (-574)) (-1195 (-417 (-574))) (-1195 (-417 (-574)))) 91)) (-2695 (((-1195 (-417 (-574))) (-935)) 35)) (-3958 (((-1195 (-417 (-574))) (-654 (-935))) 100))) +(((-192) (-10 -7 (-15 -2916 ((-1195 (-417 (-574))) (-935))) (-15 -2862 ((-1195 (-417 (-574))) (-935))) (-15 -3724 ((-1195 (-417 (-574))) (-935))) (-15 -2695 ((-1195 (-417 (-574))) (-935))) (-15 -1798 ((-1195 (-417 (-574))) (-935))) (-15 -1516 ((-1195 (-417 (-574))) (-935))) (-15 -2236 ((-1195 (-417 (-574))) (-935))) (-15 -1934 ((-417 (-574)) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -3635 ((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -2661 ((-417 (-574)) (-1195 (-417 (-574))))) (-15 -2341 ((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -3958 ((-1195 (-417 (-574))) (-654 (-935)))) (-15 -1579 ((-1195 (-417 (-574))) (-654 (-574)) (-654 (-574)))))) (T -192)) +((-1579 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-2341 (*1 *2 *2 *2) (-12 (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-1195 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-3635 (*1 *2 *2 *2) (-12 (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-1934 (*1 *2 *3 *3) (-12 (-5 *3 (-1195 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192))))) +(-10 -7 (-15 -2916 ((-1195 (-417 (-574))) (-935))) (-15 -2862 ((-1195 (-417 (-574))) (-935))) (-15 -3724 ((-1195 (-417 (-574))) (-935))) (-15 -2695 ((-1195 (-417 (-574))) (-935))) (-15 -1798 ((-1195 (-417 (-574))) (-935))) (-15 -1516 ((-1195 (-417 (-574))) (-935))) (-15 -2236 ((-1195 (-417 (-574))) (-935))) (-15 -1934 ((-417 (-574)) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -3635 ((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -2661 ((-417 (-574)) (-1195 (-417 (-574))))) (-15 -2341 ((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -3958 ((-1195 (-417 (-574))) (-654 (-935)))) (-15 -1579 ((-1195 (-417 (-574))) (-654 (-574)) (-654 (-574))))) +((-2959 (((-428 (-1189 (-574))) (-574)) 38)) (-2657 (((-654 (-1189 (-574))) (-574)) 33)) (-1371 (((-1189 (-574)) (-574)) 28))) +(((-193) (-10 -7 (-15 -2657 ((-654 (-1189 (-574))) (-574))) (-15 -1371 ((-1189 (-574)) (-574))) (-15 -2959 ((-428 (-1189 (-574))) (-574))))) (T -193)) +((-2959 (*1 *2 *3) (-12 (-5 *2 (-428 (-1189 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))) (-1371 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-193)) (-5 *3 (-574)))) (-2657 (*1 *2 *3) (-12 (-5 *2 (-654 (-1189 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) +(-10 -7 (-15 -2657 ((-654 (-1189 (-574))) (-574))) (-15 -1371 ((-1189 (-574)) (-574))) (-15 -2959 ((-428 (-1189 (-574))) (-574)))) +((-3516 (((-1173 (-227)) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-3395 (((-654 (-1175)) (-1173 (-227))) NIL)) (-3015 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2741 (((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227)))) NIL)) (-3531 (((-654 (-1175)) (-654 (-227))) NIL)) (-3148 (((-227) (-1110 (-853 (-227)))) 31)) (-3331 (((-227) (-1110 (-853 (-227)))) 32)) (-2253 (((-388) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-3142 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3980 (((-1175) (-227)) NIL)) (-3199 (((-1175) (-654 (-1175))) 27)) (-1542 (((-1051) (-1193) (-1193) (-1051)) 13))) +(((-194) (-10 -7 (-15 -3015 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3142 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3148 ((-227) (-1110 (-853 (-227))))) (-15 -3331 ((-227) (-1110 (-853 (-227))))) (-15 -2253 ((-388) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2741 ((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227))))) (-15 -3516 ((-1173 (-227)) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3980 ((-1175) (-227))) (-15 -3531 ((-654 (-1175)) (-654 (-227)))) (-15 -3395 ((-654 (-1175)) (-1173 (-227)))) (-15 -3199 ((-1175) (-654 (-1175)))) (-15 -1542 ((-1051) (-1193) (-1193) (-1051))))) (T -194)) +((-1542 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1051)) (-5 *3 (-1193)) (-5 *1 (-194)))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-194)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-194)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-194)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-194)))) (-3516 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-194)))) (-2741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1193)) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-194)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) +(-10 -7 (-15 -3015 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3142 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3148 ((-227) (-1110 (-853 (-227))))) (-15 -3331 ((-227) (-1110 (-853 (-227))))) (-15 -2253 ((-388) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2741 ((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227))))) (-15 -3516 ((-1173 (-227)) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3980 ((-1175) (-227))) (-15 -3531 ((-654 (-1175)) (-654 (-227)))) (-15 -3395 ((-654 (-1175)) (-1173 (-227)))) (-15 -3199 ((-1175) (-654 (-1175)))) (-15 -1542 ((-1051) (-1193) (-1193) (-1051)))) +((-2864 (((-112) $ $) NIL)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 61) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-195) (-797)) (T -195)) NIL (-797) -((-2863 (((-112) $ $) NIL)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 66) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 66) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-196) (-797)) (T -196)) NIL (-797) -((-2863 (((-112) $ $) NIL)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 81) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 81) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-197) (-797)) (T -197)) NIL (-797) -((-2863 (((-112) $ $) NIL)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 63) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 63) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-198) (-797)) (T -198)) NIL (-797) -((-2863 (((-112) $ $) NIL)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 75) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 75) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-199) (-797)) (T -199)) NIL (-797) -((-2863 (((-112) $ $) NIL)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 93) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 93) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-200) (-797)) (T -200)) NIL (-797) -((-2863 (((-112) $ $) NIL)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 90) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 90) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-201) (-797)) (T -201)) NIL (-797) -((-2863 (((-112) $ $) NIL)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 77) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 77) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-202) (-797)) (T -202)) NIL (-797) -((-2863 (((-112) $ $) NIL)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 76)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 76)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-203) (-797)) (T -203)) NIL (-797) -((-2863 (((-112) $ $) NIL)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 77)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 77)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-204) (-797)) (T -204)) NIL (-797) -((-2863 (((-112) $ $) NIL)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 105) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 105) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-205) (-797)) (T -205)) NIL (-797) -((-1931 (((-3 (-2 (|:| -4284 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3702 (((-574) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-3807 (((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) -(((-206) (-10 -7 (-15 -1931 ((-3 (-2 (|:| -4284 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3807 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3702 ((-574) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) -((-3702 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-574)) (-5 *1 (-206)))) (-3807 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-206)))) (-1931 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4284 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(-10 -7 (-15 -1931 ((-3 (-2 (|:| -4284 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3807 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3702 ((-574) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-2755 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-3991 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-3980 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227)))) 112)) (-3919 (((-388) (-699 (-324 (-227)))) 140)) (-3671 (((-699 (-324 (-227))) (-1283 (-324 (-227))) (-654 (-1192))) 136)) (-1419 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-4298 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2660 (((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1192)) (-1283 (-324 (-227)))) 125)) (-3127 (((-388) (-388) (-654 (-388))) 133) (((-388) (-388) (-388)) 128)) (-2798 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) -(((-207) (-10 -7 (-15 -3127 ((-388) (-388) (-388))) (-15 -3127 ((-388) (-388) (-654 (-388)))) (-15 -3919 ((-388) (-699 (-324 (-227))))) (-15 -3671 ((-699 (-324 (-227))) (-1283 (-324 (-227))) (-654 (-1192)))) (-15 -2660 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1192)) (-1283 (-324 (-227))))) (-15 -3980 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -3991 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2755 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4298 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2798 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1419 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) -((-1419 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-4298 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-2660 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1192))) (-5 *4 (-1283 (-324 (-227)))) (-5 *1 (-207)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *4 (-654 (-1192))) (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3127 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207))))) -(-10 -7 (-15 -3127 ((-388) (-388) (-388))) (-15 -3127 ((-388) (-388) (-654 (-388)))) (-15 -3919 ((-388) (-699 (-324 (-227))))) (-15 -3671 ((-699 (-324 (-227))) (-1283 (-324 (-227))) (-654 (-1192)))) (-15 -2660 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1192)) (-1283 (-324 (-227))))) (-15 -3980 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -3991 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2755 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4298 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2798 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1419 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-2863 (((-112) $ $) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-3662 (((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2985 (((-112) $ $) NIL))) +((-2726 (((-3 (-2 (|:| -4285 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1764 (((-574) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-3554 (((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) +(((-206) (-10 -7 (-15 -2726 ((-3 (-2 (|:| -4285 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3554 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1764 ((-574) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) +((-1764 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-574)) (-5 *1 (-206)))) (-3554 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-206)))) (-2726 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4285 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(-10 -7 (-15 -2726 ((-3 (-2 (|:| -4285 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3554 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1764 ((-574) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3803 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-2728 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-3356 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227)))) 112)) (-2062 (((-388) (-699 (-324 (-227)))) 140)) (-3789 (((-699 (-324 (-227))) (-1284 (-324 (-227))) (-654 (-1193))) 136)) (-4261 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-2103 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2661 (((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1193)) (-1284 (-324 (-227)))) 125)) (-1369 (((-388) (-388) (-654 (-388))) 133) (((-388) (-388) (-388)) 128)) (-1500 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) +(((-207) (-10 -7 (-15 -1369 ((-388) (-388) (-388))) (-15 -1369 ((-388) (-388) (-654 (-388)))) (-15 -2062 ((-388) (-699 (-324 (-227))))) (-15 -3789 ((-699 (-324 (-227))) (-1284 (-324 (-227))) (-654 (-1193)))) (-15 -2661 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1193)) (-1284 (-324 (-227))))) (-15 -3356 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -2728 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3803 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2103 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1500 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4261 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) +((-4261 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-2661 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1193))) (-5 *4 (-1284 (-324 (-227)))) (-5 *1 (-207)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *4 (-654 (-1193))) (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1369 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207))))) +(-10 -7 (-15 -1369 ((-388) (-388) (-388))) (-15 -1369 ((-388) (-388) (-654 (-388)))) (-15 -2062 ((-388) (-699 (-324 (-227))))) (-15 -3789 ((-699 (-324 (-227))) (-1284 (-324 (-227))) (-654 (-1193)))) (-15 -2661 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1193)) (-1284 (-324 (-227))))) (-15 -3356 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -2728 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3803 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2103 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1500 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4261 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-2864 (((-112) $ $) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2782 (((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2986 (((-112) $ $) NIL))) (((-208) (-810)) (T -208)) NIL (-810) -((-2863 (((-112) $ $) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-3662 (((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2782 (((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2986 (((-112) $ $) NIL))) (((-209) (-810)) (T -209)) NIL (-810) -((-2863 (((-112) $ $) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-3662 (((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2782 (((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2986 (((-112) $ $) NIL))) (((-210) (-810)) (T -210)) NIL (-810) -((-2863 (((-112) $ $) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-3662 (((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2782 (((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2986 (((-112) $ $) NIL))) (((-211) (-810)) (T -211)) NIL (-810) -((-1664 (((-654 (-1192)) (-1192) (-781)) 26)) (-2064 (((-324 (-227)) (-324 (-227))) 35)) (-3456 (((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 87)) (-2340 (((-112) (-227) (-227) (-654 (-324 (-227)))) 47))) -(((-212) (-10 -7 (-15 -1664 ((-654 (-1192)) (-1192) (-781))) (-15 -2064 ((-324 (-227)) (-324 (-227)))) (-15 -2340 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -3456 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))))))) (T -212)) -((-3456 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2340 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-2064 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212)))) (-1664 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1192))) (-5 *1 (-212)) (-5 *3 (-1192))))) -(-10 -7 (-15 -1664 ((-654 (-1192)) (-1192) (-781))) (-15 -2064 ((-324 (-227)) (-324 (-227)))) (-15 -2340 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -3456 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))))) -((-2863 (((-112) $ $) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 28)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-1606 (((-1050) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 70)) (-2985 (((-112) $ $) NIL))) +((-1663 (((-654 (-1193)) (-1193) (-781)) 26)) (-2845 (((-324 (-227)) (-324 (-227))) 35)) (-2768 (((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 87)) (-4062 (((-112) (-227) (-227) (-654 (-324 (-227)))) 47))) +(((-212) (-10 -7 (-15 -1663 ((-654 (-1193)) (-1193) (-781))) (-15 -2845 ((-324 (-227)) (-324 (-227)))) (-15 -4062 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -2768 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))))))) (T -212)) +((-2768 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-4062 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-2845 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212)))) (-1663 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1193))) (-5 *1 (-212)) (-5 *3 (-1193))))) +(-10 -7 (-15 -1663 ((-654 (-1193)) (-1193) (-781))) (-15 -2845 ((-324 (-227)) (-324 (-227)))) (-15 -4062 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -2768 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))))) +((-2864 (((-112) $ $) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 28)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2387 (((-1051) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 70)) (-2986 (((-112) $ $) NIL))) (((-213) (-908)) (T -213)) NIL (-908) -((-2863 (((-112) $ $) NIL)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 24)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-1606 (((-1050) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 24)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2387 (((-1051) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) NIL)) (-2986 (((-112) $ $) NIL))) (((-214) (-908)) (T -214)) NIL (-908) -((-2863 (((-112) $ $) NIL)) (-2411 ((|#2| $ (-781) |#2|) 11)) (-2399 ((|#2| $ (-781)) 10)) (-3763 (($) 8)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 23)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 13))) -(((-215 |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -3763 ($)) (-15 -2399 (|#2| $ (-781))) (-15 -2411 (|#2| $ (-781) |#2|)))) (-934) (-1115)) (T -215)) -((-3763 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1115)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-1115)) (-5 *1 (-215 *4 *2)) (-14 *4 (-934)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-934)) (-4 *2 (-1115))))) -(-13 (-1115) (-10 -8 (-15 -3763 ($)) (-15 -2399 (|#2| $ (-781))) (-15 -2411 (|#2| $ (-781) |#2|)))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3060 (((-1288) $) 37) (((-1288) $ (-934) (-934)) 41)) (-2208 (($ $ (-1004)) 19) (((-251 (-1174)) $ (-1192)) 15)) (-1413 (((-1288) $) 35)) (-2950 (((-872) $) 32) (($ (-654 |#1|)) 8)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $ $) 27)) (-3074 (($ $ $) 22))) -(((-216 |#1|) (-13 (-1115) (-626 (-654 |#1|)) (-10 -8 (-15 -2208 ($ $ (-1004))) (-15 -2208 ((-251 (-1174)) $ (-1192))) (-15 -3074 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -1413 ((-1288) $)) (-15 -3060 ((-1288) $)) (-15 -3060 ((-1288) $ (-934) (-934))))) (-13 (-860) (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -3060 ((-1288) $))))) (T -216)) -((-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-1004)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -3060 ((-1288) $))))))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-251 (-1174))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2208 ((-1174) $ *3)) (-15 -1413 ((-1288) $)) (-15 -3060 ((-1288) $))))))) (-3074 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -3060 ((-1288) $))))))) (-3089 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -3060 ((-1288) $))))))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) (-15 -3060 (*2 $))))))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) (-15 -3060 (*2 $))))))) (-3060 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) (-15 -3060 (*2 $)))))))) -(-13 (-1115) (-626 (-654 |#1|)) (-10 -8 (-15 -2208 ($ $ (-1004))) (-15 -2208 ((-251 (-1174)) $ (-1192))) (-15 -3074 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -1413 ((-1288) $)) (-15 -3060 ((-1288) $)) (-15 -3060 ((-1288) $ (-934) (-934))))) -((-3599 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3599 (|#2| |#4| (-1 |#2| |#2|)))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -217)) -((-3599 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1259 (-417 *2))) (-4 *2 (-1259 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-351 *5 *2 *6))))) -(-10 -7 (-15 -3599 (|#2| |#4| (-1 |#2| |#2|)))) -((-3900 ((|#2| |#2| (-781) |#2|) 55)) (-3588 ((|#2| |#2| (-781) |#2|) 51)) (-1677 (((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -3281 |#2|)))) 79)) (-2861 (((-654 (-2 (|:| |deg| (-781)) (|:| -3281 |#2|))) |#2|) 73)) (-3069 (((-112) |#2|) 71)) (-3748 (((-428 |#2|) |#2|) 91)) (-4200 (((-428 |#2|) |#2|) 90)) (-3277 ((|#2| |#2| (-781) |#2|) 49)) (-1396 (((-2 (|:| |cont| |#1|) (|:| -4279 (-654 (-2 (|:| |irr| |#2|) (|:| -2265 (-574)))))) |#2| (-112)) 85))) -(((-218 |#1| |#2|) (-10 -7 (-15 -4200 ((-428 |#2|) |#2|)) (-15 -3748 ((-428 |#2|) |#2|)) (-15 -1396 ((-2 (|:| |cont| |#1|) (|:| -4279 (-654 (-2 (|:| |irr| |#2|) (|:| -2265 (-574)))))) |#2| (-112))) (-15 -2861 ((-654 (-2 (|:| |deg| (-781)) (|:| -3281 |#2|))) |#2|)) (-15 -1677 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -3281 |#2|))))) (-15 -3277 (|#2| |#2| (-781) |#2|)) (-15 -3588 (|#2| |#2| (-781) |#2|)) (-15 -3900 (|#2| |#2| (-781) |#2|)) (-15 -3069 ((-112) |#2|))) (-358) (-1259 |#1|)) (T -218)) -((-3069 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1259 *4)))) (-3900 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1259 *4)))) (-3588 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1259 *4)))) (-3277 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1259 *4)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -3281 *5)))) (-4 *5 (-1259 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5)) (-5 *1 (-218 *4 *5)))) (-2861 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -3281 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1259 *4)))) (-1396 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4279 (-654 (-2 (|:| |irr| *3) (|:| -2265 (-574))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1259 *5)))) (-3748 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1259 *4)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1259 *4))))) -(-10 -7 (-15 -4200 ((-428 |#2|) |#2|)) (-15 -3748 ((-428 |#2|) |#2|)) (-15 -1396 ((-2 (|:| |cont| |#1|) (|:| -4279 (-654 (-2 (|:| |irr| |#2|) (|:| -2265 (-574)))))) |#2| (-112))) (-15 -2861 ((-654 (-2 (|:| |deg| (-781)) (|:| -3281 |#2|))) |#2|)) (-15 -1677 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -3281 |#2|))))) (-15 -3277 (|#2| |#2| (-781) |#2|)) (-15 -3588 (|#2| |#2| (-781) |#2|)) (-15 -3900 (|#2| |#2| (-781) |#2|)) (-15 -3069 ((-112) |#2|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4018 (((-574) $) NIL (|has| (-574) (-315)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL (|has| (-574) (-830)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-574) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1053 (-574))))) (-2216 (((-574) $) NIL) (((-1192) $) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-574) (-1053 (-574)))) (((-574) $) NIL (|has| (-574) (-1053 (-574))))) (-2799 (($ $ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-574) (-555)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1913 (((-112) $) NIL (|has| (-574) (-830)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3372 (((-112) $) NIL)) (-3536 (($ $) NIL)) (-2970 (((-574) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| (-574) (-1167)))) (-1808 (((-112) $) NIL (|has| (-574) (-830)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| (-574) (-860)))) (-1786 (($ (-1 (-574) (-574)) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-3471 (((-574) $) NIL (|has| (-574) (-555)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1192)) (-654 (-574))) NIL (|has| (-574) (-524 (-1192) (-574)))) (($ $ (-1192) (-574)) NIL (|has| (-574) (-524 (-1192) (-574))))) (-3364 (((-781) $) NIL)) (-2208 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2120 (($ $) NIL)) (-2981 (((-574) $) NIL)) (-3178 (($ (-417 (-574))) 9)) (-1845 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1037))) (((-227) $) NIL (|has| (-574) (-1037)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1192)) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL) (((-1019 10) $) 10)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-574) (-922))) (|has| (-574) (-146))))) (-4019 (((-781)) NIL T CONST)) (-2753 (((-574) $) NIL (|has| (-574) (-555)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3306 (($ $) NIL (|has| (-574) (-830)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3098 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) -(((-219) (-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 10)) (-10 -8 (-15 -2244 ((-417 (-574)) $)) (-15 -3178 ($ (-417 (-574))))))) (T -219)) -((-2244 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))) (-3178 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219))))) -(-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 10)) (-10 -8 (-15 -2244 ((-417 (-574)) $)) (-15 -3178 ($ (-417 (-574)))))) -((-2863 (((-112) $ $) NIL)) (-3131 (((-1133) $) 13)) (-3945 (((-1174) $) NIL)) (-3391 (((-493) $) 10)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 23) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2051 (((-1150) $) 15)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-220) (-13 (-1098) (-10 -8 (-15 -3391 ((-493) $)) (-15 -3131 ((-1133) $)) (-15 -2051 ((-1150) $))))) (T -220)) -((-3391 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-220)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-220))))) -(-13 (-1098) (-10 -8 (-15 -3391 ((-493) $)) (-15 -3131 ((-1133) $)) (-15 -2051 ((-1150) $)))) -((-1578 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|)) (-1174)) 29) (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|))) 25)) (-3880 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1192) (-853 |#2|) (-853 |#2|) (-112)) 17))) -(((-221 |#1| |#2|) (-10 -7 (-15 -1578 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|)))) (-15 -1578 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|)) (-1174))) (-15 -3880 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1192) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-972) (-29 |#1|))) (T -221)) -((-3880 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1192)) (-5 *6 (-112)) (-4 *7 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-4 *3 (-13 (-1218) (-972) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3)))) (-1578 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1107 (-853 *3))) (-5 *5 (-1174)) (-4 *3 (-13 (-1218) (-972) (-29 *6))) (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-1578 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-853 *3))) (-4 *3 (-13 (-1218) (-972) (-29 *5))) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) -(-10 -7 (-15 -1578 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|)))) (-15 -1578 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|)) (-1174))) (-15 -3880 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1192) (-853 |#2|) (-853 |#2|) (-112)))) -((-1578 (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|)))) (-1174)) 49) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|))))) 46) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|))) (-1174)) 50) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|)))) 22))) -(((-222 |#1|) (-10 -7 (-15 -1578 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|))))) (-15 -1578 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|))) (-1174))) (-15 -1578 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|)))))) (-15 -1578 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|)))) (-1174)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (T -222)) -((-1578 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1107 (-853 (-417 (-965 *6))))) (-5 *5 (-1174)) (-5 *3 (-417 (-965 *6))) (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1578 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-853 (-417 (-965 *5))))) (-5 *3 (-417 (-965 *5))) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-1578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-417 (-965 *6))) (-5 *4 (-1107 (-853 (-324 *6)))) (-5 *5 (-1174)) (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1107 (-853 (-324 *5)))) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) -(-10 -7 (-15 -1578 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|))))) (-15 -1578 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|))) (-1174))) (-15 -1578 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|)))))) (-15 -1578 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|)))) (-1174)))) -((-2881 (((-2 (|:| -3038 (-1188 |#1|)) (|:| |deg| (-934))) (-1188 |#1|)) 26)) (-2138 (((-654 (-324 |#2|)) (-324 |#2|) (-934)) 51))) -(((-223 |#1| |#2|) (-10 -7 (-15 -2881 ((-2 (|:| -3038 (-1188 |#1|)) (|:| |deg| (-934))) (-1188 |#1|))) (-15 -2138 ((-654 (-324 |#2|)) (-324 |#2|) (-934)))) (-1064) (-566)) (T -223)) -((-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1064)))) (-2881 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-5 *2 (-2 (|:| -3038 (-1188 *4)) (|:| |deg| (-934)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1188 *4)) (-4 *5 (-566))))) -(-10 -7 (-15 -2881 ((-2 (|:| -3038 (-1188 |#1|)) (|:| |deg| (-934))) (-1188 |#1|))) (-15 -2138 ((-654 (-324 |#2|)) (-324 |#2|) (-934)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2447 ((|#1| $) NIL)) (-2011 ((|#1| $) 30)) (-2818 (((-112) $ (-781)) NIL)) (-3831 (($) NIL T CONST)) (-3908 (($ $) NIL)) (-2163 (($ $) 39)) (-2268 ((|#1| |#1| $) NIL)) (-3255 ((|#1| $) NIL)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-4108 (((-781) $) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1748 ((|#1| $) NIL)) (-3307 ((|#1| |#1| $) 35)) (-1598 ((|#1| |#1| $) 37)) (-2609 (($ |#1| $) NIL)) (-1847 (((-781) $) 33)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-3540 ((|#1| $) NIL)) (-1636 ((|#1| $) 31)) (-2694 ((|#1| $) 29)) (-3484 ((|#1| $) NIL)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2654 ((|#1| |#1| $) NIL)) (-2880 (((-112) $) 9)) (-2833 (($) NIL)) (-4432 ((|#1| $) NIL)) (-2715 (($) NIL) (($ (-654 |#1|)) 16)) (-4292 (((-781) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3550 ((|#1| $) 13)) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) NIL)) (-2748 ((|#1| $) NIL)) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -2715 ($ (-654 |#1|))))) (-1115)) (T -224)) -((-2715 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-224 *3))))) -(-13 (-261 |#1|) (-10 -8 (-15 -2715 ($ (-654 |#1|))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-2390 (($ (-324 |#1|)) 24)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-4040 (((-112) $) NIL)) (-1705 (((-3 (-324 |#1|) "failed") $) NIL)) (-2216 (((-324 |#1|) $) NIL)) (-1401 (($ $) 32)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) NIL)) (-1786 (($ (-1 (-324 |#1|) (-324 |#1|)) $) NIL)) (-1377 (((-324 |#1|) $) NIL)) (-4160 (($ $) 31)) (-3945 (((-1174) $) NIL)) (-1908 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2975 (($ (-781)) NIL)) (-2963 (($ $) 33)) (-3584 (((-574) $) NIL)) (-2950 (((-872) $) 65) (($ (-574)) NIL) (($ (-324 |#1|)) NIL)) (-2930 (((-324 |#1|) $ $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 26 T CONST)) (-2154 (($) NIL T CONST)) (-2985 (((-112) $ $) 29)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 20)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 25) (($ (-324 |#1|) $) 19))) -(((-225 |#1| |#2|) (-13 (-630 (-324 |#1|)) (-1053 (-324 |#1|)) (-10 -8 (-15 -1377 ((-324 |#1|) $)) (-15 -4160 ($ $)) (-15 -1401 ($ $)) (-15 -2930 ((-324 |#1|) $ $)) (-15 -2975 ($ (-781))) (-15 -1908 ((-112) $)) (-15 -4040 ((-112) $)) (-15 -3584 ((-574) $)) (-15 -1786 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -2390 ($ (-324 |#1|))) (-15 -2963 ($ $)))) (-13 (-1064) (-860)) (-654 (-1192))) (T -225)) -((-1377 (*1 *2 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-4160 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) (-14 *3 (-654 (-1192))))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) (-14 *3 (-654 (-1192))))) (-2930 (*1 *2 *1 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1064) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1192))))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1064) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1192))))) (-2963 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) (-14 *3 (-654 (-1192)))))) -(-13 (-630 (-324 |#1|)) (-1053 (-324 |#1|)) (-10 -8 (-15 -1377 ((-324 |#1|) $)) (-15 -4160 ($ $)) (-15 -1401 ($ $)) (-15 -2930 ((-324 |#1|) $ $)) (-15 -2975 ($ (-781))) (-15 -1908 ((-112) $)) (-15 -4040 ((-112) $)) (-15 -3584 ((-574) $)) (-15 -1786 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -2390 ($ (-324 |#1|))) (-15 -2963 ($ $)))) -((-3527 (((-112) (-1174)) 26)) (-3514 (((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112)) 35)) (-1812 (((-3 (-112) "failed") (-1188 |#2|) (-853 |#2|) (-853 |#2|) (-112)) 84) (((-3 (-112) "failed") (-965 |#1|) (-1192) (-853 |#2|) (-853 |#2|) (-112)) 85))) -(((-226 |#1| |#2|) (-10 -7 (-15 -3527 ((-112) (-1174))) (-15 -3514 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -1812 ((-3 (-112) "failed") (-965 |#1|) (-1192) (-853 |#2|) (-853 |#2|) (-112))) (-15 -1812 ((-3 (-112) "failed") (-1188 |#2|) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-29 |#1|))) (T -226)) -((-1812 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1188 *6)) (-5 *4 (-853 *6)) (-4 *6 (-13 (-1218) (-29 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-226 *5 *6)))) (-1812 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-965 *6)) (-5 *4 (-1192)) (-5 *5 (-853 *7)) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-4 *7 (-13 (-1218) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-3514 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1218) (-29 *6))) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-226 *6 *4)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1218) (-29 *4)))))) -(-10 -7 (-15 -3527 ((-112) (-1174))) (-15 -3514 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -1812 ((-3 (-112) "failed") (-965 |#1|) (-1192) (-853 |#2|) (-853 |#2|) (-112))) (-15 -1812 ((-3 (-112) "failed") (-1188 |#2|) (-853 |#2|) (-853 |#2|) (-112)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 98)) (-4018 (((-574) $) 35)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-3842 (($ $) NIL)) (-2378 (($ $) 87)) (-2259 (($ $) 75)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-4211 (($ $) 66)) (-3656 (((-112) $ $) NIL)) (-2357 (($ $) 85)) (-2237 (($ $) 73)) (-3011 (((-574) $) 128)) (-2403 (($ $) 90)) (-2281 (($ $) 77)) (-3831 (($) NIL T CONST)) (-3893 (($ $) NIL)) (-1705 (((-3 (-574) "failed") $) 127) (((-3 (-417 (-574)) "failed") $) 124)) (-2216 (((-574) $) 125) (((-417 (-574)) $) 122)) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) 103)) (-3322 (((-417 (-574)) $ (-781)) 117) (((-417 (-574)) $ (-781) (-781)) 116)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-3759 (((-934)) 29) (((-934) (-934)) NIL (|has| $ (-6 -4449)))) (-1913 (((-112) $) NIL)) (-3003 (($) 46)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-2725 (((-574) $) 42)) (-3372 (((-112) $) 99)) (-2132 (($ $ (-574)) NIL)) (-1386 (($ $) NIL)) (-1808 (((-112) $) 97)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) 63) (($) 38 (-12 (-2085 (|has| $ (-6 -4441))) (-2085 (|has| $ (-6 -4449)))))) (-1593 (($ $ $) 62) (($) 37 (-12 (-2085 (|has| $ (-6 -4441))) (-2085 (|has| $ (-6 -4449)))))) (-4290 (((-574) $) 27)) (-2404 (($ $) 33)) (-1742 (($ $) 67)) (-3112 (($ $) 72)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-1361 (((-934) (-574)) NIL (|has| $ (-6 -4449)))) (-3939 (((-1135) $) 101)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) NIL)) (-3471 (($ $) NIL)) (-2395 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-934)) 110)) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2017 (((-574) $) 28)) (-4126 (($) 45)) (-1618 (($ $) 71)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-2354 (((-934)) NIL) (((-934) (-934)) NIL (|has| $ (-6 -4449)))) (-3878 (($ $) 104) (($ $ (-781)) NIL)) (-2260 (((-934) (-574)) NIL (|has| $ (-6 -4449)))) (-2416 (($ $) 88)) (-2289 (($ $) 78)) (-2389 (($ $) 89)) (-2269 (($ $) 76)) (-2367 (($ $) 86)) (-2248 (($ $) 74)) (-1845 (((-388) $) 113) (((-227) $) 14) (((-903 (-388)) $) NIL) (((-546) $) 52)) (-2950 (((-872) $) 49) (($ (-574)) 70) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 70) (($ (-417 (-574))) NIL)) (-4019 (((-781)) NIL T CONST)) (-2753 (($ $) NIL)) (-1708 (((-934)) 36) (((-934) (-934)) NIL (|has| $ (-6 -4449)))) (-3838 (((-112) $ $) NIL)) (-2643 (((-934)) 25)) (-2455 (($ $) 93)) (-2319 (($ $) 81) (($ $ $) 120)) (-1842 (((-112) $ $) NIL)) (-2427 (($ $) 91)) (-2300 (($ $) 79)) (-2479 (($ $) 96)) (-2339 (($ $) 84)) (-2535 (($ $) 94)) (-2348 (($ $) 82)) (-2466 (($ $) 95)) (-2329 (($ $) 83)) (-2442 (($ $) 92)) (-2311 (($ $) 80)) (-3306 (($ $) 119)) (-2142 (($) 23 T CONST)) (-2154 (($) 43 T CONST)) (-4057 (((-1174) $) 18) (((-1174) $ (-112)) 20) (((-1288) (-832) $) 21) (((-1288) (-832) $ (-112)) 22)) (-3592 (($ $) 107)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2788 (($ $ $) 109)) (-3041 (((-112) $ $) 56)) (-3018 (((-112) $ $) 54)) (-2985 (((-112) $ $) 64)) (-3029 (((-112) $ $) 55)) (-3009 (((-112) $ $) 53)) (-3098 (($ $ $) 44) (($ $ (-574)) 65)) (-3089 (($ $) 57) (($ $ $) 59)) (-3074 (($ $ $) 58)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 68) (($ $ (-417 (-574))) 152) (($ $ $) 69)) (* (($ (-934) $) 34) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 60) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-227) (-13 (-414) (-239) (-838) (-1218) (-624 (-546)) (-10 -8 (-15 -3098 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -4126 ($)) (-15 -2404 ($ $)) (-15 -1742 ($ $)) (-15 -2319 ($ $ $)) (-15 -3592 ($ $)) (-15 -2788 ($ $ $)) (-15 -3322 ((-417 (-574)) $ (-781))) (-15 -3322 ((-417 (-574)) $ (-781) (-781)))))) (T -227)) -((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3098 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-227)))) (-4126 (*1 *1) (-5 *1 (-227))) (-2404 (*1 *1 *1) (-5 *1 (-227))) (-1742 (*1 *1 *1) (-5 *1 (-227))) (-2319 (*1 *1 *1 *1) (-5 *1 (-227))) (-3592 (*1 *1 *1) (-5 *1 (-227))) (-2788 (*1 *1 *1 *1) (-5 *1 (-227))) (-3322 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) (-3322 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227))))) -(-13 (-414) (-239) (-838) (-1218) (-624 (-546)) (-10 -8 (-15 -3098 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -4126 ($)) (-15 -2404 ($ $)) (-15 -1742 ($ $)) (-15 -2319 ($ $ $)) (-15 -3592 ($ $)) (-15 -2788 ($ $ $)) (-15 -3322 ((-417 (-574)) $ (-781))) (-15 -3322 ((-417 (-574)) $ (-781) (-781))))) -((-2867 (((-171 (-227)) (-781) (-171 (-227))) 11) (((-227) (-781) (-227)) 12)) (-1518 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-4142 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-3239 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-2600 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-2793 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-4373 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-3852 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-1423 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-2966 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-3592 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-2788 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) -(((-228) (-10 -7 (-15 -3592 ((-227) (-227))) (-15 -3592 ((-171 (-227)) (-171 (-227)))) (-15 -2788 ((-227) (-227) (-227))) (-15 -2788 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1518 ((-227) (-227))) (-15 -1518 ((-171 (-227)) (-171 (-227)))) (-15 -3239 ((-227) (-227))) (-15 -3239 ((-171 (-227)) (-171 (-227)))) (-15 -2867 ((-227) (-781) (-227))) (-15 -2867 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -4373 ((-227) (-227) (-227))) (-15 -4373 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2600 ((-227) (-227) (-227))) (-15 -2600 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3852 ((-227) (-227) (-227))) (-15 -3852 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2793 ((-227) (-227) (-227))) (-15 -2793 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2966 ((-171 (-227)) (-171 (-227)))) (-15 -2966 ((-227) (-227))) (-15 -1423 ((-227) (-227))) (-15 -1423 ((-171 (-227)) (-171 (-227)))) (-15 -4142 ((-227) (-227) (-227))) (-15 -4142 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) -((-4142 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4142 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1423 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1423 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2966 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2966 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2793 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2793 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3852 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3852 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2600 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2600 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4373 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4373 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2867 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228)))) (-2867 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228)))) (-3239 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3239 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1518 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1518 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2788 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2788 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) -(-10 -7 (-15 -3592 ((-227) (-227))) (-15 -3592 ((-171 (-227)) (-171 (-227)))) (-15 -2788 ((-227) (-227) (-227))) (-15 -2788 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1518 ((-227) (-227))) (-15 -1518 ((-171 (-227)) (-171 (-227)))) (-15 -3239 ((-227) (-227))) (-15 -3239 ((-171 (-227)) (-171 (-227)))) (-15 -2867 ((-227) (-781) (-227))) (-15 -2867 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -4373 ((-227) (-227) (-227))) (-15 -4373 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2600 ((-227) (-227) (-227))) (-15 -2600 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3852 ((-227) (-227) (-227))) (-15 -3852 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2793 ((-227) (-227) (-227))) (-15 -2793 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2966 ((-171 (-227)) (-171 (-227)))) (-15 -2966 ((-227) (-227))) (-15 -1423 ((-227) (-227))) (-15 -1423 ((-171 (-227)) (-171 (-227)))) (-15 -4142 ((-227) (-227) (-227))) (-15 -4142 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2226 (($ (-781) (-781)) NIL)) (-2650 (($ $ $) NIL)) (-2292 (($ (-1283 |#1|)) NIL) (($ $) NIL)) (-2822 (($ |#1| |#1| |#1|) 33)) (-4319 (((-112) $) NIL)) (-1514 (($ $ (-574) (-574)) NIL)) (-4322 (($ $ (-574) (-574)) NIL)) (-2251 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-3890 (($ $) NIL)) (-2240 (((-112) $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-3160 (($ $ (-574) (-574) $) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-2652 (($ $ (-574) (-1283 |#1|)) NIL)) (-1861 (($ $ (-574) (-1283 |#1|)) NIL)) (-3387 (($ |#1| |#1| |#1|) 32)) (-3107 (($ (-781) |#1|) NIL)) (-3831 (($) NIL T CONST)) (-3502 (($ $) NIL (|has| |#1| (-315)))) (-1860 (((-1283 |#1|) $ (-574)) NIL)) (-1338 (($ |#1|) 31)) (-2999 (($ |#1|) 30)) (-3547 (($ |#1|) 29)) (-3557 (((-781) $) NIL (|has| |#1| (-566)))) (-2472 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2399 ((|#1| $ (-574) (-574)) NIL)) (-1873 (((-654 |#1|) $) NIL)) (-1835 (((-781) $) NIL (|has| |#1| (-566)))) (-3284 (((-654 (-1283 |#1|)) $) NIL (|has| |#1| (-566)))) (-2198 (((-781) $) NIL)) (-3763 (($ (-781) (-781) |#1|) NIL)) (-2207 (((-781) $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1680 ((|#1| $) NIL (|has| |#1| (-6 (-4460 "*"))))) (-3312 (((-574) $) NIL)) (-4378 (((-574) $) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2391 (((-574) $) NIL)) (-3280 (((-574) $) NIL)) (-2923 (($ (-654 (-654 |#1|))) 11)) (-2461 (($ (-1 |#1| |#1|) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1626 (((-654 (-654 |#1|)) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-4333 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-2826 (($) 12)) (-1800 (($ $ $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4276 (($ $ |#1|) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-1998 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-1609 (((-112) $) NIL)) (-1928 ((|#1| $) NIL (|has| |#1| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-1482 (((-1283 |#1|) $ (-574)) NIL)) (-2950 (($ (-1283 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-1996 (((-112) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1283 |#1|) $ (-1283 |#1|)) 15) (((-1283 |#1|) (-1283 |#1|) $) NIL) (((-956 |#1|) $ (-956 |#1|)) 21)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-229 |#1|) (-13 (-697 |#1| (-1283 |#1|) (-1283 |#1|)) (-10 -8 (-15 * ((-956 |#1|) $ (-956 |#1|))) (-15 -2826 ($)) (-15 -3547 ($ |#1|)) (-15 -2999 ($ |#1|)) (-15 -1338 ($ |#1|)) (-15 -3387 ($ |#1| |#1| |#1|)) (-15 -2822 ($ |#1| |#1| |#1|)))) (-13 (-372) (-1218))) (T -229)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218))) (-5 *1 (-229 *3)))) (-2826 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) (-3547 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) (-2999 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) (-1338 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) (-3387 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) (-2822 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218)))))) -(-13 (-697 |#1| (-1283 |#1|) (-1283 |#1|)) (-10 -8 (-15 * ((-956 |#1|) $ (-956 |#1|))) (-15 -2826 ($)) (-15 -3547 ($ |#1|)) (-15 -2999 ($ |#1|)) (-15 -1338 ($ |#1|)) (-15 -3387 ($ |#1| |#1| |#1|)) (-15 -2822 ($ |#1| |#1| |#1|)))) -((-2551 (($ (-1 (-112) |#2|) $) 16)) (-1941 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-3667 (($) NIL) (($ (-654 |#2|)) 11)) (-2985 (((-112) $ $) 26))) -(((-230 |#1| |#2|) (-10 -8 (-15 -2551 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1941 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1941 (|#1| |#2| |#1|)) (-15 -3667 (|#1| (-654 |#2|))) (-15 -3667 (|#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-231 |#2|) (-1115)) (T -230)) -NIL -(-10 -8 (-15 -2551 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1941 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1941 (|#1| |#2| |#1|)) (-15 -3667 (|#1| (-654 |#2|))) (-15 -3667 (|#1|)) (-15 -2985 ((-112) |#1| |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) 8)) (-2551 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2560 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1941 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1748 ((|#1| $) 40)) (-2609 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3484 ((|#1| $) 42)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3667 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) 43)) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-231 |#1|) (-141) (-1115)) (T -231)) +((-2864 (((-112) $ $) NIL)) (-2409 ((|#2| $ (-781) |#2|) 11)) (-2400 ((|#2| $ (-781)) 10)) (-3764 (($) 8)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 23)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 13))) +(((-215 |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -3764 ($)) (-15 -2400 (|#2| $ (-781))) (-15 -2409 (|#2| $ (-781) |#2|)))) (-935) (-1116)) (T -215)) +((-3764 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1116)))) (-2400 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-1116)) (-5 *1 (-215 *4 *2)) (-14 *4 (-935)))) (-2409 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-935)) (-4 *2 (-1116))))) +(-13 (-1116) (-10 -8 (-15 -3764 ($)) (-15 -2400 (|#2| $ (-781))) (-15 -2409 (|#2| $ (-781) |#2|)))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3055 (((-1289) $) 37) (((-1289) $ (-935) (-935)) 41)) (-2207 (($ $ (-1005)) 19) (((-251 (-1175)) $ (-1193)) 15)) (-1414 (((-1289) $) 35)) (-2951 (((-872) $) 32) (($ (-654 |#1|)) 8)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $ $) 27)) (-3074 (($ $ $) 22))) +(((-216 |#1|) (-13 (-1116) (-626 (-654 |#1|)) (-10 -8 (-15 -2207 ($ $ (-1005))) (-15 -2207 ((-251 (-1175)) $ (-1193))) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -1414 ((-1289) $)) (-15 -3055 ((-1289) $)) (-15 -3055 ((-1289) $ (-935) (-935))))) (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3055 ((-1289) $))))) (T -216)) +((-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-1005)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3055 ((-1289) $))))))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-251 (-1175))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ *3)) (-15 -1414 ((-1289) $)) (-15 -3055 ((-1289) $))))))) (-3074 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3055 ((-1289) $))))))) (-3090 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3055 ((-1289) $))))))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $)) (-15 -3055 (*2 $))))))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $)) (-15 -3055 (*2 $))))))) (-3055 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $)) (-15 -3055 (*2 $)))))))) +(-13 (-1116) (-626 (-654 |#1|)) (-10 -8 (-15 -2207 ($ $ (-1005))) (-15 -2207 ((-251 (-1175)) $ (-1193))) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -1414 ((-1289) $)) (-15 -3055 ((-1289) $)) (-15 -3055 ((-1289) $ (-935) (-935))))) +((-1811 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1811 (|#2| |#4| (-1 |#2| |#2|)))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -217)) +((-1811 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1260 (-417 *2))) (-4 *2 (-1260 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-351 *5 *2 *6))))) +(-10 -7 (-15 -1811 (|#2| |#4| (-1 |#2| |#2|)))) +((-1513 ((|#2| |#2| (-781) |#2|) 55)) (-2022 ((|#2| |#2| (-781) |#2|) 51)) (-3477 (((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -1374 |#2|)))) 79)) (-3713 (((-654 (-2 (|:| |deg| (-781)) (|:| -1374 |#2|))) |#2|) 73)) (-4127 (((-112) |#2|) 71)) (-2894 (((-428 |#2|) |#2|) 91)) (-4202 (((-428 |#2|) |#2|) 90)) (-2913 ((|#2| |#2| (-781) |#2|) 49)) (-3220 (((-2 (|:| |cont| |#1|) (|:| -3314 (-654 (-2 (|:| |irr| |#2|) (|:| -3868 (-574)))))) |#2| (-112)) 85))) +(((-218 |#1| |#2|) (-10 -7 (-15 -4202 ((-428 |#2|) |#2|)) (-15 -2894 ((-428 |#2|) |#2|)) (-15 -3220 ((-2 (|:| |cont| |#1|) (|:| -3314 (-654 (-2 (|:| |irr| |#2|) (|:| -3868 (-574)))))) |#2| (-112))) (-15 -3713 ((-654 (-2 (|:| |deg| (-781)) (|:| -1374 |#2|))) |#2|)) (-15 -3477 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -1374 |#2|))))) (-15 -2913 (|#2| |#2| (-781) |#2|)) (-15 -2022 (|#2| |#2| (-781) |#2|)) (-15 -1513 (|#2| |#2| (-781) |#2|)) (-15 -4127 ((-112) |#2|))) (-358) (-1260 |#1|)) (T -218)) +((-4127 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1260 *4)))) (-1513 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1260 *4)))) (-2022 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1260 *4)))) (-2913 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1260 *4)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -1374 *5)))) (-4 *5 (-1260 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5)) (-5 *1 (-218 *4 *5)))) (-3713 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -1374 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1260 *4)))) (-3220 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3314 (-654 (-2 (|:| |irr| *3) (|:| -3868 (-574))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1260 *5)))) (-2894 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1260 *4)))) (-4202 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1260 *4))))) +(-10 -7 (-15 -4202 ((-428 |#2|) |#2|)) (-15 -2894 ((-428 |#2|) |#2|)) (-15 -3220 ((-2 (|:| |cont| |#1|) (|:| -3314 (-654 (-2 (|:| |irr| |#2|) (|:| -3868 (-574)))))) |#2| (-112))) (-15 -3713 ((-654 (-2 (|:| |deg| (-781)) (|:| -1374 |#2|))) |#2|)) (-15 -3477 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -1374 |#2|))))) (-15 -2913 (|#2| |#2| (-781) |#2|)) (-15 -2022 (|#2| |#2| (-781) |#2|)) (-15 -1513 (|#2| |#2| (-781) |#2|)) (-15 -4127 ((-112) |#2|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4146 (((-574) $) NIL (|has| (-574) (-315)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL (|has| (-574) (-830)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-574) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1054 (-574))))) (-2214 (((-574) $) NIL) (((-1193) $) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-574) (-1054 (-574)))) (((-574) $) NIL (|has| (-574) (-1054 (-574))))) (-2800 (($ $ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-574) (-555)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3408 (((-112) $) NIL (|has| (-574) (-830)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-4226 (((-112) $) NIL)) (-2967 (($ $) NIL)) (-2971 (((-574) $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| (-574) (-1168)))) (-3182 (((-112) $) NIL (|has| (-574) (-830)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| (-574) (-860)))) (-1785 (($ (-1 (-574) (-574)) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-2260 (((-574) $) NIL (|has| (-574) (-555)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1193)) (-654 (-574))) NIL (|has| (-574) (-524 (-1193) (-574)))) (($ $ (-1193) (-574)) NIL (|has| (-574) (-524 (-1193) (-574))))) (-2098 (((-781) $) NIL)) (-2207 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2808 (($ $) NIL)) (-2981 (((-574) $) NIL)) (-2371 (($ (-417 (-574))) 9)) (-1844 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1038))) (((-227) $) NIL (|has| (-574) (-1038)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1193)) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL) (((-1020 10) $) 10)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-574) (-923))) (|has| (-574) (-146))))) (-2898 (((-781)) NIL T CONST)) (-2544 (((-574) $) NIL (|has| (-574) (-555)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3936 (($ $) NIL (|has| (-574) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3103 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) +(((-219) (-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 10)) (-10 -8 (-15 -2162 ((-417 (-574)) $)) (-15 -2371 ($ (-417 (-574))))))) (T -219)) +((-2162 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))) (-2371 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219))))) +(-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 10)) (-10 -8 (-15 -2162 ((-417 (-574)) $)) (-15 -2371 ($ (-417 (-574)))))) +((-2864 (((-112) $ $) NIL)) (-3132 (((-1134) $) 13)) (-1489 (((-1175) $) NIL)) (-2216 (((-493) $) 10)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 23) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2050 (((-1151) $) 15)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-220) (-13 (-1099) (-10 -8 (-15 -2216 ((-493) $)) (-15 -3132 ((-1134) $)) (-15 -2050 ((-1151) $))))) (T -220)) +((-2216 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-220)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-220))))) +(-13 (-1099) (-10 -8 (-15 -2216 ((-493) $)) (-15 -3132 ((-1134) $)) (-15 -2050 ((-1151) $)))) +((-3342 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|)) (-1175)) 29) (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|))) 25)) (-3576 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1193) (-853 |#2|) (-853 |#2|) (-112)) 17))) +(((-221 |#1| |#2|) (-10 -7 (-15 -3342 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|)))) (-15 -3342 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|)) (-1175))) (-15 -3576 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1193) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-973) (-29 |#1|))) (T -221)) +((-3576 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1193)) (-5 *6 (-112)) (-4 *7 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-4 *3 (-13 (-1219) (-973) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3)))) (-3342 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1108 (-853 *3))) (-5 *5 (-1175)) (-4 *3 (-13 (-1219) (-973) (-29 *6))) (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *4 (-1108 (-853 *3))) (-4 *3 (-13 (-1219) (-973) (-29 *5))) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) +(-10 -7 (-15 -3342 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|)))) (-15 -3342 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|)) (-1175))) (-15 -3576 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1193) (-853 |#2|) (-853 |#2|) (-112)))) +((-3342 (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|)))) (-1175)) 49) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|))))) 46) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|))) (-1175)) 50) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|)))) 22))) +(((-222 |#1|) (-10 -7 (-15 -3342 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|))))) (-15 -3342 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|))) (-1175))) (-15 -3342 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|)))))) (-15 -3342 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|)))) (-1175)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (T -222)) +((-3342 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1108 (-853 (-417 (-966 *6))))) (-5 *5 (-1175)) (-5 *3 (-417 (-966 *6))) (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *4 (-1108 (-853 (-417 (-966 *5))))) (-5 *3 (-417 (-966 *5))) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-3342 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-417 (-966 *6))) (-5 *4 (-1108 (-853 (-324 *6)))) (-5 *5 (-1175)) (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1108 (-853 (-324 *5)))) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) +(-10 -7 (-15 -3342 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|))))) (-15 -3342 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|))) (-1175))) (-15 -3342 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|)))))) (-15 -3342 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|)))) (-1175)))) +((-2882 (((-2 (|:| -3374 (-1189 |#1|)) (|:| |deg| (-935))) (-1189 |#1|)) 26)) (-2136 (((-654 (-324 |#2|)) (-324 |#2|) (-935)) 51))) +(((-223 |#1| |#2|) (-10 -7 (-15 -2882 ((-2 (|:| -3374 (-1189 |#1|)) (|:| |deg| (-935))) (-1189 |#1|))) (-15 -2136 ((-654 (-324 |#2|)) (-324 |#2|) (-935)))) (-1065) (-566)) (T -223)) +((-2136 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1065)))) (-2882 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-5 *2 (-2 (|:| -3374 (-1189 *4)) (|:| |deg| (-935)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1189 *4)) (-4 *5 (-566))))) +(-10 -7 (-15 -2882 ((-2 (|:| -3374 (-1189 |#1|)) (|:| |deg| (-935))) (-1189 |#1|))) (-15 -2136 ((-654 (-324 |#2|)) (-324 |#2|) (-935)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4262 ((|#1| $) NIL)) (-2010 ((|#1| $) 30)) (-3146 (((-112) $ (-781)) NIL)) (-3250 (($) NIL T CONST)) (-4100 (($ $) NIL)) (-2412 (($ $) 39)) (-2231 ((|#1| |#1| $) NIL)) (-4073 ((|#1| $) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-4109 (((-781) $) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-2375 ((|#1| $) NIL)) (-3529 ((|#1| |#1| $) 35)) (-2461 ((|#1| |#1| $) 37)) (-3285 (($ |#1| $) NIL)) (-1847 (((-781) $) 33)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2703 ((|#1| $) NIL)) (-2587 ((|#1| $) 31)) (-3605 ((|#1| $) 29)) (-3801 ((|#1| $) NIL)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-3315 ((|#1| |#1| $) NIL)) (-2754 (((-112) $) 9)) (-3336 (($) NIL)) (-2663 ((|#1| $) NIL)) (-1341 (($) NIL) (($ (-654 |#1|)) 16)) (-4293 (((-781) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2557 ((|#1| $) 13)) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) NIL)) (-4423 ((|#1| $) NIL)) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -1341 ($ (-654 |#1|))))) (-1116)) (T -224)) +((-1341 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-224 *3))))) +(-13 (-261 |#1|) (-10 -8 (-15 -1341 ($ (-654 |#1|))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-3757 (($ (-324 |#1|)) 24)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-3566 (((-112) $) NIL)) (-1704 (((-3 (-324 |#1|) "failed") $) NIL)) (-2214 (((-324 |#1|) $) NIL)) (-1402 (($ $) 32)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) NIL)) (-1785 (($ (-1 (-324 |#1|) (-324 |#1|)) $) NIL)) (-1378 (((-324 |#1|) $) NIL)) (-3582 (($ $) 31)) (-1489 (((-1175) $) NIL)) (-3290 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($ (-781)) NIL)) (-1434 (($ $) 33)) (-3580 (((-574) $) NIL)) (-2951 (((-872) $) 65) (($ (-574)) NIL) (($ (-324 |#1|)) NIL)) (-2706 (((-324 |#1|) $ $) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 26 T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) 29)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 20)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 25) (($ (-324 |#1|) $) 19))) +(((-225 |#1| |#2|) (-13 (-630 (-324 |#1|)) (-1054 (-324 |#1|)) (-10 -8 (-15 -1378 ((-324 |#1|) $)) (-15 -3582 ($ $)) (-15 -1402 ($ $)) (-15 -2706 ((-324 |#1|) $ $)) (-15 -2975 ($ (-781))) (-15 -3290 ((-112) $)) (-15 -3566 ((-112) $)) (-15 -3580 ((-574) $)) (-15 -1785 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -3757 ($ (-324 |#1|))) (-15 -1434 ($ $)))) (-13 (-1065) (-860)) (-654 (-1193))) (T -225)) +((-1378 (*1 *2 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-3582 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860))) (-14 *3 (-654 (-1193))))) (-1402 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860))) (-14 *3 (-654 (-1193))))) (-2706 (*1 *2 *1 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1065) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1193))))) (-3757 (*1 *1 *2) (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1065) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1193))))) (-1434 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860))) (-14 *3 (-654 (-1193)))))) +(-13 (-630 (-324 |#1|)) (-1054 (-324 |#1|)) (-10 -8 (-15 -1378 ((-324 |#1|) $)) (-15 -3582 ($ $)) (-15 -1402 ($ $)) (-15 -2706 ((-324 |#1|) $ $)) (-15 -2975 ($ (-781))) (-15 -3290 ((-112) $)) (-15 -3566 ((-112) $)) (-15 -3580 ((-574) $)) (-15 -1785 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -3757 ($ (-324 |#1|))) (-15 -1434 ($ $)))) +((-3748 (((-112) (-1175)) 26)) (-2319 (((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112)) 35)) (-1532 (((-3 (-112) "failed") (-1189 |#2|) (-853 |#2|) (-853 |#2|) (-112)) 84) (((-3 (-112) "failed") (-966 |#1|) (-1193) (-853 |#2|) (-853 |#2|) (-112)) 85))) +(((-226 |#1| |#2|) (-10 -7 (-15 -3748 ((-112) (-1175))) (-15 -2319 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -1532 ((-3 (-112) "failed") (-966 |#1|) (-1193) (-853 |#2|) (-853 |#2|) (-112))) (-15 -1532 ((-3 (-112) "failed") (-1189 |#2|) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-29 |#1|))) (T -226)) +((-1532 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1189 *6)) (-5 *4 (-853 *6)) (-4 *6 (-13 (-1219) (-29 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-226 *5 *6)))) (-1532 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-966 *6)) (-5 *4 (-1193)) (-5 *5 (-853 *7)) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-4 *7 (-13 (-1219) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-2319 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1219) (-29 *6))) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-226 *6 *4)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1219) (-29 *4)))))) +(-10 -7 (-15 -3748 ((-112) (-1175))) (-15 -2319 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -1532 ((-3 (-112) "failed") (-966 |#1|) (-1193) (-853 |#2|) (-853 |#2|) (-112))) (-15 -1532 ((-3 (-112) "failed") (-1189 |#2|) (-853 |#2|) (-853 |#2|) (-112)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 98)) (-4146 (((-574) $) 35)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-3332 (($ $) NIL)) (-2379 (($ $) 87)) (-2258 (($ $) 75)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-4212 (($ $) 66)) (-3245 (((-112) $ $) NIL)) (-2358 (($ $) 85)) (-2235 (($ $) 73)) (-2472 (((-574) $) 128)) (-2404 (($ $) 90)) (-2280 (($ $) 77)) (-3250 (($) NIL T CONST)) (-3361 (($ $) NIL)) (-1704 (((-3 (-574) "failed") $) 127) (((-3 (-417 (-574)) "failed") $) 124)) (-2214 (((-574) $) 125) (((-417 (-574)) $) 122)) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) 103)) (-2361 (((-417 (-574)) $ (-781)) 117) (((-417 (-574)) $ (-781) (-781)) 116)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3760 (((-935)) 29) (((-935) (-935)) NIL (|has| $ (-6 -4450)))) (-3408 (((-112) $) NIL)) (-3004 (($) 46)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-3547 (((-574) $) 42)) (-4226 (((-112) $) 99)) (-3527 (($ $ (-574)) NIL)) (-1681 (($ $) NIL)) (-3182 (((-112) $) 97)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) 63) (($) 38 (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-4380 (($ $ $) 62) (($) 37 (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-4290 (((-574) $) 27)) (-4040 (($ $) 33)) (-1739 (($ $) 67)) (-3113 (($ $) 72)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3206 (((-935) (-574)) NIL (|has| $ (-6 -4450)))) (-3940 (((-1136) $) 101)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) NIL)) (-2260 (($ $) NIL)) (-2399 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-935)) 110)) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3139 (((-574) $) 28)) (-1743 (($) 45)) (-1617 (($ $) 71)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-4074 (((-935)) NIL) (((-935) (-935)) NIL (|has| $ (-6 -4450)))) (-3879 (($ $) 104) (($ $ (-781)) NIL)) (-3691 (((-935) (-574)) NIL (|has| $ (-6 -4450)))) (-2417 (($ $) 88)) (-2289 (($ $) 78)) (-2390 (($ $) 89)) (-2269 (($ $) 76)) (-2368 (($ $) 86)) (-2247 (($ $) 74)) (-1844 (((-388) $) 113) (((-227) $) 14) (((-903 (-388)) $) NIL) (((-546) $) 52)) (-2951 (((-872) $) 49) (($ (-574)) 70) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 70) (($ (-417 (-574))) NIL)) (-2898 (((-781)) NIL T CONST)) (-2544 (($ $) NIL)) (-2562 (((-935)) 36) (((-935) (-935)) NIL (|has| $ (-6 -4450)))) (-4069 (((-112) $ $) NIL)) (-2644 (((-935)) 25)) (-2456 (($ $) 93)) (-2320 (($ $) 81) (($ $ $) 120)) (-2836 (((-112) $ $) NIL)) (-2429 (($ $) 91)) (-2301 (($ $) 79)) (-2480 (($ $) 96)) (-2340 (($ $) 84)) (-2536 (($ $) 94)) (-2349 (($ $) 82)) (-2468 (($ $) 95)) (-2330 (($ $) 83)) (-2443 (($ $) 92)) (-2312 (($ $) 80)) (-3936 (($ $) 119)) (-2141 (($) 23 T CONST)) (-2153 (($) 43 T CONST)) (-3927 (((-1175) $) 18) (((-1175) $ (-112)) 20) (((-1289) (-832) $) 21) (((-1289) (-832) $ (-112)) 22)) (-2988 (($ $) 107)) (-3584 (($ $) NIL) (($ $ (-781)) NIL)) (-3418 (($ $ $) 109)) (-3042 (((-112) $ $) 56)) (-3020 (((-112) $ $) 54)) (-2986 (((-112) $ $) 64)) (-3030 (((-112) $ $) 55)) (-3009 (((-112) $ $) 53)) (-3103 (($ $ $) 44) (($ $ (-574)) 65)) (-3090 (($ $) 57) (($ $ $) 59)) (-3074 (($ $ $) 58)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 68) (($ $ (-417 (-574))) 152) (($ $ $) 69)) (* (($ (-935) $) 34) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 60) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-227) (-13 (-414) (-239) (-838) (-1219) (-624 (-546)) (-10 -8 (-15 -3103 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1743 ($)) (-15 -4040 ($ $)) (-15 -1739 ($ $)) (-15 -2320 ($ $ $)) (-15 -2988 ($ $)) (-15 -3418 ($ $ $)) (-15 -2361 ((-417 (-574)) $ (-781))) (-15 -2361 ((-417 (-574)) $ (-781) (-781)))))) (T -227)) +((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3103 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-227)))) (-1743 (*1 *1) (-5 *1 (-227))) (-4040 (*1 *1 *1) (-5 *1 (-227))) (-1739 (*1 *1 *1) (-5 *1 (-227))) (-2320 (*1 *1 *1 *1) (-5 *1 (-227))) (-2988 (*1 *1 *1) (-5 *1 (-227))) (-3418 (*1 *1 *1 *1) (-5 *1 (-227))) (-2361 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) (-2361 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227))))) +(-13 (-414) (-239) (-838) (-1219) (-624 (-546)) (-10 -8 (-15 -3103 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1743 ($)) (-15 -4040 ($ $)) (-15 -1739 ($ $)) (-15 -2320 ($ $ $)) (-15 -2988 ($ $)) (-15 -3418 ($ $ $)) (-15 -2361 ((-417 (-574)) $ (-781))) (-15 -2361 ((-417 (-574)) $ (-781) (-781))))) +((-1445 (((-171 (-227)) (-781) (-171 (-227))) 11) (((-227) (-781) (-227)) 12)) (-3945 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-2430 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-1669 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3346 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-1359 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-1509 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2108 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-1802 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-1460 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-2988 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-3418 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) +(((-228) (-10 -7 (-15 -2988 ((-227) (-227))) (-15 -2988 ((-171 (-227)) (-171 (-227)))) (-15 -3418 ((-227) (-227) (-227))) (-15 -3418 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3945 ((-227) (-227))) (-15 -3945 ((-171 (-227)) (-171 (-227)))) (-15 -1669 ((-227) (-227))) (-15 -1669 ((-171 (-227)) (-171 (-227)))) (-15 -1445 ((-227) (-781) (-227))) (-15 -1445 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -1509 ((-227) (-227) (-227))) (-15 -1509 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3346 ((-227) (-227) (-227))) (-15 -3346 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2108 ((-227) (-227) (-227))) (-15 -2108 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1359 ((-227) (-227) (-227))) (-15 -1359 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1460 ((-171 (-227)) (-171 (-227)))) (-15 -1460 ((-227) (-227))) (-15 -1802 ((-227) (-227))) (-15 -1802 ((-171 (-227)) (-171 (-227)))) (-15 -2430 ((-227) (-227) (-227))) (-15 -2430 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) +((-2430 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2430 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1359 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1359 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2108 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2108 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3346 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3346 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1509 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1509 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1445 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228)))) (-1445 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3418 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3418 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2988 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2988 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) +(-10 -7 (-15 -2988 ((-227) (-227))) (-15 -2988 ((-171 (-227)) (-171 (-227)))) (-15 -3418 ((-227) (-227) (-227))) (-15 -3418 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3945 ((-227) (-227))) (-15 -3945 ((-171 (-227)) (-171 (-227)))) (-15 -1669 ((-227) (-227))) (-15 -1669 ((-171 (-227)) (-171 (-227)))) (-15 -1445 ((-227) (-781) (-227))) (-15 -1445 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -1509 ((-227) (-227) (-227))) (-15 -1509 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3346 ((-227) (-227) (-227))) (-15 -3346 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2108 ((-227) (-227) (-227))) (-15 -2108 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1359 ((-227) (-227) (-227))) (-15 -1359 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1460 ((-171 (-227)) (-171 (-227)))) (-15 -1460 ((-227) (-227))) (-15 -1802 ((-227) (-227))) (-15 -1802 ((-171 (-227)) (-171 (-227)))) (-15 -2430 ((-227) (-227) (-227))) (-15 -2430 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2225 (($ (-781) (-781)) NIL)) (-1960 (($ $ $) NIL)) (-4033 (($ (-1284 |#1|)) NIL) (($ $) NIL)) (-2823 (($ |#1| |#1| |#1|) 33)) (-3399 (((-112) $) NIL)) (-3235 (($ $ (-574) (-574)) NIL)) (-3048 (($ $ (-574) (-574)) NIL)) (-4390 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-3310 (($ $) NIL)) (-2711 (((-112) $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-3392 (($ $ (-574) (-574) $) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-1966 (($ $ (-574) (-1284 |#1|)) NIL)) (-3654 (($ $ (-574) (-1284 |#1|)) NIL)) (-4251 (($ |#1| |#1| |#1|) 32)) (-2317 (($ (-781) |#1|) NIL)) (-3250 (($) NIL T CONST)) (-1430 (($ $) NIL (|has| |#1| (-315)))) (-1959 (((-1284 |#1|) $ (-574)) NIL)) (-1885 (($ |#1|) 31)) (-4196 (($ |#1|) 30)) (-4218 (($ |#1|) 29)) (-3558 (((-781) $) NIL (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2400 ((|#1| $ (-574) (-574)) NIL)) (-1871 (((-654 |#1|) $) NIL)) (-2893 (((-781) $) NIL (|has| |#1| (-566)))) (-1381 (((-654 (-1284 |#1|)) $) NIL (|has| |#1| (-566)))) (-2197 (((-781) $) NIL)) (-3764 (($ (-781) (-781) |#1|) NIL)) (-2206 (((-781) $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-1706 ((|#1| $) NIL (|has| |#1| (-6 (-4461 "*"))))) (-2219 (((-574) $) NIL)) (-2126 (((-574) $) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3352 (((-574) $) NIL)) (-1695 (((-574) $) NIL)) (-2924 (($ (-654 (-654 |#1|))) 11)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2014 (((-654 (-654 |#1|)) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3593 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-4084 (($) 12)) (-2762 (($ $ $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1822 (($ $ |#1|) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-1761 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-4049 (((-112) $) NIL)) (-1386 ((|#1| $) NIL (|has| |#1| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-1425 (((-1284 |#1|) $ (-574)) NIL)) (-2951 (($ (-1284 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2649 (((-112) $) NIL)) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1284 |#1|) $ (-1284 |#1|)) 15) (((-1284 |#1|) (-1284 |#1|) $) NIL) (((-957 |#1|) $ (-957 |#1|)) 21)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-229 |#1|) (-13 (-697 |#1| (-1284 |#1|) (-1284 |#1|)) (-10 -8 (-15 * ((-957 |#1|) $ (-957 |#1|))) (-15 -4084 ($)) (-15 -4218 ($ |#1|)) (-15 -4196 ($ |#1|)) (-15 -1885 ($ |#1|)) (-15 -4251 ($ |#1| |#1| |#1|)) (-15 -2823 ($ |#1| |#1| |#1|)))) (-13 (-372) (-1219))) (T -229)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219))) (-5 *1 (-229 *3)))) (-4084 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) (-4218 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) (-4196 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) (-1885 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) (-4251 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) (-2823 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219)))))) +(-13 (-697 |#1| (-1284 |#1|) (-1284 |#1|)) (-10 -8 (-15 * ((-957 |#1|) $ (-957 |#1|))) (-15 -4084 ($)) (-15 -4218 ($ |#1|)) (-15 -4196 ($ |#1|)) (-15 -1885 ($ |#1|)) (-15 -4251 ($ |#1| |#1| |#1|)) (-15 -2823 ($ |#1| |#1| |#1|)))) +((-1923 (($ (-1 (-112) |#2|) $) 16)) (-2424 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-3162 (($) NIL) (($ (-654 |#2|)) 11)) (-2986 (((-112) $ $) 26))) +(((-230 |#1| |#2|) (-10 -8 (-15 -1923 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2424 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2424 (|#1| |#2| |#1|)) (-15 -3162 (|#1| (-654 |#2|))) (-15 -3162 (|#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-231 |#2|) (-1116)) (T -230)) +NIL +(-10 -8 (-15 -1923 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2424 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2424 (|#1| |#2| |#1|)) (-15 -3162 (|#1| (-654 |#2|))) (-15 -3162 (|#1|)) (-15 -2986 ((-112) |#1| |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) 8)) (-1923 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2804 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2424 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-2375 ((|#1| $) 40)) (-3285 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3801 ((|#1| $) 42)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-3162 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) 43)) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-231 |#1|) (-141) (-1116)) (T -231)) NIL (-13 (-241 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-3878 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) 11) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) 19) (($ $) 16) (($ $ (-781)) NIL)) (-3583 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-781)) 14) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL))) -(((-232 |#1| |#2|) (-10 -8 (-15 -3583 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3583 (|#1| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3583 (|#1| |#1| (-1192))) (-15 -3583 (|#1| |#1| (-654 (-1192)))) (-15 -3583 (|#1| |#1| (-1192) (-781))) (-15 -3583 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3583 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3583 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1064)) (T -232)) -NIL -(-10 -8 (-15 -3583 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3583 (|#1| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3583 (|#1| |#1| (-1192))) (-15 -3583 (|#1| |#1| (-654 (-1192)))) (-15 -3583 (|#1| |#1| (-1192) (-781))) (-15 -3583 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3583 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3583 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3878 (($ $ (-1 |#1| |#1|)) 57) (($ $ (-1 |#1| |#1|) (-781)) 56) (($ $ (-654 (-1192)) (-654 (-781))) 49 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 48 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 47 (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) 46 (|has| |#1| (-913 (-1192)))) (($ $) 45 (|has| |#1| (-239))) (($ $ (-781)) 43 (|has| |#1| (-239)))) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-1 |#1| |#1|)) 55) (($ $ (-1 |#1| |#1|) (-781)) 54) (($ $ (-654 (-1192)) (-654 (-781))) 53 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 52 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 51 (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) 50 (|has| |#1| (-913 (-1192)))) (($ $) 44 (|has| |#1| (-239))) (($ $ (-781)) 42 (|has| |#1| (-239)))) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-233 |#1|) (-141) (-1064)) (T -233)) -((-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1064)))) (-3878 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1064)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1064)))) (-3583 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1064))))) -(-13 (-1064) (-10 -8 (-15 -3878 ($ $ (-1 |t#1| |t#1|))) (-15 -3878 ($ $ (-1 |t#1| |t#1|) (-781))) (-15 -3583 ($ $ (-1 |t#1| |t#1|))) (-15 -3583 ($ $ (-1 |t#1| |t#1|) (-781))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-913 (-1192))) (-6 (-913 (-1192))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) |has| |#1| (-239))) -((-3583 ((|#2| $) 9))) -(((-234 |#1| |#2|) (-10 -8 (-15 -3583 (|#2| |#1|))) (-235 |#2|) (-1233)) (T -234)) -NIL -(-10 -8 (-15 -3583 (|#2| |#1|))) -((-3878 ((|#1| $) 7)) (-3583 ((|#1| $) 6))) -(((-235 |#1|) (-141) (-1233)) (T -235)) -((-3878 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1233)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1233))))) -(-13 (-1233) (-10 -8 (-15 -3878 (|t#1| $)) (-15 -3583 (|t#1| $)))) -(((-1233) . T)) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3878 (($ $ (-781)) 36) (($ $) 34)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-3583 (($ $ (-781)) 37) (($ $) 35)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-3879 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) 11) (($ $ (-1193)) 19) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) 16) (($ $ (-781)) NIL)) (-3584 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-781)) 14) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL))) +(((-232 |#1| |#2|) (-10 -8 (-15 -3584 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3584 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3584 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3584 (|#1| |#1| (-1193) (-781))) (-15 -3584 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3584 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1065)) (T -232)) +NIL +(-10 -8 (-15 -3584 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3584 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3584 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3584 (|#1| |#1| (-1193) (-781))) (-15 -3584 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3584 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3879 (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1 |#1| |#1|) (-781)) 57) (($ $ (-1193)) 54 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 52 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 51 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 50 (|has| |#1| (-912 (-1193)))) (($ $) 46 (|has| |#1| (-239))) (($ $ (-781)) 44 (|has| |#1| (-239)))) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-781)) 55) (($ $ (-1193)) 53 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 49 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 48 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 47 (|has| |#1| (-912 (-1193)))) (($ $) 45 (|has| |#1| (-239))) (($ $ (-781)) 43 (|has| |#1| (-239)))) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-233 |#1|) (-141) (-1065)) (T -233)) +((-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1065)))) (-3879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1065)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1065)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1065))))) +(-13 (-1065) (-10 -8 (-15 -3879 ($ $ (-1 |t#1| |t#1|))) (-15 -3879 ($ $ (-1 |t#1| |t#1|) (-781))) (-15 -3584 ($ $ (-1 |t#1| |t#1|))) (-15 -3584 ($ $ (-1 |t#1| |t#1|) (-781))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-912 (-1193))) (-6 (-912 (-1193))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-907 $ #0=(-1193)) |has| |#1| (-912 (-1193))) ((-912 #0#) |has| |#1| (-912 (-1193))) ((-914 #0#) |has| |#1| (-912 (-1193))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) -2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-239)))) +((-3584 ((|#2| $) 9))) +(((-234 |#1| |#2|) (-10 -8 (-15 -3584 (|#2| |#1|))) (-235 |#2|) (-1234)) (T -234)) +NIL +(-10 -8 (-15 -3584 (|#2| |#1|))) +((-3879 ((|#1| $) 7)) (-3584 ((|#1| $) 6))) +(((-235 |#1|) (-141) (-1234)) (T -235)) +((-3879 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1234)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1234))))) +(-13 (-1234) (-10 -8 (-15 -3879 (|t#1| $)) (-15 -3584 (|t#1| $)))) +(((-1234) . T)) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3879 (($ $ (-781)) 36) (($ $) 34)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-3584 (($ $ (-781)) 37) (($ $) 35)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-236 |#1|) (-141) (-174)) (T -236)) NIL (-13 (-727 |t#1|) (-238)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T) ((-1233) . T)) -((-3878 (($ $) NIL) (($ $ (-781)) 9)) (-3583 (($ $) NIL) (($ $ (-781)) 11))) -(((-237 |#1|) (-10 -8 (-15 -3583 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3583 (|#1| |#1|)) (-15 -3878 (|#1| |#1|))) (-238)) (T -237)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T) ((-1234) . T)) +((-3879 (($ $) NIL) (($ $ (-781)) 9)) (-3584 (($ $) NIL) (($ $ (-781)) 11))) +(((-237 |#1|) (-10 -8 (-15 -3584 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3584 (|#1| |#1|)) (-15 -3879 (|#1| |#1|))) (-238)) (T -237)) NIL -(-10 -8 (-15 -3583 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3583 (|#1| |#1|)) (-15 -3878 (|#1| |#1|))) -((-3878 (($ $) 7) (($ $ (-781)) 10)) (-3583 (($ $) 6) (($ $ (-781)) 9))) +(-10 -8 (-15 -3584 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3584 (|#1| |#1|)) (-15 -3879 (|#1| |#1|))) +((-3879 (($ $) 7) (($ $ (-781)) 10)) (-3584 (($ $) 6) (($ $ (-781)) 9))) (((-238) (-141)) (T -238)) -((-3878 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781)))) (-3583 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781))))) -(-13 (-235 $) (-10 -8 (-15 -3878 ($ $ (-781))) (-15 -3583 ($ $ (-781))))) -(((-235 $) . T) ((-1233) . T)) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3878 (($ $ (-781)) 42) (($ $) 40)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-781)) 43) (($ $) 41)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-3879 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781)))) (-3584 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781))))) +(-13 (-235 $) (-10 -8 (-15 -3879 ($ $ (-781))) (-15 -3584 ($ $ (-781))))) +(((-235 $) . T) ((-1234) . T)) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3879 (($ $ (-781)) 42) (($ $) 40)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-781)) 43) (($ $) 41)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-239) (-141)) (T -239)) NIL -(-13 (-1064) (-238)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) . T)) -((-3667 (($) 12) (($ (-654 |#2|)) NIL)) (-3156 (($ $) 14)) (-2962 (($ (-654 |#2|)) 10)) (-2950 (((-872) $) 21))) -(((-240 |#1| |#2|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -3667 (|#1| (-654 |#2|))) (-15 -3667 (|#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -3156 (|#1| |#1|))) (-241 |#2|) (-1115)) (T -240)) -NIL -(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -3667 (|#1| (-654 |#2|))) (-15 -3667 (|#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -3156 (|#1| |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) 8)) (-2551 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2560 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1941 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1748 ((|#1| $) 40)) (-2609 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3484 ((|#1| $) 42)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3667 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) 43)) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-241 |#1|) (-141) (-1115)) (T -241)) -((-3667 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1115)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-241 *3)))) (-1941 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-241 *2)) (-4 *2 (-1115)))) (-1941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-241 *3)) (-4 *3 (-1115)))) (-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-241 *3)) (-4 *3 (-1115))))) -(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -3667 ($)) (-15 -3667 ($ (-654 |t#1|))) (IF (|has| $ (-6 -4458)) (PROGN (-15 -1941 ($ |t#1| $)) (-15 -1941 ($ (-1 (-112) |t#1|) $)) (-15 -2551 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-2137 (((-2 (|:| |varOrder| (-654 (-1192))) (|:| |inhom| (-3 (-654 (-1283 (-781))) "failed")) (|:| |hom| (-654 (-1283 (-781))))) (-302 (-965 (-574)))) 42))) -(((-242) (-10 -7 (-15 -2137 ((-2 (|:| |varOrder| (-654 (-1192))) (|:| |inhom| (-3 (-654 (-1283 (-781))) "failed")) (|:| |hom| (-654 (-1283 (-781))))) (-302 (-965 (-574))))))) (T -242)) -((-2137 (*1 *2 *3) (-12 (-5 *3 (-302 (-965 (-574)))) (-5 *2 (-2 (|:| |varOrder| (-654 (-1192))) (|:| |inhom| (-3 (-654 (-1283 (-781))) "failed")) (|:| |hom| (-654 (-1283 (-781)))))) (-5 *1 (-242))))) -(-10 -7 (-15 -2137 ((-2 (|:| |varOrder| (-654 (-1192))) (|:| |inhom| (-3 (-654 (-1283 (-781))) "failed")) (|:| |hom| (-654 (-1283 (-781))))) (-302 (-965 (-574)))))) -((-1496 (((-781)) 56)) (-3465 (((-2 (|:| -4047 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 $) (-1283 $)) 53) (((-699 |#3|) (-699 $)) 44) (((-699 |#3|) (-1283 $)) NIL) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-3480 (((-135)) 62)) (-3878 (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2950 (((-1283 |#3|) $) NIL) (($ |#3|) NIL) (((-872) $) NIL) (($ (-574)) 12) (($ (-417 (-574))) NIL)) (-4019 (((-781)) 15)) (-3098 (($ $ |#3|) 59))) -(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|)) (-15 -4019 ((-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -2950 (|#1| |#3|)) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3465 ((-699 |#3|) (-1283 |#1|))) (-15 -3465 ((-699 |#3|) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 |#1|) (-1283 |#1|))) (-15 -1496 ((-781))) (-15 -3098 (|#1| |#1| |#3|)) (-15 -3480 ((-135))) (-15 -2950 ((-1283 |#3|) |#1|))) (-244 |#2| |#3|) (-781) (-1233)) (T -243)) -((-3480 (*1 *2) (-12 (-14 *4 (-781)) (-4 *5 (-1233)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-1496 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1233)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-4019 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1233)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))) -(-10 -8 (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|)) (-15 -4019 ((-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -2950 (|#1| |#3|)) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3465 ((-699 |#3|) (-1283 |#1|))) (-15 -3465 ((-699 |#3|) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 |#1|) (-1283 |#1|))) (-15 -1496 ((-781))) (-15 -3098 (|#1| |#1| |#3|)) (-15 -3480 ((-135))) (-15 -2950 ((-1283 |#3|) |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#2| (-1115)))) (-3520 (((-112) $) 74 (-2832 (|has| |#2| (-132)) (|has| |#2| (-736))))) (-3196 (($ (-934)) 125 (|has| |#2| (-1064)))) (-3287 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-2620 (($ $ $) 121 (|has| |#2| (-803)))) (-1597 (((-3 $ "failed") $ $) 76 (|has| |#2| (-132)))) (-2818 (((-112) $ (-781)) 8)) (-1496 (((-781)) 111 (|has| |#2| (-377)))) (-3134 ((|#2| $ (-574) |#2|) 53 (|has| $ (-6 -4459)))) (-3831 (($) 7 T CONST)) (-1705 (((-3 (-574) "failed") $) 69 (-2096 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-3 (-417 (-574)) "failed") $) 66 (-2096 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (((-3 |#2| "failed") $) 63 (|has| |#2| (-1115)))) (-2216 (((-574) $) 68 (-2096 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-417 (-574)) $) 65 (-2096 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) ((|#2| $) 64 (|has| |#2| (-1115)))) (-3465 (((-699 (-574)) (-1283 $)) 110 (-2096 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-699 (-574)) (-699 $)) 109 (-2096 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 108 (-2096 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 107 (|has| |#2| (-1064))) (((-699 |#2|) (-699 $)) 106 (|has| |#2| (-1064))) (((-699 |#2|) (-1283 $)) 105 (|has| |#2| (-1064)))) (-3911 (((-3 $ "failed") $) 81 (|has| |#2| (-1064)))) (-2834 (($) 114 (|has| |#2| (-377)))) (-2472 ((|#2| $ (-574) |#2|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#2| $ (-574)) 52)) (-1873 (((-654 |#2|) $) 31 (|has| $ (-6 -4458)))) (-3372 (((-112) $) 83 (|has| |#2| (-1064)))) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 120 (|has| |#2| (-860)))) (-2247 (((-654 |#2|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 45 (|has| (-574) (-860)))) (-1593 (($ $ $) 119 (|has| |#2| (-860)))) (-2461 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#2| |#2|) $) 36)) (-3271 (((-934) $) 113 (|has| |#2| (-377)))) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#2| (-1115)))) (-3228 (((-654 (-574)) $) 47)) (-3071 (((-112) (-574) $) 48)) (-2590 (($ (-934)) 112 (|has| |#2| (-377)))) (-3939 (((-1135) $) 21 (|has| |#2| (-1115)))) (-2924 ((|#2| $) 43 (|has| (-574) (-860)))) (-4276 (($ $ |#2|) 42 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) 49)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#2| $ (-574) |#2|) 51) ((|#2| $ (-574)) 50)) (-3036 ((|#2| $ $) 124 (|has| |#2| (-1064)))) (-4246 (($ (-1283 |#2|)) 126)) (-3480 (((-135)) 123 (|has| |#2| (-372)))) (-3878 (($ $ (-781)) 100 (-2096 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) 98 (-2096 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) 97 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) 96 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) 95 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) 94 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) 87 (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1064)))) (-3948 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4458))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-1283 |#2|) $) 127) (($ (-574)) 70 (-2832 (-2096 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064)))) (($ (-417 (-574))) 67 (-2096 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (($ |#2|) 62 (|has| |#2| (-1115))) (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-4019 (((-781)) 85 (|has| |#2| (-1064)) CONST)) (-3838 (((-112) $ $) 23 (|has| |#2| (-1115)))) (-2980 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4458)))) (-2142 (($) 73 (-2832 (|has| |#2| (-132)) (|has| |#2| (-736))) CONST)) (-2154 (($) 84 (|has| |#2| (-1064)) CONST)) (-3583 (($ $ (-781)) 101 (-2096 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) 99 (-2096 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) 93 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) 92 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) 91 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) 90 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) 89 (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) 88 (|has| |#2| (-1064)))) (-3041 (((-112) $ $) 117 (|has| |#2| (-860)))) (-3018 (((-112) $ $) 116 (|has| |#2| (-860)))) (-2985 (((-112) $ $) 20 (|has| |#2| (-1115)))) (-3029 (((-112) $ $) 118 (|has| |#2| (-860)))) (-3009 (((-112) $ $) 115 (|has| |#2| (-860)))) (-3098 (($ $ |#2|) 122 (|has| |#2| (-372)))) (-3089 (($ $ $) 104 (|has| |#2| (-1064))) (($ $) 103 (|has| |#2| (-1064)))) (-3074 (($ $ $) 71 (|has| |#2| (-25)))) (** (($ $ (-781)) 82 (|has| |#2| (-1064))) (($ $ (-934)) 79 (|has| |#2| (-1064)))) (* (($ (-574) $) 102 (|has| |#2| (-1064))) (($ $ $) 80 (|has| |#2| (-1064))) (($ $ |#2|) 78 (|has| |#2| (-736))) (($ |#2| $) 77 (|has| |#2| (-736))) (($ (-781) $) 75 (|has| |#2| (-132))) (($ (-934) $) 72 (|has| |#2| (-25)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-244 |#1| |#2|) (-141) (-781) (-1233)) (T -244)) -((-4246 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1233)) (-4 *1 (-244 *3 *4)))) (-3196 (*1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1064)) (-4 *4 (-1233)))) (-3036 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1233)) (-4 *2 (-1064))))) -(-13 (-614 (-574) |t#2|) (-623 (-1283 |t#2|)) (-10 -8 (-6 -4458) (-15 -4246 ($ (-1283 |t#2|))) (IF (|has| |t#2| (-1115)) (-6 (-421 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1064)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-386 |t#2|)) (-15 -3196 ($ (-934))) (-15 -3036 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-736)) (-6 (-650 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#2| (-174)) (PROGN (-6 (-38 |t#2|)) (-6 (-174))) |%noBranch|) (IF (|has| |t#2| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |t#2| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#2| (-803)) (-6 (-803)) |%noBranch|) (IF (|has| |t#2| (-372)) (-6 (-1290 |t#2|)) |%noBranch|))) -(((-21) -2832 (|has| |#2| (-1064)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-23) -2832 (|has| |#2| (-1064)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-25) -2832 (|has| |#2| (-1064)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) -2832 (|has| |#2| (-1115)) (|has| |#2| (-1064)) (|has| |#2| (-860)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2832 (|has| |#2| (-1064)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-111 $ $) |has| |#2| (-174)) ((-132) -2832 (|has| |#2| (-1064)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-626 #0=(-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115))) ((-626 (-574)) -2832 (|has| |#2| (-1064)) (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-174))) ((-626 |#2|) -2832 (|has| |#2| (-1115)) (|has| |#2| (-174))) ((-623 (-872)) -2832 (|has| |#2| (-1115)) (|has| |#2| (-1064)) (|has| |#2| (-860)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-623 (-872))) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-623 (-1283 |#2|)) . T) ((-174) |has| |#2| (-174)) ((-235 $) -12 (|has| |#2| (-239)) (|has| |#2| (-1064))) ((-233 |#2|) |has| |#2| (-1064)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1064))) ((-238) -12 (|has| |#2| (-239)) (|has| |#2| (-1064))) ((-294 #1=(-574) |#2|) . T) ((-296 #1# |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-377) |has| |#2| (-377)) ((-386 |#2|) |has| |#2| (-1064)) ((-421 |#2|) |has| |#2| (-1115)) ((-499 |#2|) . T) ((-614 #1# |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-656 (-574)) -2832 (|has| |#2| (-1064)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-656 |#2|) -2832 (|has| |#2| (-1064)) (|has| |#2| (-736)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-656 $) -2832 (|has| |#2| (-1064)) (|has| |#2| (-174))) ((-658 #2=(-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064))) ((-658 |#2|) -2832 (|has| |#2| (-1064)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-658 $) -2832 (|has| |#2| (-1064)) (|has| |#2| (-174))) ((-650 |#2|) -2832 (|has| |#2| (-736)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-649 #2#) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064))) ((-649 |#2|) |has| |#2| (-1064)) ((-727 |#2|) -2832 (|has| |#2| (-372)) (|has| |#2| (-174))) ((-736) -2832 (|has| |#2| (-1064)) (|has| |#2| (-174))) ((-802) |has| |#2| (-803)) ((-803) |has| |#2| (-803)) ((-804) |has| |#2| (-803)) ((-805) |has| |#2| (-803)) ((-860) -2832 (|has| |#2| (-860)) (|has| |#2| (-803))) ((-913 (-1192)) -12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064))) ((-1053 #0#) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115))) ((-1053 (-574)) -12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) ((-1053 |#2|) |has| |#2| (-1115)) ((-1066 |#2|) -2832 (|has| |#2| (-1064)) (|has| |#2| (-736)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1066 $) |has| |#2| (-174)) ((-1071 |#2|) -2832 (|has| |#2| (-1064)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1071 $) |has| |#2| (-174)) ((-1064) -2832 (|has| |#2| (-1064)) (|has| |#2| (-174))) ((-1073) -2832 (|has| |#2| (-1064)) (|has| |#2| (-174))) ((-1127) -2832 (|has| |#2| (-1064)) (|has| |#2| (-174))) ((-1115) -2832 (|has| |#2| (-1115)) (|has| |#2| (-1064)) (|has| |#2| (-860)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-1233) . T) ((-1290 |#2|) |has| |#2| (-372))) -((-4214 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21)) (-2881 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23)) (-1786 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18))) -(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -4214 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2881 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1786 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-781) (-1233) (-1233)) (T -245)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1233)) (-4 *2 (-1233)) (-5 *1 (-245 *5 *6 *2)))) (-4214 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781)) (-4 *7 (-1233)) (-4 *5 (-1233)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5))))) -(-10 -7 (-15 -4214 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2881 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1786 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) -((-2863 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-3520 (((-112) $) NIL (-2832 (|has| |#2| (-132)) (|has| |#2| (-736))))) (-3196 (($ (-934)) 62 (|has| |#2| (-1064)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-2620 (($ $ $) 68 (|has| |#2| (-803)))) (-1597 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-2818 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#2| (-377)))) (-3134 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1115)))) (-2216 (((-574) $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) ((|#2| $) 28 (|has| |#2| (-1115)))) (-3465 (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-1283 $)) NIL (|has| |#2| (-1064)))) (-3911 (((-3 $ "failed") $) 58 (|has| |#2| (-1064)))) (-2834 (($) NIL (|has| |#2| (-377)))) (-2472 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ (-574)) 56)) (-1873 (((-654 |#2|) $) 14 (|has| $ (-6 -4458)))) (-3372 (((-112) $) NIL (|has| |#2| (-1064)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) 19 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#2| (-860)))) (-2247 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#2| (-860)))) (-2461 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-3271 (((-934) $) NIL (|has| |#2| (-377)))) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#2| (-1115)))) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#2| (-377)))) (-3939 (((-1135) $) NIL (|has| |#2| (-1115)))) (-2924 ((|#2| $) NIL (|has| (-574) (-860)))) (-4276 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) 20)) (-3036 ((|#2| $ $) NIL (|has| |#2| (-1064)))) (-4246 (($ (-1283 |#2|)) 17)) (-3480 (((-135)) NIL (|has| |#2| (-372)))) (-3878 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3948 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#2|) $) 9) (($ (-574)) NIL (-2832 (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (($ |#2|) 12 (|has| |#2| (-1115))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-4019 (((-781)) NIL (|has| |#2| (-1064)) CONST)) (-3838 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-2980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2142 (($) 36 (-2832 (|has| |#2| (-132)) (|has| |#2| (-736))) CONST)) (-2154 (($) 40 (|has| |#2| (-1064)) CONST)) (-3583 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3041 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2985 (((-112) $ $) 27 (|has| |#2| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) 66 (|has| |#2| (-860)))) (-3098 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $ $) NIL (|has| |#2| (-1064))) (($ $) NIL (|has| |#2| (-1064)))) (-3074 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-1064))) (($ $ (-934)) NIL (|has| |#2| (-1064)))) (* (($ (-574) $) NIL (|has| |#2| (-1064))) (($ $ $) 46 (|has| |#2| (-1064))) (($ $ |#2|) 44 (|has| |#2| (-736))) (($ |#2| $) 45 (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-934) $) NIL (|has| |#2| (-25)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-246 |#1| |#2|) (-244 |#1| |#2|) (-781) (-1233)) (T -246)) +(-13 (-1065) (-238)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T)) +((-3162 (($) 12) (($ (-654 |#2|)) NIL)) (-3157 (($ $) 14)) (-2963 (($ (-654 |#2|)) 10)) (-2951 (((-872) $) 21))) +(((-240 |#1| |#2|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -3162 (|#1| (-654 |#2|))) (-15 -3162 (|#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -3157 (|#1| |#1|))) (-241 |#2|) (-1116)) (T -240)) +NIL +(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -3162 (|#1| (-654 |#2|))) (-15 -3162 (|#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -3157 (|#1| |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) 8)) (-1923 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2804 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2424 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-2375 ((|#1| $) 40)) (-3285 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3801 ((|#1| $) 42)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-3162 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) 43)) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-241 |#1|) (-141) (-1116)) (T -241)) +((-3162 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1116)))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-241 *3)))) (-2424 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-241 *2)) (-4 *2 (-1116)))) (-2424 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-241 *3)) (-4 *3 (-1116)))) (-1923 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-241 *3)) (-4 *3 (-1116))))) +(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -3162 ($)) (-15 -3162 ($ (-654 |t#1|))) (IF (|has| $ (-6 -4459)) (PROGN (-15 -2424 ($ |t#1| $)) (-15 -2424 ($ (-1 (-112) |t#1|) $)) (-15 -1923 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-1882 (((-2 (|:| |varOrder| (-654 (-1193))) (|:| |inhom| (-3 (-654 (-1284 (-781))) "failed")) (|:| |hom| (-654 (-1284 (-781))))) (-302 (-966 (-574)))) 42))) +(((-242) (-10 -7 (-15 -1882 ((-2 (|:| |varOrder| (-654 (-1193))) (|:| |inhom| (-3 (-654 (-1284 (-781))) "failed")) (|:| |hom| (-654 (-1284 (-781))))) (-302 (-966 (-574))))))) (T -242)) +((-1882 (*1 *2 *3) (-12 (-5 *3 (-302 (-966 (-574)))) (-5 *2 (-2 (|:| |varOrder| (-654 (-1193))) (|:| |inhom| (-3 (-654 (-1284 (-781))) "failed")) (|:| |hom| (-654 (-1284 (-781)))))) (-5 *1 (-242))))) +(-10 -7 (-15 -1882 ((-2 (|:| |varOrder| (-654 (-1193))) (|:| |inhom| (-3 (-654 (-1284 (-781))) "failed")) (|:| |hom| (-654 (-1284 (-781))))) (-302 (-966 (-574)))))) +((-1496 (((-781)) 56)) (-1831 (((-2 (|:| -3082 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 $) (-1284 $)) 53) (((-699 |#3|) (-699 $)) 44) (((-699 |#3|) (-1284 $)) NIL) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-2995 (((-135)) 62)) (-3879 (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2951 (((-1284 |#3|) $) NIL) (($ |#3|) NIL) (((-872) $) NIL) (($ (-574)) 12) (($ (-417 (-574))) NIL)) (-2898 (((-781)) 15)) (-3103 (($ $ |#3|) 59))) +(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)) (-15 -2898 ((-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -2951 (|#1| |#3|)) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -1831 ((-699 |#3|) (-1284 |#1|))) (-15 -1831 ((-699 |#3|) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 |#1|) (-1284 |#1|))) (-15 -1496 ((-781))) (-15 -3103 (|#1| |#1| |#3|)) (-15 -2995 ((-135))) (-15 -2951 ((-1284 |#3|) |#1|))) (-244 |#2| |#3|) (-781) (-1234)) (T -243)) +((-2995 (*1 *2) (-12 (-14 *4 (-781)) (-4 *5 (-1234)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-1496 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1234)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-2898 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1234)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))) +(-10 -8 (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)) (-15 -2898 ((-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -2951 (|#1| |#3|)) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -1831 ((-699 |#3|) (-1284 |#1|))) (-15 -1831 ((-699 |#3|) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 |#1|) (-1284 |#1|))) (-15 -1496 ((-781))) (-15 -3103 (|#1| |#1| |#3|)) (-15 -2995 ((-135))) (-15 -2951 ((-1284 |#3|) |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#2| (-1116)))) (-1431 (((-112) $) 75 (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))))) (-1399 (($ (-935)) 126 (|has| |#2| (-1065)))) (-2985 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-1968 (($ $ $) 122 (|has| |#2| (-803)))) (-2600 (((-3 $ "failed") $ $) 77 (|has| |#2| (-132)))) (-3146 (((-112) $ (-781)) 8)) (-1496 (((-781)) 112 (|has| |#2| (-377)))) (-3135 ((|#2| $ (-574) |#2|) 53 (|has| $ (-6 -4460)))) (-3250 (($) 7 T CONST)) (-1704 (((-3 (-574) "failed") $) 70 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-3 (-417 (-574)) "failed") $) 67 (-2095 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((-3 |#2| "failed") $) 64 (|has| |#2| (-1116)))) (-2214 (((-574) $) 69 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-417 (-574)) $) 66 (-2095 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) ((|#2| $) 65 (|has| |#2| (-1116)))) (-1831 (((-699 (-574)) (-1284 $)) 111 (-2095 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-699 (-574)) (-699 $)) 110 (-2095 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 109 (-2095 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 108 (|has| |#2| (-1065))) (((-699 |#2|) (-699 $)) 107 (|has| |#2| (-1065))) (((-699 |#2|) (-1284 $)) 106 (|has| |#2| (-1065)))) (-4322 (((-3 $ "failed") $) 82 (|has| |#2| (-1065)))) (-2835 (($) 115 (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#2| $ (-574)) 52)) (-1871 (((-654 |#2|) $) 31 (|has| $ (-6 -4459)))) (-4226 (((-112) $) 84 (|has| |#2| (-1065)))) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 121 (|has| |#2| (-860)))) (-2036 (((-654 |#2|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 45 (|has| (-574) (-860)))) (-4380 (($ $ $) 120 (|has| |#2| (-860)))) (-2462 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2|) $) 36)) (-3383 (((-935) $) 114 (|has| |#2| (-377)))) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#2| (-1116)))) (-1393 (((-654 (-574)) $) 47)) (-1506 (((-112) (-574) $) 48)) (-2591 (($ (-935)) 113 (|has| |#2| (-377)))) (-3940 (((-1136) $) 21 (|has| |#2| (-1116)))) (-2925 ((|#2| $) 43 (|has| (-574) (-860)))) (-1822 (($ $ |#2|) 42 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) 49)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#2| $ (-574) |#2|) 51) ((|#2| $ (-574)) 50)) (-3918 ((|#2| $ $) 125 (|has| |#2| (-1065)))) (-4247 (($ (-1284 |#2|)) 127)) (-2995 (((-135)) 124 (|has| |#2| (-372)))) (-3879 (($ $ (-781)) 101 (-2095 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) 99 (-2095 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) 95 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) 94 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) 93 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) 91 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) 88 (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) 87 (|has| |#2| (-1065)))) (-3949 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4459))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-1284 |#2|) $) 128) (($ (-574)) 71 (-2833 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065)))) (($ (-417 (-574))) 68 (-2095 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (($ |#2|) 63 (|has| |#2| (-1116))) (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-2898 (((-781)) 86 (|has| |#2| (-1065)) CONST)) (-4069 (((-112) $ $) 23 (|has| |#2| (-1116)))) (-2020 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4459)))) (-2141 (($) 74 (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))) CONST)) (-2153 (($) 85 (|has| |#2| (-1065)) CONST)) (-3584 (($ $ (-781)) 102 (-2095 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) 100 (-2095 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) 98 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) 97 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) 96 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) 92 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) 90 (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) 89 (|has| |#2| (-1065)))) (-3042 (((-112) $ $) 118 (|has| |#2| (-860)))) (-3020 (((-112) $ $) 117 (|has| |#2| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#2| (-1116)))) (-3030 (((-112) $ $) 119 (|has| |#2| (-860)))) (-3009 (((-112) $ $) 116 (|has| |#2| (-860)))) (-3103 (($ $ |#2|) 123 (|has| |#2| (-372)))) (-3090 (($ $ $) 105 (|has| |#2| (-1065))) (($ $) 104 (|has| |#2| (-1065)))) (-3074 (($ $ $) 72 (|has| |#2| (-25)))) (** (($ $ (-781)) 83 (|has| |#2| (-1065))) (($ $ (-935)) 80 (|has| |#2| (-1065)))) (* (($ (-574) $) 103 (|has| |#2| (-1065))) (($ $ $) 81 (|has| |#2| (-1065))) (($ $ |#2|) 79 (|has| |#2| (-736))) (($ |#2| $) 78 (|has| |#2| (-736))) (($ (-781) $) 76 (|has| |#2| (-132))) (($ (-935) $) 73 (|has| |#2| (-25)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-244 |#1| |#2|) (-141) (-781) (-1234)) (T -244)) +((-4247 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1234)) (-4 *1 (-244 *3 *4)))) (-1399 (*1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1065)) (-4 *4 (-1234)))) (-3918 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1234)) (-4 *2 (-1065))))) +(-13 (-614 (-574) |t#2|) (-623 (-1284 |t#2|)) (-10 -8 (-6 -4459) (-15 -4247 ($ (-1284 |t#2|))) (IF (|has| |t#2| (-1116)) (-6 (-421 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1065)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-386 |t#2|)) (-15 -1399 ($ (-935))) (-15 -3918 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-736)) (-6 (-650 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#2| (-174)) (PROGN (-6 (-38 |t#2|)) (-6 (-174))) |%noBranch|) (IF (|has| |t#2| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |t#2| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#2| (-803)) (-6 (-803)) |%noBranch|) (IF (|has| |t#2| (-372)) (-6 (-1291 |t#2|)) |%noBranch|))) +(((-21) -2833 (|has| |#2| (-1065)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-23) -2833 (|has| |#2| (-1065)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-25) -2833 (|has| |#2| (-1065)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) -2833 (|has| |#2| (-1116)) (|has| |#2| (-1065)) (|has| |#2| (-860)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2833 (|has| |#2| (-1065)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-111 $ $) |has| |#2| (-174)) ((-132) -2833 (|has| |#2| (-1065)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-626 #0=(-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116))) ((-626 (-574)) -2833 (|has| |#2| (-1065)) (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-174))) ((-626 |#2|) -2833 (|has| |#2| (-1116)) (|has| |#2| (-174))) ((-623 (-872)) -2833 (|has| |#2| (-1116)) (|has| |#2| (-1065)) (|has| |#2| (-860)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-623 (-872))) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-623 (-1284 |#2|)) . T) ((-174) |has| |#2| (-174)) ((-235 $) -12 (|has| |#2| (-239)) (|has| |#2| (-1065))) ((-233 |#2|) |has| |#2| (-1065)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1065))) ((-238) -12 (|has| |#2| (-239)) (|has| |#2| (-1065))) ((-294 #1=(-574) |#2|) . T) ((-296 #1# |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-377) |has| |#2| (-377)) ((-386 |#2|) |has| |#2| (-1065)) ((-421 |#2|) |has| |#2| (-1116)) ((-499 |#2|) . T) ((-614 #1# |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-656 (-574)) -2833 (|has| |#2| (-1065)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-656 |#2|) -2833 (|has| |#2| (-1065)) (|has| |#2| (-736)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-656 $) -2833 (|has| |#2| (-1065)) (|has| |#2| (-174))) ((-658 #2=(-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065))) ((-658 |#2|) -2833 (|has| |#2| (-1065)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-658 $) -2833 (|has| |#2| (-1065)) (|has| |#2| (-174))) ((-650 |#2|) -2833 (|has| |#2| (-736)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-649 #2#) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065))) ((-649 |#2|) |has| |#2| (-1065)) ((-727 |#2|) -2833 (|has| |#2| (-372)) (|has| |#2| (-174))) ((-736) -2833 (|has| |#2| (-1065)) (|has| |#2| (-174))) ((-802) |has| |#2| (-803)) ((-803) |has| |#2| (-803)) ((-804) |has| |#2| (-803)) ((-805) |has| |#2| (-803)) ((-860) -2833 (|has| |#2| (-860)) (|has| |#2| (-803))) ((-907 $ #3=(-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))) ((-912 #3#) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))) ((-914 #3#) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))) ((-1054 #0#) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116))) ((-1054 (-574)) -12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) ((-1054 |#2|) |has| |#2| (-1116)) ((-1067 |#2|) -2833 (|has| |#2| (-1065)) (|has| |#2| (-736)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1067 $) |has| |#2| (-174)) ((-1072 |#2|) -2833 (|has| |#2| (-1065)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1072 $) |has| |#2| (-174)) ((-1065) -2833 (|has| |#2| (-1065)) (|has| |#2| (-174))) ((-1074) -2833 (|has| |#2| (-1065)) (|has| |#2| (-174))) ((-1128) -2833 (|has| |#2| (-1065)) (|has| |#2| (-174))) ((-1116) -2833 (|has| |#2| (-1116)) (|has| |#2| (-1065)) (|has| |#2| (-860)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-1234) . T) ((-1291 |#2|) |has| |#2| (-372))) +((-3465 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21)) (-2882 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23)) (-1785 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18))) +(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -3465 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2882 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1785 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-781) (-1234) (-1234)) (T -245)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1234)) (-4 *2 (-1234)) (-5 *1 (-245 *5 *6 *2)))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781)) (-4 *7 (-1234)) (-4 *5 (-1234)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5))))) +(-10 -7 (-15 -3465 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2882 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1785 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) +((-2864 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-1431 (((-112) $) NIL (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))))) (-1399 (($ (-935)) 62 (|has| |#2| (-1065)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1968 (($ $ $) 68 (|has| |#2| (-803)))) (-2600 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-3146 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#2| (-377)))) (-3135 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1116)))) (-2214 (((-574) $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) ((|#2| $) 28 (|has| |#2| (-1116)))) (-1831 (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-1284 $)) NIL (|has| |#2| (-1065)))) (-4322 (((-3 $ "failed") $) 58 (|has| |#2| (-1065)))) (-2835 (($) NIL (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ (-574)) 56)) (-1871 (((-654 |#2|) $) 14 (|has| $ (-6 -4459)))) (-4226 (((-112) $) NIL (|has| |#2| (-1065)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) 19 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#2| (-860)))) (-2036 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#2| (-860)))) (-2462 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-3383 (((-935) $) NIL (|has| |#2| (-377)))) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#2| (-1116)))) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#2| (-377)))) (-3940 (((-1136) $) NIL (|has| |#2| (-1116)))) (-2925 ((|#2| $) NIL (|has| (-574) (-860)))) (-1822 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) 20)) (-3918 ((|#2| $ $) NIL (|has| |#2| (-1065)))) (-4247 (($ (-1284 |#2|)) 17)) (-2995 (((-135)) NIL (|has| |#2| (-372)))) (-3879 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3949 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#2|) $) 9) (($ (-574)) NIL (-2833 (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (($ |#2|) 12 (|has| |#2| (-1116))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-2898 (((-781)) NIL (|has| |#2| (-1065)) CONST)) (-4069 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-2020 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) 36 (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))) CONST)) (-2153 (($) 40 (|has| |#2| (-1065)) CONST)) (-3584 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3042 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2986 (((-112) $ $) 27 (|has| |#2| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) 66 (|has| |#2| (-860)))) (-3103 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $ $) NIL (|has| |#2| (-1065))) (($ $) NIL (|has| |#2| (-1065)))) (-3074 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-1065))) (($ $ (-935)) NIL (|has| |#2| (-1065)))) (* (($ (-574) $) NIL (|has| |#2| (-1065))) (($ $ $) 46 (|has| |#2| (-1065))) (($ $ |#2|) 44 (|has| |#2| (-736))) (($ |#2| $) 45 (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-935) $) NIL (|has| |#2| (-25)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-246 |#1| |#2|) (-244 |#1| |#2|) (-781) (-1234)) (T -246)) NIL (-244 |#1| |#2|) -((-3782 (((-574) (-654 (-1174))) 36) (((-574) (-1174)) 29)) (-1567 (((-1288) (-654 (-1174))) 40) (((-1288) (-1174)) 39)) (-3806 (((-1174)) 16)) (-4408 (((-1174) (-574) (-1174)) 23)) (-3332 (((-654 (-1174)) (-654 (-1174)) (-574) (-1174)) 37) (((-1174) (-1174) (-574) (-1174)) 35)) (-2633 (((-654 (-1174)) (-654 (-1174))) 15) (((-654 (-1174)) (-1174)) 11))) -(((-247) (-10 -7 (-15 -2633 ((-654 (-1174)) (-1174))) (-15 -2633 ((-654 (-1174)) (-654 (-1174)))) (-15 -3806 ((-1174))) (-15 -4408 ((-1174) (-574) (-1174))) (-15 -3332 ((-1174) (-1174) (-574) (-1174))) (-15 -3332 ((-654 (-1174)) (-654 (-1174)) (-574) (-1174))) (-15 -1567 ((-1288) (-1174))) (-15 -1567 ((-1288) (-654 (-1174)))) (-15 -3782 ((-574) (-1174))) (-15 -3782 ((-574) (-654 (-1174)))))) (T -247)) -((-3782 (*1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-574)) (-5 *1 (-247)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-574)) (-5 *1 (-247)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1288)) (-5 *1 (-247)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-247)))) (-3332 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 (-1174))) (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *1 (-247)))) (-3332 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-247)))) (-4408 (*1 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-247)))) (-3806 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-247)))) (-2633 (*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-247)))) (-2633 (*1 *2 *3) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-247)) (-5 *3 (-1174))))) -(-10 -7 (-15 -2633 ((-654 (-1174)) (-1174))) (-15 -2633 ((-654 (-1174)) (-654 (-1174)))) (-15 -3806 ((-1174))) (-15 -4408 ((-1174) (-574) (-1174))) (-15 -3332 ((-1174) (-1174) (-574) (-1174))) (-15 -3332 ((-654 (-1174)) (-654 (-1174)) (-574) (-1174))) (-15 -1567 ((-1288) (-1174))) (-15 -1567 ((-1288) (-654 (-1174)))) (-15 -3782 ((-574) (-1174))) (-15 -3782 ((-574) (-654 (-1174))))) -((** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 20)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) NIL))) -(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) (-249)) (T -248)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 47)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 51)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 48)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 50) (($ $ (-417 (-574))) 49))) +((-2929 (((-574) (-654 (-1175))) 36) (((-574) (-1175)) 29)) (-1566 (((-1289) (-654 (-1175))) 40) (((-1289) (-1175)) 39)) (-4287 (((-1175)) 16)) (-3734 (((-1175) (-574) (-1175)) 23)) (-3333 (((-654 (-1175)) (-654 (-1175)) (-574) (-1175)) 37) (((-1175) (-1175) (-574) (-1175)) 35)) (-2635 (((-654 (-1175)) (-654 (-1175))) 15) (((-654 (-1175)) (-1175)) 11))) +(((-247) (-10 -7 (-15 -2635 ((-654 (-1175)) (-1175))) (-15 -2635 ((-654 (-1175)) (-654 (-1175)))) (-15 -4287 ((-1175))) (-15 -3734 ((-1175) (-574) (-1175))) (-15 -3333 ((-1175) (-1175) (-574) (-1175))) (-15 -3333 ((-654 (-1175)) (-654 (-1175)) (-574) (-1175))) (-15 -1566 ((-1289) (-1175))) (-15 -1566 ((-1289) (-654 (-1175)))) (-15 -2929 ((-574) (-1175))) (-15 -2929 ((-574) (-654 (-1175)))))) (T -247)) +((-2929 (*1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-574)) (-5 *1 (-247)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-574)) (-5 *1 (-247)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1289)) (-5 *1 (-247)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-247)))) (-3333 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 (-1175))) (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *1 (-247)))) (-3333 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-247)))) (-3734 (*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-247)))) (-4287 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-247)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-247)))) (-2635 (*1 *2 *3) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-247)) (-5 *3 (-1175))))) +(-10 -7 (-15 -2635 ((-654 (-1175)) (-1175))) (-15 -2635 ((-654 (-1175)) (-654 (-1175)))) (-15 -4287 ((-1175))) (-15 -3734 ((-1175) (-574) (-1175))) (-15 -3333 ((-1175) (-1175) (-574) (-1175))) (-15 -3333 ((-654 (-1175)) (-654 (-1175)) (-574) (-1175))) (-15 -1566 ((-1289) (-1175))) (-15 -1566 ((-1289) (-654 (-1175)))) (-15 -2929 ((-574) (-1175))) (-15 -2929 ((-574) (-654 (-1175))))) +((** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 20)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) NIL))) +(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) (-249)) (T -248)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 47)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 51)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 48)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 50) (($ $ (-417 (-574))) 49))) (((-249) (-141)) (T -249)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-574)))) (-1327 (*1 *1 *1) (-4 *1 (-249)))) -(-13 (-298) (-38 (-417 (-574))) (-10 -8 (-15 ** ($ $ (-574))) (-15 -1327 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-298) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-727 #0#) . T) ((-736) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-1979 (($ $) 58)) (-2818 (((-112) $ (-781)) 8)) (-3906 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-2718 (($ $ $) 54 (|has| $ (-6 -4459)))) (-2157 (($ $ $) 53 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-3831 (($) 7 T CONST)) (-1532 (($ $) 57)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) 51)) (-2661 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-3952 (($ $) 56)) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3481 (((-654 |#1|) $) 46)) (-4069 (((-112) $) 50)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3333 ((|#1| $) 60)) (-3391 (($ $) 59)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ "value") 48)) (-4418 (((-574) $ $) 45)) (-1966 (((-112) $) 47)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-4226 (($ $ $) 55 (|has| $ (-6 -4459)))) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) 52)) (-1870 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-250 |#1|) (-141) (-1233)) (T -250)) -((-3333 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-3391 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-1979 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-1532 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-3952 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-4226 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-2718 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-2157 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233))))) -(-13 (-1025 |t#1|) (-10 -8 (-15 -3333 (|t#1| $)) (-15 -3391 ($ $)) (-15 -1979 ($ $)) (-15 -1532 ($ $)) (-15 -3952 ($ $)) (IF (|has| $ (-6 -4459)) (PROGN (-15 -4226 ($ $ $)) (-15 -2718 ($ $ $)) (-15 -2157 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) NIL)) (-2420 ((|#1| $) NIL)) (-1979 (($ $) NIL)) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-1344 (($ $ (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3565 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2785 (($ $) 10 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-3906 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3168 (($ $ $) NIL (|has| $ (-6 -4459)))) (-2976 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3576 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "rest" $) NIL (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-2551 (($ (-1 (-112) |#1|) $) NIL)) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2407 ((|#1| $) NIL)) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2934 (($ $) NIL) (($ $ (-781)) NIL)) (-2098 (($ $) NIL (|has| |#1| (-1115)))) (-2560 (($ $) 7 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1941 (($ |#1| $) NIL (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) NIL)) (-3310 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2472 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1930 (((-112) $) NIL)) (-1451 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115))) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) NIL)) (-2661 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-2857 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4297 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1797 (($ |#1|) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3481 (((-654 |#1|) $) NIL)) (-4069 (((-112) $) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3333 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-2609 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1603 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4276 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-1425 (((-112) $) NIL)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1250 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-781) $ "count") 16)) (-4418 (((-574) $ $) NIL)) (-1317 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-2853 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-3175 (($ (-654 |#1|)) 22)) (-1966 (((-112) $) NIL)) (-2013 (($ $) NIL)) (-1429 (($ $) NIL (|has| $ (-6 -4459)))) (-2746 (((-781) $) NIL)) (-1476 (($ $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-4226 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4131 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2950 (($ (-654 |#1|)) 17) (((-654 |#1|) $) 18) (((-872) $) 21 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) NIL)) (-1870 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) 14 (|has| $ (-6 -4458))))) -(((-251 |#1|) (-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3175 ($ (-654 |#1|))) (-15 -2208 ($ $ "unique")) (-15 -2208 ($ $ "sort")) (-15 -2208 ((-781) $ "count")))) (-860)) (T -251)) -((-3175 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-251 *3)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-781)) (-5 *1 (-251 *4)) (-4 *4 (-860))))) -(-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3175 ($ (-654 |#1|))) (-15 -2208 ($ $ "unique")) (-15 -2208 ($ $ "sort")) (-15 -2208 ((-781) $ "count")))) -((-4374 (((-3 (-781) "failed") |#1| |#1| (-781)) 40))) -(((-252 |#1|) (-10 -7 (-15 -4374 ((-3 (-781) "failed") |#1| |#1| (-781)))) (-13 (-736) (-377) (-10 -7 (-15 ** (|#1| |#1| (-574)))))) (T -252)) -((-4374 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-781)) (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574)))))) (-5 *1 (-252 *3))))) -(-10 -7 (-15 -4374 ((-3 (-781) "failed") |#1| |#1| (-781)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 (-874 |#1|)) $) NIL)) (-4171 (((-1188 $) $ (-874 |#1|)) NIL) (((-1188 |#2|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-3648 (($ $) NIL (|has| |#2| (-566)))) (-1527 (((-112) $) NIL (|has| |#2| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3296 (($ $) NIL (|has| |#2| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-874 |#1|) $) NIL)) (-3496 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3797 (($ $ (-654 (-574))) NIL)) (-1401 (($ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#2| (-922)))) (-4389 (($ $ |#2| (-246 (-2876 |#1|) (-781)) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-4338 (($ (-1188 |#2|) (-874 |#1|)) NIL) (($ (-1188 $) (-874 |#1|)) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#2| (-246 (-2876 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-874 |#1|)) NIL)) (-1503 (((-246 (-2876 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3558 (($ (-1 (-246 (-2876 |#1|) (-781)) (-246 (-2876 |#1|) (-781))) $) NIL)) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-1803 (((-3 (-874 |#1|) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#2| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3945 (((-1174) $) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2017 (-781))) "failed") $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#2| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-922)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-1738 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3878 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3584 (((-246 (-2876 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3631 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-2836 (((-654 |#2|) $) NIL)) (-2930 ((|#2| $ (-246 (-2876 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-253 |#1| |#2|) (-13 (-962 |#2| (-246 (-2876 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3797 ($ $ (-654 (-574)))))) (-654 (-1192)) (-1064)) (T -253)) -((-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-253 *3 *4)) (-14 *3 (-654 (-1192))) (-4 *4 (-1064))))) -(-13 (-962 |#2| (-246 (-2876 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3797 ($ $ (-654 (-574)))))) -((-2863 (((-112) $ $) NIL)) (-1995 (((-1288) $) 17)) (-1759 (((-185 (-255)) $) 11)) (-2169 (($ (-185 (-255))) 12)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1973 (((-255) $) 7)) (-2950 (((-872) $) 9)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 15))) -(((-254) (-13 (-1115) (-10 -8 (-15 -1973 ((-255) $)) (-15 -1759 ((-185 (-255)) $)) (-15 -2169 ($ (-185 (-255)))) (-15 -1995 ((-1288) $))))) (T -254)) -((-1973 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2169 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-254))))) -(-13 (-1115) (-10 -8 (-15 -1973 ((-255) $)) (-15 -1759 ((-185 (-255)) $)) (-15 -2169 ($ (-185 (-255)))) (-15 -1995 ((-1288) $)))) -((-2863 (((-112) $ $) NIL)) (-1724 (((-654 (-875)) $) NIL)) (-2040 (((-516) $) NIL)) (-3945 (((-1174) $) NIL)) (-4269 (((-188) $) NIL)) (-3571 (((-112) $ (-516)) NIL)) (-3939 (((-1135) $) NIL)) (-3699 (((-341) $) 7)) (-4042 (((-654 (-112)) $) NIL)) (-2950 (((-872) $) NIL) (((-189) $) 8)) (-3838 (((-112) $ $) NIL)) (-2533 (((-55) $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-255) (-13 (-187) (-623 (-189)) (-10 -8 (-15 -3699 ((-341) $))))) (T -255)) -((-3699 (*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255))))) -(-13 (-187) (-623 (-189)) (-10 -8 (-15 -3699 ((-341) $)))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2208 (((-1197) $ (-781)) 13)) (-2950 (((-872) $) 20)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 16)) (-2876 (((-781) $) 9))) -(((-256) (-13 (-1115) (-294 (-781) (-1197)) (-10 -8 (-15 -2876 ((-781) $))))) (T -256)) -((-2876 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-256))))) -(-13 (-1115) (-294 (-781) (-1197)) (-10 -8 (-15 -2876 ((-781) $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3196 (($ (-934)) NIL (|has| |#4| (-1064)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-2620 (($ $ $) NIL (|has| |#4| (-803)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#4| (-377)))) (-3134 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1115))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#4| (-1053 (-574))) (|has| |#4| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#4| (-1053 (-417 (-574)))) (|has| |#4| (-1115))))) (-2216 ((|#4| $) NIL (|has| |#4| (-1115))) (((-574) $) NIL (-12 (|has| |#4| (-1053 (-574))) (|has| |#4| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#4| (-1053 (-417 (-574)))) (|has| |#4| (-1115))))) (-3465 (((-2 (|:| -4047 (-699 |#4|)) (|:| |vec| (-1283 |#4|))) (-699 $) (-1283 $)) NIL (|has| |#4| (-1064))) (((-699 |#4|) (-699 $)) NIL (|has| |#4| (-1064))) (((-699 |#4|) (-1283 $)) NIL (|has| |#4| (-1064))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1064)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1064))))) (-3911 (((-3 $ "failed") $) NIL (|has| |#4| (-1064)))) (-2834 (($) NIL (|has| |#4| (-377)))) (-2472 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#4| $ (-574)) NIL)) (-1873 (((-654 |#4|) $) NIL (|has| $ (-6 -4458)))) (-3372 (((-112) $) NIL (|has| |#4| (-1064)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#4| (-860)))) (-2247 (((-654 |#4|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#4| (-860)))) (-2461 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) NIL)) (-3271 (((-934) $) NIL (|has| |#4| (-377)))) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#4| (-377)))) (-3939 (((-1135) $) NIL)) (-2924 ((|#4| $) NIL (|has| (-574) (-860)))) (-4276 (($ $ |#4|) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-2379 (((-654 |#4|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#4| $ (-574) |#4|) NIL) ((|#4| $ (-574)) 12)) (-3036 ((|#4| $ $) NIL (|has| |#4| (-1064)))) (-4246 (($ (-1283 |#4|)) NIL)) (-3480 (((-135)) NIL (|has| |#4| (-372)))) (-3878 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1064))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1064)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1064))))) (-3948 (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458))) (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#4|) $) NIL) (((-872) $) NIL) (($ |#4|) NIL (|has| |#4| (-1115))) (($ (-574)) NIL (-2832 (-12 (|has| |#4| (-1053 (-574))) (|has| |#4| (-1115))) (|has| |#4| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#4| (-1053 (-417 (-574)))) (|has| |#4| (-1115))))) (-4019 (((-781)) NIL (|has| |#4| (-1064)) CONST)) (-3838 (((-112) $ $) NIL)) (-2980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL (|has| |#4| (-1064)) CONST)) (-3583 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1064))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1064)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1064))))) (-3041 (((-112) $ $) NIL (|has| |#4| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#4| (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#4| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#4| (-860)))) (-3098 (($ $ |#4|) NIL (|has| |#4| (-372)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL (|has| |#4| (-1064))) (($ $ (-934)) NIL (|has| |#4| (-1064)))) (* (($ |#2| $) 14) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-736))) (($ |#4| $) NIL (|has| |#4| (-736))) (($ $ $) NIL (|has| |#4| (-1064)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-257 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-658 |#2|) (-658 |#3|)) (-934) (-1064) (-1138 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-658 |#2|)) (T -257)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-574)))) (-1328 (*1 *1 *1) (-4 *1 (-249)))) +(-13 (-298) (-38 (-417 (-574))) (-10 -8 (-15 ** ($ $ (-574))) (-15 -1328 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-298) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-727 #0#) . T) ((-736) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-1978 (($ $) 58)) (-3146 (((-112) $ (-781)) 8)) (-4433 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3363 (($ $ $) 54 (|has| $ (-6 -4460)))) (-3344 (($ $ $) 53 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-3250 (($) 7 T CONST)) (-1533 (($ $) 57)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) 51)) (-2622 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-3954 (($ $) 56)) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-3483 (((-654 |#1|) $) 46)) (-1580 (((-112) $) 50)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3334 ((|#1| $) 60)) (-2216 (($ $) 59)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ "value") 48)) (-3615 (((-574) $ $) 45)) (-3911 (((-112) $) 47)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2982 (($ $ $) 55 (|has| $ (-6 -4460)))) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) 52)) (-4208 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-250 |#1|) (-141) (-1234)) (T -250)) +((-3334 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-2216 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-1533 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-3954 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-2982 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-3363 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-3344 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234))))) +(-13 (-1026 |t#1|) (-10 -8 (-15 -3334 (|t#1| $)) (-15 -2216 ($ $)) (-15 -1978 ($ $)) (-15 -1533 ($ $)) (-15 -3954 ($ $)) (IF (|has| $ (-6 -4460)) (PROGN (-15 -2982 ($ $ $)) (-15 -3363 ($ $ $)) (-15 -3344 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) NIL)) (-2421 ((|#1| $) NIL)) (-1978 (($ $) NIL)) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1652 (($ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4140 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2786 (($ $) 10 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-4433 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3370 (($ $ $) NIL (|has| $ (-6 -4460)))) (-2523 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-2186 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "rest" $) NIL (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-1923 (($ (-1 (-112) |#1|) $) NIL)) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2408 ((|#1| $) NIL)) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2935 (($ $) NIL) (($ $ (-781)) NIL)) (-2088 (($ $) NIL (|has| |#1| (-1116)))) (-2804 (($ $) 7 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2424 (($ |#1| $) NIL (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) NIL)) (-3311 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-4186 (((-112) $) NIL)) (-1452 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116))) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) NIL)) (-2622 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-4349 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3404 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1795 (($ |#1|) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-3483 (((-654 |#1|) $) NIL)) (-1580 (((-112) $) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3334 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-3285 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1822 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3070 (((-112) $) NIL)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1251 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-781) $ "count") 16)) (-3615 (((-574) $ $) NIL)) (-4385 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-3176 (($ (-654 |#1|)) 22)) (-3911 (((-112) $) NIL)) (-1939 (($ $) NIL)) (-2043 (($ $) NIL (|has| $ (-6 -4460)))) (-1746 (((-781) $) NIL)) (-2386 (($ $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-2982 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4132 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2951 (($ (-654 |#1|)) 17) (((-654 |#1|) $) 18) (((-872) $) 21 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) NIL)) (-4208 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) 14 (|has| $ (-6 -4459))))) +(((-251 |#1|) (-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3176 ($ (-654 |#1|))) (-15 -2207 ($ $ "unique")) (-15 -2207 ($ $ "sort")) (-15 -2207 ((-781) $ "count")))) (-860)) (T -251)) +((-3176 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-251 *3)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-781)) (-5 *1 (-251 *4)) (-4 *4 (-860))))) +(-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3176 ($ (-654 |#1|))) (-15 -2207 ($ $ "unique")) (-15 -2207 ($ $ "sort")) (-15 -2207 ((-781) $ "count")))) +((-3377 (((-3 (-781) "failed") |#1| |#1| (-781)) 40))) +(((-252 |#1|) (-10 -7 (-15 -3377 ((-3 (-781) "failed") |#1| |#1| (-781)))) (-13 (-736) (-377) (-10 -7 (-15 ** (|#1| |#1| (-574)))))) (T -252)) +((-3377 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-781)) (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574)))))) (-5 *1 (-252 *3))))) +(-10 -7 (-15 -3377 ((-3 (-781) "failed") |#1| |#1| (-781)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 (-874 |#1|)) $) NIL)) (-4173 (((-1189 $) $ (-874 |#1|)) NIL) (((-1189 |#2|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-2884 (($ $) NIL (|has| |#2| (-566)))) (-1981 (((-112) $) NIL (|has| |#2| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2991 (($ $) NIL (|has| |#2| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2214 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-874 |#1|) $) NIL)) (-3319 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3807 (($ $ (-654 (-574))) NIL)) (-1402 (($ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#2| (-923)))) (-1849 (($ $ |#2| (-246 (-2877 |#1|) (-781)) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-4339 (($ (-1189 |#2|) (-874 |#1|)) NIL) (($ (-1189 $) (-874 |#1|)) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#2| (-246 (-2877 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-874 |#1|)) NIL)) (-3192 (((-246 (-2877 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-4303 (($ (-1 (-246 (-2877 |#1|) (-781)) (-246 (-2877 |#1|) (-781))) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-2284 (((-3 (-874 |#1|) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#2| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-1489 (((-1175) $) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3139 (-781))) "failed") $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#2| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#2| (-923)))) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-2394 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3879 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-3580 (((-246 (-2877 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-2372 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-1634 (((-654 |#2|) $) NIL)) (-2706 ((|#2| $ (-246 (-2877 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-253 |#1| |#2|) (-13 (-963 |#2| (-246 (-2877 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3807 ($ $ (-654 (-574)))))) (-654 (-1193)) (-1065)) (T -253)) +((-3807 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-253 *3 *4)) (-14 *3 (-654 (-1193))) (-4 *4 (-1065))))) +(-13 (-963 |#2| (-246 (-2877 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3807 ($ $ (-654 (-574)))))) +((-2864 (((-112) $ $) NIL)) (-1993 (((-1289) $) 17)) (-1560 (((-185 (-255)) $) 11)) (-4430 (($ (-185 (-255))) 12)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1972 (((-255) $) 7)) (-2951 (((-872) $) 9)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 15))) +(((-254) (-13 (-1116) (-10 -8 (-15 -1972 ((-255) $)) (-15 -1560 ((-185 (-255)) $)) (-15 -4430 ($ (-185 (-255)))) (-15 -1993 ((-1289) $))))) (T -254)) +((-1972 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-4430 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-254))))) +(-13 (-1116) (-10 -8 (-15 -1972 ((-255) $)) (-15 -1560 ((-185 (-255)) $)) (-15 -4430 ($ (-185 (-255)))) (-15 -1993 ((-1289) $)))) +((-2864 (((-112) $ $) NIL)) (-1723 (((-654 (-875)) $) NIL)) (-2039 (((-516) $) NIL)) (-1489 (((-1175) $) NIL)) (-4270 (((-188) $) NIL)) (-2154 (((-112) $ (-516)) NIL)) (-3940 (((-1136) $) NIL)) (-2101 (((-341) $) 7)) (-3210 (((-654 (-112)) $) NIL)) (-2951 (((-872) $) NIL) (((-189) $) 8)) (-4069 (((-112) $ $) NIL)) (-2875 (((-55) $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-255) (-13 (-187) (-623 (-189)) (-10 -8 (-15 -2101 ((-341) $))))) (T -255)) +((-2101 (*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255))))) +(-13 (-187) (-623 (-189)) (-10 -8 (-15 -2101 ((-341) $)))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2207 (((-1198) $ (-781)) 13)) (-2951 (((-872) $) 20)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 16)) (-2877 (((-781) $) 9))) +(((-256) (-13 (-1116) (-294 (-781) (-1198)) (-10 -8 (-15 -2877 ((-781) $))))) (T -256)) +((-2877 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-256))))) +(-13 (-1116) (-294 (-781) (-1198)) (-10 -8 (-15 -2877 ((-781) $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-1399 (($ (-935)) NIL (|has| |#4| (-1065)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1968 (($ $ $) NIL (|has| |#4| (-803)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#4| (-377)))) (-3135 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1116))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#4| (-1054 (-574))) (|has| |#4| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#4| (-1054 (-417 (-574)))) (|has| |#4| (-1116))))) (-2214 ((|#4| $) NIL (|has| |#4| (-1116))) (((-574) $) NIL (-12 (|has| |#4| (-1054 (-574))) (|has| |#4| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#4| (-1054 (-417 (-574)))) (|has| |#4| (-1116))))) (-1831 (((-2 (|:| -3082 (-699 |#4|)) (|:| |vec| (-1284 |#4|))) (-699 $) (-1284 $)) NIL (|has| |#4| (-1065))) (((-699 |#4|) (-699 $)) NIL (|has| |#4| (-1065))) (((-699 |#4|) (-1284 $)) NIL (|has| |#4| (-1065))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1065)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1065))))) (-4322 (((-3 $ "failed") $) NIL (|has| |#4| (-1065)))) (-2835 (($) NIL (|has| |#4| (-377)))) (-2473 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#4| $ (-574)) NIL)) (-1871 (((-654 |#4|) $) NIL (|has| $ (-6 -4459)))) (-4226 (((-112) $) NIL (|has| |#4| (-1065)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#4| (-860)))) (-2036 (((-654 |#4|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#4| (-860)))) (-2462 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) NIL)) (-3383 (((-935) $) NIL (|has| |#4| (-377)))) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#4| (-377)))) (-3940 (((-1136) $) NIL)) (-2925 ((|#4| $) NIL (|has| (-574) (-860)))) (-1822 (($ $ |#4|) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2315 (((-654 |#4|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#4| $ (-574) |#4|) NIL) ((|#4| $ (-574)) 12)) (-3918 ((|#4| $ $) NIL (|has| |#4| (-1065)))) (-4247 (($ (-1284 |#4|)) NIL)) (-2995 (((-135)) NIL (|has| |#4| (-372)))) (-3879 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1065))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1065))) (($ $ (-1193)) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1065)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1065))))) (-3949 (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459))) (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#4|) $) NIL) (((-872) $) NIL) (($ |#4|) NIL (|has| |#4| (-1116))) (($ (-574)) NIL (-2833 (-12 (|has| |#4| (-1054 (-574))) (|has| |#4| (-1116))) (|has| |#4| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#4| (-1054 (-417 (-574)))) (|has| |#4| (-1116))))) (-2898 (((-781)) NIL (|has| |#4| (-1065)) CONST)) (-4069 (((-112) $ $) NIL)) (-2020 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL (|has| |#4| (-1065)) CONST)) (-3584 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1065))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1065))) (($ $ (-1193)) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1065)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1065))))) (-3042 (((-112) $ $) NIL (|has| |#4| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#4| (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#4| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#4| (-860)))) (-3103 (($ $ |#4|) NIL (|has| |#4| (-372)))) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL (|has| |#4| (-1065))) (($ $ (-935)) NIL (|has| |#4| (-1065)))) (* (($ |#2| $) 14) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-736))) (($ |#4| $) NIL (|has| |#4| (-736))) (($ $ $) NIL (|has| |#4| (-1065)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-257 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-658 |#2|) (-658 |#3|)) (-935) (-1065) (-1139 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-658 |#2|)) (T -257)) NIL (-13 (-244 |#1| |#4|) (-658 |#2|) (-658 |#3|)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3196 (($ (-934)) NIL (|has| |#3| (-1064)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-2620 (($ $ $) NIL (|has| |#3| (-803)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#3| (-377)))) (-3134 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1115))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115))))) (-2216 ((|#3| $) NIL (|has| |#3| (-1115))) (((-574) $) NIL (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115))))) (-3465 (((-2 (|:| -4047 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 $) (-1283 $)) NIL (|has| |#3| (-1064))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1064))) (((-699 |#3|) (-1283 $)) NIL (|has| |#3| (-1064))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064))))) (-3911 (((-3 $ "failed") $) NIL (|has| |#3| (-1064)))) (-2834 (($) NIL (|has| |#3| (-377)))) (-2472 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#3| $ (-574)) NIL)) (-1873 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-3372 (((-112) $) NIL (|has| |#3| (-1064)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#3| (-860)))) (-2247 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#3| (-860)))) (-2461 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#3| |#3|) $) NIL)) (-3271 (((-934) $) NIL (|has| |#3| (-377)))) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#3| (-377)))) (-3939 (((-1135) $) NIL)) (-2924 ((|#3| $) NIL (|has| (-574) (-860)))) (-4276 (($ $ |#3|) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-2379 (((-654 |#3|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) 11)) (-3036 ((|#3| $ $) NIL (|has| |#3| (-1064)))) (-4246 (($ (-1283 |#3|)) NIL)) (-3480 (((-135)) NIL (|has| |#3| (-372)))) (-3878 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1064))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064))))) (-3948 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#3|) $) NIL) (((-872) $) NIL) (($ |#3|) NIL (|has| |#3| (-1115))) (($ (-574)) NIL (-2832 (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (|has| |#3| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115))))) (-4019 (((-781)) NIL (|has| |#3| (-1064)) CONST)) (-3838 (((-112) $ $) NIL)) (-2980 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL (|has| |#3| (-1064)) CONST)) (-3583 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1064))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064))))) (-3041 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#3| (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3098 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL (|has| |#3| (-1064))) (($ $ (-934)) NIL (|has| |#3| (-1064)))) (* (($ |#2| $) 13) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ $ $) NIL (|has| |#3| (-1064)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-258 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-658 |#2|)) (-781) (-1064) (-658 |#2|)) (T -258)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-1399 (($ (-935)) NIL (|has| |#3| (-1065)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1968 (($ $ $) NIL (|has| |#3| (-803)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#3| (-377)))) (-3135 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1116))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116))))) (-2214 ((|#3| $) NIL (|has| |#3| (-1116))) (((-574) $) NIL (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116))))) (-1831 (((-2 (|:| -3082 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 $) (-1284 $)) NIL (|has| |#3| (-1065))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1065))) (((-699 |#3|) (-1284 $)) NIL (|has| |#3| (-1065))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065))))) (-4322 (((-3 $ "failed") $) NIL (|has| |#3| (-1065)))) (-2835 (($) NIL (|has| |#3| (-377)))) (-2473 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#3| $ (-574)) NIL)) (-1871 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-4226 (((-112) $) NIL (|has| |#3| (-1065)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#3| (-860)))) (-2036 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#3| (-860)))) (-2462 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#3| |#3|) $) NIL)) (-3383 (((-935) $) NIL (|has| |#3| (-377)))) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#3| (-377)))) (-3940 (((-1136) $) NIL)) (-2925 ((|#3| $) NIL (|has| (-574) (-860)))) (-1822 (($ $ |#3|) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-2315 (((-654 |#3|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) 11)) (-3918 ((|#3| $ $) NIL (|has| |#3| (-1065)))) (-4247 (($ (-1284 |#3|)) NIL)) (-2995 (((-135)) NIL (|has| |#3| (-372)))) (-3879 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1065))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1065))) (($ $ (-1193)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065))))) (-3949 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#3|) $) NIL) (((-872) $) NIL) (($ |#3|) NIL (|has| |#3| (-1116))) (($ (-574)) NIL (-2833 (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (|has| |#3| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116))))) (-2898 (((-781)) NIL (|has| |#3| (-1065)) CONST)) (-4069 (((-112) $ $) NIL)) (-2020 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL (|has| |#3| (-1065)) CONST)) (-3584 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1065))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1065))) (($ $ (-1193)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065))))) (-3042 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#3| (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3103 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL (|has| |#3| (-1065))) (($ $ (-935)) NIL (|has| |#3| (-1065)))) (* (($ |#2| $) 13) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ $ $) NIL (|has| |#3| (-1065)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-258 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-658 |#2|)) (-781) (-1065) (-658 |#2|)) (T -258)) NIL (-13 (-244 |#1| |#3|) (-658 |#2|)) -((-4302 (((-654 (-781)) $) 56) (((-654 (-781)) $ |#3|) 59)) (-2102 (((-781) $) 58) (((-781) $ |#3|) 61)) (-3618 (($ $) 76)) (-1705 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2725 (((-781) $ |#3|) 43) (((-781) $) 38)) (-4191 (((-1 $ (-781)) |#3|) 15) (((-1 $ (-781)) $) 88)) (-3679 ((|#4| $) 69)) (-3187 (((-112) $) 67)) (-2605 (($ $) 75)) (-2660 (($ $ (-654 (-302 $))) 111) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-654 |#3|) (-654 |#2|)) 97)) (-3878 (($ $ |#4|) NIL) (($ $ (-654 |#4|)) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3475 (((-654 |#3|) $) 86)) (-3584 ((|#5| $) NIL) (((-781) $ |#4|) NIL) (((-654 (-781)) $ (-654 |#4|)) NIL) (((-781) $ |#3|) 49)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-417 (-574))) NIL) (($ $) NIL))) -(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2660 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#3| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#3| |#1|)) (-15 -4191 ((-1 |#1| (-781)) |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -2605 (|#1| |#1|)) (-15 -3679 (|#4| |#1|)) (-15 -3187 ((-112) |#1|)) (-15 -2102 ((-781) |#1| |#3|)) (-15 -4302 ((-654 (-781)) |#1| |#3|)) (-15 -2102 ((-781) |#1|)) (-15 -4302 ((-654 (-781)) |#1|)) (-15 -3584 ((-781) |#1| |#3|)) (-15 -2725 ((-781) |#1|)) (-15 -2725 ((-781) |#1| |#3|)) (-15 -3475 ((-654 |#3|) |#1|)) (-15 -4191 ((-1 |#1| (-781)) |#3|)) (-15 -2950 (|#1| |#3|)) (-15 -1705 ((-3 |#3| "failed") |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3584 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -3584 ((-781) |#1| |#4|)) (-15 -2950 (|#1| |#4|)) (-15 -1705 ((-3 |#4| "failed") |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#4| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3584 (|#5| |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -3878 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3878 (|#1| |#1| |#4| (-781))) (-15 -3878 (|#1| |#1| (-654 |#4|))) (-15 -3878 (|#1| |#1| |#4|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1064) (-860) (-273 |#3|) (-803)) (T -259)) -NIL -(-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2660 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#3| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#3| |#1|)) (-15 -4191 ((-1 |#1| (-781)) |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -2605 (|#1| |#1|)) (-15 -3679 (|#4| |#1|)) (-15 -3187 ((-112) |#1|)) (-15 -2102 ((-781) |#1| |#3|)) (-15 -4302 ((-654 (-781)) |#1| |#3|)) (-15 -2102 ((-781) |#1|)) (-15 -4302 ((-654 (-781)) |#1|)) (-15 -3584 ((-781) |#1| |#3|)) (-15 -2725 ((-781) |#1|)) (-15 -2725 ((-781) |#1| |#3|)) (-15 -3475 ((-654 |#3|) |#1|)) (-15 -4191 ((-1 |#1| (-781)) |#3|)) (-15 -2950 (|#1| |#3|)) (-15 -1705 ((-3 |#3| "failed") |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3584 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -3584 ((-781) |#1| |#4|)) (-15 -2950 (|#1| |#4|)) (-15 -1705 ((-3 |#4| "failed") |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#4| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3584 (|#5| |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -3878 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3878 (|#1| |#1| |#4| (-781))) (-15 -3878 (|#1| |#1| (-654 |#4|))) (-15 -3878 (|#1| |#1| |#4|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4302 (((-654 (-781)) $) 219) (((-654 (-781)) $ |#2|) 217)) (-2102 (((-781) $) 218) (((-781) $ |#2|) 216)) (-4349 (((-654 |#3|) $) 112)) (-4171 (((-1188 $) $ |#3|) 127) (((-1188 |#1|) $) 126)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-3648 (($ $) 90 (|has| |#1| (-566)))) (-1527 (((-112) $) 92 (|has| |#1| (-566)))) (-3335 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-1597 (((-3 $ "failed") $ $) 20)) (-4055 (((-428 (-1188 $)) (-1188 $)) 102 (|has| |#1| (-922)))) (-3296 (($ $) 100 (|has| |#1| (-462)))) (-3954 (((-428 $) $) 99 (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 105 (|has| |#1| (-922)))) (-3618 (($ $) 212)) (-3831 (($) 18 T CONST)) (-1705 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1053 (-574)))) (((-3 |#3| "failed") $) 140) (((-3 |#2| "failed") $) 226)) (-2216 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1053 (-574)))) ((|#3| $) 141) ((|#2| $) 227)) (-3496 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1401 (($ $) 158)) (-3465 (((-699 (-574)) (-1283 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1283 $)) 133)) (-3911 (((-3 $ "failed") $) 37)) (-1509 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1388 (((-654 $) $) 111)) (-1782 (((-112) $) 98 (|has| |#1| (-922)))) (-4389 (($ $ |#1| |#4| $) 176)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2725 (((-781) $ |#2|) 222) (((-781) $) 221)) (-3372 (((-112) $) 35)) (-3241 (((-781) $) 173)) (-4338 (($ (-1188 |#1|) |#3|) 119) (($ (-1188 $) |#3|) 118)) (-1854 (((-654 $) $) 128)) (-3257 (((-112) $) 156)) (-4327 (($ |#1| |#4|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ |#3|) 122)) (-1503 ((|#4| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-3558 (($ (-1 |#4| |#4|) $) 175)) (-1786 (($ (-1 |#1| |#1|) $) 155)) (-4191 (((-1 $ (-781)) |#2|) 224) (((-1 $ (-781)) $) 211 (|has| |#1| (-239)))) (-1803 (((-3 |#3| "failed") $) 125)) (-1365 (($ $) 153)) (-1377 ((|#1| $) 152)) (-3679 ((|#3| $) 214)) (-2848 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-3945 (((-1174) $) 10)) (-3187 (((-112) $) 215)) (-1810 (((-3 (-654 $) "failed") $) 116)) (-1577 (((-3 (-654 $) "failed") $) 117)) (-3404 (((-3 (-2 (|:| |var| |#3|) (|:| -2017 (-781))) "failed") $) 115)) (-2605 (($ $) 213)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 170)) (-1354 ((|#1| $) 171)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 97 (|has| |#1| (-462)))) (-2886 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) 104 (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) 103 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 101 (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142) (($ $ |#2| $) 210 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) 209 (|has| |#1| (-239))) (($ $ |#2| |#1|) 208 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) 207 (|has| |#1| (-239)))) (-1738 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3878 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43) (($ $ (-781)) 242 (|has| |#1| (-239))) (($ $) 240 (|has| |#1| (-239))) (($ $ (-1192)) 239 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 238 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 237 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 236 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 229) (($ $ (-1 |#1| |#1|)) 228)) (-3475 (((-654 |#2|) $) 223)) (-3584 ((|#4| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131) (((-781) $ |#2|) 220)) (-1845 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3631 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 106 (-2096 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ |#2|) 225) (($ (-417 (-574))) 80 (-2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-2836 (((-654 |#1|) $) 172)) (-2930 ((|#1| $ |#4|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-3247 (((-3 $ "failed") $) 81 (-2832 (-2096 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) 32 T CONST)) (-2037 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39) (($ $ (-781)) 243 (|has| |#1| (-239))) (($ $) 241 (|has| |#1| (-239))) (($ $ (-1192)) 235 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 234 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 233 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 232 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 231) (($ $ (-1 |#1| |#1|)) 230)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-260 |#1| |#2| |#3| |#4|) (-141) (-1064) (-860) (-273 |t#2|) (-803)) (T -260)) -((-4191 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4)))) (-2725 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-3584 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-4302 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-2102 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-803)) (-4 *2 (-273 *4)))) (-2605 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1064)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-3618 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1064)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-4191 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6))))) -(-13 (-962 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1053 |t#2|) (-10 -8 (-15 -4191 ((-1 $ (-781)) |t#2|)) (-15 -3475 ((-654 |t#2|) $)) (-15 -2725 ((-781) $ |t#2|)) (-15 -2725 ((-781) $)) (-15 -3584 ((-781) $ |t#2|)) (-15 -4302 ((-654 (-781)) $)) (-15 -2102 ((-781) $)) (-15 -4302 ((-654 (-781)) $ |t#2|)) (-15 -2102 ((-781) $ |t#2|)) (-15 -3187 ((-112) $)) (-15 -3679 (|t#3| $)) (-15 -2605 ($ $)) (-15 -3618 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-524 |t#2| |t#1|)) (-6 (-524 |t#2| $)) (-6 (-317 $)) (-15 -4191 ((-1 $ (-781)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#2|) . T) ((-626 |#3|) . T) ((-626 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-298) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#4|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-922)) (|has| |#1| (-462))) ((-524 |#2| |#1|) |has| |#1| (-239)) ((-524 |#2| $) |has| |#1| (-239)) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-913 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-962 |#1| |#4| |#3|) . T) ((-922) |has| |#1| (-922)) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1053 |#2|) . T) ((-1053 |#3|) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) |has| |#1| (-239)) ((-1237) |has| |#1| (-922))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2447 ((|#1| $) 55)) (-2011 ((|#1| $) 45)) (-2818 (((-112) $ (-781)) 8)) (-3831 (($) 7 T CONST)) (-3908 (($ $) 61)) (-2163 (($ $) 49)) (-2268 ((|#1| |#1| $) 47)) (-3255 ((|#1| $) 46)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-4108 (((-781) $) 62)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1748 ((|#1| $) 40)) (-3307 ((|#1| |#1| $) 53)) (-1598 ((|#1| |#1| $) 52)) (-2609 (($ |#1| $) 41)) (-1847 (((-781) $) 56)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-3540 ((|#1| $) 63)) (-1636 ((|#1| $) 51)) (-2694 ((|#1| $) 50)) (-3484 ((|#1| $) 42)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2654 ((|#1| |#1| $) 59)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-4432 ((|#1| $) 60)) (-2715 (($) 58) (($ (-654 |#1|)) 57)) (-4292 (((-781) $) 44)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3550 ((|#1| $) 54)) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) 43)) (-2748 ((|#1| $) 64)) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-261 |#1|) (-141) (-1233)) (T -261)) -((-2715 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-2715 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-261 *3)))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) (-2447 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-3550 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-3307 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-1598 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-2694 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-2163 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) -(-13 (-1136 |t#1|) (-1010 |t#1|) (-10 -8 (-15 -2715 ($)) (-15 -2715 ($ (-654 |t#1|))) (-15 -1847 ((-781) $)) (-15 -2447 (|t#1| $)) (-15 -3550 (|t#1| $)) (-15 -3307 (|t#1| |t#1| $)) (-15 -1598 (|t#1| |t#1| $)) (-15 -1636 (|t#1| $)) (-15 -2694 (|t#1| $)) (-15 -2163 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1010 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1136 |#1|) . T) ((-1233) . T)) -((-2960 (((-1 (-956 (-227)) (-227) (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1855 (((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388))) 173) (((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 171) (((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388))) 176) (((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 172) (((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388))) 164) (((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 163) (((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388))) 145) (((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270))) 143) (((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388))) 144) (((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270))) 141)) (-1809 (((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388))) 175) (((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 174) (((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388))) 178) (((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 177) (((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388))) 166) (((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 165) (((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388))) 151) (((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270))) 150) (((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388))) 149) (((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270))) 148) (((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388))) 113) (((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270))) 112) (((-1284) (-1 (-227) (-227)) (-1109 (-388))) 107) (((-1284) (-1 (-227) (-227)) (-1109 (-388)) (-654 (-270))) 105))) -(((-262) (-10 -7 (-15 -1809 ((-1284) (-1 (-227) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1284) (-1 (-227) (-227)) (-1109 (-388)))) (-15 -1809 ((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1809 ((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1809 ((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388)))) (-15 -1855 ((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1855 ((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388)))) (-15 -1809 ((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1855 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1809 ((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1855 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1809 ((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)))) (-15 -1855 ((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)))) (-15 -2960 ((-1 (-956 (-227)) (-227) (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) -((-2960 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-956 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1855 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1855 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1855 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1855 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1855 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1855 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1855 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1855 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1855 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1855 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *2 (-1284)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1284)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-262))))) -(-10 -7 (-15 -1809 ((-1284) (-1 (-227) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1284) (-1 (-227) (-227)) (-1109 (-388)))) (-15 -1809 ((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1809 ((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1809 ((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388)))) (-15 -1855 ((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1855 ((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388)))) (-15 -1809 ((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1855 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1809 ((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1855 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1809 ((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)))) (-15 -1855 ((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)))) (-15 -2960 ((-1 (-956 (-227)) (-227) (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-1809 (((-1284) (-302 |#2|) (-1192) (-1192) (-654 (-270))) 101))) -(((-263 |#1| |#2|) (-10 -7 (-15 -1809 ((-1284) (-302 |#2|) (-1192) (-1192) (-654 (-270))))) (-13 (-566) (-860) (-1053 (-574))) (-440 |#1|)) (T -263)) -((-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-1192)) (-5 *5 (-654 (-270))) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1053 (-574)))) (-5 *2 (-1284)) (-5 *1 (-263 *6 *7))))) -(-10 -7 (-15 -1809 ((-1284) (-302 |#2|) (-1192) (-1192) (-654 (-270))))) -((-2601 (((-574) (-574)) 71)) (-1620 (((-574) (-574)) 72)) (-3943 (((-227) (-227)) 73)) (-3024 (((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227))) 70)) (-1700 (((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227)) (-112)) 68))) -(((-264) (-10 -7 (-15 -1700 ((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227)) (-112))) (-15 -3024 ((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227)))) (-15 -2601 ((-574) (-574))) (-15 -1620 ((-574) (-574))) (-15 -3943 ((-227) (-227))))) (T -264)) -((-3943 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-3024 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1109 (-227))) (-5 *2 (-1285)) (-5 *1 (-264)))) (-1700 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1109 (-227))) (-5 *5 (-112)) (-5 *2 (-1285)) (-5 *1 (-264))))) -(-10 -7 (-15 -1700 ((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227)) (-112))) (-15 -3024 ((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227)))) (-15 -2601 ((-574) (-574))) (-15 -1620 ((-574) (-574))) (-15 -3943 ((-227) (-227)))) -((-2950 (((-1107 (-388)) (-1107 (-324 |#1|))) 16))) -(((-265 |#1|) (-10 -7 (-15 -2950 ((-1107 (-388)) (-1107 (-324 |#1|))))) (-13 (-860) (-566) (-624 (-388)))) (T -265)) -((-2950 (*1 *2 *3) (-12 (-5 *3 (-1107 (-324 *4))) (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1107 (-388))) (-5 *1 (-265 *4))))) -(-10 -7 (-15 -2950 ((-1107 (-388)) (-1107 (-324 |#1|))))) -((-1855 (((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388))) 75) (((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 74) (((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388))) 65) (((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 64) (((-1148 (-227)) (-890 |#1|) (-1107 (-388))) 56) (((-1148 (-227)) (-890 |#1|) (-1107 (-388)) (-654 (-270))) 55)) (-1809 (((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388))) 78) (((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 77) (((-1285) |#1| (-1107 (-388)) (-1107 (-388))) 68) (((-1285) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 67) (((-1285) (-890 |#1|) (-1107 (-388))) 60) (((-1285) (-890 |#1|) (-1107 (-388)) (-654 (-270))) 59) (((-1284) (-888 |#1|) (-1107 (-388))) 47) (((-1284) (-888 |#1|) (-1107 (-388)) (-654 (-270))) 46) (((-1284) |#1| (-1107 (-388))) 38) (((-1284) |#1| (-1107 (-388)) (-654 (-270))) 36))) -(((-266 |#1|) (-10 -7 (-15 -1809 ((-1284) |#1| (-1107 (-388)) (-654 (-270)))) (-15 -1809 ((-1284) |#1| (-1107 (-388)))) (-15 -1809 ((-1284) (-888 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1809 ((-1284) (-888 |#1|) (-1107 (-388)))) (-15 -1809 ((-1285) (-890 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-890 |#1|) (-1107 (-388)))) (-15 -1855 ((-1148 (-227)) (-890 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-890 |#1|) (-1107 (-388)))) (-15 -1809 ((-1285) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) |#1| (-1107 (-388)) (-1107 (-388)))) (-15 -1855 ((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388)))) (-15 -1809 ((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388)))) (-15 -1855 ((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388))))) (-13 (-624 (-546)) (-1115))) (T -266)) -((-1855 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1107 (-388))) (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *5)))) (-1855 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *6)))) (-1809 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1107 (-388))) (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) (-5 *1 (-266 *5)))) (-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) (-5 *1 (-266 *6)))) (-1855 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) (-1855 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) (-1809 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1285)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) (-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) (-1855 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1107 (-388))) (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *5)))) (-1855 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *6)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1107 (-388))) (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) (-5 *1 (-266 *5)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) (-5 *1 (-266 *6)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1107 (-388))) (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1284)) (-5 *1 (-266 *5)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1284)) (-5 *1 (-266 *6)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1284)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115)))))) -(-10 -7 (-15 -1809 ((-1284) |#1| (-1107 (-388)) (-654 (-270)))) (-15 -1809 ((-1284) |#1| (-1107 (-388)))) (-15 -1809 ((-1284) (-888 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1809 ((-1284) (-888 |#1|) (-1107 (-388)))) (-15 -1809 ((-1285) (-890 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-890 |#1|) (-1107 (-388)))) (-15 -1855 ((-1148 (-227)) (-890 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-890 |#1|) (-1107 (-388)))) (-15 -1809 ((-1285) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) |#1| (-1107 (-388)) (-1107 (-388)))) (-15 -1855 ((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388)))) (-15 -1809 ((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388)))) (-15 -1855 ((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1855 ((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388))))) -((-1809 (((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270))) 23) (((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227))) 24) (((-1284) (-654 (-956 (-227))) (-654 (-270))) 16) (((-1284) (-654 (-956 (-227)))) 17) (((-1284) (-654 (-227)) (-654 (-227)) (-654 (-270))) 20) (((-1284) (-654 (-227)) (-654 (-227))) 21))) -(((-267) (-10 -7 (-15 -1809 ((-1284) (-654 (-227)) (-654 (-227)))) (-15 -1809 ((-1284) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1809 ((-1284) (-654 (-956 (-227))))) (-15 -1809 ((-1284) (-654 (-956 (-227))) (-654 (-270)))) (-15 -1809 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1809 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270)))))) (T -267)) -((-1809 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-267)))) (-1809 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1285)) (-5 *1 (-267)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *4 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-267)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *2 (-1284)) (-5 *1 (-267)))) (-1809 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-267)))) (-1809 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1284)) (-5 *1 (-267))))) -(-10 -7 (-15 -1809 ((-1284) (-654 (-227)) (-654 (-227)))) (-15 -1809 ((-1284) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1809 ((-1284) (-654 (-956 (-227))))) (-15 -1809 ((-1284) (-654 (-956 (-227))) (-654 (-270)))) (-15 -1809 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1809 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270))))) -((-4274 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-2897 (((-934) (-654 (-270)) (-934)) 52)) (-3418 (((-934) (-654 (-270)) (-934)) 51)) (-2006 (((-654 (-388)) (-654 (-270)) (-654 (-388))) 68)) (-1443 (((-388) (-654 (-270)) (-388)) 57)) (-3300 (((-934) (-654 (-270)) (-934)) 53)) (-1408 (((-112) (-654 (-270)) (-112)) 27)) (-3850 (((-1174) (-654 (-270)) (-1174)) 19)) (-2837 (((-1174) (-654 (-270)) (-1174)) 26)) (-1452 (((-1148 (-227)) (-654 (-270))) 46)) (-3139 (((-654 (-1109 (-388))) (-654 (-270)) (-654 (-1109 (-388)))) 40)) (-3152 (((-884) (-654 (-270)) (-884)) 32)) (-3349 (((-884) (-654 (-270)) (-884)) 33)) (-2201 (((-1 (-956 (-227)) (-956 (-227))) (-654 (-270)) (-1 (-956 (-227)) (-956 (-227)))) 63)) (-1891 (((-112) (-654 (-270)) (-112)) 14)) (-1585 (((-112) (-654 (-270)) (-112)) 13))) -(((-268) (-10 -7 (-15 -1585 ((-112) (-654 (-270)) (-112))) (-15 -1891 ((-112) (-654 (-270)) (-112))) (-15 -4274 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3850 ((-1174) (-654 (-270)) (-1174))) (-15 -2837 ((-1174) (-654 (-270)) (-1174))) (-15 -1408 ((-112) (-654 (-270)) (-112))) (-15 -3152 ((-884) (-654 (-270)) (-884))) (-15 -3349 ((-884) (-654 (-270)) (-884))) (-15 -3139 ((-654 (-1109 (-388))) (-654 (-270)) (-654 (-1109 (-388))))) (-15 -3418 ((-934) (-654 (-270)) (-934))) (-15 -2897 ((-934) (-654 (-270)) (-934))) (-15 -1452 ((-1148 (-227)) (-654 (-270)))) (-15 -3300 ((-934) (-654 (-270)) (-934))) (-15 -1443 ((-388) (-654 (-270)) (-388))) (-15 -2201 ((-1 (-956 (-227)) (-956 (-227))) (-654 (-270)) (-1 (-956 (-227)) (-956 (-227))))) (-15 -2006 ((-654 (-388)) (-654 (-270)) (-654 (-388)))))) (T -268)) -((-2006 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-388))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2201 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1443 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3300 (*1 *2 *3 *2) (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-268)))) (-2897 (*1 *2 *3 *2) (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3418 (*1 *2 *3 *2) (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3139 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3349 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3152 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1408 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2837 (*1 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3850 (*1 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4274 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1891 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1585 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) -(-10 -7 (-15 -1585 ((-112) (-654 (-270)) (-112))) (-15 -1891 ((-112) (-654 (-270)) (-112))) (-15 -4274 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3850 ((-1174) (-654 (-270)) (-1174))) (-15 -2837 ((-1174) (-654 (-270)) (-1174))) (-15 -1408 ((-112) (-654 (-270)) (-112))) (-15 -3152 ((-884) (-654 (-270)) (-884))) (-15 -3349 ((-884) (-654 (-270)) (-884))) (-15 -3139 ((-654 (-1109 (-388))) (-654 (-270)) (-654 (-1109 (-388))))) (-15 -3418 ((-934) (-654 (-270)) (-934))) (-15 -2897 ((-934) (-654 (-270)) (-934))) (-15 -1452 ((-1148 (-227)) (-654 (-270)))) (-15 -3300 ((-934) (-654 (-270)) (-934))) (-15 -1443 ((-388) (-654 (-270)) (-388))) (-15 -2201 ((-1 (-956 (-227)) (-956 (-227))) (-654 (-270)) (-1 (-956 (-227)) (-956 (-227))))) (-15 -2006 ((-654 (-388)) (-654 (-270)) (-654 (-388))))) -((-1989 (((-3 |#1| "failed") (-654 (-270)) (-1192)) 17))) -(((-269 |#1|) (-10 -7 (-15 -1989 ((-3 |#1| "failed") (-654 (-270)) (-1192)))) (-1233)) (T -269)) -((-1989 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) (-5 *1 (-269 *2)) (-4 *2 (-1233))))) -(-10 -7 (-15 -1989 ((-3 |#1| "failed") (-654 (-270)) (-1192)))) -((-2863 (((-112) $ $) NIL)) (-4274 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-2897 (($ (-934)) 81)) (-3418 (($ (-934)) 80)) (-3775 (($ (-654 (-388))) 87)) (-1443 (($ (-388)) 66)) (-3300 (($ (-934)) 82)) (-1408 (($ (-112)) 33)) (-3850 (($ (-1174)) 28)) (-2837 (($ (-1174)) 29)) (-1452 (($ (-1148 (-227))) 76)) (-3139 (($ (-654 (-1109 (-388)))) 72)) (-3362 (($ (-654 (-1109 (-388)))) 68) (($ (-654 (-1109 (-417 (-574))))) 71)) (-1829 (($ (-388)) 38) (($ (-884)) 42)) (-2796 (((-112) (-654 $) (-1192)) 100)) (-1989 (((-3 (-52) "failed") (-654 $) (-1192)) 102)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1906 (($ (-388)) 43) (($ (-884)) 44)) (-4346 (($ (-1 (-956 (-227)) (-956 (-227)))) 65)) (-2201 (($ (-1 (-956 (-227)) (-956 (-227)))) 83)) (-1582 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2950 (((-872) $) 93)) (-2482 (($ (-112)) 34) (($ (-654 (-1109 (-388)))) 60)) (-3838 (((-112) $ $) NIL)) (-1585 (($ (-112)) 35)) (-2985 (((-112) $ $) 97))) -(((-270) (-13 (-1115) (-10 -8 (-15 -1585 ($ (-112))) (-15 -2482 ($ (-112))) (-15 -4274 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3850 ($ (-1174))) (-15 -2837 ($ (-1174))) (-15 -1408 ($ (-112))) (-15 -2482 ($ (-654 (-1109 (-388))))) (-15 -4346 ($ (-1 (-956 (-227)) (-956 (-227))))) (-15 -1829 ($ (-388))) (-15 -1829 ($ (-884))) (-15 -1906 ($ (-388))) (-15 -1906 ($ (-884))) (-15 -1582 ($ (-1 (-227) (-227)))) (-15 -1582 ($ (-1 (-227) (-227) (-227)))) (-15 -1582 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1443 ($ (-388))) (-15 -3362 ($ (-654 (-1109 (-388))))) (-15 -3362 ($ (-654 (-1109 (-417 (-574)))))) (-15 -3139 ($ (-654 (-1109 (-388))))) (-15 -1452 ($ (-1148 (-227)))) (-15 -3418 ($ (-934))) (-15 -2897 ($ (-934))) (-15 -3300 ($ (-934))) (-15 -2201 ($ (-1 (-956 (-227)) (-956 (-227))))) (-15 -3775 ($ (-654 (-388)))) (-15 -1989 ((-3 (-52) "failed") (-654 $) (-1192))) (-15 -2796 ((-112) (-654 $) (-1192)))))) (T -270)) -((-1585 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2482 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-3850 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-270)))) (-2837 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-270)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2482 (*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270)))) (-4346 (*1 *1 *2) (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *1 (-270)))) (-1829 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-1829 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-1582 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-1582 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-1582 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-1443 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-3362 (*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270)))) (-3362 (*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-417 (-574))))) (-5 *1 (-270)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-270)))) (-3418 (*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270)))) (-2897 (*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270)))) (-3300 (*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270)))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *1 (-270)))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270)))) (-1989 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) (-5 *2 (-52)) (-5 *1 (-270)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) (-5 *2 (-112)) (-5 *1 (-270))))) -(-13 (-1115) (-10 -8 (-15 -1585 ($ (-112))) (-15 -2482 ($ (-112))) (-15 -4274 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3850 ($ (-1174))) (-15 -2837 ($ (-1174))) (-15 -1408 ($ (-112))) (-15 -2482 ($ (-654 (-1109 (-388))))) (-15 -4346 ($ (-1 (-956 (-227)) (-956 (-227))))) (-15 -1829 ($ (-388))) (-15 -1829 ($ (-884))) (-15 -1906 ($ (-388))) (-15 -1906 ($ (-884))) (-15 -1582 ($ (-1 (-227) (-227)))) (-15 -1582 ($ (-1 (-227) (-227) (-227)))) (-15 -1582 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1443 ($ (-388))) (-15 -3362 ($ (-654 (-1109 (-388))))) (-15 -3362 ($ (-654 (-1109 (-417 (-574)))))) (-15 -3139 ($ (-654 (-1109 (-388))))) (-15 -1452 ($ (-1148 (-227)))) (-15 -3418 ($ (-934))) (-15 -2897 ($ (-934))) (-15 -3300 ($ (-934))) (-15 -2201 ($ (-1 (-956 (-227)) (-956 (-227))))) (-15 -3775 ($ (-654 (-388)))) (-15 -1989 ((-3 (-52) "failed") (-654 $) (-1192))) (-15 -2796 ((-112) (-654 $) (-1192))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4302 (((-654 (-781)) $) NIL) (((-654 (-781)) $ |#2|) NIL)) (-2102 (((-781) $) NIL) (((-781) $ |#2|) NIL)) (-4349 (((-654 |#3|) $) NIL)) (-4171 (((-1188 $) $ |#3|) NIL) (((-1188 |#1|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 |#3|)) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3296 (($ $) NIL (|has| |#1| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3618 (($ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1140 |#1| |#2|) "failed") $) 23)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1140 |#1| |#2|) $) NIL)) (-3496 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1401 (($ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#1| (-922)))) (-4389 (($ $ |#1| (-541 |#3|) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))))) (-2725 (((-781) $ |#2|) NIL) (((-781) $) 10)) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-4338 (($ (-1188 |#1|) |#3|) NIL) (($ (-1188 $) |#3|) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ |#3|) NIL)) (-1503 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL)) (-3558 (($ (-1 (-541 |#3|) (-541 |#3|)) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-4191 (((-1 $ (-781)) |#2|) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-1803 (((-3 |#3| "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3679 ((|#3| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3945 (((-1174) $) NIL)) (-3187 (((-112) $) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| |#3|) (|:| -2017 (-781))) "failed") $) NIL)) (-2605 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-654 |#3|) (-654 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) NIL (|has| |#1| (-239))) (($ $ |#2| |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-1738 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3878 (($ $ |#3|) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3475 (((-654 |#2|) $) NIL)) (-3584 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL) (((-781) $ |#2|) NIL)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))))) (-3631 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1140 |#1| |#2|)) 32) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ |#3|) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-271 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1053 (-1140 |#1| |#2|))) (-1064) (-860) (-273 |#2|)) (T -271)) -NIL -(-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1053 (-1140 |#1| |#2|))) -((-2102 (((-781) $) 37)) (-1705 (((-3 |#2| "failed") $) 22)) (-2216 ((|#2| $) 33)) (-3878 (($ $ (-781)) 18) (($ $) 14)) (-2950 (((-872) $) 32) (($ |#2|) 11)) (-2985 (((-112) $ $) 26)) (-3009 (((-112) $ $) 36))) -(((-272 |#1| |#2|) (-10 -8 (-15 -2102 ((-781) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-273 |#2|) (-860)) (T -272)) -NIL -(-10 -8 (-15 -2102 ((-781) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-2102 (((-781) $) 22)) (-1497 ((|#1| $) 23)) (-1705 (((-3 |#1| "failed") $) 27)) (-2216 ((|#1| $) 28)) (-2725 (((-781) $) 24)) (-3632 (($ $ $) 14)) (-1593 (($ $ $) 15)) (-4191 (($ |#1| (-781)) 25)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3878 (($ $ (-781)) 31) (($ $) 29)) (-2950 (((-872) $) 12) (($ |#1|) 26)) (-3838 (((-112) $ $) 9)) (-3583 (($ $ (-781)) 32) (($ $) 30)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19))) +((-4002 (((-654 (-781)) $) 56) (((-654 (-781)) $ |#3|) 59)) (-1540 (((-781) $) 58) (((-781) $ |#3|) 61)) (-3278 (($ $) 76)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3547 (((-781) $ |#3|) 43) (((-781) $) 38)) (-2558 (((-1 $ (-781)) |#3|) 15) (((-1 $ (-781)) $) 88)) (-3680 ((|#4| $) 69)) (-1380 (((-112) $) 67)) (-2606 (($ $) 75)) (-2661 (($ $ (-654 (-302 $))) 111) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-654 |#3|) (-654 |#2|)) 97)) (-3879 (($ $ (-654 |#4|) (-654 (-781))) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2495 (((-654 |#3|) $) 86)) (-3580 ((|#5| $) NIL) (((-781) $ |#4|) NIL) (((-654 (-781)) $ (-654 |#4|)) NIL) (((-781) $ |#3|) 49)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-417 (-574))) NIL) (($ $) NIL))) +(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2661 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#3| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#3| |#1|)) (-15 -2558 ((-1 |#1| (-781)) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -3680 (|#4| |#1|)) (-15 -1380 ((-112) |#1|)) (-15 -1540 ((-781) |#1| |#3|)) (-15 -4002 ((-654 (-781)) |#1| |#3|)) (-15 -1540 ((-781) |#1|)) (-15 -4002 ((-654 (-781)) |#1|)) (-15 -3580 ((-781) |#1| |#3|)) (-15 -3547 ((-781) |#1|)) (-15 -3547 ((-781) |#1| |#3|)) (-15 -2495 ((-654 |#3|) |#1|)) (-15 -2558 ((-1 |#1| (-781)) |#3|)) (-15 -2951 (|#1| |#3|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3580 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -3580 ((-781) |#1| |#4|)) (-15 -2951 (|#1| |#4|)) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#4| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3580 (|#5| |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -3879 (|#1| |#1| |#4|)) (-15 -3879 (|#1| |#1| (-654 |#4|))) (-15 -3879 (|#1| |#1| |#4| (-781))) (-15 -3879 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1065) (-860) (-273 |#3|) (-803)) (T -259)) +NIL +(-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2661 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#3| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#3| |#1|)) (-15 -2558 ((-1 |#1| (-781)) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -3680 (|#4| |#1|)) (-15 -1380 ((-112) |#1|)) (-15 -1540 ((-781) |#1| |#3|)) (-15 -4002 ((-654 (-781)) |#1| |#3|)) (-15 -1540 ((-781) |#1|)) (-15 -4002 ((-654 (-781)) |#1|)) (-15 -3580 ((-781) |#1| |#3|)) (-15 -3547 ((-781) |#1|)) (-15 -3547 ((-781) |#1| |#3|)) (-15 -2495 ((-654 |#3|) |#1|)) (-15 -2558 ((-1 |#1| (-781)) |#3|)) (-15 -2951 (|#1| |#3|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3580 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -3580 ((-781) |#1| |#4|)) (-15 -2951 (|#1| |#4|)) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#4| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3580 (|#5| |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -3879 (|#1| |#1| |#4|)) (-15 -3879 (|#1| |#1| (-654 |#4|))) (-15 -3879 (|#1| |#1| |#4| (-781))) (-15 -3879 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4002 (((-654 (-781)) $) 221) (((-654 (-781)) $ |#2|) 219)) (-1540 (((-781) $) 220) (((-781) $ |#2|) 218)) (-4350 (((-654 |#3|) $) 113)) (-4173 (((-1189 $) $ |#3|) 128) (((-1189 |#1|) $) 127)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 90 (|has| |#1| (-566)))) (-2884 (($ $) 91 (|has| |#1| (-566)))) (-1981 (((-112) $) 93 (|has| |#1| (-566)))) (-2824 (((-781) $) 115) (((-781) $ (-654 |#3|)) 114)) (-2600 (((-3 $ "failed") $ $) 20)) (-2488 (((-428 (-1189 $)) (-1189 $)) 103 (|has| |#1| (-923)))) (-2991 (($ $) 101 (|has| |#1| (-462)))) (-1610 (((-428 $) $) 100 (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 106 (|has| |#1| (-923)))) (-3278 (($ $) 214)) (-3250 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 169) (((-3 (-417 (-574)) "failed") $) 166 (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) 164 (|has| |#1| (-1054 (-574)))) (((-3 |#3| "failed") $) 141) (((-3 |#2| "failed") $) 228)) (-2214 ((|#1| $) 168) (((-417 (-574)) $) 167 (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) 165 (|has| |#1| (-1054 (-574)))) ((|#3| $) 142) ((|#2| $) 229)) (-3319 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-1402 (($ $) 159)) (-1831 (((-699 (-574)) (-1284 $)) 139 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 138 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 136) (((-699 |#1|) (-699 $)) 135) (((-699 |#1|) (-1284 $)) 134)) (-4322 (((-3 $ "failed") $) 37)) (-3621 (($ $) 181 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1389 (((-654 $) $) 112)) (-3978 (((-112) $) 99 (|has| |#1| (-923)))) (-1849 (($ $ |#1| |#4| $) 177)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 87 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 86 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3547 (((-781) $ |#2|) 224) (((-781) $) 223)) (-4226 (((-112) $) 35)) (-3023 (((-781) $) 174)) (-4339 (($ (-1189 |#1|) |#3|) 120) (($ (-1189 $) |#3|) 119)) (-1963 (((-654 $) $) 129)) (-1555 (((-112) $) 157)) (-4328 (($ |#1| |#4|) 158) (($ $ |#3| (-781)) 122) (($ $ (-654 |#3|) (-654 (-781))) 121)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ |#3|) 123)) (-3192 ((|#4| $) 175) (((-781) $ |#3|) 125) (((-654 (-781)) $ (-654 |#3|)) 124)) (-4303 (($ (-1 |#4| |#4|) $) 176)) (-1785 (($ (-1 |#1| |#1|) $) 156)) (-2558 (((-1 $ (-781)) |#2|) 226) (((-1 $ (-781)) $) 213 (|has| |#1| (-239)))) (-2284 (((-3 |#3| "failed") $) 126)) (-1366 (($ $) 154)) (-1378 ((|#1| $) 153)) (-3680 ((|#3| $) 216)) (-2849 (($ (-654 $)) 97 (|has| |#1| (-462))) (($ $ $) 96 (|has| |#1| (-462)))) (-1489 (((-1175) $) 10)) (-1380 (((-112) $) 217)) (-1720 (((-3 (-654 $) "failed") $) 117)) (-3825 (((-3 (-654 $) "failed") $) 118)) (-2778 (((-3 (-2 (|:| |var| |#3|) (|:| -3139 (-781))) "failed") $) 116)) (-2606 (($ $) 215)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 171)) (-1355 ((|#1| $) 172)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 98 (|has| |#1| (-462)))) (-2887 (($ (-654 $)) 95 (|has| |#1| (-462))) (($ $ $) 94 (|has| |#1| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) 105 (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) 104 (|has| |#1| (-923)))) (-4202 (((-428 $) $) 102 (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) 150) (($ $ (-302 $)) 149) (($ $ $ $) 148) (($ $ (-654 $) (-654 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-654 |#3|) (-654 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-654 |#3|) (-654 $)) 143) (($ $ |#2| $) 212 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) 211 (|has| |#1| (-239))) (($ $ |#2| |#1|) 210 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) 209 (|has| |#1| (-239)))) (-2394 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#3|) (-654 (-781))) 44) (($ $ |#3| (-781)) 43) (($ $ (-654 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-781)) 244 (|has| |#1| (-239))) (($ $) 242 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 238 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 237 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 236 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 234 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 231) (($ $ (-1 |#1| |#1|)) 230)) (-2495 (((-654 |#2|) $) 225)) (-3580 ((|#4| $) 155) (((-781) $ |#3|) 133) (((-654 (-781)) $ (-654 |#3|)) 132) (((-781) $ |#2|) 222)) (-1844 (((-903 (-388)) $) 85 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 84 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 83 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-2372 ((|#1| $) 180 (|has| |#1| (-462))) (($ $ |#3|) 109 (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 107 (-2095 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ |#2|) 227) (($ (-417 (-574))) 81 (-2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 88 (|has| |#1| (-566)))) (-1634 (((-654 |#1|) $) 173)) (-2706 ((|#1| $ |#4|) 160) (($ $ |#3| (-781)) 131) (($ $ (-654 |#3|) (-654 (-781))) 130)) (-3424 (((-3 $ "failed") $) 82 (-2833 (-2095 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) 32 T CONST)) (-3652 (($ $ $ (-781)) 178 (|has| |#1| (-174)))) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 92 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-654 |#3|) (-654 (-781))) 47) (($ $ |#3| (-781)) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-781)) 245 (|has| |#1| (-239))) (($ $) 243 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 241 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 240 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 239 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 235 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 233) (($ $ (-1 |#1| |#1|)) 232)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 161 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 163 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 162 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 152) (($ $ |#1|) 151))) +(((-260 |#1| |#2| |#3| |#4|) (-141) (-1065) (-860) (-273 |t#2|) (-803)) (T -260)) +((-2558 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6)))) (-2495 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4)))) (-3547 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-3580 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-4002 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-1540 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-803)) (-4 *2 (-273 *4)))) (-2606 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1065)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-3278 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1065)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-2558 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6))))) +(-13 (-963 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1054 |t#2|) (-10 -8 (-15 -2558 ((-1 $ (-781)) |t#2|)) (-15 -2495 ((-654 |t#2|) $)) (-15 -3547 ((-781) $ |t#2|)) (-15 -3547 ((-781) $)) (-15 -3580 ((-781) $ |t#2|)) (-15 -4002 ((-654 (-781)) $)) (-15 -1540 ((-781) $)) (-15 -4002 ((-654 (-781)) $ |t#2|)) (-15 -1540 ((-781) $ |t#2|)) (-15 -1380 ((-112) $)) (-15 -3680 (|t#3| $)) (-15 -2606 ($ $)) (-15 -3278 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-524 |t#2| |t#1|)) (-6 (-524 |t#2| $)) (-6 (-317 $)) (-15 -2558 ((-1 $ (-781)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#2|) . T) ((-626 |#3|) . T) ((-626 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-298) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#4|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-923)) (|has| |#1| (-462))) ((-524 |#2| |#1|) |has| |#1| (-239)) ((-524 |#2| $) |has| |#1| (-239)) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-907 $ #2=(-1193)) |has| |#1| (-912 (-1193))) ((-907 $ |#3|) . T) ((-912 #2#) |has| |#1| (-912 (-1193))) ((-912 |#3|) . T) ((-914 #2#) |has| |#1| (-912 (-1193))) ((-914 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-963 |#1| |#4| |#3|) . T) ((-923) |has| |#1| (-923)) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1054 |#2|) . T) ((-1054 |#3|) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T) ((-1238) |has| |#1| (-923))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-4262 ((|#1| $) 55)) (-2010 ((|#1| $) 45)) (-3146 (((-112) $ (-781)) 8)) (-3250 (($) 7 T CONST)) (-4100 (($ $) 61)) (-2412 (($ $) 49)) (-2231 ((|#1| |#1| $) 47)) (-4073 ((|#1| $) 46)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-4109 (((-781) $) 62)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-2375 ((|#1| $) 40)) (-3529 ((|#1| |#1| $) 53)) (-2461 ((|#1| |#1| $) 52)) (-3285 (($ |#1| $) 41)) (-1847 (((-781) $) 56)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2703 ((|#1| $) 63)) (-2587 ((|#1| $) 51)) (-3605 ((|#1| $) 50)) (-3801 ((|#1| $) 42)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-3315 ((|#1| |#1| $) 59)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2663 ((|#1| $) 60)) (-1341 (($) 58) (($ (-654 |#1|)) 57)) (-4293 (((-781) $) 44)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2557 ((|#1| $) 54)) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) 43)) (-4423 ((|#1| $) 64)) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-261 |#1|) (-141) (-1234)) (T -261)) +((-1341 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-1341 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-261 *3)))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))) (-4262 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-3529 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-2461 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-2587 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-2412 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234))))) +(-13 (-1137 |t#1|) (-1011 |t#1|) (-10 -8 (-15 -1341 ($)) (-15 -1341 ($ (-654 |t#1|))) (-15 -1847 ((-781) $)) (-15 -4262 (|t#1| $)) (-15 -2557 (|t#1| $)) (-15 -3529 (|t#1| |t#1| $)) (-15 -2461 (|t#1| |t#1| $)) (-15 -2587 (|t#1| $)) (-15 -3605 (|t#1| $)) (-15 -2412 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1011 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1137 |#1|) . T) ((-1234) . T)) +((-4086 (((-1 (-957 (-227)) (-227) (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1854 (((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388))) 173) (((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 171) (((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388))) 176) (((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 172) (((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388))) 164) (((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 163) (((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388))) 145) (((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270))) 143) (((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388))) 144) (((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270))) 141)) (-1809 (((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388))) 175) (((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 174) (((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388))) 178) (((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 177) (((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388))) 166) (((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 165) (((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388))) 151) (((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270))) 150) (((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388))) 149) (((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270))) 148) (((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388))) 113) (((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270))) 112) (((-1285) (-1 (-227) (-227)) (-1110 (-388))) 107) (((-1285) (-1 (-227) (-227)) (-1110 (-388)) (-654 (-270))) 105))) +(((-262) (-10 -7 (-15 -1809 ((-1285) (-1 (-227) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-1 (-227) (-227)) (-1110 (-388)))) (-15 -1809 ((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1809 ((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1809 ((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388)))) (-15 -1809 ((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1809 ((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1809 ((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)))) (-15 -4086 ((-1 (-957 (-227)) (-227) (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) +((-4086 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-957 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262))))) +(-10 -7 (-15 -1809 ((-1285) (-1 (-227) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-1 (-227) (-227)) (-1110 (-388)))) (-15 -1809 ((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1809 ((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1809 ((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388)))) (-15 -1809 ((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1809 ((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1809 ((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)))) (-15 -4086 ((-1 (-957 (-227)) (-227) (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-1809 (((-1285) (-302 |#2|) (-1193) (-1193) (-654 (-270))) 101))) +(((-263 |#1| |#2|) (-10 -7 (-15 -1809 ((-1285) (-302 |#2|) (-1193) (-1193) (-654 (-270))))) (-13 (-566) (-860) (-1054 (-574))) (-440 |#1|)) (T -263)) +((-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-1193)) (-5 *5 (-654 (-270))) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1054 (-574)))) (-5 *2 (-1285)) (-5 *1 (-263 *6 *7))))) +(-10 -7 (-15 -1809 ((-1285) (-302 |#2|) (-1193) (-1193) (-654 (-270))))) +((-1717 (((-574) (-574)) 71)) (-2015 (((-574) (-574)) 72)) (-1892 (((-227) (-227)) 73)) (-2953 (((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227))) 70)) (-3770 (((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227)) (-112)) 68))) +(((-264) (-10 -7 (-15 -3770 ((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227)) (-112))) (-15 -2953 ((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227)))) (-15 -1717 ((-574) (-574))) (-15 -2015 ((-574) (-574))) (-15 -1892 ((-227) (-227))))) (T -264)) +((-1892 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-1717 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-2953 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1110 (-227))) (-5 *2 (-1286)) (-5 *1 (-264)))) (-3770 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1110 (-227))) (-5 *5 (-112)) (-5 *2 (-1286)) (-5 *1 (-264))))) +(-10 -7 (-15 -3770 ((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227)) (-112))) (-15 -2953 ((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227)))) (-15 -1717 ((-574) (-574))) (-15 -2015 ((-574) (-574))) (-15 -1892 ((-227) (-227)))) +((-2951 (((-1108 (-388)) (-1108 (-324 |#1|))) 16))) +(((-265 |#1|) (-10 -7 (-15 -2951 ((-1108 (-388)) (-1108 (-324 |#1|))))) (-13 (-860) (-566) (-624 (-388)))) (T -265)) +((-2951 (*1 *2 *3) (-12 (-5 *3 (-1108 (-324 *4))) (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1108 (-388))) (-5 *1 (-265 *4))))) +(-10 -7 (-15 -2951 ((-1108 (-388)) (-1108 (-324 |#1|))))) +((-1854 (((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388))) 75) (((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270))) 74) (((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388))) 65) (((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270))) 64) (((-1149 (-227)) (-890 |#1|) (-1108 (-388))) 56) (((-1149 (-227)) (-890 |#1|) (-1108 (-388)) (-654 (-270))) 55)) (-1809 (((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388))) 78) (((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270))) 77) (((-1286) |#1| (-1108 (-388)) (-1108 (-388))) 68) (((-1286) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270))) 67) (((-1286) (-890 |#1|) (-1108 (-388))) 60) (((-1286) (-890 |#1|) (-1108 (-388)) (-654 (-270))) 59) (((-1285) (-888 |#1|) (-1108 (-388))) 47) (((-1285) (-888 |#1|) (-1108 (-388)) (-654 (-270))) 46) (((-1285) |#1| (-1108 (-388))) 38) (((-1285) |#1| (-1108 (-388)) (-654 (-270))) 36))) +(((-266 |#1|) (-10 -7 (-15 -1809 ((-1285) |#1| (-1108 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) |#1| (-1108 (-388)))) (-15 -1809 ((-1285) (-888 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-888 |#1|) (-1108 (-388)))) (-15 -1809 ((-1286) (-890 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-890 |#1|) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) (-890 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-890 |#1|) (-1108 (-388)))) (-15 -1809 ((-1286) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) |#1| (-1108 (-388)) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388)))) (-15 -1809 ((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388))))) (-13 (-624 (-546)) (-1116))) (T -266)) +((-1854 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1108 (-388))) (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *5)))) (-1854 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *6)))) (-1809 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1108 (-388))) (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *5)))) (-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *6)))) (-1854 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) (-1854 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) (-1809 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1286)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) (-1809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1108 (-388))) (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *5)))) (-1854 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *6)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1108 (-388))) (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *5)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *6)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1108 (-388))) (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1285)) (-5 *1 (-266 *5)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1285)) (-5 *1 (-266 *6)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1285)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116)))))) +(-10 -7 (-15 -1809 ((-1285) |#1| (-1108 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) |#1| (-1108 (-388)))) (-15 -1809 ((-1285) (-888 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1809 ((-1285) (-888 |#1|) (-1108 (-388)))) (-15 -1809 ((-1286) (-890 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-890 |#1|) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) (-890 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-890 |#1|) (-1108 (-388)))) (-15 -1809 ((-1286) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) |#1| (-1108 (-388)) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388)))) (-15 -1809 ((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1809 ((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388))))) +((-1809 (((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270))) 23) (((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227))) 24) (((-1285) (-654 (-957 (-227))) (-654 (-270))) 16) (((-1285) (-654 (-957 (-227)))) 17) (((-1285) (-654 (-227)) (-654 (-227)) (-654 (-270))) 20) (((-1285) (-654 (-227)) (-654 (-227))) 21))) +(((-267) (-10 -7 (-15 -1809 ((-1285) (-654 (-227)) (-654 (-227)))) (-15 -1809 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1809 ((-1285) (-654 (-957 (-227))))) (-15 -1809 ((-1285) (-654 (-957 (-227))) (-654 (-270)))) (-15 -1809 ((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1809 ((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270)))))) (T -267)) +((-1809 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-267)))) (-1809 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1286)) (-5 *1 (-267)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *4 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-267)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *2 (-1285)) (-5 *1 (-267)))) (-1809 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-267)))) (-1809 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1285)) (-5 *1 (-267))))) +(-10 -7 (-15 -1809 ((-1285) (-654 (-227)) (-654 (-227)))) (-15 -1809 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1809 ((-1285) (-654 (-957 (-227))))) (-15 -1809 ((-1285) (-654 (-957 (-227))) (-654 (-270)))) (-15 -1809 ((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1809 ((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270))))) +((-1476 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-2807 (((-935) (-654 (-270)) (-935)) 52)) (-2174 (((-935) (-654 (-270)) (-935)) 51)) (-2005 (((-654 (-388)) (-654 (-270)) (-654 (-388))) 68)) (-3934 (((-388) (-654 (-270)) (-388)) 57)) (-2538 (((-935) (-654 (-270)) (-935)) 53)) (-4071 (((-112) (-654 (-270)) (-112)) 27)) (-3851 (((-1175) (-654 (-270)) (-1175)) 19)) (-3174 (((-1175) (-654 (-270)) (-1175)) 26)) (-4332 (((-1149 (-227)) (-654 (-270))) 46)) (-1599 (((-654 (-1110 (-388))) (-654 (-270)) (-654 (-1110 (-388)))) 40)) (-4288 (((-884) (-654 (-270)) (-884)) 32)) (-4276 (((-884) (-654 (-270)) (-884)) 33)) (-3844 (((-1 (-957 (-227)) (-957 (-227))) (-654 (-270)) (-1 (-957 (-227)) (-957 (-227)))) 63)) (-1721 (((-112) (-654 (-270)) (-112)) 14)) (-2598 (((-112) (-654 (-270)) (-112)) 13))) +(((-268) (-10 -7 (-15 -2598 ((-112) (-654 (-270)) (-112))) (-15 -1721 ((-112) (-654 (-270)) (-112))) (-15 -1476 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3851 ((-1175) (-654 (-270)) (-1175))) (-15 -3174 ((-1175) (-654 (-270)) (-1175))) (-15 -4071 ((-112) (-654 (-270)) (-112))) (-15 -4288 ((-884) (-654 (-270)) (-884))) (-15 -4276 ((-884) (-654 (-270)) (-884))) (-15 -1599 ((-654 (-1110 (-388))) (-654 (-270)) (-654 (-1110 (-388))))) (-15 -2174 ((-935) (-654 (-270)) (-935))) (-15 -2807 ((-935) (-654 (-270)) (-935))) (-15 -4332 ((-1149 (-227)) (-654 (-270)))) (-15 -2538 ((-935) (-654 (-270)) (-935))) (-15 -3934 ((-388) (-654 (-270)) (-388))) (-15 -3844 ((-1 (-957 (-227)) (-957 (-227))) (-654 (-270)) (-1 (-957 (-227)) (-957 (-227))))) (-15 -2005 ((-654 (-388)) (-654 (-270)) (-654 (-388)))))) (T -268)) +((-2005 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-388))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3844 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3934 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2538 (*1 *2 *3 *2) (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4332 (*1 *2 *3) (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-268)))) (-2807 (*1 *2 *3 *2) (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2174 (*1 *2 *3 *2) (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1599 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4276 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4288 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4071 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3174 (*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3851 (*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1476 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1721 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2598 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) +(-10 -7 (-15 -2598 ((-112) (-654 (-270)) (-112))) (-15 -1721 ((-112) (-654 (-270)) (-112))) (-15 -1476 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3851 ((-1175) (-654 (-270)) (-1175))) (-15 -3174 ((-1175) (-654 (-270)) (-1175))) (-15 -4071 ((-112) (-654 (-270)) (-112))) (-15 -4288 ((-884) (-654 (-270)) (-884))) (-15 -4276 ((-884) (-654 (-270)) (-884))) (-15 -1599 ((-654 (-1110 (-388))) (-654 (-270)) (-654 (-1110 (-388))))) (-15 -2174 ((-935) (-654 (-270)) (-935))) (-15 -2807 ((-935) (-654 (-270)) (-935))) (-15 -4332 ((-1149 (-227)) (-654 (-270)))) (-15 -2538 ((-935) (-654 (-270)) (-935))) (-15 -3934 ((-388) (-654 (-270)) (-388))) (-15 -3844 ((-1 (-957 (-227)) (-957 (-227))) (-654 (-270)) (-1 (-957 (-227)) (-957 (-227))))) (-15 -2005 ((-654 (-388)) (-654 (-270)) (-654 (-388))))) +((-1988 (((-3 |#1| "failed") (-654 (-270)) (-1193)) 17))) +(((-269 |#1|) (-10 -7 (-15 -1988 ((-3 |#1| "failed") (-654 (-270)) (-1193)))) (-1234)) (T -269)) +((-1988 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1193)) (-5 *1 (-269 *2)) (-4 *2 (-1234))))) +(-10 -7 (-15 -1988 ((-3 |#1| "failed") (-654 (-270)) (-1193)))) +((-2864 (((-112) $ $) NIL)) (-1476 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-2807 (($ (-935)) 81)) (-2174 (($ (-935)) 80)) (-4098 (($ (-654 (-388))) 87)) (-3934 (($ (-388)) 66)) (-2538 (($ (-935)) 82)) (-4071 (($ (-112)) 33)) (-3851 (($ (-1175)) 28)) (-3174 (($ (-1175)) 29)) (-4332 (($ (-1149 (-227))) 76)) (-1599 (($ (-654 (-1110 (-388)))) 72)) (-3798 (($ (-654 (-1110 (-388)))) 68) (($ (-654 (-1110 (-417 (-574))))) 71)) (-3962 (($ (-388)) 38) (($ (-884)) 42)) (-1660 (((-112) (-654 $) (-1193)) 100)) (-1988 (((-3 (-52) "failed") (-654 $) (-1193)) 102)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3601 (($ (-388)) 43) (($ (-884)) 44)) (-1385 (($ (-1 (-957 (-227)) (-957 (-227)))) 65)) (-3844 (($ (-1 (-957 (-227)) (-957 (-227)))) 83)) (-2086 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2951 (((-872) $) 93)) (-1640 (($ (-112)) 34) (($ (-654 (-1110 (-388)))) 60)) (-4069 (((-112) $ $) NIL)) (-2598 (($ (-112)) 35)) (-2986 (((-112) $ $) 97))) +(((-270) (-13 (-1116) (-10 -8 (-15 -2598 ($ (-112))) (-15 -1640 ($ (-112))) (-15 -1476 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3851 ($ (-1175))) (-15 -3174 ($ (-1175))) (-15 -4071 ($ (-112))) (-15 -1640 ($ (-654 (-1110 (-388))))) (-15 -1385 ($ (-1 (-957 (-227)) (-957 (-227))))) (-15 -3962 ($ (-388))) (-15 -3962 ($ (-884))) (-15 -3601 ($ (-388))) (-15 -3601 ($ (-884))) (-15 -2086 ($ (-1 (-227) (-227)))) (-15 -2086 ($ (-1 (-227) (-227) (-227)))) (-15 -2086 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3934 ($ (-388))) (-15 -3798 ($ (-654 (-1110 (-388))))) (-15 -3798 ($ (-654 (-1110 (-417 (-574)))))) (-15 -1599 ($ (-654 (-1110 (-388))))) (-15 -4332 ($ (-1149 (-227)))) (-15 -2174 ($ (-935))) (-15 -2807 ($ (-935))) (-15 -2538 ($ (-935))) (-15 -3844 ($ (-1 (-957 (-227)) (-957 (-227))))) (-15 -4098 ($ (-654 (-388)))) (-15 -1988 ((-3 (-52) "failed") (-654 $) (-1193))) (-15 -1660 ((-112) (-654 $) (-1193)))))) (T -270)) +((-2598 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1476 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-3851 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-270)))) (-3174 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-270)))) (-4071 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *1 (-270)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-3934 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-417 (-574))))) (-5 *1 (-270)))) (-1599 (*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270)))) (-4332 (*1 *1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-270)))) (-2174 (*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270)))) (-2807 (*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270)))) (-2538 (*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270)))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *1 (-270)))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270)))) (-1988 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1193)) (-5 *2 (-52)) (-5 *1 (-270)))) (-1660 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1193)) (-5 *2 (-112)) (-5 *1 (-270))))) +(-13 (-1116) (-10 -8 (-15 -2598 ($ (-112))) (-15 -1640 ($ (-112))) (-15 -1476 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3851 ($ (-1175))) (-15 -3174 ($ (-1175))) (-15 -4071 ($ (-112))) (-15 -1640 ($ (-654 (-1110 (-388))))) (-15 -1385 ($ (-1 (-957 (-227)) (-957 (-227))))) (-15 -3962 ($ (-388))) (-15 -3962 ($ (-884))) (-15 -3601 ($ (-388))) (-15 -3601 ($ (-884))) (-15 -2086 ($ (-1 (-227) (-227)))) (-15 -2086 ($ (-1 (-227) (-227) (-227)))) (-15 -2086 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3934 ($ (-388))) (-15 -3798 ($ (-654 (-1110 (-388))))) (-15 -3798 ($ (-654 (-1110 (-417 (-574)))))) (-15 -1599 ($ (-654 (-1110 (-388))))) (-15 -4332 ($ (-1149 (-227)))) (-15 -2174 ($ (-935))) (-15 -2807 ($ (-935))) (-15 -2538 ($ (-935))) (-15 -3844 ($ (-1 (-957 (-227)) (-957 (-227))))) (-15 -4098 ($ (-654 (-388)))) (-15 -1988 ((-3 (-52) "failed") (-654 $) (-1193))) (-15 -1660 ((-112) (-654 $) (-1193))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4002 (((-654 (-781)) $) NIL) (((-654 (-781)) $ |#2|) NIL)) (-1540 (((-781) $) NIL) (((-781) $ |#2|) NIL)) (-4350 (((-654 |#3|) $) NIL)) (-4173 (((-1189 $) $ |#3|) NIL) (((-1189 |#1|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 |#3|)) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2991 (($ $) NIL (|has| |#1| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3278 (($ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1141 |#1| |#2|) "failed") $) 23)) (-2214 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1141 |#1| |#2|) $) NIL)) (-3319 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1402 (($ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#1| (-923)))) (-1849 (($ $ |#1| (-541 |#3|) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))))) (-3547 (((-781) $ |#2|) NIL) (((-781) $) 10)) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-4339 (($ (-1189 |#1|) |#3|) NIL) (($ (-1189 $) |#3|) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ |#3|) NIL)) (-3192 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL)) (-4303 (($ (-1 (-541 |#3|) (-541 |#3|)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2558 (((-1 $ (-781)) |#2|) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-2284 (((-3 |#3| "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-3680 ((|#3| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1489 (((-1175) $) NIL)) (-1380 (((-112) $) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| |#3|) (|:| -3139 (-781))) "failed") $) NIL)) (-2606 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-654 |#3|) (-654 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) NIL (|has| |#1| (-239))) (($ $ |#2| |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-2394 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2495 (((-654 |#2|) $) NIL)) (-3580 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL) (((-781) $ |#2|) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))))) (-2372 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1141 |#1| |#2|)) 32) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-271 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1054 (-1141 |#1| |#2|))) (-1065) (-860) (-273 |#2|)) (T -271)) +NIL +(-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1054 (-1141 |#1| |#2|))) +((-1540 (((-781) $) 37)) (-1704 (((-3 |#2| "failed") $) 22)) (-2214 ((|#2| $) 33)) (-3879 (($ $ (-781)) 18) (($ $) 14)) (-2951 (((-872) $) 32) (($ |#2|) 11)) (-2986 (((-112) $ $) 26)) (-3009 (((-112) $ $) 36))) +(((-272 |#1| |#2|) (-10 -8 (-15 -1540 ((-781) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-273 |#2|) (-860)) (T -272)) +NIL +(-10 -8 (-15 -1540 ((-781) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-1540 (((-781) $) 22)) (-1498 ((|#1| $) 23)) (-1704 (((-3 |#1| "failed") $) 27)) (-2214 ((|#1| $) 28)) (-3547 (((-781) $) 24)) (-3634 (($ $ $) 14)) (-4380 (($ $ $) 15)) (-2558 (($ |#1| (-781)) 25)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3879 (($ $ (-781)) 31) (($ $) 29)) (-2951 (((-872) $) 12) (($ |#1|) 26)) (-4069 (((-112) $ $) 9)) (-3584 (($ $ (-781)) 32) (($ $) 30)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19))) (((-273 |#1|) (-141) (-860)) (T -273)) -((-2950 (*1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-4191 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781))))) -(-13 (-860) (-238) (-1053 |t#1|) (-10 -8 (-15 -4191 ($ |t#1| (-781))) (-15 -2725 ((-781) $)) (-15 -1497 (|t#1| $)) (-15 -2102 ((-781) $)) (-15 -2950 ($ |t#1|)))) -(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-860) . T) ((-1053 |#1|) . T) ((-1115) . T) ((-1233) . T)) -((-4349 (((-654 (-1192)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 53)) (-1664 (((-654 (-1192)) (-324 (-227)) (-781)) 94)) (-3262 (((-3 (-324 (-227)) "failed") (-324 (-227))) 63)) (-2527 (((-324 (-227)) (-324 (-227))) 79)) (-3121 (((-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 38)) (-4255 (((-112) (-654 (-324 (-227)))) 104)) (-2309 (((-112) (-324 (-227))) 36)) (-1857 (((-654 (-1174)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) 132)) (-2586 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 108)) (-4296 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 106)) (-2575 (((-699 (-227)) (-654 (-324 (-227))) (-781)) 120)) (-2959 (((-112) (-324 (-227))) 31) (((-112) (-654 (-324 (-227)))) 105)) (-1706 (((-654 (-227)) (-654 (-853 (-227))) (-227)) 15)) (-3049 (((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 126)) (-1569 (((-1050) (-1192) (-1050)) 46))) -(((-274) (-10 -7 (-15 -1706 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -3121 ((-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -3262 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -2527 ((-324 (-227)) (-324 (-227)))) (-15 -4255 ((-112) (-654 (-324 (-227))))) (-15 -2959 ((-112) (-654 (-324 (-227))))) (-15 -2959 ((-112) (-324 (-227)))) (-15 -2575 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -4296 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -2586 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -2309 ((-112) (-324 (-227)))) (-15 -4349 ((-654 (-1192)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1664 ((-654 (-1192)) (-324 (-227)) (-781))) (-15 -1569 ((-1050) (-1192) (-1050))) (-15 -3049 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1857 ((-654 (-1174)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))))))) (T -274)) -((-1857 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) (-5 *2 (-654 (-1174))) (-5 *1 (-274)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-388)) (-5 *1 (-274)))) (-1569 (*1 *2 *3 *2) (-12 (-5 *2 (-1050)) (-5 *3 (-1192)) (-5 *1 (-274)))) (-1664 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1192))) (-5 *1 (-274)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-654 (-1192))) (-5 *1 (-274)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-2586 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-4296 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-274)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-2527 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-3262 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-3121 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-274)))) (-1706 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4)) (-5 *1 (-274))))) -(-10 -7 (-15 -1706 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -3121 ((-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -3262 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -2527 ((-324 (-227)) (-324 (-227)))) (-15 -4255 ((-112) (-654 (-324 (-227))))) (-15 -2959 ((-112) (-654 (-324 (-227))))) (-15 -2959 ((-112) (-324 (-227)))) (-15 -2575 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -4296 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -2586 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -2309 ((-112) (-324 (-227)))) (-15 -4349 ((-654 (-1192)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1664 ((-654 (-1192)) (-324 (-227)) (-781))) (-15 -1569 ((-1050) (-1192) (-1050))) (-15 -3049 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1857 ((-654 (-1174)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))))) -((-2863 (((-112) $ $) NIL)) (-1795 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 56)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2951 (*1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-2558 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781))))) +(-13 (-860) (-238) (-1054 |t#1|) (-10 -8 (-15 -2558 ($ |t#1| (-781))) (-15 -3547 ((-781) $)) (-15 -1498 (|t#1| $)) (-15 -1540 ((-781) $)) (-15 -2951 ($ |t#1|)))) +(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-860) . T) ((-1054 |#1|) . T) ((-1116) . T) ((-1234) . T)) +((-4350 (((-654 (-1193)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 53)) (-1663 (((-654 (-1193)) (-324 (-227)) (-781)) 94)) (-2870 (((-3 (-324 (-227)) "failed") (-324 (-227))) 63)) (-2363 (((-324 (-227)) (-324 (-227))) 79)) (-2719 (((-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 38)) (-3716 (((-112) (-654 (-324 (-227)))) 104)) (-4213 (((-112) (-324 (-227))) 36)) (-1863 (((-654 (-1175)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) 132)) (-3730 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 108)) (-1420 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 106)) (-3039 (((-699 (-227)) (-654 (-324 (-227))) (-781)) 120)) (-1944 (((-112) (-324 (-227))) 31) (((-112) (-654 (-324 (-227)))) 105)) (-4188 (((-654 (-227)) (-654 (-853 (-227))) (-227)) 15)) (-1597 (((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 126)) (-2239 (((-1051) (-1193) (-1051)) 46))) +(((-274) (-10 -7 (-15 -4188 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -2719 ((-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2870 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -2363 ((-324 (-227)) (-324 (-227)))) (-15 -3716 ((-112) (-654 (-324 (-227))))) (-15 -1944 ((-112) (-654 (-324 (-227))))) (-15 -1944 ((-112) (-324 (-227)))) (-15 -3039 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -1420 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -3730 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -4213 ((-112) (-324 (-227)))) (-15 -4350 ((-654 (-1193)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1663 ((-654 (-1193)) (-324 (-227)) (-781))) (-15 -2239 ((-1051) (-1193) (-1051))) (-15 -1597 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1863 ((-654 (-1175)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))))))) (T -274)) +((-1863 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) (-5 *2 (-654 (-1175))) (-5 *1 (-274)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-388)) (-5 *1 (-274)))) (-2239 (*1 *2 *3 *2) (-12 (-5 *2 (-1051)) (-5 *3 (-1193)) (-5 *1 (-274)))) (-1663 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1193))) (-5 *1 (-274)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-654 (-1193))) (-5 *1 (-274)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-3730 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-1420 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-3039 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-274)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-2870 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-2719 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-274)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4)) (-5 *1 (-274))))) +(-10 -7 (-15 -4188 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -2719 ((-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2870 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -2363 ((-324 (-227)) (-324 (-227)))) (-15 -3716 ((-112) (-654 (-324 (-227))))) (-15 -1944 ((-112) (-654 (-324 (-227))))) (-15 -1944 ((-112) (-324 (-227)))) (-15 -3039 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -1420 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -3730 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -4213 ((-112) (-324 (-227)))) (-15 -4350 ((-654 (-1193)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1663 ((-654 (-1193)) (-324 (-227)) (-781))) (-15 -2239 ((-1051) (-1193) (-1051))) (-15 -1597 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1863 ((-654 (-1175)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))))) +((-2864 (((-112) $ $) NIL)) (-3869 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 56)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-275) (-849)) (T -275)) NIL (-849) -((-2863 (((-112) $ $) NIL)) (-1795 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 72) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 63)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 41) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 43)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-3869 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 72) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 63)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 41) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 43)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-276) (-849)) (T -276)) NIL (-849) -((-2863 (((-112) $ $) NIL)) (-1795 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 90) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 85)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 52) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 65)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-3869 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 90) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 85)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 52) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 65)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-277) (-849)) (T -277)) NIL (-849) -((-2863 (((-112) $ $) NIL)) (-1795 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 73)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 45) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-3869 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 73)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 45) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-278) (-849)) (T -278)) NIL (-849) -((-2863 (((-112) $ $) NIL)) (-1795 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 65)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 31) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-3869 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 65)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 31) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-279) (-849)) (T -279)) NIL (-849) -((-2863 (((-112) $ $) NIL)) (-1795 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 90)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 33) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-3869 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 90)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 33) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-280) (-849)) (T -280)) NIL (-849) -((-2863 (((-112) $ $) NIL)) (-1795 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 87)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-3869 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 87)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) (((-281) (-849)) (T -281)) NIL (-849) -((-2863 (((-112) $ $) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2143 (((-654 (-574)) $) 29)) (-3584 (((-781) $) 27)) (-2950 (((-872) $) 33) (($ (-654 (-574))) 23)) (-3838 (((-112) $ $) NIL)) (-3394 (($ (-781)) 30)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 17))) -(((-282) (-13 (-860) (-10 -8 (-15 -2950 ($ (-654 (-574)))) (-15 -3584 ((-781) $)) (-15 -2143 ((-654 (-574)) $)) (-15 -3394 ($ (-781)))))) (T -282)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-282)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-3394 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282))))) -(-13 (-860) (-10 -8 (-15 -2950 ($ (-654 (-574)))) (-15 -3584 ((-781) $)) (-15 -2143 ((-654 (-574)) $)) (-15 -3394 ($ (-781))))) -((-2378 ((|#2| |#2|) 77)) (-2259 ((|#2| |#2|) 65)) (-3032 (((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2357 ((|#2| |#2|) 75)) (-2237 ((|#2| |#2|) 63)) (-2403 ((|#2| |#2|) 79)) (-2281 ((|#2| |#2|) 67)) (-3003 ((|#2|) 46)) (-4150 (((-115) (-115)) 100)) (-3112 ((|#2| |#2|) 61)) (-2751 (((-112) |#2|) 147)) (-2712 ((|#2| |#2|) 195)) (-3561 ((|#2| |#2|) 171)) (-2709 ((|#2|) 59)) (-4208 ((|#2|) 58)) (-3992 ((|#2| |#2|) 191)) (-2803 ((|#2| |#2|) 167)) (-2783 ((|#2| |#2|) 199)) (-4050 ((|#2| |#2|) 175)) (-1599 ((|#2| |#2|) 163)) (-4262 ((|#2| |#2|) 165)) (-2937 ((|#2| |#2|) 201)) (-3506 ((|#2| |#2|) 177)) (-2280 ((|#2| |#2|) 197)) (-3528 ((|#2| |#2|) 173)) (-3816 ((|#2| |#2|) 193)) (-2317 ((|#2| |#2|) 169)) (-3927 ((|#2| |#2|) 207)) (-1640 ((|#2| |#2|) 183)) (-2495 ((|#2| |#2|) 203)) (-2577 ((|#2| |#2|) 179)) (-3033 ((|#2| |#2|) 211)) (-3110 ((|#2| |#2|) 187)) (-1927 ((|#2| |#2|) 213)) (-4286 ((|#2| |#2|) 189)) (-4086 ((|#2| |#2|) 209)) (-2979 ((|#2| |#2|) 185)) (-2519 ((|#2| |#2|) 205)) (-2460 ((|#2| |#2|) 181)) (-1618 ((|#2| |#2|) 62)) (-2416 ((|#2| |#2|) 80)) (-2289 ((|#2| |#2|) 68)) (-2389 ((|#2| |#2|) 78)) (-2269 ((|#2| |#2|) 66)) (-2367 ((|#2| |#2|) 76)) (-2248 ((|#2| |#2|) 64)) (-4207 (((-112) (-115)) 98)) (-2455 ((|#2| |#2|) 83)) (-2319 ((|#2| |#2|) 71)) (-2427 ((|#2| |#2|) 81)) (-2300 ((|#2| |#2|) 69)) (-2479 ((|#2| |#2|) 85)) (-2339 ((|#2| |#2|) 73)) (-2535 ((|#2| |#2|) 86)) (-2348 ((|#2| |#2|) 74)) (-2466 ((|#2| |#2|) 84)) (-2329 ((|#2| |#2|) 72)) (-2442 ((|#2| |#2|) 82)) (-2311 ((|#2| |#2|) 70))) -(((-283 |#1| |#2|) (-10 -7 (-15 -1618 (|#2| |#2|)) (-15 -3112 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2248 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2300 (|#2| |#2|)) (-15 -2311 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2348 (|#2| |#2|)) (-15 -2357 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -2389 (|#2| |#2|)) (-15 -2403 (|#2| |#2|)) (-15 -2416 (|#2| |#2|)) (-15 -2427 (|#2| |#2|)) (-15 -2442 (|#2| |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -3003 (|#2|)) (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4208 (|#2|)) (-15 -2709 (|#2|)) (-15 -4262 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -2803 (|#2| |#2|)) (-15 -2317 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -3528 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -3110 (|#2| |#2|)) (-15 -4286 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2280 (|#2| |#2|)) (-15 -2783 (|#2| |#2|)) (-15 -2937 (|#2| |#2|)) (-15 -2495 (|#2| |#2|)) (-15 -2519 (|#2| |#2|)) (-15 -3927 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -3032 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2751 ((-112) |#2|))) (-566) (-13 (-440 |#1|) (-1017))) (T -283)) -((-2751 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3)) (-4 *3 (-13 (-440 *4) (-1017))))) (-3032 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-440 *4) (-1017))) (-4 *4 (-566)) (-5 *1 (-283 *4 *2)))) (-1927 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2495 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2937 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2783 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2280 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-4286 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2979 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2577 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3506 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-4050 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3528 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3561 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2317 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2803 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-4262 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2709 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-4208 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-283 *3 *4)) (-4 *4 (-13 (-440 *3) (-1017))))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1017))))) (-3003 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2466 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2427 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2416 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2311 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2248 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3112 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017)))))) -(-10 -7 (-15 -1618 (|#2| |#2|)) (-15 -3112 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2248 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2300 (|#2| |#2|)) (-15 -2311 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2348 (|#2| |#2|)) (-15 -2357 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -2389 (|#2| |#2|)) (-15 -2403 (|#2| |#2|)) (-15 -2416 (|#2| |#2|)) (-15 -2427 (|#2| |#2|)) (-15 -2442 (|#2| |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -3003 (|#2|)) (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4208 (|#2|)) (-15 -2709 (|#2|)) (-15 -4262 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -2803 (|#2| |#2|)) (-15 -2317 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -3528 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -3110 (|#2| |#2|)) (-15 -4286 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2280 (|#2| |#2|)) (-15 -2783 (|#2| |#2|)) (-15 -2937 (|#2| |#2|)) (-15 -2495 (|#2| |#2|)) (-15 -2519 (|#2| |#2|)) (-15 -3927 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -3032 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2751 ((-112) |#2|))) -((-4347 (((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1192)) 151)) (-4295 ((|#2| (-417 (-574)) |#2|) 49)) (-3064 ((|#2| |#2| (-622 |#2|)) 144)) (-3242 (((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1192)) 143)) (-4397 ((|#2| |#2| (-1192)) 20) ((|#2| |#2|) 23)) (-1427 ((|#2| |#2| (-1192)) 157) ((|#2| |#2|) 155))) -(((-284 |#1| |#2|) (-10 -7 (-15 -1427 (|#2| |#2|)) (-15 -1427 (|#2| |#2| (-1192))) (-15 -3242 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1192))) (-15 -4397 (|#2| |#2|)) (-15 -4397 (|#2| |#2| (-1192))) (-15 -4347 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1192))) (-15 -3064 (|#2| |#2| (-622 |#2|))) (-15 -4295 (|#2| (-417 (-574)) |#2|))) (-13 (-566) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -284)) -((-4295 (*1 *2 *3 *2) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-3064 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)))) (-4347 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1192)) (-4 *2 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *5 *2)))) (-4397 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-4397 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) (-3242 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3))) (|:| |vals| (-654 *3)))) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-1427 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-1427 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3)))))) -(-10 -7 (-15 -1427 (|#2| |#2|)) (-15 -1427 (|#2| |#2| (-1192))) (-15 -3242 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1192))) (-15 -4397 (|#2| |#2|)) (-15 -4397 (|#2| |#2| (-1192))) (-15 -4347 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1192))) (-15 -3064 (|#2| |#2| (-622 |#2|))) (-15 -4295 (|#2| (-417 (-574)) |#2|))) -((-2049 (((-3 |#3| "failed") |#3|) 120)) (-2378 ((|#3| |#3|) 142)) (-3497 (((-3 |#3| "failed") |#3|) 89)) (-2259 ((|#3| |#3|) 132)) (-1814 (((-3 |#3| "failed") |#3|) 65)) (-2357 ((|#3| |#3|) 140)) (-1744 (((-3 |#3| "failed") |#3|) 53)) (-2237 ((|#3| |#3|) 130)) (-1856 (((-3 |#3| "failed") |#3|) 122)) (-2403 ((|#3| |#3|) 144)) (-3013 (((-3 |#3| "failed") |#3|) 91)) (-2281 ((|#3| |#3|) 134)) (-2611 (((-3 |#3| "failed") |#3| (-781)) 41)) (-3407 (((-3 |#3| "failed") |#3|) 81)) (-3112 ((|#3| |#3|) 129)) (-2516 (((-3 |#3| "failed") |#3|) 51)) (-1618 ((|#3| |#3|) 128)) (-3055 (((-3 |#3| "failed") |#3|) 123)) (-2416 ((|#3| |#3|) 145)) (-2517 (((-3 |#3| "failed") |#3|) 92)) (-2289 ((|#3| |#3|) 135)) (-4079 (((-3 |#3| "failed") |#3|) 121)) (-2389 ((|#3| |#3|) 143)) (-2885 (((-3 |#3| "failed") |#3|) 90)) (-2269 ((|#3| |#3|) 133)) (-3170 (((-3 |#3| "failed") |#3|) 67)) (-2367 ((|#3| |#3|) 141)) (-2067 (((-3 |#3| "failed") |#3|) 55)) (-2248 ((|#3| |#3|) 131)) (-2210 (((-3 |#3| "failed") |#3|) 73)) (-2455 ((|#3| |#3|) 148)) (-2406 (((-3 |#3| "failed") |#3|) 114)) (-2319 ((|#3| |#3|) 152)) (-3778 (((-3 |#3| "failed") |#3|) 69)) (-2427 ((|#3| |#3|) 146)) (-3124 (((-3 |#3| "failed") |#3|) 57)) (-2300 ((|#3| |#3|) 136)) (-2656 (((-3 |#3| "failed") |#3|) 77)) (-2479 ((|#3| |#3|) 150)) (-1922 (((-3 |#3| "failed") |#3|) 61)) (-2339 ((|#3| |#3|) 138)) (-3133 (((-3 |#3| "failed") |#3|) 79)) (-2535 ((|#3| |#3|) 151)) (-1502 (((-3 |#3| "failed") |#3|) 63)) (-2348 ((|#3| |#3|) 139)) (-2055 (((-3 |#3| "failed") |#3|) 75)) (-2466 ((|#3| |#3|) 149)) (-3370 (((-3 |#3| "failed") |#3|) 117)) (-2329 ((|#3| |#3|) 153)) (-1623 (((-3 |#3| "failed") |#3|) 71)) (-2442 ((|#3| |#3|) 147)) (-2192 (((-3 |#3| "failed") |#3|) 59)) (-2311 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-417 (-574))) 47 (|has| |#1| (-372))))) -(((-285 |#1| |#2| |#3|) (-13 (-998 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1618 (|#3| |#3|)) (-15 -3112 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2248 (|#3| |#3|)) (-15 -2259 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2300 (|#3| |#3|)) (-15 -2311 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2378 (|#3| |#3|)) (-15 -2389 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2427 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2466 (|#3| |#3|)) (-15 -2479 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)))) (-38 (-417 (-574))) (-1274 |#1|) (-1245 |#1| |#2|)) (T -285)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1274 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1245 *4 *5)))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-3112 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2248 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2311 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2416 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2427 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2466 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4))))) -(-13 (-998 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1618 (|#3| |#3|)) (-15 -3112 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2248 (|#3| |#3|)) (-15 -2259 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2300 (|#3| |#3|)) (-15 -2311 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2378 (|#3| |#3|)) (-15 -2389 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2427 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2466 (|#3| |#3|)) (-15 -2479 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)))) -((-2049 (((-3 |#3| "failed") |#3|) 70)) (-2378 ((|#3| |#3|) 137)) (-3497 (((-3 |#3| "failed") |#3|) 54)) (-2259 ((|#3| |#3|) 125)) (-1814 (((-3 |#3| "failed") |#3|) 66)) (-2357 ((|#3| |#3|) 135)) (-1744 (((-3 |#3| "failed") |#3|) 50)) (-2237 ((|#3| |#3|) 123)) (-1856 (((-3 |#3| "failed") |#3|) 74)) (-2403 ((|#3| |#3|) 139)) (-3013 (((-3 |#3| "failed") |#3|) 58)) (-2281 ((|#3| |#3|) 127)) (-2611 (((-3 |#3| "failed") |#3| (-781)) 38)) (-3407 (((-3 |#3| "failed") |#3|) 48)) (-3112 ((|#3| |#3|) 111)) (-2516 (((-3 |#3| "failed") |#3|) 46)) (-1618 ((|#3| |#3|) 122)) (-3055 (((-3 |#3| "failed") |#3|) 76)) (-2416 ((|#3| |#3|) 140)) (-2517 (((-3 |#3| "failed") |#3|) 60)) (-2289 ((|#3| |#3|) 128)) (-4079 (((-3 |#3| "failed") |#3|) 72)) (-2389 ((|#3| |#3|) 138)) (-2885 (((-3 |#3| "failed") |#3|) 56)) (-2269 ((|#3| |#3|) 126)) (-3170 (((-3 |#3| "failed") |#3|) 68)) (-2367 ((|#3| |#3|) 136)) (-2067 (((-3 |#3| "failed") |#3|) 52)) (-2248 ((|#3| |#3|) 124)) (-2210 (((-3 |#3| "failed") |#3|) 78)) (-2455 ((|#3| |#3|) 143)) (-2406 (((-3 |#3| "failed") |#3|) 62)) (-2319 ((|#3| |#3|) 131)) (-3778 (((-3 |#3| "failed") |#3|) 112)) (-2427 ((|#3| |#3|) 141)) (-3124 (((-3 |#3| "failed") |#3|) 100)) (-2300 ((|#3| |#3|) 129)) (-2656 (((-3 |#3| "failed") |#3|) 116)) (-2479 ((|#3| |#3|) 145)) (-1922 (((-3 |#3| "failed") |#3|) 107)) (-2339 ((|#3| |#3|) 133)) (-3133 (((-3 |#3| "failed") |#3|) 117)) (-2535 ((|#3| |#3|) 146)) (-1502 (((-3 |#3| "failed") |#3|) 109)) (-2348 ((|#3| |#3|) 134)) (-2055 (((-3 |#3| "failed") |#3|) 80)) (-2466 ((|#3| |#3|) 144)) (-3370 (((-3 |#3| "failed") |#3|) 64)) (-2329 ((|#3| |#3|) 132)) (-1623 (((-3 |#3| "failed") |#3|) 113)) (-2442 ((|#3| |#3|) 142)) (-2192 (((-3 |#3| "failed") |#3|) 103)) (-2311 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-417 (-574))) 44 (|has| |#1| (-372))))) -(((-286 |#1| |#2| |#3| |#4|) (-13 (-998 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1618 (|#3| |#3|)) (-15 -3112 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2248 (|#3| |#3|)) (-15 -2259 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2300 (|#3| |#3|)) (-15 -2311 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2378 (|#3| |#3|)) (-15 -2389 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2427 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2466 (|#3| |#3|)) (-15 -2479 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)))) (-38 (-417 (-574))) (-1243 |#1|) (-1266 |#1| |#2|) (-998 |#2|)) (T -286)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1243 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1266 *4 *5)) (-4 *6 (-998 *5)))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-3112 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2248 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2311 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2416 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2427 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2466 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4))))) -(-13 (-998 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1618 (|#3| |#3|)) (-15 -3112 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2248 (|#3| |#3|)) (-15 -2259 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2300 (|#3| |#3|)) (-15 -2311 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2378 (|#3| |#3|)) (-15 -2389 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2427 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2466 (|#3| |#3|)) (-15 -2479 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)))) -((-4263 (((-112) $) 20)) (-2376 (((-1197) $) 7)) (-3043 (((-3 (-516) "failed") $) 14)) (-2714 (((-3 (-654 $) "failed") $) NIL)) (-2069 (((-3 (-516) "failed") $) 21)) (-1385 (((-3 (-1119) "failed") $) 18)) (-2736 (((-112) $) 16)) (-2950 (((-872) $) NIL)) (-1471 (((-112) $) 9))) -(((-287) (-13 (-623 (-872)) (-10 -8 (-15 -2376 ((-1197) $)) (-15 -2736 ((-112) $)) (-15 -1385 ((-3 (-1119) "failed") $)) (-15 -4263 ((-112) $)) (-15 -2069 ((-3 (-516) "failed") $)) (-15 -1471 ((-112) $)) (-15 -3043 ((-3 (-516) "failed") $)) (-15 -2714 ((-3 (-654 $) "failed") $))))) (T -287)) -((-2376 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-287)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-1385 (*1 *2 *1) (|partial| -12 (-5 *2 (-1119)) (-5 *1 (-287)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-2069 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-3043 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-2714 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2376 ((-1197) $)) (-15 -2736 ((-112) $)) (-15 -1385 ((-3 (-1119) "failed") $)) (-15 -4263 ((-112) $)) (-15 -2069 ((-3 (-516) "failed") $)) (-15 -1471 ((-112) $)) (-15 -3043 ((-3 (-516) "failed") $)) (-15 -2714 ((-3 (-654 $) "failed") $)))) -((-4300 (((-607) $) 10)) (-1356 (((-595) $) 8)) (-3972 (((-299) $) 12)) (-2781 (($ (-595) (-607) (-299)) NIL)) (-2950 (((-872) $) 19))) -(((-288) (-13 (-623 (-872)) (-10 -8 (-15 -2781 ($ (-595) (-607) (-299))) (-15 -1356 ((-595) $)) (-15 -4300 ((-607) $)) (-15 -3972 ((-299) $))))) (T -288)) -((-2781 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-595)) (-5 *3 (-607)) (-5 *4 (-299)) (-5 *1 (-288)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2781 ($ (-595) (-607) (-299))) (-15 -1356 ((-595) $)) (-15 -4300 ((-607) $)) (-15 -3972 ((-299) $)))) -((-2173 (($ (-1 (-112) |#2|) $) 24)) (-2560 (($ $) 38)) (-1941 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3310 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2857 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1603 (($ |#2| $ (-574)) 20) (($ $ $ (-574)) 22)) (-2853 (($ $ (-574)) 11) (($ $ (-1250 (-574))) 14)) (-4226 (($ $ |#2|) 32) (($ $ $) NIL)) (-4131 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-654 $)) NIL))) -(((-289 |#1| |#2|) (-10 -8 (-15 -2857 (|#1| |#1| |#1|)) (-15 -1941 (|#1| |#2| |#1|)) (-15 -2857 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1941 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4226 (|#1| |#1| |#1|)) (-15 -4226 (|#1| |#1| |#2|)) (-15 -1603 (|#1| |#1| |#1| (-574))) (-15 -1603 (|#1| |#2| |#1| (-574))) (-15 -2853 (|#1| |#1| (-1250 (-574)))) (-15 -2853 (|#1| |#1| (-574))) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -3310 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2173 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3310 (|#1| |#2| |#1|)) (-15 -2560 (|#1| |#1|))) (-290 |#2|) (-1233)) (T -289)) -NIL -(-10 -8 (-15 -2857 (|#1| |#1| |#1|)) (-15 -1941 (|#1| |#2| |#1|)) (-15 -2857 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1941 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4226 (|#1| |#1| |#1|)) (-15 -4226 (|#1| |#1| |#2|)) (-15 -1603 (|#1| |#1| |#1| (-574))) (-15 -1603 (|#1| |#2| |#1| (-574))) (-15 -2853 (|#1| |#1| (-1250 (-574)))) (-15 -2853 (|#1| |#1| (-574))) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -3310 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2173 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3310 (|#1| |#2| |#1|)) (-15 -2560 (|#1| |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3287 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-2551 (($ (-1 (-112) |#1|) $) 88)) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2098 (($ $) 86 (|has| |#1| (-1115)))) (-2560 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1941 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1115)))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 70)) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 44 (|has| (-574) (-860)))) (-2857 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 45 (|has| (-574) (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-2609 (($ |#1| $ (-574)) 91) (($ $ $ (-574)) 90)) (-1603 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-3228 (((-654 (-574)) $) 47)) (-3071 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4276 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) 49)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-1317 (($ $ (-574)) 94) (($ $ (-1250 (-574))) 93)) (-2853 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 72)) (-4226 (($ $ |#1|) 96) (($ $ $) 95)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-290 |#1|) (-141) (-1233)) (T -290)) -((-4226 (*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)))) (-4226 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)))) (-1317 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-1317 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-1941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-2609 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1233)))) (-2609 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-2857 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-1941 (*1 *1 *2 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-1115)))) (-2098 (*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-1115)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-860))))) -(-13 (-661 |t#1|) (-10 -8 (-6 -4459) (-15 -4226 ($ $ |t#1|)) (-15 -4226 ($ $ $)) (-15 -1317 ($ $ (-574))) (-15 -1317 ($ $ (-1250 (-574)))) (-15 -1941 ($ (-1 (-112) |t#1|) $)) (-15 -2609 ($ |t#1| $ (-574))) (-15 -2609 ($ $ $ (-574))) (-15 -2857 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2551 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1115)) (PROGN (-15 -1941 ($ |t#1| $)) (-15 -2098 ($ $))) |%noBranch|) (IF (|has| |t#1| (-860)) (-15 -2857 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-2864 (((-112) $ $) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2478 (((-654 (-574)) $) 29)) (-3580 (((-781) $) 27)) (-2951 (((-872) $) 33) (($ (-654 (-574))) 23)) (-4069 (((-112) $ $) NIL)) (-2797 (($ (-781)) 30)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 17))) +(((-282) (-13 (-860) (-10 -8 (-15 -2951 ($ (-654 (-574)))) (-15 -3580 ((-781) $)) (-15 -2478 ((-654 (-574)) $)) (-15 -2797 ($ (-781)))))) (T -282)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-282)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-2797 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282))))) +(-13 (-860) (-10 -8 (-15 -2951 ($ (-654 (-574)))) (-15 -3580 ((-781) $)) (-15 -2478 ((-654 (-574)) $)) (-15 -2797 ($ (-781))))) +((-2379 ((|#2| |#2|) 77)) (-2258 ((|#2| |#2|) 65)) (-1819 (((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2358 ((|#2| |#2|) 75)) (-2235 ((|#2| |#2|) 63)) (-2404 ((|#2| |#2|) 79)) (-2280 ((|#2| |#2|) 67)) (-3004 ((|#2|) 46)) (-4150 (((-115) (-115)) 100)) (-3113 ((|#2| |#2|) 61)) (-2071 (((-112) |#2|) 147)) (-2989 ((|#2| |#2|) 195)) (-3067 ((|#2| |#2|) 171)) (-2998 ((|#2|) 59)) (-4362 ((|#2|) 58)) (-4329 ((|#2| |#2|) 191)) (-3695 ((|#2| |#2|) 167)) (-1670 ((|#2| |#2|) 199)) (-3885 ((|#2| |#2|) 175)) (-4243 ((|#2| |#2|) 163)) (-2978 ((|#2| |#2|) 165)) (-1899 ((|#2| |#2|) 201)) (-2860 ((|#2| |#2|) 177)) (-4330 ((|#2| |#2|) 197)) (-3475 ((|#2| |#2|) 173)) (-2902 ((|#2| |#2|) 193)) (-2669 ((|#2| |#2|) 169)) (-4351 ((|#2| |#2|) 207)) (-1450 ((|#2| |#2|) 183)) (-3306 ((|#2| |#2|) 203)) (-3632 ((|#2| |#2|) 179)) (-3700 ((|#2| |#2|) 211)) (-3216 ((|#2| |#2|) 187)) (-2665 ((|#2| |#2|) 213)) (-1665 ((|#2| |#2|) 189)) (-1925 ((|#2| |#2|) 209)) (-2493 ((|#2| |#2|) 185)) (-3619 ((|#2| |#2|) 205)) (-4435 ((|#2| |#2|) 181)) (-1617 ((|#2| |#2|) 62)) (-2417 ((|#2| |#2|) 80)) (-2289 ((|#2| |#2|) 68)) (-2390 ((|#2| |#2|) 78)) (-2269 ((|#2| |#2|) 66)) (-2368 ((|#2| |#2|) 76)) (-2247 ((|#2| |#2|) 64)) (-2420 (((-112) (-115)) 98)) (-2456 ((|#2| |#2|) 83)) (-2320 ((|#2| |#2|) 71)) (-2429 ((|#2| |#2|) 81)) (-2301 ((|#2| |#2|) 69)) (-2480 ((|#2| |#2|) 85)) (-2340 ((|#2| |#2|) 73)) (-2536 ((|#2| |#2|) 86)) (-2349 ((|#2| |#2|) 74)) (-2468 ((|#2| |#2|) 84)) (-2330 ((|#2| |#2|) 72)) (-2443 ((|#2| |#2|) 82)) (-2312 ((|#2| |#2|) 70))) +(((-283 |#1| |#2|) (-10 -7 (-15 -1617 (|#2| |#2|)) (-15 -3113 (|#2| |#2|)) (-15 -2235 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -2280 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2301 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2368 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2390 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2417 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -2443 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -2480 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -3004 (|#2|)) (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4362 (|#2|)) (-15 -2998 (|#2|)) (-15 -2978 (|#2| |#2|)) (-15 -4243 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -2669 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -3475 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -2860 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -4435 (|#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -3216 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -4329 (|#2| |#2|)) (-15 -2902 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -4330 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1899 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3619 (|#2| |#2|)) (-15 -4351 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -3700 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -1819 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2071 ((-112) |#2|))) (-566) (-13 (-440 |#1|) (-1018))) (T -283)) +((-2071 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3)) (-4 *3 (-13 (-440 *4) (-1018))))) (-1819 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-440 *4) (-1018))) (-4 *4 (-566)) (-5 *1 (-283 *4 *2)))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3700 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-1925 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-4351 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3306 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-1899 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-4330 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2989 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2902 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-4329 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-1665 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3216 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2493 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-1450 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-4435 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2860 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2669 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-4243 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2998 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-4362 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-283 *3 *4)) (-4 *4 (-13 (-440 *3) (-1018))))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1018))))) (-3004 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2480 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2417 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2390 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2280 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2235 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-1617 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018)))))) +(-10 -7 (-15 -1617 (|#2| |#2|)) (-15 -3113 (|#2| |#2|)) (-15 -2235 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -2280 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2301 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2368 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2390 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2417 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -2443 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -2480 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -3004 (|#2|)) (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4362 (|#2|)) (-15 -2998 (|#2|)) (-15 -2978 (|#2| |#2|)) (-15 -4243 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -2669 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -3475 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -2860 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -4435 (|#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -3216 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -4329 (|#2| |#2|)) (-15 -2902 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -4330 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1899 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3619 (|#2| |#2|)) (-15 -4351 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -3700 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -1819 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2071 ((-112) |#2|))) +((-3226 (((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1193)) 151)) (-2764 ((|#2| (-417 (-574)) |#2|) 49)) (-4180 ((|#2| |#2| (-622 |#2|)) 144)) (-3932 (((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1193)) 143)) (-2793 ((|#2| |#2| (-1193)) 20) ((|#2| |#2|) 23)) (-1348 ((|#2| |#2| (-1193)) 157) ((|#2| |#2|) 155))) +(((-284 |#1| |#2|) (-10 -7 (-15 -1348 (|#2| |#2|)) (-15 -1348 (|#2| |#2| (-1193))) (-15 -3932 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1193))) (-15 -2793 (|#2| |#2|)) (-15 -2793 (|#2| |#2| (-1193))) (-15 -3226 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1193))) (-15 -4180 (|#2| |#2| (-622 |#2|))) (-15 -2764 (|#2| (-417 (-574)) |#2|))) (-13 (-566) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -284)) +((-2764 (*1 *2 *3 *2) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-4180 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)))) (-3226 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1193)) (-4 *2 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *5 *2)))) (-2793 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-2793 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3))) (|:| |vals| (-654 *3)))) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-1348 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-1348 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3)))))) +(-10 -7 (-15 -1348 (|#2| |#2|)) (-15 -1348 (|#2| |#2| (-1193))) (-15 -3932 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1193))) (-15 -2793 (|#2| |#2|)) (-15 -2793 (|#2| |#2| (-1193))) (-15 -3226 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1193))) (-15 -4180 (|#2| |#2| (-622 |#2|))) (-15 -2764 (|#2| (-417 (-574)) |#2|))) +((-4360 (((-3 |#3| "failed") |#3|) 120)) (-2379 ((|#3| |#3|) 142)) (-2948 (((-3 |#3| "failed") |#3|) 89)) (-2258 ((|#3| |#3|) 132)) (-1459 (((-3 |#3| "failed") |#3|) 65)) (-2358 ((|#3| |#3|) 140)) (-2070 (((-3 |#3| "failed") |#3|) 53)) (-2235 ((|#3| |#3|) 130)) (-1637 (((-3 |#3| "failed") |#3|) 122)) (-2404 ((|#3| |#3|) 144)) (-3018 (((-3 |#3| "failed") |#3|) 91)) (-2280 ((|#3| |#3|) 134)) (-2418 (((-3 |#3| "failed") |#3| (-781)) 41)) (-3914 (((-3 |#3| "failed") |#3|) 81)) (-3113 ((|#3| |#3|) 129)) (-2061 (((-3 |#3| "failed") |#3|) 51)) (-1617 ((|#3| |#3|) 128)) (-4386 (((-3 |#3| "failed") |#3|) 123)) (-2417 ((|#3| |#3|) 145)) (-3766 (((-3 |#3| "failed") |#3|) 92)) (-2289 ((|#3| |#3|) 135)) (-4277 (((-3 |#3| "failed") |#3|) 121)) (-2390 ((|#3| |#3|) 143)) (-3401 (((-3 |#3| "failed") |#3|) 90)) (-2269 ((|#3| |#3|) 133)) (-4133 (((-3 |#3| "failed") |#3|) 67)) (-2368 ((|#3| |#3|) 141)) (-1873 (((-3 |#3| "failed") |#3|) 55)) (-2247 ((|#3| |#3|) 131)) (-2610 (((-3 |#3| "failed") |#3|) 73)) (-2456 ((|#3| |#3|) 148)) (-4295 (((-3 |#3| "failed") |#3|) 114)) (-2320 ((|#3| |#3|) 152)) (-3036 (((-3 |#3| "failed") |#3|) 69)) (-2429 ((|#3| |#3|) 146)) (-4160 (((-3 |#3| "failed") |#3|) 57)) (-2301 ((|#3| |#3|) 136)) (-2954 (((-3 |#3| "failed") |#3|) 77)) (-2480 ((|#3| |#3|) 150)) (-1848 (((-3 |#3| "failed") |#3|) 61)) (-2340 ((|#3| |#3|) 138)) (-3864 (((-3 |#3| "failed") |#3|) 79)) (-2536 ((|#3| |#3|) 151)) (-1529 (((-3 |#3| "failed") |#3|) 63)) (-2349 ((|#3| |#3|) 139)) (-2474 (((-3 |#3| "failed") |#3|) 75)) (-2468 ((|#3| |#3|) 149)) (-3596 (((-3 |#3| "failed") |#3|) 117)) (-2330 ((|#3| |#3|) 153)) (-3661 (((-3 |#3| "failed") |#3|) 71)) (-2443 ((|#3| |#3|) 147)) (-3561 (((-3 |#3| "failed") |#3|) 59)) (-2312 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-417 (-574))) 47 (|has| |#1| (-372))))) +(((-285 |#1| |#2| |#3|) (-13 (-999 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1617 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2235 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2258 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2280 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2390 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2417 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2443 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2480 (|#3| |#3|)) (-15 -2536 (|#3| |#3|)))) (-38 (-417 (-574))) (-1275 |#1|) (-1246 |#1| |#2|)) (T -285)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1275 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1246 *4 *5)))) (-1617 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2235 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2280 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2390 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2417 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2480 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))) +(-13 (-999 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1617 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2235 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2258 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2280 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2390 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2417 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2443 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2480 (|#3| |#3|)) (-15 -2536 (|#3| |#3|)))) +((-4360 (((-3 |#3| "failed") |#3|) 70)) (-2379 ((|#3| |#3|) 137)) (-2948 (((-3 |#3| "failed") |#3|) 54)) (-2258 ((|#3| |#3|) 125)) (-1459 (((-3 |#3| "failed") |#3|) 66)) (-2358 ((|#3| |#3|) 135)) (-2070 (((-3 |#3| "failed") |#3|) 50)) (-2235 ((|#3| |#3|) 123)) (-1637 (((-3 |#3| "failed") |#3|) 74)) (-2404 ((|#3| |#3|) 139)) (-3018 (((-3 |#3| "failed") |#3|) 58)) (-2280 ((|#3| |#3|) 127)) (-2418 (((-3 |#3| "failed") |#3| (-781)) 38)) (-3914 (((-3 |#3| "failed") |#3|) 48)) (-3113 ((|#3| |#3|) 111)) (-2061 (((-3 |#3| "failed") |#3|) 46)) (-1617 ((|#3| |#3|) 122)) (-4386 (((-3 |#3| "failed") |#3|) 76)) (-2417 ((|#3| |#3|) 140)) (-3766 (((-3 |#3| "failed") |#3|) 60)) (-2289 ((|#3| |#3|) 128)) (-4277 (((-3 |#3| "failed") |#3|) 72)) (-2390 ((|#3| |#3|) 138)) (-3401 (((-3 |#3| "failed") |#3|) 56)) (-2269 ((|#3| |#3|) 126)) (-4133 (((-3 |#3| "failed") |#3|) 68)) (-2368 ((|#3| |#3|) 136)) (-1873 (((-3 |#3| "failed") |#3|) 52)) (-2247 ((|#3| |#3|) 124)) (-2610 (((-3 |#3| "failed") |#3|) 78)) (-2456 ((|#3| |#3|) 143)) (-4295 (((-3 |#3| "failed") |#3|) 62)) (-2320 ((|#3| |#3|) 131)) (-3036 (((-3 |#3| "failed") |#3|) 112)) (-2429 ((|#3| |#3|) 141)) (-4160 (((-3 |#3| "failed") |#3|) 100)) (-2301 ((|#3| |#3|) 129)) (-2954 (((-3 |#3| "failed") |#3|) 116)) (-2480 ((|#3| |#3|) 145)) (-1848 (((-3 |#3| "failed") |#3|) 107)) (-2340 ((|#3| |#3|) 133)) (-3864 (((-3 |#3| "failed") |#3|) 117)) (-2536 ((|#3| |#3|) 146)) (-1529 (((-3 |#3| "failed") |#3|) 109)) (-2349 ((|#3| |#3|) 134)) (-2474 (((-3 |#3| "failed") |#3|) 80)) (-2468 ((|#3| |#3|) 144)) (-3596 (((-3 |#3| "failed") |#3|) 64)) (-2330 ((|#3| |#3|) 132)) (-3661 (((-3 |#3| "failed") |#3|) 113)) (-2443 ((|#3| |#3|) 142)) (-3561 (((-3 |#3| "failed") |#3|) 103)) (-2312 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-417 (-574))) 44 (|has| |#1| (-372))))) +(((-286 |#1| |#2| |#3| |#4|) (-13 (-999 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1617 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2235 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2258 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2280 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2390 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2417 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2443 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2480 (|#3| |#3|)) (-15 -2536 (|#3| |#3|)))) (-38 (-417 (-574))) (-1244 |#1|) (-1267 |#1| |#2|) (-999 |#2|)) (T -286)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1244 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1267 *4 *5)) (-4 *6 (-999 *5)))) (-1617 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2235 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2280 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2390 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2417 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2480 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))) +(-13 (-999 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1617 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2235 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2258 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2280 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2390 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2417 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2443 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2480 (|#3| |#3|)) (-15 -2536 (|#3| |#3|)))) +((-1710 (((-112) $) 20)) (-2377 (((-1198) $) 7)) (-2636 (((-3 (-516) "failed") $) 14)) (-2931 (((-3 (-654 $) "failed") $) NIL)) (-3200 (((-3 (-516) "failed") $) 21)) (-2491 (((-3 (-1120) "failed") $) 18)) (-1918 (((-112) $) 16)) (-2951 (((-872) $) NIL)) (-1561 (((-112) $) 9))) +(((-287) (-13 (-623 (-872)) (-10 -8 (-15 -2377 ((-1198) $)) (-15 -1918 ((-112) $)) (-15 -2491 ((-3 (-1120) "failed") $)) (-15 -1710 ((-112) $)) (-15 -3200 ((-3 (-516) "failed") $)) (-15 -1561 ((-112) $)) (-15 -2636 ((-3 (-516) "failed") $)) (-15 -2931 ((-3 (-654 $) "failed") $))))) (T -287)) +((-2377 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-287)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-2491 (*1 *2 *1) (|partial| -12 (-5 *2 (-1120)) (-5 *1 (-287)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-3200 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-2636 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-2931 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2377 ((-1198) $)) (-15 -1918 ((-112) $)) (-15 -2491 ((-3 (-1120) "failed") $)) (-15 -1710 ((-112) $)) (-15 -3200 ((-3 (-516) "failed") $)) (-15 -1561 ((-112) $)) (-15 -2636 ((-3 (-516) "failed") $)) (-15 -2931 ((-3 (-654 $) "failed") $)))) +((-4301 (((-607) $) 10)) (-3253 (((-595) $) 8)) (-3944 (((-299) $) 12)) (-2769 (($ (-595) (-607) (-299)) NIL)) (-2951 (((-872) $) 19))) +(((-288) (-13 (-623 (-872)) (-10 -8 (-15 -2769 ($ (-595) (-607) (-299))) (-15 -3253 ((-595) $)) (-15 -4301 ((-607) $)) (-15 -3944 ((-299) $))))) (T -288)) +((-2769 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-595)) (-5 *3 (-607)) (-5 *4 (-299)) (-5 *1 (-288)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2769 ($ (-595) (-607) (-299))) (-15 -3253 ((-595) $)) (-15 -4301 ((-607) $)) (-15 -3944 ((-299) $)))) +((-2172 (($ (-1 (-112) |#2|) $) 24)) (-2804 (($ $) 38)) (-2424 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3311 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-4349 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1602 (($ |#2| $ (-574)) 20) (($ $ $ (-574)) 22)) (-2855 (($ $ (-574)) 11) (($ $ (-1251 (-574))) 14)) (-2982 (($ $ |#2|) 32) (($ $ $) NIL)) (-4132 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-654 $)) NIL))) +(((-289 |#1| |#2|) (-10 -8 (-15 -4349 (|#1| |#1| |#1|)) (-15 -2424 (|#1| |#2| |#1|)) (-15 -4349 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2424 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1| |#2|)) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -3311 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2172 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3311 (|#1| |#2| |#1|)) (-15 -2804 (|#1| |#1|))) (-290 |#2|) (-1234)) (T -289)) +NIL +(-10 -8 (-15 -4349 (|#1| |#1| |#1|)) (-15 -2424 (|#1| |#2| |#1|)) (-15 -4349 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2424 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1| |#2|)) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -3311 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2172 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3311 (|#1| |#2| |#1|)) (-15 -2804 (|#1| |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2985 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-1923 (($ (-1 (-112) |#1|) $) 88)) (-2172 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2088 (($ $) 86 (|has| |#1| (-1116)))) (-2804 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2424 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1116)))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 70)) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 44 (|has| (-574) (-860)))) (-4349 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 45 (|has| (-574) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3285 (($ |#1| $ (-574)) 91) (($ $ $ (-574)) 90)) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1393 (((-654 (-574)) $) 47)) (-1506 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1822 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) 49)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-4385 (($ $ (-574)) 94) (($ $ (-1251 (-574))) 93)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 72)) (-2982 (($ $ |#1|) 96) (($ $ $) 95)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-290 |#1|) (-141) (-1234)) (T -290)) +((-2982 (*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)))) (-2982 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)))) (-4385 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-4385 (*1 *1 *1 *2) (-12 (-5 *2 (-1251 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-2424 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-3285 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1234)))) (-3285 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-4349 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-1923 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-2424 (*1 *1 *2 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-1116)))) (-2088 (*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-1116)))) (-4349 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-860))))) +(-13 (-661 |t#1|) (-10 -8 (-6 -4460) (-15 -2982 ($ $ |t#1|)) (-15 -2982 ($ $ $)) (-15 -4385 ($ $ (-574))) (-15 -4385 ($ $ (-1251 (-574)))) (-15 -2424 ($ (-1 (-112) |t#1|) $)) (-15 -3285 ($ |t#1| $ (-574))) (-15 -3285 ($ $ $ (-574))) (-15 -4349 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1923 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1116)) (PROGN (-15 -2424 ($ |t#1| $)) (-15 -2088 ($ $))) |%noBranch|) (IF (|has| |t#1| (-860)) (-15 -4349 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) ((** (($ $ $) 10))) (((-291 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-292)) (T -291)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3112 (($ $) 6)) (-1618 (($ $) 7)) (** (($ $ $) 8))) +((-3113 (($ $) 6)) (-1617 (($ $) 7)) (** (($ $ $) 8))) (((-292) (-141)) (T -292)) -((** (*1 *1 *1 *1) (-4 *1 (-292))) (-1618 (*1 *1 *1) (-4 *1 (-292))) (-3112 (*1 *1 *1) (-4 *1 (-292)))) -(-13 (-10 -8 (-15 -3112 ($ $)) (-15 -1618 ($ $)) (-15 ** ($ $ $)))) -((-1920 (((-654 (-1172 |#1|)) (-1172 |#1|) |#1|) 35)) (-2453 ((|#2| |#2| |#1|) 39)) (-3179 ((|#2| |#2| |#1|) 41)) (-3568 ((|#2| |#2| |#1|) 40))) -(((-293 |#1| |#2|) (-10 -7 (-15 -2453 (|#2| |#2| |#1|)) (-15 -3568 (|#2| |#2| |#1|)) (-15 -3179 (|#2| |#2| |#1|)) (-15 -1920 ((-654 (-1172 |#1|)) (-1172 |#1|) |#1|))) (-372) (-1274 |#1|)) (T -293)) -((-1920 (*1 *2 *3 *4) (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1172 *4))) (-5 *1 (-293 *4 *5)) (-5 *3 (-1172 *4)) (-4 *5 (-1274 *4)))) (-3179 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3)))) (-3568 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3)))) (-2453 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3))))) -(-10 -7 (-15 -2453 (|#2| |#2| |#1|)) (-15 -3568 (|#2| |#2| |#1|)) (-15 -3179 (|#2| |#2| |#1|)) (-15 -1920 ((-654 (-1172 |#1|)) (-1172 |#1|) |#1|))) -((-2208 ((|#2| $ |#1|) 6))) -(((-294 |#1| |#2|) (-141) (-1233) (-1233)) (T -294)) -((-2208 (*1 *2 *1 *3) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1233)) (-4 *2 (-1233))))) -(-13 (-1233) (-10 -8 (-15 -2208 (|t#2| $ |t#1|)))) -(((-1233) . T)) -((-2472 ((|#3| $ |#2| |#3|) 12)) (-2399 ((|#3| $ |#2|) 10))) -(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -2472 (|#3| |#1| |#2| |#3|)) (-15 -2399 (|#3| |#1| |#2|))) (-296 |#2| |#3|) (-1115) (-1233)) (T -295)) -NIL -(-10 -8 (-15 -2472 (|#3| |#1| |#2| |#3|)) (-15 -2399 (|#3| |#1| |#2|))) -((-3134 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4459)))) (-2472 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) 11)) (-2208 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-296 |#1| |#2|) (-141) (-1115) (-1233)) (T -296)) -((-2208 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) (-2399 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) (-3134 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) (-2472 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233))))) -(-13 (-294 |t#1| |t#2|) (-10 -8 (-15 -2208 (|t#2| $ |t#1| |t#2|)) (-15 -2399 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4459)) (PROGN (-15 -3134 (|t#2| $ |t#1| |t#2|)) (-15 -2472 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-294 |#1| |#2|) . T) ((-1233) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 37)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 44)) (-3648 (($ $) 41)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3656 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-2799 (($ $ $) 35)) (-2881 (($ |#2| |#3|) 18)) (-3911 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3372 (((-112) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2078 ((|#3| $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 19)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3039 (((-3 $ "failed") $ $) NIL)) (-3364 (((-781) $) 36)) (-2208 ((|#2| $ |#2|) 46)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 23)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-2142 (($) 31 T CONST)) (-2154 (($) 39 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40))) -(((-297 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -2078 (|#3| $)) (-15 -2950 (|#2| $)) (-15 -2881 ($ |#2| |#3|)) (-15 -3039 ((-3 $ "failed") $ $)) (-15 -3911 ((-3 $ "failed") $)) (-15 -1327 ($ $)))) (-174) (-1259 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -297)) -((-3911 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2078 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1259 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2950 (*1 *2 *1) (-12 (-4 *2 (-1259 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2881 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-297 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1259 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3039 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1327 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) -(-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -2078 (|#3| $)) (-15 -2950 (|#2| $)) (-15 -2881 ($ |#2| |#3|)) (-15 -3039 ((-3 $ "failed") $ $)) (-15 -3911 ((-3 $ "failed") $)) (-15 -1327 ($ $)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((** (*1 *1 *1 *1) (-4 *1 (-292))) (-1617 (*1 *1 *1) (-4 *1 (-292))) (-3113 (*1 *1 *1) (-4 *1 (-292)))) +(-13 (-10 -8 (-15 -3113 ($ $)) (-15 -1617 ($ $)) (-15 ** ($ $ $)))) +((-4383 (((-654 (-1173 |#1|)) (-1173 |#1|) |#1|) 35)) (-2459 ((|#2| |#2| |#1|) 39)) (-3153 ((|#2| |#2| |#1|) 41)) (-3568 ((|#2| |#2| |#1|) 40))) +(((-293 |#1| |#2|) (-10 -7 (-15 -2459 (|#2| |#2| |#1|)) (-15 -3568 (|#2| |#2| |#1|)) (-15 -3153 (|#2| |#2| |#1|)) (-15 -4383 ((-654 (-1173 |#1|)) (-1173 |#1|) |#1|))) (-372) (-1275 |#1|)) (T -293)) +((-4383 (*1 *2 *3 *4) (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1173 *4))) (-5 *1 (-293 *4 *5)) (-5 *3 (-1173 *4)) (-4 *5 (-1275 *4)))) (-3153 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3)))) (-3568 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3)))) (-2459 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3))))) +(-10 -7 (-15 -2459 (|#2| |#2| |#1|)) (-15 -3568 (|#2| |#2| |#1|)) (-15 -3153 (|#2| |#2| |#1|)) (-15 -4383 ((-654 (-1173 |#1|)) (-1173 |#1|) |#1|))) +((-2207 ((|#2| $ |#1|) 6))) +(((-294 |#1| |#2|) (-141) (-1234) (-1234)) (T -294)) +((-2207 (*1 *2 *1 *3) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1234)) (-4 *2 (-1234))))) +(-13 (-1234) (-10 -8 (-15 -2207 (|t#2| $ |t#1|)))) +(((-1234) . T)) +((-2473 ((|#3| $ |#2| |#3|) 12)) (-2400 ((|#3| $ |#2|) 10))) +(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -2473 (|#3| |#1| |#2| |#3|)) (-15 -2400 (|#3| |#1| |#2|))) (-296 |#2| |#3|) (-1116) (-1234)) (T -295)) +NIL +(-10 -8 (-15 -2473 (|#3| |#1| |#2| |#3|)) (-15 -2400 (|#3| |#1| |#2|))) +((-3135 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4460)))) (-2473 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) 11)) (-2207 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-296 |#1| |#2|) (-141) (-1116) (-1234)) (T -296)) +((-2207 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234)))) (-2400 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234)))) (-3135 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234)))) (-2473 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234))))) +(-13 (-294 |t#1| |t#2|) (-10 -8 (-15 -2207 (|t#2| $ |t#1| |t#2|)) (-15 -2400 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4460)) (PROGN (-15 -3135 (|t#2| $ |t#1| |t#2|)) (-15 -2473 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-294 |#1| |#2|) . T) ((-1234) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 37)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 44)) (-2884 (($ $) 41)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3245 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-2800 (($ $ $) 35)) (-2882 (($ |#2| |#3|) 18)) (-4322 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-4226 (((-112) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1510 ((|#3| $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 19)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3288 (((-3 $ "failed") $ $) NIL)) (-2098 (((-781) $) 36)) (-2207 ((|#2| $ |#2|) 46)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 23)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-2141 (($) 31 T CONST)) (-2153 (($) 39 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40))) +(((-297 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -1510 (|#3| $)) (-15 -2951 (|#2| $)) (-15 -2882 ($ |#2| |#3|)) (-15 -3288 ((-3 $ "failed") $ $)) (-15 -4322 ((-3 $ "failed") $)) (-15 -1328 ($ $)))) (-174) (-1260 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -297)) +((-4322 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1510 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1260 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2951 (*1 *2 *1) (-12 (-4 *2 (-1260 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2882 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-297 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1260 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3288 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1328 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) +(-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -1510 (|#3| $)) (-15 -2951 (|#2| $)) (-15 -2882 ($ |#2| |#3|)) (-15 -3288 ((-3 $ "failed") $ $)) (-15 -4322 ((-3 $ "failed") $)) (-15 -1328 ($ $)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-298) (-141)) (T -298)) NIL -(-13 (-1064) (-111 $ $) (-10 -7 (-6 -4451))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2209 (((-654 (-1100)) $) 10)) (-2019 (($ (-516) (-516) (-1119) $) 19)) (-2358 (($ (-516) (-654 (-978)) $) 23)) (-3059 (($) 25)) (-4102 (((-701 (-1119)) (-516) (-516) $) 18)) (-2907 (((-654 (-978)) (-516) $) 22)) (-2833 (($) 7)) (-1836 (($) 24)) (-2950 (((-872) $) 29)) (-2360 (($) 26))) -(((-299) (-13 (-623 (-872)) (-10 -8 (-15 -2833 ($)) (-15 -2209 ((-654 (-1100)) $)) (-15 -4102 ((-701 (-1119)) (-516) (-516) $)) (-15 -2019 ($ (-516) (-516) (-1119) $)) (-15 -2907 ((-654 (-978)) (-516) $)) (-15 -2358 ($ (-516) (-654 (-978)) $)) (-15 -1836 ($)) (-15 -3059 ($)) (-15 -2360 ($))))) (T -299)) -((-2833 (*1 *1) (-5 *1 (-299))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-654 (-1100))) (-5 *1 (-299)))) (-4102 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1119))) (-5 *1 (-299)))) (-2019 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-1119)) (-5 *1 (-299)))) (-2907 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-654 (-978))) (-5 *1 (-299)))) (-2358 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-978))) (-5 *1 (-299)))) (-1836 (*1 *1) (-5 *1 (-299))) (-3059 (*1 *1) (-5 *1 (-299))) (-2360 (*1 *1) (-5 *1 (-299)))) -(-13 (-623 (-872)) (-10 -8 (-15 -2833 ($)) (-15 -2209 ((-654 (-1100)) $)) (-15 -4102 ((-701 (-1119)) (-516) (-516) $)) (-15 -2019 ($ (-516) (-516) (-1119) $)) (-15 -2907 ((-654 (-978)) (-516) $)) (-15 -2358 ($ (-516) (-654 (-978)) $)) (-15 -1836 ($)) (-15 -3059 ($)) (-15 -2360 ($)))) -((-2274 (((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|)))) 102)) (-1679 (((-654 (-699 (-417 (-965 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|)))))) (-699 (-417 (-965 |#1|)))) 97) (((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|))) (-781) (-781)) 41)) (-4376 (((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|)))) 99)) (-1655 (((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|)))) 75)) (-2610 (((-654 (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (-699 (-417 (-965 |#1|)))) 74)) (-1539 (((-965 |#1|) (-699 (-417 (-965 |#1|)))) 55) (((-965 |#1|) (-699 (-417 (-965 |#1|))) (-1192)) 56))) -(((-300 |#1|) (-10 -7 (-15 -1539 ((-965 |#1|) (-699 (-417 (-965 |#1|))) (-1192))) (-15 -1539 ((-965 |#1|) (-699 (-417 (-965 |#1|))))) (-15 -2610 ((-654 (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (-699 (-417 (-965 |#1|))))) (-15 -1655 ((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|))))) (-15 -1679 ((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|))) (-781) (-781))) (-15 -1679 ((-654 (-699 (-417 (-965 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|)))))) (-699 (-417 (-965 |#1|))))) (-15 -2274 ((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|))))) (-15 -4376 ((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|)))))) (-462)) (T -300)) -((-4376 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-965 *4)))))) (-2274 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4)))) (|:| |geneigvec| (-654 (-699 (-417 (-965 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-965 *4)))))) (-1679 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-417 (-965 *5)) (-1181 (-1192) (-965 *5)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-965 *5)))))) (-1679 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-417 (-965 *6)) (-1181 (-1192) (-965 *6)))) (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *6))))) (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-965 *6)))))) (-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-417 (-965 *5)) (-1181 (-1192) (-965 *5)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-965 *5)))))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-965 *4)))) (-4 *4 (-462)) (-5 *2 (-654 (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4))))) (-5 *1 (-300 *4)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-965 *4)))) (-5 *2 (-965 *4)) (-5 *1 (-300 *4)) (-4 *4 (-462)))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-965 *5)))) (-5 *4 (-1192)) (-5 *2 (-965 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462))))) -(-10 -7 (-15 -1539 ((-965 |#1|) (-699 (-417 (-965 |#1|))) (-1192))) (-15 -1539 ((-965 |#1|) (-699 (-417 (-965 |#1|))))) (-15 -2610 ((-654 (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (-699 (-417 (-965 |#1|))))) (-15 -1655 ((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|))))) (-15 -1679 ((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|))) (-781) (-781))) (-15 -1679 ((-654 (-699 (-417 (-965 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|)))))) (-699 (-417 (-965 |#1|))))) (-15 -2274 ((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|))))) (-15 -4376 ((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|)))))) -((-1786 (((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)) 14))) -(((-301 |#1| |#2|) (-10 -7 (-15 -1786 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)))) (-1233) (-1233)) (T -301)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6))))) -(-10 -7 (-15 -1786 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3520 (((-112) $) NIL (|has| |#1| (-21)))) (-1970 (($ $) 12)) (-1597 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2558 (($ $ $) 95 (|has| |#1| (-310)))) (-3831 (($) NIL (-2832 (|has| |#1| (-21)) (|has| |#1| (-736))) CONST)) (-3510 (($ $) 51 (|has| |#1| (-21)))) (-3010 (((-3 $ "failed") $) 62 (|has| |#1| (-736)))) (-1818 ((|#1| $) 11)) (-3911 (((-3 $ "failed") $) 60 (|has| |#1| (-736)))) (-3372 (((-112) $) NIL (|has| |#1| (-736)))) (-1786 (($ (-1 |#1| |#1|) $) 14)) (-1804 ((|#1| $) 10)) (-3213 (($ $) 50 (|has| |#1| (-21)))) (-2081 (((-3 $ "failed") $) 61 (|has| |#1| (-736)))) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1327 (($ $) 64 (-2832 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-1480 (((-654 $) $) 85 (|has| |#1| (-566)))) (-2660 (($ $ $) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 $)) 28 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-1192) |#1|) 17 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 21 (|has| |#1| (-524 (-1192) |#1|)))) (-2704 (($ |#1| |#1|) 9)) (-3480 (((-135)) 90 (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) 87 (|has| |#1| (-913 (-1192))))) (-2202 (($ $ $) NIL (|has| |#1| (-483)))) (-3490 (($ $ $) NIL (|has| |#1| (-483)))) (-2950 (($ (-574)) NIL (|has| |#1| (-1064))) (((-112) $) 37 (|has| |#1| (-1115))) (((-872) $) 36 (|has| |#1| (-1115)))) (-4019 (((-781)) 67 (|has| |#1| (-1064)) CONST)) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2142 (($) 47 (|has| |#1| (-21)) CONST)) (-2154 (($) 57 (|has| |#1| (-736)) CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192))))) (-2985 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1115)))) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 92 (-2832 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3089 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3074 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-574)) NIL (|has| |#1| (-483))) (($ $ (-781)) NIL (|has| |#1| (-736))) (($ $ (-934)) NIL (|has| |#1| (-1127)))) (* (($ $ |#1|) 55 (|has| |#1| (-1127))) (($ |#1| $) 54 (|has| |#1| (-1127))) (($ $ $) 53 (|has| |#1| (-1127))) (($ (-574) $) 70 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-934) $) NIL (|has| |#1| (-25))))) -(((-302 |#1|) (-13 (-1233) (-10 -8 (-15 -2985 ($ |#1| |#1|)) (-15 -2704 ($ |#1| |#1|)) (-15 -1970 ($ $)) (-15 -1804 (|#1| $)) (-15 -1818 (|#1| $)) (-15 -1786 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1192) |#1|)) (-6 (-524 (-1192) |#1|)) |%noBranch|) (IF (|has| |#1| (-1115)) (PROGN (-6 (-1115)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2660 ($ $ $)) (-15 -2660 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3074 ($ |#1| $)) (-15 -3074 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3213 ($ $)) (-15 -3510 ($ $)) (-15 -3089 ($ |#1| $)) (-15 -3089 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1127)) (PROGN (-6 (-1127)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -2081 ((-3 $ "failed") $)) (-15 -3010 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -2081 ((-3 $ "failed") $)) (-15 -3010 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-6 (-1064)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -1480 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-913 (-1192))) (-6 (-913 (-1192))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1290 |#1|)) (-15 -3098 ($ $ $)) (-15 -1327 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2558 ($ $ $)) |%noBranch|))) (-1233)) (T -302)) -((-2985 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) (-2704 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) (-1970 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) (-1804 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) (-1818 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-302 *3)))) (-2660 (*1 *1 *1 *1) (-12 (-4 *2 (-317 *2)) (-4 *2 (-1115)) (-4 *2 (-1233)) (-5 *1 (-302 *2)))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1115)) (-4 *3 (-1233)) (-5 *1 (-302 *3)))) (-3074 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1233)))) (-3074 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1233)))) (-3213 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) (-3510 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) (-3089 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) (-2081 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1233)))) (-3010 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1233)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566)) (-4 *3 (-1233)))) (-2558 (*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1233)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1127)) (-4 *2 (-1233)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1127)) (-4 *2 (-1233)))) (-3098 (*1 *1 *1 *1) (-2832 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1233))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1233))))) (-1327 (*1 *1 *1) (-2832 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1233))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1233)))))) -(-13 (-1233) (-10 -8 (-15 -2985 ($ |#1| |#1|)) (-15 -2704 ($ |#1| |#1|)) (-15 -1970 ($ $)) (-15 -1804 (|#1| $)) (-15 -1818 (|#1| $)) (-15 -1786 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1192) |#1|)) (-6 (-524 (-1192) |#1|)) |%noBranch|) (IF (|has| |#1| (-1115)) (PROGN (-6 (-1115)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2660 ($ $ $)) (-15 -2660 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3074 ($ |#1| $)) (-15 -3074 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3213 ($ $)) (-15 -3510 ($ $)) (-15 -3089 ($ |#1| $)) (-15 -3089 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1127)) (PROGN (-6 (-1127)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -2081 ((-3 $ "failed") $)) (-15 -3010 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -2081 ((-3 $ "failed") $)) (-15 -3010 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-6 (-1064)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -1480 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-913 (-1192))) (-6 (-913 (-1192))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1290 |#1|)) (-15 -3098 ($ $ $)) (-15 -1327 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2558 ($ $ $)) |%noBranch|))) -((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3287 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) NIL)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2171 (((-3 |#2| "failed") |#1| $) NIL)) (-3831 (($) NIL T CONST)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-1941 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) NIL)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1873 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-860)))) (-2247 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1772 (((-654 |#1|) $) NIL)) (-2056 (((-112) |#1| $) NIL)) (-1748 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2609 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-3228 (((-654 |#1|) $) NIL)) (-3071 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-2294 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL)) (-4276 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3667 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3838 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-303 |#1| |#2|) (-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) (-1115) (-1115)) (T -303)) -NIL -(-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) -((-2692 (((-320) (-1174) (-654 (-1174))) 17) (((-320) (-1174) (-1174)) 16) (((-320) (-654 (-1174))) 15) (((-320) (-1174)) 14))) -(((-304) (-10 -7 (-15 -2692 ((-320) (-1174))) (-15 -2692 ((-320) (-654 (-1174)))) (-15 -2692 ((-320) (-1174) (-1174))) (-15 -2692 ((-320) (-1174) (-654 (-1174)))))) (T -304)) -((-2692 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1174))) (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2692 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-320)) (-5 *1 (-304)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-304))))) -(-10 -7 (-15 -2692 ((-320) (-1174))) (-15 -2692 ((-320) (-654 (-1174)))) (-15 -2692 ((-320) (-1174) (-1174))) (-15 -2692 ((-320) (-1174) (-654 (-1174))))) -((-1786 ((|#2| (-1 |#2| |#1|) (-1174) (-622 |#1|)) 18))) -(((-305 |#1| |#2|) (-10 -7 (-15 -1786 (|#2| (-1 |#2| |#1|) (-1174) (-622 |#1|)))) (-310) (-1233)) (T -305)) -((-1786 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1174)) (-5 *5 (-622 *6)) (-4 *6 (-310)) (-4 *2 (-1233)) (-5 *1 (-305 *6 *2))))) -(-10 -7 (-15 -1786 (|#2| (-1 |#2| |#1|) (-1174) (-622 |#1|)))) -((-1786 ((|#2| (-1 |#2| |#1|) (-622 |#1|)) 17))) -(((-306 |#1| |#2|) (-10 -7 (-15 -1786 (|#2| (-1 |#2| |#1|) (-622 |#1|)))) (-310) (-310)) (T -306)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-622 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-306 *5 *2))))) -(-10 -7 (-15 -1786 (|#2| (-1 |#2| |#1|) (-622 |#1|)))) -((-3227 (((-112) (-227)) 12))) -(((-307 |#1| |#2|) (-10 -7 (-15 -3227 ((-112) (-227)))) (-227) (-227)) (T -307)) -((-3227 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3227 ((-112) (-227)))) -((-3597 (((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227)))) 118)) (-1777 (((-1172 (-227)) (-1283 (-324 (-227))) (-654 (-1192)) (-1109 (-853 (-227)))) 135) (((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227)))) 72)) (-1499 (((-654 (-1174)) (-1172 (-227))) NIL)) (-2806 (((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227)))) 69)) (-4417 (((-654 (-227)) (-965 (-417 (-574))) (-1192) (-1109 (-853 (-227)))) 59)) (-2426 (((-654 (-1174)) (-654 (-227))) NIL)) (-3768 (((-227) (-1109 (-853 (-227)))) 29)) (-4139 (((-227) (-1109 (-853 (-227)))) 30)) (-3953 (((-112) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3324 (((-1174) (-227)) NIL))) -(((-308) (-10 -7 (-15 -3768 ((-227) (-1109 (-853 (-227))))) (-15 -4139 ((-227) (-1109 (-853 (-227))))) (-15 -3953 ((-112) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2806 ((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227))))) (-15 -3597 ((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -1777 ((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -1777 ((-1172 (-227)) (-1283 (-324 (-227))) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -4417 ((-654 (-227)) (-965 (-417 (-574))) (-1192) (-1109 (-853 (-227))))) (-15 -3324 ((-1174) (-227))) (-15 -2426 ((-654 (-1174)) (-654 (-227)))) (-15 -1499 ((-654 (-1174)) (-1172 (-227)))))) (T -308)) -((-1499 (*1 *2 *3) (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-308)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-308)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-308)))) (-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *4 (-1192)) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-1777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *4 (-654 (-1192))) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308)))) (-1777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1192))) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1192))) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308)))) (-2806 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1192)) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-308)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308))))) -(-10 -7 (-15 -3768 ((-227) (-1109 (-853 (-227))))) (-15 -4139 ((-227) (-1109 (-853 (-227))))) (-15 -3953 ((-112) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2806 ((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227))))) (-15 -3597 ((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -1777 ((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -1777 ((-1172 (-227)) (-1283 (-324 (-227))) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -4417 ((-654 (-227)) (-965 (-417 (-574))) (-1192) (-1109 (-853 (-227))))) (-15 -3324 ((-1174) (-227))) (-15 -2426 ((-654 (-1174)) (-654 (-227)))) (-15 -1499 ((-654 (-1174)) (-1172 (-227))))) -((-4064 (((-654 (-622 $)) $) 27)) (-2558 (($ $ (-302 $)) 78) (($ $ (-654 (-302 $))) 139) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-1705 (((-3 (-622 $) "failed") $) 127)) (-2216 (((-622 $) $) 126)) (-2116 (($ $) 17) (($ (-654 $)) 54)) (-3294 (((-654 (-115)) $) 35)) (-4150 (((-115) (-115)) 88)) (-3512 (((-112) $) 150)) (-1786 (($ (-1 $ $) (-622 $)) 86)) (-4367 (((-3 (-622 $) "failed") $) 94)) (-1783 (($ (-115) $) 59) (($ (-115) (-654 $)) 110)) (-3571 (((-112) $ (-115)) 132) (((-112) $ (-1192)) 131)) (-1847 (((-781) $) 44)) (-4277 (((-112) $ $) 57) (((-112) $ (-1192)) 49)) (-3694 (((-112) $) 148)) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) 137) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) 81) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1192) (-1 $ (-654 $))) 67) (($ $ (-1192) (-1 $ $)) 72) (($ $ (-654 (-115)) (-654 (-1 $ $))) 80) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 82) (($ $ (-115) (-1 $ (-654 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2208 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-654 $)) 123)) (-1834 (($ $) 51) (($ $ $) 135)) (-2079 (($ $) 15) (($ (-654 $)) 53)) (-4207 (((-112) (-115)) 21))) -(((-309 |#1|) (-10 -8 (-15 -3512 ((-112) |#1|)) (-15 -3694 ((-112) |#1|)) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| |#1|)))) (-15 -4277 ((-112) |#1| (-1192))) (-15 -4277 ((-112) |#1| |#1|)) (-15 -1786 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1783 (|#1| (-115) (-654 |#1|))) (-15 -1783 (|#1| (-115) |#1|)) (-15 -3571 ((-112) |#1| (-1192))) (-15 -3571 ((-112) |#1| (-115))) (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3294 ((-654 (-115)) |#1|)) (-15 -4064 ((-654 (-622 |#1|)) |#1|)) (-15 -4367 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1847 ((-781) |#1|)) (-15 -1834 (|#1| |#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -2116 (|#1| (-654 |#1|))) (-15 -2116 (|#1| |#1|)) (-15 -2079 (|#1| (-654 |#1|))) (-15 -2079 (|#1| |#1|)) (-15 -2558 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2558 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2558 (|#1| |#1| (-302 |#1|))) (-15 -2208 (|#1| (-115) (-654 |#1|))) (-15 -2208 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1705 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|))) (-310)) (T -309)) -((-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310))))) -(-10 -8 (-15 -3512 ((-112) |#1|)) (-15 -3694 ((-112) |#1|)) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| |#1|)))) (-15 -4277 ((-112) |#1| (-1192))) (-15 -4277 ((-112) |#1| |#1|)) (-15 -1786 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1783 (|#1| (-115) (-654 |#1|))) (-15 -1783 (|#1| (-115) |#1|)) (-15 -3571 ((-112) |#1| (-1192))) (-15 -3571 ((-112) |#1| (-115))) (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3294 ((-654 (-115)) |#1|)) (-15 -4064 ((-654 (-622 |#1|)) |#1|)) (-15 -4367 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1847 ((-781) |#1|)) (-15 -1834 (|#1| |#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -2116 (|#1| (-654 |#1|))) (-15 -2116 (|#1| |#1|)) (-15 -2079 (|#1| (-654 |#1|))) (-15 -2079 (|#1| |#1|)) (-15 -2558 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2558 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2558 (|#1| |#1| (-302 |#1|))) (-15 -2208 (|#1| (-115) (-654 |#1|))) (-15 -2208 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1705 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|))) -((-2863 (((-112) $ $) 7)) (-4064 (((-654 (-622 $)) $) 39)) (-2558 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-1705 (((-3 (-622 $) "failed") $) 64)) (-2216 (((-622 $) $) 65)) (-2116 (($ $) 46) (($ (-654 $)) 45)) (-3294 (((-654 (-115)) $) 38)) (-4150 (((-115) (-115)) 37)) (-3512 (((-112) $) 17 (|has| $ (-1053 (-574))))) (-4311 (((-1188 $) (-622 $)) 20 (|has| $ (-1064)))) (-1786 (($ (-1 $ $) (-622 $)) 31)) (-4367 (((-3 (-622 $) "failed") $) 41)) (-3945 (((-1174) $) 10)) (-4138 (((-654 (-622 $)) $) 40)) (-1783 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-3571 (((-112) $ (-115)) 35) (((-112) $ (-1192)) 34)) (-1847 (((-781) $) 42)) (-3939 (((-1135) $) 11)) (-4277 (((-112) $ $) 30) (((-112) $ (-1192)) 29)) (-3694 (((-112) $) 18 (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1192)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1192) (-1 $ (-654 $))) 26) (($ $ (-1192) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2208 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-1834 (($ $) 44) (($ $ $) 43)) (-2290 (($ $) 19 (|has| $ (-1064)))) (-2950 (((-872) $) 12) (($ (-622 $)) 63)) (-2079 (($ $) 48) (($ (-654 $)) 47)) (-4207 (((-112) (-115)) 36)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(-13 (-1065) (-111 $ $) (-10 -7 (-6 -4452))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-3935 (((-654 (-1101)) $) 10)) (-2701 (($ (-516) (-516) (-1120) $) 19)) (-3513 (($ (-516) (-654 (-979)) $) 23)) (-4229 (($) 25)) (-3086 (((-701 (-1120)) (-516) (-516) $) 18)) (-2047 (((-654 (-979)) (-516) $) 22)) (-3336 (($) 7)) (-1833 (($) 24)) (-2951 (((-872) $) 29)) (-3645 (($) 26))) +(((-299) (-13 (-623 (-872)) (-10 -8 (-15 -3336 ($)) (-15 -3935 ((-654 (-1101)) $)) (-15 -3086 ((-701 (-1120)) (-516) (-516) $)) (-15 -2701 ($ (-516) (-516) (-1120) $)) (-15 -2047 ((-654 (-979)) (-516) $)) (-15 -3513 ($ (-516) (-654 (-979)) $)) (-15 -1833 ($)) (-15 -4229 ($)) (-15 -3645 ($))))) (T -299)) +((-3336 (*1 *1) (-5 *1 (-299))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-654 (-1101))) (-5 *1 (-299)))) (-3086 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1120))) (-5 *1 (-299)))) (-2701 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-1120)) (-5 *1 (-299)))) (-2047 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-654 (-979))) (-5 *1 (-299)))) (-3513 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-979))) (-5 *1 (-299)))) (-1833 (*1 *1) (-5 *1 (-299))) (-4229 (*1 *1) (-5 *1 (-299))) (-3645 (*1 *1) (-5 *1 (-299)))) +(-13 (-623 (-872)) (-10 -8 (-15 -3336 ($)) (-15 -3935 ((-654 (-1101)) $)) (-15 -3086 ((-701 (-1120)) (-516) (-516) $)) (-15 -2701 ($ (-516) (-516) (-1120) $)) (-15 -2047 ((-654 (-979)) (-516) $)) (-15 -3513 ($ (-516) (-654 (-979)) $)) (-15 -1833 ($)) (-15 -4229 ($)) (-15 -3645 ($)))) +((-1734 (((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|)))) 102)) (-2938 (((-654 (-699 (-417 (-966 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|)))))) (-699 (-417 (-966 |#1|)))) 97) (((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|))) (-781) (-781)) 41)) (-3822 (((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|)))) 99)) (-1985 (((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|)))) 75)) (-2920 (((-654 (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (-699 (-417 (-966 |#1|)))) 74)) (-2648 (((-966 |#1|) (-699 (-417 (-966 |#1|)))) 55) (((-966 |#1|) (-699 (-417 (-966 |#1|))) (-1193)) 56))) +(((-300 |#1|) (-10 -7 (-15 -2648 ((-966 |#1|) (-699 (-417 (-966 |#1|))) (-1193))) (-15 -2648 ((-966 |#1|) (-699 (-417 (-966 |#1|))))) (-15 -2920 ((-654 (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (-699 (-417 (-966 |#1|))))) (-15 -1985 ((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|))))) (-15 -2938 ((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|))) (-781) (-781))) (-15 -2938 ((-654 (-699 (-417 (-966 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|)))))) (-699 (-417 (-966 |#1|))))) (-15 -1734 ((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|))))) (-15 -3822 ((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|)))))) (-462)) (T -300)) +((-3822 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-966 *4)))))) (-1734 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4)))) (|:| |geneigvec| (-654 (-699 (-417 (-966 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-966 *4)))))) (-2938 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-417 (-966 *5)) (-1182 (-1193) (-966 *5)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-966 *5)))))) (-2938 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-417 (-966 *6)) (-1182 (-1193) (-966 *6)))) (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *6))))) (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-966 *6)))))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-417 (-966 *5)) (-1182 (-1193) (-966 *5)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-966 *5)))))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-966 *4)))) (-4 *4 (-462)) (-5 *2 (-654 (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4))))) (-5 *1 (-300 *4)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-966 *4)))) (-5 *2 (-966 *4)) (-5 *1 (-300 *4)) (-4 *4 (-462)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-966 *5)))) (-5 *4 (-1193)) (-5 *2 (-966 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462))))) +(-10 -7 (-15 -2648 ((-966 |#1|) (-699 (-417 (-966 |#1|))) (-1193))) (-15 -2648 ((-966 |#1|) (-699 (-417 (-966 |#1|))))) (-15 -2920 ((-654 (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (-699 (-417 (-966 |#1|))))) (-15 -1985 ((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|))))) (-15 -2938 ((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|))) (-781) (-781))) (-15 -2938 ((-654 (-699 (-417 (-966 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|)))))) (-699 (-417 (-966 |#1|))))) (-15 -1734 ((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|))))) (-15 -3822 ((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|)))))) +((-1785 (((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)) 14))) +(((-301 |#1| |#2|) (-10 -7 (-15 -1785 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)))) (-1234) (-1234)) (T -301)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6))))) +(-10 -7 (-15 -1785 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1431 (((-112) $) NIL (|has| |#1| (-21)))) (-3218 (($ $) 12)) (-2600 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2559 (($ $ $) 95 (|has| |#1| (-310)))) (-3250 (($) NIL (-2833 (|has| |#1| (-21)) (|has| |#1| (-736))) CONST)) (-4355 (($ $) 51 (|has| |#1| (-21)))) (-3830 (((-3 $ "failed") $) 62 (|has| |#1| (-736)))) (-1814 ((|#1| $) 11)) (-4322 (((-3 $ "failed") $) 60 (|has| |#1| (-736)))) (-4226 (((-112) $) NIL (|has| |#1| (-736)))) (-1785 (($ (-1 |#1| |#1|) $) 14)) (-1804 ((|#1| $) 10)) (-2631 (($ $) 50 (|has| |#1| (-21)))) (-4154 (((-3 $ "failed") $) 61 (|has| |#1| (-736)))) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1328 (($ $) 64 (-2833 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-4403 (((-654 $) $) 85 (|has| |#1| (-566)))) (-2661 (($ $ $) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 $)) 28 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-1193) |#1|) 17 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 21 (|has| |#1| (-524 (-1193) |#1|)))) (-2707 (($ |#1| |#1|) 9)) (-2995 (((-135)) 90 (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 87 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193))))) (-3617 (($ $ $) NIL (|has| |#1| (-483)))) (-3955 (($ $ $) NIL (|has| |#1| (-483)))) (-2951 (($ (-574)) NIL (|has| |#1| (-1065))) (((-112) $) 37 (|has| |#1| (-1116))) (((-872) $) 36 (|has| |#1| (-1116)))) (-2898 (((-781)) 67 (|has| |#1| (-1065)) CONST)) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2141 (($) 47 (|has| |#1| (-21)) CONST)) (-2153 (($) 57 (|has| |#1| (-736)) CONST)) (-3584 (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193))))) (-2986 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1116)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 92 (-2833 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3090 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3074 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-574)) NIL (|has| |#1| (-483))) (($ $ (-781)) NIL (|has| |#1| (-736))) (($ $ (-935)) NIL (|has| |#1| (-1128)))) (* (($ $ |#1|) 55 (|has| |#1| (-1128))) (($ |#1| $) 54 (|has| |#1| (-1128))) (($ $ $) 53 (|has| |#1| (-1128))) (($ (-574) $) 70 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-935) $) NIL (|has| |#1| (-25))))) +(((-302 |#1|) (-13 (-1234) (-10 -8 (-15 -2986 ($ |#1| |#1|)) (-15 -2707 ($ |#1| |#1|)) (-15 -3218 ($ $)) (-15 -1804 (|#1| $)) (-15 -1814 (|#1| $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1193) |#1|)) (-6 (-524 (-1193) |#1|)) |%noBranch|) (IF (|has| |#1| (-1116)) (PROGN (-6 (-1116)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2661 ($ $ $)) (-15 -2661 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3074 ($ |#1| $)) (-15 -3074 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2631 ($ $)) (-15 -4355 ($ $)) (-15 -3090 ($ |#1| $)) (-15 -3090 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1128)) (PROGN (-6 (-1128)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -4154 ((-3 $ "failed") $)) (-15 -3830 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -4154 ((-3 $ "failed") $)) (-15 -3830 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-6 (-1065)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -4403 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-912 (-1193))) (-6 (-912 (-1193))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1291 |#1|)) (-15 -3103 ($ $ $)) (-15 -1328 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2559 ($ $ $)) |%noBranch|))) (-1234)) (T -302)) +((-2986 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) (-2707 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) (-3218 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) (-1804 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) (-1814 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-302 *3)))) (-2661 (*1 *1 *1 *1) (-12 (-4 *2 (-317 *2)) (-4 *2 (-1116)) (-4 *2 (-1234)) (-5 *1 (-302 *2)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1116)) (-4 *3 (-1234)) (-5 *1 (-302 *3)))) (-3074 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1234)))) (-3074 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1234)))) (-2631 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))) (-4355 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))) (-3090 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))) (-3090 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))) (-4154 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1234)))) (-3830 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1234)))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566)) (-4 *3 (-1234)))) (-2559 (*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1234)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1128)) (-4 *2 (-1234)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1128)) (-4 *2 (-1234)))) (-3103 (*1 *1 *1 *1) (-2833 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1234))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1234))))) (-1328 (*1 *1 *1) (-2833 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1234))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1234)))))) +(-13 (-1234) (-10 -8 (-15 -2986 ($ |#1| |#1|)) (-15 -2707 ($ |#1| |#1|)) (-15 -3218 ($ $)) (-15 -1804 (|#1| $)) (-15 -1814 (|#1| $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1193) |#1|)) (-6 (-524 (-1193) |#1|)) |%noBranch|) (IF (|has| |#1| (-1116)) (PROGN (-6 (-1116)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2661 ($ $ $)) (-15 -2661 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3074 ($ |#1| $)) (-15 -3074 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2631 ($ $)) (-15 -4355 ($ $)) (-15 -3090 ($ |#1| $)) (-15 -3090 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1128)) (PROGN (-6 (-1128)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -4154 ((-3 $ "failed") $)) (-15 -3830 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -4154 ((-3 $ "failed") $)) (-15 -3830 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-6 (-1065)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -4403 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-912 (-1193))) (-6 (-912 (-1193))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1291 |#1|)) (-15 -3103 ($ $ $)) (-15 -1328 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2559 ($ $ $)) |%noBranch|))) +((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2985 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) NIL)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2171 (((-3 |#2| "failed") |#1| $) NIL)) (-3250 (($) NIL T CONST)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2424 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) NIL)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2036 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-1698 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1771 (((-654 |#1|) $) NIL)) (-2229 (((-112) |#1| $) NIL)) (-2375 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3285 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1393 (((-654 |#1|) $) NIL)) (-1506 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-2183 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1822 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3162 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4069 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-303 |#1| |#2|) (-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) (-1116) (-1116)) (T -303)) +NIL +(-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) +((-2693 (((-320) (-1175) (-654 (-1175))) 17) (((-320) (-1175) (-1175)) 16) (((-320) (-654 (-1175))) 15) (((-320) (-1175)) 14))) +(((-304) (-10 -7 (-15 -2693 ((-320) (-1175))) (-15 -2693 ((-320) (-654 (-1175)))) (-15 -2693 ((-320) (-1175) (-1175))) (-15 -2693 ((-320) (-1175) (-654 (-1175)))))) (T -304)) +((-2693 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1175))) (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2693 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-320)) (-5 *1 (-304)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-304))))) +(-10 -7 (-15 -2693 ((-320) (-1175))) (-15 -2693 ((-320) (-654 (-1175)))) (-15 -2693 ((-320) (-1175) (-1175))) (-15 -2693 ((-320) (-1175) (-654 (-1175))))) +((-1785 ((|#2| (-1 |#2| |#1|) (-1175) (-622 |#1|)) 18))) +(((-305 |#1| |#2|) (-10 -7 (-15 -1785 (|#2| (-1 |#2| |#1|) (-1175) (-622 |#1|)))) (-310) (-1234)) (T -305)) +((-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1175)) (-5 *5 (-622 *6)) (-4 *6 (-310)) (-4 *2 (-1234)) (-5 *1 (-305 *6 *2))))) +(-10 -7 (-15 -1785 (|#2| (-1 |#2| |#1|) (-1175) (-622 |#1|)))) +((-1785 ((|#2| (-1 |#2| |#1|) (-622 |#1|)) 17))) +(((-306 |#1| |#2|) (-10 -7 (-15 -1785 (|#2| (-1 |#2| |#1|) (-622 |#1|)))) (-310) (-310)) (T -306)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-622 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-306 *5 *2))))) +(-10 -7 (-15 -1785 (|#2| (-1 |#2| |#1|) (-622 |#1|)))) +((-2780 (((-112) (-227)) 12))) +(((-307 |#1| |#2|) (-10 -7 (-15 -2780 ((-112) (-227)))) (-227) (-227)) (T -307)) +((-2780 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2780 ((-112) (-227)))) +((-3442 (((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227)))) 118)) (-3516 (((-1173 (-227)) (-1284 (-324 (-227))) (-654 (-1193)) (-1110 (-853 (-227)))) 135) (((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227)))) 72)) (-3395 (((-654 (-1175)) (-1173 (-227))) NIL)) (-2741 (((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227)))) 69)) (-1999 (((-654 (-227)) (-966 (-417 (-574))) (-1193) (-1110 (-853 (-227)))) 59)) (-3531 (((-654 (-1175)) (-654 (-227))) NIL)) (-3148 (((-227) (-1110 (-853 (-227)))) 29)) (-3331 (((-227) (-1110 (-853 (-227)))) 30)) (-1675 (((-112) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3980 (((-1175) (-227)) NIL))) +(((-308) (-10 -7 (-15 -3148 ((-227) (-1110 (-853 (-227))))) (-15 -3331 ((-227) (-1110 (-853 (-227))))) (-15 -1675 ((-112) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2741 ((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227))))) (-15 -3442 ((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -3516 ((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -3516 ((-1173 (-227)) (-1284 (-324 (-227))) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -1999 ((-654 (-227)) (-966 (-417 (-574))) (-1193) (-1110 (-853 (-227))))) (-15 -3980 ((-1175) (-227))) (-15 -3531 ((-654 (-1175)) (-654 (-227)))) (-15 -3395 ((-654 (-1175)) (-1173 (-227)))))) (T -308)) +((-3395 (*1 *2 *3) (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-308)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-308)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-308)))) (-1999 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *4 (-1193)) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *4 (-654 (-1193))) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308)))) (-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1193))) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308)))) (-3442 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1193))) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308)))) (-2741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1193)) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-308)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308))))) +(-10 -7 (-15 -3148 ((-227) (-1110 (-853 (-227))))) (-15 -3331 ((-227) (-1110 (-853 (-227))))) (-15 -1675 ((-112) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2741 ((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227))))) (-15 -3442 ((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -3516 ((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -3516 ((-1173 (-227)) (-1284 (-324 (-227))) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -1999 ((-654 (-227)) (-966 (-417 (-574))) (-1193) (-1110 (-853 (-227))))) (-15 -3980 ((-1175) (-227))) (-15 -3531 ((-654 (-1175)) (-654 (-227)))) (-15 -3395 ((-654 (-1175)) (-1173 (-227))))) +((-4068 (((-654 (-622 $)) $) 27)) (-2559 (($ $ (-302 $)) 78) (($ $ (-654 (-302 $))) 139) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-1704 (((-3 (-622 $) "failed") $) 127)) (-2214 (((-622 $) $) 126)) (-1391 (($ $) 17) (($ (-654 $)) 54)) (-1649 (((-654 (-115)) $) 35)) (-4150 (((-115) (-115)) 88)) (-1823 (((-112) $) 150)) (-1785 (($ (-1 $ $) (-622 $)) 86)) (-3452 (((-3 (-622 $) "failed") $) 94)) (-1782 (($ (-115) $) 59) (($ (-115) (-654 $)) 110)) (-2154 (((-112) $ (-115)) 132) (((-112) $ (-1193)) 131)) (-1847 (((-781) $) 44)) (-3595 (((-112) $ $) 57) (((-112) $ (-1193)) 49)) (-2120 (((-112) $) 148)) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) 137) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) 81) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1193) (-1 $ (-654 $))) 67) (($ $ (-1193) (-1 $ $)) 72) (($ $ (-654 (-115)) (-654 (-1 $ $))) 80) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 82) (($ $ (-115) (-1 $ (-654 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2207 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-654 $)) 123)) (-3078 (($ $) 51) (($ $ $) 135)) (-2078 (($ $) 15) (($ (-654 $)) 53)) (-2420 (((-112) (-115)) 21))) +(((-309 |#1|) (-10 -8 (-15 -1823 ((-112) |#1|)) (-15 -2120 ((-112) |#1|)) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| |#1|)))) (-15 -3595 ((-112) |#1| (-1193))) (-15 -3595 ((-112) |#1| |#1|)) (-15 -1785 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1782 (|#1| (-115) (-654 |#1|))) (-15 -1782 (|#1| (-115) |#1|)) (-15 -2154 ((-112) |#1| (-1193))) (-15 -2154 ((-112) |#1| (-115))) (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -1649 ((-654 (-115)) |#1|)) (-15 -4068 ((-654 (-622 |#1|)) |#1|)) (-15 -3452 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1847 ((-781) |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -1391 (|#1| (-654 |#1|))) (-15 -1391 (|#1| |#1|)) (-15 -2078 (|#1| (-654 |#1|))) (-15 -2078 (|#1| |#1|)) (-15 -2559 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2559 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2559 (|#1| |#1| (-302 |#1|))) (-15 -2207 (|#1| (-115) (-654 |#1|))) (-15 -2207 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1704 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2214 ((-622 |#1|) |#1|))) (-310)) (T -309)) +((-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310))))) +(-10 -8 (-15 -1823 ((-112) |#1|)) (-15 -2120 ((-112) |#1|)) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| |#1|)))) (-15 -3595 ((-112) |#1| (-1193))) (-15 -3595 ((-112) |#1| |#1|)) (-15 -1785 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1782 (|#1| (-115) (-654 |#1|))) (-15 -1782 (|#1| (-115) |#1|)) (-15 -2154 ((-112) |#1| (-1193))) (-15 -2154 ((-112) |#1| (-115))) (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -1649 ((-654 (-115)) |#1|)) (-15 -4068 ((-654 (-622 |#1|)) |#1|)) (-15 -3452 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1847 ((-781) |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -1391 (|#1| (-654 |#1|))) (-15 -1391 (|#1| |#1|)) (-15 -2078 (|#1| (-654 |#1|))) (-15 -2078 (|#1| |#1|)) (-15 -2559 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2559 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2559 (|#1| |#1| (-302 |#1|))) (-15 -2207 (|#1| (-115) (-654 |#1|))) (-15 -2207 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1704 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2214 ((-622 |#1|) |#1|))) +((-2864 (((-112) $ $) 7)) (-4068 (((-654 (-622 $)) $) 39)) (-2559 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-1704 (((-3 (-622 $) "failed") $) 64)) (-2214 (((-622 $) $) 65)) (-1391 (($ $) 46) (($ (-654 $)) 45)) (-1649 (((-654 (-115)) $) 38)) (-4150 (((-115) (-115)) 37)) (-1823 (((-112) $) 17 (|has| $ (-1054 (-574))))) (-3746 (((-1189 $) (-622 $)) 20 (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) 31)) (-3452 (((-3 (-622 $) "failed") $) 41)) (-1489 (((-1175) $) 10)) (-4139 (((-654 (-622 $)) $) 40)) (-1782 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-2154 (((-112) $ (-115)) 35) (((-112) $ (-1193)) 34)) (-1847 (((-781) $) 42)) (-3940 (((-1136) $) 11)) (-3595 (((-112) $ $) 30) (((-112) $ (-1193)) 29)) (-2120 (((-112) $) 18 (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1193)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1193) (-1 $ (-654 $))) 26) (($ $ (-1193) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2207 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-3078 (($ $) 44) (($ $ $) 43)) (-4379 (($ $) 19 (|has| $ (-1065)))) (-2951 (((-872) $) 12) (($ (-622 $)) 63)) (-2078 (($ $) 48) (($ (-654 $)) 47)) (-2420 (((-112) (-115)) 36)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) (((-310) (-141)) (T -310)) -((-2208 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2208 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2208 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2208 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2208 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2558 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *1)) (-4 *1 (-310)))) (-2558 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *1))) (-4 *1 (-310)))) (-2558 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-622 *1))) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2079 (*1 *1 *1) (-4 *1 (-310))) (-2079 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-2116 (*1 *1 *1) (-4 *1 (-310))) (-2116 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-1834 (*1 *1 *1) (-4 *1 (-310))) (-1834 (*1 *1 *1 *1) (-4 *1 (-310))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-781)))) (-4367 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115))))) (-4150 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4207 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3571 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3571 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1192)) (-5 *2 (-112)))) (-1783 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1783 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-1786 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-622 *1)) (-4 *1 (-310)))) (-4277 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))) (-4277 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1192)) (-5 *2 (-112)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1064)) (-4 *1 (-310)) (-5 *2 (-1188 *1)))) (-2290 (*1 *1 *1) (-12 (-4 *1 (-1064)) (-4 *1 (-310)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1053 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-1053 (-574))) (-4 *1 (-310)) (-5 *2 (-112))))) -(-13 (-1115) (-1053 (-622 $)) (-524 (-622 $) $) (-317 $) (-10 -8 (-15 -2208 ($ (-115) $)) (-15 -2208 ($ (-115) $ $)) (-15 -2208 ($ (-115) $ $ $)) (-15 -2208 ($ (-115) $ $ $ $)) (-15 -2208 ($ (-115) (-654 $))) (-15 -2558 ($ $ (-302 $))) (-15 -2558 ($ $ (-654 (-302 $)))) (-15 -2558 ($ $ (-654 (-622 $)) (-654 $))) (-15 -2079 ($ $)) (-15 -2079 ($ (-654 $))) (-15 -2116 ($ $)) (-15 -2116 ($ (-654 $))) (-15 -1834 ($ $)) (-15 -1834 ($ $ $)) (-15 -1847 ((-781) $)) (-15 -4367 ((-3 (-622 $) "failed") $)) (-15 -4138 ((-654 (-622 $)) $)) (-15 -4064 ((-654 (-622 $)) $)) (-15 -3294 ((-654 (-115)) $)) (-15 -4150 ((-115) (-115))) (-15 -4207 ((-112) (-115))) (-15 -3571 ((-112) $ (-115))) (-15 -3571 ((-112) $ (-1192))) (-15 -1783 ($ (-115) $)) (-15 -1783 ($ (-115) (-654 $))) (-15 -1786 ($ (-1 $ $) (-622 $))) (-15 -4277 ((-112) $ $)) (-15 -4277 ((-112) $ (-1192))) (-15 -2660 ($ $ (-654 (-1192)) (-654 (-1 $ $)))) (-15 -2660 ($ $ (-654 (-1192)) (-654 (-1 $ (-654 $))))) (-15 -2660 ($ $ (-1192) (-1 $ (-654 $)))) (-15 -2660 ($ $ (-1192) (-1 $ $))) (-15 -2660 ($ $ (-654 (-115)) (-654 (-1 $ $)))) (-15 -2660 ($ $ (-654 (-115)) (-654 (-1 $ (-654 $))))) (-15 -2660 ($ $ (-115) (-1 $ (-654 $)))) (-15 -2660 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1064)) (PROGN (-15 -4311 ((-1188 $) (-622 $))) (-15 -2290 ($ $))) |%noBranch|) (IF (|has| $ (-1053 (-574))) (PROGN (-15 -3694 ((-112) $)) (-15 -3512 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-626 #0=(-622 $)) . T) ((-623 (-872)) . T) ((-317 $) . T) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-1053 #0#) . T) ((-1115) . T)) -((-2894 (((-654 |#1|) (-654 |#1|)) 10))) -(((-311 |#1|) (-10 -7 (-15 -2894 ((-654 |#1|) (-654 |#1|)))) (-858)) (T -311)) -((-2894 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3))))) -(-10 -7 (-15 -2894 ((-654 |#1|) (-654 |#1|)))) -((-1786 (((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)) 17))) -(((-312 |#1| |#2|) (-10 -7 (-15 -1786 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)))) (-1064) (-1064)) (T -312)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6))))) -(-10 -7 (-15 -1786 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)))) -((-2083 (((-1283 (-324 (-388))) (-1283 (-324 (-227)))) 110)) (-3268 (((-1109 (-853 (-227))) (-1109 (-853 (-388)))) 43)) (-1499 (((-654 (-1174)) (-1172 (-227))) 92)) (-4303 (((-324 (-388)) (-965 (-227))) 53)) (-1501 (((-227) (-965 (-227))) 49)) (-1974 (((-1174) (-388)) 195)) (-2256 (((-853 (-227)) (-853 (-388))) 37)) (-2946 (((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1283 (-324 (-227)))) 165)) (-2179 (((-1050) (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) 207) (((-1050) (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))))) 205)) (-4047 (((-699 (-227)) (-654 (-227)) (-781)) 19)) (-2874 (((-1283 (-709)) (-654 (-227))) 99)) (-2426 (((-654 (-1174)) (-654 (-227))) 79)) (-1789 (((-3 (-324 (-227)) "failed") (-324 (-227))) 128)) (-3227 (((-112) (-227) (-1109 (-853 (-227)))) 117)) (-2530 (((-1050) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) 224)) (-3768 (((-227) (-1109 (-853 (-227)))) 112)) (-4139 (((-227) (-1109 (-853 (-227)))) 113)) (-1534 (((-227) (-417 (-574))) 31)) (-3199 (((-1174) (-388)) 77)) (-1616 (((-227) (-388)) 22)) (-3049 (((-388) (-1283 (-324 (-227)))) 177)) (-2362 (((-324 (-227)) (-324 (-388))) 28)) (-4253 (((-417 (-574)) (-324 (-227))) 56)) (-1375 (((-324 (-417 (-574))) (-324 (-227))) 73)) (-3548 (((-324 (-388)) (-324 (-227))) 103)) (-2325 (((-227) (-324 (-227))) 57)) (-1688 (((-654 (-227)) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) 68)) (-1722 (((-1109 (-853 (-227))) (-1109 (-853 (-227)))) 65)) (-3324 (((-1174) (-227)) 76)) (-3077 (((-709) (-227)) 95)) (-3538 (((-417 (-574)) (-227)) 58)) (-1732 (((-324 (-388)) (-227)) 52)) (-1845 (((-654 (-1109 (-853 (-227)))) (-654 (-1109 (-853 (-388))))) 46)) (-4131 (((-1050) (-654 (-1050))) 191) (((-1050) (-1050) (-1050)) 185)) (-3752 (((-1050) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) -(((-313) (-10 -7 (-15 -1616 ((-227) (-388))) (-15 -2362 ((-324 (-227)) (-324 (-388)))) (-15 -2256 ((-853 (-227)) (-853 (-388)))) (-15 -3268 ((-1109 (-853 (-227))) (-1109 (-853 (-388))))) (-15 -1845 ((-654 (-1109 (-853 (-227)))) (-654 (-1109 (-853 (-388)))))) (-15 -3538 ((-417 (-574)) (-227))) (-15 -4253 ((-417 (-574)) (-324 (-227)))) (-15 -2325 ((-227) (-324 (-227)))) (-15 -1789 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3049 ((-388) (-1283 (-324 (-227))))) (-15 -2946 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1283 (-324 (-227))))) (-15 -1375 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -1722 ((-1109 (-853 (-227))) (-1109 (-853 (-227))))) (-15 -1688 ((-654 (-227)) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) (-15 -3077 ((-709) (-227))) (-15 -2874 ((-1283 (-709)) (-654 (-227)))) (-15 -3548 ((-324 (-388)) (-324 (-227)))) (-15 -2083 ((-1283 (-324 (-388))) (-1283 (-324 (-227))))) (-15 -3227 ((-112) (-227) (-1109 (-853 (-227))))) (-15 -3324 ((-1174) (-227))) (-15 -3199 ((-1174) (-388))) (-15 -2426 ((-654 (-1174)) (-654 (-227)))) (-15 -1499 ((-654 (-1174)) (-1172 (-227)))) (-15 -3768 ((-227) (-1109 (-853 (-227))))) (-15 -4139 ((-227) (-1109 (-853 (-227))))) (-15 -4131 ((-1050) (-1050) (-1050))) (-15 -4131 ((-1050) (-654 (-1050)))) (-15 -1974 ((-1174) (-388))) (-15 -2179 ((-1050) (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))))) (-15 -2179 ((-1050) (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))))) (-15 -3752 ((-1050) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2530 ((-1050) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -4303 ((-324 (-388)) (-965 (-227)))) (-15 -1501 ((-227) (-965 (-227)))) (-15 -1732 ((-324 (-388)) (-227))) (-15 -1534 ((-227) (-417 (-574)))) (-15 -4047 ((-699 (-227)) (-654 (-227)) (-781))))) (T -313)) -((-4047 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-313)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-965 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-4303 (*1 *2 *3) (-12 (-5 *3 (-965 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *2 (-1050)) (-5 *1 (-313)))) (-3752 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1050)) (-5 *1 (-313)))) (-2179 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) (-5 *2 (-1050)) (-5 *1 (-313)))) (-2179 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *2 (-1050)) (-5 *1 (-313)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1174)) (-5 *1 (-313)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-654 (-1050))) (-5 *2 (-1050)) (-5 *1 (-313)))) (-4131 (*1 *2 *2 *2) (-12 (-5 *2 (-1050)) (-5 *1 (-313)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-313)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-313)))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1174)) (-5 *1 (-313)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-313)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-313)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *2 (-1283 (-324 (-388)))) (-5 *1 (-313)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1283 (-709))) (-5 *1 (-313)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *2 (-654 (-227))) (-5 *1 (-313)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1109 (-853 (-227)))) (-5 *1 (-313)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574)))) (-5 *1 (-313)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *2 (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574)))) (-5 *1 (-313)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313)))) (-1789 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-4253 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-654 (-1109 (-853 (-388))))) (-5 *2 (-654 (-1109 (-853 (-227))))) (-5 *1 (-313)))) (-3268 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-388)))) (-5 *2 (-1109 (-853 (-227)))) (-5 *1 (-313)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313))))) -(-10 -7 (-15 -1616 ((-227) (-388))) (-15 -2362 ((-324 (-227)) (-324 (-388)))) (-15 -2256 ((-853 (-227)) (-853 (-388)))) (-15 -3268 ((-1109 (-853 (-227))) (-1109 (-853 (-388))))) (-15 -1845 ((-654 (-1109 (-853 (-227)))) (-654 (-1109 (-853 (-388)))))) (-15 -3538 ((-417 (-574)) (-227))) (-15 -4253 ((-417 (-574)) (-324 (-227)))) (-15 -2325 ((-227) (-324 (-227)))) (-15 -1789 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3049 ((-388) (-1283 (-324 (-227))))) (-15 -2946 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1283 (-324 (-227))))) (-15 -1375 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -1722 ((-1109 (-853 (-227))) (-1109 (-853 (-227))))) (-15 -1688 ((-654 (-227)) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) (-15 -3077 ((-709) (-227))) (-15 -2874 ((-1283 (-709)) (-654 (-227)))) (-15 -3548 ((-324 (-388)) (-324 (-227)))) (-15 -2083 ((-1283 (-324 (-388))) (-1283 (-324 (-227))))) (-15 -3227 ((-112) (-227) (-1109 (-853 (-227))))) (-15 -3324 ((-1174) (-227))) (-15 -3199 ((-1174) (-388))) (-15 -2426 ((-654 (-1174)) (-654 (-227)))) (-15 -1499 ((-654 (-1174)) (-1172 (-227)))) (-15 -3768 ((-227) (-1109 (-853 (-227))))) (-15 -4139 ((-227) (-1109 (-853 (-227))))) (-15 -4131 ((-1050) (-1050) (-1050))) (-15 -4131 ((-1050) (-654 (-1050)))) (-15 -1974 ((-1174) (-388))) (-15 -2179 ((-1050) (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))))) (-15 -2179 ((-1050) (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))))) (-15 -3752 ((-1050) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2530 ((-1050) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -4303 ((-324 (-388)) (-965 (-227)))) (-15 -1501 ((-227) (-965 (-227)))) (-15 -1732 ((-324 (-388)) (-227))) (-15 -1534 ((-227) (-417 (-574)))) (-15 -4047 ((-699 (-227)) (-654 (-227)) (-781)))) -((-3656 (((-112) $ $) 14)) (-2799 (($ $ $) 18)) (-2811 (($ $ $) 17)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 50)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 65)) (-2886 (($ $ $) 25) (($ (-654 $)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2852 (((-3 $ "failed") $ $) 21)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 53))) -(((-314 |#1|) (-10 -8 (-15 -3285 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -2318 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2318 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -2799 (|#1| |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -3656 ((-112) |#1| |#1|)) (-15 -2190 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -3063 ((-2 (|:| -1867 (-654 |#1|)) (|:| -2975 |#1|)) (-654 |#1|))) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) (-315)) (T -314)) -NIL -(-10 -8 (-15 -3285 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -2318 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2318 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -2799 (|#1| |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -3656 ((-112) |#1| |#1|)) (-15 -2190 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -3063 ((-2 (|:| -1867 (-654 |#1|)) (|:| -2975 |#1|)) (-654 |#1|))) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-3656 (((-112) $ $) 65)) (-3831 (($) 18 T CONST)) (-2799 (($ $ $) 61)) (-3911 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3372 (((-112) $) 35)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3364 (((-781) $) 64)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-2207 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2207 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2207 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2207 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2207 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2559 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *1)) (-4 *1 (-310)))) (-2559 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *1))) (-4 *1 (-310)))) (-2559 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-622 *1))) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2078 (*1 *1 *1) (-4 *1 (-310))) (-2078 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-1391 (*1 *1 *1) (-4 *1 (-310))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-3078 (*1 *1 *1) (-4 *1 (-310))) (-3078 (*1 *1 *1 *1) (-4 *1 (-310))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-781)))) (-3452 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-1649 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115))))) (-4150 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2420 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2154 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2154 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1193)) (-5 *2 (-112)))) (-1782 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1782 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-622 *1)) (-4 *1 (-310)))) (-3595 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))) (-3595 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1193)) (-5 *2 (-112)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1065)) (-4 *1 (-310)) (-5 *2 (-1189 *1)))) (-4379 (*1 *1 *1) (-12 (-4 *1 (-1065)) (-4 *1 (-310)))) (-2120 (*1 *2 *1) (-12 (-4 *1 (-1054 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-1054 (-574))) (-4 *1 (-310)) (-5 *2 (-112))))) +(-13 (-1116) (-1054 (-622 $)) (-524 (-622 $) $) (-317 $) (-10 -8 (-15 -2207 ($ (-115) $)) (-15 -2207 ($ (-115) $ $)) (-15 -2207 ($ (-115) $ $ $)) (-15 -2207 ($ (-115) $ $ $ $)) (-15 -2207 ($ (-115) (-654 $))) (-15 -2559 ($ $ (-302 $))) (-15 -2559 ($ $ (-654 (-302 $)))) (-15 -2559 ($ $ (-654 (-622 $)) (-654 $))) (-15 -2078 ($ $)) (-15 -2078 ($ (-654 $))) (-15 -1391 ($ $)) (-15 -1391 ($ (-654 $))) (-15 -3078 ($ $)) (-15 -3078 ($ $ $)) (-15 -1847 ((-781) $)) (-15 -3452 ((-3 (-622 $) "failed") $)) (-15 -4139 ((-654 (-622 $)) $)) (-15 -4068 ((-654 (-622 $)) $)) (-15 -1649 ((-654 (-115)) $)) (-15 -4150 ((-115) (-115))) (-15 -2420 ((-112) (-115))) (-15 -2154 ((-112) $ (-115))) (-15 -2154 ((-112) $ (-1193))) (-15 -1782 ($ (-115) $)) (-15 -1782 ($ (-115) (-654 $))) (-15 -1785 ($ (-1 $ $) (-622 $))) (-15 -3595 ((-112) $ $)) (-15 -3595 ((-112) $ (-1193))) (-15 -2661 ($ $ (-654 (-1193)) (-654 (-1 $ $)))) (-15 -2661 ($ $ (-654 (-1193)) (-654 (-1 $ (-654 $))))) (-15 -2661 ($ $ (-1193) (-1 $ (-654 $)))) (-15 -2661 ($ $ (-1193) (-1 $ $))) (-15 -2661 ($ $ (-654 (-115)) (-654 (-1 $ $)))) (-15 -2661 ($ $ (-654 (-115)) (-654 (-1 $ (-654 $))))) (-15 -2661 ($ $ (-115) (-1 $ (-654 $)))) (-15 -2661 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1065)) (PROGN (-15 -3746 ((-1189 $) (-622 $))) (-15 -4379 ($ $))) |%noBranch|) (IF (|has| $ (-1054 (-574))) (PROGN (-15 -2120 ((-112) $)) (-15 -1823 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-626 #0=(-622 $)) . T) ((-623 (-872)) . T) ((-317 $) . T) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-1054 #0#) . T) ((-1116) . T)) +((-3252 (((-654 |#1|) (-654 |#1|)) 10))) +(((-311 |#1|) (-10 -7 (-15 -3252 ((-654 |#1|) (-654 |#1|)))) (-858)) (T -311)) +((-3252 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3))))) +(-10 -7 (-15 -3252 ((-654 |#1|) (-654 |#1|)))) +((-1785 (((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)) 17))) +(((-312 |#1| |#2|) (-10 -7 (-15 -1785 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)))) (-1065) (-1065)) (T -312)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6))))) +(-10 -7 (-15 -1785 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)))) +((-2308 (((-1284 (-324 (-388))) (-1284 (-324 (-227)))) 110)) (-3457 (((-1110 (-853 (-227))) (-1110 (-853 (-388)))) 43)) (-3395 (((-654 (-1175)) (-1173 (-227))) 92)) (-2688 (((-324 (-388)) (-966 (-227))) 53)) (-3050 (((-227) (-966 (-227))) 49)) (-3254 (((-1175) (-388)) 195)) (-2011 (((-853 (-227)) (-853 (-388))) 37)) (-4136 (((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1284 (-324 (-227)))) 165)) (-2739 (((-1051) (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051)))) 207) (((-1051) (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) 205)) (-3082 (((-699 (-227)) (-654 (-227)) (-781)) 19)) (-4370 (((-1284 (-709)) (-654 (-227))) 99)) (-3531 (((-654 (-1175)) (-654 (-227))) 79)) (-1787 (((-3 (-324 (-227)) "failed") (-324 (-227))) 128)) (-2780 (((-112) (-227) (-1110 (-853 (-227)))) 117)) (-3623 (((-1051) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) 224)) (-3148 (((-227) (-1110 (-853 (-227)))) 112)) (-3331 (((-227) (-1110 (-853 (-227)))) 113)) (-2721 (((-227) (-417 (-574))) 31)) (-3883 (((-1175) (-388)) 77)) (-3693 (((-227) (-388)) 22)) (-1597 (((-388) (-1284 (-324 (-227)))) 177)) (-1905 (((-324 (-227)) (-324 (-388))) 28)) (-1747 (((-417 (-574)) (-324 (-227))) 56)) (-3780 (((-324 (-417 (-574))) (-324 (-227))) 73)) (-4331 (((-324 (-388)) (-324 (-227))) 103)) (-1969 (((-227) (-324 (-227))) 57)) (-2756 (((-654 (-227)) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) 68)) (-3458 (((-1110 (-853 (-227))) (-1110 (-853 (-227)))) 65)) (-3980 (((-1175) (-227)) 76)) (-3899 (((-709) (-227)) 95)) (-4333 (((-417 (-574)) (-227)) 58)) (-3744 (((-324 (-388)) (-227)) 52)) (-1844 (((-654 (-1110 (-853 (-227)))) (-654 (-1110 (-853 (-388))))) 46)) (-4132 (((-1051) (-654 (-1051))) 191) (((-1051) (-1051) (-1051)) 185)) (-1754 (((-1051) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) +(((-313) (-10 -7 (-15 -3693 ((-227) (-388))) (-15 -1905 ((-324 (-227)) (-324 (-388)))) (-15 -2011 ((-853 (-227)) (-853 (-388)))) (-15 -3457 ((-1110 (-853 (-227))) (-1110 (-853 (-388))))) (-15 -1844 ((-654 (-1110 (-853 (-227)))) (-654 (-1110 (-853 (-388)))))) (-15 -4333 ((-417 (-574)) (-227))) (-15 -1747 ((-417 (-574)) (-324 (-227)))) (-15 -1969 ((-227) (-324 (-227)))) (-15 -1787 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -1597 ((-388) (-1284 (-324 (-227))))) (-15 -4136 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1284 (-324 (-227))))) (-15 -3780 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -3458 ((-1110 (-853 (-227))) (-1110 (-853 (-227))))) (-15 -2756 ((-654 (-227)) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) (-15 -3899 ((-709) (-227))) (-15 -4370 ((-1284 (-709)) (-654 (-227)))) (-15 -4331 ((-324 (-388)) (-324 (-227)))) (-15 -2308 ((-1284 (-324 (-388))) (-1284 (-324 (-227))))) (-15 -2780 ((-112) (-227) (-1110 (-853 (-227))))) (-15 -3980 ((-1175) (-227))) (-15 -3883 ((-1175) (-388))) (-15 -3531 ((-654 (-1175)) (-654 (-227)))) (-15 -3395 ((-654 (-1175)) (-1173 (-227)))) (-15 -3148 ((-227) (-1110 (-853 (-227))))) (-15 -3331 ((-227) (-1110 (-853 (-227))))) (-15 -4132 ((-1051) (-1051) (-1051))) (-15 -4132 ((-1051) (-654 (-1051)))) (-15 -3254 ((-1175) (-388))) (-15 -2739 ((-1051) (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))))) (-15 -2739 ((-1051) (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))))) (-15 -1754 ((-1051) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3623 ((-1051) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -2688 ((-324 (-388)) (-966 (-227)))) (-15 -3050 ((-227) (-966 (-227)))) (-15 -3744 ((-324 (-388)) (-227))) (-15 -2721 ((-227) (-417 (-574)))) (-15 -3082 ((-699 (-227)) (-654 (-227)) (-781))))) (T -313)) +((-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-313)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-966 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-966 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *2 (-1051)) (-5 *1 (-313)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1051)) (-5 *1 (-313)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051)))) (-5 *2 (-1051)) (-5 *1 (-313)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *2 (-1051)) (-5 *1 (-313)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1175)) (-5 *1 (-313)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-654 (-1051))) (-5 *2 (-1051)) (-5 *1 (-313)))) (-4132 (*1 *2 *2 *2) (-12 (-5 *2 (-1051)) (-5 *1 (-313)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-313)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-313)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1175)) (-5 *1 (-313)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-313)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-313)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *2 (-1284 (-324 (-388)))) (-5 *1 (-313)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1284 (-709))) (-5 *1 (-313)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *2 (-654 (-227))) (-5 *1 (-313)))) (-3458 (*1 *2 *2) (-12 (-5 *2 (-1110 (-853 (-227)))) (-5 *1 (-313)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574)))) (-5 *1 (-313)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *2 (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574)))) (-5 *1 (-313)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313)))) (-1787 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-4333 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-654 (-1110 (-853 (-388))))) (-5 *2 (-654 (-1110 (-853 (-227))))) (-5 *1 (-313)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-388)))) (-5 *2 (-1110 (-853 (-227)))) (-5 *1 (-313)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-3693 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313))))) +(-10 -7 (-15 -3693 ((-227) (-388))) (-15 -1905 ((-324 (-227)) (-324 (-388)))) (-15 -2011 ((-853 (-227)) (-853 (-388)))) (-15 -3457 ((-1110 (-853 (-227))) (-1110 (-853 (-388))))) (-15 -1844 ((-654 (-1110 (-853 (-227)))) (-654 (-1110 (-853 (-388)))))) (-15 -4333 ((-417 (-574)) (-227))) (-15 -1747 ((-417 (-574)) (-324 (-227)))) (-15 -1969 ((-227) (-324 (-227)))) (-15 -1787 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -1597 ((-388) (-1284 (-324 (-227))))) (-15 -4136 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1284 (-324 (-227))))) (-15 -3780 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -3458 ((-1110 (-853 (-227))) (-1110 (-853 (-227))))) (-15 -2756 ((-654 (-227)) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) (-15 -3899 ((-709) (-227))) (-15 -4370 ((-1284 (-709)) (-654 (-227)))) (-15 -4331 ((-324 (-388)) (-324 (-227)))) (-15 -2308 ((-1284 (-324 (-388))) (-1284 (-324 (-227))))) (-15 -2780 ((-112) (-227) (-1110 (-853 (-227))))) (-15 -3980 ((-1175) (-227))) (-15 -3883 ((-1175) (-388))) (-15 -3531 ((-654 (-1175)) (-654 (-227)))) (-15 -3395 ((-654 (-1175)) (-1173 (-227)))) (-15 -3148 ((-227) (-1110 (-853 (-227))))) (-15 -3331 ((-227) (-1110 (-853 (-227))))) (-15 -4132 ((-1051) (-1051) (-1051))) (-15 -4132 ((-1051) (-654 (-1051)))) (-15 -3254 ((-1175) (-388))) (-15 -2739 ((-1051) (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))))) (-15 -2739 ((-1051) (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))))) (-15 -1754 ((-1051) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3623 ((-1051) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -2688 ((-324 (-388)) (-966 (-227)))) (-15 -3050 ((-227) (-966 (-227)))) (-15 -3744 ((-324 (-388)) (-227))) (-15 -2721 ((-227) (-417 (-574)))) (-15 -3082 ((-699 (-227)) (-654 (-227)) (-781)))) +((-3245 (((-112) $ $) 14)) (-2800 (($ $ $) 18)) (-2813 (($ $ $) 17)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 50)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 65)) (-2887 (($ $ $) 25) (($ (-654 $)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2853 (((-3 $ "failed") $ $) 21)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 53))) +(((-314 |#1|) (-10 -8 (-15 -2814 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -1619 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1619 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -3245 ((-112) |#1| |#1|)) (-15 -4095 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -4413 ((-2 (|:| -1866 (-654 |#1|)) (|:| -2975 |#1|)) (-654 |#1|))) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|))) (-315)) (T -314)) +NIL +(-10 -8 (-15 -2814 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -1619 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1619 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -3245 ((-112) |#1| |#1|)) (-15 -4095 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -4413 ((-2 (|:| -1866 (-654 |#1|)) (|:| -2975 |#1|)) (-654 |#1|))) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-3245 (((-112) $ $) 65)) (-3250 (($) 18 T CONST)) (-2800 (($ $ $) 61)) (-4322 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-4226 (((-112) $) 35)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2098 (((-781) $) 64)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-315) (-141)) (T -315)) -((-3656 (*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781)))) (-3444 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-315)))) (-2811 (*1 *1 *1 *1) (-4 *1 (-315))) (-2799 (*1 *1 *1 *1) (-4 *1 (-315))) (-2318 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) (-4 *1 (-315)))) (-2318 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-315)))) (-3285 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315))))) -(-13 (-933) (-10 -8 (-15 -3656 ((-112) $ $)) (-15 -3364 ((-781) $)) (-15 -3444 ((-2 (|:| -4415 $) (|:| -1484 $)) $ $)) (-15 -2811 ($ $ $)) (-15 -2799 ($ $ $)) (-15 -2318 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $)) (-15 -2318 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3285 ((-3 (-654 $) "failed") (-654 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2660 (($ $ (-654 |#2|) (-654 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-302 |#2|)) 11) (($ $ (-654 (-302 |#2|))) NIL))) -(((-316 |#1| |#2|) (-10 -8 (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|)))) (-317 |#2|) (-1115)) (T -316)) -NIL -(-10 -8 (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|)))) -((-2660 (($ $ (-654 |#1|) (-654 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-302 |#1|)) 11) (($ $ (-654 (-302 |#1|))) 10))) -(((-317 |#1|) (-141) (-1115)) (T -317)) -((-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1115)))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1115))))) -(-13 (-524 |t#1| |t#1|) (-10 -8 (-15 -2660 ($ $ (-302 |t#1|))) (-15 -2660 ($ $ (-654 (-302 |t#1|)))))) +((-3245 (*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781)))) (-2969 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-315)))) (-2813 (*1 *1 *1 *1) (-4 *1 (-315))) (-2800 (*1 *1 *1 *1) (-4 *1 (-315))) (-1619 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) (-4 *1 (-315)))) (-1619 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-315)))) (-2814 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315))))) +(-13 (-934) (-10 -8 (-15 -3245 ((-112) $ $)) (-15 -2098 ((-781) $)) (-15 -2969 ((-2 (|:| -3901 $) (|:| -1880 $)) $ $)) (-15 -2813 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -1619 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $)) (-15 -1619 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2814 ((-3 (-654 $) "failed") (-654 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2661 (($ $ (-654 |#2|) (-654 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-302 |#2|)) 11) (($ $ (-654 (-302 |#2|))) NIL))) +(((-316 |#1| |#2|) (-10 -8 (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|)))) (-317 |#2|) (-1116)) (T -316)) +NIL +(-10 -8 (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|)))) +((-2661 (($ $ (-654 |#1|) (-654 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-302 |#1|)) 11) (($ $ (-654 (-302 |#1|))) 10))) +(((-317 |#1|) (-141) (-1116)) (T -317)) +((-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1116)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1116))))) +(-13 (-524 |t#1| |t#1|) (-10 -8 (-15 -2661 ($ $ (-302 |t#1|))) (-15 -2661 ($ $ (-654 (-302 |t#1|)))))) (((-524 |#1| |#1|) . T)) -((-2660 ((|#1| (-1 |#1| (-574)) (-1194 (-417 (-574)))) 26))) -(((-318 |#1|) (-10 -7 (-15 -2660 (|#1| (-1 |#1| (-574)) (-1194 (-417 (-574)))))) (-38 (-417 (-574)))) (T -318)) -((-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1194 (-417 (-574)))) (-5 *1 (-318 *2)) (-4 *2 (-38 (-417 (-574))))))) -(-10 -7 (-15 -2660 (|#1| (-1 |#1| (-574)) (-1194 (-417 (-574)))))) -((-2863 (((-112) $ $) NIL)) (-4312 (((-574) $) 12)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 9)) (-2950 (((-872) $) 19) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-319) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -4312 ((-574) $))))) (T -319)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-319)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319))))) -(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -4312 ((-574) $)))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 7)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9))) -(((-320) (-1115)) (T -320)) -NIL -(-1115) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 60)) (-4018 (((-1269 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-315)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-922)))) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-922)))) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-830)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-1269 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-574)))) (((-3 (-1268 |#2| |#3| |#4|) "failed") $) 26)) (-2216 (((-1269 |#1| |#2| |#3| |#4|) $) NIL) (((-1192) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-574)))) (((-574) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-574)))) (((-1268 |#2| |#3| |#4|) $) NIL)) (-2799 (($ $ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-1269 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1283 (-1269 |#1| |#2| |#3| |#4|)))) (-699 $) (-1283 $)) NIL) (((-699 (-1269 |#1| |#2| |#3| |#4|)) (-699 $)) NIL) (((-699 (-1269 |#1| |#2| |#3| |#4|)) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-555)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1913 (((-112) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-830)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-897 (-388))))) (-3372 (((-112) $) NIL)) (-3536 (($ $) NIL)) (-2970 (((-1269 |#1| |#2| |#3| |#4|) $) 22)) (-1353 (((-3 $ "failed") $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1167)))) (-1808 (((-112) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-830)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-1593 (($ $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-1786 (($ (-1 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|)) $) NIL)) (-3034 (((-3 (-853 |#2|) "failed") $) 80)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-315)))) (-3471 (((-1269 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-555)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-922)))) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-1269 |#1| |#2| |#3| |#4|)) (-654 (-1269 |#1| |#2| |#3| |#4|))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-317 (-1269 |#1| |#2| |#3| |#4|)))) (($ $ (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-317 (-1269 |#1| |#2| |#3| |#4|)))) (($ $ (-302 (-1269 |#1| |#2| |#3| |#4|))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-317 (-1269 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-302 (-1269 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-317 (-1269 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-1192)) (-654 (-1269 |#1| |#2| |#3| |#4|))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-524 (-1192) (-1269 |#1| |#2| |#3| |#4|)))) (($ $ (-1192) (-1269 |#1| |#2| |#3| |#4|)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-524 (-1192) (-1269 |#1| |#2| |#3| |#4|))))) (-3364 (((-781) $) NIL)) (-2208 (($ $ (-1269 |#1| |#2| |#3| |#4|)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-294 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-1192)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-1 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|))) NIL)) (-2120 (($ $) NIL)) (-2981 (((-1269 |#1| |#2| |#3| |#4|) $) 19)) (-1845 (((-903 (-574)) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-624 (-546)))) (((-388) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1037))) (((-227) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1037)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1269 |#1| |#2| |#3| |#4|) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-1269 |#1| |#2| |#3| |#4|)) 30) (($ (-1192)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-1192)))) (($ (-1268 |#2| |#3| |#4|)) 37)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-1269 |#1| |#2| |#3| |#4|) (-922))) (|has| (-1269 |#1| |#2| |#3| |#4|) (-146))))) (-4019 (((-781)) NIL T CONST)) (-2753 (((-1269 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-555)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3306 (($ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-830)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-1192)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-1 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-3098 (($ $ $) 35) (($ (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|)) 32)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-1269 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1269 |#1| |#2| |#3| |#4|)) NIL))) -(((-321 |#1| |#2| |#3| |#4|) (-13 (-1007 (-1269 |#1| |#2| |#3| |#4|)) (-1053 (-1268 |#2| |#3| |#4|)) (-10 -8 (-15 -3034 ((-3 (-853 |#2|) "failed") $)) (-15 -2950 ($ (-1268 |#2| |#3| |#4|))))) (-13 (-1053 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1218) (-440 |#1|)) (-1192) |#2|) (T -321)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1268 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) (-14 *6 *4) (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) (-5 *1 (-321 *3 *4 *5 *6)))) (-3034 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) (-14 *6 *4)))) -(-13 (-1007 (-1269 |#1| |#2| |#3| |#4|)) (-1053 (-1268 |#2| |#3| |#4|)) (-10 -8 (-15 -3034 ((-3 (-853 |#2|) "failed") $)) (-15 -2950 ($ (-1268 |#2| |#3| |#4|))))) -((-1786 (((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)) 13))) -(((-322 |#1| |#2|) (-10 -7 (-15 -1786 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)))) (-1115) (-1115)) (T -322)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6))))) -(-10 -7 (-15 -1786 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)))) -((-4401 (((-52) |#2| (-302 |#2|) (-781)) 40) (((-52) |#2| (-302 |#2|)) 32) (((-52) |#2| (-781)) 35) (((-52) |#2|) 33) (((-52) (-1192)) 26)) (-3596 (((-52) |#2| (-302 |#2|) (-417 (-574))) 59) (((-52) |#2| (-302 |#2|)) 56) (((-52) |#2| (-417 (-574))) 58) (((-52) |#2|) 57) (((-52) (-1192)) 55)) (-4425 (((-52) |#2| (-302 |#2|) (-417 (-574))) 54) (((-52) |#2| (-302 |#2|)) 51) (((-52) |#2| (-417 (-574))) 53) (((-52) |#2|) 52) (((-52) (-1192)) 50)) (-4413 (((-52) |#2| (-302 |#2|) (-574)) 47) (((-52) |#2| (-302 |#2|)) 44) (((-52) |#2| (-574)) 46) (((-52) |#2|) 45) (((-52) (-1192)) 43))) -(((-323 |#1| |#2|) (-10 -7 (-15 -4401 ((-52) (-1192))) (-15 -4401 ((-52) |#2|)) (-15 -4401 ((-52) |#2| (-781))) (-15 -4401 ((-52) |#2| (-302 |#2|))) (-15 -4401 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4413 ((-52) (-1192))) (-15 -4413 ((-52) |#2|)) (-15 -4413 ((-52) |#2| (-574))) (-15 -4413 ((-52) |#2| (-302 |#2|))) (-15 -4413 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4425 ((-52) (-1192))) (-15 -4425 ((-52) |#2|)) (-15 -4425 ((-52) |#2| (-417 (-574)))) (-15 -4425 ((-52) |#2| (-302 |#2|))) (-15 -4425 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3596 ((-52) (-1192))) (-15 -3596 ((-52) |#2|)) (-15 -3596 ((-52) |#2| (-417 (-574)))) (-15 -3596 ((-52) |#2| (-302 |#2|))) (-15 -3596 ((-52) |#2| (-302 |#2|) (-417 (-574))))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -323)) -((-3596 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-3596 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) (-4425 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4425 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4425 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-4425 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-4425 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-1053 *5) (-649 *5))) (-5 *5 (-574)) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1053 *4) (-649 *4))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-4413 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-4413 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-781)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4)))))) -(-10 -7 (-15 -4401 ((-52) (-1192))) (-15 -4401 ((-52) |#2|)) (-15 -4401 ((-52) |#2| (-781))) (-15 -4401 ((-52) |#2| (-302 |#2|))) (-15 -4401 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4413 ((-52) (-1192))) (-15 -4413 ((-52) |#2|)) (-15 -4413 ((-52) |#2| (-574))) (-15 -4413 ((-52) |#2| (-302 |#2|))) (-15 -4413 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4425 ((-52) (-1192))) (-15 -4425 ((-52) |#2|)) (-15 -4425 ((-52) |#2| (-417 (-574)))) (-15 -4425 ((-52) |#2| (-302 |#2|))) (-15 -4425 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3596 ((-52) (-1192))) (-15 -3596 ((-52) |#2|)) (-15 -3596 ((-52) |#2| (-417 (-574)))) (-15 -3596 ((-52) |#2| (-302 |#2|))) (-15 -3596 ((-52) |#2| (-302 |#2|) (-417 (-574))))) -((-2863 (((-112) $ $) NIL)) (-3597 (((-654 $) $ (-1192)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1188 $) (-1192)) NIL (|has| |#1| (-566))) (((-654 $) (-1188 $)) NIL (|has| |#1| (-566))) (((-654 $) (-965 $)) NIL (|has| |#1| (-566)))) (-1397 (($ $ (-1192)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1188 $) (-1192)) NIL (|has| |#1| (-566))) (($ (-1188 $)) NIL (|has| |#1| (-566))) (($ (-965 $)) NIL (|has| |#1| (-566)))) (-3520 (((-112) $) 27 (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))))) (-4349 (((-654 (-1192)) $) 368)) (-4171 (((-417 (-1188 $)) $ (-622 $)) NIL (|has| |#1| (-566)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-4064 (((-654 (-622 $)) $) NIL)) (-2378 (($ $) 171 (|has| |#1| (-566)))) (-2259 (($ $) 147 (|has| |#1| (-566)))) (-3739 (($ $ (-1107 $)) 232 (|has| |#1| (-566))) (($ $ (-1192)) 228 (|has| |#1| (-566)))) (-1597 (((-3 $ "failed") $ $) NIL (-2832 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))))) (-2558 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) 386) (($ $ (-654 (-622 $)) (-654 $)) 430)) (-4055 (((-428 (-1188 $)) (-1188 $)) 308 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-3296 (($ $) NIL (|has| |#1| (-566)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-566)))) (-4211 (($ $) NIL (|has| |#1| (-566)))) (-3656 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2357 (($ $) 167 (|has| |#1| (-566)))) (-2237 (($ $) 143 (|has| |#1| (-566)))) (-2155 (($ $ (-574)) 73 (|has| |#1| (-566)))) (-2403 (($ $) 175 (|has| |#1| (-566)))) (-2281 (($ $) 151 (|has| |#1| (-566)))) (-3831 (($) NIL (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))) (|has| |#1| (-1127))) CONST)) (-4163 (((-654 $) $ (-1192)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1188 $) (-1192)) NIL (|has| |#1| (-566))) (((-654 $) (-1188 $)) NIL (|has| |#1| (-566))) (((-654 $) (-965 $)) NIL (|has| |#1| (-566)))) (-3356 (($ $ (-1192)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1188 $) (-1192)) 134 (|has| |#1| (-566))) (($ (-1188 $)) NIL (|has| |#1| (-566))) (($ (-965 $)) NIL (|has| |#1| (-566)))) (-1705 (((-3 (-622 $) "failed") $) 18) (((-3 (-1192) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-965 |#1|)) "failed") $) NIL (|has| |#1| (-566))) (((-3 (-965 |#1|) "failed") $) NIL (|has| |#1| (-1064))) (((-3 (-417 (-574)) "failed") $) 46 (-2832 (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-2216 (((-622 $) $) 12) (((-1192) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-965 |#1|)) $) NIL (|has| |#1| (-566))) (((-965 |#1|) $) NIL (|has| |#1| (-1064))) (((-417 (-574)) $) 319 (-2832 (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-2799 (($ $ $) NIL (|has| |#1| (-566)))) (-3465 (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 125 (|has| |#1| (-1064))) (((-699 |#1|) (-699 $)) 115 (|has| |#1| (-1064))) (((-699 |#1|) (-1283 $)) NIL (|has| |#1| (-1064))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (-2881 (($ $) 96 (|has| |#1| (-566)))) (-3911 (((-3 $ "failed") $) NIL (|has| |#1| (-1127)))) (-2811 (($ $ $) NIL (|has| |#1| (-566)))) (-4272 (($ $ (-1107 $)) 236 (|has| |#1| (-566))) (($ $ (-1192)) 234 (|has| |#1| (-566)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-566)))) (-1782 (((-112) $) NIL (|has| |#1| (-566)))) (-2867 (($ $ $) 202 (|has| |#1| (-566)))) (-3003 (($) 137 (|has| |#1| (-566)))) (-3765 (($ $ $) 222 (|has| |#1| (-566)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 392 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 399 (|has| |#1| (-897 (-388))))) (-2116 (($ $) NIL) (($ (-654 $)) NIL)) (-3294 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) 276)) (-3372 (((-112) $) 25 (|has| |#1| (-1127)))) (-3512 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-3536 (($ $) 72 (|has| |#1| (-1064)))) (-2970 (((-1140 |#1| (-622 $)) $) 91 (|has| |#1| (-1064)))) (-3745 (((-112) $) 62 (|has| |#1| (-566)))) (-2132 (($ $ (-574)) NIL (|has| |#1| (-566)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-4311 (((-1188 $) (-622 $)) 277 (|has| $ (-1064)))) (-1786 (($ (-1 $ $) (-622 $)) 426)) (-4367 (((-3 (-622 $) "failed") $) NIL)) (-3112 (($ $) 141 (|has| |#1| (-566)))) (-4053 (($ $) 247 (|has| |#1| (-566)))) (-2848 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-3945 (((-1174) $) NIL)) (-4138 (((-654 (-622 $)) $) 49)) (-1783 (($ (-115) $) NIL) (($ (-115) (-654 $)) 431)) (-1810 (((-3 (-654 $) "failed") $) NIL (|has| |#1| (-1127)))) (-3267 (((-3 (-2 (|:| |val| $) (|:| -2017 (-574))) "failed") $) NIL (|has| |#1| (-1064)))) (-1577 (((-3 (-654 $) "failed") $) 436 (|has| |#1| (-25)))) (-3337 (((-3 (-2 (|:| -1867 (-574)) (|:| |var| (-622 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3404 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $) NIL (|has| |#1| (-1127))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $ (-115)) NIL (|has| |#1| (-1064))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $ (-1192)) NIL (|has| |#1| (-1064)))) (-3571 (((-112) $ (-115)) NIL) (((-112) $ (-1192)) 51)) (-1327 (($ $) NIL (-2832 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-2028 (($ $ (-1192)) 251 (|has| |#1| (-566))) (($ $ (-1107 $)) 253 (|has| |#1| (-566)))) (-1847 (((-781) $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) 43)) (-1354 ((|#1| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 301 (|has| |#1| (-566)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-4277 (((-112) $ $) NIL) (((-112) $ (-1192)) NIL)) (-4149 (($ $ (-1192)) 226 (|has| |#1| (-566))) (($ $) 224 (|has| |#1| (-566)))) (-3289 (($ $) 218 (|has| |#1| (-566)))) (-4428 (((-428 (-1188 $)) (-1188 $)) 306 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-4200 (((-428 $) $) NIL (|has| |#1| (-566)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-566)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-1618 (($ $) 139 (|has| |#1| (-566)))) (-3694 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 425) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1192) (-1 $ (-654 $))) NIL) (($ $ (-1192) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) 379) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-624 (-546)))) (($ $) NIL (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1192)) 366 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1192)) 365 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ $))) NIL (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ (-654 $)))) NIL (|has| |#1| (-1064))) (($ $ (-1192) (-781) (-1 $ (-654 $))) NIL (|has| |#1| (-1064))) (($ $ (-1192) (-781) (-1 $ $)) NIL (|has| |#1| (-1064)))) (-3364 (((-781) $) NIL (|has| |#1| (-566)))) (-4043 (($ $) 239 (|has| |#1| (-566)))) (-2208 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-566)))) (-1834 (($ $) NIL) (($ $ $) NIL)) (-2223 (($ $) 249 (|has| |#1| (-566)))) (-3239 (($ $) 200 (|has| |#1| (-566)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-1064))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-1064))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-1064))) (($ $ (-1192)) NIL (|has| |#1| (-1064)))) (-2120 (($ $) 74 (|has| |#1| (-566)))) (-2981 (((-1140 |#1| (-622 $)) $) 93 (|has| |#1| (-566)))) (-2290 (($ $) 317 (|has| $ (-1064)))) (-2416 (($ $) 177 (|has| |#1| (-566)))) (-2289 (($ $) 153 (|has| |#1| (-566)))) (-2389 (($ $) 173 (|has| |#1| (-566)))) (-2269 (($ $) 149 (|has| |#1| (-566)))) (-2367 (($ $) 169 (|has| |#1| (-566)))) (-2248 (($ $) 145 (|has| |#1| (-566)))) (-1845 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) NIL (|has| |#1| (-566))) (((-546) $) 363 (|has| |#1| (-624 (-546))))) (-2202 (($ $ $) NIL (|has| |#1| (-483)))) (-3490 (($ $ $) NIL (|has| |#1| (-483)))) (-2950 (((-872) $) 424) (($ (-622 $)) 415) (($ (-1192)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-566))) (($ (-48)) 312 (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))))) (($ (-1140 |#1| (-622 $))) 95 (|has| |#1| (-1064))) (($ (-417 |#1|)) NIL (|has| |#1| (-566))) (($ (-965 (-417 |#1|))) NIL (|has| |#1| (-566))) (($ (-417 (-965 (-417 |#1|)))) NIL (|has| |#1| (-566))) (($ (-417 (-965 |#1|))) NIL (|has| |#1| (-566))) (($ (-965 |#1|)) NIL (|has| |#1| (-1064))) (($ (-574)) 34 (-2832 (|has| |#1| (-1053 (-574))) (|has| |#1| (-1064)))) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-566)) (|has| |#1| (-1053 (-417 (-574))))))) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL (|has| |#1| (-1064)) CONST)) (-2079 (($ $) NIL) (($ (-654 $)) NIL)) (-1832 (($ $ $) 220 (|has| |#1| (-566)))) (-2600 (($ $ $) 206 (|has| |#1| (-566)))) (-2793 (($ $ $) 210 (|has| |#1| (-566)))) (-4373 (($ $ $) 204 (|has| |#1| (-566)))) (-3852 (($ $ $) 208 (|has| |#1| (-566)))) (-4207 (((-112) (-115)) 10)) (-3838 (((-112) $ $) 86)) (-2455 (($ $) 183 (|has| |#1| (-566)))) (-2319 (($ $) 159 (|has| |#1| (-566)))) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2427 (($ $) 179 (|has| |#1| (-566)))) (-2300 (($ $) 155 (|has| |#1| (-566)))) (-2479 (($ $) 187 (|has| |#1| (-566)))) (-2339 (($ $) 163 (|has| |#1| (-566)))) (-2512 (($ (-1192) $) NIL) (($ (-1192) $ $) NIL) (($ (-1192) $ $ $) NIL) (($ (-1192) $ $ $ $) NIL) (($ (-1192) (-654 $)) NIL)) (-1423 (($ $) 214 (|has| |#1| (-566)))) (-2966 (($ $) 212 (|has| |#1| (-566)))) (-2535 (($ $) 189 (|has| |#1| (-566)))) (-2348 (($ $) 165 (|has| |#1| (-566)))) (-2466 (($ $) 185 (|has| |#1| (-566)))) (-2329 (($ $) 161 (|has| |#1| (-566)))) (-2442 (($ $) 181 (|has| |#1| (-566)))) (-2311 (($ $) 157 (|has| |#1| (-566)))) (-3306 (($ $) 192 (|has| |#1| (-566)))) (-2142 (($) 21 (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) CONST)) (-3140 (($ $) 243 (|has| |#1| (-566)))) (-2154 (($) 23 (|has| |#1| (-1127)) CONST)) (-3592 (($ $) 194 (|has| |#1| (-566))) (($ $ $) 196 (|has| |#1| (-566)))) (-3901 (($ $) 241 (|has| |#1| (-566)))) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-1064))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-1064))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-1064))) (($ $ (-1192)) NIL (|has| |#1| (-1064)))) (-2232 (($ $) 245 (|has| |#1| (-566)))) (-2788 (($ $ $) 198 (|has| |#1| (-566)))) (-2985 (((-112) $ $) 88)) (-3098 (($ (-1140 |#1| (-622 $)) (-1140 |#1| (-622 $))) 106 (|has| |#1| (-566))) (($ $ $) 42 (-2832 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3089 (($ $ $) 40 (-2832 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (($ $) 29 (-2832 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))))) (-3074 (($ $ $) 38 (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))))) (** (($ $ $) 64 (|has| |#1| (-566))) (($ $ (-417 (-574))) 314 (|has| |#1| (-566))) (($ $ (-574)) 80 (-2832 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 75 (|has| |#1| (-1127))) (($ $ (-934)) 84 (|has| |#1| (-1127)))) (* (($ (-417 (-574)) $) NIL (|has| |#1| (-566))) (($ $ (-417 (-574))) NIL (|has| |#1| (-566))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1064))) (($ $ $) 36 (|has| |#1| (-1127))) (($ (-574) $) 32 (-2832 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (($ (-781) $) NIL (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (($ (-934) $) NIL (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))))) -(((-324 |#1|) (-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1218)) (-6 (-161)) (-6 (-639)) (-6 (-1154)) (-15 -2881 ($ $)) (-15 -3745 ((-112) $)) (-15 -2155 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -4428 ((-428 (-1188 $)) (-1188 $))) (-15 -4055 ((-428 (-1188 $)) (-1188 $)))) |%noBranch|) (IF (|has| |#1| (-1053 (-574))) (-6 (-1053 (-48))) |%noBranch|)) |%noBranch|))) (-1115)) (T -324)) -((-2881 (*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1115)))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1115)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1115)))) (-4428 (*1 *2 *3) (-12 (-5 *2 (-428 (-1188 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1188 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1115)))) (-4055 (*1 *2 *3) (-12 (-5 *2 (-428 (-1188 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1188 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1115))))) -(-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1218)) (-6 (-161)) (-6 (-639)) (-6 (-1154)) (-15 -2881 ($ $)) (-15 -3745 ((-112) $)) (-15 -2155 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -4428 ((-428 (-1188 $)) (-1188 $))) (-15 -4055 ((-428 (-1188 $)) (-1188 $)))) |%noBranch|) (IF (|has| |#1| (-1053 (-574))) (-6 (-1053 (-48))) |%noBranch|)) |%noBranch|))) -((-4187 (((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)) 89) (((-52) |#2| (-115) (-302 |#2|) (-302 |#2|)) 85) (((-52) |#2| (-115) (-302 |#2|) |#2|) 87) (((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|) 88) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 81) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 83) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 84) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 82) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 90) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|)) 86))) -(((-325 |#1| |#2|) (-10 -7 (-15 -4187 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -4187 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -4187 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4187 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4187 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4187 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4187 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -4187 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -4187 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -4187 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-566) (-624 (-546))) (-440 |#1|)) (T -325)) -((-4187 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3)) (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *3)))) (-4187 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4187 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4187 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *5)))) (-4187 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8))) (-4 *8 (-440 *7)) (-5 *5 (-302 *8)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-4187 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-4187 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8)) (-5 *6 (-654 *8)) (-4 *8 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-4187 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-4187 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-4187 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5)) (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *6))))) -(-10 -7 (-15 -4187 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -4187 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -4187 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4187 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4187 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4187 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4187 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -4187 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -4187 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -4187 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)))) -((-1938 (((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574) (-1174)) 67) (((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574)) 68) (((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574) (-1174)) 64) (((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574)) 65)) (-3796 (((-1 (-227) (-227)) (-227)) 66))) -(((-326) (-10 -7 (-15 -3796 ((-1 (-227) (-227)) (-227))) (-15 -1938 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574))) (-15 -1938 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574) (-1174))) (-15 -1938 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574))) (-15 -1938 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574) (-1174))))) (T -326)) -((-1938 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1109 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1174)) (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) (-1938 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1109 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) (-1938 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1109 (-227))) (-5 *6 (-574)) (-5 *7 (-1174)) (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) (-1938 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1109 (-227))) (-5 *6 (-574)) (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227))))) -(-10 -7 (-15 -3796 ((-1 (-227) (-227)) (-227))) (-15 -1938 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574))) (-15 -1938 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574) (-1174))) (-15 -1938 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574))) (-15 -1938 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574) (-1174)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 26)) (-4349 (((-654 (-1097)) $) NIL)) (-1497 (((-1192) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3842 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-3786 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 20)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-372)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) 36)) (-3911 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1782 (((-112) $) NIL (|has| |#1| (-372)))) (-3938 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) 16)) (-3372 (((-112) $) NIL)) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2057 (($ $ (-934)) NIL) (($ $ (-417 (-574))) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-417 (-574))) NIL) (($ $ (-1097) (-417 (-574))) NIL) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3112 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-1578 (($ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218)))))) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2115 (($ $ (-417 (-574))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3087 (((-417 (-574)) $) 17)) (-2266 (($ (-1268 |#1| |#2| |#3|)) 11)) (-2017 (((-1268 |#1| |#2| |#3|) $) 12)) (-1618 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-2208 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1127)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3584 (((-417 (-574)) $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) 10)) (-2950 (((-872) $) 42) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2930 ((|#1| $ (-417 (-574))) 34)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3332 ((|#1| $) NIL)) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2427 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 28)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 37)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-327 |#1| |#2| |#3|) (-13 (-1264 |#1|) (-802) (-10 -8 (-15 -2266 ($ (-1268 |#1| |#2| |#3|))) (-15 -2017 ((-1268 |#1| |#2| |#3|) $)) (-15 -3087 ((-417 (-574)) $)))) (-372) (-1192) |#1|) (T -327)) -((-2266 (*1 *1 *2) (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1192)) (-14 *5 *3) (-5 *1 (-327 *3 *4 *5)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1268 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1192)) (-14 *5 *3))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1192)) (-14 *5 *3)))) -(-13 (-1264 |#1|) (-802) (-10 -8 (-15 -2266 ($ (-1268 |#1| |#2| |#3|))) (-15 -2017 ((-1268 |#1| |#2| |#3|) $)) (-15 -3087 ((-417 (-574)) $)))) -((-2132 (((-2 (|:| -2017 (-781)) (|:| -1867 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781)) 35)) (-3112 (((-654 (-2 (|:| -1867 (-781)) (|:| |logand| |#1|))) (-428 |#1|)) 40))) -(((-328 |#1|) (-10 -7 (-15 -2132 ((-2 (|:| -2017 (-781)) (|:| -1867 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3112 ((-654 (-2 (|:| -1867 (-781)) (|:| |logand| |#1|))) (-428 |#1|)))) (-566)) (T -328)) -((-3112 (*1 *2 *3) (-12 (-5 *3 (-428 *4)) (-4 *4 (-566)) (-5 *2 (-654 (-2 (|:| -1867 (-781)) (|:| |logand| *4)))) (-5 *1 (-328 *4)))) (-2132 (*1 *2 *3 *4) (-12 (-5 *3 (-428 *5)) (-4 *5 (-566)) (-5 *2 (-2 (|:| -2017 (-781)) (|:| -1867 *5) (|:| |radicand| (-654 *5)))) (-5 *1 (-328 *5)) (-5 *4 (-781))))) -(-10 -7 (-15 -2132 ((-2 (|:| -2017 (-781)) (|:| -1867 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3112 ((-654 (-2 (|:| -1867 (-781)) (|:| |logand| |#1|))) (-428 |#1|)))) -((-4349 (((-654 |#2|) (-1188 |#4|)) 44)) (-1523 ((|#3| (-574)) 47)) (-1770 (((-1188 |#4|) (-1188 |#3|)) 30)) (-1381 (((-1188 |#4|) (-1188 |#4|) (-574)) 66)) (-1838 (((-1188 |#3|) (-1188 |#4|)) 21)) (-3584 (((-654 (-781)) (-1188 |#4|) (-654 |#2|)) 41)) (-4334 (((-1188 |#3|) (-1188 |#4|) (-654 |#2|) (-654 |#3|)) 35))) -(((-329 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4334 ((-1188 |#3|) (-1188 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -3584 ((-654 (-781)) (-1188 |#4|) (-654 |#2|))) (-15 -4349 ((-654 |#2|) (-1188 |#4|))) (-15 -1838 ((-1188 |#3|) (-1188 |#4|))) (-15 -1770 ((-1188 |#4|) (-1188 |#3|))) (-15 -1381 ((-1188 |#4|) (-1188 |#4|) (-574))) (-15 -1523 (|#3| (-574)))) (-803) (-860) (-1064) (-962 |#3| |#1| |#2|)) (T -329)) -((-1523 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1064)) (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-962 *2 *4 *5)))) (-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 *7)) (-5 *3 (-574)) (-4 *7 (-962 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-5 *1 (-329 *4 *5 *6 *7)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-1188 *6)) (-4 *6 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1188 *7)) (-5 *1 (-329 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-1188 *7)) (-4 *7 (-962 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-5 *2 (-1188 *6)) (-5 *1 (-329 *4 *5 *6 *7)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-1188 *7)) (-4 *7 (-962 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-5 *2 (-654 *5)) (-5 *1 (-329 *4 *5 *6 *7)))) (-3584 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860)) (-4 *8 (-962 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1064)) (-5 *2 (-654 (-781))) (-5 *1 (-329 *5 *6 *7 *8)))) (-4334 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8)) (-4 *7 (-860)) (-4 *8 (-1064)) (-4 *9 (-962 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-1188 *8)) (-5 *1 (-329 *6 *7 *8 *9))))) -(-10 -7 (-15 -4334 ((-1188 |#3|) (-1188 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -3584 ((-654 (-781)) (-1188 |#4|) (-654 |#2|))) (-15 -4349 ((-654 |#2|) (-1188 |#4|))) (-15 -1838 ((-1188 |#3|) (-1188 |#4|))) (-15 -1770 ((-1188 |#4|) (-1188 |#3|))) (-15 -1381 ((-1188 |#4|) (-1188 |#4|) (-574))) (-15 -1523 (|#3| (-574)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 19)) (-3786 (((-654 (-2 (|:| |gen| |#1|) (|:| -1618 (-574)))) $) 21)) (-1597 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781) $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2382 ((|#1| $ (-574)) NIL)) (-2734 (((-574) $ (-574)) NIL)) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-3341 (($ (-1 |#1| |#1|) $) NIL)) (-2097 (($ (-1 (-574) (-574)) $) 11)) (-3945 (((-1174) $) NIL)) (-4152 (($ $ $) NIL (|has| (-574) (-802)))) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ |#1|) NIL)) (-2930 (((-574) |#1| $) NIL)) (-3838 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) 29 (|has| |#1| (-860)))) (-3089 (($ $) 12) (($ $ $) 28)) (-3074 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL) (($ (-574) |#1|) 27))) -(((-330 |#1|) (-13 (-21) (-727 (-574)) (-331 |#1| (-574)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|))) (-1115)) (T -330)) +((-2661 ((|#1| (-1 |#1| (-574)) (-1195 (-417 (-574)))) 26))) +(((-318 |#1|) (-10 -7 (-15 -2661 (|#1| (-1 |#1| (-574)) (-1195 (-417 (-574)))))) (-38 (-417 (-574)))) (T -318)) +((-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1195 (-417 (-574)))) (-5 *1 (-318 *2)) (-4 *2 (-38 (-417 (-574))))))) +(-10 -7 (-15 -2661 (|#1| (-1 |#1| (-574)) (-1195 (-417 (-574)))))) +((-2864 (((-112) $ $) NIL)) (-4313 (((-574) $) 12)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 9)) (-2951 (((-872) $) 19) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-319) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -4313 ((-574) $))))) (T -319)) +((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-319)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319))))) +(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -4313 ((-574) $)))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 7)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9))) +(((-320) (-1116)) (T -320)) +NIL +(-1116) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 60)) (-4146 (((-1270 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-315)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-923)))) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-923)))) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-830)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-1270 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-574)))) (((-3 (-1269 |#2| |#3| |#4|) "failed") $) 26)) (-2214 (((-1270 |#1| |#2| |#3| |#4|) $) NIL) (((-1193) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-574)))) (((-574) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-574)))) (((-1269 |#2| |#3| |#4|) $) NIL)) (-2800 (($ $ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-1270 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1284 (-1270 |#1| |#2| |#3| |#4|)))) (-699 $) (-1284 $)) NIL) (((-699 (-1270 |#1| |#2| |#3| |#4|)) (-699 $)) NIL) (((-699 (-1270 |#1| |#2| |#3| |#4|)) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-555)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3408 (((-112) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-830)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-897 (-388))))) (-4226 (((-112) $) NIL)) (-2967 (($ $) NIL)) (-2971 (((-1270 |#1| |#2| |#3| |#4|) $) 22)) (-2414 (((-3 $ "failed") $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1168)))) (-3182 (((-112) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-830)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-4380 (($ $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-1785 (($ (-1 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|)) $) NIL)) (-3410 (((-3 (-853 |#2|) "failed") $) 80)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-315)))) (-2260 (((-1270 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-555)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-923)))) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-1270 |#1| |#2| |#3| |#4|)) (-654 (-1270 |#1| |#2| |#3| |#4|))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-317 (-1270 |#1| |#2| |#3| |#4|)))) (($ $ (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-317 (-1270 |#1| |#2| |#3| |#4|)))) (($ $ (-302 (-1270 |#1| |#2| |#3| |#4|))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-317 (-1270 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-302 (-1270 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-317 (-1270 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-1193)) (-654 (-1270 |#1| |#2| |#3| |#4|))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-524 (-1193) (-1270 |#1| |#2| |#3| |#4|)))) (($ $ (-1193) (-1270 |#1| |#2| |#3| |#4|)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-524 (-1193) (-1270 |#1| |#2| |#3| |#4|))))) (-2098 (((-781) $) NIL)) (-2207 (($ $ (-1270 |#1| |#2| |#3| |#4|)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-294 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|))) NIL)) (-2808 (($ $) NIL)) (-2981 (((-1270 |#1| |#2| |#3| |#4|) $) 19)) (-1844 (((-903 (-574)) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-624 (-546)))) (((-388) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1038))) (((-227) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1038)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1270 |#1| |#2| |#3| |#4|) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-1270 |#1| |#2| |#3| |#4|)) 30) (($ (-1193)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-1193)))) (($ (-1269 |#2| |#3| |#4|)) 37)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-1270 |#1| |#2| |#3| |#4|) (-923))) (|has| (-1270 |#1| |#2| |#3| |#4|) (-146))))) (-2898 (((-781)) NIL T CONST)) (-2544 (((-1270 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-555)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3936 (($ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-781)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-3103 (($ $ $) 35) (($ (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|)) 32)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-1270 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1270 |#1| |#2| |#3| |#4|)) NIL))) +(((-321 |#1| |#2| |#3| |#4|) (-13 (-1008 (-1270 |#1| |#2| |#3| |#4|)) (-1054 (-1269 |#2| |#3| |#4|)) (-10 -8 (-15 -3410 ((-3 (-853 |#2|) "failed") $)) (-15 -2951 ($ (-1269 |#2| |#3| |#4|))))) (-13 (-1054 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1219) (-440 |#1|)) (-1193) |#2|) (T -321)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1269 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193)) (-14 *6 *4) (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) (-5 *1 (-321 *3 *4 *5 *6)))) (-3410 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193)) (-14 *6 *4)))) +(-13 (-1008 (-1270 |#1| |#2| |#3| |#4|)) (-1054 (-1269 |#2| |#3| |#4|)) (-10 -8 (-15 -3410 ((-3 (-853 |#2|) "failed") $)) (-15 -2951 ($ (-1269 |#2| |#3| |#4|))))) +((-1785 (((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)) 13))) +(((-322 |#1| |#2|) (-10 -7 (-15 -1785 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)))) (-1116) (-1116)) (T -322)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6))))) +(-10 -7 (-15 -1785 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)))) +((-4402 (((-52) |#2| (-302 |#2|) (-781)) 40) (((-52) |#2| (-302 |#2|)) 32) (((-52) |#2| (-781)) 35) (((-52) |#2|) 33) (((-52) (-1193)) 26)) (-3597 (((-52) |#2| (-302 |#2|) (-417 (-574))) 59) (((-52) |#2| (-302 |#2|)) 56) (((-52) |#2| (-417 (-574))) 58) (((-52) |#2|) 57) (((-52) (-1193)) 55)) (-4426 (((-52) |#2| (-302 |#2|) (-417 (-574))) 54) (((-52) |#2| (-302 |#2|)) 51) (((-52) |#2| (-417 (-574))) 53) (((-52) |#2|) 52) (((-52) (-1193)) 50)) (-4414 (((-52) |#2| (-302 |#2|) (-574)) 47) (((-52) |#2| (-302 |#2|)) 44) (((-52) |#2| (-574)) 46) (((-52) |#2|) 45) (((-52) (-1193)) 43))) +(((-323 |#1| |#2|) (-10 -7 (-15 -4402 ((-52) (-1193))) (-15 -4402 ((-52) |#2|)) (-15 -4402 ((-52) |#2| (-781))) (-15 -4402 ((-52) |#2| (-302 |#2|))) (-15 -4402 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4414 ((-52) (-1193))) (-15 -4414 ((-52) |#2|)) (-15 -4414 ((-52) |#2| (-574))) (-15 -4414 ((-52) |#2| (-302 |#2|))) (-15 -4414 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4426 ((-52) (-1193))) (-15 -4426 ((-52) |#2|)) (-15 -4426 ((-52) |#2| (-417 (-574)))) (-15 -4426 ((-52) |#2| (-302 |#2|))) (-15 -4426 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3597 ((-52) (-1193))) (-15 -3597 ((-52) |#2|)) (-15 -3597 ((-52) |#2| (-417 (-574)))) (-15 -3597 ((-52) |#2| (-302 |#2|))) (-15 -3597 ((-52) |#2| (-302 |#2|) (-417 (-574))))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -323)) +((-3597 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-3597 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4))))) (-4426 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4426 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4426 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-4426 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-4426 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4))))) (-4414 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-1054 *5) (-649 *5))) (-5 *5 (-574)) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4414 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4414 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1054 *4) (-649 *4))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-4414 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-4414 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4))))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-781)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-4402 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4)))))) +(-10 -7 (-15 -4402 ((-52) (-1193))) (-15 -4402 ((-52) |#2|)) (-15 -4402 ((-52) |#2| (-781))) (-15 -4402 ((-52) |#2| (-302 |#2|))) (-15 -4402 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4414 ((-52) (-1193))) (-15 -4414 ((-52) |#2|)) (-15 -4414 ((-52) |#2| (-574))) (-15 -4414 ((-52) |#2| (-302 |#2|))) (-15 -4414 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4426 ((-52) (-1193))) (-15 -4426 ((-52) |#2|)) (-15 -4426 ((-52) |#2| (-417 (-574)))) (-15 -4426 ((-52) |#2| (-302 |#2|))) (-15 -4426 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3597 ((-52) (-1193))) (-15 -3597 ((-52) |#2|)) (-15 -3597 ((-52) |#2| (-417 (-574)))) (-15 -3597 ((-52) |#2| (-302 |#2|))) (-15 -3597 ((-52) |#2| (-302 |#2|) (-417 (-574))))) +((-2864 (((-112) $ $) NIL)) (-3442 (((-654 $) $ (-1193)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1189 $) (-1193)) NIL (|has| |#1| (-566))) (((-654 $) (-1189 $)) NIL (|has| |#1| (-566))) (((-654 $) (-966 $)) NIL (|has| |#1| (-566)))) (-4016 (($ $ (-1193)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1189 $) (-1193)) NIL (|has| |#1| (-566))) (($ (-1189 $)) NIL (|has| |#1| (-566))) (($ (-966 $)) NIL (|has| |#1| (-566)))) (-1431 (((-112) $) 27 (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))))) (-4350 (((-654 (-1193)) $) 368)) (-4173 (((-417 (-1189 $)) $ (-622 $)) NIL (|has| |#1| (-566)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-4068 (((-654 (-622 $)) $) NIL)) (-2379 (($ $) 171 (|has| |#1| (-566)))) (-2258 (($ $) 147 (|has| |#1| (-566)))) (-2046 (($ $ (-1108 $)) 232 (|has| |#1| (-566))) (($ $ (-1193)) 228 (|has| |#1| (-566)))) (-2600 (((-3 $ "failed") $ $) NIL (-2833 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))))) (-2559 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) 386) (($ $ (-654 (-622 $)) (-654 $)) 430)) (-2488 (((-428 (-1189 $)) (-1189 $)) 308 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-2991 (($ $) NIL (|has| |#1| (-566)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-566)))) (-4212 (($ $) NIL (|has| |#1| (-566)))) (-3245 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2358 (($ $) 167 (|has| |#1| (-566)))) (-2235 (($ $) 143 (|has| |#1| (-566)))) (-2843 (($ $ (-574)) 73 (|has| |#1| (-566)))) (-2404 (($ $) 175 (|has| |#1| (-566)))) (-2280 (($ $) 151 (|has| |#1| (-566)))) (-3250 (($) NIL (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))) (|has| |#1| (-1128))) CONST)) (-2546 (((-654 $) $ (-1193)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1189 $) (-1193)) NIL (|has| |#1| (-566))) (((-654 $) (-1189 $)) NIL (|has| |#1| (-566))) (((-654 $) (-966 $)) NIL (|has| |#1| (-566)))) (-3814 (($ $ (-1193)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1189 $) (-1193)) 134 (|has| |#1| (-566))) (($ (-1189 $)) NIL (|has| |#1| (-566))) (($ (-966 $)) NIL (|has| |#1| (-566)))) (-1704 (((-3 (-622 $) "failed") $) 18) (((-3 (-1193) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-966 |#1|)) "failed") $) NIL (|has| |#1| (-566))) (((-3 (-966 |#1|) "failed") $) NIL (|has| |#1| (-1065))) (((-3 (-417 (-574)) "failed") $) 46 (-2833 (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-2214 (((-622 $) $) 12) (((-1193) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-966 |#1|)) $) NIL (|has| |#1| (-566))) (((-966 |#1|) $) NIL (|has| |#1| (-1065))) (((-417 (-574)) $) 319 (-2833 (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-2800 (($ $ $) NIL (|has| |#1| (-566)))) (-1831 (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 125 (|has| |#1| (-1065))) (((-699 |#1|) (-699 $)) 115 (|has| |#1| (-1065))) (((-699 |#1|) (-1284 $)) NIL (|has| |#1| (-1065))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (-2882 (($ $) 96 (|has| |#1| (-566)))) (-4322 (((-3 $ "failed") $) NIL (|has| |#1| (-1128)))) (-2813 (($ $ $) NIL (|has| |#1| (-566)))) (-3937 (($ $ (-1108 $)) 236 (|has| |#1| (-566))) (($ $ (-1193)) 234 (|has| |#1| (-566)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-566)))) (-3978 (((-112) $) NIL (|has| |#1| (-566)))) (-1445 (($ $ $) 202 (|has| |#1| (-566)))) (-3004 (($) 137 (|has| |#1| (-566)))) (-4159 (($ $ $) 222 (|has| |#1| (-566)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 392 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 399 (|has| |#1| (-897 (-388))))) (-1391 (($ $) NIL) (($ (-654 $)) NIL)) (-1649 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) 276)) (-4226 (((-112) $) 25 (|has| |#1| (-1128)))) (-1823 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2967 (($ $) 72 (|has| |#1| (-1065)))) (-2971 (((-1141 |#1| (-622 $)) $) 91 (|has| |#1| (-1065)))) (-2906 (((-112) $) 62 (|has| |#1| (-566)))) (-3527 (($ $ (-574)) NIL (|has| |#1| (-566)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-3746 (((-1189 $) (-622 $)) 277 (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) 426)) (-3452 (((-3 (-622 $) "failed") $) NIL)) (-3113 (($ $) 141 (|has| |#1| (-566)))) (-4053 (($ $) 247 (|has| |#1| (-566)))) (-2849 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-1489 (((-1175) $) NIL)) (-4139 (((-654 (-622 $)) $) 49)) (-1782 (($ (-115) $) NIL) (($ (-115) (-654 $)) 431)) (-1720 (((-3 (-654 $) "failed") $) NIL (|has| |#1| (-1128)))) (-2542 (((-3 (-2 (|:| |val| $) (|:| -3139 (-574))) "failed") $) NIL (|has| |#1| (-1065)))) (-3825 (((-3 (-654 $) "failed") $) 436 (|has| |#1| (-25)))) (-3121 (((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2778 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $) NIL (|has| |#1| (-1128))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $ (-115)) NIL (|has| |#1| (-1065))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $ (-1193)) NIL (|has| |#1| (-1065)))) (-2154 (((-112) $ (-115)) NIL) (((-112) $ (-1193)) 51)) (-1328 (($ $) NIL (-2833 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3031 (($ $ (-1193)) 251 (|has| |#1| (-566))) (($ $ (-1108 $)) 253 (|has| |#1| (-566)))) (-1847 (((-781) $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) 43)) (-1355 ((|#1| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 301 (|has| |#1| (-566)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-3595 (((-112) $ $) NIL) (((-112) $ (-1193)) NIL)) (-3296 (($ $ (-1193)) 226 (|has| |#1| (-566))) (($ $) 224 (|has| |#1| (-566)))) (-4412 (($ $) 218 (|has| |#1| (-566)))) (-3335 (((-428 (-1189 $)) (-1189 $)) 306 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-4202 (((-428 $) $) NIL (|has| |#1| (-566)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-566)))) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-1617 (($ $) 139 (|has| |#1| (-566)))) (-2120 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 425) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1193) (-1 $ (-654 $))) NIL) (($ $ (-1193) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) 379) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1193)) NIL (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-624 (-546)))) (($ $) NIL (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1193)) 366 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1193)) 365 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ $))) NIL (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ (-654 $)))) NIL (|has| |#1| (-1065))) (($ $ (-1193) (-781) (-1 $ (-654 $))) NIL (|has| |#1| (-1065))) (($ $ (-1193) (-781) (-1 $ $)) NIL (|has| |#1| (-1065)))) (-2098 (((-781) $) NIL (|has| |#1| (-566)))) (-4043 (($ $) 239 (|has| |#1| (-566)))) (-2207 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-566)))) (-3078 (($ $) NIL) (($ $ $) NIL)) (-2222 (($ $) 249 (|has| |#1| (-566)))) (-1669 (($ $) 200 (|has| |#1| (-566)))) (-3879 (($ $ (-1193)) NIL (|has| |#1| (-1065))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-1065))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-1065)))) (-2808 (($ $) 74 (|has| |#1| (-566)))) (-2981 (((-1141 |#1| (-622 $)) $) 93 (|has| |#1| (-566)))) (-4379 (($ $) 317 (|has| $ (-1065)))) (-2417 (($ $) 177 (|has| |#1| (-566)))) (-2289 (($ $) 153 (|has| |#1| (-566)))) (-2390 (($ $) 173 (|has| |#1| (-566)))) (-2269 (($ $) 149 (|has| |#1| (-566)))) (-2368 (($ $) 169 (|has| |#1| (-566)))) (-2247 (($ $) 145 (|has| |#1| (-566)))) (-1844 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) NIL (|has| |#1| (-566))) (((-546) $) 363 (|has| |#1| (-624 (-546))))) (-3617 (($ $ $) NIL (|has| |#1| (-483)))) (-3955 (($ $ $) NIL (|has| |#1| (-483)))) (-2951 (((-872) $) 424) (($ (-622 $)) 415) (($ (-1193)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-566))) (($ (-48)) 312 (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))))) (($ (-1141 |#1| (-622 $))) 95 (|has| |#1| (-1065))) (($ (-417 |#1|)) NIL (|has| |#1| (-566))) (($ (-966 (-417 |#1|))) NIL (|has| |#1| (-566))) (($ (-417 (-966 (-417 |#1|)))) NIL (|has| |#1| (-566))) (($ (-417 (-966 |#1|))) NIL (|has| |#1| (-566))) (($ (-966 |#1|)) NIL (|has| |#1| (-1065))) (($ (-574)) 34 (-2833 (|has| |#1| (-1054 (-574))) (|has| |#1| (-1065)))) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-566)) (|has| |#1| (-1054 (-417 (-574))))))) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL (|has| |#1| (-1065)) CONST)) (-2078 (($ $) NIL) (($ (-654 $)) NIL)) (-3900 (($ $ $) 220 (|has| |#1| (-566)))) (-3346 (($ $ $) 206 (|has| |#1| (-566)))) (-1359 (($ $ $) 210 (|has| |#1| (-566)))) (-1509 (($ $ $) 204 (|has| |#1| (-566)))) (-2108 (($ $ $) 208 (|has| |#1| (-566)))) (-2420 (((-112) (-115)) 10)) (-4069 (((-112) $ $) 86)) (-2456 (($ $) 183 (|has| |#1| (-566)))) (-2320 (($ $) 159 (|has| |#1| (-566)))) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) 179 (|has| |#1| (-566)))) (-2301 (($ $) 155 (|has| |#1| (-566)))) (-2480 (($ $) 187 (|has| |#1| (-566)))) (-2340 (($ $) 163 (|has| |#1| (-566)))) (-2513 (($ (-1193) $) NIL) (($ (-1193) $ $) NIL) (($ (-1193) $ $ $) NIL) (($ (-1193) $ $ $ $) NIL) (($ (-1193) (-654 $)) NIL)) (-1802 (($ $) 214 (|has| |#1| (-566)))) (-1460 (($ $) 212 (|has| |#1| (-566)))) (-2536 (($ $) 189 (|has| |#1| (-566)))) (-2349 (($ $) 165 (|has| |#1| (-566)))) (-2468 (($ $) 185 (|has| |#1| (-566)))) (-2330 (($ $) 161 (|has| |#1| (-566)))) (-2443 (($ $) 181 (|has| |#1| (-566)))) (-2312 (($ $) 157 (|has| |#1| (-566)))) (-3936 (($ $) 192 (|has| |#1| (-566)))) (-2141 (($) 21 (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) CONST)) (-3274 (($ $) 243 (|has| |#1| (-566)))) (-2153 (($) 23 (|has| |#1| (-1128)) CONST)) (-2988 (($ $) 194 (|has| |#1| (-566))) (($ $ $) 196 (|has| |#1| (-566)))) (-3275 (($ $) 241 (|has| |#1| (-566)))) (-3584 (($ $ (-1193)) NIL (|has| |#1| (-1065))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-1065))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-1065)))) (-2713 (($ $) 245 (|has| |#1| (-566)))) (-3418 (($ $ $) 198 (|has| |#1| (-566)))) (-2986 (((-112) $ $) 88)) (-3103 (($ (-1141 |#1| (-622 $)) (-1141 |#1| (-622 $))) 106 (|has| |#1| (-566))) (($ $ $) 42 (-2833 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3090 (($ $ $) 40 (-2833 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (($ $) 29 (-2833 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))))) (-3074 (($ $ $) 38 (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))))) (** (($ $ $) 64 (|has| |#1| (-566))) (($ $ (-417 (-574))) 314 (|has| |#1| (-566))) (($ $ (-574)) 80 (-2833 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 75 (|has| |#1| (-1128))) (($ $ (-935)) 84 (|has| |#1| (-1128)))) (* (($ (-417 (-574)) $) NIL (|has| |#1| (-566))) (($ $ (-417 (-574))) NIL (|has| |#1| (-566))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1065))) (($ $ $) 36 (|has| |#1| (-1128))) (($ (-574) $) 32 (-2833 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (($ (-781) $) NIL (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (($ (-935) $) NIL (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))))) +(((-324 |#1|) (-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1219)) (-6 (-161)) (-6 (-639)) (-6 (-1155)) (-15 -2882 ($ $)) (-15 -2906 ((-112) $)) (-15 -2843 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -3335 ((-428 (-1189 $)) (-1189 $))) (-15 -2488 ((-428 (-1189 $)) (-1189 $)))) |%noBranch|) (IF (|has| |#1| (-1054 (-574))) (-6 (-1054 (-48))) |%noBranch|)) |%noBranch|))) (-1116)) (T -324)) +((-2882 (*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1116)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1116)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1116)))) (-3335 (*1 *2 *3) (-12 (-5 *2 (-428 (-1189 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1189 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1116)))) (-2488 (*1 *2 *3) (-12 (-5 *2 (-428 (-1189 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1189 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1116))))) +(-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1219)) (-6 (-161)) (-6 (-639)) (-6 (-1155)) (-15 -2882 ($ $)) (-15 -2906 ((-112) $)) (-15 -2843 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -3335 ((-428 (-1189 $)) (-1189 $))) (-15 -2488 ((-428 (-1189 $)) (-1189 $)))) |%noBranch|) (IF (|has| |#1| (-1054 (-574))) (-6 (-1054 (-48))) |%noBranch|)) |%noBranch|))) +((-3295 (((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)) 89) (((-52) |#2| (-115) (-302 |#2|) (-302 |#2|)) 85) (((-52) |#2| (-115) (-302 |#2|) |#2|) 87) (((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|) 88) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 81) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 83) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 84) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 82) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 90) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|)) 86))) +(((-325 |#1| |#2|) (-10 -7 (-15 -3295 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -3295 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -3295 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -3295 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -3295 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -3295 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -3295 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -3295 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -3295 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -3295 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-566) (-624 (-546))) (-440 |#1|)) (T -325)) +((-3295 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3)) (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *3)))) (-3295 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-3295 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-3295 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *5)))) (-3295 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8))) (-4 *8 (-440 *7)) (-5 *5 (-302 *8)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-3295 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-3295 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8)) (-5 *6 (-654 *8)) (-4 *8 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-3295 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-3295 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-3295 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5)) (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *6))))) +(-10 -7 (-15 -3295 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -3295 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -3295 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -3295 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -3295 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -3295 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -3295 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -3295 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -3295 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -3295 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)))) +((-3197 (((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574) (-1175)) 67) (((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574)) 68) (((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574) (-1175)) 64) (((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574)) 65)) (-2059 (((-1 (-227) (-227)) (-227)) 66))) +(((-326) (-10 -7 (-15 -2059 ((-1 (-227) (-227)) (-227))) (-15 -3197 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574))) (-15 -3197 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574) (-1175))) (-15 -3197 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574))) (-15 -3197 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574) (-1175))))) (T -326)) +((-3197 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1110 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1175)) (-5 *2 (-1229 (-940))) (-5 *1 (-326)))) (-3197 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1110 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *2 (-1229 (-940))) (-5 *1 (-326)))) (-3197 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1110 (-227))) (-5 *6 (-574)) (-5 *7 (-1175)) (-5 *2 (-1229 (-940))) (-5 *1 (-326)))) (-3197 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1110 (-227))) (-5 *6 (-574)) (-5 *2 (-1229 (-940))) (-5 *1 (-326)))) (-2059 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227))))) +(-10 -7 (-15 -2059 ((-1 (-227) (-227)) (-227))) (-15 -3197 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574))) (-15 -3197 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574) (-1175))) (-15 -3197 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574))) (-15 -3197 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574) (-1175)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 26)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-3332 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-3108 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 20)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL (|has| |#1| (-372)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) 36)) (-4322 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3978 (((-112) $) NIL (|has| |#1| (-372)))) (-4189 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) 16)) (-4226 (((-112) $) NIL)) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3966 (($ $ (-935)) NIL) (($ $ (-417 (-574))) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-417 (-574))) NIL) (($ $ (-1098) (-417 (-574))) NIL) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3342 (($ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219)))))) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2433 (($ $ (-417 (-574))) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3228 (((-417 (-574)) $) 17)) (-2477 (($ (-1269 |#1| |#2| |#3|)) 11)) (-3139 (((-1269 |#1| |#2| |#3|) $) 12)) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1128)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3580 (((-417 (-574)) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) 10)) (-2951 (((-872) $) 42) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2706 ((|#1| $ (-417 (-574))) 34)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-3333 ((|#1| $) NIL)) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 28)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 37)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-327 |#1| |#2| |#3|) (-13 (-1265 |#1|) (-802) (-10 -8 (-15 -2477 ($ (-1269 |#1| |#2| |#3|))) (-15 -3139 ((-1269 |#1| |#2| |#3|) $)) (-15 -3228 ((-417 (-574)) $)))) (-372) (-1193) |#1|) (T -327)) +((-2477 (*1 *1 *2) (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1193)) (-14 *5 *3) (-5 *1 (-327 *3 *4 *5)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1193)) (-14 *5 *3))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1193)) (-14 *5 *3)))) +(-13 (-1265 |#1|) (-802) (-10 -8 (-15 -2477 ($ (-1269 |#1| |#2| |#3|))) (-15 -3139 ((-1269 |#1| |#2| |#3|) $)) (-15 -3228 ((-417 (-574)) $)))) +((-3527 (((-2 (|:| -3139 (-781)) (|:| -1866 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781)) 35)) (-3113 (((-654 (-2 (|:| -1866 (-781)) (|:| |logand| |#1|))) (-428 |#1|)) 40))) +(((-328 |#1|) (-10 -7 (-15 -3527 ((-2 (|:| -3139 (-781)) (|:| -1866 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3113 ((-654 (-2 (|:| -1866 (-781)) (|:| |logand| |#1|))) (-428 |#1|)))) (-566)) (T -328)) +((-3113 (*1 *2 *3) (-12 (-5 *3 (-428 *4)) (-4 *4 (-566)) (-5 *2 (-654 (-2 (|:| -1866 (-781)) (|:| |logand| *4)))) (-5 *1 (-328 *4)))) (-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-428 *5)) (-4 *5 (-566)) (-5 *2 (-2 (|:| -3139 (-781)) (|:| -1866 *5) (|:| |radicand| (-654 *5)))) (-5 *1 (-328 *5)) (-5 *4 (-781))))) +(-10 -7 (-15 -3527 ((-2 (|:| -3139 (-781)) (|:| -1866 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3113 ((-654 (-2 (|:| -1866 (-781)) (|:| |logand| |#1|))) (-428 |#1|)))) +((-4350 (((-654 |#2|) (-1189 |#4|)) 44)) (-1361 ((|#3| (-574)) 47)) (-4289 (((-1189 |#4|) (-1189 |#3|)) 30)) (-2791 (((-1189 |#4|) (-1189 |#4|) (-574)) 66)) (-4083 (((-1189 |#3|) (-1189 |#4|)) 21)) (-3580 (((-654 (-781)) (-1189 |#4|) (-654 |#2|)) 41)) (-2192 (((-1189 |#3|) (-1189 |#4|) (-654 |#2|) (-654 |#3|)) 35))) +(((-329 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2192 ((-1189 |#3|) (-1189 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -3580 ((-654 (-781)) (-1189 |#4|) (-654 |#2|))) (-15 -4350 ((-654 |#2|) (-1189 |#4|))) (-15 -4083 ((-1189 |#3|) (-1189 |#4|))) (-15 -4289 ((-1189 |#4|) (-1189 |#3|))) (-15 -2791 ((-1189 |#4|) (-1189 |#4|) (-574))) (-15 -1361 (|#3| (-574)))) (-803) (-860) (-1065) (-963 |#3| |#1| |#2|)) (T -329)) +((-1361 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1065)) (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-963 *2 *4 *5)))) (-2791 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 *7)) (-5 *3 (-574)) (-4 *7 (-963 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-5 *1 (-329 *4 *5 *6 *7)))) (-4289 (*1 *2 *3) (-12 (-5 *3 (-1189 *6)) (-4 *6 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1189 *7)) (-5 *1 (-329 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-1189 *7)) (-4 *7 (-963 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-5 *2 (-1189 *6)) (-5 *1 (-329 *4 *5 *6 *7)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-1189 *7)) (-4 *7 (-963 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-5 *2 (-654 *5)) (-5 *1 (-329 *4 *5 *6 *7)))) (-3580 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860)) (-4 *8 (-963 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1065)) (-5 *2 (-654 (-781))) (-5 *1 (-329 *5 *6 *7 *8)))) (-2192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8)) (-4 *7 (-860)) (-4 *8 (-1065)) (-4 *9 (-963 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-1189 *8)) (-5 *1 (-329 *6 *7 *8 *9))))) +(-10 -7 (-15 -2192 ((-1189 |#3|) (-1189 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -3580 ((-654 (-781)) (-1189 |#4|) (-654 |#2|))) (-15 -4350 ((-654 |#2|) (-1189 |#4|))) (-15 -4083 ((-1189 |#3|) (-1189 |#4|))) (-15 -4289 ((-1189 |#4|) (-1189 |#3|))) (-15 -2791 ((-1189 |#4|) (-1189 |#4|) (-574))) (-15 -1361 (|#3| (-574)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 19)) (-3108 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-574)))) $) 21)) (-2600 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781) $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-1719 ((|#1| $ (-574)) NIL)) (-3699 (((-574) $ (-574)) NIL)) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-4359 (($ (-1 |#1| |#1|) $) NIL)) (-2422 (($ (-1 (-574) (-574)) $) 11)) (-1489 (((-1175) $) NIL)) (-3939 (($ $ $) NIL (|has| (-574) (-802)))) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ |#1|) NIL)) (-2706 (((-574) |#1| $) NIL)) (-4069 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) 29 (|has| |#1| (-860)))) (-3090 (($ $) 12) (($ $ $) 28)) (-3074 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL) (($ (-574) |#1|) 27))) +(((-330 |#1|) (-13 (-21) (-727 (-574)) (-331 |#1| (-574)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|))) (-1116)) (T -330)) NIL (-13 (-21) (-727 (-574)) (-331 |#1| (-574)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3786 (((-654 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))) $) 28)) (-1597 (((-3 $ "failed") $ $) 20)) (-1496 (((-781) $) 29)) (-3831 (($) 18 T CONST)) (-1705 (((-3 |#1| "failed") $) 33)) (-2216 ((|#1| $) 34)) (-2382 ((|#1| $ (-574)) 26)) (-2734 ((|#2| $ (-574)) 27)) (-3341 (($ (-1 |#1| |#1|) $) 23)) (-2097 (($ (-1 |#2| |#2|) $) 24)) (-3945 (((-1174) $) 10)) (-4152 (($ $ $) 22 (|has| |#2| (-802)))) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ |#1|) 32)) (-2930 ((|#2| |#1| $) 25)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3074 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ |#2| |#1|) 30))) -(((-331 |#1| |#2|) (-141) (-1115) (-132)) (T -331)) -((-3074 (*1 *1 *2 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-132)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)) (-5 *2 (-781)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1618 *4)))))) (-2734 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1115)) (-4 *2 (-132)))) (-2382 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1115)))) (-2930 (*1 *2 *3 *1) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-132)))) (-2097 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)))) (-3341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)))) (-4152 (*1 *1 *1 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-132)) (-4 *3 (-802))))) -(-13 (-132) (-1053 |t#1|) (-10 -8 (-15 -3074 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1496 ((-781) $)) (-15 -3786 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1618 |t#2|))) $)) (-15 -2734 (|t#2| $ (-574))) (-15 -2382 (|t#1| $ (-574))) (-15 -2930 (|t#2| |t#1| $)) (-15 -2097 ($ (-1 |t#2| |t#2|) $)) (-15 -3341 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-802)) (-15 -4152 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-1053 |#1|) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3786 (((-654 (-2 (|:| |gen| |#1|) (|:| -1618 (-781)))) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781) $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2382 ((|#1| $ (-574)) NIL)) (-2734 (((-781) $ (-574)) NIL)) (-3341 (($ (-1 |#1| |#1|) $) NIL)) (-2097 (($ (-1 (-781) (-781)) $) NIL)) (-3945 (((-1174) $) NIL)) (-4152 (($ $ $) NIL (|has| (-781) (-802)))) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ |#1|) NIL)) (-2930 (((-781) |#1| $) NIL)) (-3838 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-781) |#1|) NIL))) -(((-332 |#1|) (-331 |#1| (-781)) (-1115)) (T -332)) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-3108 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))) $) 28)) (-2600 (((-3 $ "failed") $ $) 20)) (-1496 (((-781) $) 29)) (-3250 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 33)) (-2214 ((|#1| $) 34)) (-1719 ((|#1| $ (-574)) 26)) (-3699 ((|#2| $ (-574)) 27)) (-4359 (($ (-1 |#1| |#1|) $) 23)) (-2422 (($ (-1 |#2| |#2|) $) 24)) (-1489 (((-1175) $) 10)) (-3939 (($ $ $) 22 (|has| |#2| (-802)))) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ |#1|) 32)) (-2706 ((|#2| |#1| $) 25)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ |#2| |#1|) 30))) +(((-331 |#1| |#2|) (-141) (-1116) (-132)) (T -331)) +((-3074 (*1 *1 *2 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-132)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132)) (-5 *2 (-781)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4)))))) (-3699 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1116)) (-4 *2 (-132)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1116)))) (-2706 (*1 *2 *3 *1) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-132)))) (-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132)))) (-4359 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132)))) (-3939 (*1 *1 *1 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-132)) (-4 *3 (-802))))) +(-13 (-132) (-1054 |t#1|) (-10 -8 (-15 -3074 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1496 ((-781) $)) (-15 -3108 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1617 |t#2|))) $)) (-15 -3699 (|t#2| $ (-574))) (-15 -1719 (|t#1| $ (-574))) (-15 -2706 (|t#2| |t#1| $)) (-15 -2422 ($ (-1 |t#2| |t#2|) $)) (-15 -4359 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-802)) (-15 -3939 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-1054 |#1|) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-3108 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-781)))) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781) $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-1719 ((|#1| $ (-574)) NIL)) (-3699 (((-781) $ (-574)) NIL)) (-4359 (($ (-1 |#1| |#1|) $) NIL)) (-2422 (($ (-1 (-781) (-781)) $) NIL)) (-1489 (((-1175) $) NIL)) (-3939 (($ $ $) NIL (|has| (-781) (-802)))) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ |#1|) NIL)) (-2706 (((-781) |#1| $) NIL)) (-4069 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-781) |#1|) NIL))) +(((-332 |#1|) (-331 |#1| (-781)) (-1116)) (T -332)) NIL (-331 |#1| (-781)) -((-1509 (($ $) 72)) (-4389 (($ $ |#2| |#3| $) 14)) (-3558 (($ (-1 |#3| |#3|) $) 51)) (-1342 (((-112) $) 42)) (-1354 ((|#2| $) 44)) (-2852 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3631 ((|#2| $) 68)) (-2836 (((-654 |#2|) $) 56)) (-2037 (($ $ $ (-781)) 37)) (-3098 (($ $ |#2|) 60))) -(((-333 |#1| |#2| |#3|) (-10 -8 (-15 -1509 (|#1| |#1|)) (-15 -3631 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2037 (|#1| |#1| |#1| (-781))) (-15 -4389 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3558 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2836 ((-654 |#2|) |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -1342 ((-112) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3098 (|#1| |#1| |#2|))) (-334 |#2| |#3|) (-1064) (-802)) (T -333)) -NIL -(-10 -8 (-15 -1509 (|#1| |#1|)) (-15 -3631 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2037 (|#1| |#1| |#1| (-781))) (-15 -4389 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3558 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2836 ((-654 |#2|) |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -1342 ((-112) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3098 (|#1| |#1| |#2|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-3648 (($ $) 64 (|has| |#1| (-566)))) (-1527 (((-112) $) 66 (|has| |#1| (-566)))) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-1705 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 98 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 95)) (-2216 (((-574) $) 99 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 97 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 96)) (-1401 (($ $) 72)) (-3911 (((-3 $ "failed") $) 37)) (-1509 (($ $) 84 (|has| |#1| (-462)))) (-4389 (($ $ |#1| |#2| $) 88)) (-3372 (((-112) $) 35)) (-3241 (((-781) $) 91)) (-3257 (((-112) $) 74)) (-4327 (($ |#1| |#2|) 73)) (-1503 ((|#2| $) 90)) (-3558 (($ (-1 |#2| |#2|) $) 89)) (-1786 (($ (-1 |#1| |#1|) $) 75)) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 94)) (-1354 ((|#1| $) 93)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-566)))) (-3584 ((|#2| $) 76)) (-3631 ((|#1| $) 85 (|has| |#1| (-462)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59) (($ (-417 (-574))) 69 (-2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-2836 (((-654 |#1|) $) 92)) (-2930 ((|#1| $ |#2|) 71)) (-3247 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-2037 (($ $ $ (-781)) 87 (|has| |#1| (-174)))) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-334 |#1| |#2|) (-141) (-1064) (-802)) (T -334)) -((-1342 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-112)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-654 *3)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-781)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-3558 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)))) (-4389 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) (-2037 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-4 *3 (-174)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) (-4 *2 (-566)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)) (-4 *2 (-462)))) (-1509 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) (-4 *2 (-462))))) -(-13 (-47 |t#1| |t#2|) (-421 |t#1|) (-10 -8 (-15 -1342 ((-112) $)) (-15 -1354 (|t#1| $)) (-15 -2836 ((-654 |t#1|) $)) (-15 -3241 ((-781) $)) (-15 -1503 (|t#2| $)) (-15 -3558 ($ (-1 |t#2| |t#2|) $)) (-15 -4389 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -2037 ($ $ $ (-781))) |%noBranch|) (IF (|has| |t#1| (-566)) (-15 -2852 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -3631 (|t#1| $)) (-15 -1509 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-421 |#1|) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3841 (((-112) (-112)) NIL)) (-3134 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2551 (($ (-1 (-112) |#1|) $) NIL)) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2098 (($ $) NIL (|has| |#1| (-1115)))) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1941 (($ |#1| $) NIL (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) NIL)) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-3903 (($ $ (-574)) NIL)) (-1647 (((-781) $) NIL)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-2857 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-2609 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1603 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-3658 (($ (-654 |#1|)) NIL)) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4276 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-1317 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-4226 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-335 |#1|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -3658 ($ (-654 |#1|))) (-15 -1647 ((-781) $)) (-15 -3903 ($ $ (-574))) (-15 -3841 ((-112) (-112))))) (-1233)) (T -335)) -((-3658 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-335 *3)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1233)))) (-3903 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1233)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1233))))) -(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -3658 ($ (-654 |#1|))) (-15 -1647 ((-781) $)) (-15 -3903 ($ $ (-574))) (-15 -3841 ((-112) (-112))))) -((-1965 (((-112) $) 47)) (-2498 (((-781)) 23)) (-1645 ((|#2| $) 51) (($ $ (-934)) 121)) (-1496 (((-781)) 122)) (-2919 (($ (-1283 |#2|)) 20)) (-3743 (((-112) $) 134)) (-1386 ((|#2| $) 53) (($ $ (-934)) 118)) (-1950 (((-1188 |#2|) $) NIL) (((-1188 $) $ (-934)) 109)) (-3363 (((-1188 |#2|) $) 95)) (-4426 (((-1188 |#2|) $) 91) (((-3 (-1188 |#2|) "failed") $ $) 88)) (-4140 (($ $ (-1188 |#2|)) 58)) (-1971 (((-843 (-934))) 30) (((-934)) 48)) (-3480 (((-135)) 27)) (-3584 (((-843 (-934)) $) 32) (((-934) $) 137)) (-1549 (($) 128)) (-4346 (((-1283 |#2|) $) NIL) (((-699 |#2|) (-1283 $)) 42)) (-3247 (($ $) NIL) (((-3 $ "failed") $) 98)) (-1469 (((-112) $) 45))) -(((-336 |#1| |#2|) (-10 -8 (-15 -3247 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-781))) (-15 -3247 (|#1| |#1|)) (-15 -4426 ((-3 (-1188 |#2|) "failed") |#1| |#1|)) (-15 -4426 ((-1188 |#2|) |#1|)) (-15 -3363 ((-1188 |#2|) |#1|)) (-15 -4140 (|#1| |#1| (-1188 |#2|))) (-15 -3743 ((-112) |#1|)) (-15 -1549 (|#1|)) (-15 -1645 (|#1| |#1| (-934))) (-15 -1386 (|#1| |#1| (-934))) (-15 -1950 ((-1188 |#1|) |#1| (-934))) (-15 -1645 (|#2| |#1|)) (-15 -1386 (|#2| |#1|)) (-15 -3584 ((-934) |#1|)) (-15 -1971 ((-934))) (-15 -1950 ((-1188 |#2|) |#1|)) (-15 -2919 (|#1| (-1283 |#2|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1|)) (-15 -2498 ((-781))) (-15 -1971 ((-843 (-934)))) (-15 -3584 ((-843 (-934)) |#1|)) (-15 -1965 ((-112) |#1|)) (-15 -1469 ((-112) |#1|)) (-15 -3480 ((-135)))) (-337 |#2|) (-372)) (T -336)) -((-3480 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1971 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-843 (-934))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2498 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1971 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-934)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1496 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4))))) -(-10 -8 (-15 -3247 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-781))) (-15 -3247 (|#1| |#1|)) (-15 -4426 ((-3 (-1188 |#2|) "failed") |#1| |#1|)) (-15 -4426 ((-1188 |#2|) |#1|)) (-15 -3363 ((-1188 |#2|) |#1|)) (-15 -4140 (|#1| |#1| (-1188 |#2|))) (-15 -3743 ((-112) |#1|)) (-15 -1549 (|#1|)) (-15 -1645 (|#1| |#1| (-934))) (-15 -1386 (|#1| |#1| (-934))) (-15 -1950 ((-1188 |#1|) |#1| (-934))) (-15 -1645 (|#2| |#1|)) (-15 -1386 (|#2| |#1|)) (-15 -3584 ((-934) |#1|)) (-15 -1971 ((-934))) (-15 -1950 ((-1188 |#2|) |#1|)) (-15 -2919 (|#1| (-1283 |#2|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1|)) (-15 -2498 ((-781))) (-15 -1971 ((-843 (-934)))) (-15 -3584 ((-843 (-934)) |#1|)) (-15 -1965 ((-112) |#1|)) (-15 -1469 ((-112) |#1|)) (-15 -3480 ((-135)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1965 (((-112) $) 104)) (-2498 (((-781)) 100)) (-1645 ((|#1| $) 151) (($ $ (-934)) 148 (|has| |#1| (-377)))) (-2541 (((-1205 (-934) (-781)) (-574)) 133 (|has| |#1| (-377)))) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 81)) (-3954 (((-428 $) $) 80)) (-3656 (((-112) $ $) 65)) (-1496 (((-781)) 123 (|has| |#1| (-377)))) (-3831 (($) 18 T CONST)) (-1705 (((-3 |#1| "failed") $) 111)) (-2216 ((|#1| $) 112)) (-2919 (($ (-1283 |#1|)) 157)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-377)))) (-2799 (($ $ $) 61)) (-3911 (((-3 $ "failed") $) 37)) (-2834 (($) 120 (|has| |#1| (-377)))) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1912 (($) 135 (|has| |#1| (-377)))) (-3873 (((-112) $) 136 (|has| |#1| (-377)))) (-4158 (($ $ (-781)) 97 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1782 (((-112) $) 79)) (-2725 (((-934) $) 138 (|has| |#1| (-377))) (((-843 (-934)) $) 94 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3372 (((-112) $) 35)) (-3434 (($) 146 (|has| |#1| (-377)))) (-3743 (((-112) $) 145 (|has| |#1| (-377)))) (-1386 ((|#1| $) 152) (($ $ (-934)) 149 (|has| |#1| (-377)))) (-1353 (((-3 $ "failed") $) 124 (|has| |#1| (-377)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-1950 (((-1188 |#1|) $) 156) (((-1188 $) $ (-934)) 150 (|has| |#1| (-377)))) (-3271 (((-934) $) 121 (|has| |#1| (-377)))) (-3363 (((-1188 |#1|) $) 142 (|has| |#1| (-377)))) (-4426 (((-1188 |#1|) $) 141 (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) 140 (|has| |#1| (-377)))) (-4140 (($ $ (-1188 |#1|)) 143 (|has| |#1| (-377)))) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3791 (($) 125 (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) 122 (|has| |#1| (-377)))) (-3854 (((-112) $) 103)) (-3939 (((-1135) $) 11)) (-2975 (($) 144 (|has| |#1| (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) 132 (|has| |#1| (-377)))) (-4200 (((-428 $) $) 82)) (-1971 (((-843 (-934))) 101) (((-934)) 154)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3364 (((-781) $) 64)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-3881 (((-781) $) 137 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 95 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3480 (((-135)) 109)) (-3878 (($ $ (-781)) 128 (|has| |#1| (-377))) (($ $) 126 (|has| |#1| (-377)))) (-3584 (((-843 (-934)) $) 102) (((-934) $) 153)) (-2290 (((-1188 |#1|)) 155)) (-1417 (($) 134 (|has| |#1| (-377)))) (-1549 (($) 147 (|has| |#1| (-377)))) (-4346 (((-1283 |#1|) $) 159) (((-699 |#1|) (-1283 $)) 158)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 131 (|has| |#1| (-377)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-3247 (($ $) 130 (|has| |#1| (-377))) (((-3 $ "failed") $) 93 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2191 (((-1283 $)) 161) (((-1283 $) (-934)) 160)) (-1842 (((-112) $ $) 45)) (-1469 (((-112) $) 105)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2893 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-3583 (($ $ (-781)) 129 (|has| |#1| (-377))) (($ $) 127 (|has| |#1| (-377)))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ $) 73) (($ $ |#1|) 108)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +((-3621 (($ $) 72)) (-1849 (($ $ |#2| |#3| $) 14)) (-4303 (($ (-1 |#3| |#3|) $) 51)) (-1343 (((-112) $) 42)) (-1355 ((|#2| $) 44)) (-2853 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-2372 ((|#2| $) 68)) (-1634 (((-654 |#2|) $) 56)) (-3652 (($ $ $ (-781)) 37)) (-3103 (($ $ |#2|) 60))) +(((-333 |#1| |#2| |#3|) (-10 -8 (-15 -3621 (|#1| |#1|)) (-15 -2372 (|#2| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3652 (|#1| |#1| |#1| (-781))) (-15 -1849 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4303 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1634 ((-654 |#2|) |#1|)) (-15 -1355 (|#2| |#1|)) (-15 -1343 ((-112) |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3103 (|#1| |#1| |#2|))) (-334 |#2| |#3|) (-1065) (-802)) (T -333)) +NIL +(-10 -8 (-15 -3621 (|#1| |#1|)) (-15 -2372 (|#2| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3652 (|#1| |#1| |#1| (-781))) (-15 -1849 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4303 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1634 ((-654 |#2|) |#1|)) (-15 -1355 (|#2| |#1|)) (-15 -1343 ((-112) |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3103 (|#1| |#1| |#2|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2884 (($ $) 64 (|has| |#1| (-566)))) (-1981 (((-112) $) 66 (|has| |#1| (-566)))) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 98 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 95)) (-2214 (((-574) $) 99 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 97 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 96)) (-1402 (($ $) 72)) (-4322 (((-3 $ "failed") $) 37)) (-3621 (($ $) 84 (|has| |#1| (-462)))) (-1849 (($ $ |#1| |#2| $) 88)) (-4226 (((-112) $) 35)) (-3023 (((-781) $) 91)) (-1555 (((-112) $) 74)) (-4328 (($ |#1| |#2|) 73)) (-3192 ((|#2| $) 90)) (-4303 (($ (-1 |#2| |#2|) $) 89)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 94)) (-1355 ((|#1| $) 93)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-566)))) (-3580 ((|#2| $) 76)) (-2372 ((|#1| $) 85 (|has| |#1| (-462)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59) (($ (-417 (-574))) 69 (-2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-1634 (((-654 |#1|) $) 92)) (-2706 ((|#1| $ |#2|) 71)) (-3424 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-3652 (($ $ $ (-781)) 87 (|has| |#1| (-174)))) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-334 |#1| |#2|) (-141) (-1065) (-802)) (T -334)) +((-1343 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-112)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-654 *3)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-781)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-4303 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)))) (-1849 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))) (-3652 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-4 *3 (-174)))) (-2853 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *2 (-566)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)) (-4 *2 (-462)))) (-3621 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *2 (-462))))) +(-13 (-47 |t#1| |t#2|) (-421 |t#1|) (-10 -8 (-15 -1343 ((-112) $)) (-15 -1355 (|t#1| $)) (-15 -1634 ((-654 |t#1|) $)) (-15 -3023 ((-781) $)) (-15 -3192 (|t#2| $)) (-15 -4303 ($ (-1 |t#2| |t#2|) $)) (-15 -1849 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -3652 ($ $ $ (-781))) |%noBranch|) (IF (|has| |t#1| (-566)) (-15 -2853 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -2372 (|t#1| $)) (-15 -3621 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-421 |#1|) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-3550 (((-112) (-112)) NIL)) (-3135 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-1923 (($ (-1 (-112) |#1|) $) NIL)) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2088 (($ $) NIL (|has| |#1| (-1116)))) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2424 (($ |#1| $) NIL (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) NIL)) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1591 (($ $ (-574)) NIL)) (-2281 (((-781) $) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-4349 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3285 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1492 (($ (-654 |#1|)) NIL)) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1822 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-4385 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-2982 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-335 |#1|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1492 ($ (-654 |#1|))) (-15 -2281 ((-781) $)) (-15 -1591 ($ $ (-574))) (-15 -3550 ((-112) (-112))))) (-1234)) (T -335)) +((-1492 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-335 *3)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1234)))) (-1591 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1234)))) (-3550 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1234))))) +(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1492 ($ (-654 |#1|))) (-15 -2281 ((-781) $)) (-15 -1591 ($ $ (-574))) (-15 -3550 ((-112) (-112))))) +((-1347 (((-112) $) 47)) (-2755 (((-781)) 23)) (-1644 ((|#2| $) 51) (($ $ (-935)) 121)) (-1496 (((-781)) 122)) (-2580 (($ (-1284 |#2|)) 20)) (-3272 (((-112) $) 134)) (-1681 ((|#2| $) 53) (($ $ (-935)) 118)) (-3989 (((-1189 |#2|) $) NIL) (((-1189 $) $ (-935)) 109)) (-2346 (((-1189 |#2|) $) 95)) (-3747 (((-1189 |#2|) $) 91) (((-3 (-1189 |#2|) "failed") $ $) 88)) (-1927 (($ $ (-1189 |#2|)) 58)) (-2027 (((-843 (-935))) 30) (((-935)) 48)) (-2995 (((-135)) 27)) (-3580 (((-843 (-935)) $) 32) (((-935) $) 137)) (-4219 (($) 128)) (-1385 (((-1284 |#2|) $) NIL) (((-699 |#2|) (-1284 $)) 42)) (-3424 (($ $) NIL) (((-3 $ "failed") $) 98)) (-3504 (((-112) $) 45))) +(((-336 |#1| |#2|) (-10 -8 (-15 -3424 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-781))) (-15 -3424 (|#1| |#1|)) (-15 -3747 ((-3 (-1189 |#2|) "failed") |#1| |#1|)) (-15 -3747 ((-1189 |#2|) |#1|)) (-15 -2346 ((-1189 |#2|) |#1|)) (-15 -1927 (|#1| |#1| (-1189 |#2|))) (-15 -3272 ((-112) |#1|)) (-15 -4219 (|#1|)) (-15 -1644 (|#1| |#1| (-935))) (-15 -1681 (|#1| |#1| (-935))) (-15 -3989 ((-1189 |#1|) |#1| (-935))) (-15 -1644 (|#2| |#1|)) (-15 -1681 (|#2| |#1|)) (-15 -3580 ((-935) |#1|)) (-15 -2027 ((-935))) (-15 -3989 ((-1189 |#2|) |#1|)) (-15 -2580 (|#1| (-1284 |#2|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1|)) (-15 -2755 ((-781))) (-15 -2027 ((-843 (-935)))) (-15 -3580 ((-843 (-935)) |#1|)) (-15 -1347 ((-112) |#1|)) (-15 -3504 ((-112) |#1|)) (-15 -2995 ((-135)))) (-337 |#2|) (-372)) (T -336)) +((-2995 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2027 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-843 (-935))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2755 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2027 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-935)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1496 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4))))) +(-10 -8 (-15 -3424 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-781))) (-15 -3424 (|#1| |#1|)) (-15 -3747 ((-3 (-1189 |#2|) "failed") |#1| |#1|)) (-15 -3747 ((-1189 |#2|) |#1|)) (-15 -2346 ((-1189 |#2|) |#1|)) (-15 -1927 (|#1| |#1| (-1189 |#2|))) (-15 -3272 ((-112) |#1|)) (-15 -4219 (|#1|)) (-15 -1644 (|#1| |#1| (-935))) (-15 -1681 (|#1| |#1| (-935))) (-15 -3989 ((-1189 |#1|) |#1| (-935))) (-15 -1644 (|#2| |#1|)) (-15 -1681 (|#2| |#1|)) (-15 -3580 ((-935) |#1|)) (-15 -2027 ((-935))) (-15 -3989 ((-1189 |#2|) |#1|)) (-15 -2580 (|#1| (-1284 |#2|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1|)) (-15 -2755 ((-781))) (-15 -2027 ((-843 (-935)))) (-15 -3580 ((-843 (-935)) |#1|)) (-15 -1347 ((-112) |#1|)) (-15 -3504 ((-112) |#1|)) (-15 -2995 ((-135)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-1347 (((-112) $) 104)) (-2755 (((-781)) 100)) (-1644 ((|#1| $) 151) (($ $ (-935)) 148 (|has| |#1| (-377)))) (-1928 (((-1206 (-935) (-781)) (-574)) 133 (|has| |#1| (-377)))) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 81)) (-1610 (((-428 $) $) 80)) (-3245 (((-112) $ $) 65)) (-1496 (((-781)) 123 (|has| |#1| (-377)))) (-3250 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 111)) (-2214 ((|#1| $) 112)) (-2580 (($ (-1284 |#1|)) 157)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-377)))) (-2800 (($ $ $) 61)) (-4322 (((-3 $ "failed") $) 37)) (-2835 (($) 120 (|has| |#1| (-377)))) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3556 (($) 135 (|has| |#1| (-377)))) (-3084 (((-112) $) 136 (|has| |#1| (-377)))) (-1995 (($ $ (-781)) 97 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3978 (((-112) $) 79)) (-3547 (((-935) $) 138 (|has| |#1| (-377))) (((-843 (-935)) $) 94 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4226 (((-112) $) 35)) (-3841 (($) 146 (|has| |#1| (-377)))) (-3272 (((-112) $) 145 (|has| |#1| (-377)))) (-1681 ((|#1| $) 152) (($ $ (-935)) 149 (|has| |#1| (-377)))) (-2414 (((-3 $ "failed") $) 124 (|has| |#1| (-377)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3989 (((-1189 |#1|) $) 156) (((-1189 $) $ (-935)) 150 (|has| |#1| (-377)))) (-3383 (((-935) $) 121 (|has| |#1| (-377)))) (-2346 (((-1189 |#1|) $) 142 (|has| |#1| (-377)))) (-3747 (((-1189 |#1|) $) 141 (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) 140 (|has| |#1| (-377)))) (-1927 (($ $ (-1189 |#1|)) 143 (|has| |#1| (-377)))) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3791 (($) 125 (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) 122 (|has| |#1| (-377)))) (-2228 (((-112) $) 103)) (-3940 (((-1136) $) 11)) (-2975 (($) 144 (|has| |#1| (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) 132 (|has| |#1| (-377)))) (-4202 (((-428 $) $) 82)) (-2027 (((-843 (-935))) 101) (((-935)) 154)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2098 (((-781) $) 64)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-3261 (((-781) $) 137 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 95 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2995 (((-135)) 109)) (-3879 (($ $ (-781)) 128 (|has| |#1| (-377))) (($ $) 126 (|has| |#1| (-377)))) (-3580 (((-843 (-935)) $) 102) (((-935) $) 153)) (-4379 (((-1189 |#1|)) 155)) (-3603 (($) 134 (|has| |#1| (-377)))) (-4219 (($) 147 (|has| |#1| (-377)))) (-1385 (((-1284 |#1|) $) 159) (((-699 |#1|) (-1284 $)) 158)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 131 (|has| |#1| (-377)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-3424 (($ $) 130 (|has| |#1| (-377))) (((-3 $ "failed") $) 93 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2391 (((-1284 $)) 161) (((-1284 $) (-935)) 160)) (-2836 (((-112) $ $) 45)) (-3504 (((-112) $) 105)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2656 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-3584 (($ $ (-781)) 129 (|has| |#1| (-377))) (($ $) 127 (|has| |#1| (-377)))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ $) 73) (($ $ |#1|) 108)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) (((-337 |#1|) (-141) (-372)) (T -337)) -((-2191 (*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1283 *1)) (-4 *1 (-337 *3)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-934)) (-4 *4 (-372)) (-5 *2 (-1283 *1)) (-4 *1 (-337 *4)))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1283 *3)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1188 *3)))) (-2290 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1188 *3)))) (-1971 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-934)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-934)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-1950 (*1 *2 *1 *3) (-12 (-5 *3 (-934)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1188 *1)) (-4 *1 (-337 *4)))) (-1386 (*1 *1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-1645 (*1 *1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-1549 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-3434 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112)))) (-2975 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3)) (-4 *3 (-372)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1188 *3)))) (-4426 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1188 *3)))) (-4426 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1188 *3))))) -(-13 (-1302 |t#1|) (-1053 |t#1|) (-10 -8 (-15 -2191 ((-1283 $))) (-15 -2191 ((-1283 $) (-934))) (-15 -4346 ((-1283 |t#1|) $)) (-15 -4346 ((-699 |t#1|) (-1283 $))) (-15 -2919 ($ (-1283 |t#1|))) (-15 -1950 ((-1188 |t#1|) $)) (-15 -2290 ((-1188 |t#1|))) (-15 -1971 ((-934))) (-15 -3584 ((-934) $)) (-15 -1386 (|t#1| $)) (-15 -1645 (|t#1| $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-358)) (-15 -1950 ((-1188 $) $ (-934))) (-15 -1386 ($ $ (-934))) (-15 -1645 ($ $ (-934))) (-15 -1549 ($)) (-15 -3434 ($)) (-15 -3743 ((-112) $)) (-15 -2975 ($)) (-15 -4140 ($ $ (-1188 |t#1|))) (-15 -3363 ((-1188 |t#1|) $)) (-15 -4426 ((-1188 |t#1|) $)) (-15 -4426 ((-3 (-1188 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2832 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) |has| |#1| (-377)) ((-239) |has| |#1| (-377)) ((-238) |has| |#1| (-377)) ((-249) . T) ((-298) . T) ((-315) . T) ((-1302 |#1|) . T) ((-372) . T) ((-412) -2832 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-377) |has| |#1| (-377)) ((-358) |has| |#1| (-377)) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1053 |#1|) . T) ((-1066 #0#) . T) ((-1066 |#1|) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| |#1| (-377)) ((-1233) |has| |#1| (-377)) ((-1237) . T) ((-1290 |#1|) . T)) -((-2863 (((-112) $ $) NIL)) (-3983 (($ (-1191) $) 100)) (-4239 (($) 89)) (-4362 (((-1135) (-1135)) 9)) (-1621 (($) 90)) (-4394 (($) 104) (($ (-324 (-709))) 112) (($ (-324 (-711))) 108) (($ (-324 (-704))) 116) (($ (-324 (-388))) 123) (($ (-324 (-574))) 119) (($ (-324 (-171 (-388)))) 127)) (-1874 (($ (-1191) $) 101)) (-2421 (($ (-654 (-872))) 91)) (-1659 (((-1288) $) 87)) (-1468 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2882 (($ (-1135)) 58)) (-2763 (((-1119) $) 30)) (-3914 (($ (-1107 (-965 (-574))) $) 97) (($ (-1107 (-965 (-574))) (-965 (-574)) $) 98)) (-2022 (($ (-1135)) 99)) (-3263 (($ (-1191) $) 129) (($ (-1191) $ $) 130)) (-3829 (($ (-1192) (-654 (-1192))) 88)) (-2048 (($ (-1174)) 94) (($ (-654 (-1174))) 92)) (-2950 (((-872) $) 132)) (-2058 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1192)) (|:| |arrayIndex| (-654 (-965 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1192)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1191)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2880 (-112)) (|:| -3078 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1174))) (|:| |callBranch| (-1174)) (|:| |forBranch| (-2 (|:| -3362 (-1107 (-965 (-574)))) (|:| |span| (-965 (-574))) (|:| -2051 $))) (|:| |labelBranch| (-1135)) (|:| |loopBranch| (-2 (|:| |switch| (-1191)) (|:| -2051 $))) (|:| |commonBranch| (-2 (|:| -2040 (-1192)) (|:| |contents| (-654 (-1192))))) (|:| |printBranch| (-654 (-872)))) $) 50)) (-3248 (($ (-1174)) 202)) (-1638 (($ (-654 $)) 128)) (-3838 (((-112) $ $) NIL)) (-3111 (($ (-1192) (-1174)) 135) (($ (-1192) (-324 (-711))) 175) (($ (-1192) (-324 (-709))) 176) (($ (-1192) (-324 (-704))) 177) (($ (-1192) (-699 (-711))) 138) (($ (-1192) (-699 (-709))) 141) (($ (-1192) (-699 (-704))) 144) (($ (-1192) (-1283 (-711))) 147) (($ (-1192) (-1283 (-709))) 150) (($ (-1192) (-1283 (-704))) 153) (($ (-1192) (-699 (-324 (-711)))) 156) (($ (-1192) (-699 (-324 (-709)))) 159) (($ (-1192) (-699 (-324 (-704)))) 162) (($ (-1192) (-1283 (-324 (-711)))) 165) (($ (-1192) (-1283 (-324 (-709)))) 168) (($ (-1192) (-1283 (-324 (-704)))) 171) (($ (-1192) (-654 (-965 (-574))) (-324 (-711))) 172) (($ (-1192) (-654 (-965 (-574))) (-324 (-709))) 173) (($ (-1192) (-654 (-965 (-574))) (-324 (-704))) 174) (($ (-1192) (-324 (-574))) 199) (($ (-1192) (-324 (-388))) 200) (($ (-1192) (-324 (-171 (-388)))) 201) (($ (-1192) (-699 (-324 (-574)))) 180) (($ (-1192) (-699 (-324 (-388)))) 183) (($ (-1192) (-699 (-324 (-171 (-388))))) 186) (($ (-1192) (-1283 (-324 (-574)))) 189) (($ (-1192) (-1283 (-324 (-388)))) 192) (($ (-1192) (-1283 (-324 (-171 (-388))))) 195) (($ (-1192) (-654 (-965 (-574))) (-324 (-574))) 196) (($ (-1192) (-654 (-965 (-574))) (-324 (-388))) 197) (($ (-1192) (-654 (-965 (-574))) (-324 (-171 (-388)))) 198)) (-2985 (((-112) $ $) NIL))) -(((-338) (-13 (-1115) (-10 -8 (-15 -3914 ($ (-1107 (-965 (-574))) $)) (-15 -3914 ($ (-1107 (-965 (-574))) (-965 (-574)) $)) (-15 -3983 ($ (-1191) $)) (-15 -1874 ($ (-1191) $)) (-15 -2882 ($ (-1135))) (-15 -2022 ($ (-1135))) (-15 -2048 ($ (-1174))) (-15 -2048 ($ (-654 (-1174)))) (-15 -3248 ($ (-1174))) (-15 -4394 ($)) (-15 -4394 ($ (-324 (-709)))) (-15 -4394 ($ (-324 (-711)))) (-15 -4394 ($ (-324 (-704)))) (-15 -4394 ($ (-324 (-388)))) (-15 -4394 ($ (-324 (-574)))) (-15 -4394 ($ (-324 (-171 (-388))))) (-15 -3263 ($ (-1191) $)) (-15 -3263 ($ (-1191) $ $)) (-15 -3111 ($ (-1192) (-1174))) (-15 -3111 ($ (-1192) (-324 (-711)))) (-15 -3111 ($ (-1192) (-324 (-709)))) (-15 -3111 ($ (-1192) (-324 (-704)))) (-15 -3111 ($ (-1192) (-699 (-711)))) (-15 -3111 ($ (-1192) (-699 (-709)))) (-15 -3111 ($ (-1192) (-699 (-704)))) (-15 -3111 ($ (-1192) (-1283 (-711)))) (-15 -3111 ($ (-1192) (-1283 (-709)))) (-15 -3111 ($ (-1192) (-1283 (-704)))) (-15 -3111 ($ (-1192) (-699 (-324 (-711))))) (-15 -3111 ($ (-1192) (-699 (-324 (-709))))) (-15 -3111 ($ (-1192) (-699 (-324 (-704))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-711))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-709))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-704))))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-711)))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-709)))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-704)))) (-15 -3111 ($ (-1192) (-324 (-574)))) (-15 -3111 ($ (-1192) (-324 (-388)))) (-15 -3111 ($ (-1192) (-324 (-171 (-388))))) (-15 -3111 ($ (-1192) (-699 (-324 (-574))))) (-15 -3111 ($ (-1192) (-699 (-324 (-388))))) (-15 -3111 ($ (-1192) (-699 (-324 (-171 (-388)))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-574))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-388))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-171 (-388)))))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-574)))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-388)))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-171 (-388))))) (-15 -1638 ($ (-654 $))) (-15 -4239 ($)) (-15 -1621 ($)) (-15 -2421 ($ (-654 (-872)))) (-15 -3829 ($ (-1192) (-654 (-1192)))) (-15 -1468 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2058 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1192)) (|:| |arrayIndex| (-654 (-965 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1192)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1191)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2880 (-112)) (|:| -3078 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1174))) (|:| |callBranch| (-1174)) (|:| |forBranch| (-2 (|:| -3362 (-1107 (-965 (-574)))) (|:| |span| (-965 (-574))) (|:| -2051 $))) (|:| |labelBranch| (-1135)) (|:| |loopBranch| (-2 (|:| |switch| (-1191)) (|:| -2051 $))) (|:| |commonBranch| (-2 (|:| -2040 (-1192)) (|:| |contents| (-654 (-1192))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -1659 ((-1288) $)) (-15 -2763 ((-1119) $)) (-15 -4362 ((-1135) (-1135)))))) (T -338)) -((-3914 (*1 *1 *2 *1) (-12 (-5 *2 (-1107 (-965 (-574)))) (-5 *1 (-338)))) (-3914 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1107 (-965 (-574)))) (-5 *3 (-965 (-574))) (-5 *1 (-338)))) (-3983 (*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338)))) (-1874 (*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338)))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-338)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-338)))) (-3248 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-338)))) (-4394 (*1 *1) (-5 *1 (-338))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338)))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338)))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338)))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338)))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338)))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-3263 (*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338)))) (-3263 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1174)) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-711))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-709))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-704))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-711))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-709))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-704))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-711))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-709))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-704))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-711)))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-709)))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-704)))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-711))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-709))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-704))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-574))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-388))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-574)))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-388)))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-574))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-388))) (-5 *1 (-338)))) (-3111 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338)))) (-4239 (*1 *1) (-5 *1 (-338))) (-1621 (*1 *1) (-5 *1 (-338))) (-2421 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338)))) (-3829 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1192)) (-5 *1 (-338)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-338)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1192)) (|:| |arrayIndex| (-654 (-965 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1192)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1191)) (|:| |thenClause| (-338)) (|:| |elseClause| (-338)))) (|:| |returnBranch| (-2 (|:| -2880 (-112)) (|:| -3078 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 (-338))) (|:| |commentBranch| (-654 (-1174))) (|:| |callBranch| (-1174)) (|:| |forBranch| (-2 (|:| -3362 (-1107 (-965 (-574)))) (|:| |span| (-965 (-574))) (|:| -2051 (-338)))) (|:| |labelBranch| (-1135)) (|:| |loopBranch| (-2 (|:| |switch| (-1191)) (|:| -2051 (-338)))) (|:| |commonBranch| (-2 (|:| -2040 (-1192)) (|:| |contents| (-654 (-1192))))) (|:| |printBranch| (-654 (-872))))) (-5 *1 (-338)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-338)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-338)))) (-4362 (*1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338))))) -(-13 (-1115) (-10 -8 (-15 -3914 ($ (-1107 (-965 (-574))) $)) (-15 -3914 ($ (-1107 (-965 (-574))) (-965 (-574)) $)) (-15 -3983 ($ (-1191) $)) (-15 -1874 ($ (-1191) $)) (-15 -2882 ($ (-1135))) (-15 -2022 ($ (-1135))) (-15 -2048 ($ (-1174))) (-15 -2048 ($ (-654 (-1174)))) (-15 -3248 ($ (-1174))) (-15 -4394 ($)) (-15 -4394 ($ (-324 (-709)))) (-15 -4394 ($ (-324 (-711)))) (-15 -4394 ($ (-324 (-704)))) (-15 -4394 ($ (-324 (-388)))) (-15 -4394 ($ (-324 (-574)))) (-15 -4394 ($ (-324 (-171 (-388))))) (-15 -3263 ($ (-1191) $)) (-15 -3263 ($ (-1191) $ $)) (-15 -3111 ($ (-1192) (-1174))) (-15 -3111 ($ (-1192) (-324 (-711)))) (-15 -3111 ($ (-1192) (-324 (-709)))) (-15 -3111 ($ (-1192) (-324 (-704)))) (-15 -3111 ($ (-1192) (-699 (-711)))) (-15 -3111 ($ (-1192) (-699 (-709)))) (-15 -3111 ($ (-1192) (-699 (-704)))) (-15 -3111 ($ (-1192) (-1283 (-711)))) (-15 -3111 ($ (-1192) (-1283 (-709)))) (-15 -3111 ($ (-1192) (-1283 (-704)))) (-15 -3111 ($ (-1192) (-699 (-324 (-711))))) (-15 -3111 ($ (-1192) (-699 (-324 (-709))))) (-15 -3111 ($ (-1192) (-699 (-324 (-704))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-711))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-709))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-704))))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-711)))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-709)))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-704)))) (-15 -3111 ($ (-1192) (-324 (-574)))) (-15 -3111 ($ (-1192) (-324 (-388)))) (-15 -3111 ($ (-1192) (-324 (-171 (-388))))) (-15 -3111 ($ (-1192) (-699 (-324 (-574))))) (-15 -3111 ($ (-1192) (-699 (-324 (-388))))) (-15 -3111 ($ (-1192) (-699 (-324 (-171 (-388)))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-574))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-388))))) (-15 -3111 ($ (-1192) (-1283 (-324 (-171 (-388)))))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-574)))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-388)))) (-15 -3111 ($ (-1192) (-654 (-965 (-574))) (-324 (-171 (-388))))) (-15 -1638 ($ (-654 $))) (-15 -4239 ($)) (-15 -1621 ($)) (-15 -2421 ($ (-654 (-872)))) (-15 -3829 ($ (-1192) (-654 (-1192)))) (-15 -1468 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2058 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1192)) (|:| |arrayIndex| (-654 (-965 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1192)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1191)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2880 (-112)) (|:| -3078 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1174))) (|:| |callBranch| (-1174)) (|:| |forBranch| (-2 (|:| -3362 (-1107 (-965 (-574)))) (|:| |span| (-965 (-574))) (|:| -2051 $))) (|:| |labelBranch| (-1135)) (|:| |loopBranch| (-2 (|:| |switch| (-1191)) (|:| -2051 $))) (|:| |commonBranch| (-2 (|:| -2040 (-1192)) (|:| |contents| (-654 (-1192))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -1659 ((-1288) $)) (-15 -2763 ((-1119) $)) (-15 -4362 ((-1135) (-1135))))) -((-2863 (((-112) $ $) NIL)) (-3764 (((-112) $) 13)) (-2237 (($ |#1|) 10)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2248 (($ |#1|) 12)) (-2950 (((-872) $) 19)) (-3838 (((-112) $ $) NIL)) (-1453 ((|#1| $) 14)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 21))) -(((-339 |#1|) (-13 (-860) (-10 -8 (-15 -2237 ($ |#1|)) (-15 -2248 ($ |#1|)) (-15 -3764 ((-112) $)) (-15 -1453 (|#1| $)))) (-860)) (T -339)) -((-2237 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-2248 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-3764 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860)))) (-1453 (*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860))))) -(-13 (-860) (-10 -8 (-15 -2237 ($ |#1|)) (-15 -2248 ($ |#1|)) (-15 -3764 ((-112) $)) (-15 -1453 (|#1| $)))) -((-3367 (((-338) (-1192) (-965 (-574))) 23)) (-1725 (((-338) (-1192) (-965 (-574))) 27)) (-2239 (((-338) (-1192) (-1107 (-965 (-574))) (-1107 (-965 (-574)))) 26) (((-338) (-1192) (-965 (-574)) (-965 (-574))) 24)) (-3319 (((-338) (-1192) (-965 (-574))) 31))) -(((-340) (-10 -7 (-15 -3367 ((-338) (-1192) (-965 (-574)))) (-15 -2239 ((-338) (-1192) (-965 (-574)) (-965 (-574)))) (-15 -2239 ((-338) (-1192) (-1107 (-965 (-574))) (-1107 (-965 (-574))))) (-15 -1725 ((-338) (-1192) (-965 (-574)))) (-15 -3319 ((-338) (-1192) (-965 (-574)))))) (T -340)) -((-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-2239 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-1107 (-965 (-574)))) (-5 *2 (-338)) (-5 *1 (-340)))) (-2239 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) (-5 *1 (-340))))) -(-10 -7 (-15 -3367 ((-338) (-1192) (-965 (-574)))) (-15 -2239 ((-338) (-1192) (-965 (-574)) (-965 (-574)))) (-15 -2239 ((-338) (-1192) (-1107 (-965 (-574))) (-1107 (-965 (-574))))) (-15 -1725 ((-338) (-1192) (-965 (-574)))) (-15 -3319 ((-338) (-1192) (-965 (-574))))) -((-2863 (((-112) $ $) NIL)) (-1686 (((-516) $) 20)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3047 (((-971 (-781)) $) 18)) (-1428 (((-256) $) 7)) (-2950 (((-872) $) 26)) (-4280 (((-971 (-185 (-140))) $) 16)) (-3838 (((-112) $ $) NIL)) (-3611 (((-654 (-883 (-1197) (-781))) $) 12)) (-2985 (((-112) $ $) 22))) -(((-341) (-13 (-1115) (-10 -8 (-15 -1428 ((-256) $)) (-15 -3611 ((-654 (-883 (-1197) (-781))) $)) (-15 -3047 ((-971 (-781)) $)) (-15 -4280 ((-971 (-185 (-140))) $)) (-15 -1686 ((-516) $))))) (T -341)) -((-1428 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1197) (-781)))) (-5 *1 (-341)))) (-3047 (*1 *2 *1) (-12 (-5 *2 (-971 (-781))) (-5 *1 (-341)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-971 (-185 (-140)))) (-5 *1 (-341)))) (-1686 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341))))) -(-13 (-1115) (-10 -8 (-15 -1428 ((-256) $)) (-15 -3611 ((-654 (-883 (-1197) (-781))) $)) (-15 -3047 ((-971 (-781)) $)) (-15 -4280 ((-971 (-185 (-140))) $)) (-15 -1686 ((-516) $)))) -((-1786 (((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)) 33))) -(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1786 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-372) (-1259 |#5|) (-1259 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -342)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-345 *5 *6 *7 *8)) (-4 *5 (-372)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *9 (-372)) (-4 *10 (-1259 *9)) (-4 *11 (-1259 (-417 *10))) (-5 *2 (-345 *9 *10 *11 *12)) (-5 *1 (-342 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-351 *9 *10 *11))))) -(-10 -7 (-15 -1786 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)))) -((-3488 (((-112) $) 14))) -(((-343 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3488 ((-112) |#1|))) (-344 |#2| |#3| |#4| |#5|) (-372) (-1259 |#2|) (-1259 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -343)) -NIL -(-10 -8 (-15 -3488 ((-112) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-2881 (($ $) 29)) (-3488 (((-112) $) 28)) (-3945 (((-1174) $) 10)) (-3647 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 35)) (-3939 (((-1135) $) 11)) (-2975 (((-3 |#4| "failed") $) 27)) (-2958 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-574)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3930 (((-2 (|:| -2817 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24))) -(((-344 |#1| |#2| |#3| |#4|) (-141) (-372) (-1259 |t#1|) (-1259 (-417 |t#2|)) (-351 |t#1| |t#2| |t#3|)) (T -344)) -((-3647 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-423 *4 (-417 *4) *5 *6)))) (-2958 (*1 *1 *2) (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372)) (-4 *1 (-344 *3 *4 *5 *6)))) (-2958 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5)))) (-2958 (*1 *1 *2 *2) (-12 (-4 *2 (-372)) (-4 *3 (-1259 *2)) (-4 *4 (-1259 (-417 *3))) (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4)))) (-2958 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1259 *2)) (-4 *5 (-1259 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6)) (-4 *6 (-351 *2 *4 *5)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-2 (|:| -2817 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6))))) (-2881 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1259 *2)) (-4 *4 (-1259 (-417 *3))) (-4 *5 (-351 *2 *3 *4)))) (-3488 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112)))) (-2975 (*1 *2 *1) (|partial| -12 (-4 *1 (-344 *3 *4 *5 *2)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *2 (-351 *3 *4 *5)))) (-2958 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-372)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3647 ((-423 |t#2| (-417 |t#2|) |t#3| |t#4|) $)) (-15 -2958 ($ (-423 |t#2| (-417 |t#2|) |t#3| |t#4|))) (-15 -2958 ($ |t#4|)) (-15 -2958 ($ |t#1| |t#1|)) (-15 -2958 ($ |t#1| |t#1| (-574))) (-15 -3930 ((-2 (|:| -2817 (-423 |t#2| (-417 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2881 ($ $)) (-15 -3488 ((-112) $)) (-15 -2975 ((-3 |t#4| "failed") $)) (-15 -2958 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-2881 (($ $) 33)) (-3488 (((-112) $) NIL)) (-3945 (((-1174) $) NIL)) (-1600 (((-1283 |#4|) $) 134)) (-3647 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 31)) (-3939 (((-1135) $) NIL)) (-2975 (((-3 |#4| "failed") $) 36)) (-2288 (((-1283 |#4|) $) 126)) (-2958 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-574)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3930 (((-2 (|:| -2817 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2950 (((-872) $) 17)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 14 T CONST)) (-2985 (((-112) $ $) 20)) (-3089 (($ $) 27) (($ $ $) NIL)) (-3074 (($ $ $) 25)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 23))) -(((-345 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2288 ((-1283 |#4|) $)) (-15 -1600 ((-1283 |#4|) $)))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -345)) -((-2288 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-1283 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5)))) (-1600 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-1283 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5))))) -(-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2288 ((-1283 |#4|) $)) (-15 -1600 ((-1283 |#4|) $)))) -((-2660 (($ $ (-1192) |#2|) NIL) (($ $ (-654 (-1192)) (-654 |#2|)) 20) (($ $ (-654 (-302 |#2|))) 15) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-2208 (($ $ |#2|) 11))) -(((-346 |#1| |#2|) (-10 -8 (-15 -2208 (|#1| |#1| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 |#2|))) (-15 -2660 (|#1| |#1| (-1192) |#2|))) (-347 |#2|) (-1115)) (T -346)) -NIL -(-10 -8 (-15 -2208 (|#1| |#1| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 |#2|))) (-15 -2660 (|#1| |#1| (-1192) |#2|))) -((-1786 (($ (-1 |#1| |#1|) $) 6)) (-2660 (($ $ (-1192) |#1|) 17 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 16 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-654 (-302 |#1|))) 15 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 14 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-317 |#1|))) (($ $ (-654 |#1|) (-654 |#1|)) 12 (|has| |#1| (-317 |#1|)))) (-2208 (($ $ |#1|) 11 (|has| |#1| (-294 |#1| |#1|))))) -(((-347 |#1|) (-141) (-1115)) (T -347)) -((-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1115))))) -(-13 (-10 -8 (-15 -1786 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-294 |t#1| |t#1|)) (-6 (-294 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-524 (-1192) |t#1|)) (-6 (-524 (-1192) |t#1|)) |%noBranch|))) -(((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-524 (-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-1233) |has| |#1| (-294 |#1| |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 (-1192)) $) NIL)) (-2312 (((-112)) 96) (((-112) (-112)) 97)) (-4064 (((-654 (-622 $)) $) NIL)) (-2378 (($ $) NIL)) (-2259 (($ $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-2558 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-4211 (($ $) NIL)) (-2357 (($ $) NIL)) (-2237 (($ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-622 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-324 |#3|)) 76) (((-3 $ "failed") (-1192)) 103) (((-3 $ "failed") (-324 (-574))) 64 (|has| |#3| (-1053 (-574)))) (((-3 $ "failed") (-417 (-965 (-574)))) 70 (|has| |#3| (-1053 (-574)))) (((-3 $ "failed") (-965 (-574))) 65 (|has| |#3| (-1053 (-574)))) (((-3 $ "failed") (-324 (-388))) 94 (|has| |#3| (-1053 (-388)))) (((-3 $ "failed") (-417 (-965 (-388)))) 88 (|has| |#3| (-1053 (-388)))) (((-3 $ "failed") (-965 (-388))) 83 (|has| |#3| (-1053 (-388))))) (-2216 (((-622 $) $) NIL) ((|#3| $) NIL) (($ (-324 |#3|)) 77) (($ (-1192)) 104) (($ (-324 (-574))) 66 (|has| |#3| (-1053 (-574)))) (($ (-417 (-965 (-574)))) 71 (|has| |#3| (-1053 (-574)))) (($ (-965 (-574))) 67 (|has| |#3| (-1053 (-574)))) (($ (-324 (-388))) 95 (|has| |#3| (-1053 (-388)))) (($ (-417 (-965 (-388)))) 89 (|has| |#3| (-1053 (-388)))) (($ (-965 (-388))) 85 (|has| |#3| (-1053 (-388))))) (-3911 (((-3 $ "failed") $) NIL)) (-3003 (($) 101)) (-2116 (($ $) NIL) (($ (-654 $)) NIL)) (-3294 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) NIL)) (-3372 (((-112) $) NIL)) (-3512 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-4311 (((-1188 $) (-622 $)) NIL (|has| $ (-1064)))) (-1786 (($ (-1 $ $) (-622 $)) NIL)) (-4367 (((-3 (-622 $) "failed") $) NIL)) (-1742 (($ $) 99)) (-3112 (($ $) NIL)) (-3945 (((-1174) $) NIL)) (-4138 (((-654 (-622 $)) $) NIL)) (-1783 (($ (-115) $) 98) (($ (-115) (-654 $)) NIL)) (-3571 (((-112) $ (-115)) NIL) (((-112) $ (-1192)) NIL)) (-1847 (((-781) $) NIL)) (-3939 (((-1135) $) NIL)) (-4277 (((-112) $ $) NIL) (((-112) $ (-1192)) NIL)) (-1618 (($ $) NIL)) (-3694 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1192) (-1 $ (-654 $))) NIL) (($ $ (-1192) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2208 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-1834 (($ $) NIL) (($ $ $) NIL)) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL)) (-2290 (($ $) NIL (|has| $ (-1064)))) (-2367 (($ $) NIL)) (-2248 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-622 $)) NIL) (($ |#3|) NIL) (($ (-574)) NIL) (((-324 |#3|) $) 102)) (-4019 (((-781)) NIL T CONST)) (-2079 (($ $) NIL) (($ (-654 $)) NIL)) (-4207 (((-112) (-115)) NIL)) (-3838 (((-112) $ $) NIL)) (-2319 (($ $) NIL)) (-2300 (($ $) NIL)) (-2311 (($ $) NIL)) (-3306 (($ $) NIL)) (-2142 (($) 100 T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL))) -(((-348 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1053 |#3|) (-913 (-1192)) (-10 -8 (-15 -2216 ($ (-324 |#3|))) (-15 -1705 ((-3 $ "failed") (-324 |#3|))) (-15 -2216 ($ (-1192))) (-15 -1705 ((-3 $ "failed") (-1192))) (-15 -2950 ((-324 |#3|) $)) (IF (|has| |#3| (-1053 (-574))) (PROGN (-15 -2216 ($ (-324 (-574)))) (-15 -1705 ((-3 $ "failed") (-324 (-574)))) (-15 -2216 ($ (-417 (-965 (-574))))) (-15 -1705 ((-3 $ "failed") (-417 (-965 (-574))))) (-15 -2216 ($ (-965 (-574)))) (-15 -1705 ((-3 $ "failed") (-965 (-574))))) |%noBranch|) (IF (|has| |#3| (-1053 (-388))) (PROGN (-15 -2216 ($ (-324 (-388)))) (-15 -1705 ((-3 $ "failed") (-324 (-388)))) (-15 -2216 ($ (-417 (-965 (-388))))) (-15 -1705 ((-3 $ "failed") (-417 (-965 (-388))))) (-15 -2216 ($ (-965 (-388)))) (-15 -1705 ((-3 $ "failed") (-965 (-388))))) |%noBranch|) (-15 -3306 ($ $)) (-15 -4211 ($ $)) (-15 -1618 ($ $)) (-15 -3112 ($ $)) (-15 -1742 ($ $)) (-15 -2237 ($ $)) (-15 -2248 ($ $)) (-15 -2259 ($ $)) (-15 -2300 ($ $)) (-15 -2311 ($ $)) (-15 -2319 ($ $)) (-15 -2357 ($ $)) (-15 -2367 ($ $)) (-15 -2378 ($ $)) (-15 -3003 ($)) (-15 -4349 ((-654 (-1192)) $)) (-15 -2312 ((-112))) (-15 -2312 ((-112) (-112))))) (-654 (-1192)) (-654 (-1192)) (-397)) (T -348)) -((-2216 (*1 *1 *2) (-12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-324 *5)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-965 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-965 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-965 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-965 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-3306 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-4211 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-1618 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-3112 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-1742 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2237 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2259 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2300 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2311 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2319 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2357 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2378 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-3003 (*1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-397)))) (-2312 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397))))) -(-13 (-310) (-38 |#3|) (-1053 |#3|) (-913 (-1192)) (-10 -8 (-15 -2216 ($ (-324 |#3|))) (-15 -1705 ((-3 $ "failed") (-324 |#3|))) (-15 -2216 ($ (-1192))) (-15 -1705 ((-3 $ "failed") (-1192))) (-15 -2950 ((-324 |#3|) $)) (IF (|has| |#3| (-1053 (-574))) (PROGN (-15 -2216 ($ (-324 (-574)))) (-15 -1705 ((-3 $ "failed") (-324 (-574)))) (-15 -2216 ($ (-417 (-965 (-574))))) (-15 -1705 ((-3 $ "failed") (-417 (-965 (-574))))) (-15 -2216 ($ (-965 (-574)))) (-15 -1705 ((-3 $ "failed") (-965 (-574))))) |%noBranch|) (IF (|has| |#3| (-1053 (-388))) (PROGN (-15 -2216 ($ (-324 (-388)))) (-15 -1705 ((-3 $ "failed") (-324 (-388)))) (-15 -2216 ($ (-417 (-965 (-388))))) (-15 -1705 ((-3 $ "failed") (-417 (-965 (-388))))) (-15 -2216 ($ (-965 (-388)))) (-15 -1705 ((-3 $ "failed") (-965 (-388))))) |%noBranch|) (-15 -3306 ($ $)) (-15 -4211 ($ $)) (-15 -1618 ($ $)) (-15 -3112 ($ $)) (-15 -1742 ($ $)) (-15 -2237 ($ $)) (-15 -2248 ($ $)) (-15 -2259 ($ $)) (-15 -2300 ($ $)) (-15 -2311 ($ $)) (-15 -2319 ($ $)) (-15 -2357 ($ $)) (-15 -2367 ($ $)) (-15 -2378 ($ $)) (-15 -3003 ($)) (-15 -4349 ((-654 (-1192)) $)) (-15 -2312 ((-112))) (-15 -2312 ((-112) (-112))))) -((-1786 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-349 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1786 (|#8| (-1 |#5| |#1|) |#4|))) (-1237) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-1237) (-1259 |#5|) (-1259 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -349)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1237)) (-4 *8 (-1237)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *9 (-1259 *8)) (-4 *2 (-351 *8 *9 *10)) (-5 *1 (-349 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1259 (-417 *9)))))) -(-10 -7 (-15 -1786 (|#8| (-1 |#5| |#1|) |#4|))) -((-4402 (((-2 (|:| |num| (-1283 |#3|)) (|:| |den| |#3|)) $) 39)) (-2919 (($ (-1283 (-417 |#3|)) (-1283 $)) NIL) (($ (-1283 (-417 |#3|))) NIL) (($ (-1283 |#3|) |#3|) 173)) (-2989 (((-1283 $) (-1283 $)) 156)) (-2844 (((-654 (-654 |#2|))) 126)) (-2345 (((-112) |#2| |#2|) 76)) (-1509 (($ $) 148)) (-2703 (((-781)) 172)) (-3846 (((-1283 $) (-1283 $)) 218)) (-1697 (((-654 (-965 |#2|)) (-1192)) 115)) (-3621 (((-112) $) 169)) (-4162 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-3627 (((-3 |#3| "failed")) 52)) (-2458 (((-781)) 184)) (-2208 ((|#2| $ |#2| |#2|) 140)) (-1775 (((-3 |#3| "failed")) 71)) (-3878 (($ $ (-1 (-417 |#3|) (-417 |#3|)) (-781)) NIL) (($ $ (-1 (-417 |#3|) (-417 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2496 (((-1283 $) (-1283 $)) 162)) (-2124 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-4231 (((-112)) 34))) -(((-350 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -2844 ((-654 (-654 |#2|)))) (-15 -1697 ((-654 (-965 |#2|)) (-1192))) (-15 -2124 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3627 ((-3 |#3| "failed"))) (-15 -1775 ((-3 |#3| "failed"))) (-15 -2208 (|#2| |#1| |#2| |#2|)) (-15 -1509 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4162 ((-112) |#1| |#3|)) (-15 -4162 ((-112) |#1| |#2|)) (-15 -2919 (|#1| (-1283 |#3|) |#3|)) (-15 -4402 ((-2 (|:| |num| (-1283 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2989 ((-1283 |#1|) (-1283 |#1|))) (-15 -3846 ((-1283 |#1|) (-1283 |#1|))) (-15 -2496 ((-1283 |#1|) (-1283 |#1|))) (-15 -4162 ((-112) |#1|)) (-15 -3621 ((-112) |#1|)) (-15 -2345 ((-112) |#2| |#2|)) (-15 -4231 ((-112))) (-15 -2458 ((-781))) (-15 -2703 ((-781))) (-15 -3878 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3878 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -2919 (|#1| (-1283 (-417 |#3|)))) (-15 -2919 (|#1| (-1283 (-417 |#3|)) (-1283 |#1|)))) (-351 |#2| |#3| |#4|) (-1237) (-1259 |#2|) (-1259 (-417 |#3|))) (T -350)) -((-2703 (*1 *2) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-2458 (*1 *2) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-4231 (*1 *2) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-2345 (*1 *2 *3 *3) (-12 (-4 *3 (-1237)) (-4 *5 (-1259 *3)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6)))) (-1775 (*1 *2) (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 (-417 *2))) (-4 *2 (-1259 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-3627 (*1 *2) (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 (-417 *2))) (-4 *2 (-1259 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-1697 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *5 (-1237)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-5 *2 (-654 (-965 *5))) (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7)))) (-2844 (*1 *2) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6))))) -(-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -2844 ((-654 (-654 |#2|)))) (-15 -1697 ((-654 (-965 |#2|)) (-1192))) (-15 -2124 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3627 ((-3 |#3| "failed"))) (-15 -1775 ((-3 |#3| "failed"))) (-15 -2208 (|#2| |#1| |#2| |#2|)) (-15 -1509 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4162 ((-112) |#1| |#3|)) (-15 -4162 ((-112) |#1| |#2|)) (-15 -2919 (|#1| (-1283 |#3|) |#3|)) (-15 -4402 ((-2 (|:| |num| (-1283 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2989 ((-1283 |#1|) (-1283 |#1|))) (-15 -3846 ((-1283 |#1|) (-1283 |#1|))) (-15 -2496 ((-1283 |#1|) (-1283 |#1|))) (-15 -4162 ((-112) |#1|)) (-15 -3621 ((-112) |#1|)) (-15 -2345 ((-112) |#2| |#2|)) (-15 -4231 ((-112))) (-15 -2458 ((-781))) (-15 -2703 ((-781))) (-15 -3878 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3878 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -2919 (|#1| (-1283 (-417 |#3|)))) (-15 -2919 (|#1| (-1283 (-417 |#3|)) (-1283 |#1|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4402 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) 207)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 103 (|has| (-417 |#2|) (-372)))) (-3648 (($ $) 104 (|has| (-417 |#2|) (-372)))) (-1527 (((-112) $) 106 (|has| (-417 |#2|) (-372)))) (-3644 (((-699 (-417 |#2|)) (-1283 $)) 53) (((-699 (-417 |#2|))) 68)) (-1645 (((-417 |#2|) $) 59)) (-2541 (((-1205 (-934) (-781)) (-574)) 156 (|has| (-417 |#2|) (-358)))) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 123 (|has| (-417 |#2|) (-372)))) (-3954 (((-428 $) $) 124 (|has| (-417 |#2|) (-372)))) (-3656 (((-112) $ $) 114 (|has| (-417 |#2|) (-372)))) (-1496 (((-781)) 97 (|has| (-417 |#2|) (-377)))) (-3489 (((-112)) 224)) (-2511 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3831 (($) 18 T CONST)) (-1705 (((-3 (-574) "failed") $) 181 (|has| (-417 |#2|) (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) 176)) (-2216 (((-574) $) 180 (|has| (-417 |#2|) (-1053 (-574)))) (((-417 (-574)) $) 178 (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-417 |#2|) $) 177)) (-2919 (($ (-1283 (-417 |#2|)) (-1283 $)) 55) (($ (-1283 (-417 |#2|))) 71) (($ (-1283 |#2|) |#2|) 206)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| (-417 |#2|) (-358)))) (-2799 (($ $ $) 118 (|has| (-417 |#2|) (-372)))) (-3556 (((-699 (-417 |#2|)) $ (-1283 $)) 60) (((-699 (-417 |#2|)) $) 66)) (-3465 (((-699 (-574)) (-1283 $)) 175 (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 173 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-417 |#2|))) (|:| |vec| (-1283 (-417 |#2|)))) (-699 $) (-1283 $)) 172) (((-699 (-417 |#2|)) (-699 $)) 171) (((-699 (-417 |#2|)) (-1283 $)) 170)) (-2989 (((-1283 $) (-1283 $)) 212)) (-2881 (($ |#3|) 167) (((-3 $ "failed") (-417 |#3|)) 164 (|has| (-417 |#2|) (-372)))) (-3911 (((-3 $ "failed") $) 37)) (-2844 (((-654 (-654 |#1|))) 193 (|has| |#1| (-377)))) (-2345 (((-112) |#1| |#1|) 228)) (-3557 (((-934)) 61)) (-2834 (($) 100 (|has| (-417 |#2|) (-377)))) (-4023 (((-112)) 221)) (-2068 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2811 (($ $ $) 117 (|has| (-417 |#2|) (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 112 (|has| (-417 |#2|) (-372)))) (-1509 (($ $) 199)) (-1912 (($) 158 (|has| (-417 |#2|) (-358)))) (-3873 (((-112) $) 159 (|has| (-417 |#2|) (-358)))) (-4158 (($ $ (-781)) 150 (|has| (-417 |#2|) (-358))) (($ $) 149 (|has| (-417 |#2|) (-358)))) (-1782 (((-112) $) 125 (|has| (-417 |#2|) (-372)))) (-2725 (((-934) $) 161 (|has| (-417 |#2|) (-358))) (((-843 (-934)) $) 147 (|has| (-417 |#2|) (-358)))) (-3372 (((-112) $) 35)) (-2703 (((-781)) 231)) (-3846 (((-1283 $) (-1283 $)) 213)) (-1386 (((-417 |#2|) $) 58)) (-1697 (((-654 (-965 |#1|)) (-1192)) 194 (|has| |#1| (-372)))) (-1353 (((-3 $ "failed") $) 151 (|has| (-417 |#2|) (-358)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| (-417 |#2|) (-372)))) (-1950 ((|#3| $) 51 (|has| (-417 |#2|) (-372)))) (-3271 (((-934) $) 99 (|has| (-417 |#2|) (-377)))) (-2868 ((|#3| $) 165)) (-2848 (($ (-654 $)) 110 (|has| (-417 |#2|) (-372))) (($ $ $) 109 (|has| (-417 |#2|) (-372)))) (-3945 (((-1174) $) 10)) (-2967 (((-699 (-417 |#2|))) 208)) (-1407 (((-699 (-417 |#2|))) 210)) (-1327 (($ $) 126 (|has| (-417 |#2|) (-372)))) (-1333 (($ (-1283 |#2|) |#2|) 204)) (-4107 (((-699 (-417 |#2|))) 209)) (-4113 (((-699 (-417 |#2|))) 211)) (-3311 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 203)) (-3303 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) 205)) (-2448 (((-1283 $)) 217)) (-1555 (((-1283 $)) 218)) (-3621 (((-112) $) 216)) (-4162 (((-112) $) 215) (((-112) $ |#1|) 202) (((-112) $ |#2|) 201)) (-3791 (($) 152 (|has| (-417 |#2|) (-358)) CONST)) (-2590 (($ (-934)) 98 (|has| (-417 |#2|) (-377)))) (-3627 (((-3 |#2| "failed")) 196)) (-3939 (((-1135) $) 11)) (-2458 (((-781)) 230)) (-2975 (($) 169)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 111 (|has| (-417 |#2|) (-372)))) (-2886 (($ (-654 $)) 108 (|has| (-417 |#2|) (-372))) (($ $ $) 107 (|has| (-417 |#2|) (-372)))) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) 155 (|has| (-417 |#2|) (-358)))) (-4200 (((-428 $) $) 122 (|has| (-417 |#2|) (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 119 (|has| (-417 |#2|) (-372)))) (-2852 (((-3 $ "failed") $ $) 102 (|has| (-417 |#2|) (-372)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| (-417 |#2|) (-372)))) (-3364 (((-781) $) 115 (|has| (-417 |#2|) (-372)))) (-2208 ((|#1| $ |#1| |#1|) 198)) (-1775 (((-3 |#2| "failed")) 197)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 116 (|has| (-417 |#2|) (-372)))) (-1738 (((-417 |#2|) (-1283 $)) 54) (((-417 |#2|)) 67)) (-3881 (((-781) $) 160 (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) 148 (|has| (-417 |#2|) (-358)))) (-3878 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 132 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 131 (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 200) (($ $ (-654 (-1192)) (-654 (-781))) 139 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2096 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-1192) (-781)) 140 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2096 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1192))) 141 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2096 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-1192)) 142 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2096 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $) 143 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2096 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) 145 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2096 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-1840 (((-699 (-417 |#2|)) (-1283 $) (-1 (-417 |#2|) (-417 |#2|))) 163 (|has| (-417 |#2|) (-372)))) (-2290 ((|#3|) 168)) (-1417 (($) 157 (|has| (-417 |#2|) (-358)))) (-4346 (((-1283 (-417 |#2|)) $ (-1283 $)) 57) (((-699 (-417 |#2|)) (-1283 $) (-1283 $)) 56) (((-1283 (-417 |#2|)) $) 73) (((-699 (-417 |#2|)) (-1283 $)) 72)) (-1845 (((-1283 (-417 |#2|)) $) 70) (($ (-1283 (-417 |#2|))) 69) ((|#3| $) 182) (($ |#3|) 166)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 154 (|has| (-417 |#2|) (-358)))) (-2496 (((-1283 $) (-1283 $)) 214)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 |#2|)) 44) (($ (-417 (-574))) 96 (-2832 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-1053 (-417 (-574)))))) (($ $) 101 (|has| (-417 |#2|) (-372)))) (-3247 (($ $) 153 (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) 50 (|has| (-417 |#2|) (-146)))) (-1539 ((|#3| $) 52)) (-4019 (((-781)) 32 T CONST)) (-3777 (((-112)) 227)) (-3555 (((-112) |#1|) 226) (((-112) |#2|) 225)) (-3838 (((-112) $ $) 9)) (-2191 (((-1283 $)) 74)) (-1842 (((-112) $ $) 105 (|has| (-417 |#2|) (-372)))) (-2124 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 195)) (-4231 (((-112)) 229)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 134 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 133 (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1192)) (-654 (-781))) 135 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2096 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-1192) (-781)) 136 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2096 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1192))) 137 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2096 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-1192)) 138 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2096 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $) 144 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2096 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) 146 (-2832 (-2096 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2096 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ $) 130 (|has| (-417 |#2|) (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 127 (|has| (-417 |#2|) (-372)))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 |#2|)) 46) (($ (-417 |#2|) $) 45) (($ (-417 (-574)) $) 129 (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) 128 (|has| (-417 |#2|) (-372))))) -(((-351 |#1| |#2| |#3|) (-141) (-1237) (-1259 |t#1|) (-1259 (-417 |t#2|))) (T -351)) -((-2703 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-781)))) (-2458 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-781)))) (-4231 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-2345 (*1 *2 *3 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-3777 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-3555 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-3555 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) (-3489 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-2511 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-2511 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) (-4023 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-2068 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-2068 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) (-1555 (*1 *2) (-12 (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)))) (-2448 (*1 *2) (-12 (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)))) (-3621 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-2496 (*1 *2 *2) (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))))) (-3846 (*1 *2 *2) (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))))) (-2989 (*1 *2 *2) (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))))) (-4113 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-1407 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-4107 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-2967 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1283 *4)) (|:| |den| *4))))) (-2919 (*1 *1 *2 *3) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1259 *4)) (-4 *4 (-1237)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1259 (-417 *3))))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1283 *4)) (|:| |den| *4))))) (-1333 (*1 *1 *2 *3) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1259 *4)) (-4 *4 (-1237)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1259 (-417 *3))))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5))))) (-4162 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-4162 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))))) (-1509 (*1 *1 *1) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-1259 *2)) (-4 *4 (-1259 (-417 *3))))) (-2208 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-1259 *2)) (-4 *4 (-1259 (-417 *3))))) (-1775 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1237)) (-4 *4 (-1259 (-417 *2))) (-4 *2 (-1259 *3)))) (-3627 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1237)) (-4 *4 (-1259 (-417 *2))) (-4 *2 (-1259 *3)))) (-2124 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-1237)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-351 *4 *5 *6)))) (-1697 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-4 *4 (-372)) (-5 *2 (-654 (-965 *4))))) (-2844 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3)))))) -(-13 (-734 (-417 |t#2|) |t#3|) (-10 -8 (-15 -2703 ((-781))) (-15 -2458 ((-781))) (-15 -4231 ((-112))) (-15 -2345 ((-112) |t#1| |t#1|)) (-15 -3777 ((-112))) (-15 -3555 ((-112) |t#1|)) (-15 -3555 ((-112) |t#2|)) (-15 -3489 ((-112))) (-15 -2511 ((-112) |t#1|)) (-15 -2511 ((-112) |t#2|)) (-15 -4023 ((-112))) (-15 -2068 ((-112) |t#1|)) (-15 -2068 ((-112) |t#2|)) (-15 -1555 ((-1283 $))) (-15 -2448 ((-1283 $))) (-15 -3621 ((-112) $)) (-15 -4162 ((-112) $)) (-15 -2496 ((-1283 $) (-1283 $))) (-15 -3846 ((-1283 $) (-1283 $))) (-15 -2989 ((-1283 $) (-1283 $))) (-15 -4113 ((-699 (-417 |t#2|)))) (-15 -1407 ((-699 (-417 |t#2|)))) (-15 -4107 ((-699 (-417 |t#2|)))) (-15 -2967 ((-699 (-417 |t#2|)))) (-15 -4402 ((-2 (|:| |num| (-1283 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2919 ($ (-1283 |t#2|) |t#2|)) (-15 -3303 ((-2 (|:| |num| (-1283 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1333 ($ (-1283 |t#2|) |t#2|)) (-15 -3311 ((-2 (|:| |num| (-699 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4162 ((-112) $ |t#1|)) (-15 -4162 ((-112) $ |t#2|)) (-15 -3878 ($ $ (-1 |t#2| |t#2|))) (-15 -1509 ($ $)) (-15 -2208 (|t#1| $ |t#1| |t#1|)) (-15 -1775 ((-3 |t#2| "failed"))) (-15 -3627 ((-3 |t#2| "failed"))) (-15 -2124 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-372)) (-15 -1697 ((-654 (-965 |t#1|)) (-1192))) |%noBranch|) (IF (|has| |t#1| (-377)) (-15 -2844 ((-654 (-654 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-38 #1=(-417 |#2|)) . T) ((-38 $) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-102) . T) ((-111 #0# #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-146))) ((-148) |has| (-417 |#2|) (-148)) ((-626 #0#) -2832 (|has| (-417 |#2|) (-1053 (-417 (-574)))) (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-626 #1#) . T) ((-626 (-574)) . T) ((-626 $) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#3|) . T) ((-235 $) -2832 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-233 #1#) |has| (-417 |#2|) (-372)) ((-239) -2832 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-238) -2832 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-249) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-298) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-315) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-372) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-412) |has| (-417 |#2|) (-358)) ((-377) -2832 (|has| (-417 |#2|) (-377)) (|has| (-417 |#2|) (-358))) ((-358) |has| (-417 |#2|) (-358)) ((-379 #1# |#3|) . T) ((-419 #1# |#3|) . T) ((-386 #1#) . T) ((-421 #1#) . T) ((-462) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-566) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #1#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-658 #1#) . T) ((-658 #2=(-574)) |has| (-417 |#2|) (-649 (-574))) ((-658 $) . T) ((-650 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-650 #1#) . T) ((-650 $) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-649 #1#) . T) ((-649 #2#) |has| (-417 |#2|) (-649 (-574))) ((-727 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-727 #1#) . T) ((-727 $) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-734 #1# |#3|) . T) ((-736) . T) ((-913 (-1192)) -12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) ((-933) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1053 (-417 (-574))) |has| (-417 |#2|) (-1053 (-417 (-574)))) ((-1053 #1#) . T) ((-1053 (-574)) |has| (-417 |#2|) (-1053 (-574))) ((-1066 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1066 #1#) . T) ((-1066 $) . T) ((-1071 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1071 #1#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| (-417 |#2|) (-358)) ((-1233) -2832 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-1237) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-923 |#1|) (-377)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-923 |#1|) (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-923 |#1|) "failed") $) NIL)) (-2216 (((-923 |#1|) $) NIL)) (-2919 (($ (-1283 (-923 |#1|))) NIL)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-923 |#1|) (-377)))) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-923 |#1|) (-377)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) NIL (|has| (-923 |#1|) (-377)))) (-3873 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-4158 (($ $ (-781)) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377)))) (($ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-1782 (((-112) $) NIL)) (-2725 (((-934) $) NIL (|has| (-923 |#1|) (-377))) (((-843 (-934)) $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-3372 (((-112) $) NIL)) (-3434 (($) NIL (|has| (-923 |#1|) (-377)))) (-3743 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-1386 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-1353 (((-3 $ "failed") $) NIL (|has| (-923 |#1|) (-377)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 (-923 |#1|)) $) NIL) (((-1188 $) $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3271 (((-934) $) NIL (|has| (-923 |#1|) (-377)))) (-3363 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377)))) (-4426 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-1188 (-923 |#1|)) "failed") $ $) NIL (|has| (-923 |#1|) (-377)))) (-4140 (($ $ (-1188 (-923 |#1|))) NIL (|has| (-923 |#1|) (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-923 |#1|) (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3854 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-3821 (((-971 (-1135))) NIL)) (-2975 (($) NIL (|has| (-923 |#1|) (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| (-923 |#1|) (-377)))) (-4200 (((-428 $) $) NIL)) (-1971 (((-843 (-934))) NIL) (((-934)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-781) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-3480 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-3584 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2290 (((-1188 (-923 |#1|))) NIL)) (-1417 (($) NIL (|has| (-923 |#1|) (-377)))) (-1549 (($) NIL (|has| (-923 |#1|) (-377)))) (-4346 (((-1283 (-923 |#1|)) $) NIL) (((-699 (-923 |#1|)) (-1283 $)) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-923 |#1|) (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-923 |#1|)) NIL)) (-3247 (($ $) NIL (|has| (-923 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2893 (($ $) NIL (|has| (-923 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-923 |#1|) (-377)))) (-3583 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL) (($ $ (-923 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-923 |#1|)) NIL) (($ (-923 |#1|) $) NIL))) -(((-352 |#1| |#2|) (-13 (-337 (-923 |#1|)) (-10 -7 (-15 -3821 ((-971 (-1135)))))) (-934) (-934)) (T -352)) -((-3821 (*1 *2) (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-352 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934))))) -(-13 (-337 (-923 |#1|)) (-10 -7 (-15 -3821 ((-971 (-1135)))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 58)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-2541 (((-1205 (-934) (-781)) (-574)) 56 (|has| |#1| (-377)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) 142)) (-2216 ((|#1| $) 113)) (-2919 (($ (-1283 |#1|)) 130)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-377)))) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) 124 (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) 160 (|has| |#1| (-377)))) (-3873 (((-112) $) 66 (|has| |#1| (-377)))) (-4158 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1782 (((-112) $) NIL)) (-2725 (((-934) $) 60 (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3372 (((-112) $) 62)) (-3434 (($) 162 (|has| |#1| (-377)))) (-3743 (((-112) $) NIL (|has| |#1| (-377)))) (-1386 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 |#1|) $) 117) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3271 (((-934) $) 171 (|has| |#1| (-377)))) (-3363 (((-1188 |#1|) $) NIL (|has| |#1| (-377)))) (-4426 (((-1188 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-4140 (($ $ (-1188 |#1|)) NIL (|has| |#1| (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 178)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) 96 (|has| |#1| (-377)))) (-3854 (((-112) $) 147)) (-3939 (((-1135) $) NIL)) (-3821 (((-971 (-1135))) 57)) (-2975 (($) 158 (|has| |#1| (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) 119 (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-1971 (((-843 (-934))) 90) (((-934)) 91)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-781) $) 161 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 154 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3480 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3584 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2290 (((-1188 |#1|)) 122)) (-1417 (($) 159 (|has| |#1| (-377)))) (-1549 (($) 167 (|has| |#1| (-377)))) (-4346 (((-1283 |#1|) $) 77) (((-699 |#1|) (-1283 $)) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) 174) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 100)) (-3247 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4019 (((-781)) 155 T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) 144) (((-1283 $) (-934)) 98)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) 67 T CONST)) (-2154 (($) 103 T CONST)) (-2893 (($ $) 107 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) 65)) (-3098 (($ $ $) 176) (($ $ |#1|) 177)) (-3089 (($ $) 157) (($ $ $) NIL)) (-3074 (($ $ $) 86)) (** (($ $ (-934)) 180) (($ $ (-781)) 181) (($ $ (-574)) 179)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 102) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) -(((-353 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -3821 ((-971 (-1135)))))) (-358) (-1188 |#1|)) (T -353)) -((-3821 (*1 *2) (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358)) (-14 *4 (-1188 *3))))) -(-13 (-337 |#1|) (-10 -7 (-15 -3821 ((-971 (-1135)))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2919 (($ (-1283 |#1|)) NIL)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) NIL (|has| |#1| (-377)))) (-3873 (((-112) $) NIL (|has| |#1| (-377)))) (-4158 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1782 (((-112) $) NIL)) (-2725 (((-934) $) NIL (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3372 (((-112) $) NIL)) (-3434 (($) NIL (|has| |#1| (-377)))) (-3743 (((-112) $) NIL (|has| |#1| (-377)))) (-1386 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 |#1|) $) NIL) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3271 (((-934) $) NIL (|has| |#1| (-377)))) (-3363 (((-1188 |#1|) $) NIL (|has| |#1| (-377)))) (-4426 (((-1188 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-4140 (($ $ (-1188 |#1|)) NIL (|has| |#1| (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-3854 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-3821 (((-971 (-1135))) NIL)) (-2975 (($) NIL (|has| |#1| (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-1971 (((-843 (-934))) NIL) (((-934)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3480 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3584 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2290 (((-1188 |#1|)) NIL)) (-1417 (($) NIL (|has| |#1| (-377)))) (-1549 (($) NIL (|has| |#1| (-377)))) (-4346 (((-1283 |#1|) $) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3247 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2893 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-354 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -3821 ((-971 (-1135)))))) (-358) (-934)) (T -354)) -((-3821 (*1 *2) (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358)) (-14 *4 (-934))))) -(-13 (-337 |#1|) (-10 -7 (-15 -3821 ((-971 (-1135)))))) -((-2302 (((-781) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) 61)) (-2070 (((-971 (-1135)) (-1188 |#1|)) 112)) (-1445 (((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) (-1188 |#1|)) 103)) (-3092 (((-699 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) 113)) (-3833 (((-3 (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) "failed") (-934)) 13)) (-4035 (((-3 (-1188 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) (-934)) 18))) -(((-355 |#1|) (-10 -7 (-15 -2070 ((-971 (-1135)) (-1188 |#1|))) (-15 -1445 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) (-1188 |#1|))) (-15 -3092 ((-699 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -2302 ((-781) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -3833 ((-3 (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) "failed") (-934))) (-15 -4035 ((-3 (-1188 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) (-934)))) (-358)) (T -355)) -((-4035 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-3 (-1188 *4) (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135))))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-3833 (*1 *2 *3) (|partial| -12 (-5 *3 (-934)) (-5 *2 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) (-5 *1 (-355 *4)))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-971 (-1135))) (-5 *1 (-355 *4))))) -(-10 -7 (-15 -2070 ((-971 (-1135)) (-1188 |#1|))) (-15 -1445 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) (-1188 |#1|))) (-15 -3092 ((-699 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -2302 ((-781) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -3833 ((-3 (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) "failed") (-934))) (-15 -4035 ((-3 (-1188 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) (-934)))) -((-2950 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) -(((-356 |#1| |#2| |#3|) (-10 -7 (-15 -2950 (|#3| |#1|)) (-15 -2950 (|#1| |#3|))) (-337 |#2|) (-358) (-337 |#2|)) (T -356)) -((-2950 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *2 *4 *3)) (-4 *3 (-337 *4)))) (-2950 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *3 *4 *2)) (-4 *3 (-337 *4))))) -(-10 -7 (-15 -2950 (|#3| |#1|)) (-15 -2950 (|#1| |#3|))) -((-3873 (((-112) $) 60)) (-2725 (((-843 (-934)) $) 23) (((-934) $) 64)) (-1353 (((-3 $ "failed") $) 18)) (-3791 (($) 9)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 114)) (-3881 (((-3 (-781) "failed") $ $) 92) (((-781) $) 79)) (-3878 (($ $) 8) (($ $ (-781)) NIL)) (-1417 (($) 53)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 38)) (-3247 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-357 |#1|) (-10 -8 (-15 -2725 ((-934) |#1|)) (-15 -3881 ((-781) |#1|)) (-15 -3873 ((-112) |#1|)) (-15 -1417 (|#1|)) (-15 -1533 ((-3 (-1283 |#1|) "failed") (-699 |#1|))) (-15 -3247 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3791 (|#1|)) (-15 -1353 ((-3 |#1| "failed") |#1|)) (-15 -3881 ((-3 (-781) "failed") |#1| |#1|)) (-15 -2725 ((-843 (-934)) |#1|)) (-15 -3247 ((-3 |#1| "failed") |#1|)) (-15 -3578 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)))) (-358)) (T -357)) -NIL -(-10 -8 (-15 -2725 ((-934) |#1|)) (-15 -3881 ((-781) |#1|)) (-15 -3873 ((-112) |#1|)) (-15 -1417 (|#1|)) (-15 -1533 ((-3 (-1283 |#1|) "failed") (-699 |#1|))) (-15 -3247 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3791 (|#1|)) (-15 -1353 ((-3 |#1| "failed") |#1|)) (-15 -3881 ((-3 (-781) "failed") |#1| |#1|)) (-15 -2725 ((-843 (-934)) |#1|)) (-15 -3247 ((-3 |#1| "failed") |#1|)) (-15 -3578 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-2541 (((-1205 (-934) (-781)) (-574)) 102)) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 81)) (-3954 (((-428 $) $) 80)) (-3656 (((-112) $ $) 65)) (-1496 (((-781)) 112)) (-3831 (($) 18 T CONST)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2799 (($ $ $) 61)) (-3911 (((-3 $ "failed") $) 37)) (-2834 (($) 115)) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1912 (($) 100)) (-3873 (((-112) $) 99)) (-4158 (($ $) 87) (($ $ (-781)) 86)) (-1782 (((-112) $) 79)) (-2725 (((-843 (-934)) $) 89) (((-934) $) 97)) (-3372 (((-112) $) 35)) (-1353 (((-3 $ "failed") $) 111)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3271 (((-934) $) 114)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3791 (($) 110 T CONST)) (-2590 (($ (-934)) 113)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) 103)) (-4200 (((-428 $) $) 82)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3364 (((-781) $) 64)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-3881 (((-3 (-781) "failed") $ $) 88) (((-781) $) 98)) (-3878 (($ $) 109) (($ $ (-781)) 107)) (-1417 (($) 101)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 104)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3247 (((-3 $ "failed") $) 90) (($ $) 105)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $) 108) (($ $ (-781)) 106)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +((-2391 (*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1284 *1)) (-4 *1 (-337 *3)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-935)) (-4 *4 (-372)) (-5 *2 (-1284 *1)) (-4 *1 (-337 *4)))) (-1385 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1284 *3)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1189 *3)))) (-4379 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1189 *3)))) (-2027 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-935)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-935)))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-3989 (*1 *2 *1 *3) (-12 (-5 *3 (-935)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1189 *1)) (-4 *1 (-337 *4)))) (-1681 (*1 *1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-1644 (*1 *1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-4219 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-3841 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-3272 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112)))) (-2975 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-1927 (*1 *1 *1 *2) (-12 (-5 *2 (-1189 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3)) (-4 *3 (-372)))) (-2346 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1189 *3)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1189 *3)))) (-3747 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1189 *3))))) +(-13 (-1303 |t#1|) (-1054 |t#1|) (-10 -8 (-15 -2391 ((-1284 $))) (-15 -2391 ((-1284 $) (-935))) (-15 -1385 ((-1284 |t#1|) $)) (-15 -1385 ((-699 |t#1|) (-1284 $))) (-15 -2580 ($ (-1284 |t#1|))) (-15 -3989 ((-1189 |t#1|) $)) (-15 -4379 ((-1189 |t#1|))) (-15 -2027 ((-935))) (-15 -3580 ((-935) $)) (-15 -1681 (|t#1| $)) (-15 -1644 (|t#1| $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-358)) (-15 -3989 ((-1189 $) $ (-935))) (-15 -1681 ($ $ (-935))) (-15 -1644 ($ $ (-935))) (-15 -4219 ($)) (-15 -3841 ($)) (-15 -3272 ((-112) $)) (-15 -2975 ($)) (-15 -1927 ($ $ (-1189 |t#1|))) (-15 -2346 ((-1189 |t#1|) $)) (-15 -3747 ((-1189 |t#1|) $)) (-15 -3747 ((-3 (-1189 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2833 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) |has| |#1| (-377)) ((-239) |has| |#1| (-377)) ((-238) |has| |#1| (-377)) ((-249) . T) ((-298) . T) ((-315) . T) ((-1303 |#1|) . T) ((-372) . T) ((-412) -2833 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-377) |has| |#1| (-377)) ((-358) |has| |#1| (-377)) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1054 |#1|) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| |#1| (-377)) ((-1234) |has| |#1| (-377)) ((-1238) . T) ((-1291 |#1|) . T)) +((-2864 (((-112) $ $) NIL)) (-2574 (($ (-1192) $) 100)) (-4240 (($) 89)) (-2380 (((-1136) (-1136)) 9)) (-1620 (($) 90)) (-1766 (($) 104) (($ (-324 (-709))) 112) (($ (-324 (-711))) 108) (($ (-324 (-704))) 116) (($ (-324 (-388))) 123) (($ (-324 (-574))) 119) (($ (-324 (-171 (-388)))) 127)) (-4418 (($ (-1192) $) 101)) (-2166 (($ (-654 (-872))) 91)) (-4232 (((-1289) $) 87)) (-1469 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1989 (($ (-1136)) 58)) (-3670 (((-1120) $) 30)) (-3060 (($ (-1108 (-966 (-574))) $) 97) (($ (-1108 (-966 (-574))) (-966 (-574)) $) 98)) (-2021 (($ (-1136)) 99)) (-3259 (($ (-1192) $) 129) (($ (-1192) $ $) 130)) (-3834 (($ (-1193) (-654 (-1193))) 88)) (-2048 (($ (-1175)) 94) (($ (-654 (-1175))) 92)) (-2951 (((-872) $) 132)) (-2057 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1193)) (|:| |arrayIndex| (-654 (-966 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1193)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1192)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2754 (-112)) (|:| -3079 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1175))) (|:| |callBranch| (-1175)) (|:| |forBranch| (-2 (|:| -3798 (-1108 (-966 (-574)))) (|:| |span| (-966 (-574))) (|:| -2050 $))) (|:| |labelBranch| (-1136)) (|:| |loopBranch| (-2 (|:| |switch| (-1192)) (|:| -2050 $))) (|:| |commonBranch| (-2 (|:| -2039 (-1193)) (|:| |contents| (-654 (-1193))))) (|:| |printBranch| (-654 (-872)))) $) 50)) (-1820 (($ (-1175)) 202)) (-4089 (($ (-654 $)) 128)) (-4069 (((-112) $ $) NIL)) (-3391 (($ (-1193) (-1175)) 135) (($ (-1193) (-324 (-711))) 175) (($ (-1193) (-324 (-709))) 176) (($ (-1193) (-324 (-704))) 177) (($ (-1193) (-699 (-711))) 138) (($ (-1193) (-699 (-709))) 141) (($ (-1193) (-699 (-704))) 144) (($ (-1193) (-1284 (-711))) 147) (($ (-1193) (-1284 (-709))) 150) (($ (-1193) (-1284 (-704))) 153) (($ (-1193) (-699 (-324 (-711)))) 156) (($ (-1193) (-699 (-324 (-709)))) 159) (($ (-1193) (-699 (-324 (-704)))) 162) (($ (-1193) (-1284 (-324 (-711)))) 165) (($ (-1193) (-1284 (-324 (-709)))) 168) (($ (-1193) (-1284 (-324 (-704)))) 171) (($ (-1193) (-654 (-966 (-574))) (-324 (-711))) 172) (($ (-1193) (-654 (-966 (-574))) (-324 (-709))) 173) (($ (-1193) (-654 (-966 (-574))) (-324 (-704))) 174) (($ (-1193) (-324 (-574))) 199) (($ (-1193) (-324 (-388))) 200) (($ (-1193) (-324 (-171 (-388)))) 201) (($ (-1193) (-699 (-324 (-574)))) 180) (($ (-1193) (-699 (-324 (-388)))) 183) (($ (-1193) (-699 (-324 (-171 (-388))))) 186) (($ (-1193) (-1284 (-324 (-574)))) 189) (($ (-1193) (-1284 (-324 (-388)))) 192) (($ (-1193) (-1284 (-324 (-171 (-388))))) 195) (($ (-1193) (-654 (-966 (-574))) (-324 (-574))) 196) (($ (-1193) (-654 (-966 (-574))) (-324 (-388))) 197) (($ (-1193) (-654 (-966 (-574))) (-324 (-171 (-388)))) 198)) (-2986 (((-112) $ $) NIL))) +(((-338) (-13 (-1116) (-10 -8 (-15 -3060 ($ (-1108 (-966 (-574))) $)) (-15 -3060 ($ (-1108 (-966 (-574))) (-966 (-574)) $)) (-15 -2574 ($ (-1192) $)) (-15 -4418 ($ (-1192) $)) (-15 -1989 ($ (-1136))) (-15 -2021 ($ (-1136))) (-15 -2048 ($ (-1175))) (-15 -2048 ($ (-654 (-1175)))) (-15 -1820 ($ (-1175))) (-15 -1766 ($)) (-15 -1766 ($ (-324 (-709)))) (-15 -1766 ($ (-324 (-711)))) (-15 -1766 ($ (-324 (-704)))) (-15 -1766 ($ (-324 (-388)))) (-15 -1766 ($ (-324 (-574)))) (-15 -1766 ($ (-324 (-171 (-388))))) (-15 -3259 ($ (-1192) $)) (-15 -3259 ($ (-1192) $ $)) (-15 -3391 ($ (-1193) (-1175))) (-15 -3391 ($ (-1193) (-324 (-711)))) (-15 -3391 ($ (-1193) (-324 (-709)))) (-15 -3391 ($ (-1193) (-324 (-704)))) (-15 -3391 ($ (-1193) (-699 (-711)))) (-15 -3391 ($ (-1193) (-699 (-709)))) (-15 -3391 ($ (-1193) (-699 (-704)))) (-15 -3391 ($ (-1193) (-1284 (-711)))) (-15 -3391 ($ (-1193) (-1284 (-709)))) (-15 -3391 ($ (-1193) (-1284 (-704)))) (-15 -3391 ($ (-1193) (-699 (-324 (-711))))) (-15 -3391 ($ (-1193) (-699 (-324 (-709))))) (-15 -3391 ($ (-1193) (-699 (-324 (-704))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-711))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-709))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-704))))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-711)))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-709)))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-704)))) (-15 -3391 ($ (-1193) (-324 (-574)))) (-15 -3391 ($ (-1193) (-324 (-388)))) (-15 -3391 ($ (-1193) (-324 (-171 (-388))))) (-15 -3391 ($ (-1193) (-699 (-324 (-574))))) (-15 -3391 ($ (-1193) (-699 (-324 (-388))))) (-15 -3391 ($ (-1193) (-699 (-324 (-171 (-388)))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-574))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-388))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-171 (-388)))))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-574)))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-388)))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-171 (-388))))) (-15 -4089 ($ (-654 $))) (-15 -4240 ($)) (-15 -1620 ($)) (-15 -2166 ($ (-654 (-872)))) (-15 -3834 ($ (-1193) (-654 (-1193)))) (-15 -1469 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2057 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1193)) (|:| |arrayIndex| (-654 (-966 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1193)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1192)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2754 (-112)) (|:| -3079 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1175))) (|:| |callBranch| (-1175)) (|:| |forBranch| (-2 (|:| -3798 (-1108 (-966 (-574)))) (|:| |span| (-966 (-574))) (|:| -2050 $))) (|:| |labelBranch| (-1136)) (|:| |loopBranch| (-2 (|:| |switch| (-1192)) (|:| -2050 $))) (|:| |commonBranch| (-2 (|:| -2039 (-1193)) (|:| |contents| (-654 (-1193))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -4232 ((-1289) $)) (-15 -3670 ((-1120) $)) (-15 -2380 ((-1136) (-1136)))))) (T -338)) +((-3060 (*1 *1 *2 *1) (-12 (-5 *2 (-1108 (-966 (-574)))) (-5 *1 (-338)))) (-3060 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1108 (-966 (-574)))) (-5 *3 (-966 (-574))) (-5 *1 (-338)))) (-2574 (*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))) (-4418 (*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))) (-1989 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338)))) (-2021 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-338)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-338)))) (-1820 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-338)))) (-1766 (*1 *1) (-5 *1 (-338))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-3259 (*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))) (-3259 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1175)) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-711))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-709))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-704))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-711))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-709))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-704))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-711))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-709))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-704))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-711)))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-709)))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-704)))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-711))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-709))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-704))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-574))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-388))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-574)))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-388)))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-574))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-388))) (-5 *1 (-338)))) (-3391 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-4089 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338)))) (-4240 (*1 *1) (-5 *1 (-338))) (-1620 (*1 *1) (-5 *1 (-338))) (-2166 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338)))) (-3834 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1193)) (-5 *1 (-338)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-338)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1193)) (|:| |arrayIndex| (-654 (-966 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1193)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1192)) (|:| |thenClause| (-338)) (|:| |elseClause| (-338)))) (|:| |returnBranch| (-2 (|:| -2754 (-112)) (|:| -3079 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 (-338))) (|:| |commentBranch| (-654 (-1175))) (|:| |callBranch| (-1175)) (|:| |forBranch| (-2 (|:| -3798 (-1108 (-966 (-574)))) (|:| |span| (-966 (-574))) (|:| -2050 (-338)))) (|:| |labelBranch| (-1136)) (|:| |loopBranch| (-2 (|:| |switch| (-1192)) (|:| -2050 (-338)))) (|:| |commonBranch| (-2 (|:| -2039 (-1193)) (|:| |contents| (-654 (-1193))))) (|:| |printBranch| (-654 (-872))))) (-5 *1 (-338)))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-338)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-338)))) (-2380 (*1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338))))) +(-13 (-1116) (-10 -8 (-15 -3060 ($ (-1108 (-966 (-574))) $)) (-15 -3060 ($ (-1108 (-966 (-574))) (-966 (-574)) $)) (-15 -2574 ($ (-1192) $)) (-15 -4418 ($ (-1192) $)) (-15 -1989 ($ (-1136))) (-15 -2021 ($ (-1136))) (-15 -2048 ($ (-1175))) (-15 -2048 ($ (-654 (-1175)))) (-15 -1820 ($ (-1175))) (-15 -1766 ($)) (-15 -1766 ($ (-324 (-709)))) (-15 -1766 ($ (-324 (-711)))) (-15 -1766 ($ (-324 (-704)))) (-15 -1766 ($ (-324 (-388)))) (-15 -1766 ($ (-324 (-574)))) (-15 -1766 ($ (-324 (-171 (-388))))) (-15 -3259 ($ (-1192) $)) (-15 -3259 ($ (-1192) $ $)) (-15 -3391 ($ (-1193) (-1175))) (-15 -3391 ($ (-1193) (-324 (-711)))) (-15 -3391 ($ (-1193) (-324 (-709)))) (-15 -3391 ($ (-1193) (-324 (-704)))) (-15 -3391 ($ (-1193) (-699 (-711)))) (-15 -3391 ($ (-1193) (-699 (-709)))) (-15 -3391 ($ (-1193) (-699 (-704)))) (-15 -3391 ($ (-1193) (-1284 (-711)))) (-15 -3391 ($ (-1193) (-1284 (-709)))) (-15 -3391 ($ (-1193) (-1284 (-704)))) (-15 -3391 ($ (-1193) (-699 (-324 (-711))))) (-15 -3391 ($ (-1193) (-699 (-324 (-709))))) (-15 -3391 ($ (-1193) (-699 (-324 (-704))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-711))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-709))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-704))))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-711)))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-709)))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-704)))) (-15 -3391 ($ (-1193) (-324 (-574)))) (-15 -3391 ($ (-1193) (-324 (-388)))) (-15 -3391 ($ (-1193) (-324 (-171 (-388))))) (-15 -3391 ($ (-1193) (-699 (-324 (-574))))) (-15 -3391 ($ (-1193) (-699 (-324 (-388))))) (-15 -3391 ($ (-1193) (-699 (-324 (-171 (-388)))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-574))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-388))))) (-15 -3391 ($ (-1193) (-1284 (-324 (-171 (-388)))))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-574)))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-388)))) (-15 -3391 ($ (-1193) (-654 (-966 (-574))) (-324 (-171 (-388))))) (-15 -4089 ($ (-654 $))) (-15 -4240 ($)) (-15 -1620 ($)) (-15 -2166 ($ (-654 (-872)))) (-15 -3834 ($ (-1193) (-654 (-1193)))) (-15 -1469 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2057 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1193)) (|:| |arrayIndex| (-654 (-966 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1193)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1192)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2754 (-112)) (|:| -3079 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1175))) (|:| |callBranch| (-1175)) (|:| |forBranch| (-2 (|:| -3798 (-1108 (-966 (-574)))) (|:| |span| (-966 (-574))) (|:| -2050 $))) (|:| |labelBranch| (-1136)) (|:| |loopBranch| (-2 (|:| |switch| (-1192)) (|:| -2050 $))) (|:| |commonBranch| (-2 (|:| -2039 (-1193)) (|:| |contents| (-654 (-1193))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -4232 ((-1289) $)) (-15 -3670 ((-1120) $)) (-15 -2380 ((-1136) (-1136))))) +((-2864 (((-112) $ $) NIL)) (-2613 (((-112) $) 13)) (-2235 (($ |#1|) 10)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2247 (($ |#1|) 12)) (-2951 (((-872) $) 19)) (-4069 (((-112) $ $) NIL)) (-4142 ((|#1| $) 14)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 21))) +(((-339 |#1|) (-13 (-860) (-10 -8 (-15 -2235 ($ |#1|)) (-15 -2247 ($ |#1|)) (-15 -2613 ((-112) $)) (-15 -4142 (|#1| $)))) (-860)) (T -339)) +((-2235 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-2247 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860)))) (-4142 (*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860))))) +(-13 (-860) (-10 -8 (-15 -2235 ($ |#1|)) (-15 -2247 ($ |#1|)) (-15 -2613 ((-112) $)) (-15 -4142 (|#1| $)))) +((-2272 (((-338) (-1193) (-966 (-574))) 23)) (-1339 (((-338) (-1193) (-966 (-574))) 27)) (-2720 (((-338) (-1193) (-1108 (-966 (-574))) (-1108 (-966 (-574)))) 26) (((-338) (-1193) (-966 (-574)) (-966 (-574))) 24)) (-2476 (((-338) (-1193) (-966 (-574))) 31))) +(((-340) (-10 -7 (-15 -2272 ((-338) (-1193) (-966 (-574)))) (-15 -2720 ((-338) (-1193) (-966 (-574)) (-966 (-574)))) (-15 -2720 ((-338) (-1193) (-1108 (-966 (-574))) (-1108 (-966 (-574))))) (-15 -1339 ((-338) (-1193) (-966 (-574)))) (-15 -2476 ((-338) (-1193) (-966 (-574)))))) (T -340)) +((-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-2720 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-1108 (-966 (-574)))) (-5 *2 (-338)) (-5 *1 (-340)))) (-2720 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-2272 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) (-5 *1 (-340))))) +(-10 -7 (-15 -2272 ((-338) (-1193) (-966 (-574)))) (-15 -2720 ((-338) (-1193) (-966 (-574)) (-966 (-574)))) (-15 -2720 ((-338) (-1193) (-1108 (-966 (-574))) (-1108 (-966 (-574))))) (-15 -1339 ((-338) (-1193) (-966 (-574)))) (-15 -2476 ((-338) (-1193) (-966 (-574))))) +((-2864 (((-112) $ $) NIL)) (-2270 (((-516) $) 20)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3088 (((-972 (-781)) $) 18)) (-3447 (((-256) $) 7)) (-2951 (((-872) $) 26)) (-4281 (((-972 (-185 (-140))) $) 16)) (-4069 (((-112) $ $) NIL)) (-1567 (((-654 (-883 (-1198) (-781))) $) 12)) (-2986 (((-112) $ $) 22))) +(((-341) (-13 (-1116) (-10 -8 (-15 -3447 ((-256) $)) (-15 -1567 ((-654 (-883 (-1198) (-781))) $)) (-15 -3088 ((-972 (-781)) $)) (-15 -4281 ((-972 (-185 (-140))) $)) (-15 -2270 ((-516) $))))) (T -341)) +((-3447 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1198) (-781)))) (-5 *1 (-341)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-972 (-781))) (-5 *1 (-341)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-972 (-185 (-140)))) (-5 *1 (-341)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341))))) +(-13 (-1116) (-10 -8 (-15 -3447 ((-256) $)) (-15 -1567 ((-654 (-883 (-1198) (-781))) $)) (-15 -3088 ((-972 (-781)) $)) (-15 -4281 ((-972 (-185 (-140))) $)) (-15 -2270 ((-516) $)))) +((-1785 (((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)) 33))) +(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1785 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-372) (-1260 |#5|) (-1260 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -342)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-345 *5 *6 *7 *8)) (-4 *5 (-372)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *9 (-372)) (-4 *10 (-1260 *9)) (-4 *11 (-1260 (-417 *10))) (-5 *2 (-345 *9 *10 *11 *12)) (-5 *1 (-342 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-351 *9 *10 *11))))) +(-10 -7 (-15 -1785 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)))) +((-2282 (((-112) $) 14))) +(((-343 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2282 ((-112) |#1|))) (-344 |#2| |#3| |#4| |#5|) (-372) (-1260 |#2|) (-1260 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -343)) +NIL +(-10 -8 (-15 -2282 ((-112) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-2882 (($ $) 29)) (-2282 (((-112) $) 28)) (-1489 (((-1175) $) 10)) (-2984 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 35)) (-3940 (((-1136) $) 11)) (-2975 (((-3 |#4| "failed") $) 27)) (-3466 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-574)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-1377 (((-2 (|:| -2818 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24))) +(((-344 |#1| |#2| |#3| |#4|) (-141) (-372) (-1260 |t#1|) (-1260 (-417 |t#2|)) (-351 |t#1| |t#2| |t#3|)) (T -344)) +((-2984 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-423 *4 (-417 *4) *5 *6)))) (-3466 (*1 *1 *2) (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372)) (-4 *1 (-344 *3 *4 *5 *6)))) (-3466 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5)))) (-3466 (*1 *1 *2 *2) (-12 (-4 *2 (-372)) (-4 *3 (-1260 *2)) (-4 *4 (-1260 (-417 *3))) (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4)))) (-3466 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1260 *2)) (-4 *5 (-1260 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6)) (-4 *6 (-351 *2 *4 *5)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-2 (|:| -2818 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6))))) (-2882 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1260 *2)) (-4 *4 (-1260 (-417 *3))) (-4 *5 (-351 *2 *3 *4)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112)))) (-2975 (*1 *2 *1) (|partial| -12 (-4 *1 (-344 *3 *4 *5 *2)) (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *2 (-351 *3 *4 *5)))) (-3466 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-372)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3))) (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2984 ((-423 |t#2| (-417 |t#2|) |t#3| |t#4|) $)) (-15 -3466 ($ (-423 |t#2| (-417 |t#2|) |t#3| |t#4|))) (-15 -3466 ($ |t#4|)) (-15 -3466 ($ |t#1| |t#1|)) (-15 -3466 ($ |t#1| |t#1| (-574))) (-15 -1377 ((-2 (|:| -2818 (-423 |t#2| (-417 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2882 ($ $)) (-15 -2282 ((-112) $)) (-15 -2975 ((-3 |t#4| "failed") $)) (-15 -3466 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-2882 (($ $) 33)) (-2282 (((-112) $) NIL)) (-1489 (((-1175) $) NIL)) (-3095 (((-1284 |#4|) $) 134)) (-2984 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 31)) (-3940 (((-1136) $) NIL)) (-2975 (((-3 |#4| "failed") $) 36)) (-2733 (((-1284 |#4|) $) 126)) (-3466 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-574)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1377 (((-2 (|:| -2818 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2951 (((-872) $) 17)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 14 T CONST)) (-2986 (((-112) $ $) 20)) (-3090 (($ $) 27) (($ $ $) NIL)) (-3074 (($ $ $) 25)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 23))) +(((-345 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2733 ((-1284 |#4|) $)) (-15 -3095 ((-1284 |#4|) $)))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -345)) +((-2733 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-1284 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5)))) (-3095 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-1284 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5))))) +(-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2733 ((-1284 |#4|) $)) (-15 -3095 ((-1284 |#4|) $)))) +((-2661 (($ $ (-1193) |#2|) NIL) (($ $ (-654 (-1193)) (-654 |#2|)) 20) (($ $ (-654 (-302 |#2|))) 15) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-2207 (($ $ |#2|) 11))) +(((-346 |#1| |#2|) (-10 -8 (-15 -2207 (|#1| |#1| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 |#2|))) (-15 -2661 (|#1| |#1| (-1193) |#2|))) (-347 |#2|) (-1116)) (T -346)) +NIL +(-10 -8 (-15 -2207 (|#1| |#1| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 |#2|))) (-15 -2661 (|#1| |#1| (-1193) |#2|))) +((-1785 (($ (-1 |#1| |#1|) $) 6)) (-2661 (($ $ (-1193) |#1|) 17 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 16 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-654 (-302 |#1|))) 15 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 14 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-317 |#1|))) (($ $ (-654 |#1|) (-654 |#1|)) 12 (|has| |#1| (-317 |#1|)))) (-2207 (($ $ |#1|) 11 (|has| |#1| (-294 |#1| |#1|))))) +(((-347 |#1|) (-141) (-1116)) (T -347)) +((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1116))))) +(-13 (-10 -8 (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-294 |t#1| |t#1|)) (-6 (-294 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-524 (-1193) |t#1|)) (-6 (-524 (-1193) |t#1|)) |%noBranch|))) +(((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-524 (-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-1234) |has| |#1| (-294 |#1| |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 (-1193)) $) NIL)) (-4050 (((-112)) 96) (((-112) (-112)) 97)) (-4068 (((-654 (-622 $)) $) NIL)) (-2379 (($ $) NIL)) (-2258 (($ $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2559 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-4212 (($ $) NIL)) (-2358 (($ $) NIL)) (-2235 (($ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-622 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-324 |#3|)) 76) (((-3 $ "failed") (-1193)) 103) (((-3 $ "failed") (-324 (-574))) 64 (|has| |#3| (-1054 (-574)))) (((-3 $ "failed") (-417 (-966 (-574)))) 70 (|has| |#3| (-1054 (-574)))) (((-3 $ "failed") (-966 (-574))) 65 (|has| |#3| (-1054 (-574)))) (((-3 $ "failed") (-324 (-388))) 94 (|has| |#3| (-1054 (-388)))) (((-3 $ "failed") (-417 (-966 (-388)))) 88 (|has| |#3| (-1054 (-388)))) (((-3 $ "failed") (-966 (-388))) 83 (|has| |#3| (-1054 (-388))))) (-2214 (((-622 $) $) NIL) ((|#3| $) NIL) (($ (-324 |#3|)) 77) (($ (-1193)) 104) (($ (-324 (-574))) 66 (|has| |#3| (-1054 (-574)))) (($ (-417 (-966 (-574)))) 71 (|has| |#3| (-1054 (-574)))) (($ (-966 (-574))) 67 (|has| |#3| (-1054 (-574)))) (($ (-324 (-388))) 95 (|has| |#3| (-1054 (-388)))) (($ (-417 (-966 (-388)))) 89 (|has| |#3| (-1054 (-388)))) (($ (-966 (-388))) 85 (|has| |#3| (-1054 (-388))))) (-4322 (((-3 $ "failed") $) NIL)) (-3004 (($) 101)) (-1391 (($ $) NIL) (($ (-654 $)) NIL)) (-1649 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) NIL)) (-4226 (((-112) $) NIL)) (-1823 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-3746 (((-1189 $) (-622 $)) NIL (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) NIL)) (-3452 (((-3 (-622 $) "failed") $) NIL)) (-1739 (($ $) 99)) (-3113 (($ $) NIL)) (-1489 (((-1175) $) NIL)) (-4139 (((-654 (-622 $)) $) NIL)) (-1782 (($ (-115) $) 98) (($ (-115) (-654 $)) NIL)) (-2154 (((-112) $ (-115)) NIL) (((-112) $ (-1193)) NIL)) (-1847 (((-781) $) NIL)) (-3940 (((-1136) $) NIL)) (-3595 (((-112) $ $) NIL) (((-112) $ (-1193)) NIL)) (-1617 (($ $) NIL)) (-2120 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1193) (-1 $ (-654 $))) NIL) (($ $ (-1193) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2207 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-3078 (($ $) NIL) (($ $ $) NIL)) (-3879 (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-4379 (($ $) NIL (|has| $ (-1065)))) (-2368 (($ $) NIL)) (-2247 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-622 $)) NIL) (($ |#3|) NIL) (($ (-574)) NIL) (((-324 |#3|) $) 102)) (-2898 (((-781)) NIL T CONST)) (-2078 (($ $) NIL) (($ (-654 $)) NIL)) (-2420 (((-112) (-115)) NIL)) (-4069 (((-112) $ $) NIL)) (-2320 (($ $) NIL)) (-2301 (($ $) NIL)) (-2312 (($ $) NIL)) (-3936 (($ $) NIL)) (-2141 (($) 100 T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL))) +(((-348 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1054 |#3|) (-912 (-1193)) (-10 -8 (-15 -2214 ($ (-324 |#3|))) (-15 -1704 ((-3 $ "failed") (-324 |#3|))) (-15 -2214 ($ (-1193))) (-15 -1704 ((-3 $ "failed") (-1193))) (-15 -2951 ((-324 |#3|) $)) (IF (|has| |#3| (-1054 (-574))) (PROGN (-15 -2214 ($ (-324 (-574)))) (-15 -1704 ((-3 $ "failed") (-324 (-574)))) (-15 -2214 ($ (-417 (-966 (-574))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-574))))) (-15 -2214 ($ (-966 (-574)))) (-15 -1704 ((-3 $ "failed") (-966 (-574))))) |%noBranch|) (IF (|has| |#3| (-1054 (-388))) (PROGN (-15 -2214 ($ (-324 (-388)))) (-15 -1704 ((-3 $ "failed") (-324 (-388)))) (-15 -2214 ($ (-417 (-966 (-388))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-388))))) (-15 -2214 ($ (-966 (-388)))) (-15 -1704 ((-3 $ "failed") (-966 (-388))))) |%noBranch|) (-15 -3936 ($ $)) (-15 -4212 ($ $)) (-15 -1617 ($ $)) (-15 -3113 ($ $)) (-15 -1739 ($ $)) (-15 -2235 ($ $)) (-15 -2247 ($ $)) (-15 -2258 ($ $)) (-15 -2301 ($ $)) (-15 -2312 ($ $)) (-15 -2320 ($ $)) (-15 -2358 ($ $)) (-15 -2368 ($ $)) (-15 -2379 ($ $)) (-15 -3004 ($)) (-15 -4350 ((-654 (-1193)) $)) (-15 -4050 ((-112))) (-15 -4050 ((-112) (-112))))) (-654 (-1193)) (-654 (-1193)) (-397)) (T -348)) +((-2214 (*1 *1 *2) (-12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-324 *5)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-966 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-966 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-966 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-966 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-3936 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-4212 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-1617 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-3113 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-1739 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2235 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2247 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2258 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2301 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2312 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2320 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2358 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2379 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-3004 (*1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-4350 (*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-397)))) (-4050 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-4050 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397))))) +(-13 (-310) (-38 |#3|) (-1054 |#3|) (-912 (-1193)) (-10 -8 (-15 -2214 ($ (-324 |#3|))) (-15 -1704 ((-3 $ "failed") (-324 |#3|))) (-15 -2214 ($ (-1193))) (-15 -1704 ((-3 $ "failed") (-1193))) (-15 -2951 ((-324 |#3|) $)) (IF (|has| |#3| (-1054 (-574))) (PROGN (-15 -2214 ($ (-324 (-574)))) (-15 -1704 ((-3 $ "failed") (-324 (-574)))) (-15 -2214 ($ (-417 (-966 (-574))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-574))))) (-15 -2214 ($ (-966 (-574)))) (-15 -1704 ((-3 $ "failed") (-966 (-574))))) |%noBranch|) (IF (|has| |#3| (-1054 (-388))) (PROGN (-15 -2214 ($ (-324 (-388)))) (-15 -1704 ((-3 $ "failed") (-324 (-388)))) (-15 -2214 ($ (-417 (-966 (-388))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-388))))) (-15 -2214 ($ (-966 (-388)))) (-15 -1704 ((-3 $ "failed") (-966 (-388))))) |%noBranch|) (-15 -3936 ($ $)) (-15 -4212 ($ $)) (-15 -1617 ($ $)) (-15 -3113 ($ $)) (-15 -1739 ($ $)) (-15 -2235 ($ $)) (-15 -2247 ($ $)) (-15 -2258 ($ $)) (-15 -2301 ($ $)) (-15 -2312 ($ $)) (-15 -2320 ($ $)) (-15 -2358 ($ $)) (-15 -2368 ($ $)) (-15 -2379 ($ $)) (-15 -3004 ($)) (-15 -4350 ((-654 (-1193)) $)) (-15 -4050 ((-112))) (-15 -4050 ((-112) (-112))))) +((-1785 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-349 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1785 (|#8| (-1 |#5| |#1|) |#4|))) (-1238) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-1238) (-1260 |#5|) (-1260 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -349)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1238)) (-4 *8 (-1238)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *9 (-1260 *8)) (-4 *2 (-351 *8 *9 *10)) (-5 *1 (-349 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1260 (-417 *9)))))) +(-10 -7 (-15 -1785 (|#8| (-1 |#5| |#1|) |#4|))) +((-1471 (((-2 (|:| |num| (-1284 |#3|)) (|:| |den| |#3|)) $) 39)) (-2580 (($ (-1284 (-417 |#3|)) (-1284 $)) NIL) (($ (-1284 (-417 |#3|))) NIL) (($ (-1284 |#3|) |#3|) 173)) (-1406 (((-1284 $) (-1284 $)) 156)) (-3925 (((-654 (-654 |#2|))) 126)) (-2904 (((-112) |#2| |#2|) 76)) (-3621 (($ $) 148)) (-2723 (((-781)) 172)) (-2921 (((-1284 $) (-1284 $)) 218)) (-2512 (((-654 (-966 |#2|)) (-1193)) 115)) (-3965 (((-112) $) 169)) (-3033 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-4375 (((-3 |#3| "failed")) 52)) (-3981 (((-781)) 184)) (-2207 ((|#2| $ |#2| |#2|) 140)) (-2090 (((-3 |#3| "failed")) 71)) (-3879 (($ $ (-1 (-417 |#3|) (-417 |#3|)) (-781)) NIL) (($ $ (-1 (-417 |#3|) (-417 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2980 (((-1284 $) (-1284 $)) 162)) (-2561 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-3526 (((-112)) 34))) +(((-350 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3925 ((-654 (-654 |#2|)))) (-15 -2512 ((-654 (-966 |#2|)) (-1193))) (-15 -2561 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4375 ((-3 |#3| "failed"))) (-15 -2090 ((-3 |#3| "failed"))) (-15 -2207 (|#2| |#1| |#2| |#2|)) (-15 -3621 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3033 ((-112) |#1| |#3|)) (-15 -3033 ((-112) |#1| |#2|)) (-15 -2580 (|#1| (-1284 |#3|) |#3|)) (-15 -1471 ((-2 (|:| |num| (-1284 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1406 ((-1284 |#1|) (-1284 |#1|))) (-15 -2921 ((-1284 |#1|) (-1284 |#1|))) (-15 -2980 ((-1284 |#1|) (-1284 |#1|))) (-15 -3033 ((-112) |#1|)) (-15 -3965 ((-112) |#1|)) (-15 -2904 ((-112) |#2| |#2|)) (-15 -3526 ((-112))) (-15 -3981 ((-781))) (-15 -2723 ((-781))) (-15 -3879 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3879 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -2580 (|#1| (-1284 (-417 |#3|)))) (-15 -2580 (|#1| (-1284 (-417 |#3|)) (-1284 |#1|)))) (-351 |#2| |#3| |#4|) (-1238) (-1260 |#2|) (-1260 (-417 |#3|))) (T -350)) +((-2723 (*1 *2) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-3981 (*1 *2) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-3526 (*1 *2) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-2904 (*1 *2 *3 *3) (-12 (-4 *3 (-1238)) (-4 *5 (-1260 *3)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6)))) (-2090 (*1 *2) (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 (-417 *2))) (-4 *2 (-1260 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-4375 (*1 *2) (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 (-417 *2))) (-4 *2 (-1260 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *5 (-1238)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-5 *2 (-654 (-966 *5))) (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7)))) (-3925 (*1 *2) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6))))) +(-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3925 ((-654 (-654 |#2|)))) (-15 -2512 ((-654 (-966 |#2|)) (-1193))) (-15 -2561 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4375 ((-3 |#3| "failed"))) (-15 -2090 ((-3 |#3| "failed"))) (-15 -2207 (|#2| |#1| |#2| |#2|)) (-15 -3621 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3033 ((-112) |#1| |#3|)) (-15 -3033 ((-112) |#1| |#2|)) (-15 -2580 (|#1| (-1284 |#3|) |#3|)) (-15 -1471 ((-2 (|:| |num| (-1284 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1406 ((-1284 |#1|) (-1284 |#1|))) (-15 -2921 ((-1284 |#1|) (-1284 |#1|))) (-15 -2980 ((-1284 |#1|) (-1284 |#1|))) (-15 -3033 ((-112) |#1|)) (-15 -3965 ((-112) |#1|)) (-15 -2904 ((-112) |#2| |#2|)) (-15 -3526 ((-112))) (-15 -3981 ((-781))) (-15 -2723 ((-781))) (-15 -3879 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3879 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -2580 (|#1| (-1284 (-417 |#3|)))) (-15 -2580 (|#1| (-1284 (-417 |#3|)) (-1284 |#1|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-1471 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) 208)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 104 (|has| (-417 |#2|) (-372)))) (-2884 (($ $) 105 (|has| (-417 |#2|) (-372)))) (-1981 (((-112) $) 107 (|has| (-417 |#2|) (-372)))) (-3835 (((-699 (-417 |#2|)) (-1284 $)) 53) (((-699 (-417 |#2|))) 68)) (-1644 (((-417 |#2|) $) 59)) (-1928 (((-1206 (-935) (-781)) (-574)) 157 (|has| (-417 |#2|) (-358)))) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 124 (|has| (-417 |#2|) (-372)))) (-1610 (((-428 $) $) 125 (|has| (-417 |#2|) (-372)))) (-3245 (((-112) $ $) 115 (|has| (-417 |#2|) (-372)))) (-1496 (((-781)) 98 (|has| (-417 |#2|) (-377)))) (-4242 (((-112)) 225)) (-2344 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-3250 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 182 (|has| (-417 |#2|) (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 180 (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) 177)) (-2214 (((-574) $) 181 (|has| (-417 |#2|) (-1054 (-574)))) (((-417 (-574)) $) 179 (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-417 |#2|) $) 178)) (-2580 (($ (-1284 (-417 |#2|)) (-1284 $)) 55) (($ (-1284 (-417 |#2|))) 71) (($ (-1284 |#2|) |#2|) 207)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| (-417 |#2|) (-358)))) (-2800 (($ $ $) 119 (|has| (-417 |#2|) (-372)))) (-2640 (((-699 (-417 |#2|)) $ (-1284 $)) 60) (((-699 (-417 |#2|)) $) 66)) (-1831 (((-699 (-574)) (-1284 $)) 176 (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) 175 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 174 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-417 |#2|))) (|:| |vec| (-1284 (-417 |#2|)))) (-699 $) (-1284 $)) 173) (((-699 (-417 |#2|)) (-699 $)) 172) (((-699 (-417 |#2|)) (-1284 $)) 171)) (-1406 (((-1284 $) (-1284 $)) 213)) (-2882 (($ |#3|) 168) (((-3 $ "failed") (-417 |#3|)) 165 (|has| (-417 |#2|) (-372)))) (-4322 (((-3 $ "failed") $) 37)) (-3925 (((-654 (-654 |#1|))) 194 (|has| |#1| (-377)))) (-2904 (((-112) |#1| |#1|) 229)) (-3558 (((-935)) 61)) (-2835 (($) 101 (|has| (-417 |#2|) (-377)))) (-3929 (((-112)) 222)) (-1568 (((-112) |#1|) 221) (((-112) |#2|) 220)) (-2813 (($ $ $) 118 (|has| (-417 |#2|) (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 113 (|has| (-417 |#2|) (-372)))) (-3621 (($ $) 200)) (-3556 (($) 159 (|has| (-417 |#2|) (-358)))) (-3084 (((-112) $) 160 (|has| (-417 |#2|) (-358)))) (-1995 (($ $ (-781)) 151 (|has| (-417 |#2|) (-358))) (($ $) 150 (|has| (-417 |#2|) (-358)))) (-3978 (((-112) $) 126 (|has| (-417 |#2|) (-372)))) (-3547 (((-935) $) 162 (|has| (-417 |#2|) (-358))) (((-843 (-935)) $) 148 (|has| (-417 |#2|) (-358)))) (-4226 (((-112) $) 35)) (-2723 (((-781)) 232)) (-2921 (((-1284 $) (-1284 $)) 214)) (-1681 (((-417 |#2|) $) 58)) (-2512 (((-654 (-966 |#1|)) (-1193)) 195 (|has| |#1| (-372)))) (-2414 (((-3 $ "failed") $) 152 (|has| (-417 |#2|) (-358)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 122 (|has| (-417 |#2|) (-372)))) (-3989 ((|#3| $) 51 (|has| (-417 |#2|) (-372)))) (-3383 (((-935) $) 100 (|has| (-417 |#2|) (-377)))) (-2869 ((|#3| $) 166)) (-2849 (($ (-654 $)) 111 (|has| (-417 |#2|) (-372))) (($ $ $) 110 (|has| (-417 |#2|) (-372)))) (-1489 (((-1175) $) 10)) (-3034 (((-699 (-417 |#2|))) 209)) (-1485 (((-699 (-417 |#2|))) 211)) (-1328 (($ $) 127 (|has| (-417 |#2|) (-372)))) (-3793 (($ (-1284 |#2|) |#2|) 205)) (-3984 (((-699 (-417 |#2|))) 210)) (-4432 (((-699 (-417 |#2|))) 212)) (-2294 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 204)) (-2670 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) 206)) (-3963 (((-1284 $)) 218)) (-4367 (((-1284 $)) 219)) (-3965 (((-112) $) 217)) (-3033 (((-112) $) 216) (((-112) $ |#1|) 203) (((-112) $ |#2|) 202)) (-3791 (($) 153 (|has| (-417 |#2|) (-358)) CONST)) (-2591 (($ (-935)) 99 (|has| (-417 |#2|) (-377)))) (-4375 (((-3 |#2| "failed")) 197)) (-3940 (((-1136) $) 11)) (-3981 (((-781)) 231)) (-2975 (($) 170)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 112 (|has| (-417 |#2|) (-372)))) (-2887 (($ (-654 $)) 109 (|has| (-417 |#2|) (-372))) (($ $ $) 108 (|has| (-417 |#2|) (-372)))) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) 156 (|has| (-417 |#2|) (-358)))) (-4202 (((-428 $) $) 123 (|has| (-417 |#2|) (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 120 (|has| (-417 |#2|) (-372)))) (-2853 (((-3 $ "failed") $ $) 103 (|has| (-417 |#2|) (-372)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 114 (|has| (-417 |#2|) (-372)))) (-2098 (((-781) $) 116 (|has| (-417 |#2|) (-372)))) (-2207 ((|#1| $ |#1| |#1|) 199)) (-2090 (((-3 |#2| "failed")) 198)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 117 (|has| (-417 |#2|) (-372)))) (-2394 (((-417 |#2|) (-1284 $)) 54) (((-417 |#2|)) 67)) (-3261 (((-781) $) 161 (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) 149 (|has| (-417 |#2|) (-358)))) (-3879 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 133 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 132 (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 201) (($ $ (-1193)) 136 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1193))) 138 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-1193) (-781)) 139 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1193)) (-654 (-781))) 140 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $) 144 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2095 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) 146 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2095 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3303 (((-699 (-417 |#2|)) (-1284 $) (-1 (-417 |#2|) (-417 |#2|))) 164 (|has| (-417 |#2|) (-372)))) (-4379 ((|#3|) 169)) (-3603 (($) 158 (|has| (-417 |#2|) (-358)))) (-1385 (((-1284 (-417 |#2|)) $ (-1284 $)) 57) (((-699 (-417 |#2|)) (-1284 $) (-1284 $)) 56) (((-1284 (-417 |#2|)) $) 73) (((-699 (-417 |#2|)) (-1284 $)) 72)) (-1844 (((-1284 (-417 |#2|)) $) 70) (($ (-1284 (-417 |#2|))) 69) ((|#3| $) 183) (($ |#3|) 167)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 155 (|has| (-417 |#2|) (-358)))) (-2980 (((-1284 $) (-1284 $)) 215)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 |#2|)) 44) (($ (-417 (-574))) 97 (-2833 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-1054 (-417 (-574)))))) (($ $) 102 (|has| (-417 |#2|) (-372)))) (-3424 (($ $) 154 (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) 50 (|has| (-417 |#2|) (-146)))) (-2648 ((|#3| $) 52)) (-2898 (((-781)) 32 T CONST)) (-1441 (((-112)) 228)) (-2983 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-4069 (((-112) $ $) 9)) (-2391 (((-1284 $)) 74)) (-2836 (((-112) $ $) 106 (|has| (-417 |#2|) (-372)))) (-2561 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 196)) (-3526 (((-112)) 230)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 135 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 134 (|has| (-417 |#2|) (-372))) (($ $ (-1193)) 137 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1193))) 141 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-1193) (-781)) 142 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1193)) (-654 (-781))) 143 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $) 145 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2095 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) 147 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2095 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ $) 131 (|has| (-417 |#2|) (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 128 (|has| (-417 |#2|) (-372)))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 |#2|)) 46) (($ (-417 |#2|) $) 45) (($ (-417 (-574)) $) 130 (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) 129 (|has| (-417 |#2|) (-372))))) +(((-351 |#1| |#2| |#3|) (-141) (-1238) (-1260 |t#1|) (-1260 (-417 |t#2|))) (T -351)) +((-2723 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-781)))) (-3981 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-781)))) (-3526 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2904 (*1 *2 *3 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-1441 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2983 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2983 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) (-4242 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2344 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2344 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) (-3929 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-1568 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-1568 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) (-4367 (*1 *2) (-12 (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)))) (-3963 (*1 *2) (-12 (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-3033 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2980 (*1 *2 *2) (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))) (-4432 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-1485 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-3984 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-3034 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1284 *4)) (|:| |den| *4))))) (-2580 (*1 *1 *2 *3) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1260 *4)) (-4 *4 (-1238)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1260 (-417 *3))))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1284 *4)) (|:| |den| *4))))) (-3793 (*1 *1 *2 *3) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1260 *4)) (-4 *4 (-1238)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1260 (-417 *3))))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5))))) (-3033 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-3033 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))) (-3621 (*1 *1 *1) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-1260 *2)) (-4 *4 (-1260 (-417 *3))))) (-2207 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-1260 *2)) (-4 *4 (-1260 (-417 *3))))) (-2090 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1238)) (-4 *4 (-1260 (-417 *2))) (-4 *2 (-1260 *3)))) (-4375 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1238)) (-4 *4 (-1260 (-417 *2))) (-4 *2 (-1260 *3)))) (-2561 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-1238)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-351 *4 *5 *6)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-4 *4 (-372)) (-5 *2 (-654 (-966 *4))))) (-3925 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3)))))) +(-13 (-734 (-417 |t#2|) |t#3|) (-10 -8 (-15 -2723 ((-781))) (-15 -3981 ((-781))) (-15 -3526 ((-112))) (-15 -2904 ((-112) |t#1| |t#1|)) (-15 -1441 ((-112))) (-15 -2983 ((-112) |t#1|)) (-15 -2983 ((-112) |t#2|)) (-15 -4242 ((-112))) (-15 -2344 ((-112) |t#1|)) (-15 -2344 ((-112) |t#2|)) (-15 -3929 ((-112))) (-15 -1568 ((-112) |t#1|)) (-15 -1568 ((-112) |t#2|)) (-15 -4367 ((-1284 $))) (-15 -3963 ((-1284 $))) (-15 -3965 ((-112) $)) (-15 -3033 ((-112) $)) (-15 -2980 ((-1284 $) (-1284 $))) (-15 -2921 ((-1284 $) (-1284 $))) (-15 -1406 ((-1284 $) (-1284 $))) (-15 -4432 ((-699 (-417 |t#2|)))) (-15 -1485 ((-699 (-417 |t#2|)))) (-15 -3984 ((-699 (-417 |t#2|)))) (-15 -3034 ((-699 (-417 |t#2|)))) (-15 -1471 ((-2 (|:| |num| (-1284 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2580 ($ (-1284 |t#2|) |t#2|)) (-15 -2670 ((-2 (|:| |num| (-1284 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3793 ($ (-1284 |t#2|) |t#2|)) (-15 -2294 ((-2 (|:| |num| (-699 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3033 ((-112) $ |t#1|)) (-15 -3033 ((-112) $ |t#2|)) (-15 -3879 ($ $ (-1 |t#2| |t#2|))) (-15 -3621 ($ $)) (-15 -2207 (|t#1| $ |t#1| |t#1|)) (-15 -2090 ((-3 |t#2| "failed"))) (-15 -4375 ((-3 |t#2| "failed"))) (-15 -2561 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-372)) (-15 -2512 ((-654 (-966 |t#1|)) (-1193))) |%noBranch|) (IF (|has| |t#1| (-377)) (-15 -3925 ((-654 (-654 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-38 #1=(-417 |#2|)) . T) ((-38 $) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-102) . T) ((-111 #0# #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-146))) ((-148) |has| (-417 |#2|) (-148)) ((-626 #0#) -2833 (|has| (-417 |#2|) (-1054 (-417 (-574)))) (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-626 #1#) . T) ((-626 (-574)) . T) ((-626 $) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#3|) . T) ((-235 $) -2833 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-233 #1#) |has| (-417 |#2|) (-372)) ((-239) -2833 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-238) -2833 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-249) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-298) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-315) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-372) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-412) |has| (-417 |#2|) (-358)) ((-377) -2833 (|has| (-417 |#2|) (-377)) (|has| (-417 |#2|) (-358))) ((-358) |has| (-417 |#2|) (-358)) ((-379 #1# |#3|) . T) ((-419 #1# |#3|) . T) ((-386 #1#) . T) ((-421 #1#) . T) ((-462) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-566) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #1#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-658 #1#) . T) ((-658 #2=(-574)) |has| (-417 |#2|) (-649 (-574))) ((-658 $) . T) ((-650 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-650 #1#) . T) ((-650 $) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-649 #1#) . T) ((-649 #2#) |has| (-417 |#2|) (-649 (-574))) ((-727 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-727 #1#) . T) ((-727 $) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-734 #1# |#3|) . T) ((-736) . T) ((-907 $ #3=(-1193)) -12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) ((-912 #3#) -12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) ((-914 #3#) -12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) ((-934) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1054 (-417 (-574))) |has| (-417 |#2|) (-1054 (-417 (-574)))) ((-1054 #1#) . T) ((-1054 (-574)) |has| (-417 |#2|) (-1054 (-574))) ((-1067 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1067 #1#) . T) ((-1067 $) . T) ((-1072 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1072 #1#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| (-417 |#2|) (-358)) ((-1234) -2833 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-1238) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-924 |#1|) (-377)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-924 |#1|) (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-924 |#1|) "failed") $) NIL)) (-2214 (((-924 |#1|) $) NIL)) (-2580 (($ (-1284 (-924 |#1|))) NIL)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-924 |#1|) (-377)))) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-924 |#1|) (-377)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) NIL (|has| (-924 |#1|) (-377)))) (-3084 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-1995 (($ $ (-781)) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377)))) (($ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3978 (((-112) $) NIL)) (-3547 (((-935) $) NIL (|has| (-924 |#1|) (-377))) (((-843 (-935)) $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-4226 (((-112) $) NIL)) (-3841 (($) NIL (|has| (-924 |#1|) (-377)))) (-3272 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-1681 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2414 (((-3 $ "failed") $) NIL (|has| (-924 |#1|) (-377)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 (-924 |#1|)) $) NIL) (((-1189 $) $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-3383 (((-935) $) NIL (|has| (-924 |#1|) (-377)))) (-2346 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377)))) (-3747 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-1189 (-924 |#1|)) "failed") $ $) NIL (|has| (-924 |#1|) (-377)))) (-1927 (($ $ (-1189 (-924 |#1|))) NIL (|has| (-924 |#1|) (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| (-924 |#1|) (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2228 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2113 (((-972 (-1136))) NIL)) (-2975 (($) NIL (|has| (-924 |#1|) (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| (-924 |#1|) (-377)))) (-4202 (((-428 $) $) NIL)) (-2027 (((-843 (-935))) NIL) (((-935)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-781) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-2995 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-3580 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-4379 (((-1189 (-924 |#1|))) NIL)) (-3603 (($) NIL (|has| (-924 |#1|) (-377)))) (-4219 (($) NIL (|has| (-924 |#1|) (-377)))) (-1385 (((-1284 (-924 |#1|)) $) NIL) (((-699 (-924 |#1|)) (-1284 $)) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-924 |#1|) (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-924 |#1|)) NIL)) (-3424 (($ $) NIL (|has| (-924 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2656 (($ $) NIL (|has| (-924 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-924 |#1|) (-377)))) (-3584 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-924 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-924 |#1|)) NIL) (($ (-924 |#1|) $) NIL))) +(((-352 |#1| |#2|) (-13 (-337 (-924 |#1|)) (-10 -7 (-15 -2113 ((-972 (-1136)))))) (-935) (-935)) (T -352)) +((-2113 (*1 *2) (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-352 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935))))) +(-13 (-337 (-924 |#1|)) (-10 -7 (-15 -2113 ((-972 (-1136)))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 58)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-1928 (((-1206 (-935) (-781)) (-574)) 56 (|has| |#1| (-377)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 142)) (-2214 ((|#1| $) 113)) (-2580 (($ (-1284 |#1|)) 130)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) 124 (|has| |#1| (-377)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) 160 (|has| |#1| (-377)))) (-3084 (((-112) $) 66 (|has| |#1| (-377)))) (-1995 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3978 (((-112) $) NIL)) (-3547 (((-935) $) 60 (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4226 (((-112) $) 62)) (-3841 (($) 162 (|has| |#1| (-377)))) (-3272 (((-112) $) NIL (|has| |#1| (-377)))) (-1681 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 |#1|) $) 117) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3383 (((-935) $) 171 (|has| |#1| (-377)))) (-2346 (((-1189 |#1|) $) NIL (|has| |#1| (-377)))) (-3747 (((-1189 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-1927 (($ $ (-1189 |#1|)) NIL (|has| |#1| (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 178)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) 96 (|has| |#1| (-377)))) (-2228 (((-112) $) 147)) (-3940 (((-1136) $) NIL)) (-2113 (((-972 (-1136))) 57)) (-2975 (($) 158 (|has| |#1| (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) 119 (|has| |#1| (-377)))) (-4202 (((-428 $) $) NIL)) (-2027 (((-843 (-935))) 90) (((-935)) 91)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-781) $) 161 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 154 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2995 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3580 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-4379 (((-1189 |#1|)) 122)) (-3603 (($) 159 (|has| |#1| (-377)))) (-4219 (($) 167 (|has| |#1| (-377)))) (-1385 (((-1284 |#1|) $) 77) (((-699 |#1|) (-1284 $)) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) 174) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 100)) (-3424 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2898 (((-781)) 155 T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) 144) (((-1284 $) (-935)) 98)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) 67 T CONST)) (-2153 (($) 103 T CONST)) (-2656 (($ $) 107 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3584 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) 65)) (-3103 (($ $ $) 176) (($ $ |#1|) 177)) (-3090 (($ $) 157) (($ $ $) NIL)) (-3074 (($ $ $) 86)) (** (($ $ (-935)) 180) (($ $ (-781)) 181) (($ $ (-574)) 179)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 102) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-353 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -2113 ((-972 (-1136)))))) (-358) (-1189 |#1|)) (T -353)) +((-2113 (*1 *2) (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358)) (-14 *4 (-1189 *3))))) +(-13 (-337 |#1|) (-10 -7 (-15 -2113 ((-972 (-1136)))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-2580 (($ (-1284 |#1|)) NIL)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| |#1| (-377)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) NIL (|has| |#1| (-377)))) (-3084 (((-112) $) NIL (|has| |#1| (-377)))) (-1995 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3978 (((-112) $) NIL)) (-3547 (((-935) $) NIL (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4226 (((-112) $) NIL)) (-3841 (($) NIL (|has| |#1| (-377)))) (-3272 (((-112) $) NIL (|has| |#1| (-377)))) (-1681 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 |#1|) $) NIL) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3383 (((-935) $) NIL (|has| |#1| (-377)))) (-2346 (((-1189 |#1|) $) NIL (|has| |#1| (-377)))) (-3747 (((-1189 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-1927 (($ $ (-1189 |#1|)) NIL (|has| |#1| (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-2228 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2113 (((-972 (-1136))) NIL)) (-2975 (($) NIL (|has| |#1| (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| |#1| (-377)))) (-4202 (((-428 $) $) NIL)) (-2027 (((-843 (-935))) NIL) (((-935)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2995 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3580 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-4379 (((-1189 |#1|)) NIL)) (-3603 (($) NIL (|has| |#1| (-377)))) (-4219 (($) NIL (|has| |#1| (-377)))) (-1385 (((-1284 |#1|) $) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3424 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2656 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3584 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-354 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -2113 ((-972 (-1136)))))) (-358) (-935)) (T -354)) +((-2113 (*1 *2) (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358)) (-14 *4 (-935))))) +(-13 (-337 |#1|) (-10 -7 (-15 -2113 ((-972 (-1136)))))) +((-2093 (((-781) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) 61)) (-2871 (((-972 (-1136)) (-1189 |#1|)) 112)) (-3463 (((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) (-1189 |#1|)) 103)) (-3393 (((-699 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) 113)) (-1655 (((-3 (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) "failed") (-935)) 13)) (-3754 (((-3 (-1189 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) (-935)) 18))) +(((-355 |#1|) (-10 -7 (-15 -2871 ((-972 (-1136)) (-1189 |#1|))) (-15 -3463 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) (-1189 |#1|))) (-15 -3393 ((-699 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -2093 ((-781) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -1655 ((-3 (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) "failed") (-935))) (-15 -3754 ((-3 (-1189 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) (-935)))) (-358)) (T -355)) +((-3754 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-3 (-1189 *4) (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136))))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-1655 (*1 *2 *3) (|partial| -12 (-5 *3 (-935)) (-5 *2 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4)))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) (-5 *1 (-355 *4)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-972 (-1136))) (-5 *1 (-355 *4))))) +(-10 -7 (-15 -2871 ((-972 (-1136)) (-1189 |#1|))) (-15 -3463 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) (-1189 |#1|))) (-15 -3393 ((-699 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -2093 ((-781) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -1655 ((-3 (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) "failed") (-935))) (-15 -3754 ((-3 (-1189 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) (-935)))) +((-2951 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) +(((-356 |#1| |#2| |#3|) (-10 -7 (-15 -2951 (|#3| |#1|)) (-15 -2951 (|#1| |#3|))) (-337 |#2|) (-358) (-337 |#2|)) (T -356)) +((-2951 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *2 *4 *3)) (-4 *3 (-337 *4)))) (-2951 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *3 *4 *2)) (-4 *3 (-337 *4))))) +(-10 -7 (-15 -2951 (|#3| |#1|)) (-15 -2951 (|#1| |#3|))) +((-3084 (((-112) $) 60)) (-3547 (((-843 (-935)) $) 23) (((-935) $) 64)) (-2414 (((-3 $ "failed") $) 18)) (-3791 (($) 9)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 114)) (-3261 (((-3 (-781) "failed") $ $) 92) (((-781) $) 79)) (-3879 (($ $) 8) (($ $ (-781)) NIL)) (-3603 (($) 53)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 38)) (-3424 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-357 |#1|) (-10 -8 (-15 -3547 ((-935) |#1|)) (-15 -3261 ((-781) |#1|)) (-15 -3084 ((-112) |#1|)) (-15 -3603 (|#1|)) (-15 -3089 ((-3 (-1284 |#1|) "failed") (-699 |#1|))) (-15 -3424 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3791 (|#1|)) (-15 -2414 ((-3 |#1| "failed") |#1|)) (-15 -3261 ((-3 (-781) "failed") |#1| |#1|)) (-15 -3547 ((-843 (-935)) |#1|)) (-15 -3424 ((-3 |#1| "failed") |#1|)) (-15 -2069 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|)))) (-358)) (T -357)) +NIL +(-10 -8 (-15 -3547 ((-935) |#1|)) (-15 -3261 ((-781) |#1|)) (-15 -3084 ((-112) |#1|)) (-15 -3603 (|#1|)) (-15 -3089 ((-3 (-1284 |#1|) "failed") (-699 |#1|))) (-15 -3424 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3791 (|#1|)) (-15 -2414 ((-3 |#1| "failed") |#1|)) (-15 -3261 ((-3 (-781) "failed") |#1| |#1|)) (-15 -3547 ((-843 (-935)) |#1|)) (-15 -3424 ((-3 |#1| "failed") |#1|)) (-15 -2069 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-1928 (((-1206 (-935) (-781)) (-574)) 102)) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 81)) (-1610 (((-428 $) $) 80)) (-3245 (((-112) $ $) 65)) (-1496 (((-781)) 112)) (-3250 (($) 18 T CONST)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2800 (($ $ $) 61)) (-4322 (((-3 $ "failed") $) 37)) (-2835 (($) 115)) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3556 (($) 100)) (-3084 (((-112) $) 99)) (-1995 (($ $) 87) (($ $ (-781)) 86)) (-3978 (((-112) $) 79)) (-3547 (((-843 (-935)) $) 89) (((-935) $) 97)) (-4226 (((-112) $) 35)) (-2414 (((-3 $ "failed") $) 111)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3383 (((-935) $) 114)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3791 (($) 110 T CONST)) (-2591 (($ (-935)) 113)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) 103)) (-4202 (((-428 $) $) 82)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2098 (((-781) $) 64)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-3261 (((-3 (-781) "failed") $ $) 88) (((-781) $) 98)) (-3879 (($ $) 109) (($ $ (-781)) 107)) (-3603 (($) 101)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 104)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3424 (((-3 $ "failed") $) 90) (($ $) 105)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $) 108) (($ $ (-781)) 106)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) (((-358) (-141)) (T -358)) -((-3247 (*1 *1 *1) (-4 *1 (-358))) (-1533 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1283 *1)))) (-3600 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))))) (-2541 (*1 *2 *3) (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1205 (-934) (-781))))) (-1417 (*1 *1) (-4 *1 (-358))) (-1912 (*1 *1) (-4 *1 (-358))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-934)))) (-3392 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-412) (-377) (-1167) (-239) (-10 -8 (-15 -3247 ($ $)) (-15 -1533 ((-3 (-1283 $) "failed") (-699 $))) (-15 -3600 ((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574)))))) (-15 -2541 ((-1205 (-934) (-781)) (-574))) (-15 -1417 ($)) (-15 -1912 ($)) (-15 -3873 ((-112) $)) (-15 -3881 ((-781) $)) (-15 -2725 ((-934) $)) (-15 -3392 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) . T) ((-377) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) . T) ((-1233) . T) ((-1237) . T)) -((-1949 (((-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|) 55)) (-1555 (((-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 53))) -(((-359 |#1| |#2| |#3|) (-10 -7 (-15 -1555 ((-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -1949 ((-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|))) (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $)))) (-1259 |#1|) (-419 |#1| |#2|)) (T -359)) -((-1949 (*1 *2 *3) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *2 (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1555 (*1 *2) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *2 (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) -(-10 -7 (-15 -1555 ((-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -1949 ((-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-923 |#1|) (-377)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2302 (((-781)) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-923 |#1|) (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-923 |#1|) "failed") $) NIL)) (-2216 (((-923 |#1|) $) NIL)) (-2919 (($ (-1283 (-923 |#1|))) NIL)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-923 |#1|) (-377)))) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-923 |#1|) (-377)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) NIL (|has| (-923 |#1|) (-377)))) (-3873 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-4158 (($ $ (-781)) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377)))) (($ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-1782 (((-112) $) NIL)) (-2725 (((-934) $) NIL (|has| (-923 |#1|) (-377))) (((-843 (-934)) $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-3372 (((-112) $) NIL)) (-3434 (($) NIL (|has| (-923 |#1|) (-377)))) (-3743 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-1386 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-1353 (((-3 $ "failed") $) NIL (|has| (-923 |#1|) (-377)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 (-923 |#1|)) $) NIL) (((-1188 $) $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3271 (((-934) $) NIL (|has| (-923 |#1|) (-377)))) (-3363 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377)))) (-4426 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-1188 (-923 |#1|)) "failed") $ $) NIL (|has| (-923 |#1|) (-377)))) (-4140 (($ $ (-1188 (-923 |#1|))) NIL (|has| (-923 |#1|) (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-923 |#1|) (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3854 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-3856 (((-1283 (-654 (-2 (|:| -3078 (-923 |#1|)) (|:| -2590 (-1135)))))) NIL)) (-4136 (((-699 (-923 |#1|))) NIL)) (-2975 (($) NIL (|has| (-923 |#1|) (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| (-923 |#1|) (-377)))) (-4200 (((-428 $) $) NIL)) (-1971 (((-843 (-934))) NIL) (((-934)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-781) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-3480 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-3584 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2290 (((-1188 (-923 |#1|))) NIL)) (-1417 (($) NIL (|has| (-923 |#1|) (-377)))) (-1549 (($) NIL (|has| (-923 |#1|) (-377)))) (-4346 (((-1283 (-923 |#1|)) $) NIL) (((-699 (-923 |#1|)) (-1283 $)) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-923 |#1|) (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-923 |#1|)) NIL)) (-3247 (($ $) NIL (|has| (-923 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2893 (($ $) NIL (|has| (-923 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-923 |#1|) (-377)))) (-3583 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL) (($ $ (-923 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-923 |#1|)) NIL) (($ (-923 |#1|) $) NIL))) -(((-360 |#1| |#2|) (-13 (-337 (-923 |#1|)) (-10 -7 (-15 -3856 ((-1283 (-654 (-2 (|:| -3078 (-923 |#1|)) (|:| -2590 (-1135))))))) (-15 -4136 ((-699 (-923 |#1|)))) (-15 -2302 ((-781))))) (-934) (-934)) (T -360)) -((-3856 (*1 *2) (-12 (-5 *2 (-1283 (-654 (-2 (|:| -3078 (-923 *3)) (|:| -2590 (-1135)))))) (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) (-4136 (*1 *2) (-12 (-5 *2 (-699 (-923 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) (-2302 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934))))) -(-13 (-337 (-923 |#1|)) (-10 -7 (-15 -3856 ((-1283 (-654 (-2 (|:| -3078 (-923 |#1|)) (|:| -2590 (-1135))))))) (-15 -4136 ((-699 (-923 |#1|)))) (-15 -2302 ((-781))))) -((-2863 (((-112) $ $) 73)) (-3520 (((-112) $) 88)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 ((|#1| $) 106) (($ $ (-934)) 104 (|has| |#1| (-377)))) (-2541 (((-1205 (-934) (-781)) (-574)) 170 (|has| |#1| (-377)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2302 (((-781)) 103)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) 187 (|has| |#1| (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) 127)) (-2216 ((|#1| $) 105)) (-2919 (($ (-1283 |#1|)) 71)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-377)))) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) 182 (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) 171 (|has| |#1| (-377)))) (-3873 (((-112) $) NIL (|has| |#1| (-377)))) (-4158 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1782 (((-112) $) NIL)) (-2725 (((-934) $) NIL (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3372 (((-112) $) NIL)) (-3434 (($) 113 (|has| |#1| (-377)))) (-3743 (((-112) $) 200 (|has| |#1| (-377)))) (-1386 ((|#1| $) 108) (($ $ (-934)) 107 (|has| |#1| (-377)))) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 |#1|) $) 214) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3271 (((-934) $) 148 (|has| |#1| (-377)))) (-3363 (((-1188 |#1|) $) 87 (|has| |#1| (-377)))) (-4426 (((-1188 |#1|) $) 84 (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) 96 (|has| |#1| (-377)))) (-4140 (($ $ (-1188 |#1|)) 83 (|has| |#1| (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 218)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) 150 (|has| |#1| (-377)))) (-3854 (((-112) $) 123)) (-3939 (((-1135) $) NIL)) (-3856 (((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) 97)) (-4136 (((-699 |#1|)) 101)) (-2975 (($) 110 (|has| |#1| (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) 173 (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-1971 (((-843 (-934))) NIL) (((-934)) 174)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3480 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3584 (((-843 (-934)) $) NIL) (((-934) $) 75)) (-2290 (((-1188 |#1|)) 175)) (-1417 (($) 147 (|has| |#1| (-377)))) (-1549 (($) NIL (|has| |#1| (-377)))) (-4346 (((-1283 |#1|) $) 121) (((-699 |#1|) (-1283 $)) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) 140) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 70)) (-3247 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4019 (((-781)) 180 T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) 197) (((-1283 $) (-934)) 116)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) 186 T CONST)) (-2154 (($) 161 T CONST)) (-2893 (($ $) 122 (|has| |#1| (-377))) (($ $ (-781)) 114 (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) 208)) (-3098 (($ $ $) 119) (($ $ |#1|) 120)) (-3089 (($ $) 202) (($ $ $) 206)) (-3074 (($ $ $) 204)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 153)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 211) (($ $ $) 164) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) -(((-361 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -3856 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -4136 ((-699 |#1|))) (-15 -2302 ((-781))))) (-358) (-3 (-1188 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (T -361)) -((-3856 (*1 *2) (-12 (-5 *2 (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135)))))) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1188 *3) *2)))) (-4136 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1188 *3) (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135))))))))) (-2302 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1188 *3) (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135)))))))))) -(-13 (-337 |#1|) (-10 -7 (-15 -3856 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -4136 ((-699 |#1|))) (-15 -2302 ((-781))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2302 (((-781)) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2919 (($ (-1283 |#1|)) NIL)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) NIL (|has| |#1| (-377)))) (-3873 (((-112) $) NIL (|has| |#1| (-377)))) (-4158 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1782 (((-112) $) NIL)) (-2725 (((-934) $) NIL (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3372 (((-112) $) NIL)) (-3434 (($) NIL (|has| |#1| (-377)))) (-3743 (((-112) $) NIL (|has| |#1| (-377)))) (-1386 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 |#1|) $) NIL) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3271 (((-934) $) NIL (|has| |#1| (-377)))) (-3363 (((-1188 |#1|) $) NIL (|has| |#1| (-377)))) (-4426 (((-1188 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-4140 (($ $ (-1188 |#1|)) NIL (|has| |#1| (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-3854 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-3856 (((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) NIL)) (-4136 (((-699 |#1|)) NIL)) (-2975 (($) NIL (|has| |#1| (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-1971 (((-843 (-934))) NIL) (((-934)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3480 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3584 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2290 (((-1188 |#1|)) NIL)) (-1417 (($) NIL (|has| |#1| (-377)))) (-1549 (($) NIL (|has| |#1| (-377)))) (-4346 (((-1283 |#1|) $) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3247 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2893 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-362 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -3856 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -4136 ((-699 |#1|))) (-15 -2302 ((-781))))) (-358) (-934)) (T -362)) -((-3856 (*1 *2) (-12 (-5 *2 (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135)))))) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-934)))) (-4136 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-934)))) (-2302 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-934))))) -(-13 (-337 |#1|) (-10 -7 (-15 -3856 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -4136 ((-699 |#1|))) (-15 -2302 ((-781))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-923 |#1|) (-377)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-923 |#1|) (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-923 |#1|) "failed") $) NIL)) (-2216 (((-923 |#1|) $) NIL)) (-2919 (($ (-1283 (-923 |#1|))) NIL)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-923 |#1|) (-377)))) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-923 |#1|) (-377)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) NIL (|has| (-923 |#1|) (-377)))) (-3873 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-4158 (($ $ (-781)) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377)))) (($ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-1782 (((-112) $) NIL)) (-2725 (((-934) $) NIL (|has| (-923 |#1|) (-377))) (((-843 (-934)) $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-3372 (((-112) $) NIL)) (-3434 (($) NIL (|has| (-923 |#1|) (-377)))) (-3743 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-1386 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-1353 (((-3 $ "failed") $) NIL (|has| (-923 |#1|) (-377)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 (-923 |#1|)) $) NIL) (((-1188 $) $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3271 (((-934) $) NIL (|has| (-923 |#1|) (-377)))) (-3363 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377)))) (-4426 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-1188 (-923 |#1|)) "failed") $ $) NIL (|has| (-923 |#1|) (-377)))) (-4140 (($ $ (-1188 (-923 |#1|))) NIL (|has| (-923 |#1|) (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-923 |#1|) (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3854 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2975 (($) NIL (|has| (-923 |#1|) (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| (-923 |#1|) (-377)))) (-4200 (((-428 $) $) NIL)) (-1971 (((-843 (-934))) NIL) (((-934)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-781) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-3480 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-3584 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2290 (((-1188 (-923 |#1|))) NIL)) (-1417 (($) NIL (|has| (-923 |#1|) (-377)))) (-1549 (($) NIL (|has| (-923 |#1|) (-377)))) (-4346 (((-1283 (-923 |#1|)) $) NIL) (((-699 (-923 |#1|)) (-1283 $)) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-923 |#1|) (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-923 |#1|)) NIL)) (-3247 (($ $) NIL (|has| (-923 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2893 (($ $) NIL (|has| (-923 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-923 |#1|) (-377)))) (-3583 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL) (($ $ (-923 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-923 |#1|)) NIL) (($ (-923 |#1|) $) NIL))) -(((-363 |#1| |#2|) (-337 (-923 |#1|)) (-934) (-934)) (T -363)) -NIL -(-337 (-923 |#1|)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-2541 (((-1205 (-934) (-781)) (-574)) 129 (|has| |#1| (-377)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) 155 (|has| |#1| (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) 103)) (-2216 ((|#1| $) 100)) (-2919 (($ (-1283 |#1|)) 95)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-377)))) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) 92 (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) 51 (|has| |#1| (-377)))) (-3873 (((-112) $) NIL (|has| |#1| (-377)))) (-4158 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1782 (((-112) $) NIL)) (-2725 (((-934) $) NIL (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3372 (((-112) $) NIL)) (-3434 (($) 130 (|has| |#1| (-377)))) (-3743 (((-112) $) 84 (|has| |#1| (-377)))) (-1386 ((|#1| $) 47) (($ $ (-934)) 52 (|has| |#1| (-377)))) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 |#1|) $) 75) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3271 (((-934) $) 107 (|has| |#1| (-377)))) (-3363 (((-1188 |#1|) $) NIL (|has| |#1| (-377)))) (-4426 (((-1188 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-4140 (($ $ (-1188 |#1|)) NIL (|has| |#1| (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) 105 (|has| |#1| (-377)))) (-3854 (((-112) $) 157)) (-3939 (((-1135) $) NIL)) (-2975 (($) 44 (|has| |#1| (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) 124 (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-1971 (((-843 (-934))) NIL) (((-934)) 154)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3480 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3584 (((-843 (-934)) $) NIL) (((-934) $) 67)) (-2290 (((-1188 |#1|)) 98)) (-1417 (($) 135 (|has| |#1| (-377)))) (-1549 (($) NIL (|has| |#1| (-377)))) (-4346 (((-1283 |#1|) $) 63) (((-699 |#1|) (-1283 $)) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) 153) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 97)) (-3247 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4019 (((-781)) 159 T CONST)) (-3838 (((-112) $ $) 161)) (-2191 (((-1283 $)) 119) (((-1283 $) (-934)) 58)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) 121 T CONST)) (-2154 (($) 40 T CONST)) (-2893 (($ $) 78 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) 117)) (-3098 (($ $ $) 109) (($ $ |#1|) 110)) (-3089 (($ $) 90) (($ $ $) 115)) (-3074 (($ $ $) 113)) (** (($ $ (-934)) NIL) (($ $ (-781)) 53) (($ $ (-574)) 138)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 88) (($ $ $) 65) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) -(((-364 |#1| |#2|) (-337 |#1|) (-358) (-1188 |#1|)) (T -364)) +((-3424 (*1 *1 *1) (-4 *1 (-358))) (-3089 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1284 *1)))) (-1514 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))))) (-1928 (*1 *2 *3) (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1206 (-935) (-781))))) (-3603 (*1 *1) (-4 *1 (-358))) (-3556 (*1 *1) (-4 *1 (-358))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-935)))) (-1444 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-412) (-377) (-1168) (-239) (-10 -8 (-15 -3424 ($ $)) (-15 -3089 ((-3 (-1284 $) "failed") (-699 $))) (-15 -1514 ((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574)))))) (-15 -1928 ((-1206 (-935) (-781)) (-574))) (-15 -3603 ($)) (-15 -3556 ($)) (-15 -3084 ((-112) $)) (-15 -3261 ((-781) $)) (-15 -3547 ((-935) $)) (-15 -1444 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) . T) ((-377) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) . T) ((-1234) . T) ((-1238) . T)) +((-2232 (((-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|) 55)) (-4367 (((-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 53))) +(((-359 |#1| |#2| |#3|) (-10 -7 (-15 -4367 ((-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -2232 ((-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|))) (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $)))) (-1260 |#1|) (-419 |#1| |#2|)) (T -359)) +((-2232 (*1 *2 *3) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *2 (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-4367 (*1 *2) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *2 (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) +(-10 -7 (-15 -4367 ((-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -2232 ((-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-924 |#1|) (-377)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2093 (((-781)) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-924 |#1|) (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-924 |#1|) "failed") $) NIL)) (-2214 (((-924 |#1|) $) NIL)) (-2580 (($ (-1284 (-924 |#1|))) NIL)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-924 |#1|) (-377)))) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-924 |#1|) (-377)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) NIL (|has| (-924 |#1|) (-377)))) (-3084 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-1995 (($ $ (-781)) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377)))) (($ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3978 (((-112) $) NIL)) (-3547 (((-935) $) NIL (|has| (-924 |#1|) (-377))) (((-843 (-935)) $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-4226 (((-112) $) NIL)) (-3841 (($) NIL (|has| (-924 |#1|) (-377)))) (-3272 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-1681 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2414 (((-3 $ "failed") $) NIL (|has| (-924 |#1|) (-377)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 (-924 |#1|)) $) NIL) (((-1189 $) $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-3383 (((-935) $) NIL (|has| (-924 |#1|) (-377)))) (-2346 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377)))) (-3747 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-1189 (-924 |#1|)) "failed") $ $) NIL (|has| (-924 |#1|) (-377)))) (-1927 (($ $ (-1189 (-924 |#1|))) NIL (|has| (-924 |#1|) (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| (-924 |#1|) (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2228 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-3612 (((-1284 (-654 (-2 (|:| -3079 (-924 |#1|)) (|:| -2591 (-1136)))))) NIL)) (-1767 (((-699 (-924 |#1|))) NIL)) (-2975 (($) NIL (|has| (-924 |#1|) (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| (-924 |#1|) (-377)))) (-4202 (((-428 $) $) NIL)) (-2027 (((-843 (-935))) NIL) (((-935)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-781) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-2995 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-3580 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-4379 (((-1189 (-924 |#1|))) NIL)) (-3603 (($) NIL (|has| (-924 |#1|) (-377)))) (-4219 (($) NIL (|has| (-924 |#1|) (-377)))) (-1385 (((-1284 (-924 |#1|)) $) NIL) (((-699 (-924 |#1|)) (-1284 $)) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-924 |#1|) (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-924 |#1|)) NIL)) (-3424 (($ $) NIL (|has| (-924 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2656 (($ $) NIL (|has| (-924 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-924 |#1|) (-377)))) (-3584 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-924 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-924 |#1|)) NIL) (($ (-924 |#1|) $) NIL))) +(((-360 |#1| |#2|) (-13 (-337 (-924 |#1|)) (-10 -7 (-15 -3612 ((-1284 (-654 (-2 (|:| -3079 (-924 |#1|)) (|:| -2591 (-1136))))))) (-15 -1767 ((-699 (-924 |#1|)))) (-15 -2093 ((-781))))) (-935) (-935)) (T -360)) +((-3612 (*1 *2) (-12 (-5 *2 (-1284 (-654 (-2 (|:| -3079 (-924 *3)) (|:| -2591 (-1136)))))) (-5 *1 (-360 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))) (-1767 (*1 *2) (-12 (-5 *2 (-699 (-924 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))) (-2093 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935))))) +(-13 (-337 (-924 |#1|)) (-10 -7 (-15 -3612 ((-1284 (-654 (-2 (|:| -3079 (-924 |#1|)) (|:| -2591 (-1136))))))) (-15 -1767 ((-699 (-924 |#1|)))) (-15 -2093 ((-781))))) +((-2864 (((-112) $ $) 73)) (-1431 (((-112) $) 88)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 ((|#1| $) 106) (($ $ (-935)) 104 (|has| |#1| (-377)))) (-1928 (((-1206 (-935) (-781)) (-574)) 170 (|has| |#1| (-377)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2093 (((-781)) 103)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) 187 (|has| |#1| (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 127)) (-2214 ((|#1| $) 105)) (-2580 (($ (-1284 |#1|)) 71)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) 182 (|has| |#1| (-377)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) 171 (|has| |#1| (-377)))) (-3084 (((-112) $) NIL (|has| |#1| (-377)))) (-1995 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3978 (((-112) $) NIL)) (-3547 (((-935) $) NIL (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4226 (((-112) $) NIL)) (-3841 (($) 113 (|has| |#1| (-377)))) (-3272 (((-112) $) 200 (|has| |#1| (-377)))) (-1681 ((|#1| $) 108) (($ $ (-935)) 107 (|has| |#1| (-377)))) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 |#1|) $) 214) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3383 (((-935) $) 148 (|has| |#1| (-377)))) (-2346 (((-1189 |#1|) $) 87 (|has| |#1| (-377)))) (-3747 (((-1189 |#1|) $) 84 (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) 96 (|has| |#1| (-377)))) (-1927 (($ $ (-1189 |#1|)) 83 (|has| |#1| (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 218)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) 150 (|has| |#1| (-377)))) (-2228 (((-112) $) 123)) (-3940 (((-1136) $) NIL)) (-3612 (((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) 97)) (-1767 (((-699 |#1|)) 101)) (-2975 (($) 110 (|has| |#1| (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) 173 (|has| |#1| (-377)))) (-4202 (((-428 $) $) NIL)) (-2027 (((-843 (-935))) NIL) (((-935)) 174)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2995 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3580 (((-843 (-935)) $) NIL) (((-935) $) 75)) (-4379 (((-1189 |#1|)) 175)) (-3603 (($) 147 (|has| |#1| (-377)))) (-4219 (($) NIL (|has| |#1| (-377)))) (-1385 (((-1284 |#1|) $) 121) (((-699 |#1|) (-1284 $)) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) 140) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 70)) (-3424 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2898 (((-781)) 180 T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) 197) (((-1284 $) (-935)) 116)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) 186 T CONST)) (-2153 (($) 161 T CONST)) (-2656 (($ $) 122 (|has| |#1| (-377))) (($ $ (-781)) 114 (|has| |#1| (-377)))) (-3584 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) 208)) (-3103 (($ $ $) 119) (($ $ |#1|) 120)) (-3090 (($ $) 202) (($ $ $) 206)) (-3074 (($ $ $) 204)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 153)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 211) (($ $ $) 164) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) +(((-361 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -3612 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -1767 ((-699 |#1|))) (-15 -2093 ((-781))))) (-358) (-3 (-1189 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (T -361)) +((-3612 (*1 *2) (-12 (-5 *2 (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136)))))) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1189 *3) *2)))) (-1767 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1189 *3) (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136))))))))) (-2093 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1189 *3) (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136)))))))))) +(-13 (-337 |#1|) (-10 -7 (-15 -3612 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -1767 ((-699 |#1|))) (-15 -2093 ((-781))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2093 (((-781)) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-2580 (($ (-1284 |#1|)) NIL)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| |#1| (-377)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) NIL (|has| |#1| (-377)))) (-3084 (((-112) $) NIL (|has| |#1| (-377)))) (-1995 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3978 (((-112) $) NIL)) (-3547 (((-935) $) NIL (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4226 (((-112) $) NIL)) (-3841 (($) NIL (|has| |#1| (-377)))) (-3272 (((-112) $) NIL (|has| |#1| (-377)))) (-1681 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 |#1|) $) NIL) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3383 (((-935) $) NIL (|has| |#1| (-377)))) (-2346 (((-1189 |#1|) $) NIL (|has| |#1| (-377)))) (-3747 (((-1189 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-1927 (($ $ (-1189 |#1|)) NIL (|has| |#1| (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-2228 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-3612 (((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) NIL)) (-1767 (((-699 |#1|)) NIL)) (-2975 (($) NIL (|has| |#1| (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| |#1| (-377)))) (-4202 (((-428 $) $) NIL)) (-2027 (((-843 (-935))) NIL) (((-935)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2995 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3580 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-4379 (((-1189 |#1|)) NIL)) (-3603 (($) NIL (|has| |#1| (-377)))) (-4219 (($) NIL (|has| |#1| (-377)))) (-1385 (((-1284 |#1|) $) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3424 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2656 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3584 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-362 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -3612 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -1767 ((-699 |#1|))) (-15 -2093 ((-781))))) (-358) (-935)) (T -362)) +((-3612 (*1 *2) (-12 (-5 *2 (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136)))))) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-935)))) (-1767 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-935)))) (-2093 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-935))))) +(-13 (-337 |#1|) (-10 -7 (-15 -3612 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -1767 ((-699 |#1|))) (-15 -2093 ((-781))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-924 |#1|) (-377)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-924 |#1|) (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-924 |#1|) "failed") $) NIL)) (-2214 (((-924 |#1|) $) NIL)) (-2580 (($ (-1284 (-924 |#1|))) NIL)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-924 |#1|) (-377)))) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-924 |#1|) (-377)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) NIL (|has| (-924 |#1|) (-377)))) (-3084 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-1995 (($ $ (-781)) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377)))) (($ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3978 (((-112) $) NIL)) (-3547 (((-935) $) NIL (|has| (-924 |#1|) (-377))) (((-843 (-935)) $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-4226 (((-112) $) NIL)) (-3841 (($) NIL (|has| (-924 |#1|) (-377)))) (-3272 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-1681 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2414 (((-3 $ "failed") $) NIL (|has| (-924 |#1|) (-377)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 (-924 |#1|)) $) NIL) (((-1189 $) $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-3383 (((-935) $) NIL (|has| (-924 |#1|) (-377)))) (-2346 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377)))) (-3747 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-1189 (-924 |#1|)) "failed") $ $) NIL (|has| (-924 |#1|) (-377)))) (-1927 (($ $ (-1189 (-924 |#1|))) NIL (|has| (-924 |#1|) (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| (-924 |#1|) (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2228 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL (|has| (-924 |#1|) (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| (-924 |#1|) (-377)))) (-4202 (((-428 $) $) NIL)) (-2027 (((-843 (-935))) NIL) (((-935)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-781) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-2995 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-3580 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-4379 (((-1189 (-924 |#1|))) NIL)) (-3603 (($) NIL (|has| (-924 |#1|) (-377)))) (-4219 (($) NIL (|has| (-924 |#1|) (-377)))) (-1385 (((-1284 (-924 |#1|)) $) NIL) (((-699 (-924 |#1|)) (-1284 $)) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-924 |#1|) (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-924 |#1|)) NIL)) (-3424 (($ $) NIL (|has| (-924 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2656 (($ $) NIL (|has| (-924 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-924 |#1|) (-377)))) (-3584 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-924 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-924 |#1|)) NIL) (($ (-924 |#1|) $) NIL))) +(((-363 |#1| |#2|) (-337 (-924 |#1|)) (-935) (-935)) (T -363)) +NIL +(-337 (-924 |#1|)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-1928 (((-1206 (-935) (-781)) (-574)) 129 (|has| |#1| (-377)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) 155 (|has| |#1| (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 103)) (-2214 ((|#1| $) 100)) (-2580 (($ (-1284 |#1|)) 95)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) 92 (|has| |#1| (-377)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) 51 (|has| |#1| (-377)))) (-3084 (((-112) $) NIL (|has| |#1| (-377)))) (-1995 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3978 (((-112) $) NIL)) (-3547 (((-935) $) NIL (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4226 (((-112) $) NIL)) (-3841 (($) 130 (|has| |#1| (-377)))) (-3272 (((-112) $) 84 (|has| |#1| (-377)))) (-1681 ((|#1| $) 47) (($ $ (-935)) 52 (|has| |#1| (-377)))) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 |#1|) $) 75) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3383 (((-935) $) 107 (|has| |#1| (-377)))) (-2346 (((-1189 |#1|) $) NIL (|has| |#1| (-377)))) (-3747 (((-1189 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-1927 (($ $ (-1189 |#1|)) NIL (|has| |#1| (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) 105 (|has| |#1| (-377)))) (-2228 (((-112) $) 157)) (-3940 (((-1136) $) NIL)) (-2975 (($) 44 (|has| |#1| (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) 124 (|has| |#1| (-377)))) (-4202 (((-428 $) $) NIL)) (-2027 (((-843 (-935))) NIL) (((-935)) 154)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2995 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3580 (((-843 (-935)) $) NIL) (((-935) $) 67)) (-4379 (((-1189 |#1|)) 98)) (-3603 (($) 135 (|has| |#1| (-377)))) (-4219 (($) NIL (|has| |#1| (-377)))) (-1385 (((-1284 |#1|) $) 63) (((-699 |#1|) (-1284 $)) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) 153) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 97)) (-3424 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2898 (((-781)) 159 T CONST)) (-4069 (((-112) $ $) 161)) (-2391 (((-1284 $)) 119) (((-1284 $) (-935)) 58)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) 121 T CONST)) (-2153 (($) 40 T CONST)) (-2656 (($ $) 78 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3584 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) 117)) (-3103 (($ $ $) 109) (($ $ |#1|) 110)) (-3090 (($ $) 90) (($ $ $) 115)) (-3074 (($ $ $) 113)) (** (($ $ (-935)) NIL) (($ $ (-781)) 53) (($ $ (-574)) 138)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 88) (($ $ $) 65) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) +(((-364 |#1| |#2|) (-337 |#1|) (-358) (-1189 |#1|)) (T -364)) NIL (-337 |#1|) -((-3715 ((|#1| (-1188 |#2|)) 59))) -(((-365 |#1| |#2|) (-10 -7 (-15 -3715 (|#1| (-1188 |#2|)))) (-13 (-412) (-10 -7 (-15 -2950 (|#1| |#2|)) (-15 -3271 ((-934) |#1|)) (-15 -2191 ((-1283 |#1|) (-934))) (-15 -2893 (|#1| |#1|)))) (-358)) (T -365)) -((-3715 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-4 *2 (-13 (-412) (-10 -7 (-15 -2950 (*2 *4)) (-15 -3271 ((-934) *2)) (-15 -2191 ((-1283 *2) (-934))) (-15 -2893 (*2 *2))))) (-5 *1 (-365 *2 *4))))) -(-10 -7 (-15 -3715 (|#1| (-1188 |#2|)))) -((-3462 (((-971 (-1188 |#1|)) (-1188 |#1|)) 49)) (-2834 (((-1188 |#1|) (-934) (-934)) 154) (((-1188 |#1|) (-934)) 150)) (-3873 (((-112) (-1188 |#1|)) 107)) (-3066 (((-934) (-934)) 85)) (-1718 (((-934) (-934)) 92)) (-1902 (((-934) (-934)) 83)) (-3743 (((-112) (-1188 |#1|)) 111)) (-2159 (((-3 (-1188 |#1|) "failed") (-1188 |#1|)) 135)) (-1370 (((-3 (-1188 |#1|) "failed") (-1188 |#1|)) 140)) (-2899 (((-3 (-1188 |#1|) "failed") (-1188 |#1|)) 139)) (-4070 (((-3 (-1188 |#1|) "failed") (-1188 |#1|)) 138)) (-1511 (((-3 (-1188 |#1|) "failed") (-1188 |#1|)) 131)) (-2141 (((-1188 |#1|) (-1188 |#1|)) 71)) (-2401 (((-1188 |#1|) (-934)) 145)) (-3388 (((-1188 |#1|) (-934)) 148)) (-2925 (((-1188 |#1|) (-934)) 147)) (-3340 (((-1188 |#1|) (-934)) 146)) (-1646 (((-1188 |#1|) (-934)) 143))) -(((-366 |#1|) (-10 -7 (-15 -3873 ((-112) (-1188 |#1|))) (-15 -3743 ((-112) (-1188 |#1|))) (-15 -1902 ((-934) (-934))) (-15 -3066 ((-934) (-934))) (-15 -1718 ((-934) (-934))) (-15 -1646 ((-1188 |#1|) (-934))) (-15 -2401 ((-1188 |#1|) (-934))) (-15 -3340 ((-1188 |#1|) (-934))) (-15 -2925 ((-1188 |#1|) (-934))) (-15 -3388 ((-1188 |#1|) (-934))) (-15 -1511 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2159 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -4070 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2899 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -1370 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2834 ((-1188 |#1|) (-934))) (-15 -2834 ((-1188 |#1|) (-934) (-934))) (-15 -2141 ((-1188 |#1|) (-1188 |#1|))) (-15 -3462 ((-971 (-1188 |#1|)) (-1188 |#1|)))) (-358)) (T -366)) -((-3462 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-971 (-1188 *4))) (-5 *1 (-366 *4)) (-5 *3 (-1188 *4)))) (-2141 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2834 (*1 *2 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-1370 (*1 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2899 (*1 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-4070 (*1 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2159 (*1 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-1511 (*1 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4))))) -(-10 -7 (-15 -3873 ((-112) (-1188 |#1|))) (-15 -3743 ((-112) (-1188 |#1|))) (-15 -1902 ((-934) (-934))) (-15 -3066 ((-934) (-934))) (-15 -1718 ((-934) (-934))) (-15 -1646 ((-1188 |#1|) (-934))) (-15 -2401 ((-1188 |#1|) (-934))) (-15 -3340 ((-1188 |#1|) (-934))) (-15 -2925 ((-1188 |#1|) (-934))) (-15 -3388 ((-1188 |#1|) (-934))) (-15 -1511 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2159 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -4070 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2899 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -1370 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2834 ((-1188 |#1|) (-934))) (-15 -2834 ((-1188 |#1|) (-934) (-934))) (-15 -2141 ((-1188 |#1|) (-1188 |#1|))) (-15 -3462 ((-971 (-1188 |#1|)) (-1188 |#1|)))) -((-2352 (((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|) 38))) -(((-367 |#1| |#2| |#3|) (-10 -7 (-15 -2352 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|))) (-358) (-1259 |#1|) (-1259 |#2|)) (T -367)) -((-2352 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3))))) -(-10 -7 (-15 -2352 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2919 (($ (-1283 |#1|)) NIL)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) NIL (|has| |#1| (-377)))) (-3873 (((-112) $) NIL (|has| |#1| (-377)))) (-4158 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1782 (((-112) $) NIL)) (-2725 (((-934) $) NIL (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3372 (((-112) $) NIL)) (-3434 (($) NIL (|has| |#1| (-377)))) (-3743 (((-112) $) NIL (|has| |#1| (-377)))) (-1386 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 |#1|) $) NIL) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3271 (((-934) $) NIL (|has| |#1| (-377)))) (-3363 (((-1188 |#1|) $) NIL (|has| |#1| (-377)))) (-4426 (((-1188 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-4140 (($ $ (-1188 |#1|)) NIL (|has| |#1| (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-3854 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2975 (($) NIL (|has| |#1| (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-1971 (((-843 (-934))) NIL) (((-934)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3480 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3584 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2290 (((-1188 |#1|)) NIL)) (-1417 (($) NIL (|has| |#1| (-377)))) (-1549 (($) NIL (|has| |#1| (-377)))) (-4346 (((-1283 |#1|) $) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3247 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2893 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-368 |#1| |#2|) (-337 |#1|) (-358) (-934)) (T -368)) +((-4267 ((|#1| (-1189 |#2|)) 59))) +(((-365 |#1| |#2|) (-10 -7 (-15 -4267 (|#1| (-1189 |#2|)))) (-13 (-412) (-10 -7 (-15 -2951 (|#1| |#2|)) (-15 -3383 ((-935) |#1|)) (-15 -2391 ((-1284 |#1|) (-935))) (-15 -2656 (|#1| |#1|)))) (-358)) (T -365)) +((-4267 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-4 *2 (-13 (-412) (-10 -7 (-15 -2951 (*2 *4)) (-15 -3383 ((-935) *2)) (-15 -2391 ((-1284 *2) (-935))) (-15 -2656 (*2 *2))))) (-5 *1 (-365 *2 *4))))) +(-10 -7 (-15 -4267 (|#1| (-1189 |#2|)))) +((-2055 (((-972 (-1189 |#1|)) (-1189 |#1|)) 49)) (-2835 (((-1189 |#1|) (-935) (-935)) 154) (((-1189 |#1|) (-935)) 150)) (-3084 (((-112) (-1189 |#1|)) 107)) (-2553 (((-935) (-935)) 85)) (-3674 (((-935) (-935)) 92)) (-3304 (((-935) (-935)) 83)) (-3272 (((-112) (-1189 |#1|)) 111)) (-3683 (((-3 (-1189 |#1|) "failed") (-1189 |#1|)) 135)) (-4164 (((-3 (-1189 |#1|) "failed") (-1189 |#1|)) 140)) (-3443 (((-3 (-1189 |#1|) "failed") (-1189 |#1|)) 139)) (-3040 (((-3 (-1189 |#1|) "failed") (-1189 |#1|)) 138)) (-4175 (((-3 (-1189 |#1|) "failed") (-1189 |#1|)) 131)) (-3972 (((-1189 |#1|) (-1189 |#1|)) 71)) (-2527 (((-1189 |#1|) (-935)) 145)) (-1458 (((-1189 |#1|) (-935)) 148)) (-2650 (((-1189 |#1|) (-935)) 147)) (-2578 (((-1189 |#1|) (-935)) 146)) (-2752 (((-1189 |#1|) (-935)) 143))) +(((-366 |#1|) (-10 -7 (-15 -3084 ((-112) (-1189 |#1|))) (-15 -3272 ((-112) (-1189 |#1|))) (-15 -3304 ((-935) (-935))) (-15 -2553 ((-935) (-935))) (-15 -3674 ((-935) (-935))) (-15 -2752 ((-1189 |#1|) (-935))) (-15 -2527 ((-1189 |#1|) (-935))) (-15 -2578 ((-1189 |#1|) (-935))) (-15 -2650 ((-1189 |#1|) (-935))) (-15 -1458 ((-1189 |#1|) (-935))) (-15 -4175 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -3683 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -3040 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -3443 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -4164 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -2835 ((-1189 |#1|) (-935))) (-15 -2835 ((-1189 |#1|) (-935) (-935))) (-15 -3972 ((-1189 |#1|) (-1189 |#1|))) (-15 -2055 ((-972 (-1189 |#1|)) (-1189 |#1|)))) (-358)) (T -366)) +((-2055 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-972 (-1189 *4))) (-5 *1 (-366 *4)) (-5 *3 (-1189 *4)))) (-3972 (*1 *2 *2) (-12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-4164 (*1 *2 *2) (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3443 (*1 *2 *2) (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3040 (*1 *2 *2) (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3683 (*1 *2 *2) (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-4175 (*1 *2 *2) (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2578 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3674 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-2553 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-3304 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4))))) +(-10 -7 (-15 -3084 ((-112) (-1189 |#1|))) (-15 -3272 ((-112) (-1189 |#1|))) (-15 -3304 ((-935) (-935))) (-15 -2553 ((-935) (-935))) (-15 -3674 ((-935) (-935))) (-15 -2752 ((-1189 |#1|) (-935))) (-15 -2527 ((-1189 |#1|) (-935))) (-15 -2578 ((-1189 |#1|) (-935))) (-15 -2650 ((-1189 |#1|) (-935))) (-15 -1458 ((-1189 |#1|) (-935))) (-15 -4175 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -3683 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -3040 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -3443 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -4164 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -2835 ((-1189 |#1|) (-935))) (-15 -2835 ((-1189 |#1|) (-935) (-935))) (-15 -3972 ((-1189 |#1|) (-1189 |#1|))) (-15 -2055 ((-972 (-1189 |#1|)) (-1189 |#1|)))) +((-2630 (((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|) 38))) +(((-367 |#1| |#2| |#3|) (-10 -7 (-15 -2630 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|))) (-358) (-1260 |#1|) (-1260 |#2|)) (T -367)) +((-2630 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3))))) +(-10 -7 (-15 -2630 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-2580 (($ (-1284 |#1|)) NIL)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| |#1| (-377)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) NIL (|has| |#1| (-377)))) (-3084 (((-112) $) NIL (|has| |#1| (-377)))) (-1995 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3978 (((-112) $) NIL)) (-3547 (((-935) $) NIL (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4226 (((-112) $) NIL)) (-3841 (($) NIL (|has| |#1| (-377)))) (-3272 (((-112) $) NIL (|has| |#1| (-377)))) (-1681 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 |#1|) $) NIL) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3383 (((-935) $) NIL (|has| |#1| (-377)))) (-2346 (((-1189 |#1|) $) NIL (|has| |#1| (-377)))) (-3747 (((-1189 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-1927 (($ $ (-1189 |#1|)) NIL (|has| |#1| (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-2228 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL (|has| |#1| (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| |#1| (-377)))) (-4202 (((-428 $) $) NIL)) (-2027 (((-843 (-935))) NIL) (((-935)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2995 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3580 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-4379 (((-1189 |#1|)) NIL)) (-3603 (($) NIL (|has| |#1| (-377)))) (-4219 (($) NIL (|has| |#1| (-377)))) (-1385 (((-1284 |#1|) $) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3424 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2656 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3584 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-368 |#1| |#2|) (-337 |#1|) (-358) (-935)) (T -368)) NIL (-337 |#1|) -((-3291 (((-112) (-654 (-965 |#1|))) 41)) (-1764 (((-654 (-965 |#1|)) (-654 (-965 |#1|))) 53)) (-4340 (((-3 (-654 (-965 |#1|)) "failed") (-654 (-965 |#1|))) 48))) -(((-369 |#1| |#2|) (-10 -7 (-15 -3291 ((-112) (-654 (-965 |#1|)))) (-15 -4340 ((-3 (-654 (-965 |#1|)) "failed") (-654 (-965 |#1|)))) (-15 -1764 ((-654 (-965 |#1|)) (-654 (-965 |#1|))))) (-462) (-654 (-1192))) (T -369)) -((-1764 (*1 *2 *2) (-12 (-5 *2 (-654 (-965 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1192))))) (-4340 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-965 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1192))))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-462)) (-5 *2 (-112)) (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1192)))))) -(-10 -7 (-15 -3291 ((-112) (-654 (-965 |#1|)))) (-15 -4340 ((-3 (-654 (-965 |#1|)) "failed") (-654 (-965 |#1|)))) (-15 -1764 ((-654 (-965 |#1|)) (-654 (-965 |#1|))))) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781) $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) 17)) (-2382 ((|#1| $ (-574)) NIL)) (-4066 (((-574) $ (-574)) NIL)) (-3341 (($ (-1 |#1| |#1|) $) 34)) (-4081 (($ (-1 (-574) (-574)) $) 26)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 28)) (-3939 (((-1135) $) NIL)) (-4279 (((-654 (-2 (|:| |gen| |#1|) (|:| -1618 (-574)))) $) 30)) (-2202 (($ $ $) NIL)) (-3490 (($ $ $) NIL)) (-2950 (((-872) $) 40) (($ |#1|) NIL)) (-3838 (((-112) $ $) NIL)) (-2154 (($) 11 T CONST)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ |#1| (-574)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-370 |#1|) (-13 (-483) (-1053 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1496 ((-781) $)) (-15 -4066 ((-574) $ (-574))) (-15 -2382 (|#1| $ (-574))) (-15 -4081 ($ (-1 (-574) (-574)) $)) (-15 -3341 ($ (-1 |#1| |#1|) $)) (-15 -4279 ((-654 (-2 (|:| |gen| |#1|) (|:| -1618 (-574)))) $)))) (-1115)) (T -370)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1115)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1115)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1115)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) (-4066 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) (-2382 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1115)))) (-4081 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) (-3341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-370 *3)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1618 (-574))))) (-5 *1 (-370 *3)) (-4 *3 (-1115))))) -(-13 (-483) (-1053 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1496 ((-781) $)) (-15 -4066 ((-574) $ (-574))) (-15 -2382 (|#1| $ (-574))) (-15 -4081 ($ (-1 (-574) (-574)) $)) (-15 -3341 ($ (-1 |#1| |#1|) $)) (-15 -4279 ((-654 (-2 (|:| |gen| |#1|) (|:| -1618 (-574)))) $)))) -((-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 13)) (-3648 (($ $) 14)) (-3954 (((-428 $) $) 34)) (-1782 (((-112) $) 30)) (-1327 (($ $) 19)) (-2886 (($ $ $) 25) (($ (-654 $)) NIL)) (-4200 (((-428 $) $) 35)) (-2852 (((-3 $ "failed") $ $) 24)) (-3364 (((-781) $) 28)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 39)) (-1842 (((-112) $ $) 16)) (-3098 (($ $ $) 37))) -(((-371 |#1|) (-10 -8 (-15 -3098 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -1782 ((-112) |#1|)) (-15 -3954 ((-428 |#1|) |#1|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3444 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -3364 ((-781) |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|)) (-15 -1842 ((-112) |#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3737 ((-2 (|:| -3775 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) (-372)) (T -371)) -NIL -(-10 -8 (-15 -3098 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -1782 ((-112) |#1|)) (-15 -3954 ((-428 |#1|) |#1|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3444 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -3364 ((-781) |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|)) (-15 -1842 ((-112) |#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3737 ((-2 (|:| -3775 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 81)) (-3954 (((-428 $) $) 80)) (-3656 (((-112) $ $) 65)) (-3831 (($) 18 T CONST)) (-2799 (($ $ $) 61)) (-3911 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1782 (((-112) $) 79)) (-3372 (((-112) $) 35)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-4200 (((-428 $) $) 82)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3364 (((-781) $) 64)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +((-1709 (((-112) (-654 (-966 |#1|))) 41)) (-4137 (((-654 (-966 |#1|)) (-654 (-966 |#1|))) 53)) (-1776 (((-3 (-654 (-966 |#1|)) "failed") (-654 (-966 |#1|))) 48))) +(((-369 |#1| |#2|) (-10 -7 (-15 -1709 ((-112) (-654 (-966 |#1|)))) (-15 -1776 ((-3 (-654 (-966 |#1|)) "failed") (-654 (-966 |#1|)))) (-15 -4137 ((-654 (-966 |#1|)) (-654 (-966 |#1|))))) (-462) (-654 (-1193))) (T -369)) +((-4137 (*1 *2 *2) (-12 (-5 *2 (-654 (-966 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1193))))) (-1776 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-966 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1193))))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-462)) (-5 *2 (-112)) (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1193)))))) +(-10 -7 (-15 -1709 ((-112) (-654 (-966 |#1|)))) (-15 -1776 ((-3 (-654 (-966 |#1|)) "failed") (-654 (-966 |#1|)))) (-15 -4137 ((-654 (-966 |#1|)) (-654 (-966 |#1|))))) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781) $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) 17)) (-1719 ((|#1| $ (-574)) NIL)) (-2718 (((-574) $ (-574)) NIL)) (-4359 (($ (-1 |#1| |#1|) $) 34)) (-4013 (($ (-1 (-574) (-574)) $) 26)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 28)) (-3940 (((-1136) $) NIL)) (-3314 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-574)))) $) 30)) (-3617 (($ $ $) NIL)) (-3955 (($ $ $) NIL)) (-2951 (((-872) $) 40) (($ |#1|) NIL)) (-4069 (((-112) $ $) NIL)) (-2153 (($) 11 T CONST)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ |#1| (-574)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-370 |#1|) (-13 (-483) (-1054 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1496 ((-781) $)) (-15 -2718 ((-574) $ (-574))) (-15 -1719 (|#1| $ (-574))) (-15 -4013 ($ (-1 (-574) (-574)) $)) (-15 -4359 ($ (-1 |#1| |#1|) $)) (-15 -3314 ((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-574)))) $)))) (-1116)) (T -370)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1116)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1116)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1116)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1116)))) (-2718 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1116)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1116)))) (-4013 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1116)))) (-4359 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-370 *3)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 (-574))))) (-5 *1 (-370 *3)) (-4 *3 (-1116))))) +(-13 (-483) (-1054 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1496 ((-781) $)) (-15 -2718 ((-574) $ (-574))) (-15 -1719 (|#1| $ (-574))) (-15 -4013 ($ (-1 (-574) (-574)) $)) (-15 -4359 ($ (-1 |#1| |#1|) $)) (-15 -3314 ((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-574)))) $)))) +((-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 13)) (-2884 (($ $) 14)) (-1610 (((-428 $) $) 34)) (-3978 (((-112) $) 30)) (-1328 (($ $) 19)) (-2887 (($ $ $) 25) (($ (-654 $)) NIL)) (-4202 (((-428 $) $) 35)) (-2853 (((-3 $ "failed") $ $) 24)) (-2098 (((-781) $) 28)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 39)) (-2836 (((-112) $ $) 16)) (-3103 (($ $ $) 37))) +(((-371 |#1|) (-10 -8 (-15 -3103 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3978 ((-112) |#1|)) (-15 -1610 ((-428 |#1|) |#1|)) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -2969 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -2098 ((-781) |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2836 ((-112) |#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2313 ((-2 (|:| -4098 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|))) (-372)) (T -371)) +NIL +(-10 -8 (-15 -3103 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3978 ((-112) |#1|)) (-15 -1610 ((-428 |#1|) |#1|)) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -2969 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -2098 ((-781) |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2836 ((-112) |#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2313 ((-2 (|:| -4098 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 81)) (-1610 (((-428 $) $) 80)) (-3245 (((-112) $ $) 65)) (-3250 (($) 18 T CONST)) (-2800 (($ $ $) 61)) (-4322 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3978 (((-112) $) 79)) (-4226 (((-112) $) 35)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-4202 (((-428 $) $) 82)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2098 (((-781) $) 64)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) (((-372) (-141)) (T -372)) -((-3098 (*1 *1 *1 *1) (-4 *1 (-372)))) -(-13 (-315) (-1237) (-249) (-10 -8 (-15 -3098 ($ $ $)) (-6 -4456) (-6 -4450))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) -((-2863 (((-112) $ $) 7)) (-2506 ((|#2| $ |#2|) 14)) (-2695 (($ $ (-1174)) 19)) (-2412 ((|#2| $) 15)) (-1684 (($ |#1|) 21) (($ |#1| (-1174)) 20)) (-2040 ((|#1| $) 17)) (-3945 (((-1174) $) 10)) (-4293 (((-1174) $) 16)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3894 (($ $) 18)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) -(((-373 |#1| |#2|) (-141) (-1115) (-1115)) (T -373)) -((-1684 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-1684 (*1 *1 *2 *3) (-12 (-5 *3 (-1174)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1115)) (-4 *4 (-1115)))) (-2695 (*1 *1 *1 *2) (-12 (-5 *2 (-1174)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-3894 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1115)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-5 *2 (-1174)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) (-2506 (*1 *2 *1 *2) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) -(-13 (-1115) (-10 -8 (-15 -1684 ($ |t#1|)) (-15 -1684 ($ |t#1| (-1174))) (-15 -2695 ($ $ (-1174))) (-15 -3894 ($ $)) (-15 -2040 (|t#1| $)) (-15 -4293 ((-1174) $)) (-15 -2412 (|t#2| $)) (-15 -2506 (|t#2| $ |t#2|)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-2506 ((|#1| $ |#1|) 31)) (-2695 (($ $ (-1174)) 23)) (-3539 (((-3 |#1| "failed") $) 30)) (-2412 ((|#1| $) 28)) (-1684 (($ (-398)) 22) (($ (-398) (-1174)) 21)) (-2040 (((-398) $) 25)) (-3945 (((-1174) $) NIL)) (-4293 (((-1174) $) 26)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 20)) (-3894 (($ $) 24)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 19))) -(((-374 |#1|) (-13 (-373 (-398) |#1|) (-10 -8 (-15 -3539 ((-3 |#1| "failed") $)))) (-1115)) (T -374)) -((-3539 (*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1115))))) -(-13 (-373 (-398) |#1|) (-10 -8 (-15 -3539 ((-3 |#1| "failed") $)))) -((-2588 (((-1283 (-699 |#2|)) (-1283 $)) 67)) (-2038 (((-699 |#2|) (-1283 $)) 139)) (-2199 ((|#2| $) 36)) (-4189 (((-699 |#2|) $ (-1283 $)) 142)) (-2484 (((-3 $ "failed") $) 89)) (-3272 ((|#2| $) 39)) (-3866 (((-1188 |#2|) $) 98)) (-3414 ((|#2| (-1283 $)) 122)) (-4111 (((-1188 |#2|) $) 32)) (-2182 (((-112)) 116)) (-2919 (($ (-1283 |#2|) (-1283 $)) 132)) (-3911 (((-3 $ "failed") $) 93)) (-2931 (((-112)) 111)) (-2347 (((-112)) 106)) (-3233 (((-112)) 58)) (-2597 (((-699 |#2|) (-1283 $)) 137)) (-2327 ((|#2| $) 35)) (-3680 (((-699 |#2|) $ (-1283 $)) 141)) (-2691 (((-3 $ "failed") $) 87)) (-2614 ((|#2| $) 38)) (-3201 (((-1188 |#2|) $) 97)) (-2903 ((|#2| (-1283 $)) 120)) (-3401 (((-1188 |#2|) $) 30)) (-1584 (((-112)) 115)) (-1916 (((-112)) 108)) (-3601 (((-112)) 56)) (-1876 (((-112)) 103)) (-2678 (((-112)) 117)) (-4346 (((-1283 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) (-1283 $) (-1283 $)) 128)) (-1355 (((-112)) 113)) (-3045 (((-654 (-1283 |#2|))) 102)) (-3500 (((-112)) 114)) (-1778 (((-112)) 112)) (-2956 (((-112)) 51)) (-3005 (((-112)) 118))) -(((-375 |#1| |#2|) (-10 -8 (-15 -3866 ((-1188 |#2|) |#1|)) (-15 -3201 ((-1188 |#2|) |#1|)) (-15 -3045 ((-654 (-1283 |#2|)))) (-15 -2484 ((-3 |#1| "failed") |#1|)) (-15 -2691 ((-3 |#1| "failed") |#1|)) (-15 -3911 ((-3 |#1| "failed") |#1|)) (-15 -2347 ((-112))) (-15 -1916 ((-112))) (-15 -2931 ((-112))) (-15 -3601 ((-112))) (-15 -3233 ((-112))) (-15 -1876 ((-112))) (-15 -3005 ((-112))) (-15 -2678 ((-112))) (-15 -2182 ((-112))) (-15 -1584 ((-112))) (-15 -2956 ((-112))) (-15 -3500 ((-112))) (-15 -1778 ((-112))) (-15 -1355 ((-112))) (-15 -4111 ((-1188 |#2|) |#1|)) (-15 -3401 ((-1188 |#2|) |#1|)) (-15 -2038 ((-699 |#2|) (-1283 |#1|))) (-15 -2597 ((-699 |#2|) (-1283 |#1|))) (-15 -3414 (|#2| (-1283 |#1|))) (-15 -2903 (|#2| (-1283 |#1|))) (-15 -2919 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -3272 (|#2| |#1|)) (-15 -2614 (|#2| |#1|)) (-15 -2199 (|#2| |#1|)) (-15 -2327 (|#2| |#1|)) (-15 -4189 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -3680 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -2588 ((-1283 (-699 |#2|)) (-1283 |#1|)))) (-376 |#2|) (-174)) (T -375)) -((-1355 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1778 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3500 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2956 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1584 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2182 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2678 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3005 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1876 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3233 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3601 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2931 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1916 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2347 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3045 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1283 *4))) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4))))) -(-10 -8 (-15 -3866 ((-1188 |#2|) |#1|)) (-15 -3201 ((-1188 |#2|) |#1|)) (-15 -3045 ((-654 (-1283 |#2|)))) (-15 -2484 ((-3 |#1| "failed") |#1|)) (-15 -2691 ((-3 |#1| "failed") |#1|)) (-15 -3911 ((-3 |#1| "failed") |#1|)) (-15 -2347 ((-112))) (-15 -1916 ((-112))) (-15 -2931 ((-112))) (-15 -3601 ((-112))) (-15 -3233 ((-112))) (-15 -1876 ((-112))) (-15 -3005 ((-112))) (-15 -2678 ((-112))) (-15 -2182 ((-112))) (-15 -1584 ((-112))) (-15 -2956 ((-112))) (-15 -3500 ((-112))) (-15 -1778 ((-112))) (-15 -1355 ((-112))) (-15 -4111 ((-1188 |#2|) |#1|)) (-15 -3401 ((-1188 |#2|) |#1|)) (-15 -2038 ((-699 |#2|) (-1283 |#1|))) (-15 -2597 ((-699 |#2|) (-1283 |#1|))) (-15 -3414 (|#2| (-1283 |#1|))) (-15 -2903 (|#2| (-1283 |#1|))) (-15 -2919 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -3272 (|#2| |#1|)) (-15 -2614 (|#2| |#1|)) (-15 -2199 (|#2| |#1|)) (-15 -2327 (|#2| |#1|)) (-15 -4189 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -3680 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -2588 ((-1283 (-699 |#2|)) (-1283 |#1|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3775 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-1597 (((-3 $ "failed") $ $) 20)) (-2588 (((-1283 (-699 |#1|)) (-1283 $)) 83)) (-4427 (((-1283 $)) 86)) (-3831 (($) 18 T CONST)) (-2846 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-1992 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-2038 (((-699 |#1|) (-1283 $)) 70)) (-2199 ((|#1| $) 79)) (-4189 (((-699 |#1|) $ (-1283 $)) 81)) (-2484 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-3204 (($ $ (-934)) 31)) (-3272 ((|#1| $) 77)) (-3866 (((-1188 |#1|) $) 47 (|has| |#1| (-566)))) (-3414 ((|#1| (-1283 $)) 72)) (-4111 (((-1188 |#1|) $) 68)) (-2182 (((-112)) 62)) (-2919 (($ (-1283 |#1|) (-1283 $)) 74)) (-3911 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3557 (((-934)) 85)) (-2045 (((-112)) 59)) (-3518 (($ $ (-934)) 38)) (-2931 (((-112)) 55)) (-2347 (((-112)) 53)) (-3233 (((-112)) 57)) (-3636 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-3215 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-2597 (((-699 |#1|) (-1283 $)) 71)) (-2327 ((|#1| $) 80)) (-3680 (((-699 |#1|) $ (-1283 $)) 82)) (-2691 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-2177 (($ $ (-934)) 32)) (-2614 ((|#1| $) 78)) (-3201 (((-1188 |#1|) $) 48 (|has| |#1| (-566)))) (-2903 ((|#1| (-1283 $)) 73)) (-3401 (((-1188 |#1|) $) 69)) (-1584 (((-112)) 63)) (-3945 (((-1174) $) 10)) (-1916 (((-112)) 54)) (-3601 (((-112)) 56)) (-1876 (((-112)) 58)) (-3939 (((-1135) $) 11)) (-2678 (((-112)) 61)) (-4346 (((-1283 |#1|) $ (-1283 $)) 76) (((-699 |#1|) (-1283 $) (-1283 $)) 75)) (-2074 (((-654 (-965 |#1|)) (-1283 $)) 84)) (-3490 (($ $ $) 28)) (-1355 (((-112)) 67)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-3045 (((-654 (-1283 |#1|))) 49 (|has| |#1| (-566)))) (-2087 (($ $ $ $) 29)) (-3500 (((-112)) 65)) (-3157 (($ $ $) 27)) (-1778 (((-112)) 66)) (-2956 (((-112)) 64)) (-3005 (((-112)) 60)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 33)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-3103 (*1 *1 *1 *1) (-4 *1 (-372)))) +(-13 (-315) (-1238) (-249) (-10 -8 (-15 -3103 ($ $ $)) (-6 -4457) (-6 -4451))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T)) +((-2864 (((-112) $ $) 7)) (-4048 ((|#2| $ |#2|) 14)) (-3538 (($ $ (-1175)) 19)) (-3991 ((|#2| $) 15)) (-1684 (($ |#1|) 21) (($ |#1| (-1175)) 20)) (-2039 ((|#1| $) 17)) (-1489 (((-1175) $) 10)) (-2082 (((-1175) $) 16)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-1731 (($ $) 18)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) +(((-373 |#1| |#2|) (-141) (-1116) (-1116)) (T -373)) +((-1684 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-1684 (*1 *1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1116)) (-4 *4 (-1116)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-1731 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1116)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-5 *2 (-1175)))) (-3991 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))) (-4048 (*1 *2 *1 *2) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116))))) +(-13 (-1116) (-10 -8 (-15 -1684 ($ |t#1|)) (-15 -1684 ($ |t#1| (-1175))) (-15 -3538 ($ $ (-1175))) (-15 -1731 ($ $)) (-15 -2039 (|t#1| $)) (-15 -2082 ((-1175) $)) (-15 -3991 (|t#2| $)) (-15 -4048 (|t#2| $ |t#2|)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-4048 ((|#1| $ |#1|) 31)) (-3538 (($ $ (-1175)) 23)) (-4157 (((-3 |#1| "failed") $) 30)) (-3991 ((|#1| $) 28)) (-1684 (($ (-398)) 22) (($ (-398) (-1175)) 21)) (-2039 (((-398) $) 25)) (-1489 (((-1175) $) NIL)) (-2082 (((-1175) $) 26)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 20)) (-1731 (($ $) 24)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 19))) +(((-374 |#1|) (-13 (-373 (-398) |#1|) (-10 -8 (-15 -4157 ((-3 |#1| "failed") $)))) (-1116)) (T -374)) +((-4157 (*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1116))))) +(-13 (-373 (-398) |#1|) (-10 -8 (-15 -4157 ((-3 |#1| "failed") $)))) +((-1379 (((-1284 (-699 |#2|)) (-1284 $)) 67)) (-1519 (((-699 |#2|) (-1284 $)) 139)) (-2569 ((|#2| $) 36)) (-4438 (((-699 |#2|) $ (-1284 $)) 142)) (-1657 (((-3 $ "failed") $) 89)) (-2416 ((|#2| $) 39)) (-3831 (((-1189 |#2|) $) 98)) (-3061 ((|#2| (-1284 $)) 122)) (-2026 (((-1189 |#2|) $) 32)) (-2766 (((-112)) 116)) (-2580 (($ (-1284 |#2|) (-1284 $)) 132)) (-4322 (((-3 $ "failed") $) 93)) (-4428 (((-112)) 111)) (-4324 (((-112)) 106)) (-3357 (((-112)) 58)) (-1321 (((-699 |#2|) (-1284 $)) 137)) (-3555 ((|#2| $) 35)) (-3659 (((-699 |#2|) $ (-1284 $)) 141)) (-3144 (((-3 $ "failed") $) 87)) (-2448 ((|#2| $) 38)) (-2122 (((-1189 |#2|) $) 97)) (-4052 ((|#2| (-1284 $)) 120)) (-4169 (((-1189 |#2|) $) 30)) (-4035 (((-112)) 115)) (-2381 (((-112)) 108)) (-3120 (((-112)) 56)) (-3338 (((-112)) 103)) (-3453 (((-112)) 117)) (-1385 (((-1284 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) (-1284 $) (-1284 $)) 128)) (-2170 (((-112)) 113)) (-2717 (((-654 (-1284 |#2|))) 102)) (-3233 (((-112)) 114)) (-3127 (((-112)) 112)) (-4280 (((-112)) 51)) (-4024 (((-112)) 118))) +(((-375 |#1| |#2|) (-10 -8 (-15 -3831 ((-1189 |#2|) |#1|)) (-15 -2122 ((-1189 |#2|) |#1|)) (-15 -2717 ((-654 (-1284 |#2|)))) (-15 -1657 ((-3 |#1| "failed") |#1|)) (-15 -3144 ((-3 |#1| "failed") |#1|)) (-15 -4322 ((-3 |#1| "failed") |#1|)) (-15 -4324 ((-112))) (-15 -2381 ((-112))) (-15 -4428 ((-112))) (-15 -3120 ((-112))) (-15 -3357 ((-112))) (-15 -3338 ((-112))) (-15 -4024 ((-112))) (-15 -3453 ((-112))) (-15 -2766 ((-112))) (-15 -4035 ((-112))) (-15 -4280 ((-112))) (-15 -3233 ((-112))) (-15 -3127 ((-112))) (-15 -2170 ((-112))) (-15 -2026 ((-1189 |#2|) |#1|)) (-15 -4169 ((-1189 |#2|) |#1|)) (-15 -1519 ((-699 |#2|) (-1284 |#1|))) (-15 -1321 ((-699 |#2|) (-1284 |#1|))) (-15 -3061 (|#2| (-1284 |#1|))) (-15 -4052 (|#2| (-1284 |#1|))) (-15 -2580 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2416 (|#2| |#1|)) (-15 -2448 (|#2| |#1|)) (-15 -2569 (|#2| |#1|)) (-15 -3555 (|#2| |#1|)) (-15 -4438 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -3659 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -1379 ((-1284 (-699 |#2|)) (-1284 |#1|)))) (-376 |#2|) (-174)) (T -375)) +((-2170 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3127 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3233 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4280 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4035 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2766 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3453 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4024 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3338 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3357 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3120 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4428 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2381 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4324 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2717 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1284 *4))) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4))))) +(-10 -8 (-15 -3831 ((-1189 |#2|) |#1|)) (-15 -2122 ((-1189 |#2|) |#1|)) (-15 -2717 ((-654 (-1284 |#2|)))) (-15 -1657 ((-3 |#1| "failed") |#1|)) (-15 -3144 ((-3 |#1| "failed") |#1|)) (-15 -4322 ((-3 |#1| "failed") |#1|)) (-15 -4324 ((-112))) (-15 -2381 ((-112))) (-15 -4428 ((-112))) (-15 -3120 ((-112))) (-15 -3357 ((-112))) (-15 -3338 ((-112))) (-15 -4024 ((-112))) (-15 -3453 ((-112))) (-15 -2766 ((-112))) (-15 -4035 ((-112))) (-15 -4280 ((-112))) (-15 -3233 ((-112))) (-15 -3127 ((-112))) (-15 -2170 ((-112))) (-15 -2026 ((-1189 |#2|) |#1|)) (-15 -4169 ((-1189 |#2|) |#1|)) (-15 -1519 ((-699 |#2|) (-1284 |#1|))) (-15 -1321 ((-699 |#2|) (-1284 |#1|))) (-15 -3061 (|#2| (-1284 |#1|))) (-15 -4052 (|#2| (-1284 |#1|))) (-15 -2580 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2416 (|#2| |#1|)) (-15 -2448 (|#2| |#1|)) (-15 -2569 (|#2| |#1|)) (-15 -3555 (|#2| |#1|)) (-15 -4438 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -3659 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -1379 ((-1284 (-699 |#2|)) (-1284 |#1|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4098 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-2600 (((-3 $ "failed") $ $) 20)) (-1379 (((-1284 (-699 |#1|)) (-1284 $)) 83)) (-3610 (((-1284 $)) 86)) (-3250 (($) 18 T CONST)) (-4004 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-3511 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-1519 (((-699 |#1|) (-1284 $)) 70)) (-2569 ((|#1| $) 79)) (-4438 (((-699 |#1|) $ (-1284 $)) 81)) (-1657 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-3066 (($ $ (-935)) 31)) (-2416 ((|#1| $) 77)) (-3831 (((-1189 |#1|) $) 47 (|has| |#1| (-566)))) (-3061 ((|#1| (-1284 $)) 72)) (-2026 (((-1189 |#1|) $) 68)) (-2766 (((-112)) 62)) (-2580 (($ (-1284 |#1|) (-1284 $)) 74)) (-4322 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3558 (((-935)) 85)) (-1357 (((-112)) 59)) (-4081 (($ $ (-935)) 38)) (-4428 (((-112)) 55)) (-4324 (((-112)) 53)) (-3357 (((-112)) 57)) (-3946 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-3923 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-1321 (((-699 |#1|) (-1284 $)) 71)) (-3555 ((|#1| $) 80)) (-3659 (((-699 |#1|) $ (-1284 $)) 82)) (-3144 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-4308 (($ $ (-935)) 32)) (-2448 ((|#1| $) 78)) (-2122 (((-1189 |#1|) $) 48 (|has| |#1| (-566)))) (-4052 ((|#1| (-1284 $)) 73)) (-4169 (((-1189 |#1|) $) 69)) (-4035 (((-112)) 63)) (-1489 (((-1175) $) 10)) (-2381 (((-112)) 54)) (-3120 (((-112)) 56)) (-3338 (((-112)) 58)) (-3940 (((-1136) $) 11)) (-3453 (((-112)) 61)) (-1385 (((-1284 |#1|) $ (-1284 $)) 76) (((-699 |#1|) (-1284 $) (-1284 $)) 75)) (-3983 (((-654 (-966 |#1|)) (-1284 $)) 84)) (-3955 (($ $ $) 28)) (-2170 (((-112)) 67)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2717 (((-654 (-1284 |#1|))) 49 (|has| |#1| (-566)))) (-4010 (($ $ $ $) 29)) (-3233 (((-112)) 65)) (-4099 (($ $ $) 27)) (-3127 (((-112)) 66)) (-4280 (((-112)) 64)) (-4024 (((-112)) 60)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 33)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-376 |#1|) (-141) (-174)) (T -376)) -((-4427 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1283 *1)) (-4 *1 (-376 *3)))) (-3557 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-934)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-654 (-965 *4))))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1283 (-699 *4))))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-3272 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-4346 (*1 *2 *1 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1283 *4)))) (-4346 (*1 *2 *3 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2919 (*1 *1 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1283 *1)) (-4 *4 (-174)) (-4 *1 (-376 *4)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1188 *3)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1188 *3)))) (-1355 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1778 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3500 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2956 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1584 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2182 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2678 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3005 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2045 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1876 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3233 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3601 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2931 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1916 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2347 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3911 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-2691 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-2484 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-3045 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-654 (-1283 *3))))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1188 *3)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1188 *3)))) (-3636 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2191 (-654 *1)))) (-4 *1 (-376 *3)))) (-2846 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2191 (-654 *1)))) (-4 *1 (-376 *3)))) (-3215 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-1992 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-3775 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) -(-13 (-754 |t#1|) (-10 -8 (-15 -4427 ((-1283 $))) (-15 -3557 ((-934))) (-15 -2074 ((-654 (-965 |t#1|)) (-1283 $))) (-15 -2588 ((-1283 (-699 |t#1|)) (-1283 $))) (-15 -3680 ((-699 |t#1|) $ (-1283 $))) (-15 -4189 ((-699 |t#1|) $ (-1283 $))) (-15 -2327 (|t#1| $)) (-15 -2199 (|t#1| $)) (-15 -2614 (|t#1| $)) (-15 -3272 (|t#1| $)) (-15 -4346 ((-1283 |t#1|) $ (-1283 $))) (-15 -4346 ((-699 |t#1|) (-1283 $) (-1283 $))) (-15 -2919 ($ (-1283 |t#1|) (-1283 $))) (-15 -2903 (|t#1| (-1283 $))) (-15 -3414 (|t#1| (-1283 $))) (-15 -2597 ((-699 |t#1|) (-1283 $))) (-15 -2038 ((-699 |t#1|) (-1283 $))) (-15 -3401 ((-1188 |t#1|) $)) (-15 -4111 ((-1188 |t#1|) $)) (-15 -1355 ((-112))) (-15 -1778 ((-112))) (-15 -3500 ((-112))) (-15 -2956 ((-112))) (-15 -1584 ((-112))) (-15 -2182 ((-112))) (-15 -2678 ((-112))) (-15 -3005 ((-112))) (-15 -2045 ((-112))) (-15 -1876 ((-112))) (-15 -3233 ((-112))) (-15 -3601 ((-112))) (-15 -2931 ((-112))) (-15 -1916 ((-112))) (-15 -2347 ((-112))) (IF (|has| |t#1| (-566)) (PROGN (-15 -3911 ((-3 $ "failed") $)) (-15 -2691 ((-3 $ "failed") $)) (-15 -2484 ((-3 $ "failed") $)) (-15 -3045 ((-654 (-1283 |t#1|)))) (-15 -3201 ((-1188 |t#1|) $)) (-15 -3866 ((-1188 |t#1|) $)) (-15 -3636 ((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed"))) (-15 -2846 ((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed"))) (-15 -3215 ((-3 $ "failed"))) (-15 -1992 ((-3 $ "failed"))) (-15 -3775 ((-3 $ "failed"))) (-6 -4455)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) -((-2863 (((-112) $ $) 7)) (-1496 (((-781)) 17)) (-2834 (($) 14)) (-3271 (((-934) $) 15)) (-3945 (((-1174) $) 10)) (-2590 (($ (-934)) 16)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +((-3610 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1284 *1)) (-4 *1 (-376 *3)))) (-3558 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-935)))) (-3983 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-654 (-966 *4))))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1284 (-699 *4))))) (-3659 (*1 *2 *1 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-4438 (*1 *2 *1 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-1385 (*1 *2 *1 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1284 *4)))) (-1385 (*1 *2 *3 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2580 (*1 *1 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1284 *1)) (-4 *4 (-174)) (-4 *1 (-376 *4)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-4169 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1189 *3)))) (-2026 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1189 *3)))) (-2170 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3127 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3233 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4280 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4035 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2766 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3453 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4024 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1357 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3338 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3357 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3120 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4428 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2381 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4324 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4322 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-3144 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-1657 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-2717 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-654 (-1284 *3))))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1189 *3)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1189 *3)))) (-3946 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2391 (-654 *1)))) (-4 *1 (-376 *3)))) (-4004 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2391 (-654 *1)))) (-4 *1 (-376 *3)))) (-3923 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-3511 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-4098 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) +(-13 (-754 |t#1|) (-10 -8 (-15 -3610 ((-1284 $))) (-15 -3558 ((-935))) (-15 -3983 ((-654 (-966 |t#1|)) (-1284 $))) (-15 -1379 ((-1284 (-699 |t#1|)) (-1284 $))) (-15 -3659 ((-699 |t#1|) $ (-1284 $))) (-15 -4438 ((-699 |t#1|) $ (-1284 $))) (-15 -3555 (|t#1| $)) (-15 -2569 (|t#1| $)) (-15 -2448 (|t#1| $)) (-15 -2416 (|t#1| $)) (-15 -1385 ((-1284 |t#1|) $ (-1284 $))) (-15 -1385 ((-699 |t#1|) (-1284 $) (-1284 $))) (-15 -2580 ($ (-1284 |t#1|) (-1284 $))) (-15 -4052 (|t#1| (-1284 $))) (-15 -3061 (|t#1| (-1284 $))) (-15 -1321 ((-699 |t#1|) (-1284 $))) (-15 -1519 ((-699 |t#1|) (-1284 $))) (-15 -4169 ((-1189 |t#1|) $)) (-15 -2026 ((-1189 |t#1|) $)) (-15 -2170 ((-112))) (-15 -3127 ((-112))) (-15 -3233 ((-112))) (-15 -4280 ((-112))) (-15 -4035 ((-112))) (-15 -2766 ((-112))) (-15 -3453 ((-112))) (-15 -4024 ((-112))) (-15 -1357 ((-112))) (-15 -3338 ((-112))) (-15 -3357 ((-112))) (-15 -3120 ((-112))) (-15 -4428 ((-112))) (-15 -2381 ((-112))) (-15 -4324 ((-112))) (IF (|has| |t#1| (-566)) (PROGN (-15 -4322 ((-3 $ "failed") $)) (-15 -3144 ((-3 $ "failed") $)) (-15 -1657 ((-3 $ "failed") $)) (-15 -2717 ((-654 (-1284 |t#1|)))) (-15 -2122 ((-1189 |t#1|) $)) (-15 -3831 ((-1189 |t#1|) $)) (-15 -3946 ((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed"))) (-15 -4004 ((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed"))) (-15 -3923 ((-3 $ "failed"))) (-15 -3511 ((-3 $ "failed"))) (-15 -4098 ((-3 $ "failed"))) (-6 -4456)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T)) +((-2864 (((-112) $ $) 7)) (-1496 (((-781)) 17)) (-2835 (($) 14)) (-3383 (((-935) $) 15)) (-1489 (((-1175) $) 10)) (-2591 (($ (-935)) 16)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) (((-377) (-141)) (T -377)) -((-1496 (*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-781)))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-377)))) (-3271 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-934)))) (-2834 (*1 *1) (-4 *1 (-377)))) -(-13 (-1115) (-10 -8 (-15 -1496 ((-781))) (-15 -2590 ($ (-934))) (-15 -3271 ((-934) $)) (-15 -2834 ($)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-3644 (((-699 |#2|) (-1283 $)) 45)) (-2919 (($ (-1283 |#2|) (-1283 $)) 39)) (-3556 (((-699 |#2|) $ (-1283 $)) 47)) (-1738 ((|#2| (-1283 $)) 13)) (-4346 (((-1283 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) (-1283 $) (-1283 $)) 27))) -(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -3644 ((-699 |#2|) (-1283 |#1|))) (-15 -1738 (|#2| (-1283 |#1|))) (-15 -2919 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -3556 ((-699 |#2|) |#1| (-1283 |#1|)))) (-379 |#2| |#3|) (-174) (-1259 |#2|)) (T -378)) -NIL -(-10 -8 (-15 -3644 ((-699 |#2|) (-1283 |#1|))) (-15 -1738 (|#2| (-1283 |#1|))) (-15 -2919 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -3556 ((-699 |#2|) |#1| (-1283 |#1|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3644 (((-699 |#1|) (-1283 $)) 53)) (-1645 ((|#1| $) 59)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-2919 (($ (-1283 |#1|) (-1283 $)) 55)) (-3556 (((-699 |#1|) $ (-1283 $)) 60)) (-3911 (((-3 $ "failed") $) 37)) (-3557 (((-934)) 61)) (-3372 (((-112) $) 35)) (-1386 ((|#1| $) 58)) (-1950 ((|#2| $) 51 (|has| |#1| (-372)))) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-1738 ((|#1| (-1283 $)) 54)) (-4346 (((-1283 |#1|) $ (-1283 $)) 57) (((-699 |#1|) (-1283 $) (-1283 $)) 56)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-3247 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1539 ((|#2| $) 52)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-379 |#1| |#2|) (-141) (-174) (-1259 |t#1|)) (T -379)) -((-3557 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-934)))) (-3556 (*1 *2 *1 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) (-4346 (*1 *2 *1 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-1283 *4)))) (-4346 (*1 *2 *3 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) (-2919 (*1 *1 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1283 *1)) (-4 *4 (-174)) (-4 *1 (-379 *4 *5)) (-4 *5 (-1259 *4)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1259 *2)) (-4 *2 (-174)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372)) (-4 *2 (-1259 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3557 ((-934))) (-15 -3556 ((-699 |t#1|) $ (-1283 $))) (-15 -1645 (|t#1| $)) (-15 -1386 (|t#1| $)) (-15 -4346 ((-1283 |t#1|) $ (-1283 $))) (-15 -4346 ((-699 |t#1|) (-1283 $) (-1283 $))) (-15 -2919 ($ (-1283 |t#1|) (-1283 $))) (-15 -1738 (|t#1| (-1283 $))) (-15 -3644 ((-699 |t#1|) (-1283 $))) (-15 -1539 (|t#2| $)) (IF (|has| |t#1| (-372)) (-15 -1950 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-4214 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2881 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1786 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-380 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1786 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2881 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4214 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1233) (-382 |#1|) (-1233) (-382 |#3|)) (T -380)) -((-4214 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1233)) (-4 *5 (-1233)) (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-380 *5 *4 *2 *6)) (-4 *4 (-382 *5)) (-4 *6 (-382 *2)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-4 *2 (-382 *6)) (-5 *1 (-380 *5 *4 *6 *2)) (-4 *4 (-382 *5))))) -(-10 -7 (-15 -1786 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2881 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4214 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-4331 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3565 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2785 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4424 (($ $) 25)) (-1451 (((-574) (-1 (-112) |#2|) $) NIL) (((-574) |#2| $) 11) (((-574) |#2| $ (-574)) NIL)) (-4297 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-381 |#1| |#2|) (-10 -8 (-15 -3565 (|#1| |#1|)) (-15 -3565 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4331 ((-112) |#1|)) (-15 -2785 (|#1| |#1|)) (-15 -4297 (|#1| |#1| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -4331 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2785 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -4297 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-382 |#2|) (-1233)) (T -381)) -NIL -(-10 -8 (-15 -3565 (|#1| |#1|)) (-15 -3565 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4331 ((-112) |#1|)) (-15 -2785 (|#1| |#1|)) (-15 -4297 (|#1| |#1| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -4331 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2785 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -4297 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3287 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2163 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2560 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1451 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1115)))) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 70)) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| |#1| (-860)))) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 45 (|has| (-574) (-860)))) (-1593 (($ $ $) 89 (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1603 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-3228 (((-654 (-574)) $) 47)) (-3071 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4276 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) 49)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-2853 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2315 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1845 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 72)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-382 |#1|) (-141) (-1233)) (T -382)) -((-4297 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)))) (-2785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) (-4331 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1233)) (-5 *2 (-112)))) (-1451 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1233)) (-5 *2 (-574)))) (-1451 (*1 *2 *3 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-574)))) (-1451 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)))) (-4297 (*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)) (-4 *2 (-860)))) (-2785 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)) (-4 *2 (-860)))) (-4331 (*1 *2 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1233)) (-4 *3 (-860)) (-5 *2 (-112)))) (-2315 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4459)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) (-2163 (*1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-382 *2)) (-4 *2 (-1233)))) (-3565 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4459)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) (-3565 (*1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-382 *2)) (-4 *2 (-1233)) (-4 *2 (-860))))) -(-13 (-661 |t#1|) (-10 -8 (-6 -4458) (-15 -4297 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4424 ($ $)) (-15 -2785 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4331 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1451 ((-574) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1115)) (PROGN (-15 -1451 ((-574) |t#1| $)) (-15 -1451 ((-574) |t#1| $ (-574)))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-6 (-860)) (-15 -4297 ($ $ $)) (-15 -2785 ($ $)) (-15 -4331 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4459)) (PROGN (-15 -2315 ($ $ $ (-574))) (-15 -2163 ($ $)) (-15 -3565 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-15 -3565 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1115) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-1233) . T)) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1664 (((-654 |#1|) $) 37)) (-2795 (($ $ (-781)) 38)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-4368 (((-1307 |#1| |#2|) (-1307 |#1| |#2|) $) 41)) (-3450 (($ $) 39)) (-1412 (((-1307 |#1| |#2|) (-1307 |#1| |#2|) $) 42)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2660 (($ $ |#1| $) 36) (($ $ (-654 |#1|) (-654 $)) 35)) (-3584 (((-781) $) 43)) (-2962 (($ $ $) 34)) (-2950 (((-872) $) 12) (($ |#1|) 46) (((-1298 |#1| |#2|) $) 45) (((-1307 |#1| |#2|) $) 44)) (-1867 ((|#2| (-1307 |#1| |#2|) $) 47)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2170 (($ (-682 |#1|)) 40)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#2|) 33 (|has| |#2| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +((-1496 (*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-781)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-377)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-935)))) (-2835 (*1 *1) (-4 *1 (-377)))) +(-13 (-1116) (-10 -8 (-15 -1496 ((-781))) (-15 -2591 ($ (-935))) (-15 -3383 ((-935) $)) (-15 -2835 ($)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-3835 (((-699 |#2|) (-1284 $)) 45)) (-2580 (($ (-1284 |#2|) (-1284 $)) 39)) (-2640 (((-699 |#2|) $ (-1284 $)) 47)) (-2394 ((|#2| (-1284 $)) 13)) (-1385 (((-1284 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) (-1284 $) (-1284 $)) 27))) +(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -3835 ((-699 |#2|) (-1284 |#1|))) (-15 -2394 (|#2| (-1284 |#1|))) (-15 -2580 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2640 ((-699 |#2|) |#1| (-1284 |#1|)))) (-379 |#2| |#3|) (-174) (-1260 |#2|)) (T -378)) +NIL +(-10 -8 (-15 -3835 ((-699 |#2|) (-1284 |#1|))) (-15 -2394 (|#2| (-1284 |#1|))) (-15 -2580 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2640 ((-699 |#2|) |#1| (-1284 |#1|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-3835 (((-699 |#1|) (-1284 $)) 53)) (-1644 ((|#1| $) 59)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-2580 (($ (-1284 |#1|) (-1284 $)) 55)) (-2640 (((-699 |#1|) $ (-1284 $)) 60)) (-4322 (((-3 $ "failed") $) 37)) (-3558 (((-935)) 61)) (-4226 (((-112) $) 35)) (-1681 ((|#1| $) 58)) (-3989 ((|#2| $) 51 (|has| |#1| (-372)))) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2394 ((|#1| (-1284 $)) 54)) (-1385 (((-1284 |#1|) $ (-1284 $)) 57) (((-699 |#1|) (-1284 $) (-1284 $)) 56)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-3424 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2648 ((|#2| $) 52)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-379 |#1| |#2|) (-141) (-174) (-1260 |t#1|)) (T -379)) +((-3558 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-935)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174)))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174)))) (-1385 (*1 *2 *1 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-1284 *4)))) (-1385 (*1 *2 *3 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) (-2580 (*1 *1 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1284 *1)) (-4 *4 (-174)) (-4 *1 (-379 *4 *5)) (-4 *5 (-1260 *4)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1260 *2)) (-4 *2 (-174)))) (-3835 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) (-2648 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372)) (-4 *2 (-1260 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3558 ((-935))) (-15 -2640 ((-699 |t#1|) $ (-1284 $))) (-15 -1644 (|t#1| $)) (-15 -1681 (|t#1| $)) (-15 -1385 ((-1284 |t#1|) $ (-1284 $))) (-15 -1385 ((-699 |t#1|) (-1284 $) (-1284 $))) (-15 -2580 ($ (-1284 |t#1|) (-1284 $))) (-15 -2394 (|t#1| (-1284 $))) (-15 -3835 ((-699 |t#1|) (-1284 $))) (-15 -2648 (|t#2| $)) (IF (|has| |t#1| (-372)) (-15 -3989 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-3465 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2882 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1785 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-380 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2882 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3465 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1234) (-382 |#1|) (-1234) (-382 |#3|)) (T -380)) +((-3465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1234)) (-4 *5 (-1234)) (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-380 *5 *4 *2 *6)) (-4 *4 (-382 *5)) (-4 *6 (-382 *2)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-4 *2 (-382 *6)) (-5 *1 (-380 *5 *4 *6 *2)) (-4 *4 (-382 *5))))) +(-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2882 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3465 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3861 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-4140 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2786 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4425 (($ $) 25)) (-1452 (((-574) (-1 (-112) |#2|) $) NIL) (((-574) |#2| $) 11) (((-574) |#2| $ (-574)) NIL)) (-3404 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-381 |#1| |#2|) (-10 -8 (-15 -4140 (|#1| |#1|)) (-15 -4140 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3861 ((-112) |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -3861 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2786 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -3404 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-382 |#2|) (-1234)) (T -381)) +NIL +(-10 -8 (-15 -4140 (|#1| |#1|)) (-15 -4140 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3861 ((-112) |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -3861 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2786 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -3404 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2985 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2412 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-2804 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1452 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 70)) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| |#1| (-860)))) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 45 (|has| (-574) (-860)))) (-4380 (($ $ $) 89 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1393 (((-654 (-574)) $) 47)) (-1506 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1822 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) 49)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-4036 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 72)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3030 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-382 |#1|) (-141) (-1234)) (T -382)) +((-3404 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1234)))) (-4425 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234)))) (-2786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1234)))) (-3861 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1234)) (-5 *2 (-112)))) (-1452 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1234)) (-5 *2 (-574)))) (-1452 (*1 *2 *3 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-574)))) (-1452 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)))) (-3404 (*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234)) (-4 *2 (-860)))) (-2786 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234)) (-4 *2 (-860)))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1234)) (-4 *3 (-860)) (-5 *2 (-112)))) (-4036 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4460)) (-4 *1 (-382 *3)) (-4 *3 (-1234)))) (-2412 (*1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-382 *2)) (-4 *2 (-1234)))) (-4140 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4460)) (-4 *1 (-382 *3)) (-4 *3 (-1234)))) (-4140 (*1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-382 *2)) (-4 *2 (-1234)) (-4 *2 (-860))))) +(-13 (-661 |t#1|) (-10 -8 (-6 -4459) (-15 -3404 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4425 ($ $)) (-15 -2786 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3861 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1452 ((-574) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1116)) (PROGN (-15 -1452 ((-574) |t#1| $)) (-15 -1452 ((-574) |t#1| $ (-574)))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-6 (-860)) (-15 -3404 ($ $ $)) (-15 -2786 ($ $)) (-15 -3861 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4460)) (PROGN (-15 -4036 ($ $ $ (-574))) (-15 -2412 ($ $)) (-15 -4140 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-15 -4140 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1116) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-1234) . T)) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-1663 (((-654 |#1|) $) 37)) (-2825 (($ $ (-781)) 38)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-3369 (((-1308 |#1| |#2|) (-1308 |#1| |#2|) $) 41)) (-3856 (($ $) 39)) (-4067 (((-1308 |#1| |#2|) (-1308 |#1| |#2|) $) 42)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2661 (($ $ |#1| $) 36) (($ $ (-654 |#1|) (-654 $)) 35)) (-3580 (((-781) $) 43)) (-2963 (($ $ $) 34)) (-2951 (((-872) $) 12) (($ |#1|) 46) (((-1299 |#1| |#2|) $) 45) (((-1308 |#1| |#2|) $) 44)) (-1866 ((|#2| (-1308 |#1| |#2|) $) 47)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2961 (($ (-682 |#1|)) 40)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#2|) 33 (|has| |#2| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) (((-383 |#1| |#2|) (-141) (-860) (-174)) (T -383)) -((-1867 (*1 *2 *3 *1) (-12 (-5 *3 (-1307 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860)) (-4 *2 (-174)))) (-2950 (*1 *1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1298 *3 *4)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1307 *3 *4)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-781)))) (-1412 (*1 *2 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-4368 (*1 *2 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-2170 (*1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4)) (-4 *4 (-174)))) (-3450 (*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2795 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-654 *3)))) (-2660 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-860)) (-4 *5 (-174))))) -(-13 (-644 |t#2|) (-10 -8 (-15 -1867 (|t#2| (-1307 |t#1| |t#2|) $)) (-15 -2950 ($ |t#1|)) (-15 -2950 ((-1298 |t#1| |t#2|) $)) (-15 -2950 ((-1307 |t#1| |t#2|) $)) (-15 -3584 ((-781) $)) (-15 -1412 ((-1307 |t#1| |t#2|) (-1307 |t#1| |t#2|) $)) (-15 -4368 ((-1307 |t#1| |t#2|) (-1307 |t#1| |t#2|) $)) (-15 -2170 ($ (-682 |t#1|))) (-15 -3450 ($ $)) (-15 -2795 ($ $ (-781))) (-15 -1664 ((-654 |t#1|) $)) (-15 -2660 ($ $ |t#1| $)) (-15 -2660 ($ $ (-654 |t#1|) (-654 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-658 |#2|) . T) ((-644 |#2|) . T) ((-650 |#2|) . T) ((-727 |#2|) . T) ((-1066 |#2|) . T) ((-1071 |#2|) . T) ((-1115) . T)) -((-1628 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-2561 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3411 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) -(((-384 |#1| |#2|) (-10 -7 (-15 -2561 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3411 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1628 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1233) (-13 (-382 |#1|) (-10 -7 (-6 -4459)))) (T -384)) -((-1628 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459)))))) (-3411 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459)))))) (-2561 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459))))))) -(-10 -7 (-15 -2561 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3411 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1628 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-3465 (((-699 |#2|) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 22) (((-699 (-574)) (-699 $)) 14) (((-699 (-574)) (-1283 $)) NIL))) -(((-385 |#1| |#2|) (-10 -8 (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-699 |#2|) (-699 |#1|))) (-15 -3465 ((-699 |#2|) (-1283 |#1|)))) (-386 |#2|) (-1064)) (T -385)) -NIL -(-10 -8 (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-699 |#2|) (-699 |#1|))) (-15 -3465 ((-699 |#2|) (-1283 |#1|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3465 (((-699 |#1|) (-1283 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 29) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 39 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 38 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-1283 $)) 37 (|has| |#1| (-649 (-574))))) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) -(((-386 |#1|) (-141) (-1064)) (T -386)) +((-1866 (*1 *2 *3 *1) (-12 (-5 *3 (-1308 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860)) (-4 *2 (-174)))) (-2951 (*1 *1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2951 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1299 *3 *4)))) (-2951 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1308 *3 *4)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-781)))) (-4067 (*1 *2 *2 *1) (-12 (-5 *2 (-1308 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-3369 (*1 *2 *2 *1) (-12 (-5 *2 (-1308 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-2961 (*1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4)) (-4 *4 (-174)))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-654 *3)))) (-2661 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-860)) (-4 *5 (-174))))) +(-13 (-644 |t#2|) (-10 -8 (-15 -1866 (|t#2| (-1308 |t#1| |t#2|) $)) (-15 -2951 ($ |t#1|)) (-15 -2951 ((-1299 |t#1| |t#2|) $)) (-15 -2951 ((-1308 |t#1| |t#2|) $)) (-15 -3580 ((-781) $)) (-15 -4067 ((-1308 |t#1| |t#2|) (-1308 |t#1| |t#2|) $)) (-15 -3369 ((-1308 |t#1| |t#2|) (-1308 |t#1| |t#2|) $)) (-15 -2961 ($ (-682 |t#1|))) (-15 -3856 ($ $)) (-15 -2825 ($ $ (-781))) (-15 -1663 ((-654 |t#1|) $)) (-15 -2661 ($ $ |t#1| $)) (-15 -2661 ($ $ (-654 |t#1|) (-654 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-658 |#2|) . T) ((-644 |#2|) . T) ((-650 |#2|) . T) ((-727 |#2|) . T) ((-1067 |#2|) . T) ((-1072 |#2|) . T) ((-1116) . T)) +((-3717 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3592 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1641 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) +(((-384 |#1| |#2|) (-10 -7 (-15 -3592 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1641 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3717 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1234) (-13 (-382 |#1|) (-10 -7 (-6 -4460)))) (T -384)) +((-3717 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460)))))) (-1641 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460)))))) (-3592 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460))))))) +(-10 -7 (-15 -3592 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1641 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3717 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-1831 (((-699 |#2|) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 22) (((-699 (-574)) (-699 $)) 14) (((-699 (-574)) (-1284 $)) NIL))) +(((-385 |#1| |#2|) (-10 -8 (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-699 |#2|) (-699 |#1|))) (-15 -1831 ((-699 |#2|) (-1284 |#1|)))) (-386 |#2|) (-1065)) (T -385)) +NIL +(-10 -8 (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-699 |#2|) (-699 |#1|))) (-15 -1831 ((-699 |#2|) (-1284 |#1|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1831 (((-699 |#1|) (-1284 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 29) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 39 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 38 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-1284 $)) 37 (|has| |#1| (-649 (-574))))) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) +(((-386 |#1|) (-141) (-1065)) (T -386)) NIL (-13 (-649 |t#1|) (-10 -7 (IF (|has| |t#1| (-649 (-574))) (-6 (-649 (-574))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 #0=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-649 #0#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-1115) . T)) -((-4234 (((-654 (-302 (-965 (-171 |#1|)))) (-302 (-417 (-965 (-171 (-574))))) |#1|) 51) (((-654 (-302 (-965 (-171 |#1|)))) (-417 (-965 (-171 (-574)))) |#1|) 50) (((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-302 (-417 (-965 (-171 (-574)))))) |#1|) 47) (((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-417 (-965 (-171 (-574))))) |#1|) 41)) (-3048 (((-654 (-654 (-171 |#1|))) (-654 (-417 (-965 (-171 (-574))))) (-654 (-1192)) |#1|) 30) (((-654 (-171 |#1|)) (-417 (-965 (-171 (-574)))) |#1|) 18))) -(((-387 |#1|) (-10 -7 (-15 -4234 ((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-417 (-965 (-171 (-574))))) |#1|)) (-15 -4234 ((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-302 (-417 (-965 (-171 (-574)))))) |#1|)) (-15 -4234 ((-654 (-302 (-965 (-171 |#1|)))) (-417 (-965 (-171 (-574)))) |#1|)) (-15 -4234 ((-654 (-302 (-965 (-171 |#1|)))) (-302 (-417 (-965 (-171 (-574))))) |#1|)) (-15 -3048 ((-654 (-171 |#1|)) (-417 (-965 (-171 (-574)))) |#1|)) (-15 -3048 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-965 (-171 (-574))))) (-654 (-1192)) |#1|))) (-13 (-372) (-858))) (T -387)) -((-3048 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-965 (-171 (-574)))))) (-5 *4 (-654 (-1192))) (-5 *2 (-654 (-654 (-171 *5)))) (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858))))) (-3048 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 (-171 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-965 (-171 (-574)))))) (-5 *2 (-654 (-302 (-965 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 (-171 (-574))))) (-5 *2 (-654 (-302 (-965 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-965 (-171 (-574))))))) (-5 *2 (-654 (-654 (-302 (-965 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 (-171 (-574)))))) (-5 *2 (-654 (-654 (-302 (-965 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858)))))) -(-10 -7 (-15 -4234 ((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-417 (-965 (-171 (-574))))) |#1|)) (-15 -4234 ((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-302 (-417 (-965 (-171 (-574)))))) |#1|)) (-15 -4234 ((-654 (-302 (-965 (-171 |#1|)))) (-417 (-965 (-171 (-574)))) |#1|)) (-15 -4234 ((-654 (-302 (-965 (-171 |#1|)))) (-302 (-417 (-965 (-171 (-574))))) |#1|)) (-15 -3048 ((-654 (-171 |#1|)) (-417 (-965 (-171 (-574)))) |#1|)) (-15 -3048 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-965 (-171 (-574))))) (-654 (-1192)) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 35)) (-4018 (((-574) $) 62)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-3842 (($ $) 136)) (-2378 (($ $) 98)) (-2259 (($ $) 90)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-4211 (($ $) 47)) (-3656 (((-112) $ $) NIL)) (-2357 (($ $) 96)) (-2237 (($ $) 85)) (-3011 (((-574) $) 78)) (-3932 (($ $ (-574)) 73)) (-2403 (($ $) NIL)) (-2281 (($ $) NIL)) (-3831 (($) NIL T CONST)) (-3893 (($ $) 138)) (-1705 (((-3 (-574) "failed") $) 231) (((-3 (-417 (-574)) "failed") $) 227)) (-2216 (((-574) $) 229) (((-417 (-574)) $) 225)) (-2799 (($ $ $) NIL)) (-4001 (((-574) $ $) 125)) (-3911 (((-3 $ "failed") $) 141)) (-3322 (((-417 (-574)) $ (-781)) 232) (((-417 (-574)) $ (-781) (-781)) 224)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-3759 (((-934)) 121) (((-934) (-934)) 122 (|has| $ (-6 -4449)))) (-1913 (((-112) $) 130)) (-3003 (($) 41)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-3345 (((-1288) (-781)) 191)) (-4100 (((-1288)) 196) (((-1288) (-781)) 197)) (-3792 (((-1288)) 198) (((-1288) (-781)) 199)) (-1760 (((-1288)) 194) (((-1288) (-781)) 195)) (-2725 (((-574) $) 68)) (-3372 (((-112) $) 40)) (-2132 (($ $ (-574)) NIL)) (-1427 (($ $) 51)) (-1386 (($ $) NIL)) (-1808 (((-112) $) 37)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL) (($) NIL (-12 (-2085 (|has| $ (-6 -4441))) (-2085 (|has| $ (-6 -4449)))))) (-1593 (($ $ $) NIL) (($) NIL (-12 (-2085 (|has| $ (-6 -4441))) (-2085 (|has| $ (-6 -4449)))))) (-4290 (((-574) $) 17)) (-2404 (($) 106) (($ $) 113)) (-1742 (($) 112) (($ $) 114)) (-3112 (($ $) 101)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 143)) (-1361 (((-934) (-574)) 46 (|has| $ (-6 -4449)))) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) 60)) (-3471 (($ $) 135)) (-2395 (($ (-574) (-574)) 131) (($ (-574) (-574) (-934)) 132)) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2017 (((-574) $) 19)) (-4126 (($) 115)) (-1618 (($ $) 95)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-2354 (((-934)) 123) (((-934) (-934)) 124 (|has| $ (-6 -4449)))) (-3878 (($ $) 142) (($ $ (-781)) NIL)) (-2260 (((-934) (-574)) 50 (|has| $ (-6 -4449)))) (-2416 (($ $) NIL)) (-2289 (($ $) NIL)) (-2389 (($ $) NIL)) (-2269 (($ $) NIL)) (-2367 (($ $) 97)) (-2248 (($ $) 89)) (-1845 (((-388) $) 216) (((-227) $) 218) (((-903 (-388)) $) NIL) (((-1174) $) 202) (((-546) $) 214) (($ (-227)) 223)) (-2950 (((-872) $) 206) (($ (-574)) 228) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 228) (($ (-417 (-574))) NIL) (((-227) $) 219)) (-4019 (((-781)) NIL T CONST)) (-2753 (($ $) 137)) (-1708 (((-934)) 61) (((-934) (-934)) 80 (|has| $ (-6 -4449)))) (-3838 (((-112) $ $) NIL)) (-2643 (((-934)) 126)) (-2455 (($ $) 104)) (-2319 (($ $) 49) (($ $ $) 59)) (-1842 (((-112) $ $) NIL)) (-2427 (($ $) 102)) (-2300 (($ $) 39)) (-2479 (($ $) NIL)) (-2339 (($ $) NIL)) (-2535 (($ $) NIL)) (-2348 (($ $) NIL)) (-2466 (($ $) NIL)) (-2329 (($ $) NIL)) (-2442 (($ $) 103)) (-2311 (($ $) 52)) (-3306 (($ $) 58)) (-2142 (($) 36 T CONST)) (-2154 (($) 43 T CONST)) (-4057 (((-1174) $) 27) (((-1174) $ (-112)) 29) (((-1288) (-832) $) 30) (((-1288) (-832) $ (-112)) 31)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-3041 (((-112) $ $) 203)) (-3018 (((-112) $ $) 45)) (-2985 (((-112) $ $) 56)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 57)) (-3098 (($ $ $) 48) (($ $ (-574)) 42)) (-3089 (($ $) 38) (($ $ $) 53)) (-3074 (($ $ $) 72)) (** (($ $ (-934)) 83) (($ $ (-781)) NIL) (($ $ (-574)) 107) (($ $ (-417 (-574))) 154) (($ $ $) 145)) (* (($ (-934) $) 79) (($ (-781) $) NIL) (($ (-574) $) 84) (($ $ $) 71) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-388) (-13 (-414) (-239) (-624 (-1174)) (-838) (-623 (-227)) (-1218) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3098 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1427 ($ $)) (-15 -4001 ((-574) $ $)) (-15 -3932 ($ $ (-574))) (-15 -3322 ((-417 (-574)) $ (-781))) (-15 -3322 ((-417 (-574)) $ (-781) (-781))) (-15 -2404 ($)) (-15 -1742 ($)) (-15 -4126 ($)) (-15 -2319 ($ $ $)) (-15 -2404 ($ $)) (-15 -1742 ($ $)) (-15 -3792 ((-1288))) (-15 -3792 ((-1288) (-781))) (-15 -1760 ((-1288))) (-15 -1760 ((-1288) (-781))) (-15 -4100 ((-1288))) (-15 -4100 ((-1288) (-781))) (-15 -3345 ((-1288) (-781))) (-6 -4449) (-6 -4441)))) (T -388)) -((** (*1 *1 *1 *1) (-5 *1 (-388))) (-3098 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-1427 (*1 *1 *1) (-5 *1 (-388))) (-4001 (*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-3932 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-3322 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-3322 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-2404 (*1 *1) (-5 *1 (-388))) (-1742 (*1 *1) (-5 *1 (-388))) (-4126 (*1 *1) (-5 *1 (-388))) (-2319 (*1 *1 *1 *1) (-5 *1 (-388))) (-2404 (*1 *1 *1) (-5 *1 (-388))) (-1742 (*1 *1 *1) (-5 *1 (-388))) (-3792 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) (-1760 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) (-4100 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) (-3345 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388))))) -(-13 (-414) (-239) (-624 (-1174)) (-838) (-623 (-227)) (-1218) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3098 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1427 ($ $)) (-15 -4001 ((-574) $ $)) (-15 -3932 ($ $ (-574))) (-15 -3322 ((-417 (-574)) $ (-781))) (-15 -3322 ((-417 (-574)) $ (-781) (-781))) (-15 -2404 ($)) (-15 -1742 ($)) (-15 -4126 ($)) (-15 -2319 ($ $ $)) (-15 -2404 ($ $)) (-15 -1742 ($ $)) (-15 -3792 ((-1288))) (-15 -3792 ((-1288) (-781))) (-15 -1760 ((-1288))) (-15 -1760 ((-1288) (-781))) (-15 -4100 ((-1288))) (-15 -4100 ((-1288) (-781))) (-15 -3345 ((-1288) (-781))) (-6 -4449) (-6 -4441))) -((-2514 (((-654 (-302 (-965 |#1|))) (-302 (-417 (-965 (-574)))) |#1|) 46) (((-654 (-302 (-965 |#1|))) (-417 (-965 (-574))) |#1|) 45) (((-654 (-654 (-302 (-965 |#1|)))) (-654 (-302 (-417 (-965 (-574))))) |#1|) 42) (((-654 (-654 (-302 (-965 |#1|)))) (-654 (-417 (-965 (-574)))) |#1|) 36)) (-3912 (((-654 |#1|) (-417 (-965 (-574))) |#1|) 20) (((-654 (-654 |#1|)) (-654 (-417 (-965 (-574)))) (-654 (-1192)) |#1|) 30))) -(((-389 |#1|) (-10 -7 (-15 -2514 ((-654 (-654 (-302 (-965 |#1|)))) (-654 (-417 (-965 (-574)))) |#1|)) (-15 -2514 ((-654 (-654 (-302 (-965 |#1|)))) (-654 (-302 (-417 (-965 (-574))))) |#1|)) (-15 -2514 ((-654 (-302 (-965 |#1|))) (-417 (-965 (-574))) |#1|)) (-15 -2514 ((-654 (-302 (-965 |#1|))) (-302 (-417 (-965 (-574)))) |#1|)) (-15 -3912 ((-654 (-654 |#1|)) (-654 (-417 (-965 (-574)))) (-654 (-1192)) |#1|)) (-15 -3912 ((-654 |#1|) (-417 (-965 (-574))) |#1|))) (-13 (-858) (-372))) (T -389)) -((-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-3912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-965 (-574))))) (-5 *4 (-654 (-1192))) (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-858) (-372))))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-965 (-574))))) (-5 *2 (-654 (-302 (-965 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 (-574)))) (-5 *2 (-654 (-302 (-965 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-965 (-574)))))) (-5 *2 (-654 (-654 (-302 (-965 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 (-574))))) (-5 *2 (-654 (-654 (-302 (-965 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372)))))) -(-10 -7 (-15 -2514 ((-654 (-654 (-302 (-965 |#1|)))) (-654 (-417 (-965 (-574)))) |#1|)) (-15 -2514 ((-654 (-654 (-302 (-965 |#1|)))) (-654 (-302 (-417 (-965 (-574))))) |#1|)) (-15 -2514 ((-654 (-302 (-965 |#1|))) (-417 (-965 (-574))) |#1|)) (-15 -2514 ((-654 (-302 (-965 |#1|))) (-302 (-417 (-965 (-574)))) |#1|)) (-15 -3912 ((-654 (-654 |#1|)) (-654 (-417 (-965 (-574)))) (-654 (-1192)) |#1|)) (-15 -3912 ((-654 |#1|) (-417 (-965 (-574))) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#2| "failed") $) 30)) (-2216 ((|#2| $) 32)) (-1401 (($ $) NIL)) (-3241 (((-781) $) 11)) (-1854 (((-654 $) $) 23)) (-3257 (((-112) $) NIL)) (-3805 (($ |#2| |#1|) 21)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1365 ((|#2| $) 18)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 51) (($ |#2|) 31)) (-2836 (((-654 |#1|) $) 20)) (-2930 ((|#1| $ |#2|) 55)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 33 T CONST)) (-4154 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-390 |#1| |#2|) (-13 (-391 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1064) (-860)) (T -390)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-860))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 #0=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-649 #0#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-1116) . T)) +((-3711 (((-654 (-302 (-966 (-171 |#1|)))) (-302 (-417 (-966 (-171 (-574))))) |#1|) 51) (((-654 (-302 (-966 (-171 |#1|)))) (-417 (-966 (-171 (-574)))) |#1|) 50) (((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-302 (-417 (-966 (-171 (-574)))))) |#1|) 47) (((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-417 (-966 (-171 (-574))))) |#1|) 41)) (-1718 (((-654 (-654 (-171 |#1|))) (-654 (-417 (-966 (-171 (-574))))) (-654 (-1193)) |#1|) 30) (((-654 (-171 |#1|)) (-417 (-966 (-171 (-574)))) |#1|) 18))) +(((-387 |#1|) (-10 -7 (-15 -3711 ((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-417 (-966 (-171 (-574))))) |#1|)) (-15 -3711 ((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-302 (-417 (-966 (-171 (-574)))))) |#1|)) (-15 -3711 ((-654 (-302 (-966 (-171 |#1|)))) (-417 (-966 (-171 (-574)))) |#1|)) (-15 -3711 ((-654 (-302 (-966 (-171 |#1|)))) (-302 (-417 (-966 (-171 (-574))))) |#1|)) (-15 -1718 ((-654 (-171 |#1|)) (-417 (-966 (-171 (-574)))) |#1|)) (-15 -1718 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-966 (-171 (-574))))) (-654 (-1193)) |#1|))) (-13 (-372) (-858))) (T -387)) +((-1718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-966 (-171 (-574)))))) (-5 *4 (-654 (-1193))) (-5 *2 (-654 (-654 (-171 *5)))) (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858))))) (-1718 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 (-171 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-966 (-171 (-574)))))) (-5 *2 (-654 (-302 (-966 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 (-171 (-574))))) (-5 *2 (-654 (-302 (-966 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-966 (-171 (-574))))))) (-5 *2 (-654 (-654 (-302 (-966 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 (-171 (-574)))))) (-5 *2 (-654 (-654 (-302 (-966 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858)))))) +(-10 -7 (-15 -3711 ((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-417 (-966 (-171 (-574))))) |#1|)) (-15 -3711 ((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-302 (-417 (-966 (-171 (-574)))))) |#1|)) (-15 -3711 ((-654 (-302 (-966 (-171 |#1|)))) (-417 (-966 (-171 (-574)))) |#1|)) (-15 -3711 ((-654 (-302 (-966 (-171 |#1|)))) (-302 (-417 (-966 (-171 (-574))))) |#1|)) (-15 -1718 ((-654 (-171 |#1|)) (-417 (-966 (-171 (-574)))) |#1|)) (-15 -1718 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-966 (-171 (-574))))) (-654 (-1193)) |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 35)) (-4146 (((-574) $) 62)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-3332 (($ $) 136)) (-2379 (($ $) 98)) (-2258 (($ $) 90)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-4212 (($ $) 47)) (-3245 (((-112) $ $) NIL)) (-2358 (($ $) 96)) (-2235 (($ $) 85)) (-2472 (((-574) $) 78)) (-3933 (($ $ (-574)) 73)) (-2404 (($ $) NIL)) (-2280 (($ $) NIL)) (-3250 (($) NIL T CONST)) (-3361 (($ $) 138)) (-1704 (((-3 (-574) "failed") $) 231) (((-3 (-417 (-574)) "failed") $) 227)) (-2214 (((-574) $) 229) (((-417 (-574)) $) 225)) (-2800 (($ $ $) NIL)) (-4356 (((-574) $ $) 125)) (-4322 (((-3 $ "failed") $) 141)) (-2361 (((-417 (-574)) $ (-781)) 232) (((-417 (-574)) $ (-781) (-781)) 224)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3760 (((-935)) 121) (((-935) (-935)) 122 (|has| $ (-6 -4450)))) (-3408 (((-112) $) 130)) (-3004 (($) 41)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-2457 (((-1289) (-781)) 191)) (-1769 (((-1289)) 196) (((-1289) (-781)) 197)) (-3323 (((-1289)) 198) (((-1289) (-781)) 199)) (-3204 (((-1289)) 194) (((-1289) (-781)) 195)) (-3547 (((-574) $) 68)) (-4226 (((-112) $) 40)) (-3527 (($ $ (-574)) NIL)) (-1348 (($ $) 51)) (-1681 (($ $) NIL)) (-3182 (((-112) $) 37)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL) (($) NIL (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-4380 (($ $ $) NIL) (($) NIL (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-4290 (((-574) $) 17)) (-4040 (($) 106) (($ $) 113)) (-1739 (($) 112) (($ $) 114)) (-3113 (($ $) 101)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 143)) (-3206 (((-935) (-574)) 46 (|has| $ (-6 -4450)))) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) 60)) (-2260 (($ $) 135)) (-2399 (($ (-574) (-574)) 131) (($ (-574) (-574) (-935)) 132)) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3139 (((-574) $) 19)) (-1743 (($) 115)) (-1617 (($ $) 95)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-4074 (((-935)) 123) (((-935) (-935)) 124 (|has| $ (-6 -4450)))) (-3879 (($ $) 142) (($ $ (-781)) NIL)) (-3691 (((-935) (-574)) 50 (|has| $ (-6 -4450)))) (-2417 (($ $) NIL)) (-2289 (($ $) NIL)) (-2390 (($ $) NIL)) (-2269 (($ $) NIL)) (-2368 (($ $) 97)) (-2247 (($ $) 89)) (-1844 (((-388) $) 216) (((-227) $) 218) (((-903 (-388)) $) NIL) (((-1175) $) 202) (((-546) $) 214) (($ (-227)) 223)) (-2951 (((-872) $) 206) (($ (-574)) 228) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 228) (($ (-417 (-574))) NIL) (((-227) $) 219)) (-2898 (((-781)) NIL T CONST)) (-2544 (($ $) 137)) (-2562 (((-935)) 61) (((-935) (-935)) 80 (|has| $ (-6 -4450)))) (-4069 (((-112) $ $) NIL)) (-2644 (((-935)) 126)) (-2456 (($ $) 104)) (-2320 (($ $) 49) (($ $ $) 59)) (-2836 (((-112) $ $) NIL)) (-2429 (($ $) 102)) (-2301 (($ $) 39)) (-2480 (($ $) NIL)) (-2340 (($ $) NIL)) (-2536 (($ $) NIL)) (-2349 (($ $) NIL)) (-2468 (($ $) NIL)) (-2330 (($ $) NIL)) (-2443 (($ $) 103)) (-2312 (($ $) 52)) (-3936 (($ $) 58)) (-2141 (($) 36 T CONST)) (-2153 (($) 43 T CONST)) (-3927 (((-1175) $) 27) (((-1175) $ (-112)) 29) (((-1289) (-832) $) 30) (((-1289) (-832) $ (-112)) 31)) (-3584 (($ $) NIL) (($ $ (-781)) NIL)) (-3042 (((-112) $ $) 203)) (-3020 (((-112) $ $) 45)) (-2986 (((-112) $ $) 56)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 57)) (-3103 (($ $ $) 48) (($ $ (-574)) 42)) (-3090 (($ $) 38) (($ $ $) 53)) (-3074 (($ $ $) 72)) (** (($ $ (-935)) 83) (($ $ (-781)) NIL) (($ $ (-574)) 107) (($ $ (-417 (-574))) 154) (($ $ $) 145)) (* (($ (-935) $) 79) (($ (-781) $) NIL) (($ (-574) $) 84) (($ $ $) 71) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-388) (-13 (-414) (-239) (-624 (-1175)) (-838) (-623 (-227)) (-1219) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3103 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1348 ($ $)) (-15 -4356 ((-574) $ $)) (-15 -3933 ($ $ (-574))) (-15 -2361 ((-417 (-574)) $ (-781))) (-15 -2361 ((-417 (-574)) $ (-781) (-781))) (-15 -4040 ($)) (-15 -1739 ($)) (-15 -1743 ($)) (-15 -2320 ($ $ $)) (-15 -4040 ($ $)) (-15 -1739 ($ $)) (-15 -3323 ((-1289))) (-15 -3323 ((-1289) (-781))) (-15 -3204 ((-1289))) (-15 -3204 ((-1289) (-781))) (-15 -1769 ((-1289))) (-15 -1769 ((-1289) (-781))) (-15 -2457 ((-1289) (-781))) (-6 -4450) (-6 -4442)))) (T -388)) +((** (*1 *1 *1 *1) (-5 *1 (-388))) (-3103 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-1348 (*1 *1 *1) (-5 *1 (-388))) (-4356 (*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-2361 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-2361 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-4040 (*1 *1) (-5 *1 (-388))) (-1739 (*1 *1) (-5 *1 (-388))) (-1743 (*1 *1) (-5 *1 (-388))) (-2320 (*1 *1 *1 *1) (-5 *1 (-388))) (-4040 (*1 *1 *1) (-5 *1 (-388))) (-1739 (*1 *1 *1) (-5 *1 (-388))) (-3323 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388)))) (-3204 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388)))) (-1769 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388))))) +(-13 (-414) (-239) (-624 (-1175)) (-838) (-623 (-227)) (-1219) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3103 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1348 ($ $)) (-15 -4356 ((-574) $ $)) (-15 -3933 ($ $ (-574))) (-15 -2361 ((-417 (-574)) $ (-781))) (-15 -2361 ((-417 (-574)) $ (-781) (-781))) (-15 -4040 ($)) (-15 -1739 ($)) (-15 -1743 ($)) (-15 -2320 ($ $ $)) (-15 -4040 ($ $)) (-15 -1739 ($ $)) (-15 -3323 ((-1289))) (-15 -3323 ((-1289) (-781))) (-15 -3204 ((-1289))) (-15 -3204 ((-1289) (-781))) (-15 -1769 ((-1289))) (-15 -1769 ((-1289) (-781))) (-15 -2457 ((-1289) (-781))) (-6 -4450) (-6 -4442))) +((-3987 (((-654 (-302 (-966 |#1|))) (-302 (-417 (-966 (-574)))) |#1|) 46) (((-654 (-302 (-966 |#1|))) (-417 (-966 (-574))) |#1|) 45) (((-654 (-654 (-302 (-966 |#1|)))) (-654 (-302 (-417 (-966 (-574))))) |#1|) 42) (((-654 (-654 (-302 (-966 |#1|)))) (-654 (-417 (-966 (-574)))) |#1|) 36)) (-3562 (((-654 |#1|) (-417 (-966 (-574))) |#1|) 20) (((-654 (-654 |#1|)) (-654 (-417 (-966 (-574)))) (-654 (-1193)) |#1|) 30))) +(((-389 |#1|) (-10 -7 (-15 -3987 ((-654 (-654 (-302 (-966 |#1|)))) (-654 (-417 (-966 (-574)))) |#1|)) (-15 -3987 ((-654 (-654 (-302 (-966 |#1|)))) (-654 (-302 (-417 (-966 (-574))))) |#1|)) (-15 -3987 ((-654 (-302 (-966 |#1|))) (-417 (-966 (-574))) |#1|)) (-15 -3987 ((-654 (-302 (-966 |#1|))) (-302 (-417 (-966 (-574)))) |#1|)) (-15 -3562 ((-654 (-654 |#1|)) (-654 (-417 (-966 (-574)))) (-654 (-1193)) |#1|)) (-15 -3562 ((-654 |#1|) (-417 (-966 (-574))) |#1|))) (-13 (-858) (-372))) (T -389)) +((-3562 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-966 (-574))))) (-5 *4 (-654 (-1193))) (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-858) (-372))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-966 (-574))))) (-5 *2 (-654 (-302 (-966 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 (-574)))) (-5 *2 (-654 (-302 (-966 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-966 (-574)))))) (-5 *2 (-654 (-654 (-302 (-966 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 (-574))))) (-5 *2 (-654 (-654 (-302 (-966 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372)))))) +(-10 -7 (-15 -3987 ((-654 (-654 (-302 (-966 |#1|)))) (-654 (-417 (-966 (-574)))) |#1|)) (-15 -3987 ((-654 (-654 (-302 (-966 |#1|)))) (-654 (-302 (-417 (-966 (-574))))) |#1|)) (-15 -3987 ((-654 (-302 (-966 |#1|))) (-417 (-966 (-574))) |#1|)) (-15 -3987 ((-654 (-302 (-966 |#1|))) (-302 (-417 (-966 (-574)))) |#1|)) (-15 -3562 ((-654 (-654 |#1|)) (-654 (-417 (-966 (-574)))) (-654 (-1193)) |#1|)) (-15 -3562 ((-654 |#1|) (-417 (-966 (-574))) |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) 30)) (-2214 ((|#2| $) 32)) (-1402 (($ $) NIL)) (-3023 (((-781) $) 11)) (-1963 (((-654 $) $) 23)) (-1555 (((-112) $) NIL)) (-3806 (($ |#2| |#1|) 21)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3011 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1366 ((|#2| $) 18)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 51) (($ |#2|) 31)) (-1634 (((-654 |#1|) $) 20)) (-2706 ((|#1| $ |#2|) 55)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 33 T CONST)) (-4148 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-390 |#1| |#2|) (-13 (-391 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1065) (-860)) (T -390)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-860))))) (-13 (-391 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-1705 (((-3 |#2| "failed") $) 49)) (-2216 ((|#2| $) 50)) (-1401 (($ $) 35)) (-3241 (((-781) $) 39)) (-1854 (((-654 $) $) 40)) (-3257 (((-112) $) 43)) (-3805 (($ |#2| |#1|) 44)) (-1786 (($ (-1 |#1| |#1|) $) 45)) (-3113 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1365 ((|#2| $) 38)) (-1377 ((|#1| $) 37)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ |#2|) 48)) (-2836 (((-654 |#1|) $) 41)) (-2930 ((|#1| $ |#2|) 46)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-4154 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-391 |#1| |#2|) (-141) (-1064) (-1115)) (T -391)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1115)))) (-2930 (*1 *2 *1 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1064)))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)))) (-3805 (*1 *1 *2 *3) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1115)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-112)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-654 *3)))) (-1854 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-654 *1)) (-4 *1 (-391 *3 *4)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-781)))) (-1365 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1115)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1064)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1401 (*1 *1 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1115))))) -(-13 (-111 |t#1| |t#1|) (-1053 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2930 (|t#1| $ |t#2|)) (-15 -1786 ($ (-1 |t#1| |t#1|) $)) (-15 -3805 ($ |t#2| |t#1|)) (-15 -3257 ((-112) $)) (-15 -4154 ((-654 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2836 ((-654 |t#1|) $)) (-15 -1854 ((-654 $) $)) (-15 -3241 ((-781) $)) (-15 -1365 (|t#2| $)) (-15 -1377 (|t#1| $)) (-15 -3113 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1401 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-727 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-1053 |#2|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) -((-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8) (($ (-699 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 11))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1704 (((-3 |#2| "failed") $) 49)) (-2214 ((|#2| $) 50)) (-1402 (($ $) 35)) (-3023 (((-781) $) 39)) (-1963 (((-654 $) $) 40)) (-1555 (((-112) $) 43)) (-3806 (($ |#2| |#1|) 44)) (-1785 (($ (-1 |#1| |#1|) $) 45)) (-3011 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1366 ((|#2| $) 38)) (-1378 ((|#1| $) 37)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ |#2|) 48)) (-1634 (((-654 |#1|) $) 41)) (-2706 ((|#1| $ |#2|) 46)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-4148 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-391 |#1| |#2|) (-141) (-1065) (-1116)) (T -391)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1116)))) (-2706 (*1 *2 *1 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1065)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)))) (-3806 (*1 *1 *2 *3) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1116)))) (-1555 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-112)))) (-4148 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-654 *3)))) (-1963 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-654 *1)) (-4 *1 (-391 *3 *4)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-781)))) (-1366 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1116)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1065)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1402 (*1 *1 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1116))))) +(-13 (-111 |t#1| |t#1|) (-1054 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2706 (|t#1| $ |t#2|)) (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (-15 -3806 ($ |t#2| |t#1|)) (-15 -1555 ((-112) $)) (-15 -4148 ((-654 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1634 ((-654 |t#1|) $)) (-15 -1963 ((-654 $) $)) (-15 -3023 ((-781) $)) (-15 -1366 (|t#2| $)) (-15 -1378 (|t#1| $)) (-15 -3011 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1402 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-727 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-1054 |#2|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T)) +((-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8) (($ (-699 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 11))) (((-392) (-141)) (T -392)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-699 (-709))) (-4 *1 (-392)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-392)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-392)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) (-4 *1 (-392))))) -(-13 (-405) (-10 -8 (-15 -2950 ($ (-699 (-709)))) (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-338))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338)))))))) -(((-623 (-872)) . T) ((-405) . T) ((-1233) . T)) -((-1705 (((-3 $ "failed") (-699 (-324 (-388)))) 21) (((-3 $ "failed") (-699 (-324 (-574)))) 19) (((-3 $ "failed") (-699 (-965 (-388)))) 17) (((-3 $ "failed") (-699 (-965 (-574)))) 15) (((-3 $ "failed") (-699 (-417 (-965 (-388))))) 13) (((-3 $ "failed") (-699 (-417 (-965 (-574))))) 11)) (-2216 (($ (-699 (-324 (-388)))) 22) (($ (-699 (-324 (-574)))) 20) (($ (-699 (-965 (-388)))) 18) (($ (-699 (-965 (-574)))) 16) (($ (-699 (-417 (-965 (-388))))) 14) (($ (-699 (-417 (-965 (-574))))) 12)) (-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 23))) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-699 (-709))) (-4 *1 (-392)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-392)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-392)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-392))))) +(-13 (-405) (-10 -8 (-15 -2951 ($ (-699 (-709)))) (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-338))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))))) +(((-623 (-872)) . T) ((-405) . T) ((-1234) . T)) +((-1704 (((-3 $ "failed") (-699 (-324 (-388)))) 21) (((-3 $ "failed") (-699 (-324 (-574)))) 19) (((-3 $ "failed") (-699 (-966 (-388)))) 17) (((-3 $ "failed") (-699 (-966 (-574)))) 15) (((-3 $ "failed") (-699 (-417 (-966 (-388))))) 13) (((-3 $ "failed") (-699 (-417 (-966 (-574))))) 11)) (-2214 (($ (-699 (-324 (-388)))) 22) (($ (-699 (-324 (-574)))) 20) (($ (-699 (-966 (-388)))) 18) (($ (-699 (-966 (-574)))) 16) (($ (-699 (-417 (-966 (-388))))) 14) (($ (-699 (-417 (-966 (-574))))) 12)) (-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 23))) (((-393) (-141)) (T -393)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-393)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-393)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-965 (-388)))) (-4 *1 (-393)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-965 (-388)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-965 (-574)))) (-4 *1 (-393)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-965 (-574)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-965 (-388))))) (-4 *1 (-393)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-965 (-388))))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-965 (-574))))) (-4 *1 (-393)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-965 (-574))))) (-4 *1 (-393))))) -(-13 (-405) (-10 -8 (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-338))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338)))))) (-15 -2216 ($ (-699 (-324 (-388))))) (-15 -1705 ((-3 $ "failed") (-699 (-324 (-388))))) (-15 -2216 ($ (-699 (-324 (-574))))) (-15 -1705 ((-3 $ "failed") (-699 (-324 (-574))))) (-15 -2216 ($ (-699 (-965 (-388))))) (-15 -1705 ((-3 $ "failed") (-699 (-965 (-388))))) (-15 -2216 ($ (-699 (-965 (-574))))) (-15 -1705 ((-3 $ "failed") (-699 (-965 (-574))))) (-15 -2216 ($ (-699 (-417 (-965 (-388)))))) (-15 -1705 ((-3 $ "failed") (-699 (-417 (-965 (-388)))))) (-15 -2216 ($ (-699 (-417 (-965 (-574)))))) (-15 -1705 ((-3 $ "failed") (-699 (-417 (-965 (-574)))))))) -(((-623 (-872)) . T) ((-405) . T) ((-1233) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-4327 (($ |#1| |#2|) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-2984 ((|#2| $) NIL)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 33)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 12 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-519 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|))) (-1064) (-860)) (T -394)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-393)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-393)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-393)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-699 (-966 (-388)))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-966 (-388)))) (-4 *1 (-393)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-699 (-966 (-574)))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-966 (-574)))) (-4 *1 (-393)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-966 (-388))))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-966 (-388))))) (-4 *1 (-393)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-966 (-574))))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-966 (-574))))) (-4 *1 (-393))))) +(-13 (-405) (-10 -8 (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-338))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))) (-15 -2214 ($ (-699 (-324 (-388))))) (-15 -1704 ((-3 $ "failed") (-699 (-324 (-388))))) (-15 -2214 ($ (-699 (-324 (-574))))) (-15 -1704 ((-3 $ "failed") (-699 (-324 (-574))))) (-15 -2214 ($ (-699 (-966 (-388))))) (-15 -1704 ((-3 $ "failed") (-699 (-966 (-388))))) (-15 -2214 ($ (-699 (-966 (-574))))) (-15 -1704 ((-3 $ "failed") (-699 (-966 (-574))))) (-15 -2214 ($ (-699 (-417 (-966 (-388)))))) (-15 -1704 ((-3 $ "failed") (-699 (-417 (-966 (-388)))))) (-15 -2214 ($ (-699 (-417 (-966 (-574)))))) (-15 -1704 ((-3 $ "failed") (-699 (-417 (-966 (-574)))))))) +(((-623 (-872)) . T) ((-405) . T) ((-1234) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4328 (($ |#1| |#2|) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3758 ((|#2| $) NIL)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 33)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 12 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-519 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|))) (-1065) (-860)) (T -394)) NIL (-13 (-111 |#1| |#1|) (-519 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|))) -((-2863 (((-112) $ $) 7)) (-1496 (((-781) $) 34)) (-3831 (($) 19 T CONST)) (-4368 (((-3 $ "failed") $ $) 37)) (-1705 (((-3 |#1| "failed") $) 45)) (-2216 ((|#1| $) 46)) (-3911 (((-3 $ "failed") $) 16)) (-2782 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-3372 (((-112) $) 18)) (-2382 ((|#1| $ (-574)) 31)) (-4066 (((-781) $ (-574)) 32)) (-3632 (($ $ $) 28 (|has| |#1| (-860)))) (-1593 (($ $ $) 27 (|has| |#1| (-860)))) (-3341 (($ (-1 |#1| |#1|) $) 29)) (-4081 (($ (-1 (-781) (-781)) $) 30)) (-1412 (((-3 $ "failed") $ $) 38)) (-3945 (((-1174) $) 10)) (-3504 (($ $ $) 39)) (-3014 (($ $ $) 40)) (-3939 (((-1135) $) 11)) (-4279 (((-654 (-2 (|:| |gen| |#1|) (|:| -1618 (-781)))) $) 33)) (-3444 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2950 (((-872) $) 12) (($ |#1|) 44)) (-3838 (((-112) $ $) 9)) (-2154 (($) 20 T CONST)) (-3041 (((-112) $ $) 25 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 24 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 26 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 23 (|has| |#1| (-860)))) (** (($ $ (-934)) 14) (($ $ (-781)) 17) (($ |#1| (-781)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) -(((-395 |#1|) (-141) (-1115)) (T -395)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-3014 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-3504 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-1412 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-4368 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-3444 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1115)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-2782 (*1 *2 *1 *1) (-12 (-4 *3 (-1115)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1115)) (-5 *2 (-781)))) (-4279 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1115)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1618 (-781))))))) (-4066 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1115)) (-5 *2 (-781)))) (-2382 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-4081 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1115)))) (-3341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1115))))) -(-13 (-736) (-1053 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-781))) (-15 -3014 ($ $ $)) (-15 -3504 ($ $ $)) (-15 -1412 ((-3 $ "failed") $ $)) (-15 -4368 ((-3 $ "failed") $ $)) (-15 -3444 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2782 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1496 ((-781) $)) (-15 -4279 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1618 (-781)))) $)) (-15 -4066 ((-781) $ (-574))) (-15 -2382 (|t#1| $ (-574))) (-15 -4081 ($ (-1 (-781) (-781)) $)) (-15 -3341 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|))) -(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1053 |#1|) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781) $) 74)) (-3831 (($) NIL T CONST)) (-4368 (((-3 $ "failed") $ $) 77)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2782 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-3372 (((-112) $) 17)) (-2382 ((|#1| $ (-574)) NIL)) (-4066 (((-781) $ (-574)) NIL)) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-3341 (($ (-1 |#1| |#1|) $) 40)) (-4081 (($ (-1 (-781) (-781)) $) 37)) (-1412 (((-3 $ "failed") $ $) 60)) (-3945 (((-1174) $) NIL)) (-3504 (($ $ $) 28)) (-3014 (($ $ $) 26)) (-3939 (((-1135) $) NIL)) (-4279 (((-654 (-2 (|:| |gen| |#1|) (|:| -1618 (-781)))) $) 34)) (-3444 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2950 (((-872) $) 24) (($ |#1|) NIL)) (-3838 (((-112) $ $) NIL)) (-2154 (($) 11 T CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) 84 (|has| |#1| (-860)))) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-396 |#1|) (-395 |#1|) (-1115)) (T -396)) +((-2864 (((-112) $ $) 7)) (-1496 (((-781) $) 34)) (-3250 (($) 19 T CONST)) (-3369 (((-3 $ "failed") $ $) 37)) (-1704 (((-3 |#1| "failed") $) 45)) (-2214 ((|#1| $) 46)) (-4322 (((-3 $ "failed") $) 16)) (-4372 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-4226 (((-112) $) 18)) (-1719 ((|#1| $ (-574)) 31)) (-2718 (((-781) $ (-574)) 32)) (-3634 (($ $ $) 28 (|has| |#1| (-860)))) (-4380 (($ $ $) 27 (|has| |#1| (-860)))) (-4359 (($ (-1 |#1| |#1|) $) 29)) (-4013 (($ (-1 (-781) (-781)) $) 30)) (-4067 (((-3 $ "failed") $ $) 38)) (-1489 (((-1175) $) 10)) (-3227 (($ $ $) 39)) (-2555 (($ $ $) 40)) (-3940 (((-1136) $) 11)) (-3314 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-781)))) $) 33)) (-2969 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2951 (((-872) $) 12) (($ |#1|) 44)) (-4069 (((-112) $ $) 9)) (-2153 (($) 20 T CONST)) (-3042 (((-112) $ $) 25 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 24 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 26 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 23 (|has| |#1| (-860)))) (** (($ $ (-935)) 14) (($ $ (-781)) 17) (($ |#1| (-781)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) +(((-395 |#1|) (-141) (-1116)) (T -395)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-2555 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-3227 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-4067 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-3369 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-2969 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1116)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-4372 (*1 *2 *1 *1) (-12 (-4 *3 (-1116)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1116)) (-5 *2 (-781)))) (-3314 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1116)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 (-781))))))) (-2718 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1116)) (-5 *2 (-781)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-4013 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1116)))) (-4359 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1116))))) +(-13 (-736) (-1054 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-781))) (-15 -2555 ($ $ $)) (-15 -3227 ($ $ $)) (-15 -4067 ((-3 $ "failed") $ $)) (-15 -3369 ((-3 $ "failed") $ $)) (-15 -2969 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4372 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1496 ((-781) $)) (-15 -3314 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1617 (-781)))) $)) (-15 -2718 ((-781) $ (-574))) (-15 -1719 (|t#1| $ (-574))) (-15 -4013 ($ (-1 (-781) (-781)) $)) (-15 -4359 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|))) +(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1054 |#1|) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781) $) 74)) (-3250 (($) NIL T CONST)) (-3369 (((-3 $ "failed") $ $) 77)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-4372 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-4226 (((-112) $) 17)) (-1719 ((|#1| $ (-574)) NIL)) (-2718 (((-781) $ (-574)) NIL)) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-4359 (($ (-1 |#1| |#1|) $) 40)) (-4013 (($ (-1 (-781) (-781)) $) 37)) (-4067 (((-3 $ "failed") $ $) 60)) (-1489 (((-1175) $) NIL)) (-3227 (($ $ $) 28)) (-2555 (($ $ $) 26)) (-3940 (((-1136) $) NIL)) (-3314 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-781)))) $) 34)) (-2969 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2951 (((-872) $) 24) (($ |#1|) NIL)) (-4069 (((-112) $ $) NIL)) (-2153 (($) 11 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) 84 (|has| |#1| (-860)))) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-396 |#1|) (-395 |#1|) (-1116)) (T -396)) NIL (-395 |#1|) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-1705 (((-3 (-574) "failed") $) 53)) (-2216 (((-574) $) 54)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3632 (($ $ $) 60)) (-1593 (($ $ $) 59)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ $) 48)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 52)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3041 (((-112) $ $) 57)) (-3018 (((-112) $ $) 56)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 58)) (-3009 (((-112) $ $) 55)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 53)) (-2214 (((-574) $) 54)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-3634 (($ $ $) 60)) (-4380 (($ $ $) 59)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ $) 48)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 52)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 57)) (-3020 (((-112) $ $) 56)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 58)) (-3009 (((-112) $ $) 55)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-397) (-141)) (T -397)) NIL -(-13 (-566) (-860) (-1053 (-574))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1053 (-574)) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3264 (((-112) $) 25)) (-4118 (((-112) $) 22)) (-3763 (($ (-1174) (-1174) (-1174)) 26)) (-2040 (((-1174) $) 16)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3686 (($ (-1174) (-1174) (-1174)) 14)) (-2866 (((-1174) $) 17)) (-3723 (((-112) $) 18)) (-2581 (((-1174) $) 15)) (-2950 (((-872) $) 12) (($ (-1174)) 13) (((-1174) $) 9)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 7))) +(-13 (-566) (-860) (-1054 (-574))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1054 (-574)) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1573 (((-112) $) 25)) (-2200 (((-112) $) 22)) (-3764 (($ (-1175) (-1175) (-1175)) 26)) (-2039 (((-1175) $) 16)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3687 (($ (-1175) (-1175) (-1175)) 14)) (-2827 (((-1175) $) 17)) (-3000 (((-112) $) 18)) (-2582 (((-1175) $) 15)) (-2951 (((-872) $) 12) (($ (-1175)) 13) (((-1175) $) 9)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 7))) (((-398) (-399)) (T -398)) NIL (-399) -((-2863 (((-112) $ $) 7)) (-3264 (((-112) $) 17)) (-4118 (((-112) $) 18)) (-3763 (($ (-1174) (-1174) (-1174)) 16)) (-2040 (((-1174) $) 21)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3686 (($ (-1174) (-1174) (-1174)) 23)) (-2866 (((-1174) $) 20)) (-3723 (((-112) $) 19)) (-2581 (((-1174) $) 22)) (-2950 (((-872) $) 12) (($ (-1174)) 25) (((-1174) $) 24)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +((-2864 (((-112) $ $) 7)) (-1573 (((-112) $) 17)) (-2200 (((-112) $) 18)) (-3764 (($ (-1175) (-1175) (-1175)) 16)) (-2039 (((-1175) $) 21)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3687 (($ (-1175) (-1175) (-1175)) 23)) (-2827 (((-1175) $) 20)) (-3000 (((-112) $) 19)) (-2582 (((-1175) $) 22)) (-2951 (((-872) $) 12) (($ (-1175)) 25) (((-1175) $) 24)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) (((-399) (-141)) (T -399)) -((-3686 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1174)) (-4 *1 (-399)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174)))) (-2866 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-4118 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-3763 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1174)) (-4 *1 (-399))))) -(-13 (-1115) (-500 (-1174)) (-10 -8 (-15 -3686 ($ (-1174) (-1174) (-1174))) (-15 -2581 ((-1174) $)) (-15 -2040 ((-1174) $)) (-15 -2866 ((-1174) $)) (-15 -3723 ((-112) $)) (-15 -4118 ((-112) $)) (-15 -3264 ((-112) $)) (-15 -3763 ($ (-1174) (-1174) (-1174))))) -(((-102) . T) ((-626 #0=(-1174)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-1859 (((-872) $) 63)) (-3831 (($) NIL T CONST)) (-3204 (($ $ (-934)) NIL)) (-3518 (($ $ (-934)) NIL)) (-2177 (($ $ (-934)) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2975 (($ (-781)) 38)) (-3480 (((-781)) 18)) (-3735 (((-872) $) 65)) (-3490 (($ $ $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2087 (($ $ $ $) NIL)) (-3157 (($ $ $) NIL)) (-2142 (($) 24 T CONST)) (-2985 (((-112) $ $) 41)) (-3089 (($ $) 48) (($ $ $) 50)) (-3074 (($ $ $) 51)) (** (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-400 |#1| |#2| |#3|) (-13 (-754 |#3|) (-10 -8 (-15 -3480 ((-781))) (-15 -3735 ((-872) $)) (-15 -1859 ((-872) $)) (-15 -2975 ($ (-781))))) (-781) (-781) (-174)) (T -400)) -((-3480 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-1859 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) -(-13 (-754 |#3|) (-10 -8 (-15 -3480 ((-781))) (-15 -3735 ((-872) $)) (-15 -1859 ((-872) $)) (-15 -2975 ($ (-781))))) -((-2977 (((-1174)) 12)) (-1892 (((-1162 (-1174))) 30)) (-3721 (((-1288) (-1174)) 27) (((-1288) (-398)) 26)) (-3731 (((-1288)) 28)) (-2473 (((-1162 (-1174))) 29))) -(((-401) (-10 -7 (-15 -2473 ((-1162 (-1174)))) (-15 -1892 ((-1162 (-1174)))) (-15 -3731 ((-1288))) (-15 -3721 ((-1288) (-398))) (-15 -3721 ((-1288) (-1174))) (-15 -2977 ((-1174))))) (T -401)) -((-2977 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-401)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-401)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1288)) (-5 *1 (-401)))) (-3731 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-401)))) (-1892 (*1 *2) (-12 (-5 *2 (-1162 (-1174))) (-5 *1 (-401)))) (-2473 (*1 *2) (-12 (-5 *2 (-1162 (-1174))) (-5 *1 (-401))))) -(-10 -7 (-15 -2473 ((-1162 (-1174)))) (-15 -1892 ((-1162 (-1174)))) (-15 -3731 ((-1288))) (-15 -3721 ((-1288) (-398))) (-15 -3721 ((-1288) (-1174))) (-15 -2977 ((-1174)))) -((-2725 (((-781) (-345 |#1| |#2| |#3| |#4|)) 16))) -(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2725 ((-781) (-345 |#1| |#2| |#3| |#4|)))) (-13 (-377) (-372)) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -402)) -((-2725 (*1 *2 *3) (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372))) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-4 *7 (-351 *4 *5 *6)) (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7))))) -(-10 -7 (-15 -2725 ((-781) (-345 |#1| |#2| |#3| |#4|)))) -((-2950 (((-404) |#1|) 11))) -(((-403 |#1|) (-10 -7 (-15 -2950 ((-404) |#1|))) (-1115)) (T -403)) -((-2950 (*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1115))))) -(-10 -7 (-15 -2950 ((-404) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3705 (((-654 (-1174)) $ (-654 (-1174))) 42)) (-2414 (((-654 (-1174)) $ (-654 (-1174))) 43)) (-1526 (((-654 (-1174)) $ (-654 (-1174))) 44)) (-2802 (((-654 (-1174)) $) 39)) (-3763 (($) 30)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3353 (((-654 (-1174)) $) 40)) (-3708 (((-654 (-1174)) $) 41)) (-1413 (((-1288) $ (-574)) 37) (((-1288) $) 38)) (-1845 (($ (-872) (-574)) 35)) (-2950 (((-872) $) 49) (($ (-872)) 32)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-404) (-13 (-1115) (-626 (-872)) (-10 -8 (-15 -1845 ($ (-872) (-574))) (-15 -1413 ((-1288) $ (-574))) (-15 -1413 ((-1288) $)) (-15 -3708 ((-654 (-1174)) $)) (-15 -3353 ((-654 (-1174)) $)) (-15 -3763 ($)) (-15 -2802 ((-654 (-1174)) $)) (-15 -1526 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -2414 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -3705 ((-654 (-1174)) $ (-654 (-1174))))))) (T -404)) -((-1845 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-404)))) (-1413 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-404)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-404)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) (-3353 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) (-3763 (*1 *1) (-5 *1 (-404))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) (-1526 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) (-2414 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) (-3705 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404))))) -(-13 (-1115) (-626 (-872)) (-10 -8 (-15 -1845 ($ (-872) (-574))) (-15 -1413 ((-1288) $ (-574))) (-15 -1413 ((-1288) $)) (-15 -3708 ((-654 (-1174)) $)) (-15 -3353 ((-654 (-1174)) $)) (-15 -3763 ($)) (-15 -2802 ((-654 (-1174)) $)) (-15 -1526 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -2414 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -3705 ((-654 (-1174)) $ (-654 (-1174)))))) -((-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8))) +((-3687 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-399)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175)))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175)))) (-2827 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-3764 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-399))))) +(-13 (-1116) (-500 (-1175)) (-10 -8 (-15 -3687 ($ (-1175) (-1175) (-1175))) (-15 -2582 ((-1175) $)) (-15 -2039 ((-1175) $)) (-15 -2827 ((-1175) $)) (-15 -3000 ((-112) $)) (-15 -2200 ((-112) $)) (-15 -1573 ((-112) $)) (-15 -3764 ($ (-1175) (-1175) (-1175))))) +(((-102) . T) ((-626 #0=(-1175)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3439 (((-872) $) 63)) (-3250 (($) NIL T CONST)) (-3066 (($ $ (-935)) NIL)) (-4081 (($ $ (-935)) NIL)) (-4308 (($ $ (-935)) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($ (-781)) 38)) (-2995 (((-781)) 18)) (-2031 (((-872) $) 65)) (-3955 (($ $ $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-4010 (($ $ $ $) NIL)) (-4099 (($ $ $) NIL)) (-2141 (($) 24 T CONST)) (-2986 (((-112) $ $) 41)) (-3090 (($ $) 48) (($ $ $) 50)) (-3074 (($ $ $) 51)) (** (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-400 |#1| |#2| |#3|) (-13 (-754 |#3|) (-10 -8 (-15 -2995 ((-781))) (-15 -2031 ((-872) $)) (-15 -3439 ((-872) $)) (-15 -2975 ($ (-781))))) (-781) (-781) (-174)) (T -400)) +((-2995 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) +(-13 (-754 |#3|) (-10 -8 (-15 -2995 ((-781))) (-15 -2031 ((-872) $)) (-15 -3439 ((-872) $)) (-15 -2975 ($ (-781))))) +((-2168 (((-1175)) 12)) (-1466 (((-1163 (-1175))) 30)) (-3722 (((-1289) (-1175)) 27) (((-1289) (-398)) 26)) (-3732 (((-1289)) 28)) (-3541 (((-1163 (-1175))) 29))) +(((-401) (-10 -7 (-15 -3541 ((-1163 (-1175)))) (-15 -1466 ((-1163 (-1175)))) (-15 -3732 ((-1289))) (-15 -3722 ((-1289) (-398))) (-15 -3722 ((-1289) (-1175))) (-15 -2168 ((-1175))))) (T -401)) +((-2168 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-401)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-401)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1289)) (-5 *1 (-401)))) (-3732 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-401)))) (-1466 (*1 *2) (-12 (-5 *2 (-1163 (-1175))) (-5 *1 (-401)))) (-3541 (*1 *2) (-12 (-5 *2 (-1163 (-1175))) (-5 *1 (-401))))) +(-10 -7 (-15 -3541 ((-1163 (-1175)))) (-15 -1466 ((-1163 (-1175)))) (-15 -3732 ((-1289))) (-15 -3722 ((-1289) (-398))) (-15 -3722 ((-1289) (-1175))) (-15 -2168 ((-1175)))) +((-3547 (((-781) (-345 |#1| |#2| |#3| |#4|)) 16))) +(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3547 ((-781) (-345 |#1| |#2| |#3| |#4|)))) (-13 (-377) (-372)) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -402)) +((-3547 (*1 *2 *3) (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372))) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-4 *7 (-351 *4 *5 *6)) (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7))))) +(-10 -7 (-15 -3547 ((-781) (-345 |#1| |#2| |#3| |#4|)))) +((-2951 (((-404) |#1|) 11))) +(((-403 |#1|) (-10 -7 (-15 -2951 ((-404) |#1|))) (-1116)) (T -403)) +((-2951 (*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1116))))) +(-10 -7 (-15 -2951 ((-404) |#1|))) +((-2864 (((-112) $ $) NIL)) (-3493 (((-654 (-1175)) $ (-654 (-1175))) 42)) (-2198 (((-654 (-1175)) $ (-654 (-1175))) 43)) (-3492 (((-654 (-1175)) $ (-654 (-1175))) 44)) (-2110 (((-654 (-1175)) $) 39)) (-3764 (($) 30)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3354 (((-654 (-1175)) $) 40)) (-4156 (((-654 (-1175)) $) 41)) (-1414 (((-1289) $ (-574)) 37) (((-1289) $) 38)) (-1844 (($ (-872) (-574)) 35)) (-2951 (((-872) $) 49) (($ (-872)) 32)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-404) (-13 (-1116) (-626 (-872)) (-10 -8 (-15 -1844 ($ (-872) (-574))) (-15 -1414 ((-1289) $ (-574))) (-15 -1414 ((-1289) $)) (-15 -4156 ((-654 (-1175)) $)) (-15 -3354 ((-654 (-1175)) $)) (-15 -3764 ($)) (-15 -2110 ((-654 (-1175)) $)) (-15 -3492 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -2198 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -3493 ((-654 (-1175)) $ (-654 (-1175))))))) (T -404)) +((-1844 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-404)))) (-1414 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-404)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-404)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) (-3764 (*1 *1) (-5 *1 (-404))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) (-3492 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) (-2198 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) (-3493 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404))))) +(-13 (-1116) (-626 (-872)) (-10 -8 (-15 -1844 ($ (-872) (-574))) (-15 -1414 ((-1289) $ (-574))) (-15 -1414 ((-1289) $)) (-15 -4156 ((-654 (-1175)) $)) (-15 -3354 ((-654 (-1175)) $)) (-15 -3764 ($)) (-15 -2110 ((-654 (-1175)) $)) (-15 -3492 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -2198 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -3493 ((-654 (-1175)) $ (-654 (-1175)))))) +((-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8))) (((-405) (-141)) (T -405)) -((-3741 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1288))))) -(-13 (-1233) (-623 (-872)) (-10 -8 (-15 -3741 ((-1288) $)))) -(((-623 (-872)) . T) ((-1233) . T)) -((-1705 (((-3 $ "failed") (-324 (-388))) 21) (((-3 $ "failed") (-324 (-574))) 19) (((-3 $ "failed") (-965 (-388))) 17) (((-3 $ "failed") (-965 (-574))) 15) (((-3 $ "failed") (-417 (-965 (-388)))) 13) (((-3 $ "failed") (-417 (-965 (-574)))) 11)) (-2216 (($ (-324 (-388))) 22) (($ (-324 (-574))) 20) (($ (-965 (-388))) 18) (($ (-965 (-574))) 16) (($ (-417 (-965 (-388)))) 14) (($ (-417 (-965 (-574)))) 12)) (-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 23))) +((-3742 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1289))))) +(-13 (-1234) (-623 (-872)) (-10 -8 (-15 -3742 ((-1289) $)))) +(((-623 (-872)) . T) ((-1234) . T)) +((-1704 (((-3 $ "failed") (-324 (-388))) 21) (((-3 $ "failed") (-324 (-574))) 19) (((-3 $ "failed") (-966 (-388))) 17) (((-3 $ "failed") (-966 (-574))) 15) (((-3 $ "failed") (-417 (-966 (-388)))) 13) (((-3 $ "failed") (-417 (-966 (-574)))) 11)) (-2214 (($ (-324 (-388))) 22) (($ (-324 (-574))) 20) (($ (-966 (-388))) 18) (($ (-966 (-574))) 16) (($ (-417 (-966 (-388)))) 14) (($ (-417 (-966 (-574)))) 12)) (-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 23))) (((-406) (-141)) (T -406)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-406)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-406)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-965 (-388))) (-4 *1 (-406)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-388))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-965 (-574))) (-4 *1 (-406)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-574))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-388)))) (-4 *1 (-406)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-965 (-388)))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-574)))) (-4 *1 (-406)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-965 (-574)))) (-4 *1 (-406))))) -(-13 (-405) (-10 -8 (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-338))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338)))))) (-15 -2216 ($ (-324 (-388)))) (-15 -1705 ((-3 $ "failed") (-324 (-388)))) (-15 -2216 ($ (-324 (-574)))) (-15 -1705 ((-3 $ "failed") (-324 (-574)))) (-15 -2216 ($ (-965 (-388)))) (-15 -1705 ((-3 $ "failed") (-965 (-388)))) (-15 -2216 ($ (-965 (-574)))) (-15 -1705 ((-3 $ "failed") (-965 (-574)))) (-15 -2216 ($ (-417 (-965 (-388))))) (-15 -1705 ((-3 $ "failed") (-417 (-965 (-388))))) (-15 -2216 ($ (-417 (-965 (-574))))) (-15 -1705 ((-3 $ "failed") (-417 (-965 (-574))))))) -(((-623 (-872)) . T) ((-405) . T) ((-1233) . T)) -((-4215 (((-654 (-1174)) (-654 (-1174))) 9)) (-3741 (((-1288) (-398)) 26)) (-4170 (((-1119) (-1192) (-654 (-1192)) (-1195) (-654 (-1192))) 59) (((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192)) (-1192)) 34) (((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192))) 33))) -(((-407) (-10 -7 (-15 -4170 ((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192)))) (-15 -4170 ((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192)) (-1192))) (-15 -4170 ((-1119) (-1192) (-654 (-1192)) (-1195) (-654 (-1192)))) (-15 -3741 ((-1288) (-398))) (-15 -4215 ((-654 (-1174)) (-654 (-1174)))))) (T -407)) -((-4215 (*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-407)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1288)) (-5 *1 (-407)))) (-4170 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-654 (-1192))) (-5 *5 (-1195)) (-5 *3 (-1192)) (-5 *2 (-1119)) (-5 *1 (-407)))) (-4170 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1192))))) (-5 *6 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1119)) (-5 *1 (-407)))) (-4170 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1192))))) (-5 *6 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1119)) (-5 *1 (-407))))) -(-10 -7 (-15 -4170 ((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192)))) (-15 -4170 ((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192)) (-1192))) (-15 -4170 ((-1119) (-1192) (-654 (-1192)) (-1195) (-654 (-1192)))) (-15 -3741 ((-1288) (-398))) (-15 -4215 ((-654 (-1174)) (-654 (-1174))))) -((-3741 (((-1288) $) 35)) (-2950 (((-872) $) 97) (($ (-338)) 99) (($ (-654 (-338))) 98) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 96) (($ (-324 (-711))) 52) (($ (-324 (-709))) 72) (($ (-324 (-704))) 85) (($ (-302 (-324 (-711)))) 67) (($ (-302 (-324 (-709)))) 80) (($ (-302 (-324 (-704)))) 93) (($ (-324 (-574))) 104) (($ (-324 (-388))) 117) (($ (-324 (-171 (-388)))) 130) (($ (-302 (-324 (-574)))) 112) (($ (-302 (-324 (-388)))) 125) (($ (-302 (-324 (-171 (-388))))) 138))) -(((-408 |#1| |#2| |#3| |#4|) (-13 (-405) (-10 -8 (-15 -2950 ($ (-338))) (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338)))))) (-15 -2950 ($ (-324 (-711)))) (-15 -2950 ($ (-324 (-709)))) (-15 -2950 ($ (-324 (-704)))) (-15 -2950 ($ (-302 (-324 (-711))))) (-15 -2950 ($ (-302 (-324 (-709))))) (-15 -2950 ($ (-302 (-324 (-704))))) (-15 -2950 ($ (-324 (-574)))) (-15 -2950 ($ (-324 (-388)))) (-15 -2950 ($ (-324 (-171 (-388))))) (-15 -2950 ($ (-302 (-324 (-574))))) (-15 -2950 ($ (-302 (-324 (-388))))) (-15 -2950 ($ (-302 (-324 (-171 (-388)))))))) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-1192)) (-1196)) (T -408)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-711)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-709)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-704)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-574)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-171 (-388))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196))))) -(-13 (-405) (-10 -8 (-15 -2950 ($ (-338))) (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338)))))) (-15 -2950 ($ (-324 (-711)))) (-15 -2950 ($ (-324 (-709)))) (-15 -2950 ($ (-324 (-704)))) (-15 -2950 ($ (-302 (-324 (-711))))) (-15 -2950 ($ (-302 (-324 (-709))))) (-15 -2950 ($ (-302 (-324 (-704))))) (-15 -2950 ($ (-324 (-574)))) (-15 -2950 ($ (-324 (-388)))) (-15 -2950 ($ (-324 (-171 (-388))))) (-15 -2950 ($ (-302 (-324 (-574))))) (-15 -2950 ($ (-302 (-324 (-388))))) (-15 -2950 ($ (-302 (-324 (-171 (-388)))))))) -((-2863 (((-112) $ $) NIL)) (-2573 ((|#2| $) 38)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2777 (($ (-417 |#2|)) 93)) (-4266 (((-654 (-2 (|:| -2017 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))) $) 39)) (-3878 (($ $) 34) (($ $ (-781)) 36)) (-1845 (((-417 |#2|) $) 49)) (-2962 (($ (-654 (-2 (|:| -2017 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|)))) 33)) (-2950 (((-872) $) 131)) (-3838 (((-112) $ $) NIL)) (-3583 (($ $) 35) (($ $ (-781)) 37)) (-2985 (((-112) $ $) NIL)) (-3074 (($ |#2| $) 41))) -(((-409 |#1| |#2|) (-13 (-1115) (-624 (-417 |#2|)) (-10 -8 (-15 -3074 ($ |#2| $)) (-15 -2777 ($ (-417 |#2|))) (-15 -2573 (|#2| $)) (-15 -4266 ((-654 (-2 (|:| -2017 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))) $)) (-15 -2962 ($ (-654 (-2 (|:| -2017 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))))) (-15 -3878 ($ $)) (-15 -3583 ($ $)) (-15 -3878 ($ $ (-781))) (-15 -3583 ($ $ (-781))))) (-13 (-372) (-148)) (-1259 |#1|)) (T -409)) -((-3074 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *2)) (-4 *2 (-1259 *3)))) (-2777 (*1 *1 *2) (-12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-2573 (*1 *2 *1) (-12 (-4 *2 (-1259 *3)) (-5 *1 (-409 *3 *2)) (-4 *3 (-13 (-372) (-148))))) (-4266 (*1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *2 (-654 (-2 (|:| -2017 (-781)) (|:| -3332 *4) (|:| |num| *4)))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1259 *3)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -2017 (-781)) (|:| -3332 *4) (|:| |num| *4)))) (-4 *4 (-1259 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-3878 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1259 *2)))) (-3583 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1259 *2)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1259 *3)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1259 *3))))) -(-13 (-1115) (-624 (-417 |#2|)) (-10 -8 (-15 -3074 ($ |#2| $)) (-15 -2777 ($ (-417 |#2|))) (-15 -2573 (|#2| $)) (-15 -4266 ((-654 (-2 (|:| -2017 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))) $)) (-15 -2962 ($ (-654 (-2 (|:| -2017 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))))) (-15 -3878 ($ $)) (-15 -3583 ($ $)) (-15 -3878 ($ $ (-781))) (-15 -3583 ($ $ (-781))))) -((-2863 (((-112) $ $) 9 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 16 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 15 (|has| |#1| (-897 (-574))))) (-3945 (((-1174) $) 13 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-3939 (((-1135) $) 12 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2950 (((-872) $) 11 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-3838 (((-112) $ $) 14 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2985 (((-112) $ $) 10 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388))))))) -(((-410 |#1|) (-141) (-1233)) (T -410)) -NIL -(-13 (-1233) (-10 -7 (IF (|has| |t#1| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|))) -(((-102) -2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-623 (-872)) -2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-1115) -2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-1233) . T)) -((-4158 (($ $) 10) (($ $ (-781)) 12))) -(((-411 |#1|) (-10 -8 (-15 -4158 (|#1| |#1| (-781))) (-15 -4158 (|#1| |#1|))) (-412)) (T -411)) -NIL -(-10 -8 (-15 -4158 (|#1| |#1| (-781))) (-15 -4158 (|#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 81)) (-3954 (((-428 $) $) 80)) (-3656 (((-112) $ $) 65)) (-3831 (($) 18 T CONST)) (-2799 (($ $ $) 61)) (-3911 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-4158 (($ $) 87) (($ $ (-781)) 86)) (-1782 (((-112) $) 79)) (-2725 (((-843 (-934)) $) 89)) (-3372 (((-112) $) 35)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-4200 (((-428 $) $) 82)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3364 (((-781) $) 64)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-3881 (((-3 (-781) "failed") $ $) 88)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3247 (((-3 $ "failed") $) 90)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-406)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-406)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-406)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-966 (-388))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-388))) (-4 *1 (-406)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-966 (-574))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-574))) (-4 *1 (-406)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-388)))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-966 (-388)))) (-4 *1 (-406)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-574)))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-966 (-574)))) (-4 *1 (-406))))) +(-13 (-405) (-10 -8 (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-338))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))) (-15 -2214 ($ (-324 (-388)))) (-15 -1704 ((-3 $ "failed") (-324 (-388)))) (-15 -2214 ($ (-324 (-574)))) (-15 -1704 ((-3 $ "failed") (-324 (-574)))) (-15 -2214 ($ (-966 (-388)))) (-15 -1704 ((-3 $ "failed") (-966 (-388)))) (-15 -2214 ($ (-966 (-574)))) (-15 -1704 ((-3 $ "failed") (-966 (-574)))) (-15 -2214 ($ (-417 (-966 (-388))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-388))))) (-15 -2214 ($ (-417 (-966 (-574))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-574))))))) +(((-623 (-872)) . T) ((-405) . T) ((-1234) . T)) +((-3348 (((-654 (-1175)) (-654 (-1175))) 9)) (-3742 (((-1289) (-398)) 26)) (-3523 (((-1120) (-1193) (-654 (-1193)) (-1196) (-654 (-1193))) 59) (((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193)) (-1193)) 34) (((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193))) 33))) +(((-407) (-10 -7 (-15 -3523 ((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193)))) (-15 -3523 ((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193)) (-1193))) (-15 -3523 ((-1120) (-1193) (-654 (-1193)) (-1196) (-654 (-1193)))) (-15 -3742 ((-1289) (-398))) (-15 -3348 ((-654 (-1175)) (-654 (-1175)))))) (T -407)) +((-3348 (*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-407)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1289)) (-5 *1 (-407)))) (-3523 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-654 (-1193))) (-5 *5 (-1196)) (-5 *3 (-1193)) (-5 *2 (-1120)) (-5 *1 (-407)))) (-3523 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1193))))) (-5 *6 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1120)) (-5 *1 (-407)))) (-3523 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1193))))) (-5 *6 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1120)) (-5 *1 (-407))))) +(-10 -7 (-15 -3523 ((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193)))) (-15 -3523 ((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193)) (-1193))) (-15 -3523 ((-1120) (-1193) (-654 (-1193)) (-1196) (-654 (-1193)))) (-15 -3742 ((-1289) (-398))) (-15 -3348 ((-654 (-1175)) (-654 (-1175))))) +((-3742 (((-1289) $) 35)) (-2951 (((-872) $) 97) (($ (-338)) 99) (($ (-654 (-338))) 98) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 96) (($ (-324 (-711))) 52) (($ (-324 (-709))) 72) (($ (-324 (-704))) 85) (($ (-302 (-324 (-711)))) 67) (($ (-302 (-324 (-709)))) 80) (($ (-302 (-324 (-704)))) 93) (($ (-324 (-574))) 104) (($ (-324 (-388))) 117) (($ (-324 (-171 (-388)))) 130) (($ (-302 (-324 (-574)))) 112) (($ (-302 (-324 (-388)))) 125) (($ (-302 (-324 (-171 (-388))))) 138))) +(((-408 |#1| |#2| |#3| |#4|) (-13 (-405) (-10 -8 (-15 -2951 ($ (-338))) (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))) (-15 -2951 ($ (-324 (-711)))) (-15 -2951 ($ (-324 (-709)))) (-15 -2951 ($ (-324 (-704)))) (-15 -2951 ($ (-302 (-324 (-711))))) (-15 -2951 ($ (-302 (-324 (-709))))) (-15 -2951 ($ (-302 (-324 (-704))))) (-15 -2951 ($ (-324 (-574)))) (-15 -2951 ($ (-324 (-388)))) (-15 -2951 ($ (-324 (-171 (-388))))) (-15 -2951 ($ (-302 (-324 (-574))))) (-15 -2951 ($ (-302 (-324 (-388))))) (-15 -2951 ($ (-302 (-324 (-171 (-388)))))))) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-1193)) (-1197)) (T -408)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-711)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-709)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-704)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-574)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-171 (-388))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))) +(-13 (-405) (-10 -8 (-15 -2951 ($ (-338))) (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))) (-15 -2951 ($ (-324 (-711)))) (-15 -2951 ($ (-324 (-709)))) (-15 -2951 ($ (-324 (-704)))) (-15 -2951 ($ (-302 (-324 (-711))))) (-15 -2951 ($ (-302 (-324 (-709))))) (-15 -2951 ($ (-302 (-324 (-704))))) (-15 -2951 ($ (-324 (-574)))) (-15 -2951 ($ (-324 (-388)))) (-15 -2951 ($ (-324 (-171 (-388))))) (-15 -2951 ($ (-302 (-324 (-574))))) (-15 -2951 ($ (-302 (-324 (-388))))) (-15 -2951 ($ (-302 (-324 (-171 (-388)))))))) +((-2864 (((-112) $ $) NIL)) (-3341 ((|#2| $) 38)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1755 (($ (-417 |#2|)) 93)) (-1840 (((-654 (-2 (|:| -3139 (-781)) (|:| -3333 |#2|) (|:| |num| |#2|))) $) 39)) (-3879 (($ $) 34) (($ $ (-781)) 36)) (-1844 (((-417 |#2|) $) 49)) (-2963 (($ (-654 (-2 (|:| -3139 (-781)) (|:| -3333 |#2|) (|:| |num| |#2|)))) 33)) (-2951 (((-872) $) 131)) (-4069 (((-112) $ $) NIL)) (-3584 (($ $) 35) (($ $ (-781)) 37)) (-2986 (((-112) $ $) NIL)) (-3074 (($ |#2| $) 41))) +(((-409 |#1| |#2|) (-13 (-1116) (-624 (-417 |#2|)) (-10 -8 (-15 -3074 ($ |#2| $)) (-15 -1755 ($ (-417 |#2|))) (-15 -3341 (|#2| $)) (-15 -1840 ((-654 (-2 (|:| -3139 (-781)) (|:| -3333 |#2|) (|:| |num| |#2|))) $)) (-15 -2963 ($ (-654 (-2 (|:| -3139 (-781)) (|:| -3333 |#2|) (|:| |num| |#2|))))) (-15 -3879 ($ $)) (-15 -3584 ($ $)) (-15 -3879 ($ $ (-781))) (-15 -3584 ($ $ (-781))))) (-13 (-372) (-148)) (-1260 |#1|)) (T -409)) +((-3074 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *2)) (-4 *2 (-1260 *3)))) (-1755 (*1 *1 *2) (-12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-3341 (*1 *2 *1) (-12 (-4 *2 (-1260 *3)) (-5 *1 (-409 *3 *2)) (-4 *3 (-13 (-372) (-148))))) (-1840 (*1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *2 (-654 (-2 (|:| -3139 (-781)) (|:| -3333 *4) (|:| |num| *4)))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1260 *3)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3139 (-781)) (|:| -3333 *4) (|:| |num| *4)))) (-4 *4 (-1260 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-3879 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1260 *2)))) (-3584 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1260 *2)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1260 *3)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1260 *3))))) +(-13 (-1116) (-624 (-417 |#2|)) (-10 -8 (-15 -3074 ($ |#2| $)) (-15 -1755 ($ (-417 |#2|))) (-15 -3341 (|#2| $)) (-15 -1840 ((-654 (-2 (|:| -3139 (-781)) (|:| -3333 |#2|) (|:| |num| |#2|))) $)) (-15 -2963 ($ (-654 (-2 (|:| -3139 (-781)) (|:| -3333 |#2|) (|:| |num| |#2|))))) (-15 -3879 ($ $)) (-15 -3584 ($ $)) (-15 -3879 ($ $ (-781))) (-15 -3584 ($ $ (-781))))) +((-2864 (((-112) $ $) 9 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 16 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 15 (|has| |#1| (-897 (-574))))) (-1489 (((-1175) $) 13 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-3940 (((-1136) $) 12 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2951 (((-872) $) 11 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-4069 (((-112) $ $) 14 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2986 (((-112) $ $) 10 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388))))))) +(((-410 |#1|) (-141) (-1234)) (T -410)) +NIL +(-13 (-1234) (-10 -7 (IF (|has| |t#1| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|))) +(((-102) -2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-623 (-872)) -2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-1116) -2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-1234) . T)) +((-1995 (($ $) 10) (($ $ (-781)) 12))) +(((-411 |#1|) (-10 -8 (-15 -1995 (|#1| |#1| (-781))) (-15 -1995 (|#1| |#1|))) (-412)) (T -411)) +NIL +(-10 -8 (-15 -1995 (|#1| |#1| (-781))) (-15 -1995 (|#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 81)) (-1610 (((-428 $) $) 80)) (-3245 (((-112) $ $) 65)) (-3250 (($) 18 T CONST)) (-2800 (($ $ $) 61)) (-4322 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1995 (($ $) 87) (($ $ (-781)) 86)) (-3978 (((-112) $) 79)) (-3547 (((-843 (-935)) $) 89)) (-4226 (((-112) $) 35)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-4202 (((-428 $) $) 82)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2098 (((-781) $) 64)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-3261 (((-3 (-781) "failed") $ $) 88)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3424 (((-3 $ "failed") $) 90)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) (((-412) (-141)) (T -412)) -((-2725 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-934))))) (-3881 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781)))) (-4158 (*1 *1 *1) (-4 *1 (-412))) (-4158 (*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781))))) -(-13 (-372) (-146) (-10 -8 (-15 -2725 ((-843 (-934)) $)) (-15 -3881 ((-3 (-781) "failed") $ $)) (-15 -4158 ($ $)) (-15 -4158 ($ $ (-781))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) -((-2395 (($ (-574) (-574)) 11) (($ (-574) (-574) (-934)) NIL)) (-2354 (((-934)) 19) (((-934) (-934)) NIL))) -(((-413 |#1|) (-10 -8 (-15 -2354 ((-934) (-934))) (-15 -2354 ((-934))) (-15 -2395 (|#1| (-574) (-574) (-934))) (-15 -2395 (|#1| (-574) (-574)))) (-414)) (T -413)) -((-2354 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-413 *3)) (-4 *3 (-414))))) -(-10 -8 (-15 -2354 ((-934) (-934))) (-15 -2354 ((-934))) (-15 -2395 (|#1| (-574) (-574) (-934))) (-15 -2395 (|#1| (-574) (-574)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4018 (((-574) $) 97)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-3842 (($ $) 95)) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 81)) (-3954 (((-428 $) $) 80)) (-4211 (($ $) 105)) (-3656 (((-112) $ $) 65)) (-3011 (((-574) $) 122)) (-3831 (($) 18 T CONST)) (-3893 (($ $) 94)) (-1705 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2216 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2799 (($ $ $) 61)) (-3911 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1782 (((-112) $) 79)) (-3759 (((-934)) 138) (((-934) (-934)) 135 (|has| $ (-6 -4449)))) (-1913 (((-112) $) 120)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-2725 (((-574) $) 144)) (-3372 (((-112) $) 35)) (-2132 (($ $ (-574)) 104)) (-1386 (($ $) 100)) (-1808 (((-112) $) 121)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3632 (($ $ $) 119) (($) 132 (-12 (-2085 (|has| $ (-6 -4449))) (-2085 (|has| $ (-6 -4441)))))) (-1593 (($ $ $) 118) (($) 131 (-12 (-2085 (|has| $ (-6 -4449))) (-2085 (|has| $ (-6 -4441)))))) (-4290 (((-574) $) 141)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 78)) (-1361 (((-934) (-574)) 134 (|has| $ (-6 -4449)))) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2244 (($ $) 96)) (-3471 (($ $) 98)) (-2395 (($ (-574) (-574)) 146) (($ (-574) (-574) (-934)) 145)) (-4200 (((-428 $) $) 82)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2017 (((-574) $) 142)) (-3364 (((-781) $) 64)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-2354 (((-934)) 139) (((-934) (-934)) 136 (|has| $ (-6 -4449)))) (-2260 (((-934) (-574)) 133 (|has| $ (-6 -4449)))) (-1845 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-4019 (((-781)) 32 T CONST)) (-2753 (($ $) 99)) (-1708 (((-934)) 140) (((-934) (-934)) 137 (|has| $ (-6 -4449)))) (-3838 (((-112) $ $) 9)) (-2643 (((-934)) 143)) (-1842 (((-112) $ $) 45)) (-3306 (($ $) 123)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3041 (((-112) $ $) 116)) (-3018 (((-112) $ $) 115)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 117)) (-3009 (((-112) $ $) 114)) (-3098 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +((-3547 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-935))))) (-3261 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781)))) (-1995 (*1 *1 *1) (-4 *1 (-412))) (-1995 (*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781))))) +(-13 (-372) (-146) (-10 -8 (-15 -3547 ((-843 (-935)) $)) (-15 -3261 ((-3 (-781) "failed") $ $)) (-15 -1995 ($ $)) (-15 -1995 ($ $ (-781))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T)) +((-2399 (($ (-574) (-574)) 11) (($ (-574) (-574) (-935)) NIL)) (-4074 (((-935)) 19) (((-935) (-935)) NIL))) +(((-413 |#1|) (-10 -8 (-15 -4074 ((-935) (-935))) (-15 -4074 ((-935))) (-15 -2399 (|#1| (-574) (-574) (-935))) (-15 -2399 (|#1| (-574) (-574)))) (-414)) (T -413)) +((-4074 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-413 *3)) (-4 *3 (-414))))) +(-10 -8 (-15 -4074 ((-935) (-935))) (-15 -4074 ((-935))) (-15 -2399 (|#1| (-574) (-574) (-935))) (-15 -2399 (|#1| (-574) (-574)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4146 (((-574) $) 97)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-3332 (($ $) 95)) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 81)) (-1610 (((-428 $) $) 80)) (-4212 (($ $) 105)) (-3245 (((-112) $ $) 65)) (-2472 (((-574) $) 122)) (-3250 (($) 18 T CONST)) (-3361 (($ $) 94)) (-1704 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2214 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2800 (($ $ $) 61)) (-4322 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3978 (((-112) $) 79)) (-3760 (((-935)) 138) (((-935) (-935)) 135 (|has| $ (-6 -4450)))) (-3408 (((-112) $) 120)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-3547 (((-574) $) 144)) (-4226 (((-112) $) 35)) (-3527 (($ $ (-574)) 104)) (-1681 (($ $) 100)) (-3182 (((-112) $) 121)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3634 (($ $ $) 119) (($) 132 (-12 (-2084 (|has| $ (-6 -4450))) (-2084 (|has| $ (-6 -4442)))))) (-4380 (($ $ $) 118) (($) 131 (-12 (-2084 (|has| $ (-6 -4450))) (-2084 (|has| $ (-6 -4442)))))) (-4290 (((-574) $) 141)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3206 (((-935) (-574)) 134 (|has| $ (-6 -4450)))) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-2162 (($ $) 96)) (-2260 (($ $) 98)) (-2399 (($ (-574) (-574)) 146) (($ (-574) (-574) (-935)) 145)) (-4202 (((-428 $) $) 82)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3139 (((-574) $) 142)) (-2098 (((-781) $) 64)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-4074 (((-935)) 139) (((-935) (-935)) 136 (|has| $ (-6 -4450)))) (-3691 (((-935) (-574)) 133 (|has| $ (-6 -4450)))) (-1844 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-2898 (((-781)) 32 T CONST)) (-2544 (($ $) 99)) (-2562 (((-935)) 140) (((-935) (-935)) 137 (|has| $ (-6 -4450)))) (-4069 (((-112) $ $) 9)) (-2644 (((-935)) 143)) (-2836 (((-112) $ $) 45)) (-3936 (($ $) 123)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 116)) (-3020 (((-112) $ $) 115)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 117)) (-3009 (((-112) $ $) 114)) (-3103 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) (((-414) (-141)) (T -414)) -((-2395 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-414)))) (-2395 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-934)) (-4 *1 (-414)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-2643 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-1708 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) (-2354 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) (-3759 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4449)) (-4 *1 (-414)) (-5 *2 (-934)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4449)) (-4 *1 (-414)) (-5 *2 (-934)))) (-3632 (*1 *1) (-12 (-4 *1 (-414)) (-2085 (|has| *1 (-6 -4449))) (-2085 (|has| *1 (-6 -4441))))) (-1593 (*1 *1) (-12 (-4 *1 (-414)) (-2085 (|has| *1 (-6 -4449))) (-2085 (|has| *1 (-6 -4441)))))) -(-13 (-1075) (-10 -8 (-6 -3524) (-15 -2395 ($ (-574) (-574))) (-15 -2395 ($ (-574) (-574) (-934))) (-15 -2725 ((-574) $)) (-15 -2643 ((-934))) (-15 -2017 ((-574) $)) (-15 -4290 ((-574) $)) (-15 -1708 ((-934))) (-15 -2354 ((-934))) (-15 -3759 ((-934))) (IF (|has| $ (-6 -4449)) (PROGN (-15 -1708 ((-934) (-934))) (-15 -2354 ((-934) (-934))) (-15 -3759 ((-934) (-934))) (-15 -1361 ((-934) (-574))) (-15 -2260 ((-934) (-574)))) |%noBranch|) (IF (|has| $ (-6 -4441)) |%noBranch| (IF (|has| $ (-6 -4449)) |%noBranch| (PROGN (-15 -3632 ($)) (-15 -1593 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-933) . T) ((-1017) . T) ((-1037) . T) ((-1075) . T) ((-1053 (-417 (-574))) . T) ((-1053 (-574)) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) -((-1786 (((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)) 20))) -(((-415 |#1| |#2|) (-10 -7 (-15 -1786 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)))) (-566) (-566)) (T -415)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-428 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-428 *6)) (-5 *1 (-415 *5 *6))))) -(-10 -7 (-15 -1786 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)))) -((-1786 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 13))) -(((-416 |#1| |#2|) (-10 -7 (-15 -1786 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-566) (-566)) (T -416)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-417 *6)) (-5 *1 (-416 *5 *6))))) -(-10 -7 (-15 -1786 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 13)) (-4018 ((|#1| $) 21 (|has| |#1| (-315)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL (|has| |#1| (-830)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) 17) (((-3 (-1192) "failed") $) NIL (|has| |#1| (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) 72 (|has| |#1| (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574))))) (-2216 ((|#1| $) 15) (((-1192) $) NIL (|has| |#1| (-1053 (-1192)))) (((-417 (-574)) $) 69 (|has| |#1| (-1053 (-574)))) (((-574) $) NIL (|has| |#1| (-1053 (-574))))) (-2799 (($ $ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) 51)) (-2834 (($) NIL (|has| |#1| (-555)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1913 (((-112) $) NIL (|has| |#1| (-830)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-3372 (((-112) $) 57)) (-3536 (($ $) NIL)) (-2970 ((|#1| $) 73)) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-1167)))) (-1808 (((-112) $) NIL (|has| |#1| (-830)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 100)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) NIL (|has| |#1| (-315)))) (-3471 ((|#1| $) 28 (|has| |#1| (-555)))) (-2743 (((-428 (-1188 $)) (-1188 $)) 145 (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) 138 (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-524 (-1192) |#1|)))) (-3364 (((-781) $) NIL)) (-2208 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2120 (($ $) NIL)) (-2981 ((|#1| $) 75)) (-1845 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#1| (-624 (-546)))) (((-388) $) NIL (|has| |#1| (-1037))) (((-227) $) NIL (|has| |#1| (-1037)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 10) (($ (-1192)) NIL (|has| |#1| (-1053 (-1192))))) (-3247 (((-3 $ "failed") $) 102 (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) 103 T CONST)) (-2753 ((|#1| $) 26 (|has| |#1| (-555)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3306 (($ $) NIL (|has| |#1| (-830)))) (-2142 (($) 22 T CONST)) (-2154 (($) 8 T CONST)) (-4057 (((-1174) $) 44 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1174) $ (-112)) 45 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1288) (-832) $) 46 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1288) (-832) $ (-112)) 47 (-12 (|has| |#1| (-555)) (|has| |#1| (-838))))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) 66)) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) 24 (|has| |#1| (-860)))) (-3098 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3089 (($ $) 25) (($ $ $) 56)) (-3074 (($ $ $) 54)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 132)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 58) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-417 |#1|) (-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4456)) (-6 -4445) |%noBranch|) |%noBranch|) |%noBranch|))) (-566)) (T -417)) -NIL -(-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4456)) (-6 -4445) |%noBranch|) |%noBranch|) |%noBranch|))) -((-3644 (((-699 |#2|) (-1283 $)) NIL) (((-699 |#2|)) 18)) (-2919 (($ (-1283 |#2|) (-1283 $)) NIL) (($ (-1283 |#2|)) 24)) (-3556 (((-699 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) $) 40)) (-1950 ((|#3| $) 69)) (-1738 ((|#2| (-1283 $)) NIL) ((|#2|) 20)) (-4346 (((-1283 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) (-1283 $) (-1283 $)) NIL) (((-1283 |#2|) $) 22) (((-699 |#2|) (-1283 $)) 38)) (-1845 (((-1283 |#2|) $) 11) (($ (-1283 |#2|)) 13)) (-1539 ((|#3| $) 55))) -(((-418 |#1| |#2| |#3|) (-10 -8 (-15 -3556 ((-699 |#2|) |#1|)) (-15 -1738 (|#2|)) (-15 -3644 ((-699 |#2|))) (-15 -1845 (|#1| (-1283 |#2|))) (-15 -1845 ((-1283 |#2|) |#1|)) (-15 -2919 (|#1| (-1283 |#2|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1|)) (-15 -1950 (|#3| |#1|)) (-15 -1539 (|#3| |#1|)) (-15 -3644 ((-699 |#2|) (-1283 |#1|))) (-15 -1738 (|#2| (-1283 |#1|))) (-15 -2919 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -3556 ((-699 |#2|) |#1| (-1283 |#1|)))) (-419 |#2| |#3|) (-174) (-1259 |#2|)) (T -418)) -((-3644 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)) (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5)))) (-1738 (*1 *2) (-12 (-4 *4 (-1259 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4)) (-4 *3 (-419 *2 *4))))) -(-10 -8 (-15 -3556 ((-699 |#2|) |#1|)) (-15 -1738 (|#2|)) (-15 -3644 ((-699 |#2|))) (-15 -1845 (|#1| (-1283 |#2|))) (-15 -1845 ((-1283 |#2|) |#1|)) (-15 -2919 (|#1| (-1283 |#2|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1|)) (-15 -1950 (|#3| |#1|)) (-15 -1539 (|#3| |#1|)) (-15 -3644 ((-699 |#2|) (-1283 |#1|))) (-15 -1738 (|#2| (-1283 |#1|))) (-15 -2919 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -3556 ((-699 |#2|) |#1| (-1283 |#1|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3644 (((-699 |#1|) (-1283 $)) 53) (((-699 |#1|)) 68)) (-1645 ((|#1| $) 59)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-2919 (($ (-1283 |#1|) (-1283 $)) 55) (($ (-1283 |#1|)) 71)) (-3556 (((-699 |#1|) $ (-1283 $)) 60) (((-699 |#1|) $) 66)) (-3911 (((-3 $ "failed") $) 37)) (-3557 (((-934)) 61)) (-3372 (((-112) $) 35)) (-1386 ((|#1| $) 58)) (-1950 ((|#2| $) 51 (|has| |#1| (-372)))) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-1738 ((|#1| (-1283 $)) 54) ((|#1|) 67)) (-4346 (((-1283 |#1|) $ (-1283 $)) 57) (((-699 |#1|) (-1283 $) (-1283 $)) 56) (((-1283 |#1|) $) 73) (((-699 |#1|) (-1283 $)) 72)) (-1845 (((-1283 |#1|) $) 70) (($ (-1283 |#1|)) 69)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-3247 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1539 ((|#2| $) 52)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2191 (((-1283 $)) 74)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-419 |#1| |#2|) (-141) (-174) (-1259 |t#1|)) (T -419)) -((-2191 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-1283 *1)) (-4 *1 (-419 *3 *4)))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-1283 *3)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1259 *3)))) (-1845 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-1283 *3)))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1259 *3)))) (-3644 (*1 *2) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-699 *3)))) (-1738 (*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-699 *3))))) -(-13 (-379 |t#1| |t#2|) (-10 -8 (-15 -2191 ((-1283 $))) (-15 -4346 ((-1283 |t#1|) $)) (-15 -4346 ((-699 |t#1|) (-1283 $))) (-15 -2919 ($ (-1283 |t#1|))) (-15 -1845 ((-1283 |t#1|) $)) (-15 -1845 ($ (-1283 |t#1|))) (-15 -3644 ((-699 |t#1|))) (-15 -1738 (|t#1|)) (-15 -3556 ((-699 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-379 |#1| |#2|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-1705 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) 27) (((-3 (-574) "failed") $) 19)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) 24) (((-574) $) 14)) (-2950 (($ |#2|) NIL) (($ (-417 (-574))) 22) (($ (-574)) 11))) -(((-420 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| (-574))) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|))) (-421 |#2|) (-1233)) (T -420)) -NIL -(-10 -8 (-15 -2950 (|#1| (-574))) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|))) -((-1705 (((-3 |#1| "failed") $) 9) (((-3 (-417 (-574)) "failed") $) 16 (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) 13 (|has| |#1| (-1053 (-574))))) (-2216 ((|#1| $) 8) (((-417 (-574)) $) 17 (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) 14 (|has| |#1| (-1053 (-574))))) (-2950 (($ |#1|) 6) (($ (-417 (-574))) 15 (|has| |#1| (-1053 (-417 (-574))))) (($ (-574)) 12 (|has| |#1| (-1053 (-574)))))) -(((-421 |#1|) (-141) (-1233)) (T -421)) -NIL -(-13 (-1053 |t#1|) (-10 -7 (IF (|has| |t#1| (-1053 (-574))) (-6 (-1053 (-574))) |%noBranch|) (IF (|has| |t#1| (-1053 (-417 (-574)))) (-6 (-1053 (-417 (-574)))) |%noBranch|))) -(((-626 #0=(-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-626 #1=(-574)) |has| |#1| (-1053 (-574))) ((-626 |#1|) . T) ((-1053 #0#) |has| |#1| (-1053 (-417 (-574)))) ((-1053 #1#) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T)) -((-1786 (((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)) 35))) -(((-422 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1786 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)))) (-315) (-1007 |#1|) (-1259 |#2|) (-13 (-419 |#2| |#3|) (-1053 |#2|)) (-315) (-1007 |#5|) (-1259 |#6|) (-13 (-419 |#6| |#7|) (-1053 |#6|))) (T -422)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-423 *5 *6 *7 *8)) (-4 *5 (-315)) (-4 *6 (-1007 *5)) (-4 *7 (-1259 *6)) (-4 *8 (-13 (-419 *6 *7) (-1053 *6))) (-4 *9 (-315)) (-4 *10 (-1007 *9)) (-4 *11 (-1259 *10)) (-5 *2 (-423 *9 *10 *11 *12)) (-5 *1 (-422 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-419 *10 *11) (-1053 *10)))))) -(-10 -7 (-15 -1786 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)))) -((-2863 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) NIL)) (-1345 ((|#4| (-781) (-1283 |#4|)) 55)) (-3372 (((-112) $) NIL)) (-2970 (((-1283 |#4|) $) 15)) (-1386 ((|#2| $) 53)) (-3820 (($ $) 157)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 103)) (-3647 (($ (-1283 |#4|)) 102)) (-3939 (((-1135) $) NIL)) (-2981 ((|#1| $) 16)) (-2202 (($ $ $) NIL)) (-3490 (($ $ $) NIL)) (-2950 (((-872) $) 148)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 |#4|) $) 141)) (-2154 (($) 11 T CONST)) (-2985 (((-112) $ $) 39)) (-3098 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 134)) (* (($ $ $) 130))) -(((-423 |#1| |#2| |#3| |#4|) (-13 (-483) (-10 -8 (-15 -3647 ($ (-1283 |#4|))) (-15 -2191 ((-1283 |#4|) $)) (-15 -1386 (|#2| $)) (-15 -2970 ((-1283 |#4|) $)) (-15 -2981 (|#1| $)) (-15 -3820 ($ $)) (-15 -1345 (|#4| (-781) (-1283 |#4|))))) (-315) (-1007 |#1|) (-1259 |#2|) (-13 (-419 |#2| |#3|) (-1053 |#2|))) (T -423)) -((-3647 (*1 *1 *2) (-12 (-5 *2 (-1283 *6)) (-4 *6 (-13 (-419 *4 *5) (-1053 *4))) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-4 *3 (-315)) (-5 *1 (-423 *3 *4 *5 *6)))) (-2191 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-5 *2 (-1283 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1053 *4))))) (-1386 (*1 *2 *1) (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1007 *3)) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1053 *2))))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-5 *2 (-1283 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1053 *4))))) (-2981 (*1 *2 *1) (-12 (-4 *3 (-1007 *2)) (-4 *4 (-1259 *3)) (-4 *2 (-315)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1053 *3))))) (-3820 (*1 *1 *1) (-12 (-4 *2 (-315)) (-4 *3 (-1007 *2)) (-4 *4 (-1259 *3)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1053 *3))))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1283 *2)) (-4 *5 (-315)) (-4 *6 (-1007 *5)) (-4 *2 (-13 (-419 *6 *7) (-1053 *6))) (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1259 *6))))) -(-13 (-483) (-10 -8 (-15 -3647 ($ (-1283 |#4|))) (-15 -2191 ((-1283 |#4|) $)) (-15 -1386 (|#2| $)) (-15 -2970 ((-1283 |#4|) $)) (-15 -2981 (|#1| $)) (-15 -3820 ($ $)) (-15 -1345 (|#4| (-781) (-1283 |#4|))))) -((-2863 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) NIL)) (-1386 ((|#2| $) 71)) (-1746 (($ (-1283 |#4|)) 27) (($ (-423 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1053 |#2|)))) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 37)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 |#4|) $) 28)) (-2154 (($) 25 T CONST)) (-2985 (((-112) $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ $ $) 82))) -(((-424 |#1| |#2| |#3| |#4| |#5|) (-13 (-736) (-10 -8 (-15 -2191 ((-1283 |#4|) $)) (-15 -1386 (|#2| $)) (-15 -1746 ($ (-1283 |#4|))) (IF (|has| |#4| (-1053 |#2|)) (-15 -1746 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-315) (-1007 |#1|) (-1259 |#2|) (-419 |#2| |#3|) (-1283 |#4|)) (T -424)) -((-2191 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-5 *2 (-1283 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-4 *6 (-419 *4 *5)) (-14 *7 *2))) (-1386 (*1 *2 *1) (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1007 *3)) (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4)) (-14 *6 (-1283 *5)))) (-1746 (*1 *1 *2) (-12 (-5 *2 (-1283 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1746 (*1 *1 *2) (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1053 *4)) (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-4 *6 (-419 *4 *5)) (-14 *7 (-1283 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7))))) -(-13 (-736) (-10 -8 (-15 -2191 ((-1283 |#4|) $)) (-15 -1386 (|#2| $)) (-15 -1746 ($ (-1283 |#4|))) (IF (|has| |#4| (-1053 |#2|)) (-15 -1746 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-1786 ((|#3| (-1 |#4| |#2|) |#1|) 29))) -(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1786 (|#3| (-1 |#4| |#2|) |#1|))) (-427 |#2|) (-174) (-427 |#4|) (-174)) (T -425)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-427 *6)) (-5 *1 (-425 *4 *5 *2 *6)) (-4 *4 (-427 *5))))) -(-10 -7 (-15 -1786 (|#3| (-1 |#4| |#2|) |#1|))) -((-3775 (((-3 $ "failed")) 98)) (-2588 (((-1283 (-699 |#2|)) (-1283 $)) NIL) (((-1283 (-699 |#2|))) 103)) (-2846 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) 96)) (-1992 (((-3 $ "failed")) 95)) (-2038 (((-699 |#2|) (-1283 $)) NIL) (((-699 |#2|)) 114)) (-4189 (((-699 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) $) 122)) (-3149 (((-1188 (-965 |#2|))) 63)) (-3414 ((|#2| (-1283 $)) NIL) ((|#2|) 118)) (-2919 (($ (-1283 |#2|) (-1283 $)) NIL) (($ (-1283 |#2|)) 124)) (-3636 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) 94)) (-3215 (((-3 $ "failed")) 86)) (-2597 (((-699 |#2|) (-1283 $)) NIL) (((-699 |#2|)) 112)) (-3680 (((-699 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) $) 120)) (-1644 (((-1188 (-965 |#2|))) 62)) (-2903 ((|#2| (-1283 $)) NIL) ((|#2|) 116)) (-4346 (((-1283 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) (-1283 $) (-1283 $)) NIL) (((-1283 |#2|) $) 123) (((-699 |#2|) (-1283 $)) 132)) (-1845 (((-1283 |#2|) $) 108) (($ (-1283 |#2|)) 110)) (-2074 (((-654 (-965 |#2|)) (-1283 $)) NIL) (((-654 (-965 |#2|))) 106)) (-2911 (($ (-699 |#2|) $) 102))) -(((-426 |#1| |#2|) (-10 -8 (-15 -2911 (|#1| (-699 |#2|) |#1|)) (-15 -3149 ((-1188 (-965 |#2|)))) (-15 -1644 ((-1188 (-965 |#2|)))) (-15 -4189 ((-699 |#2|) |#1|)) (-15 -3680 ((-699 |#2|) |#1|)) (-15 -2038 ((-699 |#2|))) (-15 -2597 ((-699 |#2|))) (-15 -3414 (|#2|)) (-15 -2903 (|#2|)) (-15 -1845 (|#1| (-1283 |#2|))) (-15 -1845 ((-1283 |#2|) |#1|)) (-15 -2919 (|#1| (-1283 |#2|))) (-15 -2074 ((-654 (-965 |#2|)))) (-15 -2588 ((-1283 (-699 |#2|)))) (-15 -4346 ((-699 |#2|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1|)) (-15 -3775 ((-3 |#1| "failed"))) (-15 -1992 ((-3 |#1| "failed"))) (-15 -3215 ((-3 |#1| "failed"))) (-15 -2846 ((-3 (-2 (|:| |particular| |#1|) (|:| -2191 (-654 |#1|))) "failed"))) (-15 -3636 ((-3 (-2 (|:| |particular| |#1|) (|:| -2191 (-654 |#1|))) "failed"))) (-15 -2038 ((-699 |#2|) (-1283 |#1|))) (-15 -2597 ((-699 |#2|) (-1283 |#1|))) (-15 -3414 (|#2| (-1283 |#1|))) (-15 -2903 (|#2| (-1283 |#1|))) (-15 -2919 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -4189 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -3680 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -2588 ((-1283 (-699 |#2|)) (-1283 |#1|))) (-15 -2074 ((-654 (-965 |#2|)) (-1283 |#1|)))) (-427 |#2|) (-174)) (T -426)) -((-2588 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1283 (-699 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-2074 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-965 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-2903 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-3414 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-2597 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-2038 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-1644 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1188 (-965 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-3149 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1188 (-965 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4))))) -(-10 -8 (-15 -2911 (|#1| (-699 |#2|) |#1|)) (-15 -3149 ((-1188 (-965 |#2|)))) (-15 -1644 ((-1188 (-965 |#2|)))) (-15 -4189 ((-699 |#2|) |#1|)) (-15 -3680 ((-699 |#2|) |#1|)) (-15 -2038 ((-699 |#2|))) (-15 -2597 ((-699 |#2|))) (-15 -3414 (|#2|)) (-15 -2903 (|#2|)) (-15 -1845 (|#1| (-1283 |#2|))) (-15 -1845 ((-1283 |#2|) |#1|)) (-15 -2919 (|#1| (-1283 |#2|))) (-15 -2074 ((-654 (-965 |#2|)))) (-15 -2588 ((-1283 (-699 |#2|)))) (-15 -4346 ((-699 |#2|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1|)) (-15 -3775 ((-3 |#1| "failed"))) (-15 -1992 ((-3 |#1| "failed"))) (-15 -3215 ((-3 |#1| "failed"))) (-15 -2846 ((-3 (-2 (|:| |particular| |#1|) (|:| -2191 (-654 |#1|))) "failed"))) (-15 -3636 ((-3 (-2 (|:| |particular| |#1|) (|:| -2191 (-654 |#1|))) "failed"))) (-15 -2038 ((-699 |#2|) (-1283 |#1|))) (-15 -2597 ((-699 |#2|) (-1283 |#1|))) (-15 -3414 (|#2| (-1283 |#1|))) (-15 -2903 (|#2| (-1283 |#1|))) (-15 -2919 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4346 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4346 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -4189 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -3680 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -2588 ((-1283 (-699 |#2|)) (-1283 |#1|))) (-15 -2074 ((-654 (-965 |#2|)) (-1283 |#1|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3775 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-1597 (((-3 $ "failed") $ $) 20)) (-2588 (((-1283 (-699 |#1|)) (-1283 $)) 83) (((-1283 (-699 |#1|))) 106)) (-4427 (((-1283 $)) 86)) (-3831 (($) 18 T CONST)) (-2846 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-1992 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-2038 (((-699 |#1|) (-1283 $)) 70) (((-699 |#1|)) 98)) (-2199 ((|#1| $) 79)) (-4189 (((-699 |#1|) $ (-1283 $)) 81) (((-699 |#1|) $) 96)) (-2484 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-3149 (((-1188 (-965 |#1|))) 94 (|has| |#1| (-372)))) (-3204 (($ $ (-934)) 31)) (-3272 ((|#1| $) 77)) (-3866 (((-1188 |#1|) $) 47 (|has| |#1| (-566)))) (-3414 ((|#1| (-1283 $)) 72) ((|#1|) 100)) (-4111 (((-1188 |#1|) $) 68)) (-2182 (((-112)) 62)) (-2919 (($ (-1283 |#1|) (-1283 $)) 74) (($ (-1283 |#1|)) 104)) (-3911 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3557 (((-934)) 85)) (-2045 (((-112)) 59)) (-3518 (($ $ (-934)) 38)) (-2931 (((-112)) 55)) (-2347 (((-112)) 53)) (-3233 (((-112)) 57)) (-3636 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-3215 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-2597 (((-699 |#1|) (-1283 $)) 71) (((-699 |#1|)) 99)) (-2327 ((|#1| $) 80)) (-3680 (((-699 |#1|) $ (-1283 $)) 82) (((-699 |#1|) $) 97)) (-2691 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-1644 (((-1188 (-965 |#1|))) 95 (|has| |#1| (-372)))) (-2177 (($ $ (-934)) 32)) (-2614 ((|#1| $) 78)) (-3201 (((-1188 |#1|) $) 48 (|has| |#1| (-566)))) (-2903 ((|#1| (-1283 $)) 73) ((|#1|) 101)) (-3401 (((-1188 |#1|) $) 69)) (-1584 (((-112)) 63)) (-3945 (((-1174) $) 10)) (-1916 (((-112)) 54)) (-3601 (((-112)) 56)) (-1876 (((-112)) 58)) (-3939 (((-1135) $) 11)) (-2678 (((-112)) 61)) (-2208 ((|#1| $ (-574)) 110)) (-4346 (((-1283 |#1|) $ (-1283 $)) 76) (((-699 |#1|) (-1283 $) (-1283 $)) 75) (((-1283 |#1|) $) 108) (((-699 |#1|) (-1283 $)) 107)) (-1845 (((-1283 |#1|) $) 103) (($ (-1283 |#1|)) 102)) (-2074 (((-654 (-965 |#1|)) (-1283 $)) 84) (((-654 (-965 |#1|))) 105)) (-3490 (($ $ $) 28)) (-1355 (((-112)) 67)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2191 (((-1283 $)) 109)) (-3045 (((-654 (-1283 |#1|))) 49 (|has| |#1| (-566)))) (-2087 (($ $ $ $) 29)) (-3500 (((-112)) 65)) (-2911 (($ (-699 |#1|) $) 93)) (-3157 (($ $ $) 27)) (-1778 (((-112)) 66)) (-2956 (((-112)) 64)) (-3005 (((-112)) 60)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 33)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-2399 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-414)))) (-2399 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-935)) (-4 *1 (-414)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-2644 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) (-3139 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-2562 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) (-4074 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) (-3760 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) (-2562 (*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4450)) (-4 *1 (-414)) (-5 *2 (-935)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4450)) (-4 *1 (-414)) (-5 *2 (-935)))) (-3634 (*1 *1) (-12 (-4 *1 (-414)) (-2084 (|has| *1 (-6 -4450))) (-2084 (|has| *1 (-6 -4442))))) (-4380 (*1 *1) (-12 (-4 *1 (-414)) (-2084 (|has| *1 (-6 -4450))) (-2084 (|has| *1 (-6 -4442)))))) +(-13 (-1076) (-10 -8 (-6 -3525) (-15 -2399 ($ (-574) (-574))) (-15 -2399 ($ (-574) (-574) (-935))) (-15 -3547 ((-574) $)) (-15 -2644 ((-935))) (-15 -3139 ((-574) $)) (-15 -4290 ((-574) $)) (-15 -2562 ((-935))) (-15 -4074 ((-935))) (-15 -3760 ((-935))) (IF (|has| $ (-6 -4450)) (PROGN (-15 -2562 ((-935) (-935))) (-15 -4074 ((-935) (-935))) (-15 -3760 ((-935) (-935))) (-15 -3206 ((-935) (-574))) (-15 -3691 ((-935) (-574)))) |%noBranch|) (IF (|has| $ (-6 -4442)) |%noBranch| (IF (|has| $ (-6 -4450)) |%noBranch| (PROGN (-15 -3634 ($)) (-15 -4380 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-934) . T) ((-1018) . T) ((-1038) . T) ((-1076) . T) ((-1054 (-417 (-574))) . T) ((-1054 (-574)) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T)) +((-1785 (((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)) 20))) +(((-415 |#1| |#2|) (-10 -7 (-15 -1785 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)))) (-566) (-566)) (T -415)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-428 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-428 *6)) (-5 *1 (-415 *5 *6))))) +(-10 -7 (-15 -1785 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)))) +((-1785 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 13))) +(((-416 |#1| |#2|) (-10 -7 (-15 -1785 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-566) (-566)) (T -416)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-417 *6)) (-5 *1 (-416 *5 *6))))) +(-10 -7 (-15 -1785 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 13)) (-4146 ((|#1| $) 21 (|has| |#1| (-315)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL (|has| |#1| (-830)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 17) (((-3 (-1193) "failed") $) NIL (|has| |#1| (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) 72 (|has| |#1| (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574))))) (-2214 ((|#1| $) 15) (((-1193) $) NIL (|has| |#1| (-1054 (-1193)))) (((-417 (-574)) $) 69 (|has| |#1| (-1054 (-574)))) (((-574) $) NIL (|has| |#1| (-1054 (-574))))) (-2800 (($ $ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) 51)) (-2835 (($) NIL (|has| |#1| (-555)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3408 (((-112) $) NIL (|has| |#1| (-830)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-4226 (((-112) $) 57)) (-2967 (($ $) NIL)) (-2971 ((|#1| $) 73)) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-1168)))) (-3182 (((-112) $) NIL (|has| |#1| (-830)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 100)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) NIL (|has| |#1| (-315)))) (-2260 ((|#1| $) 28 (|has| |#1| (-555)))) (-3651 (((-428 (-1189 $)) (-1189 $)) 145 (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) 138 (|has| |#1| (-923)))) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-524 (-1193) |#1|)))) (-2098 (((-781) $) NIL)) (-2207 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2808 (($ $) NIL)) (-2981 ((|#1| $) 75)) (-1844 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#1| (-624 (-546)))) (((-388) $) NIL (|has| |#1| (-1038))) (((-227) $) NIL (|has| |#1| (-1038)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 10) (($ (-1193)) NIL (|has| |#1| (-1054 (-1193))))) (-3424 (((-3 $ "failed") $) 102 (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) 103 T CONST)) (-2544 ((|#1| $) 26 (|has| |#1| (-555)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-830)))) (-2141 (($) 22 T CONST)) (-2153 (($) 8 T CONST)) (-3927 (((-1175) $) 44 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1175) $ (-112)) 45 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1289) (-832) $) 46 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1289) (-832) $ (-112)) 47 (-12 (|has| |#1| (-555)) (|has| |#1| (-838))))) (-3584 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) 66)) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) 24 (|has| |#1| (-860)))) (-3103 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3090 (($ $) 25) (($ $ $) 56)) (-3074 (($ $ $) 54)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 132)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 58) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-417 |#1|) (-13 (-1008 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4446)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4457)) (-6 -4446) |%noBranch|) |%noBranch|) |%noBranch|))) (-566)) (T -417)) +NIL +(-13 (-1008 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4446)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4457)) (-6 -4446) |%noBranch|) |%noBranch|) |%noBranch|))) +((-3835 (((-699 |#2|) (-1284 $)) NIL) (((-699 |#2|)) 18)) (-2580 (($ (-1284 |#2|) (-1284 $)) NIL) (($ (-1284 |#2|)) 24)) (-2640 (((-699 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) $) 40)) (-3989 ((|#3| $) 69)) (-2394 ((|#2| (-1284 $)) NIL) ((|#2|) 20)) (-1385 (((-1284 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) (-1284 $) (-1284 $)) NIL) (((-1284 |#2|) $) 22) (((-699 |#2|) (-1284 $)) 38)) (-1844 (((-1284 |#2|) $) 11) (($ (-1284 |#2|)) 13)) (-2648 ((|#3| $) 55))) +(((-418 |#1| |#2| |#3|) (-10 -8 (-15 -2640 ((-699 |#2|) |#1|)) (-15 -2394 (|#2|)) (-15 -3835 ((-699 |#2|))) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -2580 (|#1| (-1284 |#2|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1|)) (-15 -3989 (|#3| |#1|)) (-15 -2648 (|#3| |#1|)) (-15 -3835 ((-699 |#2|) (-1284 |#1|))) (-15 -2394 (|#2| (-1284 |#1|))) (-15 -2580 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2640 ((-699 |#2|) |#1| (-1284 |#1|)))) (-419 |#2| |#3|) (-174) (-1260 |#2|)) (T -418)) +((-3835 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)) (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5)))) (-2394 (*1 *2) (-12 (-4 *4 (-1260 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4)) (-4 *3 (-419 *2 *4))))) +(-10 -8 (-15 -2640 ((-699 |#2|) |#1|)) (-15 -2394 (|#2|)) (-15 -3835 ((-699 |#2|))) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -2580 (|#1| (-1284 |#2|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1|)) (-15 -3989 (|#3| |#1|)) (-15 -2648 (|#3| |#1|)) (-15 -3835 ((-699 |#2|) (-1284 |#1|))) (-15 -2394 (|#2| (-1284 |#1|))) (-15 -2580 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2640 ((-699 |#2|) |#1| (-1284 |#1|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-3835 (((-699 |#1|) (-1284 $)) 53) (((-699 |#1|)) 68)) (-1644 ((|#1| $) 59)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-2580 (($ (-1284 |#1|) (-1284 $)) 55) (($ (-1284 |#1|)) 71)) (-2640 (((-699 |#1|) $ (-1284 $)) 60) (((-699 |#1|) $) 66)) (-4322 (((-3 $ "failed") $) 37)) (-3558 (((-935)) 61)) (-4226 (((-112) $) 35)) (-1681 ((|#1| $) 58)) (-3989 ((|#2| $) 51 (|has| |#1| (-372)))) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2394 ((|#1| (-1284 $)) 54) ((|#1|) 67)) (-1385 (((-1284 |#1|) $ (-1284 $)) 57) (((-699 |#1|) (-1284 $) (-1284 $)) 56) (((-1284 |#1|) $) 73) (((-699 |#1|) (-1284 $)) 72)) (-1844 (((-1284 |#1|) $) 70) (($ (-1284 |#1|)) 69)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-3424 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2648 ((|#2| $) 52)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2391 (((-1284 $)) 74)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-419 |#1| |#2|) (-141) (-174) (-1260 |t#1|)) (T -419)) +((-2391 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-1284 *1)) (-4 *1 (-419 *3 *4)))) (-1385 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-1284 *3)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1260 *3)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-1284 *3)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1260 *3)))) (-3835 (*1 *2) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-699 *3)))) (-2394 (*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-699 *3))))) +(-13 (-379 |t#1| |t#2|) (-10 -8 (-15 -2391 ((-1284 $))) (-15 -1385 ((-1284 |t#1|) $)) (-15 -1385 ((-699 |t#1|) (-1284 $))) (-15 -2580 ($ (-1284 |t#1|))) (-15 -1844 ((-1284 |t#1|) $)) (-15 -1844 ($ (-1284 |t#1|))) (-15 -3835 ((-699 |t#1|))) (-15 -2394 (|t#1|)) (-15 -2640 ((-699 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-379 |#1| |#2|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) 27) (((-3 (-574) "failed") $) 19)) (-2214 ((|#2| $) NIL) (((-417 (-574)) $) 24) (((-574) $) 14)) (-2951 (($ |#2|) NIL) (($ (-417 (-574))) 22) (($ (-574)) 11))) +(((-420 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| (-574))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|))) (-421 |#2|) (-1234)) (T -420)) +NIL +(-10 -8 (-15 -2951 (|#1| (-574))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|))) +((-1704 (((-3 |#1| "failed") $) 9) (((-3 (-417 (-574)) "failed") $) 16 (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) 13 (|has| |#1| (-1054 (-574))))) (-2214 ((|#1| $) 8) (((-417 (-574)) $) 17 (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) 14 (|has| |#1| (-1054 (-574))))) (-2951 (($ |#1|) 6) (($ (-417 (-574))) 15 (|has| |#1| (-1054 (-417 (-574))))) (($ (-574)) 12 (|has| |#1| (-1054 (-574)))))) +(((-421 |#1|) (-141) (-1234)) (T -421)) +NIL +(-13 (-1054 |t#1|) (-10 -7 (IF (|has| |t#1| (-1054 (-574))) (-6 (-1054 (-574))) |%noBranch|) (IF (|has| |t#1| (-1054 (-417 (-574)))) (-6 (-1054 (-417 (-574)))) |%noBranch|))) +(((-626 #0=(-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-626 #1=(-574)) |has| |#1| (-1054 (-574))) ((-626 |#1|) . T) ((-1054 #0#) |has| |#1| (-1054 (-417 (-574)))) ((-1054 #1#) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T)) +((-1785 (((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)) 35))) +(((-422 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1785 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)))) (-315) (-1008 |#1|) (-1260 |#2|) (-13 (-419 |#2| |#3|) (-1054 |#2|)) (-315) (-1008 |#5|) (-1260 |#6|) (-13 (-419 |#6| |#7|) (-1054 |#6|))) (T -422)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-423 *5 *6 *7 *8)) (-4 *5 (-315)) (-4 *6 (-1008 *5)) (-4 *7 (-1260 *6)) (-4 *8 (-13 (-419 *6 *7) (-1054 *6))) (-4 *9 (-315)) (-4 *10 (-1008 *9)) (-4 *11 (-1260 *10)) (-5 *2 (-423 *9 *10 *11 *12)) (-5 *1 (-422 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-419 *10 *11) (-1054 *10)))))) +(-10 -7 (-15 -1785 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)))) +((-2864 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) NIL)) (-2310 ((|#4| (-781) (-1284 |#4|)) 55)) (-4226 (((-112) $) NIL)) (-2971 (((-1284 |#4|) $) 15)) (-1681 ((|#2| $) 53)) (-2351 (($ $) 157)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 103)) (-2984 (($ (-1284 |#4|)) 102)) (-3940 (((-1136) $) NIL)) (-2981 ((|#1| $) 16)) (-3617 (($ $ $) NIL)) (-3955 (($ $ $) NIL)) (-2951 (((-872) $) 148)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 |#4|) $) 141)) (-2153 (($) 11 T CONST)) (-2986 (((-112) $ $) 39)) (-3103 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 134)) (* (($ $ $) 130))) +(((-423 |#1| |#2| |#3| |#4|) (-13 (-483) (-10 -8 (-15 -2984 ($ (-1284 |#4|))) (-15 -2391 ((-1284 |#4|) $)) (-15 -1681 (|#2| $)) (-15 -2971 ((-1284 |#4|) $)) (-15 -2981 (|#1| $)) (-15 -2351 ($ $)) (-15 -2310 (|#4| (-781) (-1284 |#4|))))) (-315) (-1008 |#1|) (-1260 |#2|) (-13 (-419 |#2| |#3|) (-1054 |#2|))) (T -423)) +((-2984 (*1 *1 *2) (-12 (-5 *2 (-1284 *6)) (-4 *6 (-13 (-419 *4 *5) (-1054 *4))) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-4 *3 (-315)) (-5 *1 (-423 *3 *4 *5 *6)))) (-2391 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-5 *2 (-1284 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1054 *4))))) (-1681 (*1 *2 *1) (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1008 *3)) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1054 *2))))) (-2971 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-5 *2 (-1284 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1054 *4))))) (-2981 (*1 *2 *1) (-12 (-4 *3 (-1008 *2)) (-4 *4 (-1260 *3)) (-4 *2 (-315)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1054 *3))))) (-2351 (*1 *1 *1) (-12 (-4 *2 (-315)) (-4 *3 (-1008 *2)) (-4 *4 (-1260 *3)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1054 *3))))) (-2310 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1284 *2)) (-4 *5 (-315)) (-4 *6 (-1008 *5)) (-4 *2 (-13 (-419 *6 *7) (-1054 *6))) (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1260 *6))))) +(-13 (-483) (-10 -8 (-15 -2984 ($ (-1284 |#4|))) (-15 -2391 ((-1284 |#4|) $)) (-15 -1681 (|#2| $)) (-15 -2971 ((-1284 |#4|) $)) (-15 -2981 (|#1| $)) (-15 -2351 ($ $)) (-15 -2310 (|#4| (-781) (-1284 |#4|))))) +((-2864 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) NIL)) (-1681 ((|#2| $) 71)) (-2147 (($ (-1284 |#4|)) 27) (($ (-423 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1054 |#2|)))) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 37)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 |#4|) $) 28)) (-2153 (($) 25 T CONST)) (-2986 (((-112) $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ $ $) 82))) +(((-424 |#1| |#2| |#3| |#4| |#5|) (-13 (-736) (-10 -8 (-15 -2391 ((-1284 |#4|) $)) (-15 -1681 (|#2| $)) (-15 -2147 ($ (-1284 |#4|))) (IF (|has| |#4| (-1054 |#2|)) (-15 -2147 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-315) (-1008 |#1|) (-1260 |#2|) (-419 |#2| |#3|) (-1284 |#4|)) (T -424)) +((-2391 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-5 *2 (-1284 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-4 *6 (-419 *4 *5)) (-14 *7 *2))) (-1681 (*1 *2 *1) (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1008 *3)) (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4)) (-14 *6 (-1284 *5)))) (-2147 (*1 *1 *2) (-12 (-5 *2 (-1284 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2147 (*1 *1 *2) (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1054 *4)) (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-4 *6 (-419 *4 *5)) (-14 *7 (-1284 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7))))) +(-13 (-736) (-10 -8 (-15 -2391 ((-1284 |#4|) $)) (-15 -1681 (|#2| $)) (-15 -2147 ($ (-1284 |#4|))) (IF (|has| |#4| (-1054 |#2|)) (-15 -2147 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-1785 ((|#3| (-1 |#4| |#2|) |#1|) 29))) +(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|))) (-427 |#2|) (-174) (-427 |#4|) (-174)) (T -425)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-427 *6)) (-5 *1 (-425 *4 *5 *2 *6)) (-4 *4 (-427 *5))))) +(-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|))) +((-4098 (((-3 $ "failed")) 98)) (-1379 (((-1284 (-699 |#2|)) (-1284 $)) NIL) (((-1284 (-699 |#2|))) 103)) (-4004 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) 96)) (-3511 (((-3 $ "failed")) 95)) (-1519 (((-699 |#2|) (-1284 $)) NIL) (((-699 |#2|)) 114)) (-4438 (((-699 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) $) 122)) (-4436 (((-1189 (-966 |#2|))) 63)) (-3061 ((|#2| (-1284 $)) NIL) ((|#2|) 118)) (-2580 (($ (-1284 |#2|) (-1284 $)) NIL) (($ (-1284 |#2|)) 124)) (-3946 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) 94)) (-3923 (((-3 $ "failed")) 86)) (-1321 (((-699 |#2|) (-1284 $)) NIL) (((-699 |#2|)) 112)) (-3659 (((-699 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) $) 120)) (-2625 (((-1189 (-966 |#2|))) 62)) (-4052 ((|#2| (-1284 $)) NIL) ((|#2|) 116)) (-1385 (((-1284 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) (-1284 $) (-1284 $)) NIL) (((-1284 |#2|) $) 123) (((-699 |#2|) (-1284 $)) 132)) (-1844 (((-1284 |#2|) $) 108) (($ (-1284 |#2|)) 110)) (-3983 (((-654 (-966 |#2|)) (-1284 $)) NIL) (((-654 (-966 |#2|))) 106)) (-2912 (($ (-699 |#2|) $) 102))) +(((-426 |#1| |#2|) (-10 -8 (-15 -2912 (|#1| (-699 |#2|) |#1|)) (-15 -4436 ((-1189 (-966 |#2|)))) (-15 -2625 ((-1189 (-966 |#2|)))) (-15 -4438 ((-699 |#2|) |#1|)) (-15 -3659 ((-699 |#2|) |#1|)) (-15 -1519 ((-699 |#2|))) (-15 -1321 ((-699 |#2|))) (-15 -3061 (|#2|)) (-15 -4052 (|#2|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -2580 (|#1| (-1284 |#2|))) (-15 -3983 ((-654 (-966 |#2|)))) (-15 -1379 ((-1284 (-699 |#2|)))) (-15 -1385 ((-699 |#2|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1|)) (-15 -4098 ((-3 |#1| "failed"))) (-15 -3511 ((-3 |#1| "failed"))) (-15 -3923 ((-3 |#1| "failed"))) (-15 -4004 ((-3 (-2 (|:| |particular| |#1|) (|:| -2391 (-654 |#1|))) "failed"))) (-15 -3946 ((-3 (-2 (|:| |particular| |#1|) (|:| -2391 (-654 |#1|))) "failed"))) (-15 -1519 ((-699 |#2|) (-1284 |#1|))) (-15 -1321 ((-699 |#2|) (-1284 |#1|))) (-15 -3061 (|#2| (-1284 |#1|))) (-15 -4052 (|#2| (-1284 |#1|))) (-15 -2580 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -4438 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -3659 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -1379 ((-1284 (-699 |#2|)) (-1284 |#1|))) (-15 -3983 ((-654 (-966 |#2|)) (-1284 |#1|)))) (-427 |#2|) (-174)) (T -426)) +((-1379 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1284 (-699 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-3983 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-966 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-4052 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-3061 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-1321 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-1519 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-2625 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1189 (-966 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-4436 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1189 (-966 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4))))) +(-10 -8 (-15 -2912 (|#1| (-699 |#2|) |#1|)) (-15 -4436 ((-1189 (-966 |#2|)))) (-15 -2625 ((-1189 (-966 |#2|)))) (-15 -4438 ((-699 |#2|) |#1|)) (-15 -3659 ((-699 |#2|) |#1|)) (-15 -1519 ((-699 |#2|))) (-15 -1321 ((-699 |#2|))) (-15 -3061 (|#2|)) (-15 -4052 (|#2|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -2580 (|#1| (-1284 |#2|))) (-15 -3983 ((-654 (-966 |#2|)))) (-15 -1379 ((-1284 (-699 |#2|)))) (-15 -1385 ((-699 |#2|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1|)) (-15 -4098 ((-3 |#1| "failed"))) (-15 -3511 ((-3 |#1| "failed"))) (-15 -3923 ((-3 |#1| "failed"))) (-15 -4004 ((-3 (-2 (|:| |particular| |#1|) (|:| -2391 (-654 |#1|))) "failed"))) (-15 -3946 ((-3 (-2 (|:| |particular| |#1|) (|:| -2391 (-654 |#1|))) "failed"))) (-15 -1519 ((-699 |#2|) (-1284 |#1|))) (-15 -1321 ((-699 |#2|) (-1284 |#1|))) (-15 -3061 (|#2| (-1284 |#1|))) (-15 -4052 (|#2| (-1284 |#1|))) (-15 -2580 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -1385 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -1385 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -4438 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -3659 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -1379 ((-1284 (-699 |#2|)) (-1284 |#1|))) (-15 -3983 ((-654 (-966 |#2|)) (-1284 |#1|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4098 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-2600 (((-3 $ "failed") $ $) 20)) (-1379 (((-1284 (-699 |#1|)) (-1284 $)) 83) (((-1284 (-699 |#1|))) 106)) (-3610 (((-1284 $)) 86)) (-3250 (($) 18 T CONST)) (-4004 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-3511 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-1519 (((-699 |#1|) (-1284 $)) 70) (((-699 |#1|)) 98)) (-2569 ((|#1| $) 79)) (-4438 (((-699 |#1|) $ (-1284 $)) 81) (((-699 |#1|) $) 96)) (-1657 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-4436 (((-1189 (-966 |#1|))) 94 (|has| |#1| (-372)))) (-3066 (($ $ (-935)) 31)) (-2416 ((|#1| $) 77)) (-3831 (((-1189 |#1|) $) 47 (|has| |#1| (-566)))) (-3061 ((|#1| (-1284 $)) 72) ((|#1|) 100)) (-2026 (((-1189 |#1|) $) 68)) (-2766 (((-112)) 62)) (-2580 (($ (-1284 |#1|) (-1284 $)) 74) (($ (-1284 |#1|)) 104)) (-4322 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3558 (((-935)) 85)) (-1357 (((-112)) 59)) (-4081 (($ $ (-935)) 38)) (-4428 (((-112)) 55)) (-4324 (((-112)) 53)) (-3357 (((-112)) 57)) (-3946 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-3923 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-1321 (((-699 |#1|) (-1284 $)) 71) (((-699 |#1|)) 99)) (-3555 ((|#1| $) 80)) (-3659 (((-699 |#1|) $ (-1284 $)) 82) (((-699 |#1|) $) 97)) (-3144 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-2625 (((-1189 (-966 |#1|))) 95 (|has| |#1| (-372)))) (-4308 (($ $ (-935)) 32)) (-2448 ((|#1| $) 78)) (-2122 (((-1189 |#1|) $) 48 (|has| |#1| (-566)))) (-4052 ((|#1| (-1284 $)) 73) ((|#1|) 101)) (-4169 (((-1189 |#1|) $) 69)) (-4035 (((-112)) 63)) (-1489 (((-1175) $) 10)) (-2381 (((-112)) 54)) (-3120 (((-112)) 56)) (-3338 (((-112)) 58)) (-3940 (((-1136) $) 11)) (-3453 (((-112)) 61)) (-2207 ((|#1| $ (-574)) 110)) (-1385 (((-1284 |#1|) $ (-1284 $)) 76) (((-699 |#1|) (-1284 $) (-1284 $)) 75) (((-1284 |#1|) $) 108) (((-699 |#1|) (-1284 $)) 107)) (-1844 (((-1284 |#1|) $) 103) (($ (-1284 |#1|)) 102)) (-3983 (((-654 (-966 |#1|)) (-1284 $)) 84) (((-654 (-966 |#1|))) 105)) (-3955 (($ $ $) 28)) (-2170 (((-112)) 67)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2391 (((-1284 $)) 109)) (-2717 (((-654 (-1284 |#1|))) 49 (|has| |#1| (-566)))) (-4010 (($ $ $ $) 29)) (-3233 (((-112)) 65)) (-2912 (($ (-699 |#1|) $) 93)) (-4099 (($ $ $) 27)) (-3127 (((-112)) 66)) (-4280 (((-112)) 64)) (-4024 (((-112)) 60)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 33)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-427 |#1|) (-141) (-174)) (T -427)) -((-2191 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1283 *1)) (-4 *1 (-427 *3)))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 *3)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2588 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 (-699 *3))))) (-2074 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-965 *3))))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-1845 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 *3)))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-2903 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-3414 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-2597 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-2038 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-1644 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1188 (-965 *3))))) (-3149 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1188 (-965 *3))))) (-2911 (*1 *1 *2 *1) (-12 (-5 *2 (-699 *3)) (-4 *1 (-427 *3)) (-4 *3 (-174))))) -(-13 (-376 |t#1|) (-294 (-574) |t#1|) (-10 -8 (-15 -2191 ((-1283 $))) (-15 -4346 ((-1283 |t#1|) $)) (-15 -4346 ((-699 |t#1|) (-1283 $))) (-15 -2588 ((-1283 (-699 |t#1|)))) (-15 -2074 ((-654 (-965 |t#1|)))) (-15 -2919 ($ (-1283 |t#1|))) (-15 -1845 ((-1283 |t#1|) $)) (-15 -1845 ($ (-1283 |t#1|))) (-15 -2903 (|t#1|)) (-15 -3414 (|t#1|)) (-15 -2597 ((-699 |t#1|))) (-15 -2038 ((-699 |t#1|))) (-15 -3680 ((-699 |t#1|) $)) (-15 -4189 ((-699 |t#1|) $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -1644 ((-1188 (-965 |t#1|)))) (-15 -3149 ((-1188 (-965 |t#1|))))) |%noBranch|) (-15 -2911 ($ (-699 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-294 (-574) |#1|) . T) ((-376 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T) ((-1233) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 60)) (-2323 (($ $) 78)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 192)) (-3648 (($ $) NIL)) (-1527 (((-112) $) 48)) (-3775 ((|#1| $) 16)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-1237)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-1237)))) (-1900 (($ |#1| (-574)) 42)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 149)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 74)) (-3911 (((-3 $ "failed") $) 165)) (-1955 (((-3 (-417 (-574)) "failed") $) 85 (|has| |#1| (-555)))) (-1519 (((-112) $) 81 (|has| |#1| (-555)))) (-4188 (((-417 (-574)) $) 92 (|has| |#1| (-555)))) (-4375 (($ |#1| (-574)) 44)) (-1782 (((-112) $) 212 (|has| |#1| (-1237)))) (-3372 (((-112) $) 62)) (-2284 (((-781) $) 51)) (-3016 (((-3 "nil" "sqfr" "irred" "prime") $ (-574)) 176)) (-2382 ((|#1| $ (-574)) 175)) (-4390 (((-574) $ (-574)) 174)) (-3046 (($ |#1| (-574)) 41)) (-1786 (($ (-1 |#1| |#1|) $) 184)) (-2543 (($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574))))) 79)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3945 (((-1174) $) NIL)) (-2641 (($ |#1| (-574)) 43)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 193 (|has| |#1| (-462)))) (-4240 (($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-4279 (((-654 (-2 (|:| -4200 |#1|) (|:| -2017 (-574)))) $) 73)) (-1486 (((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $) 12)) (-4200 (((-428 $) $) NIL (|has| |#1| (-1237)))) (-2852 (((-3 $ "failed") $ $) 177)) (-2017 (((-574) $) 168)) (-2138 ((|#1| $) 75)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 101 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 107 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) $) NIL (|has| |#1| (-524 (-1192) $))) (($ $ (-654 (-1192)) (-654 $)) 108 (|has| |#1| (-524 (-1192) $))) (($ $ (-654 (-302 $))) 104 (|has| |#1| (-317 $))) (($ $ (-302 $)) NIL (|has| |#1| (-317 $))) (($ $ $ $) NIL (|has| |#1| (-317 $))) (($ $ (-654 $) (-654 $)) NIL (|has| |#1| (-317 $)))) (-2208 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-294 $ $)))) (-3878 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-1845 (((-546) $) 39 (|has| |#1| (-624 (-546)))) (((-388) $) 114 (|has| |#1| (-1037))) (((-227) $) 120 (|has| |#1| (-1037)))) (-2950 (((-872) $) 147) (($ (-574)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574)))))) (-4019 (((-781)) 67 T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-2142 (($) 53 T CONST)) (-2154 (($) 52 T CONST)) (-3583 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) 160)) (-3089 (($ $) 162) (($ $ $) NIL)) (-3074 (($ $ $) 181)) (** (($ $ (-934)) NIL) (($ $ (-781)) 126)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-428 |#1|) (-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2138 (|#1| $)) (-15 -2017 ((-574) $)) (-15 -2543 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -1486 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -3046 ($ |#1| (-574))) (-15 -4279 ((-654 (-2 (|:| -4200 |#1|) (|:| -2017 (-574)))) $)) (-15 -2641 ($ |#1| (-574))) (-15 -4390 ((-574) $ (-574))) (-15 -2382 (|#1| $ (-574))) (-15 -3016 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -2284 ((-781) $)) (-15 -4375 ($ |#1| (-574))) (-15 -1900 ($ |#1| (-574))) (-15 -4240 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3775 (|#1| $)) (-15 -2323 ($ $)) (-15 -1786 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1037)) (-6 (-1037)) |%noBranch|) (IF (|has| |#1| (-1237)) (-6 (-1237)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1519 ((-112) $)) (-15 -4188 ((-417 (-574)) $)) (-15 -1955 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1192) $)) (-6 (-524 (-1192) $)) |%noBranch|))) (-566)) (T -428)) -((-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-566)) (-5 *1 (-428 *3)))) (-2138 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-2543 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-574))))) (-4 *2 (-566)) (-5 *1 (-428 *2)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-3046 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -4200 *3) (|:| -2017 (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-2641 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4390 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-2382 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3016 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *4)) (-4 *4 (-566)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-4375 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-1900 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4240 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3775 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2323 (*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-1955 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566))))) -(-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2138 (|#1| $)) (-15 -2017 ((-574) $)) (-15 -2543 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -1486 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -3046 ($ |#1| (-574))) (-15 -4279 ((-654 (-2 (|:| -4200 |#1|) (|:| -2017 (-574)))) $)) (-15 -2641 ($ |#1| (-574))) (-15 -4390 ((-574) $ (-574))) (-15 -2382 (|#1| $ (-574))) (-15 -3016 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -2284 ((-781) $)) (-15 -4375 ($ |#1| (-574))) (-15 -1900 ($ |#1| (-574))) (-15 -4240 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3775 (|#1| $)) (-15 -2323 ($ $)) (-15 -1786 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1037)) (-6 (-1037)) |%noBranch|) (IF (|has| |#1| (-1237)) (-6 (-1237)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1519 ((-112) $)) (-15 -4188 ((-417 (-574)) $)) (-15 -1955 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1192) $)) (-6 (-524 (-1192) $)) |%noBranch|))) -((-2947 (((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|)) 28)) (-3486 (((-428 |#1|) (-428 |#1|) (-428 |#1|)) 17))) -(((-429 |#1|) (-10 -7 (-15 -2947 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3486 ((-428 |#1|) (-428 |#1|) (-428 |#1|)))) (-566)) (T -429)) -((-3486 (*1 *2 *2 *2) (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3)))) (-2947 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4)) (-5 *1 (-429 *4))))) -(-10 -7 (-15 -2947 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3486 ((-428 |#1|) (-428 |#1|) (-428 |#1|)))) -((-2835 ((|#2| |#2|) 183)) (-4020 (((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112)) 60))) -(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4020 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112))) (-15 -2835 (|#2| |#2|))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|)) (-1192) |#2|) (T -430)) -((-2835 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1218) (-440 *3))) (-14 *4 (-1192)) (-14 *5 *2))) (-4020 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |%expansion| (-321 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-14 *6 (-1192)) (-14 *7 *3)))) -(-10 -7 (-15 -4020 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112))) (-15 -2835 (|#2| |#2|))) -((-1786 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1786 (|#4| (-1 |#3| |#1|) |#2|))) (-1064) (-440 |#1|) (-1064) (-440 |#3|)) (T -431)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-4 *2 (-440 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-440 *5))))) -(-10 -7 (-15 -1786 (|#4| (-1 |#3| |#1|) |#2|))) -((-2835 ((|#2| |#2|) 106)) (-4411 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174)) 52)) (-1320 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174)) 170))) -(((-432 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4411 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174))) (-15 -1320 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174))) (-15 -2835 (|#2| |#2|))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|) (-10 -8 (-15 -2950 ($ |#3|)))) (-858) (-13 (-1261 |#2| |#3|) (-372) (-1218) (-10 -8 (-15 -3878 ($ $)) (-15 -1578 ($ $)))) (-998 |#4|) (-1192)) (T -432)) -((-2835 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-4 *2 (-13 (-27) (-1218) (-440 *3) (-10 -8 (-15 -2950 ($ *4))))) (-4 *4 (-858)) (-4 *5 (-13 (-1261 *2 *4) (-372) (-1218) (-10 -8 (-15 -3878 ($ $)) (-15 -1578 ($ $))))) (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-998 *5)) (-14 *7 (-1192)))) (-1320 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1218) (-440 *6) (-10 -8 (-15 -2950 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1261 *3 *7) (-372) (-1218) (-10 -8 (-15 -3878 ($ $)) (-15 -1578 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1174)) (-4 *9 (-998 *8)) (-14 *10 (-1192)))) (-4411 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1218) (-440 *6) (-10 -8 (-15 -2950 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1261 *3 *7) (-372) (-1218) (-10 -8 (-15 -3878 ($ $)) (-15 -1578 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1174)) (-4 *9 (-998 *8)) (-14 *10 (-1192))))) -(-10 -7 (-15 -4411 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174))) (-15 -1320 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174))) (-15 -2835 (|#2| |#2|))) -((-4214 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2881 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1786 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1786 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2881 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4214 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1115) (-435 |#1|) (-1115) (-435 |#3|)) (T -433)) -((-4214 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1115)) (-4 *5 (-1115)) (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1115)) (-4 *2 (-1115)) (-5 *1 (-433 *5 *4 *2 *6)) (-4 *4 (-435 *5)) (-4 *6 (-435 *2)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-435 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-435 *5))))) -(-10 -7 (-15 -1786 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2881 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4214 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1421 (($) 51)) (-4352 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-2627 (($ $ $) 46)) (-3415 (((-112) $ $) 35)) (-1496 (((-781)) 55)) (-1516 (($ (-654 |#2|)) 23) (($) NIL)) (-2834 (($) 66)) (-3304 (((-112) $ $) 15)) (-3632 ((|#2| $) 77)) (-1593 ((|#2| $) 75)) (-3271 (((-934) $) 70)) (-1454 (($ $ $) 42)) (-2590 (($ (-934)) 60)) (-3728 (($ $ |#2|) NIL) (($ $ $) 45)) (-3948 (((-781) (-1 (-112) |#2|) $) NIL) (((-781) |#2| $) 31)) (-2962 (($ (-654 |#2|)) 27)) (-1883 (($ $) 53)) (-2950 (((-872) $) 40)) (-4168 (((-781) $) 24)) (-4268 (($ (-654 |#2|)) 22) (($) NIL)) (-2985 (((-112) $ $) 19))) -(((-434 |#1| |#2|) (-10 -8 (-15 -1496 ((-781))) (-15 -2590 (|#1| (-934))) (-15 -3271 ((-934) |#1|)) (-15 -2834 (|#1|)) (-15 -3632 (|#2| |#1|)) (-15 -1593 (|#2| |#1|)) (-15 -1421 (|#1|)) (-15 -1883 (|#1| |#1|)) (-15 -4168 ((-781) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -3304 ((-112) |#1| |#1|)) (-15 -4268 (|#1|)) (-15 -4268 (|#1| (-654 |#2|))) (-15 -1516 (|#1|)) (-15 -1516 (|#1| (-654 |#2|))) (-15 -1454 (|#1| |#1| |#1|)) (-15 -3728 (|#1| |#1| |#1|)) (-15 -3728 (|#1| |#1| |#2|)) (-15 -2627 (|#1| |#1| |#1|)) (-15 -3415 ((-112) |#1| |#1|)) (-15 -4352 (|#1| |#1| |#1|)) (-15 -4352 (|#1| |#1| |#2|)) (-15 -4352 (|#1| |#2| |#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|))) (-435 |#2|) (-1115)) (T -434)) -((-1496 (*1 *2) (-12 (-4 *4 (-1115)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4))))) -(-10 -8 (-15 -1496 ((-781))) (-15 -2590 (|#1| (-934))) (-15 -3271 ((-934) |#1|)) (-15 -2834 (|#1|)) (-15 -3632 (|#2| |#1|)) (-15 -1593 (|#2| |#1|)) (-15 -1421 (|#1|)) (-15 -1883 (|#1| |#1|)) (-15 -4168 ((-781) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -3304 ((-112) |#1| |#1|)) (-15 -4268 (|#1|)) (-15 -4268 (|#1| (-654 |#2|))) (-15 -1516 (|#1|)) (-15 -1516 (|#1| (-654 |#2|))) (-15 -1454 (|#1| |#1| |#1|)) (-15 -3728 (|#1| |#1| |#1|)) (-15 -3728 (|#1| |#1| |#2|)) (-15 -2627 (|#1| |#1| |#1|)) (-15 -3415 ((-112) |#1| |#1|)) (-15 -4352 (|#1| |#1| |#1|)) (-15 -4352 (|#1| |#1| |#2|)) (-15 -4352 (|#1| |#2| |#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|))) -((-2863 (((-112) $ $) 19)) (-1421 (($) 68 (|has| |#1| (-377)))) (-4352 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2627 (($ $ $) 79)) (-3415 (((-112) $ $) 80)) (-2818 (((-112) $ (-781)) 8)) (-1496 (((-781)) 62 (|has| |#1| (-377)))) (-1516 (($ (-654 |#1|)) 75) (($) 74)) (-2551 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2560 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1941 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-2834 (($) 65 (|has| |#1| (-377)))) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3304 (((-112) $ $) 71)) (-2224 (((-112) $ (-781)) 9)) (-3632 ((|#1| $) 66 (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1593 ((|#1| $) 67 (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3271 (((-934) $) 64 (|has| |#1| (-377)))) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22)) (-1454 (($ $ $) 76)) (-1748 ((|#1| $) 40)) (-2609 (($ |#1| $) 41)) (-2590 (($ (-934)) 63 (|has| |#1| (-377)))) (-3939 (((-1135) $) 21)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3484 ((|#1| $) 42)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3728 (($ $ |#1|) 78) (($ $ $) 77)) (-3667 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-1883 (($ $) 69 (|has| |#1| (-377)))) (-2950 (((-872) $) 18)) (-4168 (((-781) $) 70)) (-4268 (($ (-654 |#1|)) 73) (($) 72)) (-3838 (((-112) $ $) 23)) (-3180 (($ (-654 |#1|)) 43)) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20)) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-435 |#1|) (-141) (-1115)) (T -435)) -((-4168 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1115)) (-5 *2 (-781)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-377)))) (-1421 (*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1115)))) (-1593 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-860)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-860))))) -(-13 (-231 |t#1|) (-1113 |t#1|) (-10 -8 (-6 -4458) (-15 -4168 ((-781) $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-377)) (-15 -1883 ($ $)) (-15 -1421 ($))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -1593 (|t#1| $)) (-15 -3632 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-231 |#1|) . T) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-377) |has| |#1| (-377)) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1113 |#1|) . T) ((-1115) . T) ((-1233) . T)) -((-1755 (((-596 |#2|) |#2| (-1192)) 36)) (-4329 (((-596 |#2|) |#2| (-1192)) 21)) (-3586 ((|#2| |#2| (-1192)) 26))) -(((-436 |#1| |#2|) (-10 -7 (-15 -4329 ((-596 |#2|) |#2| (-1192))) (-15 -1755 ((-596 |#2|) |#2| (-1192))) (-15 -3586 (|#2| |#2| (-1192)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-29 |#1|))) (T -436)) -((-3586 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1218) (-29 *4))))) (-1755 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1218) (-29 *5))))) (-4329 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1218) (-29 *5)))))) -(-10 -7 (-15 -4329 ((-596 |#2|) |#2| (-1192))) (-15 -1755 ((-596 |#2|) |#2| (-1192))) (-15 -3586 (|#2| |#2| (-1192)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) NIL)) (-1895 (($ |#2| |#1|) 37)) (-3726 (($ |#2| |#1|) 35)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-339 |#2|)) 25)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 10 T CONST)) (-2154 (($) 16 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 36)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-437 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4445)) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|) |%noBranch|) (-15 -2950 ($ |#1|)) (-15 -2950 ($ (-339 |#2|))) (-15 -1895 ($ |#2| |#1|)) (-15 -3726 ($ |#2| |#1|)))) (-13 (-174) (-38 (-417 (-574)))) (-13 (-860) (-21))) (T -437)) -((-2950 (*1 *1 *2) (-12 (-5 *1 (-437 *2 *3)) (-4 *2 (-13 (-174) (-38 (-417 (-574))))) (-4 *3 (-13 (-860) (-21))))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-339 *4)) (-4 *4 (-13 (-860) (-21))) (-5 *1 (-437 *3 *4)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))))) (-1895 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21))))) (-3726 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4445)) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|) |%noBranch|) (-15 -2950 ($ |#1|)) (-15 -2950 ($ (-339 |#2|))) (-15 -1895 ($ |#2| |#1|)) (-15 -3726 ($ |#2| |#1|)))) -((-1578 (((-3 |#2| (-654 |#2|)) |#2| (-1192)) 115))) -(((-438 |#1| |#2|) (-10 -7 (-15 -1578 ((-3 |#2| (-654 |#2|)) |#2| (-1192)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-972) (-29 |#1|))) (T -438)) -((-1578 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1218) (-972) (-29 *5)))))) -(-10 -7 (-15 -1578 ((-3 |#2| (-654 |#2|)) |#2| (-1192)))) -((-4349 (((-654 (-1192)) $) 81)) (-4171 (((-417 (-1188 $)) $ (-622 $)) 313)) (-2558 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) 277)) (-1705 (((-3 (-622 $) "failed") $) NIL) (((-3 (-1192) "failed") $) 84) (((-3 (-574) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-417 (-965 |#2|)) "failed") $) 363) (((-3 (-965 |#2|) "failed") $) 275) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-622 $) $) NIL) (((-1192) $) 28) (((-574) $) NIL) ((|#2| $) 271) (((-417 (-965 |#2|)) $) 345) (((-965 |#2|) $) 272) (((-417 (-574)) $) NIL)) (-4150 (((-115) (-115)) 47)) (-3536 (($ $) 99)) (-4367 (((-3 (-622 $) "failed") $) 268)) (-4138 (((-654 (-622 $)) $) 269)) (-1810 (((-3 (-654 $) "failed") $) 287)) (-3267 (((-3 (-2 (|:| |val| $) (|:| -2017 (-574))) "failed") $) 294)) (-1577 (((-3 (-654 $) "failed") $) 285)) (-3337 (((-3 (-2 (|:| -1867 (-574)) (|:| |var| (-622 $))) "failed") $) 304)) (-3404 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $) 291) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $ (-1192)) 257)) (-1342 (((-112) $) 17)) (-1354 ((|#2| $) 19)) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 276) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) 109) (($ $ (-1192) (-1 $ (-654 $))) NIL) (($ $ (-1192) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1192)) 62) (($ $ (-654 (-1192))) 280) (($ $) 281) (($ $ (-115) $ (-1192)) 65) (($ $ (-654 (-115)) (-654 $) (-1192)) 72) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ $))) 120) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 282) (($ $ (-1192) (-781) (-1 $ (-654 $))) 105) (($ $ (-1192) (-781) (-1 $ $)) 104)) (-2208 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) 119)) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) 278)) (-2120 (($ $) 324)) (-1845 (((-903 (-574)) $) 297) (((-903 (-388)) $) 301) (($ (-428 $)) 359) (((-546) $) NIL)) (-2950 (((-872) $) 279) (($ (-622 $)) 93) (($ (-1192)) 24) (($ |#2|) NIL) (($ (-1140 |#2| (-622 $))) NIL) (($ (-417 |#2|)) 329) (($ (-965 (-417 |#2|))) 368) (($ (-417 (-965 (-417 |#2|)))) 341) (($ (-417 (-965 |#2|))) 335) (($ $) NIL) (($ (-965 |#2|)) 216) (($ (-574)) NIL) (($ (-417 (-574))) 373)) (-4019 (((-781)) 88)) (-4207 (((-112) (-115)) 42)) (-2512 (($ (-1192) $) 31) (($ (-1192) $ $) 32) (($ (-1192) $ $ $) 33) (($ (-1192) $ $ $ $) 34) (($ (-1192) (-654 $)) 39)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL))) -(((-439 |#1| |#2|) (-10 -8 (-15 * (|#1| (-934) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2950 (|#1| (-574))) (-15 -4019 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -2950 (|#1| (-965 |#2|))) (-15 -1705 ((-3 (-965 |#2|) "failed") |#1|)) (-15 -2216 ((-965 |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 * (|#1| |#1| |#2|)) (-15 -2950 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2950 (|#1| (-417 (-965 |#2|)))) (-15 -1705 ((-3 (-417 (-965 |#2|)) "failed") |#1|)) (-15 -2216 ((-417 (-965 |#2|)) |#1|)) (-15 -4171 ((-417 (-1188 |#1|)) |#1| (-622 |#1|))) (-15 -2950 (|#1| (-417 (-965 (-417 |#2|))))) (-15 -2950 (|#1| (-965 (-417 |#2|)))) (-15 -2950 (|#1| (-417 |#2|))) (-15 -2120 (|#1| |#1|)) (-15 -1845 (|#1| (-428 |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-781) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -3267 ((-3 (-2 (|:| |val| |#1|) (|:| -2017 (-574))) "failed") |#1|)) (-15 -3404 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2017 (-574))) "failed") |#1| (-1192))) (-15 -3404 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2017 (-574))) "failed") |#1| (-115))) (-15 -3536 (|#1| |#1|)) (-15 -2950 (|#1| (-1140 |#2| (-622 |#1|)))) (-15 -3337 ((-3 (-2 (|:| -1867 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -1577 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3404 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2017 (-574))) "failed") |#1|)) (-15 -1810 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1192))) (-15 -2660 (|#1| |#1| (-115) |#1| (-1192))) (-15 -2660 (|#1| |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1192)))) (-15 -2660 (|#1| |#1| (-1192))) (-15 -2512 (|#1| (-1192) (-654 |#1|))) (-15 -2512 (|#1| (-1192) |#1| |#1| |#1| |#1|)) (-15 -2512 (|#1| (-1192) |#1| |#1| |#1|)) (-15 -2512 (|#1| (-1192) |#1| |#1|)) (-15 -2512 (|#1| (-1192) |#1|)) (-15 -4349 ((-654 (-1192)) |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -1342 ((-112) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -2950 (|#1| (-1192))) (-15 -1705 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| |#1|)))) (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4138 ((-654 (-622 |#1|)) |#1|)) (-15 -4367 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2558 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2558 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2558 (|#1| |#1| (-302 |#1|))) (-15 -2208 (|#1| (-115) (-654 |#1|))) (-15 -2208 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2950 (|#1| (-622 |#1|))) (-15 -1705 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|)) (-15 -2950 ((-872) |#1|))) (-440 |#2|) (-1115)) (T -439)) -((-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1115)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1115)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5)))) (-4019 (*1 *2) (-12 (-4 *4 (-1115)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4))))) -(-10 -8 (-15 * (|#1| (-934) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2950 (|#1| (-574))) (-15 -4019 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -2950 (|#1| (-965 |#2|))) (-15 -1705 ((-3 (-965 |#2|) "failed") |#1|)) (-15 -2216 ((-965 |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 * (|#1| |#1| |#2|)) (-15 -2950 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2950 (|#1| (-417 (-965 |#2|)))) (-15 -1705 ((-3 (-417 (-965 |#2|)) "failed") |#1|)) (-15 -2216 ((-417 (-965 |#2|)) |#1|)) (-15 -4171 ((-417 (-1188 |#1|)) |#1| (-622 |#1|))) (-15 -2950 (|#1| (-417 (-965 (-417 |#2|))))) (-15 -2950 (|#1| (-965 (-417 |#2|)))) (-15 -2950 (|#1| (-417 |#2|))) (-15 -2120 (|#1| |#1|)) (-15 -1845 (|#1| (-428 |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-781) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -3267 ((-3 (-2 (|:| |val| |#1|) (|:| -2017 (-574))) "failed") |#1|)) (-15 -3404 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2017 (-574))) "failed") |#1| (-1192))) (-15 -3404 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2017 (-574))) "failed") |#1| (-115))) (-15 -3536 (|#1| |#1|)) (-15 -2950 (|#1| (-1140 |#2| (-622 |#1|)))) (-15 -3337 ((-3 (-2 (|:| -1867 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -1577 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3404 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2017 (-574))) "failed") |#1|)) (-15 -1810 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1192))) (-15 -2660 (|#1| |#1| (-115) |#1| (-1192))) (-15 -2660 (|#1| |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1192)))) (-15 -2660 (|#1| |#1| (-1192))) (-15 -2512 (|#1| (-1192) (-654 |#1|))) (-15 -2512 (|#1| (-1192) |#1| |#1| |#1| |#1|)) (-15 -2512 (|#1| (-1192) |#1| |#1| |#1|)) (-15 -2512 (|#1| (-1192) |#1| |#1|)) (-15 -2512 (|#1| (-1192) |#1|)) (-15 -4349 ((-654 (-1192)) |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -1342 ((-112) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -2950 (|#1| (-1192))) (-15 -1705 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| |#1|)))) (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4138 ((-654 (-622 |#1|)) |#1|)) (-15 -4367 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2558 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2558 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2558 (|#1| |#1| (-302 |#1|))) (-15 -2208 (|#1| (-115) (-654 |#1|))) (-15 -2208 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1| |#1|)) (-15 -2208 (|#1| (-115) |#1|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2950 (|#1| (-622 |#1|))) (-15 -1705 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|)) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 116 (|has| |#1| (-25)))) (-4349 (((-654 (-1192)) $) 205)) (-4171 (((-417 (-1188 $)) $ (-622 $)) 173 (|has| |#1| (-566)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 145 (|has| |#1| (-566)))) (-3648 (($ $) 146 (|has| |#1| (-566)))) (-1527 (((-112) $) 148 (|has| |#1| (-566)))) (-4064 (((-654 (-622 $)) $) 39)) (-1597 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2558 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-3296 (($ $) 165 (|has| |#1| (-566)))) (-3954 (((-428 $) $) 166 (|has| |#1| (-566)))) (-3656 (((-112) $ $) 156 (|has| |#1| (-566)))) (-3831 (($) 104 (-2832 (|has| |#1| (-1127)) (|has| |#1| (-25))) CONST)) (-1705 (((-3 (-622 $) "failed") $) 64) (((-3 (-1192) "failed") $) 218) (((-3 (-574) "failed") $) 212 (|has| |#1| (-1053 (-574)))) (((-3 |#1| "failed") $) 209) (((-3 (-417 (-965 |#1|)) "failed") $) 171 (|has| |#1| (-566))) (((-3 (-965 |#1|) "failed") $) 123 (|has| |#1| (-1064))) (((-3 (-417 (-574)) "failed") $) 98 (-2832 (-12 (|has| |#1| (-1053 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1053 (-417 (-574))))))) (-2216 (((-622 $) $) 65) (((-1192) $) 219) (((-574) $) 211 (|has| |#1| (-1053 (-574)))) ((|#1| $) 210) (((-417 (-965 |#1|)) $) 172 (|has| |#1| (-566))) (((-965 |#1|) $) 124 (|has| |#1| (-1064))) (((-417 (-574)) $) 99 (-2832 (-12 (|has| |#1| (-1053 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1053 (-417 (-574))))))) (-2799 (($ $ $) 160 (|has| |#1| (-566)))) (-3465 (((-699 (-574)) (-1283 $)) 140 (-2096 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) (((-699 (-574)) (-699 $)) 139 (-2096 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 138 (-2096 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 137 (|has| |#1| (-1064))) (((-699 |#1|) (-699 $)) 136 (|has| |#1| (-1064))) (((-699 |#1|) (-1283 $)) 135 (|has| |#1| (-1064)))) (-3911 (((-3 $ "failed") $) 106 (|has| |#1| (-1127)))) (-2811 (($ $ $) 159 (|has| |#1| (-566)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 154 (|has| |#1| (-566)))) (-1782 (((-112) $) 167 (|has| |#1| (-566)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 214 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 213 (|has| |#1| (-897 (-388))))) (-2116 (($ $) 46) (($ (-654 $)) 45)) (-3294 (((-654 (-115)) $) 38)) (-4150 (((-115) (-115)) 37)) (-3372 (((-112) $) 105 (|has| |#1| (-1127)))) (-3512 (((-112) $) 17 (|has| $ (-1053 (-574))))) (-3536 (($ $) 188 (|has| |#1| (-1064)))) (-2970 (((-1140 |#1| (-622 $)) $) 189 (|has| |#1| (-1064)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 163 (|has| |#1| (-566)))) (-4311 (((-1188 $) (-622 $)) 20 (|has| $ (-1064)))) (-1786 (($ (-1 $ $) (-622 $)) 31)) (-4367 (((-3 (-622 $) "failed") $) 41)) (-2848 (($ (-654 $)) 152 (|has| |#1| (-566))) (($ $ $) 151 (|has| |#1| (-566)))) (-3945 (((-1174) $) 10)) (-4138 (((-654 (-622 $)) $) 40)) (-1783 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-1810 (((-3 (-654 $) "failed") $) 194 (|has| |#1| (-1127)))) (-3267 (((-3 (-2 (|:| |val| $) (|:| -2017 (-574))) "failed") $) 185 (|has| |#1| (-1064)))) (-1577 (((-3 (-654 $) "failed") $) 192 (|has| |#1| (-25)))) (-3337 (((-3 (-2 (|:| -1867 (-574)) (|:| |var| (-622 $))) "failed") $) 191 (|has| |#1| (-25)))) (-3404 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $) 193 (|has| |#1| (-1127))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $ (-115)) 187 (|has| |#1| (-1064))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $ (-1192)) 186 (|has| |#1| (-1064)))) (-3571 (((-112) $ (-115)) 35) (((-112) $ (-1192)) 34)) (-1327 (($ $) 108 (-2832 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-1847 (((-781) $) 42)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 207)) (-1354 ((|#1| $) 206)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 153 (|has| |#1| (-566)))) (-2886 (($ (-654 $)) 150 (|has| |#1| (-566))) (($ $ $) 149 (|has| |#1| (-566)))) (-4277 (((-112) $ $) 30) (((-112) $ (-1192)) 29)) (-4200 (((-428 $) $) 164 (|has| |#1| (-566)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 161 (|has| |#1| (-566)))) (-2852 (((-3 $ "failed") $ $) 144 (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 155 (|has| |#1| (-566)))) (-3694 (((-112) $) 18 (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1192)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1192) (-1 $ (-654 $))) 26) (($ $ (-1192) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1192)) 199 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1192))) 198 (|has| |#1| (-624 (-546)))) (($ $) 197 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1192)) 196 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1192)) 195 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ $))) 184 (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 183 (|has| |#1| (-1064))) (($ $ (-1192) (-781) (-1 $ (-654 $))) 182 (|has| |#1| (-1064))) (($ $ (-1192) (-781) (-1 $ $)) 181 (|has| |#1| (-1064)))) (-3364 (((-781) $) 157 (|has| |#1| (-566)))) (-2208 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 158 (|has| |#1| (-566)))) (-1834 (($ $) 44) (($ $ $) 43)) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 129 (|has| |#1| (-1064))) (($ $ (-1192) (-781)) 128 (|has| |#1| (-1064))) (($ $ (-654 (-1192))) 127 (|has| |#1| (-1064))) (($ $ (-1192)) 126 (|has| |#1| (-1064)))) (-2120 (($ $) 178 (|has| |#1| (-566)))) (-2981 (((-1140 |#1| (-622 $)) $) 179 (|has| |#1| (-566)))) (-2290 (($ $) 19 (|has| $ (-1064)))) (-1845 (((-903 (-574)) $) 216 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 215 (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) 180 (|has| |#1| (-566))) (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2202 (($ $ $) 111 (|has| |#1| (-483)))) (-3490 (($ $ $) 112 (|has| |#1| (-483)))) (-2950 (((-872) $) 12) (($ (-622 $)) 63) (($ (-1192)) 217) (($ |#1|) 208) (($ (-1140 |#1| (-622 $))) 190 (|has| |#1| (-1064))) (($ (-417 |#1|)) 176 (|has| |#1| (-566))) (($ (-965 (-417 |#1|))) 175 (|has| |#1| (-566))) (($ (-417 (-965 (-417 |#1|)))) 174 (|has| |#1| (-566))) (($ (-417 (-965 |#1|))) 170 (|has| |#1| (-566))) (($ $) 143 (|has| |#1| (-566))) (($ (-965 |#1|)) 122 (|has| |#1| (-1064))) (($ (-417 (-574))) 97 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-1053 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1053 (-417 (-574)))))) (($ (-574)) 96 (-2832 (|has| |#1| (-1064)) (|has| |#1| (-1053 (-574)))))) (-3247 (((-3 $ "failed") $) 141 (|has| |#1| (-146)))) (-4019 (((-781)) 125 (|has| |#1| (-1064)) CONST)) (-2079 (($ $) 48) (($ (-654 $)) 47)) (-4207 (((-112) (-115)) 36)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 147 (|has| |#1| (-566)))) (-2512 (($ (-1192) $) 204) (($ (-1192) $ $) 203) (($ (-1192) $ $ $) 202) (($ (-1192) $ $ $ $) 201) (($ (-1192) (-654 $)) 200)) (-2142 (($) 115 (|has| |#1| (-25)) CONST)) (-2154 (($) 103 (|has| |#1| (-1127)) CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 133 (|has| |#1| (-1064))) (($ $ (-1192) (-781)) 132 (|has| |#1| (-1064))) (($ $ (-654 (-1192))) 131 (|has| |#1| (-1064))) (($ $ (-1192)) 130 (|has| |#1| (-1064)))) (-2985 (((-112) $ $) 6)) (-3098 (($ (-1140 |#1| (-622 $)) (-1140 |#1| (-622 $))) 177 (|has| |#1| (-566))) (($ $ $) 109 (-2832 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3089 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3074 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-574)) 110 (-2832 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 107 (|has| |#1| (-1127))) (($ $ (-934)) 102 (|has| |#1| (-1127)))) (* (($ (-417 (-574)) $) 169 (|has| |#1| (-566))) (($ $ (-417 (-574))) 168 (|has| |#1| (-566))) (($ $ |#1|) 142 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1064))) (($ (-574) $) 119 (|has| |#1| (-21))) (($ (-781) $) 117 (|has| |#1| (-25))) (($ (-934) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1127))))) -(((-440 |#1|) (-141) (-1115)) (T -440)) -((-1342 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-5 *2 (-654 (-1192))))) (-2512 (*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) (-2512 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) (-2512 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) (-2512 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) (-2512 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1115)))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-4 *3 (-624 (-546))))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1192))) (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-4 *3 (-624 (-546))))) (-2660 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-624 (-546))))) (-2660 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1192)) (-4 *1 (-440 *4)) (-4 *4 (-1115)) (-4 *4 (-624 (-546))))) (-2660 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1192)) (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-624 (-546))))) (-1810 (*1 *2 *1) (|partial| -12 (-4 *3 (-1127)) (-4 *3 (-1115)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-3404 (*1 *2 *1) (|partial| -12 (-4 *3 (-1127)) (-4 *3 (-1115)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2017 (-574)))) (-4 *1 (-440 *3)))) (-1577 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1115)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-3337 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1115)) (-5 *2 (-2 (|:| -1867 (-574)) (|:| |var| (-622 *1)))) (-4 *1 (-440 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1140 *3 (-622 *1))) (-4 *3 (-1064)) (-4 *3 (-1115)) (-4 *1 (-440 *3)))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *3 (-1115)) (-5 *2 (-1140 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-3536 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-1064)))) (-3404 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1064)) (-4 *4 (-1115)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2017 (-574)))) (-4 *1 (-440 *4)))) (-3404 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1192)) (-4 *4 (-1064)) (-4 *4 (-1115)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2017 (-574)))) (-4 *1 (-440 *4)))) (-3267 (*1 *2 *1) (|partial| -12 (-4 *3 (-1064)) (-4 *3 (-1115)) (-5 *2 (-2 (|:| |val| *1) (|:| -2017 (-574)))) (-4 *1 (-440 *3)))) (-2660 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) (-2660 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) (-2660 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) (-2660 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1)) (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-428 *1)) (-4 *1 (-440 *3)) (-4 *3 (-566)) (-4 *3 (-1115)))) (-2981 (*1 *2 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1115)) (-5 *2 (-1140 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-2120 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-566)))) (-3098 (*1 *1 *2 *2) (-12 (-5 *2 (-1140 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1115)) (-4 *1 (-440 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1115)) (-4 *1 (-440 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-965 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1115)) (-4 *1 (-440 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1115)) (-4 *1 (-440 *3)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1115)) (-4 *4 (-566)) (-5 *2 (-417 (-1188 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-4 *3 (-1127))))) -(-13 (-310) (-1053 (-1192)) (-895 |t#1|) (-410 |t#1|) (-421 |t#1|) (-10 -8 (-15 -1342 ((-112) $)) (-15 -1354 (|t#1| $)) (-15 -4349 ((-654 (-1192)) $)) (-15 -2512 ($ (-1192) $)) (-15 -2512 ($ (-1192) $ $)) (-15 -2512 ($ (-1192) $ $ $)) (-15 -2512 ($ (-1192) $ $ $ $)) (-15 -2512 ($ (-1192) (-654 $))) (IF (|has| |t#1| (-624 (-546))) (PROGN (-6 (-624 (-546))) (-15 -2660 ($ $ (-1192))) (-15 -2660 ($ $ (-654 (-1192)))) (-15 -2660 ($ $)) (-15 -2660 ($ $ (-115) $ (-1192))) (-15 -2660 ($ $ (-654 (-115)) (-654 $) (-1192)))) |%noBranch|) (IF (|has| |t#1| (-1127)) (PROGN (-6 (-736)) (-15 ** ($ $ (-781))) (-15 -1810 ((-3 (-654 $) "failed") $)) (-15 -3404 ((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-483)) (-6 (-483)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1577 ((-3 (-654 $) "failed") $)) (-15 -3337 ((-3 (-2 (|:| -1867 (-574)) (|:| |var| (-622 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1064)) (PROGN (-6 (-1064)) (-6 (-1053 (-965 |t#1|))) (-6 (-913 (-1192))) (-6 (-386 |t#1|)) (-15 -2950 ($ (-1140 |t#1| (-622 $)))) (-15 -2970 ((-1140 |t#1| (-622 $)) $)) (-15 -3536 ($ $)) (-15 -3404 ((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $ (-115))) (-15 -3404 ((-3 (-2 (|:| |var| (-622 $)) (|:| -2017 (-574))) "failed") $ (-1192))) (-15 -3267 ((-3 (-2 (|:| |val| $) (|:| -2017 (-574))) "failed") $)) (-15 -2660 ($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ $)))) (-15 -2660 ($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ (-654 $))))) (-15 -2660 ($ $ (-1192) (-781) (-1 $ (-654 $)))) (-15 -2660 ($ $ (-1192) (-781) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-372)) (-6 (-1053 (-417 (-965 |t#1|)))) (-15 -1845 ($ (-428 $))) (-15 -2981 ((-1140 |t#1| (-622 $)) $)) (-15 -2120 ($ $)) (-15 -3098 ($ (-1140 |t#1| (-622 $)) (-1140 |t#1| (-622 $)))) (-15 -2950 ($ (-417 |t#1|))) (-15 -2950 ($ (-965 (-417 |t#1|)))) (-15 -2950 ($ (-417 (-965 (-417 |t#1|))))) (-15 -4171 ((-417 (-1188 $)) $ (-622 $))) (IF (|has| |t#1| (-1053 (-574))) (-6 (-1053 (-417 (-574)))) |%noBranch|)) |%noBranch|))) -(((-21) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-417 (-574))) |has| |#1| (-566)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-566)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-566)) ((-132) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-566))) ((-626 #1=(-417 (-965 |#1|))) |has| |#1| (-566)) ((-626 (-574)) -2832 (|has| |#1| (-1064)) (|has| |#1| (-1053 (-574))) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-626 #2=(-622 $)) . T) ((-626 #3=(-965 |#1|)) |has| |#1| (-1064)) ((-626 #4=(-1192)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) |has| |#1| (-566)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) |has| |#1| (-566)) ((-298) |has| |#1| (-566)) ((-315) |has| |#1| (-566)) ((-317 $) . T) ((-310) . T) ((-372) |has| |#1| (-566)) ((-386 |#1|) |has| |#1| (-1064)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) |has| |#1| (-566)) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-566)) ((-656 (-574)) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-656 |#1|) -2832 (|has| |#1| (-1064)) (|has| |#1| (-174))) ((-656 $) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-658 #0#) |has| |#1| (-566)) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))) ((-658 |#1|) -2832 (|has| |#1| (-1064)) (|has| |#1| (-174))) ((-658 $) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-650 #0#) |has| |#1| (-566)) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))) ((-649 |#1|) |has| |#1| (-1064)) ((-727 #0#) |has| |#1| (-566)) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) -2832 (|has| |#1| (-1127)) (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-913 (-1192)) |has| |#1| (-1064)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-933) |has| |#1| (-566)) ((-1053 (-417 (-574))) -2832 (|has| |#1| (-1053 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))))) ((-1053 #1#) |has| |#1| (-566)) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 #2#) . T) ((-1053 #3#) |has| |#1| (-1064)) ((-1053 #4#) . T) ((-1053 |#1|) . T) ((-1066 #0#) |has| |#1| (-566)) ((-1066 |#1|) |has| |#1| (-174)) ((-1066 $) |has| |#1| (-566)) ((-1071 #0#) |has| |#1| (-566)) ((-1071 |#1|) |has| |#1| (-174)) ((-1071 $) |has| |#1| (-566)) ((-1064) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1073) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1127) -2832 (|has| |#1| (-1127)) (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1115) . T) ((-1233) . T) ((-1237) |has| |#1| (-566))) -((-2867 ((|#2| |#2| |#2|) 31)) (-4150 (((-115) (-115)) 43)) (-1735 ((|#2| |#2|) 63)) (-2175 ((|#2| |#2|) 66)) (-3239 ((|#2| |#2|) 30)) (-2600 ((|#2| |#2| |#2|) 33)) (-2793 ((|#2| |#2| |#2|) 35)) (-4373 ((|#2| |#2| |#2|) 32)) (-3852 ((|#2| |#2| |#2|) 34)) (-4207 (((-112) (-115)) 41)) (-1423 ((|#2| |#2|) 37)) (-2966 ((|#2| |#2|) 36)) (-3306 ((|#2| |#2|) 25)) (-3592 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2788 ((|#2| |#2| |#2|) 29))) -(((-441 |#1| |#2|) (-10 -7 (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3306 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -2788 (|#2| |#2| |#2|)) (-15 -3239 (|#2| |#2|)) (-15 -2867 (|#2| |#2| |#2|)) (-15 -4373 (|#2| |#2| |#2|)) (-15 -2600 (|#2| |#2| |#2|)) (-15 -3852 (|#2| |#2| |#2|)) (-15 -2793 (|#2| |#2| |#2|)) (-15 -2966 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -1735 (|#2| |#2|))) (-566) (-440 |#1|)) (T -441)) -((-1735 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2175 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1423 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2966 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2793 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3852 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2600 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4373 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2867 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3239 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2788 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3592 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3306 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-441 *3 *4)) (-4 *4 (-440 *3)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4))))) -(-10 -7 (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3306 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -2788 (|#2| |#2| |#2|)) (-15 -3239 (|#2| |#2|)) (-15 -2867 (|#2| |#2| |#2|)) (-15 -4373 (|#2| |#2| |#2|)) (-15 -2600 (|#2| |#2| |#2|)) (-15 -3852 (|#2| |#2| |#2|)) (-15 -2793 (|#2| |#2| |#2|)) (-15 -2966 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -1735 (|#2| |#2|))) -((-1912 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1188 |#2|)) (|:| |pol2| (-1188 |#2|)) (|:| |prim| (-1188 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1188 |#2|))) (|:| |prim| (-1188 |#2|))) (-654 |#2|)) 65))) -(((-442 |#1| |#2|) (-10 -7 (-15 -1912 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1188 |#2|))) (|:| |prim| (-1188 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -1912 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1188 |#2|)) (|:| |pol2| (-1188 |#2|)) (|:| |prim| (-1188 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-566) (-148)) (-440 |#1|)) (T -442)) -((-1912 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1188 *3)) (|:| |pol2| (-1188 *3)) (|:| |prim| (-1188 *3)))) (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1188 *5))) (|:| |prim| (-1188 *5)))) (-5 *1 (-442 *4 *5))))) -(-10 -7 (-15 -1912 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1188 |#2|))) (|:| |prim| (-1188 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -1912 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1188 |#2|)) (|:| |pol2| (-1188 |#2|)) (|:| |prim| (-1188 |#2|))) |#2| |#2|)) |%noBranch|)) -((-4128 (((-1288)) 18)) (-4024 (((-1188 (-417 (-574))) |#2| (-622 |#2|)) 40) (((-417 (-574)) |#2|) 24))) -(((-443 |#1| |#2|) (-10 -7 (-15 -4024 ((-417 (-574)) |#2|)) (-15 -4024 ((-1188 (-417 (-574))) |#2| (-622 |#2|))) (-15 -4128 ((-1288)))) (-13 (-566) (-1053 (-574))) (-440 |#1|)) (T -443)) -((-4128 (*1 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *2 (-1288)) (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3)))) (-4024 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5)) (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-443 *5 *3)))) (-4024 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4))))) -(-10 -7 (-15 -4024 ((-417 (-574)) |#2|)) (-15 -4024 ((-1188 (-417 (-574))) |#2| (-622 |#2|))) (-15 -4128 ((-1288)))) -((-1976 (((-112) $) 32)) (-3884 (((-112) $) 34)) (-4317 (((-112) $) 35)) (-1489 (((-112) $) 38)) (-3817 (((-112) $) 33)) (-2089 (((-112) $) 37)) (-2950 (((-872) $) 20) (($ (-1174)) 31) (($ (-1192)) 26) (((-1192) $) 24) (((-1119) $) 23)) (-2935 (((-112) $) 36)) (-2985 (((-112) $ $) 17))) -(((-444) (-13 (-623 (-872)) (-10 -8 (-15 -2950 ($ (-1174))) (-15 -2950 ($ (-1192))) (-15 -2950 ((-1192) $)) (-15 -2950 ((-1119) $)) (-15 -1976 ((-112) $)) (-15 -3817 ((-112) $)) (-15 -4317 ((-112) $)) (-15 -2089 ((-112) $)) (-15 -1489 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -3884 ((-112) $)) (-15 -2985 ((-112) $ $))))) (T -444)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-444)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-444)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-444)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-444)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-1489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2985 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2950 ($ (-1174))) (-15 -2950 ($ (-1192))) (-15 -2950 ((-1192) $)) (-15 -2950 ((-1119) $)) (-15 -1976 ((-112) $)) (-15 -3817 ((-112) $)) (-15 -4317 ((-112) $)) (-15 -2089 ((-112) $)) (-15 -1489 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -3884 ((-112) $)) (-15 -2985 ((-112) $ $)))) -((-2920 (((-3 (-428 (-1188 (-417 (-574)))) "failed") |#3|) 72)) (-1932 (((-428 |#3|) |#3|) 34)) (-3276 (((-3 (-428 (-1188 (-48))) "failed") |#3|) 46 (|has| |#2| (-1053 (-48))))) (-3012 (((-3 (|:| |overq| (-1188 (-417 (-574)))) (|:| |overan| (-1188 (-48))) (|:| -3574 (-112))) |#3|) 37))) -(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -1932 ((-428 |#3|) |#3|)) (-15 -2920 ((-3 (-428 (-1188 (-417 (-574)))) "failed") |#3|)) (-15 -3012 ((-3 (|:| |overq| (-1188 (-417 (-574)))) (|:| |overan| (-1188 (-48))) (|:| -3574 (-112))) |#3|)) (IF (|has| |#2| (-1053 (-48))) (-15 -3276 ((-3 (-428 (-1188 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-566) (-1053 (-574))) (-440 |#1|) (-1259 |#2|)) (T -445)) -((-3276 (*1 *2 *3) (|partial| -12 (-4 *5 (-1053 (-48))) (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1188 (-48)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5)))) (-3012 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-3 (|:| |overq| (-1188 (-417 (-574)))) (|:| |overan| (-1188 (-48))) (|:| -3574 (-112)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5)))) (-2920 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1188 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5)))) (-1932 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5))))) -(-10 -7 (-15 -1932 ((-428 |#3|) |#3|)) (-15 -2920 ((-3 (-428 (-1188 (-417 (-574)))) "failed") |#3|)) (-15 -3012 ((-3 (|:| |overq| (-1188 (-417 (-574)))) (|:| |overan| (-1188 (-48))) (|:| -3574 (-112))) |#3|)) (IF (|has| |#2| (-1053 (-48))) (-15 -3276 ((-3 (-428 (-1188 (-48))) "failed") |#3|)) |%noBranch|)) -((-2863 (((-112) $ $) NIL)) (-2506 (((-1174) $ (-1174)) NIL)) (-2695 (($ $ (-1174)) NIL)) (-2412 (((-1174) $) NIL)) (-2765 (((-398) (-398) (-398)) 17) (((-398) (-398)) 15)) (-1684 (($ (-398)) NIL) (($ (-398) (-1174)) NIL)) (-2040 (((-398) $) NIL)) (-3945 (((-1174) $) NIL)) (-4293 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3330 (((-1288) (-1174)) 9)) (-3959 (((-1288) (-1174)) 10)) (-3476 (((-1288)) 11)) (-2950 (((-872) $) NIL)) (-3894 (($ $) 39)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-446) (-13 (-373 (-398) (-1174)) (-10 -7 (-15 -2765 ((-398) (-398) (-398))) (-15 -2765 ((-398) (-398))) (-15 -3330 ((-1288) (-1174))) (-15 -3959 ((-1288) (-1174))) (-15 -3476 ((-1288)))))) (T -446)) -((-2765 (*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-2765 (*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-446)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-446)))) (-3476 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-446))))) -(-13 (-373 (-398) (-1174)) (-10 -7 (-15 -2765 ((-398) (-398) (-398))) (-15 -2765 ((-398) (-398))) (-15 -3330 ((-1288) (-1174))) (-15 -3959 ((-1288) (-1174))) (-15 -3476 ((-1288))))) -((-2863 (((-112) $ $) NIL)) (-3145 (((-3 (|:| |fst| (-444)) (|:| -2440 "void")) $) 11)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2991 (($) 35)) (-1595 (($) 41)) (-2649 (($) 37)) (-3746 (($) 39)) (-3862 (($) 36)) (-3375 (($) 38)) (-3117 (($) 40)) (-3822 (((-112) $) 8)) (-2470 (((-654 (-965 (-574))) $) 19)) (-2962 (($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-1192)) (-112)) 29) (($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-965 (-574))) (-112)) 30)) (-2950 (((-872) $) 24) (($ (-444)) 32)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-447) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-444))) (-15 -3145 ((-3 (|:| |fst| (-444)) (|:| -2440 "void")) $)) (-15 -2470 ((-654 (-965 (-574))) $)) (-15 -3822 ((-112) $)) (-15 -2962 ($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-1192)) (-112))) (-15 -2962 ($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-965 (-574))) (-112))) (-15 -2991 ($)) (-15 -3862 ($)) (-15 -2649 ($)) (-15 -1595 ($)) (-15 -3375 ($)) (-15 -3746 ($)) (-15 -3117 ($))))) (T -447)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-447)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *1 (-447)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-654 (-965 (-574)))) (-5 *1 (-447)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2962 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *3 (-654 (-1192))) (-5 *4 (-112)) (-5 *1 (-447)))) (-2962 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-112)) (-5 *1 (-447)))) (-2991 (*1 *1) (-5 *1 (-447))) (-3862 (*1 *1) (-5 *1 (-447))) (-2649 (*1 *1) (-5 *1 (-447))) (-1595 (*1 *1) (-5 *1 (-447))) (-3375 (*1 *1) (-5 *1 (-447))) (-3746 (*1 *1) (-5 *1 (-447))) (-3117 (*1 *1) (-5 *1 (-447)))) -(-13 (-1115) (-10 -8 (-15 -2950 ($ (-444))) (-15 -3145 ((-3 (|:| |fst| (-444)) (|:| -2440 "void")) $)) (-15 -2470 ((-654 (-965 (-574))) $)) (-15 -3822 ((-112) $)) (-15 -2962 ($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-1192)) (-112))) (-15 -2962 ($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-965 (-574))) (-112))) (-15 -2991 ($)) (-15 -3862 ($)) (-15 -2649 ($)) (-15 -1595 ($)) (-15 -3375 ($)) (-15 -3746 ($)) (-15 -3117 ($)))) -((-2863 (((-112) $ $) NIL)) (-2040 (((-1192) $) 8)) (-3945 (((-1174) $) 17)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 11)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 14))) -(((-448 |#1|) (-13 (-1115) (-10 -8 (-15 -2040 ((-1192) $)))) (-1192)) (T -448)) -((-2040 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-448 *3)) (-14 *3 *2)))) -(-13 (-1115) (-10 -8 (-15 -2040 ((-1192) $)))) -((-2863 (((-112) $ $) NIL)) (-3131 (((-1133) $) 7)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 13)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9))) -(((-449) (-13 (-1115) (-10 -8 (-15 -3131 ((-1133) $))))) (T -449)) -((-3131 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-449))))) -(-13 (-1115) (-10 -8 (-15 -3131 ((-1133) $)))) -((-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8) (($ (-1283 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 11))) +((-2391 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1284 *1)) (-4 *1 (-427 *3)))) (-1385 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 *3)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-1379 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 (-699 *3))))) (-3983 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-966 *3))))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 *3)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-4052 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-3061 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-1321 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-1519 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-4438 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-2625 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1189 (-966 *3))))) (-4436 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1189 (-966 *3))))) (-2912 (*1 *1 *2 *1) (-12 (-5 *2 (-699 *3)) (-4 *1 (-427 *3)) (-4 *3 (-174))))) +(-13 (-376 |t#1|) (-294 (-574) |t#1|) (-10 -8 (-15 -2391 ((-1284 $))) (-15 -1385 ((-1284 |t#1|) $)) (-15 -1385 ((-699 |t#1|) (-1284 $))) (-15 -1379 ((-1284 (-699 |t#1|)))) (-15 -3983 ((-654 (-966 |t#1|)))) (-15 -2580 ($ (-1284 |t#1|))) (-15 -1844 ((-1284 |t#1|) $)) (-15 -1844 ($ (-1284 |t#1|))) (-15 -4052 (|t#1|)) (-15 -3061 (|t#1|)) (-15 -1321 ((-699 |t#1|))) (-15 -1519 ((-699 |t#1|))) (-15 -3659 ((-699 |t#1|) $)) (-15 -4438 ((-699 |t#1|) $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -2625 ((-1189 (-966 |t#1|)))) (-15 -4436 ((-1189 (-966 |t#1|))))) |%noBranch|) (-15 -2912 ($ (-699 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-294 (-574) |#1|) . T) ((-376 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T) ((-1234) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 60)) (-2428 (($ $) 78)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 192)) (-2884 (($ $) NIL)) (-1981 (((-112) $) 48)) (-4098 ((|#1| $) 16)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL (|has| |#1| (-1238)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-1238)))) (-1658 (($ |#1| (-574)) 42)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 149)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 74)) (-4322 (((-3 $ "failed") $) 165)) (-3577 (((-3 (-417 (-574)) "failed") $) 85 (|has| |#1| (-555)))) (-3839 (((-112) $) 81 (|has| |#1| (-555)))) (-2842 (((-417 (-574)) $) 92 (|has| |#1| (-555)))) (-1967 (($ |#1| (-574)) 44)) (-3978 (((-112) $) 212 (|has| |#1| (-1238)))) (-4226 (((-112) $) 62)) (-1551 (((-781) $) 51)) (-4314 (((-3 "nil" "sqfr" "irred" "prime") $ (-574)) 176)) (-1719 ((|#1| $ (-574)) 175)) (-2575 (((-574) $ (-574)) 174)) (-1392 (($ |#1| (-574)) 41)) (-1785 (($ (-1 |#1| |#1|) $) 184)) (-3219 (($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574))))) 79)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1489 (((-1175) $) NIL)) (-4131 (($ |#1| (-574)) 43)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 193 (|has| |#1| (-462)))) (-2024 (($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-3314 (((-654 (-2 (|:| -4202 |#1|) (|:| -3139 (-574)))) $) 73)) (-3487 (((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $) 12)) (-4202 (((-428 $) $) NIL (|has| |#1| (-1238)))) (-2853 (((-3 $ "failed") $ $) 177)) (-3139 (((-574) $) 168)) (-2136 ((|#1| $) 75)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 101 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 107 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) $) NIL (|has| |#1| (-524 (-1193) $))) (($ $ (-654 (-1193)) (-654 $)) 108 (|has| |#1| (-524 (-1193) $))) (($ $ (-654 (-302 $))) 104 (|has| |#1| (-317 $))) (($ $ (-302 $)) NIL (|has| |#1| (-317 $))) (($ $ $ $) NIL (|has| |#1| (-317 $))) (($ $ (-654 $) (-654 $)) NIL (|has| |#1| (-317 $)))) (-2207 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-294 $ $)))) (-3879 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-1844 (((-546) $) 39 (|has| |#1| (-624 (-546)))) (((-388) $) 114 (|has| |#1| (-1038))) (((-227) $) 120 (|has| |#1| (-1038)))) (-2951 (((-872) $) 147) (($ (-574)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574)))))) (-2898 (((-781)) 67 T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-2141 (($) 53 T CONST)) (-2153 (($) 52 T CONST)) (-3584 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) 160)) (-3090 (($ $) 162) (($ $ $) NIL)) (-3074 (($ $ $) 181)) (** (($ $ (-935)) NIL) (($ $ (-781)) 126)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-428 |#1|) (-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2136 (|#1| $)) (-15 -3139 ((-574) $)) (-15 -3219 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -3487 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -1392 ($ |#1| (-574))) (-15 -3314 ((-654 (-2 (|:| -4202 |#1|) (|:| -3139 (-574)))) $)) (-15 -4131 ($ |#1| (-574))) (-15 -2575 ((-574) $ (-574))) (-15 -1719 (|#1| $ (-574))) (-15 -4314 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -1551 ((-781) $)) (-15 -1967 ($ |#1| (-574))) (-15 -1658 ($ |#1| (-574))) (-15 -2024 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4098 (|#1| $)) (-15 -2428 ($ $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1038)) (-6 (-1038)) |%noBranch|) (IF (|has| |#1| (-1238)) (-6 (-1238)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3839 ((-112) $)) (-15 -2842 ((-417 (-574)) $)) (-15 -3577 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1193) $)) (-6 (-524 (-1193) $)) |%noBranch|))) (-566)) (T -428)) +((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-566)) (-5 *1 (-428 *3)))) (-2136 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-3219 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-574))))) (-4 *2 (-566)) (-5 *1 (-428 *2)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-1392 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -4202 *3) (|:| -3139 (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-4131 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2575 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4314 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *4)) (-4 *4 (-566)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-1967 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-1658 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2024 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4098 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2428 (*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-3577 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566))))) +(-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2136 (|#1| $)) (-15 -3139 ((-574) $)) (-15 -3219 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -3487 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -1392 ($ |#1| (-574))) (-15 -3314 ((-654 (-2 (|:| -4202 |#1|) (|:| -3139 (-574)))) $)) (-15 -4131 ($ |#1| (-574))) (-15 -2575 ((-574) $ (-574))) (-15 -1719 (|#1| $ (-574))) (-15 -4314 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -1551 ((-781) $)) (-15 -1967 ($ |#1| (-574))) (-15 -1658 ($ |#1| (-574))) (-15 -2024 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4098 (|#1| $)) (-15 -2428 ($ $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1038)) (-6 (-1038)) |%noBranch|) (IF (|has| |#1| (-1238)) (-6 (-1238)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3839 ((-112) $)) (-15 -2842 ((-417 (-574)) $)) (-15 -3577 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1193) $)) (-6 (-524 (-1193) $)) |%noBranch|))) +((-2789 (((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|)) 28)) (-3337 (((-428 |#1|) (-428 |#1|) (-428 |#1|)) 17))) +(((-429 |#1|) (-10 -7 (-15 -2789 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3337 ((-428 |#1|) (-428 |#1|) (-428 |#1|)))) (-566)) (T -429)) +((-3337 (*1 *2 *2 *2) (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3)))) (-2789 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4)) (-5 *1 (-429 *4))))) +(-10 -7 (-15 -2789 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3337 ((-428 |#1|) (-428 |#1|) (-428 |#1|)))) +((-1736 ((|#2| |#2|) 183)) (-1837 (((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112)) 60))) +(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1837 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112))) (-15 -1736 (|#2| |#2|))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|)) (-1193) |#2|) (T -430)) +((-1736 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1219) (-440 *3))) (-14 *4 (-1193)) (-14 *5 *2))) (-1837 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |%expansion| (-321 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175)))))) (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-14 *6 (-1193)) (-14 *7 *3)))) +(-10 -7 (-15 -1837 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112))) (-15 -1736 (|#2| |#2|))) +((-1785 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|))) (-1065) (-440 |#1|) (-1065) (-440 |#3|)) (T -431)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-4 *2 (-440 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-440 *5))))) +(-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|))) +((-1736 ((|#2| |#2|) 106)) (-3740 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175)) 52)) (-3324 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175)) 170))) +(((-432 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3740 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175))) (-15 -3324 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175))) (-15 -1736 (|#2| |#2|))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|) (-10 -8 (-15 -2951 ($ |#3|)))) (-858) (-13 (-1262 |#2| |#3|) (-372) (-1219) (-10 -8 (-15 -3879 ($ $)) (-15 -3342 ($ $)))) (-999 |#4|) (-1193)) (T -432)) +((-1736 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-4 *2 (-13 (-27) (-1219) (-440 *3) (-10 -8 (-15 -2951 ($ *4))))) (-4 *4 (-858)) (-4 *5 (-13 (-1262 *2 *4) (-372) (-1219) (-10 -8 (-15 -3879 ($ $)) (-15 -3342 ($ $))))) (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-999 *5)) (-14 *7 (-1193)))) (-3324 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1219) (-440 *6) (-10 -8 (-15 -2951 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1262 *3 *7) (-372) (-1219) (-10 -8 (-15 -3879 ($ $)) (-15 -3342 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1175)) (-4 *9 (-999 *8)) (-14 *10 (-1193)))) (-3740 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1219) (-440 *6) (-10 -8 (-15 -2951 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1262 *3 *7) (-372) (-1219) (-10 -8 (-15 -3879 ($ $)) (-15 -3342 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1175)) (-4 *9 (-999 *8)) (-14 *10 (-1193))))) +(-10 -7 (-15 -3740 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175))) (-15 -3324 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175))) (-15 -1736 (|#2| |#2|))) +((-3465 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2882 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1785 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2882 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3465 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1116) (-435 |#1|) (-1116) (-435 |#3|)) (T -433)) +((-3465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1116)) (-4 *5 (-1116)) (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1116)) (-4 *2 (-1116)) (-5 *1 (-433 *5 *4 *2 *6)) (-4 *4 (-435 *5)) (-4 *6 (-435 *2)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-435 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-435 *5))))) +(-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2882 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3465 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3432 (($) 51)) (-4353 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-4302 (($ $ $) 46)) (-1917 (((-112) $ $) 35)) (-1496 (((-781)) 55)) (-1515 (($ (-654 |#2|)) 23) (($) NIL)) (-2835 (($) 66)) (-2714 (((-112) $ $) 15)) (-3634 ((|#2| $) 77)) (-4380 ((|#2| $) 75)) (-3383 (((-935) $) 70)) (-3891 (($ $ $) 42)) (-2591 (($ (-935)) 60)) (-2533 (($ $ |#2|) NIL) (($ $ $) 45)) (-3949 (((-781) (-1 (-112) |#2|) $) NIL) (((-781) |#2| $) 31)) (-2963 (($ (-654 |#2|)) 27)) (-2305 (($ $) 53)) (-2951 (((-872) $) 40)) (-2152 (((-781) $) 24)) (-4269 (($ (-654 |#2|)) 22) (($) NIL)) (-2986 (((-112) $ $) 19))) +(((-434 |#1| |#2|) (-10 -8 (-15 -1496 ((-781))) (-15 -2591 (|#1| (-935))) (-15 -3383 ((-935) |#1|)) (-15 -2835 (|#1|)) (-15 -3634 (|#2| |#1|)) (-15 -4380 (|#2| |#1|)) (-15 -3432 (|#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2152 ((-781) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2714 ((-112) |#1| |#1|)) (-15 -4269 (|#1|)) (-15 -4269 (|#1| (-654 |#2|))) (-15 -1515 (|#1|)) (-15 -1515 (|#1| (-654 |#2|))) (-15 -3891 (|#1| |#1| |#1|)) (-15 -2533 (|#1| |#1| |#1|)) (-15 -2533 (|#1| |#1| |#2|)) (-15 -4302 (|#1| |#1| |#1|)) (-15 -1917 ((-112) |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#2| |#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|))) (-435 |#2|) (-1116)) (T -434)) +((-1496 (*1 *2) (-12 (-4 *4 (-1116)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4))))) +(-10 -8 (-15 -1496 ((-781))) (-15 -2591 (|#1| (-935))) (-15 -3383 ((-935) |#1|)) (-15 -2835 (|#1|)) (-15 -3634 (|#2| |#1|)) (-15 -4380 (|#2| |#1|)) (-15 -3432 (|#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2152 ((-781) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2714 ((-112) |#1| |#1|)) (-15 -4269 (|#1|)) (-15 -4269 (|#1| (-654 |#2|))) (-15 -1515 (|#1|)) (-15 -1515 (|#1| (-654 |#2|))) (-15 -3891 (|#1| |#1| |#1|)) (-15 -2533 (|#1| |#1| |#1|)) (-15 -2533 (|#1| |#1| |#2|)) (-15 -4302 (|#1| |#1| |#1|)) (-15 -1917 ((-112) |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#2| |#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|))) +((-2864 (((-112) $ $) 19)) (-3432 (($) 68 (|has| |#1| (-377)))) (-4353 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-4302 (($ $ $) 79)) (-1917 (((-112) $ $) 80)) (-3146 (((-112) $ (-781)) 8)) (-1496 (((-781)) 62 (|has| |#1| (-377)))) (-1515 (($ (-654 |#1|)) 75) (($) 74)) (-1923 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2804 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2424 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-2835 (($) 65 (|has| |#1| (-377)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2714 (((-112) $ $) 71)) (-2189 (((-112) $ (-781)) 9)) (-3634 ((|#1| $) 66 (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-4380 ((|#1| $) 67 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-3383 (((-935) $) 64 (|has| |#1| (-377)))) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22)) (-3891 (($ $ $) 76)) (-2375 ((|#1| $) 40)) (-3285 (($ |#1| $) 41)) (-2591 (($ (-935)) 63 (|has| |#1| (-377)))) (-3940 (((-1136) $) 21)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3801 ((|#1| $) 42)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2533 (($ $ |#1|) 78) (($ $ $) 77)) (-3162 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2305 (($ $) 69 (|has| |#1| (-377)))) (-2951 (((-872) $) 18)) (-2152 (((-781) $) 70)) (-4269 (($ (-654 |#1|)) 73) (($) 72)) (-4069 (((-112) $ $) 23)) (-2829 (($ (-654 |#1|)) 43)) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20)) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-435 |#1|) (-141) (-1116)) (T -435)) +((-2152 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1116)) (-5 *2 (-781)))) (-2305 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-377)))) (-3432 (*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1116)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-860)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-860))))) +(-13 (-231 |t#1|) (-1114 |t#1|) (-10 -8 (-6 -4459) (-15 -2152 ((-781) $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-377)) (-15 -2305 ($ $)) (-15 -3432 ($))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -4380 (|t#1| $)) (-15 -3634 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-231 |#1|) . T) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-377) |has| |#1| (-377)) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1114 |#1|) . T) ((-1116) . T) ((-1234) . T)) +((-4079 (((-596 |#2|) |#2| (-1193)) 36)) (-2411 (((-596 |#2|) |#2| (-1193)) 21)) (-3919 ((|#2| |#2| (-1193)) 26))) +(((-436 |#1| |#2|) (-10 -7 (-15 -2411 ((-596 |#2|) |#2| (-1193))) (-15 -4079 ((-596 |#2|) |#2| (-1193))) (-15 -3919 (|#2| |#2| (-1193)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-29 |#1|))) (T -436)) +((-3919 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1219) (-29 *4))))) (-4079 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1219) (-29 *5))))) (-2411 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1219) (-29 *5)))))) +(-10 -7 (-15 -2411 ((-596 |#2|) |#2| (-1193))) (-15 -4079 ((-596 |#2|) |#2| (-1193))) (-15 -3919 (|#2| |#2| (-1193)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) NIL)) (-1473 (($ |#2| |#1|) 37)) (-2060 (($ |#2| |#1|) 35)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-339 |#2|)) 25)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 10 T CONST)) (-2153 (($) 16 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 36)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-437 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4446)) (IF (|has| |#1| (-6 -4446)) (-6 -4446) |%noBranch|) |%noBranch|) (-15 -2951 ($ |#1|)) (-15 -2951 ($ (-339 |#2|))) (-15 -1473 ($ |#2| |#1|)) (-15 -2060 ($ |#2| |#1|)))) (-13 (-174) (-38 (-417 (-574)))) (-13 (-860) (-21))) (T -437)) +((-2951 (*1 *1 *2) (-12 (-5 *1 (-437 *2 *3)) (-4 *2 (-13 (-174) (-38 (-417 (-574))))) (-4 *3 (-13 (-860) (-21))))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-339 *4)) (-4 *4 (-13 (-860) (-21))) (-5 *1 (-437 *3 *4)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))))) (-1473 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21))))) (-2060 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4446)) (IF (|has| |#1| (-6 -4446)) (-6 -4446) |%noBranch|) |%noBranch|) (-15 -2951 ($ |#1|)) (-15 -2951 ($ (-339 |#2|))) (-15 -1473 ($ |#2| |#1|)) (-15 -2060 ($ |#2| |#1|)))) +((-3342 (((-3 |#2| (-654 |#2|)) |#2| (-1193)) 115))) +(((-438 |#1| |#2|) (-10 -7 (-15 -3342 ((-3 |#2| (-654 |#2|)) |#2| (-1193)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-973) (-29 |#1|))) (T -438)) +((-3342 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1219) (-973) (-29 *5)))))) +(-10 -7 (-15 -3342 ((-3 |#2| (-654 |#2|)) |#2| (-1193)))) +((-4350 (((-654 (-1193)) $) 81)) (-4173 (((-417 (-1189 $)) $ (-622 $)) 313)) (-2559 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) 277)) (-1704 (((-3 (-622 $) "failed") $) NIL) (((-3 (-1193) "failed") $) 84) (((-3 (-574) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-417 (-966 |#2|)) "failed") $) 363) (((-3 (-966 |#2|) "failed") $) 275) (((-3 (-417 (-574)) "failed") $) NIL)) (-2214 (((-622 $) $) NIL) (((-1193) $) 28) (((-574) $) NIL) ((|#2| $) 271) (((-417 (-966 |#2|)) $) 345) (((-966 |#2|) $) 272) (((-417 (-574)) $) NIL)) (-4150 (((-115) (-115)) 47)) (-2967 (($ $) 99)) (-3452 (((-3 (-622 $) "failed") $) 268)) (-4139 (((-654 (-622 $)) $) 269)) (-1720 (((-3 (-654 $) "failed") $) 287)) (-2542 (((-3 (-2 (|:| |val| $) (|:| -3139 (-574))) "failed") $) 294)) (-3825 (((-3 (-654 $) "failed") $) 285)) (-3121 (((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 $))) "failed") $) 304)) (-2778 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $) 291) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $ (-1193)) 257)) (-1343 (((-112) $) 17)) (-1355 ((|#2| $) 19)) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 276) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) 109) (($ $ (-1193) (-1 $ (-654 $))) NIL) (($ $ (-1193) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1193)) 62) (($ $ (-654 (-1193))) 280) (($ $) 281) (($ $ (-115) $ (-1193)) 65) (($ $ (-654 (-115)) (-654 $) (-1193)) 72) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ $))) 120) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 282) (($ $ (-1193) (-781) (-1 $ (-654 $))) 105) (($ $ (-1193) (-781) (-1 $ $)) 104)) (-2207 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) 119)) (-3879 (($ $ (-1193)) 278) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-2808 (($ $) 324)) (-1844 (((-903 (-574)) $) 297) (((-903 (-388)) $) 301) (($ (-428 $)) 359) (((-546) $) NIL)) (-2951 (((-872) $) 279) (($ (-622 $)) 93) (($ (-1193)) 24) (($ |#2|) NIL) (($ (-1141 |#2| (-622 $))) NIL) (($ (-417 |#2|)) 329) (($ (-966 (-417 |#2|))) 368) (($ (-417 (-966 (-417 |#2|)))) 341) (($ (-417 (-966 |#2|))) 335) (($ $) NIL) (($ (-966 |#2|)) 216) (($ (-574)) NIL) (($ (-417 (-574))) 373)) (-2898 (((-781)) 88)) (-2420 (((-112) (-115)) 42)) (-2513 (($ (-1193) $) 31) (($ (-1193) $ $) 32) (($ (-1193) $ $ $) 33) (($ (-1193) $ $ $ $) 34) (($ (-1193) (-654 $)) 39)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL))) +(((-439 |#1| |#2|) (-10 -8 (-15 * (|#1| (-935) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2951 (|#1| (-574))) (-15 -2898 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -2951 (|#1| (-966 |#2|))) (-15 -1704 ((-3 (-966 |#2|) "failed") |#1|)) (-15 -2214 ((-966 |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 * (|#1| |#1| |#2|)) (-15 -2951 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2951 (|#1| (-417 (-966 |#2|)))) (-15 -1704 ((-3 (-417 (-966 |#2|)) "failed") |#1|)) (-15 -2214 ((-417 (-966 |#2|)) |#1|)) (-15 -4173 ((-417 (-1189 |#1|)) |#1| (-622 |#1|))) (-15 -2951 (|#1| (-417 (-966 (-417 |#2|))))) (-15 -2951 (|#1| (-966 (-417 |#2|)))) (-15 -2951 (|#1| (-417 |#2|))) (-15 -2808 (|#1| |#1|)) (-15 -1844 (|#1| (-428 |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-781) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -2542 ((-3 (-2 (|:| |val| |#1|) (|:| -3139 (-574))) "failed") |#1|)) (-15 -2778 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3139 (-574))) "failed") |#1| (-1193))) (-15 -2778 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3139 (-574))) "failed") |#1| (-115))) (-15 -2967 (|#1| |#1|)) (-15 -2951 (|#1| (-1141 |#2| (-622 |#1|)))) (-15 -3121 ((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -3825 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2778 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3139 (-574))) "failed") |#1|)) (-15 -1720 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1193))) (-15 -2661 (|#1| |#1| (-115) |#1| (-1193))) (-15 -2661 (|#1| |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1193)))) (-15 -2661 (|#1| |#1| (-1193))) (-15 -2513 (|#1| (-1193) (-654 |#1|))) (-15 -2513 (|#1| (-1193) |#1| |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1|)) (-15 -4350 ((-654 (-1193)) |#1|)) (-15 -1355 (|#2| |#1|)) (-15 -1343 ((-112) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -2951 (|#1| (-1193))) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2214 ((-1193) |#1|)) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| |#1|)))) (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4139 ((-654 (-622 |#1|)) |#1|)) (-15 -3452 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2559 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2559 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2559 (|#1| |#1| (-302 |#1|))) (-15 -2207 (|#1| (-115) (-654 |#1|))) (-15 -2207 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2951 (|#1| (-622 |#1|))) (-15 -1704 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2214 ((-622 |#1|) |#1|)) (-15 -2951 ((-872) |#1|))) (-440 |#2|) (-1116)) (T -439)) +((-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1116)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1116)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5)))) (-2898 (*1 *2) (-12 (-4 *4 (-1116)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4))))) +(-10 -8 (-15 * (|#1| (-935) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2951 (|#1| (-574))) (-15 -2898 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -2951 (|#1| (-966 |#2|))) (-15 -1704 ((-3 (-966 |#2|) "failed") |#1|)) (-15 -2214 ((-966 |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 * (|#1| |#1| |#2|)) (-15 -2951 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2951 (|#1| (-417 (-966 |#2|)))) (-15 -1704 ((-3 (-417 (-966 |#2|)) "failed") |#1|)) (-15 -2214 ((-417 (-966 |#2|)) |#1|)) (-15 -4173 ((-417 (-1189 |#1|)) |#1| (-622 |#1|))) (-15 -2951 (|#1| (-417 (-966 (-417 |#2|))))) (-15 -2951 (|#1| (-966 (-417 |#2|)))) (-15 -2951 (|#1| (-417 |#2|))) (-15 -2808 (|#1| |#1|)) (-15 -1844 (|#1| (-428 |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-781) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -2542 ((-3 (-2 (|:| |val| |#1|) (|:| -3139 (-574))) "failed") |#1|)) (-15 -2778 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3139 (-574))) "failed") |#1| (-1193))) (-15 -2778 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3139 (-574))) "failed") |#1| (-115))) (-15 -2967 (|#1| |#1|)) (-15 -2951 (|#1| (-1141 |#2| (-622 |#1|)))) (-15 -3121 ((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -3825 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2778 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3139 (-574))) "failed") |#1|)) (-15 -1720 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1193))) (-15 -2661 (|#1| |#1| (-115) |#1| (-1193))) (-15 -2661 (|#1| |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1193)))) (-15 -2661 (|#1| |#1| (-1193))) (-15 -2513 (|#1| (-1193) (-654 |#1|))) (-15 -2513 (|#1| (-1193) |#1| |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1|)) (-15 -4350 ((-654 (-1193)) |#1|)) (-15 -1355 (|#2| |#1|)) (-15 -1343 ((-112) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -2951 (|#1| (-1193))) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2214 ((-1193) |#1|)) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| |#1|)))) (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4139 ((-654 (-622 |#1|)) |#1|)) (-15 -3452 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2559 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2559 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2559 (|#1| |#1| (-302 |#1|))) (-15 -2207 (|#1| (-115) (-654 |#1|))) (-15 -2207 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2951 (|#1| (-622 |#1|))) (-15 -1704 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2214 ((-622 |#1|) |#1|)) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 117 (|has| |#1| (-25)))) (-4350 (((-654 (-1193)) $) 206)) (-4173 (((-417 (-1189 $)) $ (-622 $)) 174 (|has| |#1| (-566)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 146 (|has| |#1| (-566)))) (-2884 (($ $) 147 (|has| |#1| (-566)))) (-1981 (((-112) $) 149 (|has| |#1| (-566)))) (-4068 (((-654 (-622 $)) $) 39)) (-2600 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-2559 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-2991 (($ $) 166 (|has| |#1| (-566)))) (-1610 (((-428 $) $) 167 (|has| |#1| (-566)))) (-3245 (((-112) $ $) 157 (|has| |#1| (-566)))) (-3250 (($) 105 (-2833 (|has| |#1| (-1128)) (|has| |#1| (-25))) CONST)) (-1704 (((-3 (-622 $) "failed") $) 64) (((-3 (-1193) "failed") $) 219) (((-3 (-574) "failed") $) 213 (|has| |#1| (-1054 (-574)))) (((-3 |#1| "failed") $) 210) (((-3 (-417 (-966 |#1|)) "failed") $) 172 (|has| |#1| (-566))) (((-3 (-966 |#1|) "failed") $) 124 (|has| |#1| (-1065))) (((-3 (-417 (-574)) "failed") $) 99 (-2833 (-12 (|has| |#1| (-1054 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1054 (-417 (-574))))))) (-2214 (((-622 $) $) 65) (((-1193) $) 220) (((-574) $) 212 (|has| |#1| (-1054 (-574)))) ((|#1| $) 211) (((-417 (-966 |#1|)) $) 173 (|has| |#1| (-566))) (((-966 |#1|) $) 125 (|has| |#1| (-1065))) (((-417 (-574)) $) 100 (-2833 (-12 (|has| |#1| (-1054 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1054 (-417 (-574))))))) (-2800 (($ $ $) 161 (|has| |#1| (-566)))) (-1831 (((-699 (-574)) (-1284 $)) 141 (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) (((-699 (-574)) (-699 $)) 140 (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 139 (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 138 (|has| |#1| (-1065))) (((-699 |#1|) (-699 $)) 137 (|has| |#1| (-1065))) (((-699 |#1|) (-1284 $)) 136 (|has| |#1| (-1065)))) (-4322 (((-3 $ "failed") $) 107 (|has| |#1| (-1128)))) (-2813 (($ $ $) 160 (|has| |#1| (-566)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 155 (|has| |#1| (-566)))) (-3978 (((-112) $) 168 (|has| |#1| (-566)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 215 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 214 (|has| |#1| (-897 (-388))))) (-1391 (($ $) 46) (($ (-654 $)) 45)) (-1649 (((-654 (-115)) $) 38)) (-4150 (((-115) (-115)) 37)) (-4226 (((-112) $) 106 (|has| |#1| (-1128)))) (-1823 (((-112) $) 17 (|has| $ (-1054 (-574))))) (-2967 (($ $) 189 (|has| |#1| (-1065)))) (-2971 (((-1141 |#1| (-622 $)) $) 190 (|has| |#1| (-1065)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 164 (|has| |#1| (-566)))) (-3746 (((-1189 $) (-622 $)) 20 (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) 31)) (-3452 (((-3 (-622 $) "failed") $) 41)) (-2849 (($ (-654 $)) 153 (|has| |#1| (-566))) (($ $ $) 152 (|has| |#1| (-566)))) (-1489 (((-1175) $) 10)) (-4139 (((-654 (-622 $)) $) 40)) (-1782 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-1720 (((-3 (-654 $) "failed") $) 195 (|has| |#1| (-1128)))) (-2542 (((-3 (-2 (|:| |val| $) (|:| -3139 (-574))) "failed") $) 186 (|has| |#1| (-1065)))) (-3825 (((-3 (-654 $) "failed") $) 193 (|has| |#1| (-25)))) (-3121 (((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 $))) "failed") $) 192 (|has| |#1| (-25)))) (-2778 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $) 194 (|has| |#1| (-1128))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $ (-115)) 188 (|has| |#1| (-1065))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $ (-1193)) 187 (|has| |#1| (-1065)))) (-2154 (((-112) $ (-115)) 35) (((-112) $ (-1193)) 34)) (-1328 (($ $) 109 (-2833 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-1847 (((-781) $) 42)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 208)) (-1355 ((|#1| $) 207)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 154 (|has| |#1| (-566)))) (-2887 (($ (-654 $)) 151 (|has| |#1| (-566))) (($ $ $) 150 (|has| |#1| (-566)))) (-3595 (((-112) $ $) 30) (((-112) $ (-1193)) 29)) (-4202 (((-428 $) $) 165 (|has| |#1| (-566)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 163 (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 162 (|has| |#1| (-566)))) (-2853 (((-3 $ "failed") $ $) 145 (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 156 (|has| |#1| (-566)))) (-2120 (((-112) $) 18 (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1193)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1193) (-1 $ (-654 $))) 26) (($ $ (-1193) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1193)) 200 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1193))) 199 (|has| |#1| (-624 (-546)))) (($ $) 198 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1193)) 197 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1193)) 196 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ $))) 185 (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 184 (|has| |#1| (-1065))) (($ $ (-1193) (-781) (-1 $ (-654 $))) 183 (|has| |#1| (-1065))) (($ $ (-1193) (-781) (-1 $ $)) 182 (|has| |#1| (-1065)))) (-2098 (((-781) $) 158 (|has| |#1| (-566)))) (-2207 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 159 (|has| |#1| (-566)))) (-3078 (($ $) 44) (($ $ $) 43)) (-3879 (($ $ (-1193)) 134 (|has| |#1| (-1065))) (($ $ (-654 (-1193))) 132 (|has| |#1| (-1065))) (($ $ (-1193) (-781)) 131 (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781))) 130 (|has| |#1| (-1065)))) (-2808 (($ $) 179 (|has| |#1| (-566)))) (-2981 (((-1141 |#1| (-622 $)) $) 180 (|has| |#1| (-566)))) (-4379 (($ $) 19 (|has| $ (-1065)))) (-1844 (((-903 (-574)) $) 217 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 216 (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) 181 (|has| |#1| (-566))) (((-546) $) 101 (|has| |#1| (-624 (-546))))) (-3617 (($ $ $) 112 (|has| |#1| (-483)))) (-3955 (($ $ $) 113 (|has| |#1| (-483)))) (-2951 (((-872) $) 12) (($ (-622 $)) 63) (($ (-1193)) 218) (($ |#1|) 209) (($ (-1141 |#1| (-622 $))) 191 (|has| |#1| (-1065))) (($ (-417 |#1|)) 177 (|has| |#1| (-566))) (($ (-966 (-417 |#1|))) 176 (|has| |#1| (-566))) (($ (-417 (-966 (-417 |#1|)))) 175 (|has| |#1| (-566))) (($ (-417 (-966 |#1|))) 171 (|has| |#1| (-566))) (($ $) 144 (|has| |#1| (-566))) (($ (-966 |#1|)) 123 (|has| |#1| (-1065))) (($ (-417 (-574))) 98 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-1054 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1054 (-417 (-574)))))) (($ (-574)) 97 (-2833 (|has| |#1| (-1065)) (|has| |#1| (-1054 (-574)))))) (-3424 (((-3 $ "failed") $) 142 (|has| |#1| (-146)))) (-2898 (((-781)) 126 (|has| |#1| (-1065)) CONST)) (-2078 (($ $) 48) (($ (-654 $)) 47)) (-2420 (((-112) (-115)) 36)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 148 (|has| |#1| (-566)))) (-2513 (($ (-1193) $) 205) (($ (-1193) $ $) 204) (($ (-1193) $ $ $) 203) (($ (-1193) $ $ $ $) 202) (($ (-1193) (-654 $)) 201)) (-2141 (($) 116 (|has| |#1| (-25)) CONST)) (-2153 (($) 104 (|has| |#1| (-1128)) CONST)) (-3584 (($ $ (-1193)) 133 (|has| |#1| (-1065))) (($ $ (-654 (-1193))) 129 (|has| |#1| (-1065))) (($ $ (-1193) (-781)) 128 (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781))) 127 (|has| |#1| (-1065)))) (-2986 (((-112) $ $) 6)) (-3103 (($ (-1141 |#1| (-622 $)) (-1141 |#1| (-622 $))) 178 (|has| |#1| (-566))) (($ $ $) 110 (-2833 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3090 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-3074 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-574)) 111 (-2833 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 108 (|has| |#1| (-1128))) (($ $ (-935)) 103 (|has| |#1| (-1128)))) (* (($ (-417 (-574)) $) 170 (|has| |#1| (-566))) (($ $ (-417 (-574))) 169 (|has| |#1| (-566))) (($ $ |#1|) 143 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1065))) (($ (-574) $) 120 (|has| |#1| (-21))) (($ (-781) $) 118 (|has| |#1| (-25))) (($ (-935) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1128))))) +(((-440 |#1|) (-141) (-1116)) (T -440)) +((-1343 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)))) (-4350 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-5 *2 (-654 (-1193))))) (-2513 (*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))) (-2513 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))) (-2513 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))) (-2513 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))) (-2513 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1116)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-4 *3 (-624 (-546))))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1193))) (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-4 *3 (-624 (-546))))) (-2661 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-624 (-546))))) (-2661 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1193)) (-4 *1 (-440 *4)) (-4 *4 (-1116)) (-4 *4 (-624 (-546))))) (-2661 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1193)) (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-624 (-546))))) (-1720 (*1 *2 *1) (|partial| -12 (-4 *3 (-1128)) (-4 *3 (-1116)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-2778 (*1 *2 *1) (|partial| -12 (-4 *3 (-1128)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3139 (-574)))) (-4 *1 (-440 *3)))) (-3825 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1116)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-3121 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| -1866 (-574)) (|:| |var| (-622 *1)))) (-4 *1 (-440 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1141 *3 (-622 *1))) (-4 *3 (-1065)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) (-2971 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *3 (-1116)) (-5 *2 (-1141 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-2967 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-1065)))) (-2778 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1065)) (-4 *4 (-1116)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3139 (-574)))) (-4 *1 (-440 *4)))) (-2778 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1193)) (-4 *4 (-1065)) (-4 *4 (-1116)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3139 (-574)))) (-4 *1 (-440 *4)))) (-2542 (*1 *2 *1) (|partial| -12 (-4 *3 (-1065)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| |val| *1) (|:| -3139 (-574)))) (-4 *1 (-440 *3)))) (-2661 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065)))) (-2661 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065)))) (-2661 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065)))) (-2661 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1)) (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-428 *1)) (-4 *1 (-440 *3)) (-4 *3 (-566)) (-4 *3 (-1116)))) (-2981 (*1 *2 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1116)) (-5 *2 (-1141 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-2808 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-566)))) (-3103 (*1 *1 *2 *2) (-12 (-5 *2 (-1141 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-966 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1116)) (-4 *4 (-566)) (-5 *2 (-417 (-1189 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-4 *3 (-1128))))) +(-13 (-310) (-1054 (-1193)) (-895 |t#1|) (-410 |t#1|) (-421 |t#1|) (-10 -8 (-15 -1343 ((-112) $)) (-15 -1355 (|t#1| $)) (-15 -4350 ((-654 (-1193)) $)) (-15 -2513 ($ (-1193) $)) (-15 -2513 ($ (-1193) $ $)) (-15 -2513 ($ (-1193) $ $ $)) (-15 -2513 ($ (-1193) $ $ $ $)) (-15 -2513 ($ (-1193) (-654 $))) (IF (|has| |t#1| (-624 (-546))) (PROGN (-6 (-624 (-546))) (-15 -2661 ($ $ (-1193))) (-15 -2661 ($ $ (-654 (-1193)))) (-15 -2661 ($ $)) (-15 -2661 ($ $ (-115) $ (-1193))) (-15 -2661 ($ $ (-654 (-115)) (-654 $) (-1193)))) |%noBranch|) (IF (|has| |t#1| (-1128)) (PROGN (-6 (-736)) (-15 ** ($ $ (-781))) (-15 -1720 ((-3 (-654 $) "failed") $)) (-15 -2778 ((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-483)) (-6 (-483)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3825 ((-3 (-654 $) "failed") $)) (-15 -3121 ((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1065)) (PROGN (-6 (-1065)) (-6 (-1054 (-966 |t#1|))) (-6 (-912 (-1193))) (-6 (-386 |t#1|)) (-15 -2951 ($ (-1141 |t#1| (-622 $)))) (-15 -2971 ((-1141 |t#1| (-622 $)) $)) (-15 -2967 ($ $)) (-15 -2778 ((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $ (-115))) (-15 -2778 ((-3 (-2 (|:| |var| (-622 $)) (|:| -3139 (-574))) "failed") $ (-1193))) (-15 -2542 ((-3 (-2 (|:| |val| $) (|:| -3139 (-574))) "failed") $)) (-15 -2661 ($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ $)))) (-15 -2661 ($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ (-654 $))))) (-15 -2661 ($ $ (-1193) (-781) (-1 $ (-654 $)))) (-15 -2661 ($ $ (-1193) (-781) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-372)) (-6 (-1054 (-417 (-966 |t#1|)))) (-15 -1844 ($ (-428 $))) (-15 -2981 ((-1141 |t#1| (-622 $)) $)) (-15 -2808 ($ $)) (-15 -3103 ($ (-1141 |t#1| (-622 $)) (-1141 |t#1| (-622 $)))) (-15 -2951 ($ (-417 |t#1|))) (-15 -2951 ($ (-966 (-417 |t#1|)))) (-15 -2951 ($ (-417 (-966 (-417 |t#1|))))) (-15 -4173 ((-417 (-1189 $)) $ (-622 $))) (IF (|has| |t#1| (-1054 (-574))) (-6 (-1054 (-417 (-574)))) |%noBranch|)) |%noBranch|))) +(((-21) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-417 (-574))) |has| |#1| (-566)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-566)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-566)) ((-132) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-566))) ((-626 #1=(-417 (-966 |#1|))) |has| |#1| (-566)) ((-626 (-574)) -2833 (|has| |#1| (-1065)) (|has| |#1| (-1054 (-574))) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-626 #2=(-622 $)) . T) ((-626 #3=(-966 |#1|)) |has| |#1| (-1065)) ((-626 #4=(-1193)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) |has| |#1| (-566)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) |has| |#1| (-566)) ((-298) |has| |#1| (-566)) ((-315) |has| |#1| (-566)) ((-317 $) . T) ((-310) . T) ((-372) |has| |#1| (-566)) ((-386 |#1|) |has| |#1| (-1065)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) |has| |#1| (-566)) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-566)) ((-656 (-574)) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-656 |#1|) -2833 (|has| |#1| (-1065)) (|has| |#1| (-174))) ((-656 $) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-658 #0#) |has| |#1| (-566)) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))) ((-658 |#1|) -2833 (|has| |#1| (-1065)) (|has| |#1| (-174))) ((-658 $) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-650 #0#) |has| |#1| (-566)) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))) ((-649 |#1|) |has| |#1| (-1065)) ((-727 #0#) |has| |#1| (-566)) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) -2833 (|has| |#1| (-1128)) (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-907 $ #6=(-1193)) |has| |#1| (-1065)) ((-912 #6#) |has| |#1| (-1065)) ((-914 #6#) |has| |#1| (-1065)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-934) |has| |#1| (-566)) ((-1054 (-417 (-574))) -2833 (|has| |#1| (-1054 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))))) ((-1054 #1#) |has| |#1| (-566)) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 #2#) . T) ((-1054 #3#) |has| |#1| (-1065)) ((-1054 #4#) . T) ((-1054 |#1|) . T) ((-1067 #0#) |has| |#1| (-566)) ((-1067 |#1|) |has| |#1| (-174)) ((-1067 $) |has| |#1| (-566)) ((-1072 #0#) |has| |#1| (-566)) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) |has| |#1| (-566)) ((-1065) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1074) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1128) -2833 (|has| |#1| (-1128)) (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1116) . T) ((-1234) . T) ((-1238) |has| |#1| (-566))) +((-1445 ((|#2| |#2| |#2|) 31)) (-4150 (((-115) (-115)) 43)) (-1630 ((|#2| |#2|) 63)) (-3118 ((|#2| |#2|) 66)) (-1669 ((|#2| |#2|) 30)) (-3346 ((|#2| |#2| |#2|) 33)) (-1359 ((|#2| |#2| |#2|) 35)) (-1509 ((|#2| |#2| |#2|) 32)) (-2108 ((|#2| |#2| |#2|) 34)) (-2420 (((-112) (-115)) 41)) (-1802 ((|#2| |#2|) 37)) (-1460 ((|#2| |#2|) 36)) (-3936 ((|#2| |#2|) 25)) (-2988 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3418 ((|#2| |#2| |#2|) 29))) +(((-441 |#1| |#2|) (-10 -7 (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3936 (|#2| |#2|)) (-15 -2988 (|#2| |#2|)) (-15 -2988 (|#2| |#2| |#2|)) (-15 -3418 (|#2| |#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -1445 (|#2| |#2| |#2|)) (-15 -1509 (|#2| |#2| |#2|)) (-15 -3346 (|#2| |#2| |#2|)) (-15 -2108 (|#2| |#2| |#2|)) (-15 -1359 (|#2| |#2| |#2|)) (-15 -1460 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -1630 (|#2| |#2|))) (-566) (-440 |#1|)) (T -441)) +((-1630 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1460 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1359 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2108 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3346 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1509 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1445 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3418 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2988 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2988 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-441 *3 *4)) (-4 *4 (-440 *3)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4))))) +(-10 -7 (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3936 (|#2| |#2|)) (-15 -2988 (|#2| |#2|)) (-15 -2988 (|#2| |#2| |#2|)) (-15 -3418 (|#2| |#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -1445 (|#2| |#2| |#2|)) (-15 -1509 (|#2| |#2| |#2|)) (-15 -3346 (|#2| |#2| |#2|)) (-15 -2108 (|#2| |#2| |#2|)) (-15 -1359 (|#2| |#2| |#2|)) (-15 -1460 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -1630 (|#2| |#2|))) +((-3556 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1189 |#2|)) (|:| |pol2| (-1189 |#2|)) (|:| |prim| (-1189 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1189 |#2|))) (|:| |prim| (-1189 |#2|))) (-654 |#2|)) 65))) +(((-442 |#1| |#2|) (-10 -7 (-15 -3556 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1189 |#2|))) (|:| |prim| (-1189 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -3556 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1189 |#2|)) (|:| |pol2| (-1189 |#2|)) (|:| |prim| (-1189 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-566) (-148)) (-440 |#1|)) (T -442)) +((-3556 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1189 *3)) (|:| |pol2| (-1189 *3)) (|:| |prim| (-1189 *3)))) (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1189 *5))) (|:| |prim| (-1189 *5)))) (-5 *1 (-442 *4 *5))))) +(-10 -7 (-15 -3556 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1189 |#2|))) (|:| |prim| (-1189 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -3556 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1189 |#2|)) (|:| |pol2| (-1189 |#2|)) (|:| |prim| (-1189 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3273 (((-1289)) 18)) (-2395 (((-1189 (-417 (-574))) |#2| (-622 |#2|)) 40) (((-417 (-574)) |#2|) 24))) +(((-443 |#1| |#2|) (-10 -7 (-15 -2395 ((-417 (-574)) |#2|)) (-15 -2395 ((-1189 (-417 (-574))) |#2| (-622 |#2|))) (-15 -3273 ((-1289)))) (-13 (-566) (-1054 (-574))) (-440 |#1|)) (T -443)) +((-3273 (*1 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *2 (-1289)) (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3)))) (-2395 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5)) (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-443 *5 *3)))) (-2395 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4))))) +(-10 -7 (-15 -2395 ((-417 (-574)) |#2|)) (-15 -2395 ((-1189 (-417 (-574))) |#2| (-622 |#2|))) (-15 -3273 ((-1289)))) +((-1980 (((-112) $) 32)) (-2290 (((-112) $) 34)) (-2899 (((-112) $) 35)) (-2675 (((-112) $) 38)) (-2316 (((-112) $) 33)) (-1886 (((-112) $) 37)) (-2951 (((-872) $) 20) (($ (-1175)) 31) (($ (-1193)) 26) (((-1193) $) 24) (((-1120) $) 23)) (-1453 (((-112) $) 36)) (-2986 (((-112) $ $) 17))) +(((-444) (-13 (-623 (-872)) (-10 -8 (-15 -2951 ($ (-1175))) (-15 -2951 ($ (-1193))) (-15 -2951 ((-1193) $)) (-15 -2951 ((-1120) $)) (-15 -1980 ((-112) $)) (-15 -2316 ((-112) $)) (-15 -2899 ((-112) $)) (-15 -1886 ((-112) $)) (-15 -2675 ((-112) $)) (-15 -1453 ((-112) $)) (-15 -2290 ((-112) $)) (-15 -2986 ((-112) $ $))))) (T -444)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-444)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-444)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-444)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-444)))) (-1980 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2986 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2951 ($ (-1175))) (-15 -2951 ($ (-1193))) (-15 -2951 ((-1193) $)) (-15 -2951 ((-1120) $)) (-15 -1980 ((-112) $)) (-15 -2316 ((-112) $)) (-15 -2899 ((-112) $)) (-15 -1886 ((-112) $)) (-15 -2675 ((-112) $)) (-15 -1453 ((-112) $)) (-15 -2290 ((-112) $)) (-15 -2986 ((-112) $ $)))) +((-4222 (((-3 (-428 (-1189 (-417 (-574)))) "failed") |#3|) 72)) (-1778 (((-428 |#3|) |#3|) 34)) (-3364 (((-3 (-428 (-1189 (-48))) "failed") |#3|) 46 (|has| |#2| (-1054 (-48))))) (-2094 (((-3 (|:| |overq| (-1189 (-417 (-574)))) (|:| |overan| (-1189 (-48))) (|:| -3575 (-112))) |#3|) 37))) +(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -1778 ((-428 |#3|) |#3|)) (-15 -4222 ((-3 (-428 (-1189 (-417 (-574)))) "failed") |#3|)) (-15 -2094 ((-3 (|:| |overq| (-1189 (-417 (-574)))) (|:| |overan| (-1189 (-48))) (|:| -3575 (-112))) |#3|)) (IF (|has| |#2| (-1054 (-48))) (-15 -3364 ((-3 (-428 (-1189 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-566) (-1054 (-574))) (-440 |#1|) (-1260 |#2|)) (T -445)) +((-3364 (*1 *2 *3) (|partial| -12 (-4 *5 (-1054 (-48))) (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1189 (-48)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5)))) (-2094 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-3 (|:| |overq| (-1189 (-417 (-574)))) (|:| |overan| (-1189 (-48))) (|:| -3575 (-112)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5)))) (-4222 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1189 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5)))) (-1778 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5))))) +(-10 -7 (-15 -1778 ((-428 |#3|) |#3|)) (-15 -4222 ((-3 (-428 (-1189 (-417 (-574)))) "failed") |#3|)) (-15 -2094 ((-3 (|:| |overq| (-1189 (-417 (-574)))) (|:| |overan| (-1189 (-48))) (|:| -3575 (-112))) |#3|)) (IF (|has| |#2| (-1054 (-48))) (-15 -3364 ((-3 (-428 (-1189 (-48))) "failed") |#3|)) |%noBranch|)) +((-2864 (((-112) $ $) NIL)) (-4048 (((-1175) $ (-1175)) NIL)) (-3538 (($ $ (-1175)) NIL)) (-3991 (((-1175) $) NIL)) (-4292 (((-398) (-398) (-398)) 17) (((-398) (-398)) 15)) (-1684 (($ (-398)) NIL) (($ (-398) (-1175)) NIL)) (-2039 (((-398) $) NIL)) (-1489 (((-1175) $) NIL)) (-2082 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3992 (((-1289) (-1175)) 9)) (-4155 (((-1289) (-1175)) 10)) (-2265 (((-1289)) 11)) (-2951 (((-872) $) NIL)) (-1731 (($ $) 39)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-446) (-13 (-373 (-398) (-1175)) (-10 -7 (-15 -4292 ((-398) (-398) (-398))) (-15 -4292 ((-398) (-398))) (-15 -3992 ((-1289) (-1175))) (-15 -4155 ((-1289) (-1175))) (-15 -2265 ((-1289)))))) (T -446)) +((-4292 (*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-4292 (*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-3992 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-446)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-446)))) (-2265 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-446))))) +(-13 (-373 (-398) (-1175)) (-10 -7 (-15 -4292 ((-398) (-398) (-398))) (-15 -4292 ((-398) (-398))) (-15 -3992 ((-1289) (-1175))) (-15 -4155 ((-1289) (-1175))) (-15 -2265 ((-1289))))) +((-2864 (((-112) $ $) NIL)) (-3045 (((-3 (|:| |fst| (-444)) (|:| -2441 "void")) $) 11)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1858 (($) 35)) (-2576 (($) 41)) (-3160 (($) 37)) (-4337 (($) 39)) (-1768 (($) 36)) (-3051 (($) 38)) (-4119 (($) 40)) (-2328 (((-112) $) 8)) (-3371 (((-654 (-966 (-574))) $) 19)) (-2963 (($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-1193)) (-112)) 29) (($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-966 (-574))) (-112)) 30)) (-2951 (((-872) $) 24) (($ (-444)) 32)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-447) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-444))) (-15 -3045 ((-3 (|:| |fst| (-444)) (|:| -2441 "void")) $)) (-15 -3371 ((-654 (-966 (-574))) $)) (-15 -2328 ((-112) $)) (-15 -2963 ($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-1193)) (-112))) (-15 -2963 ($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-966 (-574))) (-112))) (-15 -1858 ($)) (-15 -1768 ($)) (-15 -3160 ($)) (-15 -2576 ($)) (-15 -3051 ($)) (-15 -4337 ($)) (-15 -4119 ($))))) (T -447)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-447)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *1 (-447)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-654 (-966 (-574)))) (-5 *1 (-447)))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2963 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *3 (-654 (-1193))) (-5 *4 (-112)) (-5 *1 (-447)))) (-2963 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-112)) (-5 *1 (-447)))) (-1858 (*1 *1) (-5 *1 (-447))) (-1768 (*1 *1) (-5 *1 (-447))) (-3160 (*1 *1) (-5 *1 (-447))) (-2576 (*1 *1) (-5 *1 (-447))) (-3051 (*1 *1) (-5 *1 (-447))) (-4337 (*1 *1) (-5 *1 (-447))) (-4119 (*1 *1) (-5 *1 (-447)))) +(-13 (-1116) (-10 -8 (-15 -2951 ($ (-444))) (-15 -3045 ((-3 (|:| |fst| (-444)) (|:| -2441 "void")) $)) (-15 -3371 ((-654 (-966 (-574))) $)) (-15 -2328 ((-112) $)) (-15 -2963 ($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-1193)) (-112))) (-15 -2963 ($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-966 (-574))) (-112))) (-15 -1858 ($)) (-15 -1768 ($)) (-15 -3160 ($)) (-15 -2576 ($)) (-15 -3051 ($)) (-15 -4337 ($)) (-15 -4119 ($)))) +((-2864 (((-112) $ $) NIL)) (-2039 (((-1193) $) 8)) (-1489 (((-1175) $) 17)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 11)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 14))) +(((-448 |#1|) (-13 (-1116) (-10 -8 (-15 -2039 ((-1193) $)))) (-1193)) (T -448)) +((-2039 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-448 *3)) (-14 *3 *2)))) +(-13 (-1116) (-10 -8 (-15 -2039 ((-1193) $)))) +((-2864 (((-112) $ $) NIL)) (-3132 (((-1134) $) 7)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 13)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9))) +(((-449) (-13 (-1116) (-10 -8 (-15 -3132 ((-1134) $))))) (T -449)) +((-3132 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-449))))) +(-13 (-1116) (-10 -8 (-15 -3132 ((-1134) $)))) +((-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8) (($ (-1284 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 11))) (((-450) (-141)) (T -450)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-709))) (-4 *1 (-450)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-450)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-450)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) (-4 *1 (-450))))) -(-13 (-405) (-10 -8 (-15 -2950 ($ (-1283 (-709)))) (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-338))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338)))))))) -(((-623 (-872)) . T) ((-405) . T) ((-1233) . T)) -((-1705 (((-3 $ "failed") (-1283 (-324 (-388)))) 21) (((-3 $ "failed") (-1283 (-324 (-574)))) 19) (((-3 $ "failed") (-1283 (-965 (-388)))) 17) (((-3 $ "failed") (-1283 (-965 (-574)))) 15) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 13) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 11)) (-2216 (($ (-1283 (-324 (-388)))) 22) (($ (-1283 (-324 (-574)))) 20) (($ (-1283 (-965 (-388)))) 18) (($ (-1283 (-965 (-574)))) 16) (($ (-1283 (-417 (-965 (-388))))) 14) (($ (-1283 (-417 (-965 (-574))))) 12)) (-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) 23))) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-709))) (-4 *1 (-450)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-450)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-450)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-450))))) +(-13 (-405) (-10 -8 (-15 -2951 ($ (-1284 (-709)))) (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-338))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))))) +(((-623 (-872)) . T) ((-405) . T) ((-1234) . T)) +((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 21) (((-3 $ "failed") (-1284 (-324 (-574)))) 19) (((-3 $ "failed") (-1284 (-966 (-388)))) 17) (((-3 $ "failed") (-1284 (-966 (-574)))) 15) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 13) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 11)) (-2214 (($ (-1284 (-324 (-388)))) 22) (($ (-1284 (-324 (-574)))) 20) (($ (-1284 (-966 (-388)))) 18) (($ (-1284 (-966 (-574)))) 16) (($ (-1284 (-417 (-966 (-388))))) 14) (($ (-1284 (-417 (-966 (-574))))) 12)) (-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 23))) (((-451) (-141)) (T -451)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-451)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-451)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-324 (-388)))) (-4 *1 (-451)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-324 (-388)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-324 (-574)))) (-4 *1 (-451)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-324 (-574)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-965 (-388)))) (-4 *1 (-451)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-965 (-388)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-965 (-574)))) (-4 *1 (-451)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-965 (-574)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-417 (-965 (-388))))) (-4 *1 (-451)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-417 (-965 (-388))))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-417 (-965 (-574))))) (-4 *1 (-451)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-417 (-965 (-574))))) (-4 *1 (-451))))) -(-13 (-405) (-10 -8 (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-338))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338)))))) (-15 -2216 ($ (-1283 (-324 (-388))))) (-15 -1705 ((-3 $ "failed") (-1283 (-324 (-388))))) (-15 -2216 ($ (-1283 (-324 (-574))))) (-15 -1705 ((-3 $ "failed") (-1283 (-324 (-574))))) (-15 -2216 ($ (-1283 (-965 (-388))))) (-15 -1705 ((-3 $ "failed") (-1283 (-965 (-388))))) (-15 -2216 ($ (-1283 (-965 (-574))))) (-15 -1705 ((-3 $ "failed") (-1283 (-965 (-574))))) (-15 -2216 ($ (-1283 (-417 (-965 (-388)))))) (-15 -1705 ((-3 $ "failed") (-1283 (-417 (-965 (-388)))))) (-15 -2216 ($ (-1283 (-417 (-965 (-574)))))) (-15 -1705 ((-3 $ "failed") (-1283 (-417 (-965 (-574)))))))) -(((-623 (-872)) . T) ((-405) . T) ((-1233) . T)) -((-1692 (((-112)) 18)) (-1505 (((-112) (-112)) 19)) (-1785 (((-112)) 14)) (-3756 (((-112) (-112)) 15)) (-2314 (((-112)) 16)) (-1901 (((-112) (-112)) 17)) (-3274 (((-934) (-934)) 22) (((-934)) 21)) (-2284 (((-781) (-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574))))) 52)) (-3923 (((-934) (-934)) 24) (((-934)) 23)) (-1373 (((-2 (|:| -3509 (-574)) (|:| -4279 (-654 |#1|))) |#1|) 94)) (-2543 (((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574))))))) 174)) (-3482 (((-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574)))))) |#1| (-112)) 207)) (-3748 (((-428 |#1|) |#1| (-781) (-781)) 222) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 219) (((-428 |#1|) |#1| (-654 (-781))) 221) (((-428 |#1|) |#1| (-781)) 220) (((-428 |#1|) |#1|) 218)) (-3551 (((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781) (-112)) 224) (((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781)) 225) (((-3 |#1| "failed") (-934) |#1| (-654 (-781))) 227) (((-3 |#1| "failed") (-934) |#1| (-781)) 226) (((-3 |#1| "failed") (-934) |#1|) 228)) (-4200 (((-428 |#1|) |#1| (-781) (-781)) 217) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 213) (((-428 |#1|) |#1| (-654 (-781))) 215) (((-428 |#1|) |#1| (-781)) 214) (((-428 |#1|) |#1|) 212)) (-2804 (((-112) |#1|) 44)) (-1460 (((-747 (-781)) (-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574))))) 99)) (-4033 (((-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574)))))) |#1| (-112) (-1117 (-781)) (-781)) 211))) -(((-452 |#1|) (-10 -7 (-15 -2543 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574)))))))) (-15 -1460 ((-747 (-781)) (-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574)))))) (-15 -3923 ((-934))) (-15 -3923 ((-934) (-934))) (-15 -3274 ((-934))) (-15 -3274 ((-934) (-934))) (-15 -2284 ((-781) (-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574)))))) (-15 -1373 ((-2 (|:| -3509 (-574)) (|:| -4279 (-654 |#1|))) |#1|)) (-15 -1692 ((-112))) (-15 -1505 ((-112) (-112))) (-15 -1785 ((-112))) (-15 -3756 ((-112) (-112))) (-15 -2804 ((-112) |#1|)) (-15 -2314 ((-112))) (-15 -1901 ((-112) (-112))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -4200 ((-428 |#1|) |#1| (-781))) (-15 -4200 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4200 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4200 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3748 ((-428 |#1|) |#1|)) (-15 -3748 ((-428 |#1|) |#1| (-781))) (-15 -3748 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -3748 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -3748 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3551 ((-3 |#1| "failed") (-934) |#1|)) (-15 -3551 ((-3 |#1| "failed") (-934) |#1| (-781))) (-15 -3551 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)))) (-15 -3551 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781))) (-15 -3551 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781) (-112))) (-15 -3482 ((-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574)))))) |#1| (-112))) (-15 -4033 ((-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574)))))) |#1| (-112) (-1117 (-781)) (-781)))) (-1259 (-574))) (T -452)) -((-4033 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1117 (-781))) (-5 *6 (-781)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| *3) (|:| -2265 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3482 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| *3) (|:| -2265 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3551 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) (-3551 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) (-3551 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) (-3551 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-934)) (-5 *4 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) (-3551 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-934)) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) (-3748 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3748 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3748 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3748 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3748 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-1901 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-2314 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-1785 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-1692 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-1373 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3509 (-574)) (|:| -4279 (-654 *3)))) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4200 *4) (|:| -3584 (-574))))) (-4 *4 (-1259 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4)))) (-3274 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3274 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3923 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4200 *4) (|:| -3584 (-574))))) (-4 *4 (-1259 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| *4) (|:| -2265 (-574))))))) (-4 *4 (-1259 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4))))) -(-10 -7 (-15 -2543 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574)))))))) (-15 -1460 ((-747 (-781)) (-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574)))))) (-15 -3923 ((-934))) (-15 -3923 ((-934) (-934))) (-15 -3274 ((-934))) (-15 -3274 ((-934) (-934))) (-15 -2284 ((-781) (-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574)))))) (-15 -1373 ((-2 (|:| -3509 (-574)) (|:| -4279 (-654 |#1|))) |#1|)) (-15 -1692 ((-112))) (-15 -1505 ((-112) (-112))) (-15 -1785 ((-112))) (-15 -3756 ((-112) (-112))) (-15 -2804 ((-112) |#1|)) (-15 -2314 ((-112))) (-15 -1901 ((-112) (-112))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -4200 ((-428 |#1|) |#1| (-781))) (-15 -4200 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4200 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4200 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3748 ((-428 |#1|) |#1|)) (-15 -3748 ((-428 |#1|) |#1| (-781))) (-15 -3748 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -3748 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -3748 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3551 ((-3 |#1| "failed") (-934) |#1|)) (-15 -3551 ((-3 |#1| "failed") (-934) |#1| (-781))) (-15 -3551 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)))) (-15 -3551 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781))) (-15 -3551 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781) (-112))) (-15 -3482 ((-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574)))))) |#1| (-112))) (-15 -4033 ((-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574)))))) |#1| (-112) (-1117 (-781)) (-781)))) -((-1456 (((-574) |#2|) 52) (((-574) |#2| (-781)) 51)) (-4161 (((-574) |#2|) 64)) (-2905 ((|#3| |#2|) 26)) (-1386 ((|#3| |#2| (-934)) 15)) (-4108 ((|#3| |#2|) 16)) (-3057 ((|#3| |#2|) 9)) (-1847 ((|#3| |#2|) 10)) (-2525 ((|#3| |#2| (-934)) 71) ((|#3| |#2|) 34)) (-3207 (((-574) |#2|) 66))) -(((-453 |#1| |#2| |#3|) (-10 -7 (-15 -3207 ((-574) |#2|)) (-15 -2525 (|#3| |#2|)) (-15 -2525 (|#3| |#2| (-934))) (-15 -4161 ((-574) |#2|)) (-15 -1456 ((-574) |#2| (-781))) (-15 -1456 ((-574) |#2|)) (-15 -1386 (|#3| |#2| (-934))) (-15 -2905 (|#3| |#2|)) (-15 -3057 (|#3| |#2|)) (-15 -1847 (|#3| |#2|)) (-15 -4108 (|#3| |#2|))) (-1064) (-1259 |#1|) (-13 (-414) (-1053 |#1|) (-372) (-1218) (-292))) (T -453)) -((-4108 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) (-3057 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) (-2905 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) (-1386 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *2 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1259 *5)))) (-1456 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1259 *4)) (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))))) (-1456 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1259 *5)) (-4 *6 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1259 *4)) (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))))) (-2525 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *2 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1259 *5)))) (-2525 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) (-3207 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1259 *4)) (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292)))))) -(-10 -7 (-15 -3207 ((-574) |#2|)) (-15 -2525 (|#3| |#2|)) (-15 -2525 (|#3| |#2| (-934))) (-15 -4161 ((-574) |#2|)) (-15 -1456 ((-574) |#2| (-781))) (-15 -1456 ((-574) |#2|)) (-15 -1386 (|#3| |#2| (-934))) (-15 -2905 (|#3| |#2|)) (-15 -3057 (|#3| |#2|)) (-15 -1847 (|#3| |#2|)) (-15 -4108 (|#3| |#2|))) -((-3682 ((|#2| (-1283 |#1|)) 42)) (-1872 ((|#2| |#2| |#1|) 58)) (-3253 ((|#2| |#2| |#1|) 49)) (-4424 ((|#2| |#2|) 44)) (-4186 (((-112) |#2|) 32)) (-2913 (((-654 |#2|) (-934) (-428 |#2|)) 21)) (-3551 ((|#2| (-934) (-428 |#2|)) 25)) (-1460 (((-747 (-781)) (-428 |#2|)) 29))) -(((-454 |#1| |#2|) (-10 -7 (-15 -4186 ((-112) |#2|)) (-15 -3682 (|#2| (-1283 |#1|))) (-15 -4424 (|#2| |#2|)) (-15 -3253 (|#2| |#2| |#1|)) (-15 -1872 (|#2| |#2| |#1|)) (-15 -1460 ((-747 (-781)) (-428 |#2|))) (-15 -3551 (|#2| (-934) (-428 |#2|))) (-15 -2913 ((-654 |#2|) (-934) (-428 |#2|)))) (-1064) (-1259 |#1|)) (T -454)) -((-2913 (*1 *2 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-428 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-1064)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-428 *2)) (-4 *2 (-1259 *5)) (-5 *1 (-454 *5 *2)) (-4 *5 (-1064)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-428 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-1064)) (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5)))) (-1872 (*1 *2 *2 *3) (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3)))) (-3253 (*1 *2 *2 *3) (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3)))) (-4424 (*1 *2 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-1064)) (-4 *2 (-1259 *4)) (-5 *1 (-454 *4 *2)))) (-4186 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3)) (-4 *3 (-1259 *4))))) -(-10 -7 (-15 -4186 ((-112) |#2|)) (-15 -3682 (|#2| (-1283 |#1|))) (-15 -4424 (|#2| |#2|)) (-15 -3253 (|#2| |#2| |#1|)) (-15 -1872 (|#2| |#2| |#1|)) (-15 -1460 ((-747 (-781)) (-428 |#2|))) (-15 -3551 (|#2| (-934) (-428 |#2|))) (-15 -2913 ((-654 |#2|) (-934) (-428 |#2|)))) -((-1491 (((-781)) 59)) (-3879 (((-781)) 29 (|has| |#1| (-414))) (((-781) (-781)) 28 (|has| |#1| (-414)))) (-1741 (((-574) |#1|) 25 (|has| |#1| (-414)))) (-2195 (((-574) |#1|) 27 (|has| |#1| (-414)))) (-3886 (((-781)) 58) (((-781) (-781)) 57)) (-1551 ((|#1| (-781) (-574)) 37)) (-1340 (((-1288)) 61))) -(((-455 |#1|) (-10 -7 (-15 -1551 (|#1| (-781) (-574))) (-15 -3886 ((-781) (-781))) (-15 -3886 ((-781))) (-15 -1491 ((-781))) (-15 -1340 ((-1288))) (IF (|has| |#1| (-414)) (PROGN (-15 -2195 ((-574) |#1|)) (-15 -1741 ((-574) |#1|)) (-15 -3879 ((-781) (-781))) (-15 -3879 ((-781)))) |%noBranch|)) (-1064)) (T -455)) -((-3879 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064)))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064)))) (-1741 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064)))) (-2195 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064)))) (-1340 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-455 *3)) (-4 *3 (-1064)))) (-1491 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064)))) (-3886 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064)))) (-1551 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1064))))) -(-10 -7 (-15 -1551 (|#1| (-781) (-574))) (-15 -3886 ((-781) (-781))) (-15 -3886 ((-781))) (-15 -1491 ((-781))) (-15 -1340 ((-1288))) (IF (|has| |#1| (-414)) (PROGN (-15 -2195 ((-574) |#1|)) (-15 -1741 ((-574) |#1|)) (-15 -3879 ((-781) (-781))) (-15 -3879 ((-781)))) |%noBranch|)) -((-3328 (((-654 (-574)) (-574)) 76)) (-1782 (((-112) (-171 (-574))) 82)) (-4200 (((-428 (-171 (-574))) (-171 (-574))) 75))) -(((-456) (-10 -7 (-15 -4200 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -3328 ((-654 (-574)) (-574))) (-15 -1782 ((-112) (-171 (-574)))))) (T -456)) -((-1782 (*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456)))) (-3328 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574)))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 (-171 (-574)))) (-5 *1 (-456)) (-5 *3 (-171 (-574)))))) -(-10 -7 (-15 -4200 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -3328 ((-654 (-574)) (-574))) (-15 -1782 ((-112) (-171 (-574))))) -((-3422 ((|#4| |#4| (-654 |#4|)) 82)) (-2982 (((-654 |#4|) (-654 |#4|) (-1174) (-1174)) 22) (((-654 |#4|) (-654 |#4|) (-1174)) 21) (((-654 |#4|) (-654 |#4|)) 13))) -(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3422 (|#4| |#4| (-654 |#4|))) (-15 -2982 ((-654 |#4|) (-654 |#4|))) (-15 -2982 ((-654 |#4|) (-654 |#4|) (-1174))) (-15 -2982 ((-654 |#4|) (-654 |#4|) (-1174) (-1174)))) (-315) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -457)) -((-2982 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-2982 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-2982 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6)))) (-3422 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2))))) -(-10 -7 (-15 -3422 (|#4| |#4| (-654 |#4|))) (-15 -2982 ((-654 |#4|) (-654 |#4|))) (-15 -2982 ((-654 |#4|) (-654 |#4|) (-1174))) (-15 -2982 ((-654 |#4|) (-654 |#4|) (-1174) (-1174)))) -((-1910 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 89) (((-654 (-654 |#4|)) (-654 |#4|)) 88) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112)) 82) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|)) 83)) (-3560 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 55) (((-654 (-654 |#4|)) (-654 |#4|)) 77))) -(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3560 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3560 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -1910 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -1910 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -1910 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -1910 ((-654 (-654 |#4|)) (-654 |#4|) (-112)))) (-13 (-315) (-148)) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -458)) -((-1910 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-1910 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-1910 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-1910 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3560 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-3560 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) -(-10 -7 (-15 -3560 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3560 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -1910 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -1910 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -1910 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -1910 ((-654 (-654 |#4|)) (-654 |#4|) (-112)))) -((-1430 (((-781) |#4|) 12)) (-3338 (((-654 (-2 (|:| |totdeg| (-781)) (|:| -3038 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3038 |#4|)))) 39)) (-3891 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-1563 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2431 ((|#4| |#4| (-654 |#4|)) 54)) (-3757 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|)) 96)) (-1331 (((-1288) |#4|) 59)) (-2900 (((-1288) (-654 |#4|)) 69)) (-4179 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574)) 66)) (-1485 (((-1288) (-574)) 110)) (-3197 (((-654 |#4|) (-654 |#4|)) 104)) (-3794 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3038 |#4|)) |#4| (-781)) 31)) (-3472 (((-574) |#4|) 109)) (-2987 ((|#4| |#4|) 37)) (-1374 (((-654 |#4|) (-654 |#4|) (-574) (-574)) 74)) (-1500 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574)) 123)) (-1926 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3410 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2545 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-3722 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-2807 (((-112) |#2| |#2|) 75)) (-3653 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-3305 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3830 ((|#4| |#4| (-654 |#4|)) 97))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3830 (|#4| |#4| (-654 |#4|))) (-15 -2431 (|#4| |#4| (-654 |#4|))) (-15 -1374 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -3410 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2807 ((-112) |#2| |#2|)) (-15 -3305 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3653 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3722 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2545 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3757 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -2987 (|#4| |#4|)) (-15 -3338 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -3038 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3038 |#4|))))) (-15 -1563 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3891 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3197 ((-654 |#4|) (-654 |#4|))) (-15 -3472 ((-574) |#4|)) (-15 -1331 ((-1288) |#4|)) (-15 -4179 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -1500 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -2900 ((-1288) (-654 |#4|))) (-15 -1485 ((-1288) (-574))) (-15 -1926 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3794 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3038 |#4|)) |#4| (-781))) (-15 -1430 ((-781) |#4|))) (-462) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -459)) -((-1430 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6)))) (-3794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -3038 *4))) (-5 *5 (-781)) (-4 *4 (-962 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-459 *6 *7 *8 *4)))) (-1926 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1485 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1288)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1288)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1500 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-4179 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-1331 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1288)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6)))) (-3472 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6)))) (-3197 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-3891 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-803)) (-4 *2 (-962 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2)) (-4 *4 (-462)) (-4 *6 (-860)))) (-3338 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -3038 *3)))) (-5 *4 (-781)) (-4 *3 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3)))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5)))) (-3757 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-459 *5 *6 *7 *3)))) (-2545 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-803)) (-4 *6 (-962 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *4 *3 *5 *6)))) (-3722 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-3653 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-803)) (-4 *3 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *3)))) (-3305 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-962 *4 *3 *5)))) (-2807 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-962 *4 *3 *5)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1374 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2431 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))) (-3830 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) -(-10 -7 (-15 -3830 (|#4| |#4| (-654 |#4|))) (-15 -2431 (|#4| |#4| (-654 |#4|))) (-15 -1374 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -3410 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2807 ((-112) |#2| |#2|)) (-15 -3305 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3653 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3722 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2545 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3757 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -2987 (|#4| |#4|)) (-15 -3338 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -3038 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3038 |#4|))))) (-15 -1563 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3891 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3197 ((-654 |#4|) (-654 |#4|))) (-15 -3472 ((-574) |#4|)) (-15 -1331 ((-1288) |#4|)) (-15 -4179 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -1500 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -2900 ((-1288) (-654 |#4|))) (-15 -1485 ((-1288) (-574))) (-15 -1926 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3794 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3038 |#4|)) |#4| (-781))) (-15 -1430 ((-781) |#4|))) -((-3190 ((|#4| |#4| (-654 |#4|)) 20 (|has| |#1| (-372)))) (-1764 (((-654 |#4|) (-654 |#4|) (-1174) (-1174)) 46) (((-654 |#4|) (-654 |#4|) (-1174)) 45) (((-654 |#4|) (-654 |#4|)) 34))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1764 ((-654 |#4|) (-654 |#4|))) (-15 -1764 ((-654 |#4|) (-654 |#4|) (-1174))) (-15 -1764 ((-654 |#4|) (-654 |#4|) (-1174) (-1174))) (IF (|has| |#1| (-372)) (-15 -3190 (|#4| |#4| (-654 |#4|))) |%noBranch|)) (-462) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -460)) -((-3190 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-372)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *2)))) (-1764 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-1764 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6))))) -(-10 -7 (-15 -1764 ((-654 |#4|) (-654 |#4|))) (-15 -1764 ((-654 |#4|) (-654 |#4|) (-1174))) (-15 -1764 ((-654 |#4|) (-654 |#4|) (-1174) (-1174))) (IF (|has| |#1| (-372)) (-15 -3190 (|#4| |#4| (-654 |#4|))) |%noBranch|)) -((-2848 (($ $ $) 14) (($ (-654 $)) 21)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 46)) (-2886 (($ $ $) NIL) (($ (-654 $)) 22))) -(((-461 |#1|) (-10 -8 (-15 -3578 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2848 (|#1| (-654 |#1|))) (-15 -2848 (|#1| |#1| |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|))) (-462)) (T -461)) -NIL -(-10 -8 (-15 -3578 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2848 (|#1| (-654 |#1|))) (-15 -2848 (|#1| |#1| |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2852 (((-3 $ "failed") $ $) 48)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-451)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-451)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-451)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-1284 (-324 (-388)))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-324 (-388)))) (-4 *1 (-451)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-1284 (-324 (-574)))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-324 (-574)))) (-4 *1 (-451)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-1284 (-966 (-388)))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-966 (-388)))) (-4 *1 (-451)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-1284 (-966 (-574)))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-966 (-574)))) (-4 *1 (-451)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-1284 (-417 (-966 (-388))))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-417 (-966 (-388))))) (-4 *1 (-451)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-1284 (-417 (-966 (-574))))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-417 (-966 (-574))))) (-4 *1 (-451))))) +(-13 (-405) (-10 -8 (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-338))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))) (-15 -2214 ($ (-1284 (-324 (-388))))) (-15 -1704 ((-3 $ "failed") (-1284 (-324 (-388))))) (-15 -2214 ($ (-1284 (-324 (-574))))) (-15 -1704 ((-3 $ "failed") (-1284 (-324 (-574))))) (-15 -2214 ($ (-1284 (-966 (-388))))) (-15 -1704 ((-3 $ "failed") (-1284 (-966 (-388))))) (-15 -2214 ($ (-1284 (-966 (-574))))) (-15 -1704 ((-3 $ "failed") (-1284 (-966 (-574))))) (-15 -2214 ($ (-1284 (-417 (-966 (-388)))))) (-15 -1704 ((-3 $ "failed") (-1284 (-417 (-966 (-388)))))) (-15 -2214 ($ (-1284 (-417 (-966 (-574)))))) (-15 -1704 ((-3 $ "failed") (-1284 (-417 (-966 (-574)))))))) +(((-623 (-872)) . T) ((-405) . T) ((-1234) . T)) +((-4011 (((-112)) 18)) (-1636 (((-112) (-112)) 19)) (-2250 (((-112)) 14)) (-3620 (((-112) (-112)) 15)) (-4368 (((-112)) 16)) (-1439 (((-112) (-112)) 17)) (-2065 (((-935) (-935)) 22) (((-935)) 21)) (-1551 (((-781) (-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574))))) 52)) (-2957 (((-935) (-935)) 24) (((-935)) 23)) (-2792 (((-2 (|:| -2621 (-574)) (|:| -3314 (-654 |#1|))) |#1|) 94)) (-3219 (((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574))))))) 174)) (-2687 (((-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574)))))) |#1| (-112)) 207)) (-2894 (((-428 |#1|) |#1| (-781) (-781)) 222) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 219) (((-428 |#1|) |#1| (-654 (-781))) 221) (((-428 |#1|) |#1| (-781)) 220) (((-428 |#1|) |#1|) 218)) (-2296 (((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781) (-112)) 224) (((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781)) 225) (((-3 |#1| "failed") (-935) |#1| (-654 (-781))) 227) (((-3 |#1| "failed") (-935) |#1| (-781)) 226) (((-3 |#1| "failed") (-935) |#1|) 228)) (-4202 (((-428 |#1|) |#1| (-781) (-781)) 217) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 213) (((-428 |#1|) |#1| (-654 (-781))) 215) (((-428 |#1|) |#1| (-781)) 214) (((-428 |#1|) |#1|) 212)) (-3405 (((-112) |#1|) 44)) (-3181 (((-747 (-781)) (-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574))))) 99)) (-2405 (((-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574)))))) |#1| (-112) (-1118 (-781)) (-781)) 211))) +(((-452 |#1|) (-10 -7 (-15 -3219 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574)))))))) (-15 -3181 ((-747 (-781)) (-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574)))))) (-15 -2957 ((-935))) (-15 -2957 ((-935) (-935))) (-15 -2065 ((-935))) (-15 -2065 ((-935) (-935))) (-15 -1551 ((-781) (-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574)))))) (-15 -2792 ((-2 (|:| -2621 (-574)) (|:| -3314 (-654 |#1|))) |#1|)) (-15 -4011 ((-112))) (-15 -1636 ((-112) (-112))) (-15 -2250 ((-112))) (-15 -3620 ((-112) (-112))) (-15 -3405 ((-112) |#1|)) (-15 -4368 ((-112))) (-15 -1439 ((-112) (-112))) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -4202 ((-428 |#1|) |#1| (-781))) (-15 -4202 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4202 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4202 ((-428 |#1|) |#1| (-781) (-781))) (-15 -2894 ((-428 |#1|) |#1|)) (-15 -2894 ((-428 |#1|) |#1| (-781))) (-15 -2894 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -2894 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -2894 ((-428 |#1|) |#1| (-781) (-781))) (-15 -2296 ((-3 |#1| "failed") (-935) |#1|)) (-15 -2296 ((-3 |#1| "failed") (-935) |#1| (-781))) (-15 -2296 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)))) (-15 -2296 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781))) (-15 -2296 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781) (-112))) (-15 -2687 ((-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574)))))) |#1| (-112))) (-15 -2405 ((-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574)))))) |#1| (-112) (-1118 (-781)) (-781)))) (-1260 (-574))) (T -452)) +((-2405 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1118 (-781))) (-5 *6 (-781)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| *3) (|:| -3868 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2687 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| *3) (|:| -3868 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2296 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) (-2296 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) (-2296 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) (-2296 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-935)) (-5 *4 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) (-2296 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-935)) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) (-2894 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2894 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2894 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2894 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2894 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4202 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4202 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4202 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-1439 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4368 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3405 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2250 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4011 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2792 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2621 (-574)) (|:| -3314 (-654 *3)))) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4202 *4) (|:| -3580 (-574))))) (-4 *4 (-1260 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2065 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2957 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2957 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4202 *4) (|:| -3580 (-574))))) (-4 *4 (-1260 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| *4) (|:| -3868 (-574))))))) (-4 *4 (-1260 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4))))) +(-10 -7 (-15 -3219 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574)))))))) (-15 -3181 ((-747 (-781)) (-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574)))))) (-15 -2957 ((-935))) (-15 -2957 ((-935) (-935))) (-15 -2065 ((-935))) (-15 -2065 ((-935) (-935))) (-15 -1551 ((-781) (-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574)))))) (-15 -2792 ((-2 (|:| -2621 (-574)) (|:| -3314 (-654 |#1|))) |#1|)) (-15 -4011 ((-112))) (-15 -1636 ((-112) (-112))) (-15 -2250 ((-112))) (-15 -3620 ((-112) (-112))) (-15 -3405 ((-112) |#1|)) (-15 -4368 ((-112))) (-15 -1439 ((-112) (-112))) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -4202 ((-428 |#1|) |#1| (-781))) (-15 -4202 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4202 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4202 ((-428 |#1|) |#1| (-781) (-781))) (-15 -2894 ((-428 |#1|) |#1|)) (-15 -2894 ((-428 |#1|) |#1| (-781))) (-15 -2894 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -2894 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -2894 ((-428 |#1|) |#1| (-781) (-781))) (-15 -2296 ((-3 |#1| "failed") (-935) |#1|)) (-15 -2296 ((-3 |#1| "failed") (-935) |#1| (-781))) (-15 -2296 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)))) (-15 -2296 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781))) (-15 -2296 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781) (-112))) (-15 -2687 ((-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574)))))) |#1| (-112))) (-15 -2405 ((-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574)))))) |#1| (-112) (-1118 (-781)) (-781)))) +((-2324 (((-574) |#2|) 52) (((-574) |#2| (-781)) 51)) (-3286 (((-574) |#2|) 64)) (-1388 ((|#3| |#2|) 26)) (-1681 ((|#3| |#2| (-935)) 15)) (-4109 ((|#3| |#2|) 16)) (-2838 ((|#3| |#2|) 9)) (-1847 ((|#3| |#2|) 10)) (-4174 ((|#3| |#2| (-935)) 71) ((|#3| |#2|) 34)) (-4316 (((-574) |#2|) 66))) +(((-453 |#1| |#2| |#3|) (-10 -7 (-15 -4316 ((-574) |#2|)) (-15 -4174 (|#3| |#2|)) (-15 -4174 (|#3| |#2| (-935))) (-15 -3286 ((-574) |#2|)) (-15 -2324 ((-574) |#2| (-781))) (-15 -2324 ((-574) |#2|)) (-15 -1681 (|#3| |#2| (-935))) (-15 -1388 (|#3| |#2|)) (-15 -2838 (|#3| |#2|)) (-15 -1847 (|#3| |#2|)) (-15 -4109 (|#3| |#2|))) (-1065) (-1260 |#1|) (-13 (-414) (-1054 |#1|) (-372) (-1219) (-292))) (T -453)) +((-4109 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) (-2838 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) (-1388 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *2 (-13 (-414) (-1054 *5) (-372) (-1219) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1260 *5)))) (-2324 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1260 *4)) (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))))) (-2324 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1260 *5)) (-4 *6 (-13 (-414) (-1054 *5) (-372) (-1219) (-292))))) (-3286 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1260 *4)) (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))))) (-4174 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *2 (-13 (-414) (-1054 *5) (-372) (-1219) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1260 *5)))) (-4174 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) (-4316 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1260 *4)) (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292)))))) +(-10 -7 (-15 -4316 ((-574) |#2|)) (-15 -4174 (|#3| |#2|)) (-15 -4174 (|#3| |#2| (-935))) (-15 -3286 ((-574) |#2|)) (-15 -2324 ((-574) |#2| (-781))) (-15 -2324 ((-574) |#2|)) (-15 -1681 (|#3| |#2| (-935))) (-15 -1388 (|#3| |#2|)) (-15 -2838 (|#3| |#2|)) (-15 -1847 (|#3| |#2|)) (-15 -4109 (|#3| |#2|))) +((-3484 ((|#2| (-1284 |#1|)) 42)) (-1697 ((|#2| |#2| |#1|) 58)) (-3590 ((|#2| |#2| |#1|) 49)) (-4425 ((|#2| |#2|) 44)) (-1759 (((-112) |#2|) 32)) (-3894 (((-654 |#2|) (-935) (-428 |#2|)) 21)) (-2296 ((|#2| (-935) (-428 |#2|)) 25)) (-3181 (((-747 (-781)) (-428 |#2|)) 29))) +(((-454 |#1| |#2|) (-10 -7 (-15 -1759 ((-112) |#2|)) (-15 -3484 (|#2| (-1284 |#1|))) (-15 -4425 (|#2| |#2|)) (-15 -3590 (|#2| |#2| |#1|)) (-15 -1697 (|#2| |#2| |#1|)) (-15 -3181 ((-747 (-781)) (-428 |#2|))) (-15 -2296 (|#2| (-935) (-428 |#2|))) (-15 -3894 ((-654 |#2|) (-935) (-428 |#2|)))) (-1065) (-1260 |#1|)) (T -454)) +((-3894 (*1 *2 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-428 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-1065)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6)))) (-2296 (*1 *2 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-428 *2)) (-4 *2 (-1260 *5)) (-5 *1 (-454 *5 *2)) (-4 *5 (-1065)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-428 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-1065)) (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5)))) (-1697 (*1 *2 *2 *3) (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3)))) (-3590 (*1 *2 *2 *3) (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3)))) (-4425 (*1 *2 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3)))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-1065)) (-4 *2 (-1260 *4)) (-5 *1 (-454 *4 *2)))) (-1759 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3)) (-4 *3 (-1260 *4))))) +(-10 -7 (-15 -1759 ((-112) |#2|)) (-15 -3484 (|#2| (-1284 |#1|))) (-15 -4425 (|#2| |#2|)) (-15 -3590 (|#2| |#2| |#1|)) (-15 -1697 (|#2| |#2| |#1|)) (-15 -3181 ((-747 (-781)) (-428 |#2|))) (-15 -2296 (|#2| (-935) (-428 |#2|))) (-15 -3894 ((-654 |#2|) (-935) (-428 |#2|)))) +((-4103 (((-781)) 59)) (-1725 (((-781)) 29 (|has| |#1| (-414))) (((-781) (-781)) 28 (|has| |#1| (-414)))) (-1598 (((-574) |#1|) 25 (|has| |#1| (-414)))) (-1336 (((-574) |#1|) 27 (|has| |#1| (-414)))) (-1645 (((-781)) 58) (((-781) (-781)) 57)) (-2303 ((|#1| (-781) (-574)) 37)) (-3256 (((-1289)) 61))) +(((-455 |#1|) (-10 -7 (-15 -2303 (|#1| (-781) (-574))) (-15 -1645 ((-781) (-781))) (-15 -1645 ((-781))) (-15 -4103 ((-781))) (-15 -3256 ((-1289))) (IF (|has| |#1| (-414)) (PROGN (-15 -1336 ((-574) |#1|)) (-15 -1598 ((-574) |#1|)) (-15 -1725 ((-781) (-781))) (-15 -1725 ((-781)))) |%noBranch|)) (-1065)) (T -455)) +((-1725 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))) (-1725 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))) (-1598 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))) (-1336 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))) (-3256 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))) (-4103 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))) (-1645 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))) (-1645 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1065))))) +(-10 -7 (-15 -2303 (|#1| (-781) (-574))) (-15 -1645 ((-781) (-781))) (-15 -1645 ((-781))) (-15 -4103 ((-781))) (-15 -3256 ((-1289))) (IF (|has| |#1| (-414)) (PROGN (-15 -1336 ((-574) |#1|)) (-15 -1598 ((-574) |#1|)) (-15 -1725 ((-781) (-781))) (-15 -1725 ((-781)))) |%noBranch|)) +((-3339 (((-654 (-574)) (-574)) 76)) (-3978 (((-112) (-171 (-574))) 82)) (-4202 (((-428 (-171 (-574))) (-171 (-574))) 75))) +(((-456) (-10 -7 (-15 -4202 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -3339 ((-654 (-574)) (-574))) (-15 -3978 ((-112) (-171 (-574)))))) (T -456)) +((-3978 (*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456)))) (-3339 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574)))) (-4202 (*1 *2 *3) (-12 (-5 *2 (-428 (-171 (-574)))) (-5 *1 (-456)) (-5 *3 (-171 (-574)))))) +(-10 -7 (-15 -4202 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -3339 ((-654 (-574)) (-574))) (-15 -3978 ((-112) (-171 (-574))))) +((-2873 ((|#4| |#4| (-654 |#4|)) 82)) (-3279 (((-654 |#4|) (-654 |#4|) (-1175) (-1175)) 22) (((-654 |#4|) (-654 |#4|) (-1175)) 21) (((-654 |#4|) (-654 |#4|)) 13))) +(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2873 (|#4| |#4| (-654 |#4|))) (-15 -3279 ((-654 |#4|) (-654 |#4|))) (-15 -3279 ((-654 |#4|) (-654 |#4|) (-1175))) (-15 -3279 ((-654 |#4|) (-654 |#4|) (-1175) (-1175)))) (-315) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -457)) +((-3279 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-3279 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6)))) (-2873 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2))))) +(-10 -7 (-15 -2873 (|#4| |#4| (-654 |#4|))) (-15 -3279 ((-654 |#4|) (-654 |#4|))) (-15 -3279 ((-654 |#4|) (-654 |#4|) (-1175))) (-15 -3279 ((-654 |#4|) (-654 |#4|) (-1175) (-1175)))) +((-3811 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 89) (((-654 (-654 |#4|)) (-654 |#4|)) 88) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112)) 82) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|)) 83)) (-2910 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 55) (((-654 (-654 |#4|)) (-654 |#4|)) 77))) +(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2910 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -2910 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -3811 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -3811 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -3811 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3811 ((-654 (-654 |#4|)) (-654 |#4|) (-112)))) (-13 (-315) (-148)) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -458)) +((-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-3811 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3811 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-3811 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2910 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-2910 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) +(-10 -7 (-15 -2910 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -2910 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -3811 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -3811 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -3811 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3811 ((-654 (-654 |#4|)) (-654 |#4|) (-112)))) +((-3781 (((-781) |#4|) 12)) (-2709 (((-654 (-2 (|:| |totdeg| (-781)) (|:| -3374 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3374 |#4|)))) 39)) (-1799 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-1499 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2867 ((|#4| |#4| (-654 |#4|)) 54)) (-2008 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|)) 96)) (-2306 (((-1289) |#4|) 59)) (-1829 (((-1289) (-654 |#4|)) 69)) (-4171 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574)) 66)) (-3662 (((-1289) (-574)) 110)) (-4066 (((-654 |#4|) (-654 |#4|)) 104)) (-1607 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3374 |#4|)) |#4| (-781)) 31)) (-2618 (((-574) |#4|) 109)) (-4297 ((|#4| |#4|) 37)) (-3194 (((-654 |#4|) (-654 |#4|) (-574) (-574)) 74)) (-3464 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574)) 123)) (-4001 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2075 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-4299 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-4263 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3498 (((-112) |#2| |#2|) 75)) (-2293 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2220 (((-112) |#2| |#2| |#2| |#2|) 80)) (-1398 ((|#4| |#4| (-654 |#4|)) 97))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1398 (|#4| |#4| (-654 |#4|))) (-15 -2867 (|#4| |#4| (-654 |#4|))) (-15 -3194 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -2075 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3498 ((-112) |#2| |#2|)) (-15 -2220 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2293 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4263 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4299 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2008 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -4297 (|#4| |#4|)) (-15 -2709 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -3374 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3374 |#4|))))) (-15 -1499 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1799 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4066 ((-654 |#4|) (-654 |#4|))) (-15 -2618 ((-574) |#4|)) (-15 -2306 ((-1289) |#4|)) (-15 -4171 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -3464 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -1829 ((-1289) (-654 |#4|))) (-15 -3662 ((-1289) (-574))) (-15 -4001 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1607 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3374 |#4|)) |#4| (-781))) (-15 -3781 ((-781) |#4|))) (-462) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -459)) +((-3781 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -3374 *4))) (-5 *5 (-781)) (-4 *4 (-963 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-459 *6 *7 *8 *4)))) (-4001 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3662 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1289)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1289)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3464 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-4171 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-2306 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1289)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))) (-2618 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-1799 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-803)) (-4 *2 (-963 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2)) (-4 *4 (-462)) (-4 *6 (-860)))) (-2709 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -3374 *3)))) (-5 *4 (-781)) (-4 *3 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3)))) (-4297 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-459 *5 *6 *7 *3)))) (-4299 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-803)) (-4 *6 (-963 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *4 *3 *5 *6)))) (-4263 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-2293 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-803)) (-4 *3 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *3)))) (-2220 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-963 *4 *3 *5)))) (-3498 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-963 *4 *3 *5)))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3194 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2867 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))) (-1398 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) +(-10 -7 (-15 -1398 (|#4| |#4| (-654 |#4|))) (-15 -2867 (|#4| |#4| (-654 |#4|))) (-15 -3194 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -2075 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3498 ((-112) |#2| |#2|)) (-15 -2220 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2293 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4263 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4299 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2008 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -4297 (|#4| |#4|)) (-15 -2709 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -3374 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3374 |#4|))))) (-15 -1499 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1799 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4066 ((-654 |#4|) (-654 |#4|))) (-15 -2618 ((-574) |#4|)) (-15 -2306 ((-1289) |#4|)) (-15 -4171 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -3464 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -1829 ((-1289) (-654 |#4|))) (-15 -3662 ((-1289) (-574))) (-15 -4001 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1607 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3374 |#4|)) |#4| (-781))) (-15 -3781 ((-781) |#4|))) +((-1493 ((|#4| |#4| (-654 |#4|)) 20 (|has| |#1| (-372)))) (-4137 (((-654 |#4|) (-654 |#4|) (-1175) (-1175)) 46) (((-654 |#4|) (-654 |#4|) (-1175)) 45) (((-654 |#4|) (-654 |#4|)) 34))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4137 ((-654 |#4|) (-654 |#4|))) (-15 -4137 ((-654 |#4|) (-654 |#4|) (-1175))) (-15 -4137 ((-654 |#4|) (-654 |#4|) (-1175) (-1175))) (IF (|has| |#1| (-372)) (-15 -1493 (|#4| |#4| (-654 |#4|))) |%noBranch|)) (-462) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -460)) +((-1493 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-372)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *2)))) (-4137 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-4137 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6))))) +(-10 -7 (-15 -4137 ((-654 |#4|) (-654 |#4|))) (-15 -4137 ((-654 |#4|) (-654 |#4|) (-1175))) (-15 -4137 ((-654 |#4|) (-654 |#4|) (-1175) (-1175))) (IF (|has| |#1| (-372)) (-15 -1493 (|#4| |#4| (-654 |#4|))) |%noBranch|)) +((-2849 (($ $ $) 14) (($ (-654 $)) 21)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 46)) (-2887 (($ $ $) NIL) (($ (-654 $)) 22))) +(((-461 |#1|) (-10 -8 (-15 -2069 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -2849 (|#1| (-654 |#1|))) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|))) (-462)) (T -461)) +NIL +(-10 -8 (-15 -2069 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -2849 (|#1| (-654 |#1|))) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-2853 (((-3 $ "failed") $ $) 48)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-462) (-141)) (T -462)) -((-2886 (*1 *1 *1 *1) (-4 *1 (-462))) (-2886 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-2848 (*1 *1 *1 *1) (-4 *1 (-462))) (-2848 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-3578 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-462))))) -(-13 (-566) (-10 -8 (-15 -2886 ($ $ $)) (-15 -2886 ($ (-654 $))) (-15 -2848 ($ $ $)) (-15 -2848 ($ (-654 $))) (-15 -3578 ((-1188 $) (-1188 $) (-1188 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3775 (((-3 $ "failed")) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-2588 (((-1283 (-699 (-417 (-965 |#1|)))) (-1283 $)) NIL) (((-1283 (-699 (-417 (-965 |#1|))))) NIL)) (-4427 (((-1283 $)) NIL)) (-3831 (($) NIL T CONST)) (-2846 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) NIL)) (-1992 (((-3 $ "failed")) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-2038 (((-699 (-417 (-965 |#1|))) (-1283 $)) NIL) (((-699 (-417 (-965 |#1|)))) NIL)) (-2199 (((-417 (-965 |#1|)) $) NIL)) (-4189 (((-699 (-417 (-965 |#1|))) $ (-1283 $)) NIL) (((-699 (-417 (-965 |#1|))) $) NIL)) (-2484 (((-3 $ "failed") $) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-3149 (((-1188 (-965 (-417 (-965 |#1|))))) NIL (|has| (-417 (-965 |#1|)) (-372))) (((-1188 (-417 (-965 |#1|)))) 90 (|has| |#1| (-566)))) (-3204 (($ $ (-934)) NIL)) (-3272 (((-417 (-965 |#1|)) $) NIL)) (-3866 (((-1188 (-417 (-965 |#1|))) $) 88 (|has| (-417 (-965 |#1|)) (-566)))) (-3414 (((-417 (-965 |#1|)) (-1283 $)) NIL) (((-417 (-965 |#1|))) NIL)) (-4111 (((-1188 (-417 (-965 |#1|))) $) NIL)) (-2182 (((-112)) NIL)) (-2919 (($ (-1283 (-417 (-965 |#1|))) (-1283 $)) 114) (($ (-1283 (-417 (-965 |#1|)))) NIL)) (-3911 (((-3 $ "failed") $) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-3557 (((-934)) NIL)) (-2045 (((-112)) NIL)) (-3518 (($ $ (-934)) NIL)) (-2931 (((-112)) NIL)) (-2347 (((-112)) NIL)) (-3233 (((-112)) NIL)) (-3636 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) NIL)) (-3215 (((-3 $ "failed")) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-2597 (((-699 (-417 (-965 |#1|))) (-1283 $)) NIL) (((-699 (-417 (-965 |#1|)))) NIL)) (-2327 (((-417 (-965 |#1|)) $) NIL)) (-3680 (((-699 (-417 (-965 |#1|))) $ (-1283 $)) NIL) (((-699 (-417 (-965 |#1|))) $) NIL)) (-2691 (((-3 $ "failed") $) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-1644 (((-1188 (-965 (-417 (-965 |#1|))))) NIL (|has| (-417 (-965 |#1|)) (-372))) (((-1188 (-417 (-965 |#1|)))) 89 (|has| |#1| (-566)))) (-2177 (($ $ (-934)) NIL)) (-2614 (((-417 (-965 |#1|)) $) NIL)) (-3201 (((-1188 (-417 (-965 |#1|))) $) 85 (|has| (-417 (-965 |#1|)) (-566)))) (-2903 (((-417 (-965 |#1|)) (-1283 $)) NIL) (((-417 (-965 |#1|))) NIL)) (-3401 (((-1188 (-417 (-965 |#1|))) $) NIL)) (-1584 (((-112)) NIL)) (-3945 (((-1174) $) NIL)) (-1916 (((-112)) NIL)) (-3601 (((-112)) NIL)) (-1876 (((-112)) NIL)) (-3939 (((-1135) $) NIL)) (-1363 (((-417 (-965 |#1|)) $ $) 76 (|has| |#1| (-566)))) (-3609 (((-417 (-965 |#1|)) $) 100 (|has| |#1| (-566)))) (-4372 (((-417 (-965 |#1|)) $) 104 (|has| |#1| (-566)))) (-1642 (((-1188 (-417 (-965 |#1|))) $) 94 (|has| |#1| (-566)))) (-3027 (((-417 (-965 |#1|))) 77 (|has| |#1| (-566)))) (-3237 (((-417 (-965 |#1|)) $ $) 69 (|has| |#1| (-566)))) (-2197 (((-417 (-965 |#1|)) $) 99 (|has| |#1| (-566)))) (-3091 (((-417 (-965 |#1|)) $) 103 (|has| |#1| (-566)))) (-1967 (((-1188 (-417 (-965 |#1|))) $) 93 (|has| |#1| (-566)))) (-1730 (((-417 (-965 |#1|))) 73 (|has| |#1| (-566)))) (-2720 (($) 110) (($ (-1192)) 118) (($ (-1283 (-1192))) 117) (($ (-1283 $)) 105) (($ (-1192) (-1283 $)) 116) (($ (-1283 (-1192)) (-1283 $)) 115)) (-2678 (((-112)) NIL)) (-2208 (((-417 (-965 |#1|)) $ (-574)) NIL)) (-4346 (((-1283 (-417 (-965 |#1|))) $ (-1283 $)) 107) (((-699 (-417 (-965 |#1|))) (-1283 $) (-1283 $)) NIL) (((-1283 (-417 (-965 |#1|))) $) 43) (((-699 (-417 (-965 |#1|))) (-1283 $)) NIL)) (-1845 (((-1283 (-417 (-965 |#1|))) $) NIL) (($ (-1283 (-417 (-965 |#1|)))) 40)) (-2074 (((-654 (-965 (-417 (-965 |#1|)))) (-1283 $)) NIL) (((-654 (-965 (-417 (-965 |#1|))))) NIL) (((-654 (-965 |#1|)) (-1283 $)) 108 (|has| |#1| (-566))) (((-654 (-965 |#1|))) 109 (|has| |#1| (-566)))) (-3490 (($ $ $) NIL)) (-1355 (((-112)) NIL)) (-2950 (((-872) $) NIL) (($ (-1283 (-417 (-965 |#1|)))) NIL)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) 65)) (-3045 (((-654 (-1283 (-417 (-965 |#1|))))) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-2087 (($ $ $ $) NIL)) (-3500 (((-112)) NIL)) (-2911 (($ (-699 (-417 (-965 |#1|))) $) NIL)) (-3157 (($ $ $) NIL)) (-1778 (((-112)) NIL)) (-2956 (((-112)) NIL)) (-3005 (((-112)) NIL)) (-2142 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) 106)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 61) (($ $ (-417 (-965 |#1|))) NIL) (($ (-417 (-965 |#1|)) $) NIL) (($ (-1157 |#2| (-417 (-965 |#1|))) $) NIL))) -(((-463 |#1| |#2| |#3| |#4|) (-13 (-427 (-417 (-965 |#1|))) (-658 (-1157 |#2| (-417 (-965 |#1|)))) (-10 -8 (-15 -2950 ($ (-1283 (-417 (-965 |#1|))))) (-15 -3636 ((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed"))) (-15 -2846 ((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed"))) (-15 -2720 ($)) (-15 -2720 ($ (-1192))) (-15 -2720 ($ (-1283 (-1192)))) (-15 -2720 ($ (-1283 $))) (-15 -2720 ($ (-1192) (-1283 $))) (-15 -2720 ($ (-1283 (-1192)) (-1283 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -1644 ((-1188 (-417 (-965 |#1|))))) (-15 -1967 ((-1188 (-417 (-965 |#1|))) $)) (-15 -2197 ((-417 (-965 |#1|)) $)) (-15 -3091 ((-417 (-965 |#1|)) $)) (-15 -3149 ((-1188 (-417 (-965 |#1|))))) (-15 -1642 ((-1188 (-417 (-965 |#1|))) $)) (-15 -3609 ((-417 (-965 |#1|)) $)) (-15 -4372 ((-417 (-965 |#1|)) $)) (-15 -3237 ((-417 (-965 |#1|)) $ $)) (-15 -1730 ((-417 (-965 |#1|)))) (-15 -1363 ((-417 (-965 |#1|)) $ $)) (-15 -3027 ((-417 (-965 |#1|)))) (-15 -2074 ((-654 (-965 |#1|)) (-1283 $))) (-15 -2074 ((-654 (-965 |#1|))))) |%noBranch|))) (-174) (-934) (-654 (-1192)) (-1283 (-699 |#1|))) (T -463)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-417 (-965 *3)))) (-4 *3 (-174)) (-14 *6 (-1283 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))))) (-3636 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -2191 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2846 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -2191 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2720 (*1 *1) (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-934)) (-14 *4 (-654 (-1192))) (-14 *5 (-1283 (-699 *2))))) (-2720 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 *2)) (-14 *6 (-1283 (-699 *3))))) (-2720 (*1 *1 *2) (-12 (-5 *2 (-1283 (-1192))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2720 (*1 *1 *2) (-12 (-5 *2 (-1283 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2720 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-934)) (-14 *6 (-654 *2)) (-14 *7 (-1283 (-699 *4))))) (-2720 (*1 *1 *2 *3) (-12 (-5 *2 (-1283 (-1192))) (-5 *3 (-1283 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-934)) (-14 *6 (-654 (-1192))) (-14 *7 (-1283 (-699 *4))))) (-1644 (*1 *2) (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-3149 (*1 *2) (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-3609 (*1 *2 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-4372 (*1 *2 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-3237 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-1730 (*1 *2) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-1363 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-3027 (*1 *2) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1283 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-965 *4))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174)) (-14 *5 (-934)) (-14 *6 (-654 (-1192))) (-14 *7 (-1283 (-699 *4))))) (-2074 (*1 *2) (-12 (-5 *2 (-654 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) -(-13 (-427 (-417 (-965 |#1|))) (-658 (-1157 |#2| (-417 (-965 |#1|)))) (-10 -8 (-15 -2950 ($ (-1283 (-417 (-965 |#1|))))) (-15 -3636 ((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed"))) (-15 -2846 ((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed"))) (-15 -2720 ($)) (-15 -2720 ($ (-1192))) (-15 -2720 ($ (-1283 (-1192)))) (-15 -2720 ($ (-1283 $))) (-15 -2720 ($ (-1192) (-1283 $))) (-15 -2720 ($ (-1283 (-1192)) (-1283 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -1644 ((-1188 (-417 (-965 |#1|))))) (-15 -1967 ((-1188 (-417 (-965 |#1|))) $)) (-15 -2197 ((-417 (-965 |#1|)) $)) (-15 -3091 ((-417 (-965 |#1|)) $)) (-15 -3149 ((-1188 (-417 (-965 |#1|))))) (-15 -1642 ((-1188 (-417 (-965 |#1|))) $)) (-15 -3609 ((-417 (-965 |#1|)) $)) (-15 -4372 ((-417 (-965 |#1|)) $)) (-15 -3237 ((-417 (-965 |#1|)) $ $)) (-15 -1730 ((-417 (-965 |#1|)))) (-15 -1363 ((-417 (-965 |#1|)) $ $)) (-15 -3027 ((-417 (-965 |#1|)))) (-15 -2074 ((-654 (-965 |#1|)) (-1283 $))) (-15 -2074 ((-654 (-965 |#1|))))) |%noBranch|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 18)) (-4349 (((-654 (-874 |#1|)) $) 87)) (-4171 (((-1188 $) $ (-874 |#1|)) 52) (((-1188 |#2|) $) 138)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-3648 (($ $) NIL (|has| |#2| (-566)))) (-1527 (((-112) $) NIL (|has| |#2| (-566)))) (-3335 (((-781) $) 27) (((-781) $ (-654 (-874 |#1|))) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3296 (($ $) NIL (|has| |#2| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#2| "failed") $) 50) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) 48) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-874 |#1|) $) NIL)) (-3496 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3797 (($ $ (-654 (-574))) 93)) (-1401 (($ $) 80)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#2| (-922)))) (-4389 (($ $ |#2| |#3| $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) 65)) (-4338 (($ (-1188 |#2|) (-874 |#1|)) 143) (($ (-1188 $) (-874 |#1|)) 58)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) 68)) (-4327 (($ |#2| |#3|) 35) (($ $ (-874 |#1|) (-781)) 37) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-874 |#1|)) NIL)) (-1503 ((|#3| $) NIL) (((-781) $ (-874 |#1|)) 56) (((-654 (-781)) $ (-654 (-874 |#1|))) 63)) (-3558 (($ (-1 |#3| |#3|) $) NIL)) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-1803 (((-3 (-874 |#1|) "failed") $) 45)) (-1365 (($ $) NIL)) (-1377 ((|#2| $) 47)) (-2848 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3945 (((-1174) $) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2017 (-781))) "failed") $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) 46)) (-1354 ((|#2| $) 136)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) 149 (|has| |#2| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-922)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) 100) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) 106) (($ $ (-874 |#1|) $) 98) (($ $ (-654 (-874 |#1|)) (-654 $)) 124)) (-1738 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3878 (($ $ (-874 |#1|)) 59) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3584 ((|#3| $) 79) (((-781) $ (-874 |#1|)) 42) (((-654 (-781)) $ (-654 (-874 |#1|))) 62)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3631 ((|#2| $) 145 (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-2950 (((-872) $) 173) (($ (-574)) NIL) (($ |#2|) 99) (($ (-874 |#1|)) 39) (($ (-417 (-574))) NIL (-2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-2836 (((-654 |#2|) $) NIL)) (-2930 ((|#2| $ |#3|) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2142 (($) 22 T CONST)) (-2154 (($) 31 T CONST)) (-3583 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#2|) 76 (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 131)) (** (($ $ (-934)) NIL) (($ $ (-781)) 129)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 36) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) -(((-464 |#1| |#2| |#3|) (-13 (-962 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -3797 ($ $ (-654 (-574)))))) (-654 (-1192)) (-1064) (-244 (-2876 |#1|) (-781))) (T -464)) -((-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1192))) (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1064)) (-4 *5 (-244 (-2876 *3) (-781)))))) -(-13 (-962 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -3797 ($ $ (-654 (-574)))))) -((-4348 (((-112) |#1| (-654 |#2|)) 91)) (-3747 (((-3 (-1283 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|)) 100)) (-4332 (((-3 (-654 |#2|) "failed") |#2| |#1| (-1283 (-654 |#2|))) 102)) (-2432 ((|#2| |#2| |#1|) 35)) (-4132 (((-781) |#2| (-654 |#2|)) 26))) -(((-465 |#1| |#2|) (-10 -7 (-15 -2432 (|#2| |#2| |#1|)) (-15 -4132 ((-781) |#2| (-654 |#2|))) (-15 -3747 ((-3 (-1283 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -4332 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1283 (-654 |#2|)))) (-15 -4348 ((-112) |#1| (-654 |#2|)))) (-315) (-1259 |#1|)) (T -465)) -((-4348 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-1259 *3)) (-4 *3 (-315)) (-5 *2 (-112)) (-5 *1 (-465 *3 *5)))) (-4332 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1283 (-654 *3))) (-4 *4 (-315)) (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1259 *4)))) (-3747 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1259 *4)) (-5 *2 (-1283 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6)))) (-4132 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-315)) (-5 *2 (-781)) (-5 *1 (-465 *5 *3)))) (-2432 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1259 *3))))) -(-10 -7 (-15 -2432 (|#2| |#2| |#1|)) (-15 -4132 ((-781) |#2| (-654 |#2|))) (-15 -3747 ((-3 (-1283 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -4332 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1283 (-654 |#2|)))) (-15 -4348 ((-112) |#1| (-654 |#2|)))) -((-4200 (((-428 |#5|) |#5|) 24))) -(((-466 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4200 ((-428 |#5|) |#5|))) (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)) (-15 -1497 ((-3 $ "failed") (-1192))))) (-803) (-566) (-566) (-962 |#4| |#2| |#1|)) (T -466)) -((-4200 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)) (-15 -1497 ((-3 $ "failed") (-1192)))))) (-4 *5 (-803)) (-4 *7 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-466 *4 *5 *6 *7 *3)) (-4 *6 (-566)) (-4 *3 (-962 *7 *5 *4))))) -(-10 -7 (-15 -4200 ((-428 |#5|) |#5|))) -((-2917 ((|#3|) 38)) (-3578 (((-1188 |#4|) (-1188 |#4|) (-1188 |#4|)) 34))) -(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3578 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -2917 (|#3|))) (-803) (-860) (-922) (-962 |#3| |#1| |#2|)) (T -467)) -((-2917 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-922)) (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-962 *2 *3 *4)))) (-3578 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-922)) (-5 *1 (-467 *3 *4 *5 *6))))) -(-10 -7 (-15 -3578 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -2917 (|#3|))) -((-4200 (((-428 (-1188 |#1|)) (-1188 |#1|)) 43))) -(((-468 |#1|) (-10 -7 (-15 -4200 ((-428 (-1188 |#1|)) (-1188 |#1|)))) (-315)) (T -468)) -((-4200 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1188 *4))) (-5 *1 (-468 *4)) (-5 *3 (-1188 *4))))) -(-10 -7 (-15 -4200 ((-428 (-1188 |#1|)) (-1188 |#1|)))) -((-4401 (((-52) |#2| (-1192) (-302 |#2|) (-1250 (-781))) 44) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-781))) 43) (((-52) |#2| (-1192) (-302 |#2|)) 36) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 29)) (-3596 (((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))) 88) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))) 87) (((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574))) 86) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574))) 85) (((-52) |#2| (-1192) (-302 |#2|)) 80) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 79)) (-4425 (((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))) 74) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))) 72)) (-4413 (((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574))) 51) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574))) 50))) -(((-469 |#1| |#2|) (-10 -7 (-15 -4401 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4401 ((-52) |#2| (-1192) (-302 |#2|))) (-15 -4401 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-781)))) (-15 -4401 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-781)))) (-15 -4413 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574)))) (-15 -4413 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574)))) (-15 -4425 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -4425 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -3596 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|))) (-15 -3596 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574)))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574)))) (-15 -3596 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))))) (-13 (-566) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -469)) -((-3596 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *8))) (-4 *8 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-3596 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1250 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-3596 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-3596 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-574))) (-4 *7 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-3596 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6)))) (-4425 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *8))) (-4 *8 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-4425 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1250 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-4413 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-574))) (-4 *7 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4401 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-781))) (-4 *3 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-781))) (-4 *7 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6))))) -(-10 -7 (-15 -4401 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4401 ((-52) |#2| (-1192) (-302 |#2|))) (-15 -4401 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-781)))) (-15 -4401 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-781)))) (-15 -4413 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574)))) (-15 -4413 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574)))) (-15 -4425 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -4425 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -3596 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|))) (-15 -3596 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574)))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574)))) (-15 -3596 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))))) -((-2432 ((|#2| |#2| |#1|) 15)) (-3997 (((-654 |#2|) |#2| (-654 |#2|) |#1| (-934)) 82)) (-2008 (((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-934)) 72))) -(((-470 |#1| |#2|) (-10 -7 (-15 -2008 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-934))) (-15 -3997 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-934))) (-15 -2432 (|#2| |#2| |#1|))) (-315) (-1259 |#1|)) (T -470)) -((-2432 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1259 *3)))) (-3997 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-654 *3)) (-5 *5 (-934)) (-4 *3 (-1259 *4)) (-4 *4 (-315)) (-5 *1 (-470 *4 *3)))) (-2008 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-934)) (-4 *5 (-315)) (-4 *3 (-1259 *5)) (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5))) (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3))))) -(-10 -7 (-15 -2008 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-934))) (-15 -3997 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-934))) (-15 -2432 (|#2| |#2| |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 28)) (-3196 (($ |#3|) 25)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1401 (($ $) 32)) (-3922 (($ |#2| |#4| $) 33)) (-4327 (($ |#2| (-723 |#3| |#4| |#5|)) 24)) (-1365 (((-723 |#3| |#4| |#5|) $) 15)) (-1935 ((|#3| $) 19)) (-3995 ((|#4| $) 17)) (-1377 ((|#2| $) 29)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3114 (($ |#2| |#3| |#4|) 26)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 36 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 34)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-471 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1377 (|#2| $)) (-15 -1365 ((-723 |#3| |#4| |#5|) $)) (-15 -3995 (|#4| $)) (-15 -1935 (|#3| $)) (-15 -1401 ($ $)) (-15 -4327 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -3196 ($ |#3|)) (-15 -3114 ($ |#2| |#3| |#4|)) (-15 -3922 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-654 (-1192)) (-174) (-860) (-244 (-2876 |#1|) (-781)) (-1 (-112) (-2 (|:| -2590 |#3|) (|:| -2017 |#4|)) (-2 (|:| -2590 |#3|) (|:| -2017 |#4|))) (-962 |#2| |#4| (-874 |#1|))) (T -471)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) (-4 *6 (-244 (-2876 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2590 *5) (|:| -2017 *6)) (-2 (|:| -2590 *5) (|:| -2017 *6)))) (-5 *1 (-471 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860)) (-4 *2 (-962 *4 *6 (-874 *3))))) (-1377 (*1 *2 *1) (-12 (-14 *3 (-654 (-1192))) (-4 *5 (-244 (-2876 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *4) (|:| -2017 *5)) (-2 (|:| -2590 *4) (|:| -2017 *5)))) (-4 *2 (-174)) (-5 *1 (-471 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-962 *2 *5 (-874 *3))))) (-1365 (*1 *2 *1) (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) (-4 *6 (-244 (-2876 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2590 *5) (|:| -2017 *6)) (-2 (|:| -2590 *5) (|:| -2017 *6)))) (-5 *2 (-723 *5 *6 *7)) (-5 *1 (-471 *3 *4 *5 *6 *7 *8)) (-4 *5 (-860)) (-4 *8 (-962 *4 *6 (-874 *3))))) (-3995 (*1 *2 *1) (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2590 *5) (|:| -2017 *2)) (-2 (|:| -2590 *5) (|:| -2017 *2)))) (-4 *2 (-244 (-2876 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7)) (-4 *5 (-860)) (-4 *7 (-962 *4 *2 (-874 *3))))) (-1935 (*1 *2 *1) (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) (-4 *5 (-244 (-2876 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *2) (|:| -2017 *5)) (-2 (|:| -2590 *2) (|:| -2017 *5)))) (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *7 (-962 *4 *5 (-874 *3))))) (-1401 (*1 *1 *1) (-12 (-14 *2 (-654 (-1192))) (-4 *3 (-174)) (-4 *5 (-244 (-2876 *2) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *4) (|:| -2017 *5)) (-2 (|:| -2590 *4) (|:| -2017 *5)))) (-5 *1 (-471 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-962 *3 *5 (-874 *2))))) (-4327 (*1 *1 *2 *3) (-12 (-5 *3 (-723 *5 *6 *7)) (-4 *5 (-860)) (-4 *6 (-244 (-2876 *4) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2590 *5) (|:| -2017 *6)) (-2 (|:| -2590 *5) (|:| -2017 *6)))) (-14 *4 (-654 (-1192))) (-4 *2 (-174)) (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-962 *2 *6 (-874 *4))))) (-3196 (*1 *1 *2) (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) (-4 *5 (-244 (-2876 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *2) (|:| -2017 *5)) (-2 (|:| -2590 *2) (|:| -2017 *5)))) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) (-4 *7 (-962 *4 *5 (-874 *3))))) (-3114 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-654 (-1192))) (-4 *2 (-174)) (-4 *4 (-244 (-2876 *5) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *3) (|:| -2017 *4)) (-2 (|:| -2590 *3) (|:| -2017 *4)))) (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) (-4 *7 (-962 *2 *4 (-874 *5))))) (-3922 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-654 (-1192))) (-4 *2 (-174)) (-4 *3 (-244 (-2876 *4) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *5) (|:| -2017 *3)) (-2 (|:| -2590 *5) (|:| -2017 *3)))) (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) (-4 *7 (-962 *2 *3 (-874 *4)))))) -(-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1377 (|#2| $)) (-15 -1365 ((-723 |#3| |#4| |#5|) $)) (-15 -3995 (|#4| $)) (-15 -1935 (|#3| $)) (-15 -1401 ($ $)) (-15 -4327 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -3196 ($ |#3|)) (-15 -3114 ($ |#2| |#3| |#4|)) (-15 -3922 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2737 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-472 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2737 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-803) (-860) (-566) (-962 |#3| |#1| |#2|) (-13 (-1053 (-417 (-574))) (-372) (-10 -8 (-15 -2950 ($ |#4|)) (-15 -2970 (|#4| $)) (-15 -2981 (|#4| $))))) (T -472)) -((-2737 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803)) (-4 *6 (-566)) (-4 *7 (-962 *6 *5 *3)) (-5 *1 (-472 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1053 (-417 (-574))) (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $)))))))) -(-10 -7 (-15 -2737 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2863 (((-112) $ $) NIL)) (-4349 (((-654 |#3|) $) 41)) (-3278 (((-112) $) NIL)) (-3814 (((-112) $) NIL (|has| |#1| (-566)))) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#3|) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-4241 (((-112) $) NIL (|has| |#1| (-566)))) (-3297 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2860 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2450 (((-112) $) NIL (|has| |#1| (-566)))) (-4010 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1438 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 |#4|)) 49)) (-2216 (($ (-654 |#4|)) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4458)))) (-1873 (((-654 |#4|) $) 18 (|has| $ (-6 -4458)))) (-2968 ((|#3| $) 47)) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#4|) $) 14 (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-2461 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) 21)) (-2740 (((-654 |#3|) $) NIL)) (-2080 (((-112) |#3| $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-3081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3939 (((-1135) $) NIL)) (-2294 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2000 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 39)) (-2833 (($) 17)) (-3948 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) 16)) (-1845 (((-546) $) NIL (|has| |#4| (-624 (-546)))) (($ (-654 |#4|)) 51)) (-2962 (($ (-654 |#4|)) 13)) (-1689 (($ $ |#3|) NIL)) (-2639 (($ $ |#3|) NIL)) (-3386 (($ $ |#3|) NIL)) (-2950 (((-872) $) 38) (((-654 |#4|) $) 50)) (-3838 (((-112) $ $) NIL)) (-2980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 30)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-473 |#1| |#2| |#3| |#4|) (-13 (-991 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1845 ($ (-654 |#4|))) (-6 -4458) (-6 -4459))) (-1064) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -473)) -((-1845 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-473 *3 *4 *5 *6))))) -(-13 (-991 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1845 ($ (-654 |#4|))) (-6 -4458) (-6 -4459))) -((-2142 (($) 11)) (-2154 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -2154 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2142 (|#1|))) (-475 |#2| |#3|) (-174) (-23)) (T -474)) -NIL -(-10 -8 (-15 -2154 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2142 (|#1|))) -((-2863 (((-112) $ $) 7)) (-1705 (((-3 |#1| "failed") $) 27)) (-2216 ((|#1| $) 28)) (-4272 (($ $ $) 24)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3584 ((|#2| $) 20)) (-2950 (((-872) $) 12) (($ |#1|) 26)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 25 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 16) (($ $ $) 14)) (-3074 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-2887 (*1 *1 *1 *1) (-4 *1 (-462))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-2849 (*1 *1 *1 *1) (-4 *1 (-462))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-2069 (*1 *2 *2 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-462))))) +(-13 (-566) (-10 -8 (-15 -2887 ($ $ $)) (-15 -2887 ($ (-654 $))) (-15 -2849 ($ $ $)) (-15 -2849 ($ (-654 $))) (-15 -2069 ((-1189 $) (-1189 $) (-1189 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4098 (((-3 $ "failed")) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-1379 (((-1284 (-699 (-417 (-966 |#1|)))) (-1284 $)) NIL) (((-1284 (-699 (-417 (-966 |#1|))))) NIL)) (-3610 (((-1284 $)) NIL)) (-3250 (($) NIL T CONST)) (-4004 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) NIL)) (-3511 (((-3 $ "failed")) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-1519 (((-699 (-417 (-966 |#1|))) (-1284 $)) NIL) (((-699 (-417 (-966 |#1|)))) NIL)) (-2569 (((-417 (-966 |#1|)) $) NIL)) (-4438 (((-699 (-417 (-966 |#1|))) $ (-1284 $)) NIL) (((-699 (-417 (-966 |#1|))) $) NIL)) (-1657 (((-3 $ "failed") $) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-4436 (((-1189 (-966 (-417 (-966 |#1|))))) NIL (|has| (-417 (-966 |#1|)) (-372))) (((-1189 (-417 (-966 |#1|)))) 90 (|has| |#1| (-566)))) (-3066 (($ $ (-935)) NIL)) (-2416 (((-417 (-966 |#1|)) $) NIL)) (-3831 (((-1189 (-417 (-966 |#1|))) $) 88 (|has| (-417 (-966 |#1|)) (-566)))) (-3061 (((-417 (-966 |#1|)) (-1284 $)) NIL) (((-417 (-966 |#1|))) NIL)) (-2026 (((-1189 (-417 (-966 |#1|))) $) NIL)) (-2766 (((-112)) NIL)) (-2580 (($ (-1284 (-417 (-966 |#1|))) (-1284 $)) 114) (($ (-1284 (-417 (-966 |#1|)))) NIL)) (-4322 (((-3 $ "failed") $) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-3558 (((-935)) NIL)) (-1357 (((-112)) NIL)) (-4081 (($ $ (-935)) NIL)) (-4428 (((-112)) NIL)) (-4324 (((-112)) NIL)) (-3357 (((-112)) NIL)) (-3946 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) NIL)) (-3923 (((-3 $ "failed")) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-1321 (((-699 (-417 (-966 |#1|))) (-1284 $)) NIL) (((-699 (-417 (-966 |#1|)))) NIL)) (-3555 (((-417 (-966 |#1|)) $) NIL)) (-3659 (((-699 (-417 (-966 |#1|))) $ (-1284 $)) NIL) (((-699 (-417 (-966 |#1|))) $) NIL)) (-3144 (((-3 $ "failed") $) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-2625 (((-1189 (-966 (-417 (-966 |#1|))))) NIL (|has| (-417 (-966 |#1|)) (-372))) (((-1189 (-417 (-966 |#1|)))) 89 (|has| |#1| (-566)))) (-4308 (($ $ (-935)) NIL)) (-2448 (((-417 (-966 |#1|)) $) NIL)) (-2122 (((-1189 (-417 (-966 |#1|))) $) 85 (|has| (-417 (-966 |#1|)) (-566)))) (-4052 (((-417 (-966 |#1|)) (-1284 $)) NIL) (((-417 (-966 |#1|))) NIL)) (-4169 (((-1189 (-417 (-966 |#1|))) $) NIL)) (-4035 (((-112)) NIL)) (-1489 (((-1175) $) NIL)) (-2381 (((-112)) NIL)) (-3120 (((-112)) NIL)) (-3338 (((-112)) NIL)) (-3940 (((-1136) $) NIL)) (-3028 (((-417 (-966 |#1|)) $ $) 76 (|has| |#1| (-566)))) (-1603 (((-417 (-966 |#1|)) $) 100 (|has| |#1| (-566)))) (-2970 (((-417 (-966 |#1|)) $) 104 (|has| |#1| (-566)))) (-2123 (((-1189 (-417 (-966 |#1|))) $) 94 (|has| |#1| (-566)))) (-1562 (((-417 (-966 |#1|))) 77 (|has| |#1| (-566)))) (-4404 (((-417 (-966 |#1|)) $ $) 69 (|has| |#1| (-566)))) (-2779 (((-417 (-966 |#1|)) $) 99 (|has| |#1| (-566)))) (-3694 (((-417 (-966 |#1|)) $) 103 (|has| |#1| (-566)))) (-3491 (((-1189 (-417 (-966 |#1|))) $) 93 (|has| |#1| (-566)))) (-1318 (((-417 (-966 |#1|))) 73 (|has| |#1| (-566)))) (-2699 (($) 110) (($ (-1193)) 118) (($ (-1284 (-1193))) 117) (($ (-1284 $)) 105) (($ (-1193) (-1284 $)) 116) (($ (-1284 (-1193)) (-1284 $)) 115)) (-3453 (((-112)) NIL)) (-2207 (((-417 (-966 |#1|)) $ (-574)) NIL)) (-1385 (((-1284 (-417 (-966 |#1|))) $ (-1284 $)) 107) (((-699 (-417 (-966 |#1|))) (-1284 $) (-1284 $)) NIL) (((-1284 (-417 (-966 |#1|))) $) 43) (((-699 (-417 (-966 |#1|))) (-1284 $)) NIL)) (-1844 (((-1284 (-417 (-966 |#1|))) $) NIL) (($ (-1284 (-417 (-966 |#1|)))) 40)) (-3983 (((-654 (-966 (-417 (-966 |#1|)))) (-1284 $)) NIL) (((-654 (-966 (-417 (-966 |#1|))))) NIL) (((-654 (-966 |#1|)) (-1284 $)) 108 (|has| |#1| (-566))) (((-654 (-966 |#1|))) 109 (|has| |#1| (-566)))) (-3955 (($ $ $) NIL)) (-2170 (((-112)) NIL)) (-2951 (((-872) $) NIL) (($ (-1284 (-417 (-966 |#1|)))) NIL)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) 65)) (-2717 (((-654 (-1284 (-417 (-966 |#1|))))) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-4010 (($ $ $ $) NIL)) (-3233 (((-112)) NIL)) (-2912 (($ (-699 (-417 (-966 |#1|))) $) NIL)) (-4099 (($ $ $) NIL)) (-3127 (((-112)) NIL)) (-4280 (((-112)) NIL)) (-4024 (((-112)) NIL)) (-2141 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) 106)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 61) (($ $ (-417 (-966 |#1|))) NIL) (($ (-417 (-966 |#1|)) $) NIL) (($ (-1158 |#2| (-417 (-966 |#1|))) $) NIL))) +(((-463 |#1| |#2| |#3| |#4|) (-13 (-427 (-417 (-966 |#1|))) (-658 (-1158 |#2| (-417 (-966 |#1|)))) (-10 -8 (-15 -2951 ($ (-1284 (-417 (-966 |#1|))))) (-15 -3946 ((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed"))) (-15 -4004 ((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed"))) (-15 -2699 ($)) (-15 -2699 ($ (-1193))) (-15 -2699 ($ (-1284 (-1193)))) (-15 -2699 ($ (-1284 $))) (-15 -2699 ($ (-1193) (-1284 $))) (-15 -2699 ($ (-1284 (-1193)) (-1284 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -2625 ((-1189 (-417 (-966 |#1|))))) (-15 -3491 ((-1189 (-417 (-966 |#1|))) $)) (-15 -2779 ((-417 (-966 |#1|)) $)) (-15 -3694 ((-417 (-966 |#1|)) $)) (-15 -4436 ((-1189 (-417 (-966 |#1|))))) (-15 -2123 ((-1189 (-417 (-966 |#1|))) $)) (-15 -1603 ((-417 (-966 |#1|)) $)) (-15 -2970 ((-417 (-966 |#1|)) $)) (-15 -4404 ((-417 (-966 |#1|)) $ $)) (-15 -1318 ((-417 (-966 |#1|)))) (-15 -3028 ((-417 (-966 |#1|)) $ $)) (-15 -1562 ((-417 (-966 |#1|)))) (-15 -3983 ((-654 (-966 |#1|)) (-1284 $))) (-15 -3983 ((-654 (-966 |#1|))))) |%noBranch|))) (-174) (-935) (-654 (-1193)) (-1284 (-699 |#1|))) (T -463)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-417 (-966 *3)))) (-4 *3 (-174)) (-14 *6 (-1284 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))))) (-3946 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -2391 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-4004 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -2391 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-2699 (*1 *1) (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-935)) (-14 *4 (-654 (-1193))) (-14 *5 (-1284 (-699 *2))))) (-2699 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 *2)) (-14 *6 (-1284 (-699 *3))))) (-2699 (*1 *1 *2) (-12 (-5 *2 (-1284 (-1193))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-2699 (*1 *1 *2) (-12 (-5 *2 (-1284 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-2699 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-935)) (-14 *6 (-654 *2)) (-14 *7 (-1284 (-699 *4))))) (-2699 (*1 *1 *2 *3) (-12 (-5 *2 (-1284 (-1193))) (-5 *3 (-1284 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-935)) (-14 *6 (-654 (-1193))) (-14 *7 (-1284 (-699 *4))))) (-2625 (*1 *2) (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-4436 (*1 *2) (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-4404 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-1318 (*1 *2) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-3028 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-1562 (*1 *2) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-3983 (*1 *2 *3) (-12 (-5 *3 (-1284 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-966 *4))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174)) (-14 *5 (-935)) (-14 *6 (-654 (-1193))) (-14 *7 (-1284 (-699 *4))))) (-3983 (*1 *2) (-12 (-5 *2 (-654 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) +(-13 (-427 (-417 (-966 |#1|))) (-658 (-1158 |#2| (-417 (-966 |#1|)))) (-10 -8 (-15 -2951 ($ (-1284 (-417 (-966 |#1|))))) (-15 -3946 ((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed"))) (-15 -4004 ((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed"))) (-15 -2699 ($)) (-15 -2699 ($ (-1193))) (-15 -2699 ($ (-1284 (-1193)))) (-15 -2699 ($ (-1284 $))) (-15 -2699 ($ (-1193) (-1284 $))) (-15 -2699 ($ (-1284 (-1193)) (-1284 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -2625 ((-1189 (-417 (-966 |#1|))))) (-15 -3491 ((-1189 (-417 (-966 |#1|))) $)) (-15 -2779 ((-417 (-966 |#1|)) $)) (-15 -3694 ((-417 (-966 |#1|)) $)) (-15 -4436 ((-1189 (-417 (-966 |#1|))))) (-15 -2123 ((-1189 (-417 (-966 |#1|))) $)) (-15 -1603 ((-417 (-966 |#1|)) $)) (-15 -2970 ((-417 (-966 |#1|)) $)) (-15 -4404 ((-417 (-966 |#1|)) $ $)) (-15 -1318 ((-417 (-966 |#1|)))) (-15 -3028 ((-417 (-966 |#1|)) $ $)) (-15 -1562 ((-417 (-966 |#1|)))) (-15 -3983 ((-654 (-966 |#1|)) (-1284 $))) (-15 -3983 ((-654 (-966 |#1|))))) |%noBranch|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 18)) (-4350 (((-654 (-874 |#1|)) $) 87)) (-4173 (((-1189 $) $ (-874 |#1|)) 52) (((-1189 |#2|) $) 138)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-2884 (($ $) NIL (|has| |#2| (-566)))) (-1981 (((-112) $) NIL (|has| |#2| (-566)))) (-2824 (((-781) $) 27) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2991 (($ $) NIL (|has| |#2| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) 50) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2214 ((|#2| $) 48) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-874 |#1|) $) NIL)) (-3319 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3807 (($ $ (-654 (-574))) 93)) (-1402 (($ $) 80)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#2| (-923)))) (-1849 (($ $ |#2| |#3| $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) 65)) (-4339 (($ (-1189 |#2|) (-874 |#1|)) 143) (($ (-1189 $) (-874 |#1|)) 58)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) 68)) (-4328 (($ |#2| |#3|) 35) (($ $ (-874 |#1|) (-781)) 37) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-874 |#1|)) NIL)) (-3192 ((|#3| $) NIL) (((-781) $ (-874 |#1|)) 56) (((-654 (-781)) $ (-654 (-874 |#1|))) 63)) (-4303 (($ (-1 |#3| |#3|) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-2284 (((-3 (-874 |#1|) "failed") $) 45)) (-1366 (($ $) NIL)) (-1378 ((|#2| $) 47)) (-2849 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-1489 (((-1175) $) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3139 (-781))) "failed") $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) 46)) (-1355 ((|#2| $) 136)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) 149 (|has| |#2| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#2| (-923)))) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) 100) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) 106) (($ $ (-874 |#1|) $) 98) (($ $ (-654 (-874 |#1|)) (-654 $)) 124)) (-2394 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3879 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) 59)) (-3580 ((|#3| $) 79) (((-781) $ (-874 |#1|)) 42) (((-654 (-781)) $ (-654 (-874 |#1|))) 62)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-2372 ((|#2| $) 145 (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-2951 (((-872) $) 173) (($ (-574)) NIL) (($ |#2|) 99) (($ (-874 |#1|)) 39) (($ (-417 (-574))) NIL (-2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-1634 (((-654 |#2|) $) NIL)) (-2706 ((|#2| $ |#3|) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2141 (($) 22 T CONST)) (-2153 (($) 31 T CONST)) (-3584 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) 76 (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 131)) (** (($ $ (-935)) NIL) (($ $ (-781)) 129)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 36) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) +(((-464 |#1| |#2| |#3|) (-13 (-963 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -3807 ($ $ (-654 (-574)))))) (-654 (-1193)) (-1065) (-244 (-2877 |#1|) (-781))) (T -464)) +((-3807 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1193))) (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1065)) (-4 *5 (-244 (-2877 *3) (-781)))))) +(-13 (-963 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -3807 ($ $ (-654 (-574)))))) +((-1852 (((-112) |#1| (-654 |#2|)) 91)) (-3025 (((-3 (-1284 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|)) 100)) (-3316 (((-3 (-654 |#2|) "failed") |#2| |#1| (-1284 (-654 |#2|))) 102)) (-3607 ((|#2| |#2| |#1|) 35)) (-2770 (((-781) |#2| (-654 |#2|)) 26))) +(((-465 |#1| |#2|) (-10 -7 (-15 -3607 (|#2| |#2| |#1|)) (-15 -2770 ((-781) |#2| (-654 |#2|))) (-15 -3025 ((-3 (-1284 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -3316 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1284 (-654 |#2|)))) (-15 -1852 ((-112) |#1| (-654 |#2|)))) (-315) (-1260 |#1|)) (T -465)) +((-1852 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-1260 *3)) (-4 *3 (-315)) (-5 *2 (-112)) (-5 *1 (-465 *3 *5)))) (-3316 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1284 (-654 *3))) (-4 *4 (-315)) (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1260 *4)))) (-3025 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1260 *4)) (-5 *2 (-1284 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-315)) (-5 *2 (-781)) (-5 *1 (-465 *5 *3)))) (-3607 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1260 *3))))) +(-10 -7 (-15 -3607 (|#2| |#2| |#1|)) (-15 -2770 ((-781) |#2| (-654 |#2|))) (-15 -3025 ((-3 (-1284 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -3316 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1284 (-654 |#2|)))) (-15 -1852 ((-112) |#1| (-654 |#2|)))) +((-4202 (((-428 |#5|) |#5|) 24))) +(((-466 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4202 ((-428 |#5|) |#5|))) (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193))))) (-803) (-566) (-566) (-963 |#4| |#2| |#1|)) (T -466)) +((-4202 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-4 *5 (-803)) (-4 *7 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-466 *4 *5 *6 *7 *3)) (-4 *6 (-566)) (-4 *3 (-963 *7 *5 *4))))) +(-10 -7 (-15 -4202 ((-428 |#5|) |#5|))) +((-4034 ((|#3|) 38)) (-2069 (((-1189 |#4|) (-1189 |#4|) (-1189 |#4|)) 34))) +(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2069 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -4034 (|#3|))) (-803) (-860) (-923) (-963 |#3| |#1| |#2|)) (T -467)) +((-4034 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-923)) (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-963 *2 *3 *4)))) (-2069 (*1 *2 *2 *2) (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-923)) (-5 *1 (-467 *3 *4 *5 *6))))) +(-10 -7 (-15 -2069 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -4034 (|#3|))) +((-4202 (((-428 (-1189 |#1|)) (-1189 |#1|)) 43))) +(((-468 |#1|) (-10 -7 (-15 -4202 ((-428 (-1189 |#1|)) (-1189 |#1|)))) (-315)) (T -468)) +((-4202 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1189 *4))) (-5 *1 (-468 *4)) (-5 *3 (-1189 *4))))) +(-10 -7 (-15 -4202 ((-428 (-1189 |#1|)) (-1189 |#1|)))) +((-4402 (((-52) |#2| (-1193) (-302 |#2|) (-1251 (-781))) 44) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-781))) 43) (((-52) |#2| (-1193) (-302 |#2|)) 36) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 29)) (-3597 (((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574))) 88) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574))) 87) (((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574))) 86) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574))) 85) (((-52) |#2| (-1193) (-302 |#2|)) 80) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 79)) (-4426 (((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574))) 74) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574))) 72)) (-4414 (((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574))) 51) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574))) 50))) +(((-469 |#1| |#2|) (-10 -7 (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4402 ((-52) |#2| (-1193) (-302 |#2|))) (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-781)))) (-15 -4402 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-781)))) (-15 -4414 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574)))) (-15 -4414 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574)))) (-15 -4426 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -4426 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -3597 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|))) (-15 -3597 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574)))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574)))) (-15 -3597 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574))))) (-13 (-566) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -469)) +((-3597 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *8))) (-4 *8 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-3597 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1251 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-3597 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-574))) (-4 *7 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6)))) (-4426 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *8))) (-4 *8 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-4426 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1251 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-4414 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4414 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-574))) (-4 *7 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4402 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-781))) (-4 *3 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-781))) (-4 *7 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6))))) +(-10 -7 (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4402 ((-52) |#2| (-1193) (-302 |#2|))) (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-781)))) (-15 -4402 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-781)))) (-15 -4414 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574)))) (-15 -4414 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574)))) (-15 -4426 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -4426 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -3597 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|))) (-15 -3597 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574)))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574)))) (-15 -3597 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574))))) +((-3607 ((|#2| |#2| |#1|) 15)) (-4228 (((-654 |#2|) |#2| (-654 |#2|) |#1| (-935)) 82)) (-1935 (((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-935)) 72))) +(((-470 |#1| |#2|) (-10 -7 (-15 -1935 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-935))) (-15 -4228 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-935))) (-15 -3607 (|#2| |#2| |#1|))) (-315) (-1260 |#1|)) (T -470)) +((-3607 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1260 *3)))) (-4228 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-654 *3)) (-5 *5 (-935)) (-4 *3 (-1260 *4)) (-4 *4 (-315)) (-5 *1 (-470 *4 *3)))) (-1935 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-935)) (-4 *5 (-315)) (-4 *3 (-1260 *5)) (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5))) (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3))))) +(-10 -7 (-15 -1935 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-935))) (-15 -4228 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-935))) (-15 -3607 (|#2| |#2| |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 28)) (-1399 (($ |#3|) 25)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1402 (($ $) 32)) (-4220 (($ |#2| |#4| $) 33)) (-4328 (($ |#2| (-723 |#3| |#4| |#5|)) 24)) (-1366 (((-723 |#3| |#4| |#5|) $) 15)) (-3053 ((|#3| $) 19)) (-1351 ((|#4| $) 17)) (-1378 ((|#2| $) 29)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-3265 (($ |#2| |#3| |#4|) 26)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 36 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 34)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-471 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1378 (|#2| $)) (-15 -1366 ((-723 |#3| |#4| |#5|) $)) (-15 -1351 (|#4| $)) (-15 -3053 (|#3| $)) (-15 -1402 ($ $)) (-15 -4328 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -1399 ($ |#3|)) (-15 -3265 ($ |#2| |#3| |#4|)) (-15 -4220 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-654 (-1193)) (-174) (-860) (-244 (-2877 |#1|) (-781)) (-1 (-112) (-2 (|:| -2591 |#3|) (|:| -3139 |#4|)) (-2 (|:| -2591 |#3|) (|:| -3139 |#4|))) (-963 |#2| |#4| (-874 |#1|))) (T -471)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) (-4 *6 (-244 (-2877 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2591 *5) (|:| -3139 *6)) (-2 (|:| -2591 *5) (|:| -3139 *6)))) (-5 *1 (-471 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860)) (-4 *2 (-963 *4 *6 (-874 *3))))) (-1378 (*1 *2 *1) (-12 (-14 *3 (-654 (-1193))) (-4 *5 (-244 (-2877 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *4) (|:| -3139 *5)) (-2 (|:| -2591 *4) (|:| -3139 *5)))) (-4 *2 (-174)) (-5 *1 (-471 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-963 *2 *5 (-874 *3))))) (-1366 (*1 *2 *1) (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) (-4 *6 (-244 (-2877 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2591 *5) (|:| -3139 *6)) (-2 (|:| -2591 *5) (|:| -3139 *6)))) (-5 *2 (-723 *5 *6 *7)) (-5 *1 (-471 *3 *4 *5 *6 *7 *8)) (-4 *5 (-860)) (-4 *8 (-963 *4 *6 (-874 *3))))) (-1351 (*1 *2 *1) (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2591 *5) (|:| -3139 *2)) (-2 (|:| -2591 *5) (|:| -3139 *2)))) (-4 *2 (-244 (-2877 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7)) (-4 *5 (-860)) (-4 *7 (-963 *4 *2 (-874 *3))))) (-3053 (*1 *2 *1) (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) (-4 *5 (-244 (-2877 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *2) (|:| -3139 *5)) (-2 (|:| -2591 *2) (|:| -3139 *5)))) (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *7 (-963 *4 *5 (-874 *3))))) (-1402 (*1 *1 *1) (-12 (-14 *2 (-654 (-1193))) (-4 *3 (-174)) (-4 *5 (-244 (-2877 *2) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *4) (|:| -3139 *5)) (-2 (|:| -2591 *4) (|:| -3139 *5)))) (-5 *1 (-471 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-963 *3 *5 (-874 *2))))) (-4328 (*1 *1 *2 *3) (-12 (-5 *3 (-723 *5 *6 *7)) (-4 *5 (-860)) (-4 *6 (-244 (-2877 *4) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2591 *5) (|:| -3139 *6)) (-2 (|:| -2591 *5) (|:| -3139 *6)))) (-14 *4 (-654 (-1193))) (-4 *2 (-174)) (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-963 *2 *6 (-874 *4))))) (-1399 (*1 *1 *2) (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) (-4 *5 (-244 (-2877 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *2) (|:| -3139 *5)) (-2 (|:| -2591 *2) (|:| -3139 *5)))) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) (-4 *7 (-963 *4 *5 (-874 *3))))) (-3265 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-654 (-1193))) (-4 *2 (-174)) (-4 *4 (-244 (-2877 *5) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *3) (|:| -3139 *4)) (-2 (|:| -2591 *3) (|:| -3139 *4)))) (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) (-4 *7 (-963 *2 *4 (-874 *5))))) (-4220 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-654 (-1193))) (-4 *2 (-174)) (-4 *3 (-244 (-2877 *4) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *5) (|:| -3139 *3)) (-2 (|:| -2591 *5) (|:| -3139 *3)))) (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) (-4 *7 (-963 *2 *3 (-874 *4)))))) +(-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1378 (|#2| $)) (-15 -1366 ((-723 |#3| |#4| |#5|) $)) (-15 -1351 (|#4| $)) (-15 -3053 (|#3| $)) (-15 -1402 ($ $)) (-15 -4328 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -1399 ($ |#3|)) (-15 -3265 ($ |#2| |#3| |#4|)) (-15 -4220 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-1481 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-472 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1481 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-803) (-860) (-566) (-963 |#3| |#1| |#2|) (-13 (-1054 (-417 (-574))) (-372) (-10 -8 (-15 -2951 ($ |#4|)) (-15 -2971 (|#4| $)) (-15 -2981 (|#4| $))))) (T -472)) +((-1481 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803)) (-4 *6 (-566)) (-4 *7 (-963 *6 *5 *3)) (-5 *1 (-472 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1054 (-417 (-574))) (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $)))))))) +(-10 -7 (-15 -1481 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2864 (((-112) $ $) NIL)) (-4350 (((-654 |#3|) $) 41)) (-1437 (((-112) $) NIL)) (-2176 (((-112) $) NIL (|has| |#1| (-566)))) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#3|) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-2172 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-3721 (((-112) $) NIL (|has| |#1| (-566)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2196 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3564 (((-112) $) NIL (|has| |#1| (-566)))) (-1855 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-3406 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 49)) (-2214 (($ (-654 |#4|)) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3311 (($ |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4459)))) (-1871 (((-654 |#4|) $) 18 (|has| $ (-6 -4459)))) (-4241 ((|#3| $) 47)) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#4|) $) 14 (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2462 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 21)) (-2737 (((-654 |#3|) $) NIL)) (-3161 (((-112) |#3| $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-3581 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3940 (((-1136) $) NIL)) (-2183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3449 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 39)) (-3336 (($) 17)) (-3949 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) 16)) (-1844 (((-546) $) NIL (|has| |#4| (-624 (-546)))) (($ (-654 |#4|)) 51)) (-2963 (($ (-654 |#4|)) 13)) (-1423 (($ $ |#3|) NIL)) (-1671 (($ $ |#3|) NIL)) (-2287 (($ $ |#3|) NIL)) (-2951 (((-872) $) 38) (((-654 |#4|) $) 50)) (-4069 (((-112) $ $) NIL)) (-2020 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 30)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-473 |#1| |#2| |#3| |#4|) (-13 (-992 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ($ (-654 |#4|))) (-6 -4459) (-6 -4460))) (-1065) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -473)) +((-1844 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-473 *3 *4 *5 *6))))) +(-13 (-992 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ($ (-654 |#4|))) (-6 -4459) (-6 -4460))) +((-2141 (($) 11)) (-2153 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -2153 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2141 (|#1|))) (-475 |#2| |#3|) (-174) (-23)) (T -474)) +NIL +(-10 -8 (-15 -2153 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2141 (|#1|))) +((-2864 (((-112) $ $) 7)) (-1704 (((-3 |#1| "failed") $) 27)) (-2214 ((|#1| $) 28)) (-3937 (($ $ $) 24)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3580 ((|#2| $) 20)) (-2951 (((-872) $) 12) (($ |#1|) 26)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 25 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 16) (($ $ $) 14)) (-3074 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-475 |#1| |#2|) (-141) (-174) (-23)) (T -475)) -((-2154 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4272 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-480 |t#1| |t#2|) (-1053 |t#1|) (-10 -8 (-15 (-2154) ($) -1715) (-15 -4272 ($ $ $)))) -(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-480 |#1| |#2|) . T) ((-1053 |#1|) . T) ((-1115) . T)) -((-4119 (((-1283 (-1283 (-574))) (-1283 (-1283 (-574))) (-934)) 26)) (-2287 (((-1283 (-1283 (-574))) (-934)) 21))) -(((-476) (-10 -7 (-15 -4119 ((-1283 (-1283 (-574))) (-1283 (-1283 (-574))) (-934))) (-15 -2287 ((-1283 (-1283 (-574))) (-934))))) (T -476)) -((-2287 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1283 (-1283 (-574)))) (-5 *1 (-476)))) (-4119 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 (-1283 (-574)))) (-5 *3 (-934)) (-5 *1 (-476))))) -(-10 -7 (-15 -4119 ((-1283 (-1283 (-574))) (-1283 (-1283 (-574))) (-934))) (-15 -2287 ((-1283 (-1283 (-574))) (-934)))) -((-3395 (((-574) (-574)) 32) (((-574)) 24)) (-2883 (((-574) (-574)) 28) (((-574)) 20)) (-3970 (((-574) (-574)) 30) (((-574)) 22)) (-1749 (((-112) (-112)) 14) (((-112)) 12)) (-1601 (((-112) (-112)) 13) (((-112)) 11)) (-1585 (((-112) (-112)) 26) (((-112)) 17))) -(((-477) (-10 -7 (-15 -1601 ((-112))) (-15 -1749 ((-112))) (-15 -1601 ((-112) (-112))) (-15 -1749 ((-112) (-112))) (-15 -1585 ((-112))) (-15 -3970 ((-574))) (-15 -2883 ((-574))) (-15 -3395 ((-574))) (-15 -1585 ((-112) (-112))) (-15 -3970 ((-574) (-574))) (-15 -2883 ((-574) (-574))) (-15 -3395 ((-574) (-574))))) (T -477)) -((-3395 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2883 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-3395 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2883 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-3970 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1585 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1601 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1749 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1601 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) -(-10 -7 (-15 -1601 ((-112))) (-15 -1749 ((-112))) (-15 -1601 ((-112) (-112))) (-15 -1749 ((-112) (-112))) (-15 -1585 ((-112))) (-15 -3970 ((-574))) (-15 -2883 ((-574))) (-15 -3395 ((-574))) (-15 -1585 ((-112) (-112))) (-15 -3970 ((-574) (-574))) (-15 -2883 ((-574) (-574))) (-15 -3395 ((-574) (-574)))) -((-2863 (((-112) $ $) NIL)) (-2006 (((-654 (-388)) $) 34) (((-654 (-388)) $ (-654 (-388))) 146)) (-3139 (((-654 (-1109 (-388))) $) 16) (((-654 (-1109 (-388))) $ (-654 (-1109 (-388)))) 142)) (-1707 (((-654 (-654 (-956 (-227)))) (-654 (-654 (-956 (-227)))) (-654 (-884))) 58)) (-2153 (((-654 (-654 (-956 (-227)))) $) 137)) (-3564 (((-1288) $ (-956 (-227)) (-884)) 163)) (-1362 (($ $) 136) (($ (-654 (-654 (-956 (-227))))) 149) (($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934))) 148) (($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934)) (-654 (-270))) 150)) (-3945 (((-1174) $) NIL)) (-3666 (((-574) $) 110)) (-3939 (((-1135) $) NIL)) (-2727 (($) 147)) (-1352 (((-654 (-227)) (-654 (-654 (-956 (-227))))) 89)) (-4182 (((-1288) $ (-654 (-956 (-227))) (-884) (-884) (-934)) 155) (((-1288) $ (-956 (-227))) 157) (((-1288) $ (-956 (-227)) (-884) (-884) (-934)) 156)) (-2950 (((-872) $) 169) (($ (-654 (-654 (-956 (-227))))) 164)) (-3838 (((-112) $ $) NIL)) (-2978 (((-1288) $ (-956 (-227))) 162)) (-2985 (((-112) $ $) NIL))) -(((-478) (-13 (-1115) (-10 -8 (-15 -2727 ($)) (-15 -1362 ($ $)) (-15 -1362 ($ (-654 (-654 (-956 (-227)))))) (-15 -1362 ($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934)))) (-15 -1362 ($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934)) (-654 (-270)))) (-15 -2153 ((-654 (-654 (-956 (-227)))) $)) (-15 -3666 ((-574) $)) (-15 -3139 ((-654 (-1109 (-388))) $)) (-15 -3139 ((-654 (-1109 (-388))) $ (-654 (-1109 (-388))))) (-15 -2006 ((-654 (-388)) $)) (-15 -2006 ((-654 (-388)) $ (-654 (-388)))) (-15 -4182 ((-1288) $ (-654 (-956 (-227))) (-884) (-884) (-934))) (-15 -4182 ((-1288) $ (-956 (-227)))) (-15 -4182 ((-1288) $ (-956 (-227)) (-884) (-884) (-934))) (-15 -2978 ((-1288) $ (-956 (-227)))) (-15 -3564 ((-1288) $ (-956 (-227)) (-884))) (-15 -2950 ($ (-654 (-654 (-956 (-227)))))) (-15 -2950 ((-872) $)) (-15 -1707 ((-654 (-654 (-956 (-227)))) (-654 (-654 (-956 (-227)))) (-654 (-884)))) (-15 -1352 ((-654 (-227)) (-654 (-654 (-956 (-227))))))))) (T -478)) -((-2950 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-478)))) (-2727 (*1 *1) (-5 *1 (-478))) (-1362 (*1 *1 *1) (-5 *1 (-478))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478)))) (-1362 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-934))) (-5 *1 (-478)))) (-1362 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-934))) (-5 *5 (-654 (-270))) (-5 *1 (-478)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-478)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-478)))) (-3139 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-478)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-2006 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-4182 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *4 (-884)) (-5 *5 (-934)) (-5 *2 (-1288)) (-5 *1 (-478)))) (-4182 (*1 *2 *1 *3) (-12 (-5 *3 (-956 (-227))) (-5 *2 (-1288)) (-5 *1 (-478)))) (-4182 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-956 (-227))) (-5 *4 (-884)) (-5 *5 (-934)) (-5 *2 (-1288)) (-5 *1 (-478)))) (-2978 (*1 *2 *1 *3) (-12 (-5 *3 (-956 (-227))) (-5 *2 (-1288)) (-5 *1 (-478)))) (-3564 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-956 (-227))) (-5 *4 (-884)) (-5 *2 (-1288)) (-5 *1 (-478)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478)))) (-1707 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) (-5 *1 (-478)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *2 (-654 (-227))) (-5 *1 (-478))))) -(-13 (-1115) (-10 -8 (-15 -2727 ($)) (-15 -1362 ($ $)) (-15 -1362 ($ (-654 (-654 (-956 (-227)))))) (-15 -1362 ($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934)))) (-15 -1362 ($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934)) (-654 (-270)))) (-15 -2153 ((-654 (-654 (-956 (-227)))) $)) (-15 -3666 ((-574) $)) (-15 -3139 ((-654 (-1109 (-388))) $)) (-15 -3139 ((-654 (-1109 (-388))) $ (-654 (-1109 (-388))))) (-15 -2006 ((-654 (-388)) $)) (-15 -2006 ((-654 (-388)) $ (-654 (-388)))) (-15 -4182 ((-1288) $ (-654 (-956 (-227))) (-884) (-884) (-934))) (-15 -4182 ((-1288) $ (-956 (-227)))) (-15 -4182 ((-1288) $ (-956 (-227)) (-884) (-884) (-934))) (-15 -2978 ((-1288) $ (-956 (-227)))) (-15 -3564 ((-1288) $ (-956 (-227)) (-884))) (-15 -2950 ($ (-654 (-654 (-956 (-227)))))) (-15 -2950 ((-872) $)) (-15 -1707 ((-654 (-654 (-956 (-227)))) (-654 (-654 (-956 (-227)))) (-654 (-884)))) (-15 -1352 ((-654 (-227)) (-654 (-654 (-956 (-227)))))))) -((-3089 (($ $) NIL) (($ $ $) 11))) -(((-479 |#1| |#2| |#3|) (-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|))) (-480 |#2| |#3|) (-174) (-23)) (T -479)) -NIL -(-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3584 ((|#2| $) 20)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 16) (($ $ $) 14)) (-3074 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-2153 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3937 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-480 |t#1| |t#2|) (-1054 |t#1|) (-10 -8 (-15 (-2153) ($) -1714) (-15 -3937 ($ $ $)))) +(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-480 |#1| |#2|) . T) ((-1054 |#1|) . T) ((-1116) . T)) +((-3815 (((-1284 (-1284 (-574))) (-1284 (-1284 (-574))) (-935)) 26)) (-4060 (((-1284 (-1284 (-574))) (-935)) 21))) +(((-476) (-10 -7 (-15 -3815 ((-1284 (-1284 (-574))) (-1284 (-1284 (-574))) (-935))) (-15 -4060 ((-1284 (-1284 (-574))) (-935))))) (T -476)) +((-4060 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1284 (-1284 (-574)))) (-5 *1 (-476)))) (-3815 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 (-1284 (-574)))) (-5 *3 (-935)) (-5 *1 (-476))))) +(-10 -7 (-15 -3815 ((-1284 (-1284 (-574))) (-1284 (-1284 (-574))) (-935))) (-15 -4060 ((-1284 (-1284 (-574))) (-935)))) +((-4348 (((-574) (-574)) 32) (((-574)) 24)) (-3888 (((-574) (-574)) 28) (((-574)) 20)) (-1679 (((-574) (-574)) 30) (((-574)) 22)) (-2156 (((-112) (-112)) 14) (((-112)) 12)) (-1943 (((-112) (-112)) 13) (((-112)) 11)) (-2598 (((-112) (-112)) 26) (((-112)) 17))) +(((-477) (-10 -7 (-15 -1943 ((-112))) (-15 -2156 ((-112))) (-15 -1943 ((-112) (-112))) (-15 -2156 ((-112) (-112))) (-15 -2598 ((-112))) (-15 -1679 ((-574))) (-15 -3888 ((-574))) (-15 -4348 ((-574))) (-15 -2598 ((-112) (-112))) (-15 -1679 ((-574) (-574))) (-15 -3888 ((-574) (-574))) (-15 -4348 ((-574) (-574))))) (T -477)) +((-4348 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1679 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2598 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-4348 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-3888 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1679 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2598 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1943 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-2156 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1943 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) +(-10 -7 (-15 -1943 ((-112))) (-15 -2156 ((-112))) (-15 -1943 ((-112) (-112))) (-15 -2156 ((-112) (-112))) (-15 -2598 ((-112))) (-15 -1679 ((-574))) (-15 -3888 ((-574))) (-15 -4348 ((-574))) (-15 -2598 ((-112) (-112))) (-15 -1679 ((-574) (-574))) (-15 -3888 ((-574) (-574))) (-15 -4348 ((-574) (-574)))) +((-2864 (((-112) $ $) NIL)) (-2005 (((-654 (-388)) $) 34) (((-654 (-388)) $ (-654 (-388))) 146)) (-1599 (((-654 (-1110 (-388))) $) 16) (((-654 (-1110 (-388))) $ (-654 (-1110 (-388)))) 142)) (-4005 (((-654 (-654 (-957 (-227)))) (-654 (-654 (-957 (-227)))) (-654 (-884))) 58)) (-3185 (((-654 (-654 (-957 (-227)))) $) 137)) (-3565 (((-1289) $ (-957 (-227)) (-884)) 163)) (-1841 (($ $) 136) (($ (-654 (-654 (-957 (-227))))) 149) (($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935))) 148) (($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935)) (-654 (-270))) 150)) (-1489 (((-1175) $) NIL)) (-3667 (((-574) $) 110)) (-3940 (((-1136) $) NIL)) (-1853 (($) 147)) (-3820 (((-654 (-227)) (-654 (-654 (-957 (-227))))) 89)) (-3112 (((-1289) $ (-654 (-957 (-227))) (-884) (-884) (-935)) 155) (((-1289) $ (-957 (-227))) 157) (((-1289) $ (-957 (-227)) (-884) (-884) (-935)) 156)) (-2951 (((-872) $) 169) (($ (-654 (-654 (-957 (-227))))) 164)) (-4069 (((-112) $ $) NIL)) (-3783 (((-1289) $ (-957 (-227))) 162)) (-2986 (((-112) $ $) NIL))) +(((-478) (-13 (-1116) (-10 -8 (-15 -1853 ($)) (-15 -1841 ($ $)) (-15 -1841 ($ (-654 (-654 (-957 (-227)))))) (-15 -1841 ($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935)))) (-15 -1841 ($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935)) (-654 (-270)))) (-15 -3185 ((-654 (-654 (-957 (-227)))) $)) (-15 -3667 ((-574) $)) (-15 -1599 ((-654 (-1110 (-388))) $)) (-15 -1599 ((-654 (-1110 (-388))) $ (-654 (-1110 (-388))))) (-15 -2005 ((-654 (-388)) $)) (-15 -2005 ((-654 (-388)) $ (-654 (-388)))) (-15 -3112 ((-1289) $ (-654 (-957 (-227))) (-884) (-884) (-935))) (-15 -3112 ((-1289) $ (-957 (-227)))) (-15 -3112 ((-1289) $ (-957 (-227)) (-884) (-884) (-935))) (-15 -3783 ((-1289) $ (-957 (-227)))) (-15 -3565 ((-1289) $ (-957 (-227)) (-884))) (-15 -2951 ($ (-654 (-654 (-957 (-227)))))) (-15 -2951 ((-872) $)) (-15 -4005 ((-654 (-654 (-957 (-227)))) (-654 (-654 (-957 (-227)))) (-654 (-884)))) (-15 -3820 ((-654 (-227)) (-654 (-654 (-957 (-227))))))))) (T -478)) +((-2951 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-478)))) (-1853 (*1 *1) (-5 *1 (-478))) (-1841 (*1 *1 *1) (-5 *1 (-478))) (-1841 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478)))) (-1841 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-935))) (-5 *1 (-478)))) (-1841 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-935))) (-5 *5 (-654 (-270))) (-5 *1 (-478)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-478)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-478)))) (-1599 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-478)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-2005 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-3112 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *4 (-884)) (-5 *5 (-935)) (-5 *2 (-1289)) (-5 *1 (-478)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-957 (-227))) (-5 *2 (-1289)) (-5 *1 (-478)))) (-3112 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-957 (-227))) (-5 *4 (-884)) (-5 *5 (-935)) (-5 *2 (-1289)) (-5 *1 (-478)))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 (-957 (-227))) (-5 *2 (-1289)) (-5 *1 (-478)))) (-3565 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-957 (-227))) (-5 *4 (-884)) (-5 *2 (-1289)) (-5 *1 (-478)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478)))) (-4005 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884))) (-5 *1 (-478)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *2 (-654 (-227))) (-5 *1 (-478))))) +(-13 (-1116) (-10 -8 (-15 -1853 ($)) (-15 -1841 ($ $)) (-15 -1841 ($ (-654 (-654 (-957 (-227)))))) (-15 -1841 ($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935)))) (-15 -1841 ($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935)) (-654 (-270)))) (-15 -3185 ((-654 (-654 (-957 (-227)))) $)) (-15 -3667 ((-574) $)) (-15 -1599 ((-654 (-1110 (-388))) $)) (-15 -1599 ((-654 (-1110 (-388))) $ (-654 (-1110 (-388))))) (-15 -2005 ((-654 (-388)) $)) (-15 -2005 ((-654 (-388)) $ (-654 (-388)))) (-15 -3112 ((-1289) $ (-654 (-957 (-227))) (-884) (-884) (-935))) (-15 -3112 ((-1289) $ (-957 (-227)))) (-15 -3112 ((-1289) $ (-957 (-227)) (-884) (-884) (-935))) (-15 -3783 ((-1289) $ (-957 (-227)))) (-15 -3565 ((-1289) $ (-957 (-227)) (-884))) (-15 -2951 ($ (-654 (-654 (-957 (-227)))))) (-15 -2951 ((-872) $)) (-15 -4005 ((-654 (-654 (-957 (-227)))) (-654 (-654 (-957 (-227)))) (-654 (-884)))) (-15 -3820 ((-654 (-227)) (-654 (-654 (-957 (-227)))))))) +((-3090 (($ $) NIL) (($ $ $) 11))) +(((-479 |#1| |#2| |#3|) (-10 -8 (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|))) (-480 |#2| |#3|) (-174) (-23)) (T -479)) +NIL +(-10 -8 (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3580 ((|#2| $) 20)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 16) (($ $ $) 14)) (-3074 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-480 |#1| |#2|) (-141) (-174) (-23)) (T -480)) -((-3584 (*1 *2 *1) (-12 (-4 *1 (-480 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2142 (*1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3089 (*1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3074 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3089 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-1115) (-10 -8 (-15 -3584 (|t#2| $)) (-15 (-2142) ($) -1715) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3089 ($ $)) (-15 -3074 ($ $ $)) (-15 -3089 ($ $ $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2214 (((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|))) 134)) (-2091 (((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 131)) (-1580 (((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 86))) -(((-481 |#1| |#2| |#3|) (-10 -7 (-15 -2091 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -2214 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -1580 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))))) (-654 (-1192)) (-462) (-462)) (T -481)) -((-1580 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1192))) (-4 *6 (-462)) (-5 *2 (-2 (|:| |dpolys| (-654 (-253 *5 *6))) (|:| |coords| (-654 (-574))))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))) (-2214 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6)) (-4 *6 (-462)))) (-2091 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1192))) (-4 *6 (-462)) (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) -(-10 -7 (-15 -2091 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -2214 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -1580 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))))) -((-3911 (((-3 $ "failed") $) 11)) (-2202 (($ $ $) 23)) (-3490 (($ $ $) 24)) (-3098 (($ $ $) 9)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 22))) -(((-482 |#1|) (-10 -8 (-15 -3490 (|#1| |#1| |#1|)) (-15 -2202 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3098 (|#1| |#1| |#1|)) (-15 -3911 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934)))) (-483)) (T -482)) -NIL -(-10 -8 (-15 -3490 (|#1| |#1| |#1|)) (-15 -2202 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3098 (|#1| |#1| |#1|)) (-15 -3911 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934)))) -((-2863 (((-112) $ $) 7)) (-3831 (($) 19 T CONST)) (-3911 (((-3 $ "failed") $) 16)) (-3372 (((-112) $) 18)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 25)) (-3939 (((-1135) $) 11)) (-2202 (($ $ $) 22)) (-3490 (($ $ $) 21)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2154 (($) 20 T CONST)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ $) 24)) (** (($ $ (-934)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15))) +((-3580 (*1 *2 *1) (-12 (-4 *1 (-480 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2141 (*1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3090 (*1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3074 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3090 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-1116) (-10 -8 (-15 -3580 (|t#2| $)) (-15 (-2141) ($) -1714) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3090 ($ $)) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-3881 (((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|))) 134)) (-2919 (((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 131)) (-1581 (((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 86))) +(((-481 |#1| |#2| |#3|) (-10 -7 (-15 -2919 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -3881 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -1581 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))))) (-654 (-1193)) (-462) (-462)) (T -481)) +((-1581 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1193))) (-4 *6 (-462)) (-5 *2 (-2 (|:| |dpolys| (-654 (-253 *5 *6))) (|:| |coords| (-654 (-574))))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))) (-3881 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6)) (-4 *6 (-462)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1193))) (-4 *6 (-462)) (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) +(-10 -7 (-15 -2919 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -3881 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -1581 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))))) +((-4322 (((-3 $ "failed") $) 11)) (-3617 (($ $ $) 23)) (-3955 (($ $ $) 24)) (-3103 (($ $ $) 9)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 22))) +(((-482 |#1|) (-10 -8 (-15 -3955 (|#1| |#1| |#1|)) (-15 -3617 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3103 (|#1| |#1| |#1|)) (-15 -4322 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935)))) (-483)) (T -482)) +NIL +(-10 -8 (-15 -3955 (|#1| |#1| |#1|)) (-15 -3617 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3103 (|#1| |#1| |#1|)) (-15 -4322 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935)))) +((-2864 (((-112) $ $) 7)) (-3250 (($) 19 T CONST)) (-4322 (((-3 $ "failed") $) 16)) (-4226 (((-112) $) 18)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 25)) (-3940 (((-1136) $) 11)) (-3617 (($ $ $) 22)) (-3955 (($ $ $) 21)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2153 (($) 20 T CONST)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ $) 24)) (** (($ $ (-935)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15))) (((-483) (-141)) (T -483)) -((-1327 (*1 *1 *1) (-4 *1 (-483))) (-3098 (*1 *1 *1 *1) (-4 *1 (-483))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-483)) (-5 *2 (-574)))) (-2202 (*1 *1 *1 *1) (-4 *1 (-483))) (-3490 (*1 *1 *1 *1) (-4 *1 (-483)))) -(-13 (-736) (-10 -8 (-15 -1327 ($ $)) (-15 -3098 ($ $ $)) (-15 ** ($ $ (-574))) (-6 -4455) (-15 -2202 ($ $ $)) (-15 -3490 ($ $ $)))) -(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1497 (((-1192) $) 18)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3842 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-3786 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-372)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1782 (((-112) $) NIL (|has| |#1| (-372)))) (-3938 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3372 (((-112) $) NIL)) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2057 (($ $ (-934)) NIL) (($ $ (-417 (-574))) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-417 (-574))) NIL) (($ $ (-1097) (-417 (-574))) NIL) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) NIL)) (-1786 (($ (-1 |#1| |#1|) $) 25)) (-3112 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-1578 (($ $) 29 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 35 (-2832 (-12 (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 30 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2115 (($ $ (-417 (-574))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1618 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-2208 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1127)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) 28 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1279 |#2|)) 16)) (-3584 (((-417 (-574)) $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1279 |#2|)) NIL) (($ (-1268 |#1| |#2| |#3|)) 9) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2930 ((|#1| $ (-417 (-574))) NIL)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 21)) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2427 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) 27)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-484 |#1| |#2| |#3|) (-13 (-1264 |#1|) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -2950 ($ (-1268 |#1| |#2| |#3|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -484)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3) (-5 *1 (-484 *3 *4 *5)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-1578 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) -(-13 (-1264 |#1|) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -2950 ($ (-1268 |#1| |#2| |#3|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) -((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3287 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) 18)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2171 (((-3 |#2| "failed") |#1| $) 19)) (-3831 (($) NIL T CONST)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-1941 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 16)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1873 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-860)))) (-2247 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1772 (((-654 |#1|) $) NIL)) (-2056 (((-112) |#1| $) NIL)) (-1748 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2609 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-3228 (((-654 |#1|) $) NIL)) (-3071 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-2294 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL)) (-4276 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3667 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3838 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-485 |#1| |#2| |#3| |#4|) (-1209 |#1| |#2|) (-1115) (-1115) (-1209 |#1| |#2|) |#2|) (T -485)) -NIL -(-1209 |#1| |#2|) -((-2863 (((-112) $ $) NIL)) (-4205 (((-654 (-2 (|:| -1389 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1721 (((-654 $) (-654 |#4|)) NIL)) (-4349 (((-654 |#3|) $) NIL)) (-3278 (((-112) $) NIL)) (-3814 (((-112) $) NIL (|has| |#1| (-566)))) (-3522 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3885 ((|#4| |#4| $) NIL)) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#3|) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3831 (($) NIL T CONST)) (-4241 (((-112) $) 29 (|has| |#1| (-566)))) (-3297 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2860 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2450 (((-112) $) NIL (|has| |#1| (-566)))) (-3665 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4010 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1438 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2934 (((-3 $ "failed") $) 45)) (-1685 ((|#4| |#4| $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3369 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4037 ((|#4| |#4| $) NIL)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1426 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) NIL)) (-1873 (((-654 |#4|) $) 18 (|has| $ (-6 -4458)))) (-3762 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2968 ((|#3| $) 38)) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#4|) $) 19 (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-2461 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) 23)) (-2740 (((-654 |#3|) $) NIL)) (-2080 (((-112) |#3| $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-3333 (((-3 |#4| "failed") $) 42)) (-3981 (((-654 |#4|) $) NIL)) (-2397 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1576 ((|#4| |#4| $) NIL)) (-2326 (((-112) $ $) NIL)) (-3081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1548 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3503 ((|#4| |#4| $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-3 |#4| "failed") $) 40)) (-2294 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2200 (((-3 $ "failed") $ |#4|) 58)) (-2115 (($ $ |#4|) NIL)) (-2000 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 17)) (-2833 (($) 14)) (-3584 (((-781) $) NIL)) (-3948 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) 13)) (-1845 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 22)) (-1689 (($ $ |#3|) 52)) (-2639 (($ $ |#3|) 54)) (-4330 (($ $) NIL)) (-3386 (($ $ |#3|) NIL)) (-2950 (((-872) $) 35) (((-654 |#4|) $) 46)) (-2706 (((-781) $) NIL (|has| |#3| (-377)))) (-3838 (((-112) $ $) NIL)) (-2270 (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1587 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-1437 (((-654 |#3|) $) NIL)) (-1469 (((-112) |#3| $) NIL)) (-2985 (((-112) $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-486 |#1| |#2| |#3| |#4|) (-1226 |#1| |#2| |#3| |#4|) (-566) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -486)) -NIL -(-1226 |#1| |#2| |#3| |#4|) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-3003 (($) 17)) (-3372 (((-112) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-1845 (((-388) $) 21) (((-227) $) 24) (((-417 (-1188 (-574))) $) 18) (((-546) $) 53)) (-2950 (((-872) $) 51) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (((-227) $) 23) (((-388) $) 20)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-2142 (($) 37 T CONST)) (-2154 (($) 8 T CONST)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-487) (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))) (-1037) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1188 (-574)))) (-624 (-546)) (-10 -8 (-15 -3003 ($))))) (T -487)) -((-3003 (*1 *1) (-5 *1 (-487)))) -(-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))) (-1037) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1188 (-574)))) (-624 (-546)) (-10 -8 (-15 -3003 ($)))) -((-2863 (((-112) $ $) NIL)) (-1818 (((-1150) $) 11)) (-1804 (((-1150) $) 9)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-488) (-13 (-1098) (-10 -8 (-15 -1804 ((-1150) $)) (-15 -1818 ((-1150) $))))) (T -488)) -((-1804 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-488)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-488))))) -(-13 (-1098) (-10 -8 (-15 -1804 ((-1150) $)) (-15 -1818 ((-1150) $)))) -((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3287 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) 16)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2171 (((-3 |#2| "failed") |#1| $) 20)) (-3831 (($) NIL T CONST)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-1941 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 18)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1873 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-860)))) (-2247 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1772 (((-654 |#1|) $) 13)) (-2056 (((-112) |#1| $) NIL)) (-1748 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2609 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-3228 (((-654 |#1|) $) NIL)) (-3071 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-2294 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL)) (-4276 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) 19)) (-2208 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3667 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3838 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 11 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) 15 (|has| $ (-6 -4458))))) -(((-489 |#1| |#2| |#3|) (-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) (-1115) (-1115) (-1174)) (T -489)) -NIL -(-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) -((-4199 (((-574) (-574) (-574)) 19)) (-4248 (((-112) (-574) (-574) (-574) (-574)) 28)) (-2103 (((-1283 (-654 (-574))) (-781) (-781)) 41))) -(((-490) (-10 -7 (-15 -4199 ((-574) (-574) (-574))) (-15 -4248 ((-112) (-574) (-574) (-574) (-574))) (-15 -2103 ((-1283 (-654 (-574))) (-781) (-781))))) (T -490)) -((-2103 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1283 (-654 (-574)))) (-5 *1 (-490)))) (-4248 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490)))) (-4199 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490))))) -(-10 -7 (-15 -4199 ((-574) (-574) (-574))) (-15 -4248 ((-112) (-574) (-574) (-574) (-574))) (-15 -2103 ((-1283 (-654 (-574))) (-781) (-781)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 (-874 |#1|)) $) NIL)) (-4171 (((-1188 $) $ (-874 |#1|)) NIL) (((-1188 |#2|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-3648 (($ $) NIL (|has| |#2| (-566)))) (-1527 (((-112) $) NIL (|has| |#2| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3296 (($ $) NIL (|has| |#2| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-874 |#1|) $) NIL)) (-3496 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3797 (($ $ (-654 (-574))) NIL)) (-1401 (($ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#2| (-922)))) (-4389 (($ $ |#2| (-492 (-2876 |#1|) (-781)) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-4338 (($ (-1188 |#2|) (-874 |#1|)) NIL) (($ (-1188 $) (-874 |#1|)) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#2| (-492 (-2876 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-874 |#1|)) NIL)) (-1503 (((-492 (-2876 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3558 (($ (-1 (-492 (-2876 |#1|) (-781)) (-492 (-2876 |#1|) (-781))) $) NIL)) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-1803 (((-3 (-874 |#1|) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#2| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3945 (((-1174) $) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2017 (-781))) "failed") $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#2| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-922)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-1738 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3878 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3584 (((-492 (-2876 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3631 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-2836 (((-654 |#2|) $) NIL)) (-2930 ((|#2| $ (-492 (-2876 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-491 |#1| |#2|) (-13 (-962 |#2| (-492 (-2876 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3797 ($ $ (-654 (-574)))))) (-654 (-1192)) (-1064)) (T -491)) -((-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-491 *3 *4)) (-14 *3 (-654 (-1192))) (-4 *4 (-1064))))) -(-13 (-962 |#2| (-492 (-2876 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3797 ($ $ (-654 (-574)))))) -((-2863 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-3520 (((-112) $) NIL (-2832 (|has| |#2| (-132)) (|has| |#2| (-736))))) (-3196 (($ (-934)) NIL (|has| |#2| (-1064)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-2620 (($ $ $) NIL (|has| |#2| (-803)))) (-1597 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2818 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#2| (-377)))) (-3134 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1115)))) (-2216 (((-574) $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) ((|#2| $) NIL (|has| |#2| (-1115)))) (-3465 (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-1283 $)) NIL (|has| |#2| (-1064)))) (-3911 (((-3 $ "failed") $) NIL (|has| |#2| (-1064)))) (-2834 (($) NIL (|has| |#2| (-377)))) (-2472 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ (-574)) 11)) (-1873 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3372 (((-112) $) NIL (|has| |#2| (-1064)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#2| (-860)))) (-2247 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#2| (-860)))) (-2461 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-3271 (((-934) $) NIL (|has| |#2| (-377)))) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#2| (-1115)))) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#2| (-377)))) (-3939 (((-1135) $) NIL (|has| |#2| (-1115)))) (-2924 ((|#2| $) NIL (|has| (-574) (-860)))) (-4276 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-3036 ((|#2| $ $) NIL (|has| |#2| (-1064)))) (-4246 (($ (-1283 |#2|)) NIL)) (-3480 (((-135)) NIL (|has| |#2| (-372)))) (-3878 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3948 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#2|) $) NIL) (($ (-574)) NIL (-2832 (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (($ |#2|) NIL (|has| |#2| (-1115))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-4019 (((-781)) NIL (|has| |#2| (-1064)) CONST)) (-3838 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-2980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2142 (($) NIL (-2832 (|has| |#2| (-132)) (|has| |#2| (-736))) CONST)) (-2154 (($) NIL (|has| |#2| (-1064)) CONST)) (-3583 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3041 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) 17 (|has| |#2| (-860)))) (-3098 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $ $) NIL (|has| |#2| (-1064))) (($ $) NIL (|has| |#2| (-1064)))) (-3074 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-1064))) (($ $ (-934)) NIL (|has| |#2| (-1064)))) (* (($ (-574) $) NIL (|has| |#2| (-1064))) (($ $ $) NIL (|has| |#2| (-1064))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-934) $) NIL (|has| |#2| (-25)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +((-1328 (*1 *1 *1) (-4 *1 (-483))) (-3103 (*1 *1 *1 *1) (-4 *1 (-483))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-483)) (-5 *2 (-574)))) (-3617 (*1 *1 *1 *1) (-4 *1 (-483))) (-3955 (*1 *1 *1 *1) (-4 *1 (-483)))) +(-13 (-736) (-10 -8 (-15 -1328 ($ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ (-574))) (-6 -4456) (-15 -3617 ($ $ $)) (-15 -3955 ($ $ $)))) +(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 18)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-3332 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-3108 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL (|has| |#1| (-372)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3978 (((-112) $) NIL (|has| |#1| (-372)))) (-4189 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-4226 (((-112) $) NIL)) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3966 (($ $ (-935)) NIL) (($ $ (-417 (-574))) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-417 (-574))) NIL) (($ $ (-1098) (-417 (-574))) NIL) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) 25)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3342 (($ $) 29 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 35 (-2833 (-12 (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 30 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2433 (($ $ (-417 (-574))) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1128)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 28 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1280 |#2|)) 16)) (-3580 (((-417 (-574)) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1280 |#2|)) NIL) (($ (-1269 |#1| |#2| |#3|)) 9) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2706 ((|#1| $ (-417 (-574))) NIL)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-3333 ((|#1| $) 21)) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) 27)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-484 |#1| |#2| |#3|) (-13 (-1265 |#1|) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -2951 ($ (-1269 |#1| |#2| |#3|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -484)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3) (-5 *1 (-484 *3 *4 *5)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))) +(-13 (-1265 |#1|) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -2951 ($ (-1269 |#1| |#2| |#3|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) +((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2985 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) 18)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2171 (((-3 |#2| "failed") |#1| $) 19)) (-3250 (($) NIL T CONST)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2424 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 16)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2036 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-1698 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1771 (((-654 |#1|) $) NIL)) (-2229 (((-112) |#1| $) NIL)) (-2375 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3285 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1393 (((-654 |#1|) $) NIL)) (-1506 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-2183 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1822 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3162 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4069 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-485 |#1| |#2| |#3| |#4|) (-1210 |#1| |#2|) (-1116) (-1116) (-1210 |#1| |#2|) |#2|) (T -485)) +NIL +(-1210 |#1| |#2|) +((-2864 (((-112) $ $) NIL)) (-2298 (((-654 (-2 (|:| -1390 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3656 (((-654 $) (-654 |#4|)) NIL)) (-4350 (((-654 |#3|) $) NIL)) (-1437 (((-112) $) NIL)) (-2176 (((-112) $) NIL (|has| |#1| (-566)))) (-2972 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2104 ((|#4| |#4| $) NIL)) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#3|) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-2172 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3250 (($) NIL T CONST)) (-3721 (((-112) $) 29 (|has| |#1| (-566)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2196 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3564 (((-112) $) NIL (|has| |#1| (-566)))) (-4434 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1855 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-3406 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2214 (($ (-654 |#4|)) NIL)) (-2935 (((-3 $ "failed") $) 45)) (-2660 ((|#4| |#4| $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3311 (($ |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3347 ((|#4| |#4| $) NIL)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2830 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) NIL)) (-1871 (((-654 |#4|) $) 18 (|has| $ (-6 -4459)))) (-3145 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4241 ((|#3| $) 38)) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#4|) $) 19 (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2462 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 23)) (-2737 (((-654 |#3|) $) NIL)) (-3161 (((-112) |#3| $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-3334 (((-3 |#4| "failed") $) 42)) (-1957 (((-654 |#4|) $) NIL)) (-3749 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2254 ((|#4| |#4| $) NIL)) (-3877 (((-112) $ $) NIL)) (-3581 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2712 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3173 ((|#4| |#4| $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-3 |#4| "failed") $) 40)) (-2183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4233 (((-3 $ "failed") $ |#4|) 58)) (-2433 (($ $ |#4|) NIL)) (-3449 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 17)) (-3336 (($) 14)) (-3580 (((-781) $) NIL)) (-3949 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) 13)) (-1844 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 22)) (-1423 (($ $ |#3|) 52)) (-1671 (($ $ |#3|) 54)) (-2167 (($ $) NIL)) (-2287 (($ $ |#3|) NIL)) (-2951 (((-872) $) 35) (((-654 |#4|) $) 46)) (-2105 (((-781) $) NIL (|has| |#3| (-377)))) (-4069 (((-112) $ $) NIL)) (-3917 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3912 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2020 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-1642 (((-654 |#3|) $) NIL)) (-3504 (((-112) |#3| $) NIL)) (-2986 (((-112) $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-486 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|) (-566) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -486)) +NIL +(-1227 |#1| |#2| |#3| |#4|) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2214 (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3004 (($) 17)) (-4226 (((-112) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-1844 (((-388) $) 21) (((-227) $) 24) (((-417 (-1189 (-574))) $) 18) (((-546) $) 53)) (-2951 (((-872) $) 51) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (((-227) $) 23) (((-388) $) 20)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-2141 (($) 37 T CONST)) (-2153 (($) 8 T CONST)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-487) (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))) (-1038) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1189 (-574)))) (-624 (-546)) (-10 -8 (-15 -3004 ($))))) (T -487)) +((-3004 (*1 *1) (-5 *1 (-487)))) +(-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))) (-1038) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1189 (-574)))) (-624 (-546)) (-10 -8 (-15 -3004 ($)))) +((-2864 (((-112) $ $) NIL)) (-1814 (((-1151) $) 11)) (-1804 (((-1151) $) 9)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-488) (-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1814 ((-1151) $))))) (T -488)) +((-1804 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-488)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-488))))) +(-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1814 ((-1151) $)))) +((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2985 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) 16)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2171 (((-3 |#2| "failed") |#1| $) 20)) (-3250 (($) NIL T CONST)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2424 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 18)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2036 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-1698 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1771 (((-654 |#1|) $) 13)) (-2229 (((-112) |#1| $) NIL)) (-2375 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3285 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1393 (((-654 |#1|) $) NIL)) (-1506 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-2183 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1822 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) 19)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3162 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4069 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 11 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) 15 (|has| $ (-6 -4459))))) +(((-489 |#1| |#2| |#3|) (-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) (-1116) (-1116) (-1175)) (T -489)) +NIL +(-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) +((-4183 (((-574) (-574) (-574)) 19)) (-1472 (((-112) (-574) (-574) (-574) (-574)) 28)) (-2102 (((-1284 (-654 (-574))) (-781) (-781)) 41))) +(((-490) (-10 -7 (-15 -4183 ((-574) (-574) (-574))) (-15 -1472 ((-112) (-574) (-574) (-574) (-574))) (-15 -2102 ((-1284 (-654 (-574))) (-781) (-781))))) (T -490)) +((-2102 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1284 (-654 (-574)))) (-5 *1 (-490)))) (-1472 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490)))) (-4183 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490))))) +(-10 -7 (-15 -4183 ((-574) (-574) (-574))) (-15 -1472 ((-112) (-574) (-574) (-574) (-574))) (-15 -2102 ((-1284 (-654 (-574))) (-781) (-781)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 (-874 |#1|)) $) NIL)) (-4173 (((-1189 $) $ (-874 |#1|)) NIL) (((-1189 |#2|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-2884 (($ $) NIL (|has| |#2| (-566)))) (-1981 (((-112) $) NIL (|has| |#2| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2991 (($ $) NIL (|has| |#2| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2214 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-874 |#1|) $) NIL)) (-3319 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3807 (($ $ (-654 (-574))) NIL)) (-1402 (($ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#2| (-923)))) (-1849 (($ $ |#2| (-492 (-2877 |#1|) (-781)) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-4339 (($ (-1189 |#2|) (-874 |#1|)) NIL) (($ (-1189 $) (-874 |#1|)) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#2| (-492 (-2877 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-874 |#1|)) NIL)) (-3192 (((-492 (-2877 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-4303 (($ (-1 (-492 (-2877 |#1|) (-781)) (-492 (-2877 |#1|) (-781))) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-2284 (((-3 (-874 |#1|) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#2| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-1489 (((-1175) $) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3139 (-781))) "failed") $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#2| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#2| (-923)))) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-2394 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3879 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-3580 (((-492 (-2877 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-2372 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-1634 (((-654 |#2|) $) NIL)) (-2706 ((|#2| $ (-492 (-2877 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-491 |#1| |#2|) (-13 (-963 |#2| (-492 (-2877 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3807 ($ $ (-654 (-574)))))) (-654 (-1193)) (-1065)) (T -491)) +((-3807 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-491 *3 *4)) (-14 *3 (-654 (-1193))) (-4 *4 (-1065))))) +(-13 (-963 |#2| (-492 (-2877 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3807 ($ $ (-654 (-574)))))) +((-2864 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-1431 (((-112) $) NIL (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))))) (-1399 (($ (-935)) NIL (|has| |#2| (-1065)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1968 (($ $ $) NIL (|has| |#2| (-803)))) (-2600 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3146 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#2| (-377)))) (-3135 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1116)))) (-2214 (((-574) $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) ((|#2| $) NIL (|has| |#2| (-1116)))) (-1831 (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-1284 $)) NIL (|has| |#2| (-1065)))) (-4322 (((-3 $ "failed") $) NIL (|has| |#2| (-1065)))) (-2835 (($) NIL (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ (-574)) 11)) (-1871 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4226 (((-112) $) NIL (|has| |#2| (-1065)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#2| (-860)))) (-2036 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#2| (-860)))) (-2462 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-3383 (((-935) $) NIL (|has| |#2| (-377)))) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#2| (-1116)))) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#2| (-377)))) (-3940 (((-1136) $) NIL (|has| |#2| (-1116)))) (-2925 ((|#2| $) NIL (|has| (-574) (-860)))) (-1822 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-3918 ((|#2| $ $) NIL (|has| |#2| (-1065)))) (-4247 (($ (-1284 |#2|)) NIL)) (-2995 (((-135)) NIL (|has| |#2| (-372)))) (-3879 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3949 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#2|) $) NIL) (($ (-574)) NIL (-2833 (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (($ |#2|) NIL (|has| |#2| (-1116))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-2898 (((-781)) NIL (|has| |#2| (-1065)) CONST)) (-4069 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-2020 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) NIL (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))) CONST)) (-2153 (($) NIL (|has| |#2| (-1065)) CONST)) (-3584 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3042 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) 17 (|has| |#2| (-860)))) (-3103 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $ $) NIL (|has| |#2| (-1065))) (($ $) NIL (|has| |#2| (-1065)))) (-3074 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-1065))) (($ $ (-935)) NIL (|has| |#2| (-1065)))) (* (($ (-574) $) NIL (|has| |#2| (-1065))) (($ $ $) NIL (|has| |#2| (-1065))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-935) $) NIL (|has| |#2| (-25)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) (((-492 |#1| |#2|) (-244 |#1| |#2|) (-781) (-803)) (T -492)) NIL (-244 |#1| |#2|) -((-2863 (((-112) $ $) NIL)) (-2638 (((-654 (-886)) $) 15)) (-2040 (((-516) $) 13)) (-3945 (((-1174) $) NIL)) (-3649 (($ (-516) (-654 (-886))) 11)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 22) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-493) (-13 (-1098) (-10 -8 (-15 -3649 ($ (-516) (-654 (-886)))) (-15 -2040 ((-516) $)) (-15 -2638 ((-654 (-886)) $))))) (T -493)) -((-3649 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-493)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-654 (-886))) (-5 *1 (-493))))) -(-13 (-1098) (-10 -8 (-15 -3649 ($ (-516) (-654 (-886)))) (-15 -2040 ((-516) $)) (-15 -2638 ((-654 (-886)) $)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) NIL)) (-3831 (($) NIL T CONST)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-2857 (($ $ $) 48)) (-4297 (($ $ $) 47)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1593 ((|#1| $) 40)) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1748 ((|#1| $) 41)) (-2609 (($ |#1| $) 18)) (-1743 (($ (-654 |#1|)) 19)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-3484 ((|#1| $) 34)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) 11)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) 45)) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) 29 (|has| $ (-6 -4458))))) -(((-494 |#1|) (-13 (-983 |#1|) (-10 -8 (-15 -1743 ($ (-654 |#1|))))) (-860)) (T -494)) -((-1743 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3))))) -(-13 (-983 |#1|) (-10 -8 (-15 -1743 ($ (-654 |#1|))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-2881 (($ $) 71)) (-3488 (((-112) $) NIL)) (-3945 (((-1174) $) NIL)) (-3647 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 45)) (-3939 (((-1135) $) NIL)) (-2975 (((-3 |#4| "failed") $) 117)) (-2958 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-574)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3930 (((-2 (|:| -2817 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2950 (((-872) $) 110)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 32 T CONST)) (-2985 (((-112) $ $) 121)) (-3089 (($ $) 77) (($ $ $) NIL)) (-3074 (($ $ $) 72)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 78))) -(((-495 |#1| |#2| |#3| |#4|) (-344 |#1| |#2| |#3| |#4|) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -495)) +((-2864 (((-112) $ $) NIL)) (-2639 (((-654 (-886)) $) 15)) (-2039 (((-516) $) 13)) (-1489 (((-1175) $) NIL)) (-1490 (($ (-516) (-654 (-886))) 11)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 22) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-493) (-13 (-1099) (-10 -8 (-15 -1490 ($ (-516) (-654 (-886)))) (-15 -2039 ((-516) $)) (-15 -2639 ((-654 (-886)) $))))) (T -493)) +((-1490 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-493)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-654 (-886))) (-5 *1 (-493))))) +(-13 (-1099) (-10 -8 (-15 -1490 ($ (-516) (-654 (-886)))) (-15 -2039 ((-516) $)) (-15 -2639 ((-654 (-886)) $)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) NIL)) (-3250 (($) NIL T CONST)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-4349 (($ $ $) 48)) (-3404 (($ $ $) 47)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4380 ((|#1| $) 40)) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-2375 ((|#1| $) 41)) (-3285 (($ |#1| $) 18)) (-3454 (($ (-654 |#1|)) 19)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-3801 ((|#1| $) 34)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) 11)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) 45)) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) 29 (|has| $ (-6 -4459))))) +(((-494 |#1|) (-13 (-984 |#1|) (-10 -8 (-15 -3454 ($ (-654 |#1|))))) (-860)) (T -494)) +((-3454 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3))))) +(-13 (-984 |#1|) (-10 -8 (-15 -3454 ($ (-654 |#1|))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-2882 (($ $) 71)) (-2282 (((-112) $) NIL)) (-1489 (((-1175) $) NIL)) (-2984 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 45)) (-3940 (((-1136) $) NIL)) (-2975 (((-3 |#4| "failed") $) 117)) (-3466 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-574)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-1377 (((-2 (|:| -2818 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2951 (((-872) $) 110)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 32 T CONST)) (-2986 (((-112) $ $) 121)) (-3090 (($ $) 77) (($ $ $) NIL)) (-3074 (($ $ $) 72)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 78))) +(((-495 |#1| |#2| |#3| |#4|) (-344 |#1| |#2| |#3| |#4|) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -495)) NIL (-344 |#1| |#2| |#3| |#4|) -((-1909 (((-574) (-654 (-574))) 53)) (-3119 ((|#1| (-654 |#1|)) 94)) (-1446 (((-654 |#1|) (-654 |#1|)) 95)) (-2041 (((-654 |#1|) (-654 |#1|)) 97)) (-2886 ((|#1| (-654 |#1|)) 96)) (-3631 (((-654 (-574)) (-654 |#1|)) 56))) -(((-496 |#1|) (-10 -7 (-15 -2886 (|#1| (-654 |#1|))) (-15 -3119 (|#1| (-654 |#1|))) (-15 -2041 ((-654 |#1|) (-654 |#1|))) (-15 -1446 ((-654 |#1|) (-654 |#1|))) (-15 -3631 ((-654 (-574)) (-654 |#1|))) (-15 -1909 ((-574) (-654 (-574))))) (-1259 (-574))) (T -496)) -((-1909 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4)) (-4 *4 (-1259 *2)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1259 (-574))) (-5 *2 (-654 (-574))) (-5 *1 (-496 *4)))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1259 (-574))) (-5 *1 (-496 *3)))) (-2041 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1259 (-574))) (-5 *1 (-496 *3)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1259 (-574))))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1259 (-574)))))) -(-10 -7 (-15 -2886 (|#1| (-654 |#1|))) (-15 -3119 (|#1| (-654 |#1|))) (-15 -2041 ((-654 |#1|) (-654 |#1|))) (-15 -1446 ((-654 |#1|) (-654 |#1|))) (-15 -3631 ((-654 (-574)) (-654 |#1|))) (-15 -1909 ((-574) (-654 (-574))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4018 (((-574) $) NIL (|has| (-574) (-315)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL (|has| (-574) (-830)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-574) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1053 (-574))))) (-2216 (((-574) $) NIL) (((-1192) $) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-574) (-1053 (-574)))) (((-574) $) NIL (|has| (-574) (-1053 (-574))))) (-2799 (($ $ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-574) (-555)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1913 (((-112) $) NIL (|has| (-574) (-830)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3372 (((-112) $) NIL)) (-3536 (($ $) NIL)) (-2970 (((-574) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| (-574) (-1167)))) (-1808 (((-112) $) NIL (|has| (-574) (-830)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| (-574) (-860)))) (-1786 (($ (-1 (-574) (-574)) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1167)) CONST)) (-1942 (($ (-417 (-574))) 9)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-3471 (((-574) $) NIL (|has| (-574) (-555)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1192)) (-654 (-574))) NIL (|has| (-574) (-524 (-1192) (-574)))) (($ $ (-1192) (-574)) NIL (|has| (-574) (-524 (-1192) (-574))))) (-3364 (((-781) $) NIL)) (-2208 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2120 (($ $) NIL)) (-2981 (((-574) $) NIL)) (-1845 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1037))) (((-227) $) NIL (|has| (-574) (-1037)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1192)) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL) (((-1019 16) $) 10)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-574) (-922))) (|has| (-574) (-146))))) (-4019 (((-781)) NIL T CONST)) (-2753 (((-574) $) NIL (|has| (-574) (-555)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3306 (($ $) NIL (|has| (-574) (-830)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3098 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) -(((-497) (-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 16)) (-10 -8 (-15 -2244 ((-417 (-574)) $)) (-15 -1942 ($ (-417 (-574))))))) (T -497)) -((-2244 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))) (-1942 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497))))) -(-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 16)) (-10 -8 (-15 -2244 ((-417 (-574)) $)) (-15 -1942 ($ (-417 (-574)))))) -((-2247 (((-654 |#2|) $) 31)) (-2231 (((-112) |#2| $) 36)) (-2000 (((-112) (-1 (-112) |#2|) $) 26)) (-2660 (($ $ (-654 (-302 |#2|))) 13) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-3948 (((-781) (-1 (-112) |#2|) $) 30) (((-781) |#2| $) 34)) (-2950 (((-872) $) 45)) (-2980 (((-112) (-1 (-112) |#2|) $) 23)) (-2985 (((-112) $ $) 39)) (-2876 (((-781) $) 18))) -(((-498 |#1| |#2|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2231 ((-112) |#2| |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -2247 ((-654 |#2|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2000 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|))) (-499 |#2|) (-1233)) (T -498)) -NIL -(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2231 ((-112) |#2| |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -2247 ((-654 |#2|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2000 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) 8)) (-3831 (($) 7 T CONST)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-499 |#1|) (-141) (-1233)) (T -499)) -((-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1233)))) (-2461 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1233)))) (-2980 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) (-4 *4 (-1233)) (-5 *2 (-112)))) (-2000 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) (-4 *4 (-1233)) (-5 *2 (-112)))) (-3948 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) (-4 *4 (-1233)) (-5 *2 (-781)))) (-1873 (*1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) (-5 *2 (-654 *3)))) (-2247 (*1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) (-5 *2 (-654 *3)))) (-3948 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-781)))) (-2231 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |t#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |t#1| (-1115)) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1786 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4459)) (-15 -2461 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4458)) (PROGN (-15 -2980 ((-112) (-1 (-112) |t#1|) $)) (-15 -2000 ((-112) (-1 (-112) |t#1|) $)) (-15 -3948 ((-781) (-1 (-112) |t#1|) $)) (-15 -1873 ((-654 |t#1|) $)) (-15 -2247 ((-654 |t#1|) $)) (IF (|has| |t#1| (-1115)) (PROGN (-15 -3948 ((-781) |t#1| $)) (-15 -2231 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-2950 ((|#1| $) 6) (($ |#1|) 9))) -(((-500 |#1|) (-141) (-1233)) (T -500)) +((-1919 (((-574) (-654 (-574))) 53)) (-4371 ((|#1| (-654 |#1|)) 94)) (-2091 (((-654 |#1|) (-654 |#1|)) 95)) (-1949 (((-654 |#1|) (-654 |#1|)) 97)) (-2887 ((|#1| (-654 |#1|)) 96)) (-2372 (((-654 (-574)) (-654 |#1|)) 56))) +(((-496 |#1|) (-10 -7 (-15 -2887 (|#1| (-654 |#1|))) (-15 -4371 (|#1| (-654 |#1|))) (-15 -1949 ((-654 |#1|) (-654 |#1|))) (-15 -2091 ((-654 |#1|) (-654 |#1|))) (-15 -2372 ((-654 (-574)) (-654 |#1|))) (-15 -1919 ((-574) (-654 (-574))))) (-1260 (-574))) (T -496)) +((-1919 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4)) (-4 *4 (-1260 *2)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1260 (-574))) (-5 *2 (-654 (-574))) (-5 *1 (-496 *4)))) (-2091 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1260 (-574))) (-5 *1 (-496 *3)))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1260 (-574))) (-5 *1 (-496 *3)))) (-4371 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1260 (-574))))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1260 (-574)))))) +(-10 -7 (-15 -2887 (|#1| (-654 |#1|))) (-15 -4371 (|#1| (-654 |#1|))) (-15 -1949 ((-654 |#1|) (-654 |#1|))) (-15 -2091 ((-654 |#1|) (-654 |#1|))) (-15 -2372 ((-654 (-574)) (-654 |#1|))) (-15 -1919 ((-574) (-654 (-574))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4146 (((-574) $) NIL (|has| (-574) (-315)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL (|has| (-574) (-830)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-574) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1054 (-574))))) (-2214 (((-574) $) NIL) (((-1193) $) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-574) (-1054 (-574)))) (((-574) $) NIL (|has| (-574) (-1054 (-574))))) (-2800 (($ $ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-574) (-555)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3408 (((-112) $) NIL (|has| (-574) (-830)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-4226 (((-112) $) NIL)) (-2967 (($ $) NIL)) (-2971 (((-574) $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| (-574) (-1168)))) (-3182 (((-112) $) NIL (|has| (-574) (-830)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| (-574) (-860)))) (-1785 (($ (-1 (-574) (-574)) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1168)) CONST)) (-4199 (($ (-417 (-574))) 9)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-2260 (((-574) $) NIL (|has| (-574) (-555)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1193)) (-654 (-574))) NIL (|has| (-574) (-524 (-1193) (-574)))) (($ $ (-1193) (-574)) NIL (|has| (-574) (-524 (-1193) (-574))))) (-2098 (((-781) $) NIL)) (-2207 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2808 (($ $) NIL)) (-2981 (((-574) $) NIL)) (-1844 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1038))) (((-227) $) NIL (|has| (-574) (-1038)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1193)) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL) (((-1020 16) $) 10)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-574) (-923))) (|has| (-574) (-146))))) (-2898 (((-781)) NIL T CONST)) (-2544 (((-574) $) NIL (|has| (-574) (-555)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3936 (($ $) NIL (|has| (-574) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3103 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) +(((-497) (-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 16)) (-10 -8 (-15 -2162 ((-417 (-574)) $)) (-15 -4199 ($ (-417 (-574))))))) (T -497)) +((-2162 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))) (-4199 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497))))) +(-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 16)) (-10 -8 (-15 -2162 ((-417 (-574)) $)) (-15 -4199 ($ (-417 (-574)))))) +((-2036 (((-654 |#2|) $) 31)) (-4134 (((-112) |#2| $) 36)) (-3449 (((-112) (-1 (-112) |#2|) $) 26)) (-2661 (($ $ (-654 (-302 |#2|))) 13) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-3949 (((-781) (-1 (-112) |#2|) $) 30) (((-781) |#2| $) 34)) (-2951 (((-872) $) 45)) (-2020 (((-112) (-1 (-112) |#2|) $) 23)) (-2986 (((-112) $ $) 39)) (-2877 (((-781) $) 18))) +(((-498 |#1| |#2|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -4134 ((-112) |#2| |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -2036 ((-654 |#2|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3449 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|))) (-499 |#2|) (-1234)) (T -498)) +NIL +(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -4134 ((-112) |#2| |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -2036 ((-654 |#2|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3449 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) 8)) (-3250 (($) 7 T CONST)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-499 |#1|) (-141) (-1234)) (T -499)) +((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1234)))) (-2462 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4460)) (-4 *1 (-499 *3)) (-4 *3 (-1234)))) (-2020 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4)) (-4 *4 (-1234)) (-5 *2 (-112)))) (-3449 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4)) (-4 *4 (-1234)) (-5 *2 (-112)))) (-3949 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4)) (-4 *4 (-1234)) (-5 *2 (-781)))) (-1871 (*1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) (-5 *2 (-654 *3)))) (-2036 (*1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) (-5 *2 (-654 *3)))) (-3949 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-781)))) (-4134 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |t#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4460)) (-15 -2462 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4459)) (PROGN (-15 -2020 ((-112) (-1 (-112) |t#1|) $)) (-15 -3449 ((-112) (-1 (-112) |t#1|) $)) (-15 -3949 ((-781) (-1 (-112) |t#1|) $)) (-15 -1871 ((-654 |t#1|) $)) (-15 -2036 ((-654 |t#1|) $)) (IF (|has| |t#1| (-1116)) (PROGN (-15 -3949 ((-781) |t#1| $)) (-15 -4134 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-2951 ((|#1| $) 6) (($ |#1|) 9))) +(((-500 |#1|) (-141) (-1234)) (T -500)) NIL (-13 (-623 |t#1|) (-626 |t#1|)) (((-626 |#1|) . T) ((-623 |#1|) . T)) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-4059 (($ (-1174)) 8)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15) (((-1174) $) 12)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 11))) -(((-501) (-13 (-1115) (-623 (-1174)) (-10 -8 (-15 -4059 ($ (-1174)))))) (T -501)) -((-4059 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-501))))) -(-13 (-1115) (-623 (-1174)) (-10 -8 (-15 -4059 ($ (-1174))))) -((-2378 (($ $) 15)) (-2357 (($ $) 24)) (-2403 (($ $) 12)) (-2416 (($ $) 10)) (-2389 (($ $) 17)) (-2367 (($ $) 22))) -(((-502 |#1|) (-10 -8 (-15 -2367 (|#1| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|))) (-503)) (T -502)) -NIL -(-10 -8 (-15 -2367 (|#1| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|))) -((-2378 (($ $) 11)) (-2357 (($ $) 10)) (-2403 (($ $) 9)) (-2416 (($ $) 8)) (-2389 (($ $) 7)) (-2367 (($ $) 6))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-2163 (($ (-1175)) 8)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15) (((-1175) $) 12)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 11))) +(((-501) (-13 (-1116) (-623 (-1175)) (-10 -8 (-15 -2163 ($ (-1175)))))) (T -501)) +((-2163 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-501))))) +(-13 (-1116) (-623 (-1175)) (-10 -8 (-15 -2163 ($ (-1175))))) +((-2379 (($ $) 15)) (-2358 (($ $) 24)) (-2404 (($ $) 12)) (-2417 (($ $) 10)) (-2390 (($ $) 17)) (-2368 (($ $) 22))) +(((-502 |#1|) (-10 -8 (-15 -2368 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|))) (-503)) (T -502)) +NIL +(-10 -8 (-15 -2368 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|))) +((-2379 (($ $) 11)) (-2358 (($ $) 10)) (-2404 (($ $) 9)) (-2417 (($ $) 8)) (-2390 (($ $) 7)) (-2368 (($ $) 6))) (((-503) (-141)) (T -503)) -((-2378 (*1 *1 *1) (-4 *1 (-503))) (-2357 (*1 *1 *1) (-4 *1 (-503))) (-2403 (*1 *1 *1) (-4 *1 (-503))) (-2416 (*1 *1 *1) (-4 *1 (-503))) (-2389 (*1 *1 *1) (-4 *1 (-503))) (-2367 (*1 *1 *1) (-4 *1 (-503)))) -(-13 (-10 -8 (-15 -2367 ($ $)) (-15 -2389 ($ $)) (-15 -2416 ($ $)) (-15 -2403 ($ $)) (-15 -2357 ($ $)) (-15 -2378 ($ $)))) -((-4200 (((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)) 54))) -(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)))) (-372) (-1259 |#1|) (-13 (-372) (-148) (-734 |#1| |#2|)) (-1259 |#3|)) (T -504)) -((-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-4 *7 (-13 (-372) (-148) (-734 *5 *6))) (-5 *2 (-428 *3)) (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1259 *7))))) -(-10 -7 (-15 -4200 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)))) -((-2863 (((-112) $ $) NIL)) (-3597 (((-654 $) (-1188 $) (-1192)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-965 $)) NIL)) (-1397 (($ (-1188 $) (-1192)) NIL) (($ (-1188 $)) NIL) (($ (-965 $)) NIL)) (-3520 (((-112) $) 39)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-4354 (((-112) $ $) 73)) (-4064 (((-654 (-622 $)) $) 50)) (-1597 (((-3 $ "failed") $ $) NIL)) (-2558 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-4211 (($ $) NIL)) (-3656 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-4163 (((-654 $) (-1188 $) (-1192)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-965 $)) NIL)) (-3356 (($ (-1188 $) (-1192)) NIL) (($ (-1188 $)) NIL) (($ (-965 $)) NIL)) (-1705 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) 55)) (-2799 (($ $ $) NIL)) (-3465 (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL) (((-2 (|:| -4047 (-699 (-417 (-574)))) (|:| |vec| (-1283 (-417 (-574))))) (-699 $) (-1283 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1283 $)) NIL)) (-2881 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-2116 (($ $) NIL) (($ (-654 $)) NIL)) (-3294 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) NIL)) (-3372 (((-112) $) 42)) (-3512 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2970 (((-1140 (-574) (-622 $)) $) 37)) (-2132 (($ $ (-574)) NIL)) (-1386 (((-1188 $) (-1188 $) (-622 $)) 87) (((-1188 $) (-1188 $) (-654 (-622 $))) 62) (($ $ (-622 $)) 76) (($ $ (-654 (-622 $))) 77)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4311 (((-1188 $) (-622 $)) 74 (|has| $ (-1064)))) (-1786 (($ (-1 $ $) (-622 $)) NIL)) (-4367 (((-3 (-622 $) "failed") $) NIL)) (-2848 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-4138 (((-654 (-622 $)) $) NIL)) (-1783 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-3571 (((-112) $ (-115)) NIL) (((-112) $ (-1192)) NIL)) (-1327 (($ $) NIL)) (-1847 (((-781) $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4277 (((-112) $ $) NIL) (((-112) $ (-1192)) NIL)) (-4200 (((-428 $) $) NIL)) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3694 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1192) (-1 $ (-654 $))) NIL) (($ $ (-1192) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3364 (((-781) $) NIL)) (-2208 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-1834 (($ $) NIL) (($ $ $) NIL)) (-3878 (($ $) 36) (($ $ (-781)) NIL)) (-2981 (((-1140 (-574) (-622 $)) $) 20)) (-2290 (($ $) NIL (|has| $ (-1064)))) (-1845 (((-388) $) 101) (((-227) $) 109) (((-171 (-388)) $) 117)) (-2950 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1140 (-574) (-622 $))) 21)) (-4019 (((-781)) NIL T CONST)) (-2079 (($ $) NIL) (($ (-654 $)) NIL)) (-4207 (((-112) (-115)) 93)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-2142 (($) 10 T CONST)) (-2154 (($) 22 T CONST)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2985 (((-112) $ $) 24)) (-3098 (($ $ $) 44)) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) 48) (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) 27) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL))) -(((-505) (-13 (-310) (-27) (-1053 (-574)) (-1053 (-417 (-574))) (-649 (-574)) (-1037) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2950 ($ (-1140 (-574) (-622 $)))) (-15 -2970 ((-1140 (-574) (-622 $)) $)) (-15 -2981 ((-1140 (-574) (-622 $)) $)) (-15 -2881 ($ $)) (-15 -4354 ((-112) $ $)) (-15 -1386 ((-1188 $) (-1188 $) (-622 $))) (-15 -1386 ((-1188 $) (-1188 $) (-654 (-622 $)))) (-15 -1386 ($ $ (-622 $))) (-15 -1386 ($ $ (-654 (-622 $))))))) (T -505)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2881 (*1 *1 *1) (-5 *1 (-505))) (-4354 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505)))) (-1386 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505)))) (-1386 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 (-505))) (-5 *3 (-654 (-622 (-505)))) (-5 *1 (-505)))) (-1386 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505)))) (-1386 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505))))) -(-13 (-310) (-27) (-1053 (-574)) (-1053 (-417 (-574))) (-649 (-574)) (-1037) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2950 ($ (-1140 (-574) (-622 $)))) (-15 -2970 ((-1140 (-574) (-622 $)) $)) (-15 -2981 ((-1140 (-574) (-622 $)) $)) (-15 -2881 ($ $)) (-15 -4354 ((-112) $ $)) (-15 -1386 ((-1188 $) (-1188 $) (-622 $))) (-15 -1386 ((-1188 $) (-1188 $) (-654 (-622 $)))) (-15 -1386 ($ $ (-622 $))) (-15 -1386 ($ $ (-654 (-622 $)))))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) 44 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) 39 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 38)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 21)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) 17 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) 41 (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1603 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4276 (($ $ |#1|) 15 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) 19)) (-2208 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 43) (($ $ (-1250 (-574))) NIL)) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 24)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) 11 (|has| $ (-6 -4458))))) -(((-506 |#1| |#2|) (-19 |#1|) (-1233) (-574)) (T -506)) +((-2379 (*1 *1 *1) (-4 *1 (-503))) (-2358 (*1 *1 *1) (-4 *1 (-503))) (-2404 (*1 *1 *1) (-4 *1 (-503))) (-2417 (*1 *1 *1) (-4 *1 (-503))) (-2390 (*1 *1 *1) (-4 *1 (-503))) (-2368 (*1 *1 *1) (-4 *1 (-503)))) +(-13 (-10 -8 (-15 -2368 ($ $)) (-15 -2390 ($ $)) (-15 -2417 ($ $)) (-15 -2404 ($ $)) (-15 -2358 ($ $)) (-15 -2379 ($ $)))) +((-4202 (((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)) 54))) +(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)))) (-372) (-1260 |#1|) (-13 (-372) (-148) (-734 |#1| |#2|)) (-1260 |#3|)) (T -504)) +((-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-4 *7 (-13 (-372) (-148) (-734 *5 *6))) (-5 *2 (-428 *3)) (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1260 *7))))) +(-10 -7 (-15 -4202 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)))) +((-2864 (((-112) $ $) NIL)) (-3442 (((-654 $) (-1189 $) (-1193)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-966 $)) NIL)) (-4016 (($ (-1189 $) (-1193)) NIL) (($ (-1189 $)) NIL) (($ (-966 $)) NIL)) (-1431 (((-112) $) 39)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2655 (((-112) $ $) 73)) (-4068 (((-654 (-622 $)) $) 50)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2559 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-4212 (($ $) NIL)) (-3245 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-2546 (((-654 $) (-1189 $) (-1193)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-966 $)) NIL)) (-3814 (($ (-1189 $) (-1193)) NIL) (($ (-1189 $)) NIL) (($ (-966 $)) NIL)) (-1704 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2214 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) 55)) (-2800 (($ $ $) NIL)) (-1831 (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL) (((-2 (|:| -3082 (-699 (-417 (-574)))) (|:| |vec| (-1284 (-417 (-574))))) (-699 $) (-1284 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1284 $)) NIL)) (-2882 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-1391 (($ $) NIL) (($ (-654 $)) NIL)) (-1649 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) NIL)) (-4226 (((-112) $) 42)) (-1823 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2971 (((-1141 (-574) (-622 $)) $) 37)) (-3527 (($ $ (-574)) NIL)) (-1681 (((-1189 $) (-1189 $) (-622 $)) 87) (((-1189 $) (-1189 $) (-654 (-622 $))) 62) (($ $ (-622 $)) 76) (($ $ (-654 (-622 $))) 77)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3746 (((-1189 $) (-622 $)) 74 (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) NIL)) (-3452 (((-3 (-622 $) "failed") $) NIL)) (-2849 (($ (-654 $)) NIL) (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-4139 (((-654 (-622 $)) $) NIL)) (-1782 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-2154 (((-112) $ (-115)) NIL) (((-112) $ (-1193)) NIL)) (-1328 (($ $) NIL)) (-1847 (((-781) $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3595 (((-112) $ $) NIL) (((-112) $ (-1193)) NIL)) (-4202 (((-428 $) $) NIL)) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2120 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1193) (-1 $ (-654 $))) NIL) (($ $ (-1193) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2098 (((-781) $) NIL)) (-2207 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3078 (($ $) NIL) (($ $ $) NIL)) (-3879 (($ $) 36) (($ $ (-781)) NIL)) (-2981 (((-1141 (-574) (-622 $)) $) 20)) (-4379 (($ $) NIL (|has| $ (-1065)))) (-1844 (((-388) $) 101) (((-227) $) 109) (((-171 (-388)) $) 117)) (-2951 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1141 (-574) (-622 $))) 21)) (-2898 (((-781)) NIL T CONST)) (-2078 (($ $) NIL) (($ (-654 $)) NIL)) (-2420 (((-112) (-115)) 93)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-2141 (($) 10 T CONST)) (-2153 (($) 22 T CONST)) (-3584 (($ $) NIL) (($ $ (-781)) NIL)) (-2986 (((-112) $ $) 24)) (-3103 (($ $ $) 44)) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) 48) (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) 27) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL))) +(((-505) (-13 (-310) (-27) (-1054 (-574)) (-1054 (-417 (-574))) (-649 (-574)) (-1038) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2951 ($ (-1141 (-574) (-622 $)))) (-15 -2971 ((-1141 (-574) (-622 $)) $)) (-15 -2981 ((-1141 (-574) (-622 $)) $)) (-15 -2882 ($ $)) (-15 -2655 ((-112) $ $)) (-15 -1681 ((-1189 $) (-1189 $) (-622 $))) (-15 -1681 ((-1189 $) (-1189 $) (-654 (-622 $)))) (-15 -1681 ($ $ (-622 $))) (-15 -1681 ($ $ (-654 (-622 $))))))) (T -505)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2882 (*1 *1 *1) (-5 *1 (-505))) (-2655 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505)))) (-1681 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505)))) (-1681 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 (-505))) (-5 *3 (-654 (-622 (-505)))) (-5 *1 (-505)))) (-1681 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505)))) (-1681 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505))))) +(-13 (-310) (-27) (-1054 (-574)) (-1054 (-417 (-574))) (-649 (-574)) (-1038) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2951 ($ (-1141 (-574) (-622 $)))) (-15 -2971 ((-1141 (-574) (-622 $)) $)) (-15 -2981 ((-1141 (-574) (-622 $)) $)) (-15 -2882 ($ $)) (-15 -2655 ((-112) $ $)) (-15 -1681 ((-1189 $) (-1189 $) (-622 $))) (-15 -1681 ((-1189 $) (-1189 $) (-654 (-622 $)))) (-15 -1681 ($ $ (-622 $))) (-15 -1681 ($ $ (-654 (-622 $)))))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) 44 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 39 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 38)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 21)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) 17 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) 41 (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1822 (($ $ |#1|) 15 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) 19)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 43) (($ $ (-1251 (-574))) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 24)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) 11 (|has| $ (-6 -4459))))) +(((-506 |#1| |#2|) (-19 |#1|) (-1234) (-574)) (T -506)) NIL (-19 |#1|) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2652 (($ $ (-574) (-506 |#1| |#3|)) NIL)) (-1861 (($ $ (-574) (-506 |#1| |#2|)) NIL)) (-3831 (($) NIL T CONST)) (-1860 (((-506 |#1| |#3|) $ (-574)) NIL)) (-2472 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2399 ((|#1| $ (-574) (-574)) NIL)) (-1873 (((-654 |#1|) $) NIL)) (-2198 (((-781) $) NIL)) (-3763 (($ (-781) (-781) |#1|) NIL)) (-2207 (((-781) $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-3312 (((-574) $) NIL)) (-4378 (((-574) $) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2391 (((-574) $) NIL)) (-3280 (((-574) $) NIL)) (-2461 (($ (-1 |#1| |#1|) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4276 (($ $ |#1|) NIL)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-1482 (((-506 |#1| |#2|) $ (-574)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-507 |#1| |#2| |#3|) (-57 |#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) (-1233) (-574) (-574)) (T -507)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) NIL)) (-1966 (($ $ (-574) (-506 |#1| |#3|)) NIL)) (-3654 (($ $ (-574) (-506 |#1| |#2|)) NIL)) (-3250 (($) NIL T CONST)) (-1959 (((-506 |#1| |#3|) $ (-574)) NIL)) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2400 ((|#1| $ (-574) (-574)) NIL)) (-1871 (((-654 |#1|) $) NIL)) (-2197 (((-781) $) NIL)) (-3764 (($ (-781) (-781) |#1|) NIL)) (-2206 (((-781) $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-2219 (((-574) $) NIL)) (-2126 (((-574) $) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3352 (((-574) $) NIL)) (-1695 (((-574) $) NIL)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1822 (($ $ |#1|) NIL)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-1425 (((-506 |#1| |#2|) $ (-574)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-507 |#1| |#2| |#3|) (-57 |#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) (-1234) (-574) (-574)) (T -507)) NIL (-57 |#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) -((-1868 (((-654 (-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781)) 32)) (-1486 (((-654 (-1188 |#1|)) |#1| (-781) (-781) (-781)) 43)) (-2842 (((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)) 107))) -(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -1486 ((-654 (-1188 |#1|)) |#1| (-781) (-781) (-781))) (-15 -1868 ((-654 (-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -2842 ((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)))) (-358) (-1259 |#1|) (-1259 |#2|)) (T -508)) -((-2842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-2 (|:| -2191 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7))))) (-5 *5 (-781)) (-4 *8 (-1259 *7)) (-4 *7 (-1259 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -2191 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7)))) (-5 *1 (-508 *6 *7 *8)))) (-1868 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -2191 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6))))) (-5 *1 (-508 *5 *6 *7)) (-5 *3 (-2 (|:| -2191 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6)))) (-4 *7 (-1259 *6)))) (-1486 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1259 *3)) (-5 *2 (-654 (-1188 *3))) (-5 *1 (-508 *3 *5 *6)) (-4 *6 (-1259 *5))))) -(-10 -7 (-15 -1486 ((-654 (-1188 |#1|)) |#1| (-781) (-781) (-781))) (-15 -1868 ((-654 (-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -2842 ((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)))) -((-1841 (((-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 70)) (-3108 ((|#1| (-699 |#1|) |#1| (-781)) 24)) (-3037 (((-781) (-781) (-781)) 34)) (-3808 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 50)) (-1666 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 58) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 55)) (-1399 ((|#1| (-699 |#1|) (-699 |#1|) |#1| (-574)) 28)) (-2570 ((|#1| (-699 |#1|)) 18))) -(((-509 |#1| |#2| |#3|) (-10 -7 (-15 -2570 (|#1| (-699 |#1|))) (-15 -3108 (|#1| (-699 |#1|) |#1| (-781))) (-15 -1399 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -3037 ((-781) (-781) (-781))) (-15 -1666 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1666 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3808 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1841 ((-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))))) (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $)))) (-1259 |#1|) (-419 |#1| |#2|)) (T -509)) -((-1841 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1666 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1666 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3037 (*1 *2 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1399 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-574)) (-4 *2 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) (-4 *5 (-1259 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-3108 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-781)) (-4 *2 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) (-4 *5 (-1259 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-2570 (*1 *2 *3) (-12 (-5 *3 (-699 *2)) (-4 *4 (-1259 *2)) (-4 *2 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4))))) -(-10 -7 (-15 -2570 (|#1| (-699 |#1|))) (-15 -3108 (|#1| (-699 |#1|) |#1| (-781))) (-15 -1399 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -3037 ((-781) (-781) (-781))) (-15 -1666 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1666 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3808 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1841 ((-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2191 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))))) -((-2863 (((-112) $ $) NIL)) (-2889 (($ $) NIL)) (-2118 (($ $ $) 40)) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3565 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2785 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-3134 (((-112) $ (-1250 (-574)) (-112)) NIL (|has| $ (-6 -4459))) (((-112) $ (-574) (-112)) 42 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-3310 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2881 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2472 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4459)))) (-2399 (((-112) $ (-574)) NIL)) (-1451 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1115))) (((-574) (-112) $) NIL (|has| (-112) (-1115))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1873 (((-654 (-112)) $) NIL (|has| $ (-6 -4458)))) (-2107 (($ $ $) 38)) (-2085 (($ $) NIL)) (-2831 (($ $ $) NIL)) (-3763 (($ (-781) (-112)) 27)) (-3225 (($ $ $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) 8 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL)) (-4297 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2247 (((-654 (-112)) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL)) (-2461 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-1603 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-112) $) NIL (|has| (-574) (-860)))) (-2294 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4276 (($ $ (-112)) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2379 (((-654 (-112)) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) 28)) (-2208 (($ $ (-1250 (-574))) NIL) (((-112) $ (-574)) 22) (((-112) $ (-574) (-112)) NIL)) (-2853 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-3948 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) 29)) (-1845 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2962 (($ (-654 (-112))) NIL)) (-4131 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2950 (((-872) $) 26)) (-3838 (((-112) $ $) NIL)) (-2980 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-2096 (($ $ $) 36)) (-2933 (($ $ $) NIL)) (-2257 (($ $ $) 45)) (-2267 (($ $) 43)) (-2245 (($ $ $) 44)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 30)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 31)) (-2922 (($ $ $) NIL)) (-2876 (((-781) $) 13 (|has| $ (-6 -4458))))) -(((-510 |#1|) (-13 (-124) (-10 -8 (-15 -2267 ($ $)) (-15 -2257 ($ $ $)) (-15 -2245 ($ $ $)))) (-574)) (T -510)) -((-2267 (*1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2257 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2245 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574))))) -(-13 (-124) (-10 -8 (-15 -2267 ($ $)) (-15 -2257 ($ $ $)) (-15 -2245 ($ $ $)))) -((-3184 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1188 |#4|)) 35)) (-3957 (((-1188 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1188 |#4|)) 22)) (-1669 (((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1188 |#4|))) 46)) (-3044 (((-1188 (-1188 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#2| (-1 |#1| |#4|) (-1188 |#4|))) (-15 -3957 ((-1188 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3184 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1188 |#4|))) (-15 -1669 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1188 |#4|)))) (-15 -3044 ((-1188 (-1188 |#4|)) (-1 |#4| |#1|) |#3|))) (-1064) (-1259 |#1|) (-1259 |#2|) (-1064)) (T -511)) -((-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1064)) (-4 *7 (-1064)) (-4 *6 (-1259 *5)) (-5 *2 (-1188 (-1188 *7))) (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1259 *6)))) (-1669 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-699 (-1188 *8))) (-4 *5 (-1064)) (-4 *8 (-1064)) (-4 *6 (-1259 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8)) (-4 *7 (-1259 *6)))) (-3184 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1188 *7)) (-4 *5 (-1064)) (-4 *7 (-1064)) (-4 *2 (-1259 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1259 *2)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1064)) (-4 *7 (-1064)) (-4 *4 (-1259 *5)) (-5 *2 (-1188 *7)) (-5 *1 (-511 *5 *4 *6 *7)) (-4 *6 (-1259 *4)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1188 *7)) (-4 *5 (-1064)) (-4 *7 (-1064)) (-4 *2 (-1259 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1259 *2))))) -(-10 -7 (-15 -3957 (|#2| (-1 |#1| |#4|) (-1188 |#4|))) (-15 -3957 ((-1188 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3184 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1188 |#4|))) (-15 -1669 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1188 |#4|)))) (-15 -3044 ((-1188 (-1188 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2863 (((-112) $ $) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3060 (((-1288) $) 25)) (-2208 (((-1174) $ (-1192)) 30)) (-1413 (((-1288) $) 17)) (-2950 (((-872) $) 27) (($ (-1174)) 26)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 11)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 9))) -(((-512) (-13 (-860) (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -3060 ((-1288) $)) (-15 -2950 ($ (-1174)))))) (T -512)) -((-2208 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1174)) (-5 *1 (-512)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-512)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-512)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-512))))) -(-13 (-860) (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -3060 ((-1288) $)) (-15 -2950 ($ (-1174))))) -((-1699 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2365 ((|#1| |#4|) 10)) (-3357 ((|#3| |#4|) 17))) -(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2365 (|#1| |#4|)) (-15 -3357 (|#3| |#4|)) (-15 -1699 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-566) (-1007 |#1|) (-382 |#1|) (-382 |#2|)) (T -513)) -((-1699 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5)))) (-3357 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) (-4 *2 (-382 *4)) (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5)))) (-2365 (*1 *2 *3) (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-382 *4))))) -(-10 -7 (-15 -2365 (|#1| |#4|)) (-15 -3357 (|#3| |#4|)) (-15 -1699 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2863 (((-112) $ $) NIL)) (-3529 (((-112) $ (-654 |#3|)) 126) (((-112) $) 127)) (-3520 (((-112) $) 178)) (-1411 (($ $ |#4|) 117) (($ $ |#4| (-654 |#3|)) 121)) (-3921 (((-1181 (-654 (-965 |#1|)) (-654 (-302 (-965 |#1|)))) (-654 |#4|)) 171 (|has| |#3| (-624 (-1192))))) (-4415 (($ $ $) 107) (($ $ |#4|) 105)) (-3372 (((-112) $) 177)) (-3608 (($ $) 131)) (-3945 (((-1174) $) NIL)) (-1454 (($ $ $) 99) (($ (-654 $)) 101)) (-2940 (((-112) |#4| $) 129)) (-3227 (((-112) $ $) 82)) (-3647 (($ (-654 |#4|)) 106)) (-3939 (((-1135) $) NIL)) (-2983 (($ (-654 |#4|)) 175)) (-2548 (((-112) $) 176)) (-1764 (($ $) 85)) (-1940 (((-654 |#4|) $) 73)) (-2230 (((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|)) NIL)) (-3354 (((-112) |#4| $) 89)) (-3480 (((-574) $ (-654 |#3|)) 133) (((-574) $) 134)) (-2950 (((-872) $) 174) (($ (-654 |#4|)) 102)) (-3838 (((-112) $ $) NIL)) (-1431 (($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $))) NIL)) (-2985 (((-112) $ $) 84)) (-3074 (($ $ $) 109)) (** (($ $ (-781)) 115)) (* (($ $ $) 113))) -(((-514 |#1| |#2| |#3| |#4|) (-13 (-1115) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3074 ($ $ $)) (-15 -3372 ((-112) $)) (-15 -3520 ((-112) $)) (-15 -3354 ((-112) |#4| $)) (-15 -3227 ((-112) $ $)) (-15 -2940 ((-112) |#4| $)) (-15 -3529 ((-112) $ (-654 |#3|))) (-15 -3529 ((-112) $)) (-15 -1454 ($ $ $)) (-15 -1454 ($ (-654 $))) (-15 -4415 ($ $ $)) (-15 -4415 ($ $ |#4|)) (-15 -1764 ($ $)) (-15 -2230 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -1431 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -3480 ((-574) $ (-654 |#3|))) (-15 -3480 ((-574) $)) (-15 -3608 ($ $)) (-15 -3647 ($ (-654 |#4|))) (-15 -2983 ($ (-654 |#4|))) (-15 -2548 ((-112) $)) (-15 -1940 ((-654 |#4|) $)) (-15 -2950 ($ (-654 |#4|))) (-15 -1411 ($ $ |#4|)) (-15 -1411 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1192))) (-15 -3921 ((-1181 (-654 (-965 |#1|)) (-654 (-302 (-965 |#1|)))) (-654 |#4|))) |%noBranch|))) (-372) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -514)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-3074 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-3372 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-3520 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-3354 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6)))) (-3227 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-2940 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6)))) (-3529 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6)))) (-3529 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-1454 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-4415 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-4415 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5)))) (-1764 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-2230 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4)) (|:| |genIdeal| (-514 *4 *5 *6 *7)))) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3)) (|:| |genIdeal| (-514 *3 *4 *5 *6)))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-3480 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6)))) (-3480 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-3608 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-3647 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-2983 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-2548 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-1940 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-1411 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5)))) (-1411 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-962 *4 *5 *6)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *5 *6)) (-4 *6 (-624 (-1192))) (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1181 (-654 (-965 *4)) (-654 (-302 (-965 *4))))) (-5 *1 (-514 *4 *5 *6 *7))))) -(-13 (-1115) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3074 ($ $ $)) (-15 -3372 ((-112) $)) (-15 -3520 ((-112) $)) (-15 -3354 ((-112) |#4| $)) (-15 -3227 ((-112) $ $)) (-15 -2940 ((-112) |#4| $)) (-15 -3529 ((-112) $ (-654 |#3|))) (-15 -3529 ((-112) $)) (-15 -1454 ($ $ $)) (-15 -1454 ($ (-654 $))) (-15 -4415 ($ $ $)) (-15 -4415 ($ $ |#4|)) (-15 -1764 ($ $)) (-15 -2230 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -1431 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -3480 ((-574) $ (-654 |#3|))) (-15 -3480 ((-574) $)) (-15 -3608 ($ $)) (-15 -3647 ($ (-654 |#4|))) (-15 -2983 ($ (-654 |#4|))) (-15 -2548 ((-112) $)) (-15 -1940 ((-654 |#4|) $)) (-15 -2950 ($ (-654 |#4|))) (-15 -1411 ($ $ |#4|)) (-15 -1411 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1192))) (-15 -3921 ((-1181 (-654 (-965 |#1|)) (-654 (-302 (-965 |#1|)))) (-654 |#4|))) |%noBranch|))) -((-2713 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 176)) (-4190 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 177)) (-3096 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 129)) (-1782 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) NIL)) (-2906 (((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 179)) (-1986 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))) 195))) -(((-515 |#1| |#2|) (-10 -7 (-15 -2713 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -4190 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1782 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3096 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2906 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1986 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))))) (-654 (-1192)) (-781)) (T -515)) -((-1986 (*1 *2 *2 *3) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *1 (-515 *4 *5)))) (-2906 (*1 *2 *3) (-12 (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-654 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574)))))) (-5 *1 (-515 *4 *5)) (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *4 (-781)) (-874 *3) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1192))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5))))) -(-10 -7 (-15 -2713 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -4190 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1782 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3096 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2906 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1986 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1335 (($) 6)) (-2950 (((-872) $) 12) (((-1192) $) 10)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 8))) -(((-516) (-13 (-1115) (-623 (-1192)) (-10 -8 (-15 -1335 ($))))) (T -516)) -((-1335 (*1 *1) (-5 *1 (-516)))) -(-13 (-1115) (-623 (-1192)) (-10 -8 (-15 -1335 ($)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-4327 (($ |#1| |#2|) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-2984 ((|#2| $) NIL)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 12 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) 11) (($ $ $) 35)) (-3074 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21))) +((-1608 (((-654 (-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781)) 32)) (-3487 (((-654 (-1189 |#1|)) |#1| (-781) (-781) (-781)) 43)) (-1735 (((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)) 107))) +(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -3487 ((-654 (-1189 |#1|)) |#1| (-781) (-781) (-781))) (-15 -1608 ((-654 (-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -1735 ((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)))) (-358) (-1260 |#1|) (-1260 |#2|)) (T -508)) +((-1735 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-2 (|:| -2391 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7))))) (-5 *5 (-781)) (-4 *8 (-1260 *7)) (-4 *7 (-1260 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -2391 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7)))) (-5 *1 (-508 *6 *7 *8)))) (-1608 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -2391 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6))))) (-5 *1 (-508 *5 *6 *7)) (-5 *3 (-2 (|:| -2391 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6)))) (-4 *7 (-1260 *6)))) (-3487 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1260 *3)) (-5 *2 (-654 (-1189 *3))) (-5 *1 (-508 *3 *5 *6)) (-4 *6 (-1260 *5))))) +(-10 -7 (-15 -3487 ((-654 (-1189 |#1|)) |#1| (-781) (-781) (-781))) (-15 -1608 ((-654 (-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -1735 ((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)))) +((-3099 (((-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 70)) (-1867 ((|#1| (-699 |#1|) |#1| (-781)) 24)) (-3435 (((-781) (-781) (-781)) 34)) (-3349 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 50)) (-4265 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 58) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 55)) (-1443 ((|#1| (-699 |#1|) (-699 |#1|) |#1| (-574)) 28)) (-2366 ((|#1| (-699 |#1|)) 18))) +(((-509 |#1| |#2| |#3|) (-10 -7 (-15 -2366 (|#1| (-699 |#1|))) (-15 -1867 (|#1| (-699 |#1|) |#1| (-781))) (-15 -1443 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -3435 ((-781) (-781) (-781))) (-15 -4265 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -4265 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3349 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3099 ((-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))))) (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $)))) (-1260 |#1|) (-419 |#1| |#2|)) (T -509)) +((-3099 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3349 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-4265 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-4265 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3435 (*1 *2 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1443 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-574)) (-4 *2 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) (-4 *5 (-1260 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-1867 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-781)) (-4 *2 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) (-4 *5 (-1260 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-699 *2)) (-4 *4 (-1260 *2)) (-4 *2 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4))))) +(-10 -7 (-15 -2366 (|#1| (-699 |#1|))) (-15 -1867 (|#1| (-699 |#1|) |#1| (-781))) (-15 -1443 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -3435 ((-781) (-781) (-781))) (-15 -4265 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -4265 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3349 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3099 ((-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2391 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))))) +((-2864 (((-112) $ $) NIL)) (-2890 (($ $) NIL)) (-2117 (($ $ $) 40)) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4140 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-2786 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-3135 (((-112) $ (-1251 (-574)) (-112)) NIL (|has| $ (-6 -4460))) (((-112) $ (-574) (-112)) 42 (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-3311 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2882 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2473 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4460)))) (-2400 (((-112) $ (-574)) NIL)) (-1452 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1116))) (((-574) (-112) $) NIL (|has| (-112) (-1116))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1871 (((-654 (-112)) $) NIL (|has| $ (-6 -4459)))) (-2106 (($ $ $) 38)) (-2084 (($ $) NIL)) (-2259 (($ $ $) NIL)) (-3764 (($ (-781) (-112)) 27)) (-2165 (($ $ $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) 8 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL)) (-3404 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2036 (((-654 (-112)) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL)) (-2462 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-112) $) NIL (|has| (-574) (-860)))) (-2183 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1822 (($ $ (-112)) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2315 (((-654 (-112)) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) 28)) (-2207 (($ $ (-1251 (-574))) NIL) (((-112) $ (-574)) 22) (((-112) $ (-574) (-112)) NIL)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-3949 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) 29)) (-1844 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2963 (($ (-654 (-112))) NIL)) (-4132 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2951 (((-872) $) 26)) (-4069 (((-112) $ $) NIL)) (-2020 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2095 (($ $ $) 36)) (-2934 (($ $ $) NIL)) (-2257 (($ $ $) 45)) (-2267 (($ $) 43)) (-2244 (($ $ $) 44)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 30)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 31)) (-2922 (($ $ $) NIL)) (-2877 (((-781) $) 13 (|has| $ (-6 -4459))))) +(((-510 |#1|) (-13 (-124) (-10 -8 (-15 -2267 ($ $)) (-15 -2257 ($ $ $)) (-15 -2244 ($ $ $)))) (-574)) (T -510)) +((-2267 (*1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2257 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2244 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574))))) +(-13 (-124) (-10 -8 (-15 -2267 ($ $)) (-15 -2257 ($ $ $)) (-15 -2244 ($ $ $)))) +((-2620 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1189 |#4|)) 35)) (-2633 (((-1189 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1189 |#4|)) 22)) (-2548 (((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1189 |#4|))) 46)) (-4272 (((-1189 (-1189 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2633 (|#2| (-1 |#1| |#4|) (-1189 |#4|))) (-15 -2633 ((-1189 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2620 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1189 |#4|))) (-15 -2548 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1189 |#4|)))) (-15 -4272 ((-1189 (-1189 |#4|)) (-1 |#4| |#1|) |#3|))) (-1065) (-1260 |#1|) (-1260 |#2|) (-1065)) (T -511)) +((-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1065)) (-4 *7 (-1065)) (-4 *6 (-1260 *5)) (-5 *2 (-1189 (-1189 *7))) (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1260 *6)))) (-2548 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-699 (-1189 *8))) (-4 *5 (-1065)) (-4 *8 (-1065)) (-4 *6 (-1260 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8)) (-4 *7 (-1260 *6)))) (-2620 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1189 *7)) (-4 *5 (-1065)) (-4 *7 (-1065)) (-4 *2 (-1260 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1260 *2)))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1065)) (-4 *7 (-1065)) (-4 *4 (-1260 *5)) (-5 *2 (-1189 *7)) (-5 *1 (-511 *5 *4 *6 *7)) (-4 *6 (-1260 *4)))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1189 *7)) (-4 *5 (-1065)) (-4 *7 (-1065)) (-4 *2 (-1260 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1260 *2))))) +(-10 -7 (-15 -2633 (|#2| (-1 |#1| |#4|) (-1189 |#4|))) (-15 -2633 ((-1189 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2620 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1189 |#4|))) (-15 -2548 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1189 |#4|)))) (-15 -4272 ((-1189 (-1189 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2864 (((-112) $ $) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3055 (((-1289) $) 25)) (-2207 (((-1175) $ (-1193)) 30)) (-1414 (((-1289) $) 17)) (-2951 (((-872) $) 27) (($ (-1175)) 26)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 11)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 9))) +(((-512) (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3055 ((-1289) $)) (-15 -2951 ($ (-1175)))))) (T -512)) +((-2207 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1175)) (-5 *1 (-512)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-512)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-512)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-512))))) +(-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3055 ((-1289) $)) (-15 -2951 ($ (-1175))))) +((-4431 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4231 ((|#1| |#4|) 10)) (-3810 ((|#3| |#4|) 17))) +(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4231 (|#1| |#4|)) (-15 -3810 (|#3| |#4|)) (-15 -4431 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-566) (-1008 |#1|) (-382 |#1|) (-382 |#2|)) (T -513)) +((-4431 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5)))) (-3810 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) (-4 *2 (-382 *4)) (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5)))) (-4231 (*1 *2 *3) (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-382 *4))))) +(-10 -7 (-15 -4231 (|#1| |#4|)) (-15 -3810 (|#3| |#4|)) (-15 -4431 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2864 (((-112) $ $) NIL)) (-3260 (((-112) $ (-654 |#3|)) 126) (((-112) $) 127)) (-1431 (((-112) $) 178)) (-1887 (($ $ |#4|) 117) (($ $ |#4| (-654 |#3|)) 121)) (-2567 (((-1182 (-654 (-966 |#1|)) (-654 (-302 (-966 |#1|)))) (-654 |#4|)) 171 (|has| |#3| (-624 (-1193))))) (-3901 (($ $ $) 107) (($ $ |#4|) 105)) (-4226 (((-112) $) 177)) (-2028 (($ $) 131)) (-1489 (((-1175) $) NIL)) (-3891 (($ $ $) 99) (($ (-654 $)) 101)) (-2812 (((-112) |#4| $) 129)) (-2780 (((-112) $ $) 82)) (-2984 (($ (-654 |#4|)) 106)) (-3940 (((-1136) $) NIL)) (-2832 (($ (-654 |#4|)) 175)) (-1448 (((-112) $) 176)) (-4137 (($ $) 85)) (-2684 (((-654 |#4|) $) 73)) (-4373 (((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|)) NIL)) (-3397 (((-112) |#4| $) 89)) (-2995 (((-574) $ (-654 |#3|)) 133) (((-574) $) 134)) (-2951 (((-872) $) 174) (($ (-654 |#4|)) 102)) (-4069 (((-112) $ $) NIL)) (-2551 (($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $))) NIL)) (-2986 (((-112) $ $) 84)) (-3074 (($ $ $) 109)) (** (($ $ (-781)) 115)) (* (($ $ $) 113))) +(((-514 |#1| |#2| |#3| |#4|) (-13 (-1116) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3074 ($ $ $)) (-15 -4226 ((-112) $)) (-15 -1431 ((-112) $)) (-15 -3397 ((-112) |#4| $)) (-15 -2780 ((-112) $ $)) (-15 -2812 ((-112) |#4| $)) (-15 -3260 ((-112) $ (-654 |#3|))) (-15 -3260 ((-112) $)) (-15 -3891 ($ $ $)) (-15 -3891 ($ (-654 $))) (-15 -3901 ($ $ $)) (-15 -3901 ($ $ |#4|)) (-15 -4137 ($ $)) (-15 -4373 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -2551 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -2995 ((-574) $ (-654 |#3|))) (-15 -2995 ((-574) $)) (-15 -2028 ($ $)) (-15 -2984 ($ (-654 |#4|))) (-15 -2832 ($ (-654 |#4|))) (-15 -1448 ((-112) $)) (-15 -2684 ((-654 |#4|) $)) (-15 -2951 ($ (-654 |#4|))) (-15 -1887 ($ $ |#4|)) (-15 -1887 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1193))) (-15 -2567 ((-1182 (-654 (-966 |#1|)) (-654 (-302 (-966 |#1|)))) (-654 |#4|))) |%noBranch|))) (-372) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -514)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-3074 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-4226 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-1431 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-3397 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))) (-2780 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-2812 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))) (-3260 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))) (-3260 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-3891 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-3891 (*1 *1 *2) (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-3901 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-3901 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5)))) (-4137 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-4373 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4)) (|:| |genIdeal| (-514 *4 *5 *6 *7)))) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3)) (|:| |genIdeal| (-514 *3 *4 *5 *6)))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-2995 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))) (-2995 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-2028 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-2984 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-1448 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-2684 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-1887 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5)))) (-1887 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-963 *4 *5 *6)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *5 *6)) (-4 *6 (-624 (-1193))) (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1182 (-654 (-966 *4)) (-654 (-302 (-966 *4))))) (-5 *1 (-514 *4 *5 *6 *7))))) +(-13 (-1116) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3074 ($ $ $)) (-15 -4226 ((-112) $)) (-15 -1431 ((-112) $)) (-15 -3397 ((-112) |#4| $)) (-15 -2780 ((-112) $ $)) (-15 -2812 ((-112) |#4| $)) (-15 -3260 ((-112) $ (-654 |#3|))) (-15 -3260 ((-112) $)) (-15 -3891 ($ $ $)) (-15 -3891 ($ (-654 $))) (-15 -3901 ($ $ $)) (-15 -3901 ($ $ |#4|)) (-15 -4137 ($ $)) (-15 -4373 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -2551 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -2995 ((-574) $ (-654 |#3|))) (-15 -2995 ((-574) $)) (-15 -2028 ($ $)) (-15 -2984 ($ (-654 |#4|))) (-15 -2832 ($ (-654 |#4|))) (-15 -1448 ((-112) $)) (-15 -2684 ((-654 |#4|) $)) (-15 -2951 ($ (-654 |#4|))) (-15 -1887 ($ $ |#4|)) (-15 -1887 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1193))) (-15 -2567 ((-1182 (-654 (-966 |#1|)) (-654 (-302 (-966 |#1|)))) (-654 |#4|))) |%noBranch|))) +((-3190 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 176)) (-3993 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 177)) (-3098 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 129)) (-3978 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) NIL)) (-2348 (((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 179)) (-2735 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))) 195))) +(((-515 |#1| |#2|) (-10 -7 (-15 -3190 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3993 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3978 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3098 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2348 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2735 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))))) (-654 (-1193)) (-781)) (T -515)) +((-2735 (*1 *2 *2 *3) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *1 (-515 *4 *5)))) (-2348 (*1 *2 *3) (-12 (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-654 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574)))))) (-5 *1 (-515 *4 *5)) (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *4 (-781)) (-874 *3) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1193))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5))))) +(-10 -7 (-15 -3190 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3993 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3978 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3098 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2348 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2735 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1996 (($) 6)) (-2951 (((-872) $) 12) (((-1193) $) 10)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 8))) +(((-516) (-13 (-1116) (-623 (-1193)) (-10 -8 (-15 -1996 ($))))) (T -516)) +((-1996 (*1 *1) (-5 *1 (-516)))) +(-13 (-1116) (-623 (-1193)) (-10 -8 (-15 -1996 ($)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4328 (($ |#1| |#2|) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3758 ((|#2| $) NIL)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 12 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) 11) (($ $ $) 35)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21))) (((-517 |#1| |#2|) (-13 (-21) (-519 |#1| |#2|)) (-21) (-860)) (T -517)) NIL (-13 (-21) (-519 |#1| |#2|)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 13)) (-3831 (($) NIL T CONST)) (-1401 (($ $) 41)) (-4327 (($ |#1| |#2|) 38)) (-1786 (($ (-1 |#1| |#1|) $) 40)) (-2984 ((|#2| $) NIL)) (-1377 ((|#1| $) 42)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 10 T CONST)) (-2985 (((-112) $ $) NIL)) (-3074 (($ $ $) 26)) (* (($ (-934) $) NIL) (($ (-781) $) 36))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 13)) (-3250 (($) NIL T CONST)) (-1402 (($ $) 41)) (-4328 (($ |#1| |#2|) 38)) (-1785 (($ (-1 |#1| |#1|) $) 40)) (-3758 ((|#2| $) NIL)) (-1378 ((|#1| $) 42)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 10 T CONST)) (-2986 (((-112) $ $) NIL)) (-3074 (($ $ $) 26)) (* (($ (-935) $) NIL) (($ (-781) $) 36))) (((-518 |#1| |#2|) (-13 (-23) (-519 |#1| |#2|)) (-23) (-860)) (T -518)) NIL (-13 (-23) (-519 |#1| |#2|)) -((-2863 (((-112) $ $) 7)) (-1401 (($ $) 14)) (-4327 (($ |#1| |#2|) 17)) (-1786 (($ (-1 |#1| |#1|) $) 18)) (-2984 ((|#2| $) 15)) (-1377 ((|#1| $) 16)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) -(((-519 |#1| |#2|) (-141) (-1115) (-860)) (T -519)) -((-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-860)))) (-4327 (*1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-860)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1115)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-860)))) (-1401 (*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-860))))) -(-13 (-1115) (-10 -8 (-15 -1786 ($ (-1 |t#1| |t#1|) $)) (-15 -4327 ($ |t#1| |t#2|)) (-15 -1377 (|t#1| $)) (-15 -2984 (|t#2| $)) (-15 -1401 ($ $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3831 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-4327 (($ |#1| |#2|) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-2984 ((|#2| $) NIL)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 22)) (-3074 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL))) +((-2864 (((-112) $ $) 7)) (-1402 (($ $) 14)) (-4328 (($ |#1| |#2|) 17)) (-1785 (($ (-1 |#1| |#1|) $) 18)) (-3758 ((|#2| $) 15)) (-1378 ((|#1| $) 16)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) +(((-519 |#1| |#2|) (-141) (-1116) (-860)) (T -519)) +((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-860)))) (-4328 (*1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-860)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1116)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-860)))) (-1402 (*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-860))))) +(-13 (-1116) (-10 -8 (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (-15 -4328 ($ |t#1| |t#2|)) (-15 -1378 (|t#1| $)) (-15 -3758 (|t#2| $)) (-15 -1402 ($ $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-3250 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4328 (($ |#1| |#2|) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3758 ((|#2| $) NIL)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 22)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL))) (((-520 |#1| |#2|) (-13 (-802) (-519 |#1| |#2|)) (-802) (-860)) (T -520)) NIL (-13 (-802) (-519 |#1| |#2|)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-2620 (($ $ $) 23)) (-1597 (((-3 $ "failed") $ $) 19)) (-3831 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-4327 (($ |#1| |#2|) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-2984 ((|#2| $) NIL)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-1968 (($ $ $) 23)) (-2600 (((-3 $ "failed") $ $) 19)) (-3250 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4328 (($ |#1| |#2|) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3758 ((|#2| $) NIL)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL))) (((-521 |#1| |#2|) (-13 (-803) (-519 |#1| |#2|)) (-803) (-860)) (T -521)) NIL (-13 (-803) (-519 |#1| |#2|)) -((-2863 (((-112) $ $) NIL)) (-1401 (($ $) 32)) (-4327 (($ |#1| |#2|) 28)) (-1786 (($ (-1 |#1| |#1|) $) 30)) (-2984 ((|#2| $) 34)) (-1377 ((|#1| $) 33)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 27)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 20))) -(((-522 |#1| |#2|) (-519 |#1| |#2|) (-1115) (-860)) (T -522)) +((-2864 (((-112) $ $) NIL)) (-1402 (($ $) 32)) (-4328 (($ |#1| |#2|) 28)) (-1785 (($ (-1 |#1| |#1|) $) 30)) (-3758 ((|#2| $) 34)) (-1378 ((|#1| $) 33)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 27)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 20))) +(((-522 |#1| |#2|) (-519 |#1| |#2|) (-1116) (-860)) (T -522)) NIL (-519 |#1| |#2|) -((-2660 (($ $ (-654 |#2|) (-654 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-523 |#1| |#2| |#3|) (-10 -8 (-15 -2660 (|#1| |#1| |#2| |#3|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#3|)))) (-524 |#2| |#3|) (-1115) (-1233)) (T -523)) +((-2661 (($ $ (-654 |#2|) (-654 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-523 |#1| |#2| |#3|) (-10 -8 (-15 -2661 (|#1| |#1| |#2| |#3|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#3|)))) (-524 |#2| |#3|) (-1116) (-1234)) (T -523)) NIL -(-10 -8 (-15 -2660 (|#1| |#1| |#2| |#3|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#3|)))) -((-2660 (($ $ (-654 |#1|) (-654 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-524 |#1| |#2|) (-141) (-1115) (-1233)) (T -524)) -((-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *5)) (-4 *1 (-524 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1233)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1233))))) -(-13 (-10 -8 (-15 -2660 ($ $ |t#1| |t#2|)) (-15 -2660 ($ $ (-654 |t#1|) (-654 |t#2|))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 17)) (-3786 (((-654 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))) $) 19)) (-1597 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781) $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2382 ((|#1| $ (-574)) 24)) (-2734 ((|#2| $ (-574)) 22)) (-3341 (($ (-1 |#1| |#1|) $) 48)) (-2097 (($ (-1 |#2| |#2|) $) 45)) (-3945 (((-1174) $) NIL)) (-4152 (($ $ $) 55 (|has| |#2| (-802)))) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 44) (($ |#1|) NIL)) (-2930 ((|#2| |#1| $) 51)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 11 T CONST)) (-2985 (((-112) $ $) 30)) (-3074 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-934) $) NIL) (($ (-781) $) 37) (($ |#2| |#1|) 32))) -(((-525 |#1| |#2| |#3|) (-331 |#1| |#2|) (-1115) (-132) |#2|) (T -525)) +(-10 -8 (-15 -2661 (|#1| |#1| |#2| |#3|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#3|)))) +((-2661 (($ $ (-654 |#1|) (-654 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-524 |#1| |#2|) (-141) (-1116) (-1234)) (T -524)) +((-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *5)) (-4 *1 (-524 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1234)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1234))))) +(-13 (-10 -8 (-15 -2661 ($ $ |t#1| |t#2|)) (-15 -2661 ($ $ (-654 |t#1|) (-654 |t#2|))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 17)) (-3108 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))) $) 19)) (-2600 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781) $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-1719 ((|#1| $ (-574)) 24)) (-3699 ((|#2| $ (-574)) 22)) (-4359 (($ (-1 |#1| |#1|) $) 48)) (-2422 (($ (-1 |#2| |#2|) $) 45)) (-1489 (((-1175) $) NIL)) (-3939 (($ $ $) 55 (|has| |#2| (-802)))) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 44) (($ |#1|) NIL)) (-2706 ((|#2| |#1| $) 51)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 11 T CONST)) (-2986 (((-112) $ $) 30)) (-3074 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-935) $) NIL) (($ (-781) $) 37) (($ |#2| |#1|) 32))) +(((-525 |#1| |#2| |#3|) (-331 |#1| |#2|) (-1116) (-132) |#2|) (T -525)) NIL (-331 |#1| |#2|) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3841 (((-112) (-112)) 32)) (-3134 ((|#1| $ (-574) |#1|) 42 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2551 (($ (-1 (-112) |#1|) $) 77)) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2098 (($ $) 81 (|has| |#1| (-1115)))) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1941 (($ |#1| $) NIL (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) 64)) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-3903 (($ $ (-574)) 19)) (-1647 (((-781) $) 13)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 31)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) 29 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-2857 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) 28 (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-2609 (($ $ $ (-574)) 73) (($ |#1| $ (-574)) 57)) (-1603 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-3658 (($ (-654 |#1|)) 43)) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4276 (($ $ |#1|) 24 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 60)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) 21)) (-2208 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 53) (($ $ (-1250 (-574))) NIL)) (-1317 (($ $ (-1250 (-574))) 71) (($ $ (-574)) 65)) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2315 (($ $ $ (-574)) 61 (|has| $ (-6 -4459)))) (-3156 (($ $) 51)) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-4226 (($ $ $) 62) (($ $ |#1|) 59)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) 22 (|has| $ (-6 -4458))))) -(((-526 |#1| |#2|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -3658 ($ (-654 |#1|))) (-15 -1647 ((-781) $)) (-15 -3903 ($ $ (-574))) (-15 -3841 ((-112) (-112))))) (-1233) (-574)) (T -526)) -((-3658 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-526 *3 *4)) (-14 *4 (-574)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) (-14 *4 (-574)))) (-3903 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) (-14 *4 *2))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) (-14 *4 (-574))))) -(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -3658 ($ (-654 |#1|))) (-15 -1647 ((-781) $)) (-15 -3903 ($ $ (-574))) (-15 -3841 ((-112) (-112))))) -((-2863 (((-112) $ $) NIL)) (-3430 (((-1150) $) 11)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2363 (((-1150) $) 13)) (-2278 (((-1150) $) 9)) (-2950 (((-872) $) 19) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-527) (-13 (-1098) (-10 -8 (-15 -2278 ((-1150) $)) (-15 -3430 ((-1150) $)) (-15 -2363 ((-1150) $))))) (T -527)) -((-2278 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527)))) (-2363 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527))))) -(-13 (-1098) (-10 -8 (-15 -2278 ((-1150) $)) (-15 -3430 ((-1150) $)) (-15 -2363 ((-1150) $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 (((-591 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-591 |#1|) (-377)))) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-591 |#1|) (-377)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-591 |#1|) (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-591 |#1|) "failed") $) NIL)) (-2216 (((-591 |#1|) $) NIL)) (-2919 (($ (-1283 (-591 |#1|))) NIL)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-591 |#1|) (-377)))) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-591 |#1|) (-377)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) NIL (|has| (-591 |#1|) (-377)))) (-3873 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-4158 (($ $ (-781)) NIL (-2832 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377)))) (($ $) NIL (-2832 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-1782 (((-112) $) NIL)) (-2725 (((-934) $) NIL (|has| (-591 |#1|) (-377))) (((-843 (-934)) $) NIL (-2832 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-3372 (((-112) $) NIL)) (-3434 (($) NIL (|has| (-591 |#1|) (-377)))) (-3743 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-1386 (((-591 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-591 |#1|) (-377)))) (-1353 (((-3 $ "failed") $) NIL (|has| (-591 |#1|) (-377)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 (-591 |#1|)) $) NIL) (((-1188 $) $ (-934)) NIL (|has| (-591 |#1|) (-377)))) (-3271 (((-934) $) NIL (|has| (-591 |#1|) (-377)))) (-3363 (((-1188 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377)))) (-4426 (((-1188 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-1188 (-591 |#1|)) "failed") $ $) NIL (|has| (-591 |#1|) (-377)))) (-4140 (($ $ (-1188 (-591 |#1|))) NIL (|has| (-591 |#1|) (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-591 |#1|) (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| (-591 |#1|) (-377)))) (-3854 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2975 (($) NIL (|has| (-591 |#1|) (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| (-591 |#1|) (-377)))) (-4200 (((-428 $) $) NIL)) (-1971 (((-843 (-934))) NIL) (((-934)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-781) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-3480 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-591 |#1|) (-377))) (($ $) NIL (|has| (-591 |#1|) (-377)))) (-3584 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2290 (((-1188 (-591 |#1|))) NIL)) (-1417 (($) NIL (|has| (-591 |#1|) (-377)))) (-1549 (($) NIL (|has| (-591 |#1|) (-377)))) (-4346 (((-1283 (-591 |#1|)) $) NIL) (((-699 (-591 |#1|)) (-1283 $)) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-591 |#1|) (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-591 |#1|)) NIL)) (-3247 (($ $) NIL (|has| (-591 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2893 (($ $) NIL (|has| (-591 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-591 |#1|) (-377)))) (-3583 (($ $ (-781)) NIL (|has| (-591 |#1|) (-377))) (($ $) NIL (|has| (-591 |#1|) (-377)))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL) (($ $ (-591 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-591 |#1|)) NIL) (($ (-591 |#1|) $) NIL))) -(((-528 |#1| |#2|) (-337 (-591 |#1|)) (-934) (-934)) (T -528)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-3550 (((-112) (-112)) 32)) (-3135 ((|#1| $ (-574) |#1|) 42 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-1923 (($ (-1 (-112) |#1|) $) 77)) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2088 (($ $) 81 (|has| |#1| (-1116)))) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2424 (($ |#1| $) NIL (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) 64)) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1591 (($ $ (-574)) 19)) (-2281 (((-781) $) 13)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 31)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) 29 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-4349 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) 28 (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3285 (($ $ $ (-574)) 73) (($ |#1| $ (-574)) 57)) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1492 (($ (-654 |#1|)) 43)) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1822 (($ $ |#1|) 24 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 60)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) 21)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 53) (($ $ (-1251 (-574))) NIL)) (-4385 (($ $ (-1251 (-574))) 71) (($ $ (-574)) 65)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4036 (($ $ $ (-574)) 61 (|has| $ (-6 -4460)))) (-3157 (($ $) 51)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-2982 (($ $ $) 62) (($ $ |#1|) 59)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) 22 (|has| $ (-6 -4459))))) +(((-526 |#1| |#2|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1492 ($ (-654 |#1|))) (-15 -2281 ((-781) $)) (-15 -1591 ($ $ (-574))) (-15 -3550 ((-112) (-112))))) (-1234) (-574)) (T -526)) +((-1492 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-526 *3 *4)) (-14 *4 (-574)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234)) (-14 *4 (-574)))) (-1591 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234)) (-14 *4 *2))) (-3550 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234)) (-14 *4 (-574))))) +(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1492 ($ (-654 |#1|))) (-15 -2281 ((-781) $)) (-15 -1591 ($ $ (-574))) (-15 -3550 ((-112) (-112))))) +((-2864 (((-112) $ $) NIL)) (-4014 (((-1151) $) 11)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3726 (((-1151) $) 13)) (-2277 (((-1151) $) 9)) (-2951 (((-872) $) 19) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-527) (-13 (-1099) (-10 -8 (-15 -2277 ((-1151) $)) (-15 -4014 ((-1151) $)) (-15 -3726 ((-1151) $))))) (T -527)) +((-2277 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527))))) +(-13 (-1099) (-10 -8 (-15 -2277 ((-1151) $)) (-15 -4014 ((-1151) $)) (-15 -3726 ((-1151) $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 (((-591 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-591 |#1|) (-377)))) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-591 |#1|) (-377)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-591 |#1|) (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-591 |#1|) "failed") $) NIL)) (-2214 (((-591 |#1|) $) NIL)) (-2580 (($ (-1284 (-591 |#1|))) NIL)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-591 |#1|) (-377)))) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-591 |#1|) (-377)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) NIL (|has| (-591 |#1|) (-377)))) (-3084 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-1995 (($ $ (-781)) NIL (-2833 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377)))) (($ $) NIL (-2833 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-3978 (((-112) $) NIL)) (-3547 (((-935) $) NIL (|has| (-591 |#1|) (-377))) (((-843 (-935)) $) NIL (-2833 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-4226 (((-112) $) NIL)) (-3841 (($) NIL (|has| (-591 |#1|) (-377)))) (-3272 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-1681 (((-591 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-591 |#1|) (-377)))) (-2414 (((-3 $ "failed") $) NIL (|has| (-591 |#1|) (-377)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 (-591 |#1|)) $) NIL) (((-1189 $) $ (-935)) NIL (|has| (-591 |#1|) (-377)))) (-3383 (((-935) $) NIL (|has| (-591 |#1|) (-377)))) (-2346 (((-1189 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377)))) (-3747 (((-1189 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-1189 (-591 |#1|)) "failed") $ $) NIL (|has| (-591 |#1|) (-377)))) (-1927 (($ $ (-1189 (-591 |#1|))) NIL (|has| (-591 |#1|) (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| (-591 |#1|) (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| (-591 |#1|) (-377)))) (-2228 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL (|has| (-591 |#1|) (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| (-591 |#1|) (-377)))) (-4202 (((-428 $) $) NIL)) (-2027 (((-843 (-935))) NIL) (((-935)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-781) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-2995 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-591 |#1|) (-377))) (($ $) NIL (|has| (-591 |#1|) (-377)))) (-3580 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-4379 (((-1189 (-591 |#1|))) NIL)) (-3603 (($) NIL (|has| (-591 |#1|) (-377)))) (-4219 (($) NIL (|has| (-591 |#1|) (-377)))) (-1385 (((-1284 (-591 |#1|)) $) NIL) (((-699 (-591 |#1|)) (-1284 $)) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-591 |#1|) (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-591 |#1|)) NIL)) (-3424 (($ $) NIL (|has| (-591 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2656 (($ $) NIL (|has| (-591 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-591 |#1|) (-377)))) (-3584 (($ $ (-781)) NIL (|has| (-591 |#1|) (-377))) (($ $) NIL (|has| (-591 |#1|) (-377)))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-591 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-591 |#1|)) NIL) (($ (-591 |#1|) $) NIL))) +(((-528 |#1| |#2|) (-337 (-591 |#1|)) (-935) (-935)) (T -528)) NIL (-337 (-591 |#1|)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) 51)) (-2652 (($ $ (-574) |#4|) NIL)) (-1861 (($ $ (-574) |#5|) NIL)) (-3831 (($) NIL T CONST)) (-1860 ((|#4| $ (-574)) NIL)) (-2472 ((|#1| $ (-574) (-574) |#1|) 50)) (-2399 ((|#1| $ (-574) (-574)) 45)) (-1873 (((-654 |#1|) $) NIL)) (-2198 (((-781) $) 33)) (-3763 (($ (-781) (-781) |#1|) 30)) (-2207 (((-781) $) 38)) (-2224 (((-112) $ (-781)) NIL)) (-3312 (((-574) $) 31)) (-4378 (((-574) $) 32)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2391 (((-574) $) 37)) (-3280 (((-574) $) 39)) (-2461 (($ (-1 |#1| |#1|) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) 55 (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4276 (($ $ |#1|) NIL)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 14)) (-2833 (($) 16)) (-2208 ((|#1| $ (-574) (-574)) 48) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-1482 ((|#5| $ (-574)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-529 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1233) (-574) (-574) (-382 |#1|) (-382 |#1|)) (T -529)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) 51)) (-1966 (($ $ (-574) |#4|) NIL)) (-3654 (($ $ (-574) |#5|) NIL)) (-3250 (($) NIL T CONST)) (-1959 ((|#4| $ (-574)) NIL)) (-2473 ((|#1| $ (-574) (-574) |#1|) 50)) (-2400 ((|#1| $ (-574) (-574)) 45)) (-1871 (((-654 |#1|) $) NIL)) (-2197 (((-781) $) 33)) (-3764 (($ (-781) (-781) |#1|) 30)) (-2206 (((-781) $) 38)) (-2189 (((-112) $ (-781)) NIL)) (-2219 (((-574) $) 31)) (-2126 (((-574) $) 32)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3352 (((-574) $) 37)) (-1695 (((-574) $) 39)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) 55 (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1822 (($ $ |#1|) NIL)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 14)) (-3336 (($) 16)) (-2207 ((|#1| $ (-574) (-574)) 48) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-1425 ((|#5| $ (-574)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-529 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1234) (-574) (-574) (-382 |#1|) (-382 |#1|)) (T -529)) NIL (-57 |#1| |#4| |#5|) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) NIL)) (-2420 ((|#1| $) NIL)) (-1979 (($ $) NIL)) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-1344 (($ $ (-574)) 70 (|has| $ (-6 -4459)))) (-4331 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3565 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4459)))) (-2785 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-3906 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3168 (($ $ $) 23 (|has| $ (-6 -4459)))) (-2976 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3576 ((|#1| $ |#1|) 21 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4459))) (($ $ "rest" $) 24 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-2551 (($ (-1 (-112) |#1|) $) NIL)) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2407 ((|#1| $) NIL)) (-3831 (($) NIL T CONST)) (-2163 (($ $) 28 (|has| $ (-6 -4459)))) (-4424 (($ $) 29)) (-2934 (($ $) 18) (($ $ (-781)) 32)) (-2098 (($ $) 62 (|has| |#1| (-1115)))) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1941 (($ |#1| $) NIL (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) NIL)) (-3310 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2472 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1930 (((-112) $) NIL)) (-1451 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115))) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1873 (((-654 |#1|) $) 27 (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) NIL)) (-2661 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) 31 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-2857 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-4297 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1797 (($ |#1|) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3481 (((-654 |#1|) $) NIL)) (-4069 (((-112) $) NIL)) (-3945 (((-1174) $) 58 (|has| |#1| (-1115)))) (-3333 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-2609 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1603 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) 13) (($ $ (-781)) NIL)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4276 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-1425 (((-112) $) NIL)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 12)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) 17)) (-2833 (($) 16)) (-2208 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1250 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL)) (-4418 (((-574) $ $) NIL)) (-1317 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-2853 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-1966 (((-112) $) 35)) (-2013 (($ $) NIL)) (-1429 (($ $) NIL (|has| $ (-6 -4459)))) (-2746 (((-781) $) NIL)) (-1476 (($ $) 40)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) 36)) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 26)) (-4226 (($ $ $) 61) (($ $ |#1|) NIL)) (-4131 (($ $ $) NIL) (($ |#1| $) 10) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2950 (((-872) $) 50 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) NIL)) (-1870 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) 54 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) 9 (|has| $ (-6 -4458))))) -(((-530 |#1| |#2|) (-676 |#1|) (-1233) (-574)) (T -530)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) NIL)) (-2421 ((|#1| $) NIL)) (-1978 (($ $) NIL)) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1652 (($ $ (-574)) 70 (|has| $ (-6 -4460)))) (-3861 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4140 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4460)))) (-2786 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-4433 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3370 (($ $ $) 23 (|has| $ (-6 -4460)))) (-2523 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-2186 ((|#1| $ |#1|) 21 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4460))) (($ $ "rest" $) 24 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-1923 (($ (-1 (-112) |#1|) $) NIL)) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2408 ((|#1| $) NIL)) (-3250 (($) NIL T CONST)) (-2412 (($ $) 28 (|has| $ (-6 -4460)))) (-4425 (($ $) 29)) (-2935 (($ $) 18) (($ $ (-781)) 32)) (-2088 (($ $) 62 (|has| |#1| (-1116)))) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2424 (($ |#1| $) NIL (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) NIL)) (-3311 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-4186 (((-112) $) NIL)) (-1452 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116))) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1871 (((-654 |#1|) $) 27 (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) NIL)) (-2622 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) 31 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-4349 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-3404 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1795 (($ |#1|) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-3483 (((-654 |#1|) $) NIL)) (-1580 (((-112) $) NIL)) (-1489 (((-1175) $) 58 (|has| |#1| (-1116)))) (-3334 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-3285 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) 13) (($ $ (-781)) NIL)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1822 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3070 (((-112) $) NIL)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 12)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) 17)) (-3336 (($) 16)) (-2207 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1251 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL)) (-3615 (((-574) $ $) NIL)) (-4385 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-3911 (((-112) $) 35)) (-1939 (($ $) NIL)) (-2043 (($ $) NIL (|has| $ (-6 -4460)))) (-1746 (((-781) $) NIL)) (-2386 (($ $) 40)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) 36)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 26)) (-2982 (($ $ $) 61) (($ $ |#1|) NIL)) (-4132 (($ $ $) NIL) (($ |#1| $) 10) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2951 (((-872) $) 50 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) NIL)) (-4208 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) 54 (|has| |#1| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) 9 (|has| $ (-6 -4459))))) +(((-530 |#1| |#2|) (-676 |#1|) (-1234) (-574)) (T -530)) NIL (-676 |#1|) -((-3502 ((|#4| |#4|) 38)) (-3557 (((-781) |#4|) 44)) (-1835 (((-781) |#4|) 45)) (-3284 (((-654 |#3|) |#4|) 55 (|has| |#3| (-6 -4459)))) (-4333 (((-3 |#4| "failed") |#4|) 67)) (-1507 ((|#4| |#4|) 59)) (-1928 ((|#1| |#4|) 58))) -(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3502 (|#4| |#4|)) (-15 -3557 ((-781) |#4|)) (-15 -1835 ((-781) |#4|)) (IF (|has| |#3| (-6 -4459)) (-15 -3284 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -1928 (|#1| |#4|)) (-15 -1507 (|#4| |#4|)) (-15 -4333 ((-3 |#4| "failed") |#4|))) (-372) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -531)) -((-4333 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1507 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1928 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372)) (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-3284 (*1 *2 *3) (-12 (|has| *6 (-6 -4459)) (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1835 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(-10 -7 (-15 -3502 (|#4| |#4|)) (-15 -3557 ((-781) |#4|)) (-15 -1835 ((-781) |#4|)) (IF (|has| |#3| (-6 -4459)) (-15 -3284 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -1928 (|#1| |#4|)) (-15 -1507 (|#4| |#4|)) (-15 -4333 ((-3 |#4| "failed") |#4|))) -((-3502 ((|#8| |#4|) 20)) (-3284 (((-654 |#3|) |#4|) 29 (|has| |#7| (-6 -4459)))) (-4333 (((-3 |#8| "failed") |#4|) 23))) -(((-532 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3502 (|#8| |#4|)) (-15 -4333 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4459)) (-15 -3284 ((-654 |#3|) |#4|)) |%noBranch|)) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1007 |#1|) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -532)) -((-3284 (*1 *2 *3) (-12 (|has| *9 (-6 -4459)) (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1007 *4)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)) (-5 *2 (-654 *6)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6)) (-4 *10 (-697 *7 *8 *9)))) (-4333 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1007 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) (-3502 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1007 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7))))) -(-10 -7 (-15 -3502 (|#8| |#4|)) (-15 -4333 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4459)) (-15 -3284 ((-654 |#3|) |#4|)) |%noBranch|)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2226 (($ (-781) (-781)) NIL)) (-2650 (($ $ $) NIL)) (-2292 (($ (-612 |#1| |#3|)) NIL) (($ $) NIL)) (-4319 (((-112) $) NIL)) (-1514 (($ $ (-574) (-574)) 21)) (-4322 (($ $ (-574) (-574)) NIL)) (-2251 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-3890 (($ $) NIL)) (-2240 (((-112) $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-3160 (($ $ (-574) (-574) $) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-2652 (($ $ (-574) (-612 |#1| |#3|)) NIL)) (-1861 (($ $ (-574) (-612 |#1| |#2|)) NIL)) (-3107 (($ (-781) |#1|) NIL)) (-3831 (($) NIL T CONST)) (-3502 (($ $) 30 (|has| |#1| (-315)))) (-1860 (((-612 |#1| |#3|) $ (-574)) NIL)) (-3557 (((-781) $) 33 (|has| |#1| (-566)))) (-2472 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2399 ((|#1| $ (-574) (-574)) NIL)) (-1873 (((-654 |#1|) $) NIL)) (-1835 (((-781) $) 35 (|has| |#1| (-566)))) (-3284 (((-654 (-612 |#1| |#2|)) $) 38 (|has| |#1| (-566)))) (-2198 (((-781) $) NIL)) (-3763 (($ (-781) (-781) |#1|) NIL)) (-2207 (((-781) $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1680 ((|#1| $) 28 (|has| |#1| (-6 (-4460 "*"))))) (-3312 (((-574) $) 10)) (-4378 (((-574) $) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2391 (((-574) $) 13)) (-3280 (((-574) $) NIL)) (-2923 (($ (-654 (-654 |#1|))) NIL)) (-2461 (($ (-1 |#1| |#1|) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1626 (((-654 (-654 |#1|)) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-4333 (((-3 $ "failed") $) 42 (|has| |#1| (-372)))) (-1800 (($ $ $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4276 (($ $ |#1|) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-1998 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-1609 (((-112) $) NIL)) (-1928 ((|#1| $) 26 (|has| |#1| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-1482 (((-612 |#1| |#2|) $ (-574)) NIL)) (-2950 (($ (-612 |#1| |#2|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-1996 (((-112) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-612 |#1| |#2|) $ (-612 |#1| |#2|)) NIL) (((-612 |#1| |#3|) (-612 |#1| |#3|) $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-533 |#1| |#2| |#3|) (-697 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) (-1064) (-574) (-574)) (T -533)) +((-1430 ((|#4| |#4|) 38)) (-3558 (((-781) |#4|) 44)) (-2893 (((-781) |#4|) 45)) (-1381 (((-654 |#3|) |#4|) 55 (|has| |#3| (-6 -4460)))) (-3593 (((-3 |#4| "failed") |#4|) 67)) (-3870 ((|#4| |#4|) 59)) (-1386 ((|#1| |#4|) 58))) +(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1430 (|#4| |#4|)) (-15 -3558 ((-781) |#4|)) (-15 -2893 ((-781) |#4|)) (IF (|has| |#3| (-6 -4460)) (-15 -1381 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -1386 (|#1| |#4|)) (-15 -3870 (|#4| |#4|)) (-15 -3593 ((-3 |#4| "failed") |#4|))) (-372) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -531)) +((-3593 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3870 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1386 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372)) (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-1381 (*1 *2 *3) (-12 (|has| *6 (-6 -4460)) (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-2893 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3558 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1430 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(-10 -7 (-15 -1430 (|#4| |#4|)) (-15 -3558 ((-781) |#4|)) (-15 -2893 ((-781) |#4|)) (IF (|has| |#3| (-6 -4460)) (-15 -1381 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -1386 (|#1| |#4|)) (-15 -3870 (|#4| |#4|)) (-15 -3593 ((-3 |#4| "failed") |#4|))) +((-1430 ((|#8| |#4|) 20)) (-1381 (((-654 |#3|) |#4|) 29 (|has| |#7| (-6 -4460)))) (-3593 (((-3 |#8| "failed") |#4|) 23))) +(((-532 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1430 (|#8| |#4|)) (-15 -3593 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4460)) (-15 -1381 ((-654 |#3|) |#4|)) |%noBranch|)) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1008 |#1|) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -532)) +((-1381 (*1 *2 *3) (-12 (|has| *9 (-6 -4460)) (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1008 *4)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)) (-5 *2 (-654 *6)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6)) (-4 *10 (-697 *7 *8 *9)))) (-3593 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1008 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) (-1430 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1008 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7))))) +(-10 -7 (-15 -1430 (|#8| |#4|)) (-15 -3593 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4460)) (-15 -1381 ((-654 |#3|) |#4|)) |%noBranch|)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2225 (($ (-781) (-781)) NIL)) (-1960 (($ $ $) NIL)) (-4033 (($ (-612 |#1| |#3|)) NIL) (($ $) NIL)) (-3399 (((-112) $) NIL)) (-3235 (($ $ (-574) (-574)) 21)) (-3048 (($ $ (-574) (-574)) NIL)) (-4390 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-3310 (($ $) NIL)) (-2711 (((-112) $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-3392 (($ $ (-574) (-574) $) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-1966 (($ $ (-574) (-612 |#1| |#3|)) NIL)) (-3654 (($ $ (-574) (-612 |#1| |#2|)) NIL)) (-2317 (($ (-781) |#1|) NIL)) (-3250 (($) NIL T CONST)) (-1430 (($ $) 30 (|has| |#1| (-315)))) (-1959 (((-612 |#1| |#3|) $ (-574)) NIL)) (-3558 (((-781) $) 33 (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2400 ((|#1| $ (-574) (-574)) NIL)) (-1871 (((-654 |#1|) $) NIL)) (-2893 (((-781) $) 35 (|has| |#1| (-566)))) (-1381 (((-654 (-612 |#1| |#2|)) $) 38 (|has| |#1| (-566)))) (-2197 (((-781) $) NIL)) (-3764 (($ (-781) (-781) |#1|) NIL)) (-2206 (((-781) $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-1706 ((|#1| $) 28 (|has| |#1| (-6 (-4461 "*"))))) (-2219 (((-574) $) 10)) (-2126 (((-574) $) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3352 (((-574) $) 13)) (-1695 (((-574) $) NIL)) (-2924 (($ (-654 (-654 |#1|))) NIL)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2014 (((-654 (-654 |#1|)) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3593 (((-3 $ "failed") $) 42 (|has| |#1| (-372)))) (-2762 (($ $ $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1822 (($ $ |#1|) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-1761 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-4049 (((-112) $) NIL)) (-1386 ((|#1| $) 26 (|has| |#1| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-1425 (((-612 |#1| |#2|) $ (-574)) NIL)) (-2951 (($ (-612 |#1| |#2|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2649 (((-112) $) NIL)) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-612 |#1| |#2|) $ (-612 |#1| |#2|)) NIL) (((-612 |#1| |#3|) (-612 |#1| |#3|) $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-533 |#1| |#2| |#3|) (-697 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) (-1065) (-574) (-574)) (T -533)) NIL (-697 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-2599 (((-654 (-1232)) $) 13)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 19) (($ (-1197)) NIL) (((-1197) $) NIL) (($ (-654 (-1232))) 11)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-534) (-13 (-1098) (-10 -8 (-15 -2950 ($ (-654 (-1232)))) (-15 -2599 ((-654 (-1232)) $))))) (T -534)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-534)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-534))))) -(-13 (-1098) (-10 -8 (-15 -2950 ($ (-654 (-1232)))) (-15 -2599 ((-654 (-1232)) $)))) -((-2863 (((-112) $ $) NIL)) (-3867 (((-1150) $) 14)) (-3945 (((-1174) $) NIL)) (-3206 (((-516) $) 11)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 21) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-535) (-13 (-1098) (-10 -8 (-15 -3206 ((-516) $)) (-15 -3867 ((-1150) $))))) (T -535)) -((-3206 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-535))))) -(-13 (-1098) (-10 -8 (-15 -3206 ((-516) $)) (-15 -3867 ((-1150) $)))) -((-4336 (((-701 (-1241)) $) 15)) (-2752 (((-701 (-1239)) $) 38)) (-2492 (((-701 (-1238)) $) 29)) (-3692 (((-701 (-559)) $) 12)) (-2673 (((-701 (-557)) $) 42)) (-1952 (((-701 (-556)) $) 33)) (-4318 (((-781) $ (-129)) 54))) -(((-536 |#1|) (-10 -8 (-15 -4318 ((-781) |#1| (-129))) (-15 -2752 ((-701 (-1239)) |#1|)) (-15 -2673 ((-701 (-557)) |#1|)) (-15 -2492 ((-701 (-1238)) |#1|)) (-15 -1952 ((-701 (-556)) |#1|)) (-15 -4336 ((-701 (-1241)) |#1|)) (-15 -3692 ((-701 (-559)) |#1|))) (-537)) (T -536)) -NIL -(-10 -8 (-15 -4318 ((-781) |#1| (-129))) (-15 -2752 ((-701 (-1239)) |#1|)) (-15 -2673 ((-701 (-557)) |#1|)) (-15 -2492 ((-701 (-1238)) |#1|)) (-15 -1952 ((-701 (-556)) |#1|)) (-15 -4336 ((-701 (-1241)) |#1|)) (-15 -3692 ((-701 (-559)) |#1|))) -((-4336 (((-701 (-1241)) $) 12)) (-2752 (((-701 (-1239)) $) 8)) (-2492 (((-701 (-1238)) $) 10)) (-3692 (((-701 (-559)) $) 13)) (-2673 (((-701 (-557)) $) 9)) (-1952 (((-701 (-556)) $) 11)) (-4318 (((-781) $ (-129)) 7)) (-3982 (((-701 (-130)) $) 14)) (-3894 (($ $) 6))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3360 (((-654 (-1233)) $) 13)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 19) (($ (-1198)) NIL) (((-1198) $) NIL) (($ (-654 (-1233))) 11)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-534) (-13 (-1099) (-10 -8 (-15 -2951 ($ (-654 (-1233)))) (-15 -3360 ((-654 (-1233)) $))))) (T -534)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-534)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-534))))) +(-13 (-1099) (-10 -8 (-15 -2951 ($ (-654 (-1233)))) (-15 -3360 ((-654 (-1233)) $)))) +((-2864 (((-112) $ $) NIL)) (-3788 (((-1151) $) 14)) (-1489 (((-1175) $) NIL)) (-2787 (((-516) $) 11)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 21) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-535) (-13 (-1099) (-10 -8 (-15 -2787 ((-516) $)) (-15 -3788 ((-1151) $))))) (T -535)) +((-2787 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535)))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-535))))) +(-13 (-1099) (-10 -8 (-15 -2787 ((-516) $)) (-15 -3788 ((-1151) $)))) +((-3604 (((-701 (-1242)) $) 15)) (-2992 (((-701 (-1240)) $) 38)) (-4305 (((-701 (-1239)) $) 29)) (-4012 (((-701 (-559)) $) 12)) (-1893 (((-701 (-557)) $) 42)) (-1537 (((-701 (-556)) $) 33)) (-2329 (((-781) $ (-129)) 54))) +(((-536 |#1|) (-10 -8 (-15 -2329 ((-781) |#1| (-129))) (-15 -2992 ((-701 (-1240)) |#1|)) (-15 -1893 ((-701 (-557)) |#1|)) (-15 -4305 ((-701 (-1239)) |#1|)) (-15 -1537 ((-701 (-556)) |#1|)) (-15 -3604 ((-701 (-1242)) |#1|)) (-15 -4012 ((-701 (-559)) |#1|))) (-537)) (T -536)) +NIL +(-10 -8 (-15 -2329 ((-781) |#1| (-129))) (-15 -2992 ((-701 (-1240)) |#1|)) (-15 -1893 ((-701 (-557)) |#1|)) (-15 -4305 ((-701 (-1239)) |#1|)) (-15 -1537 ((-701 (-556)) |#1|)) (-15 -3604 ((-701 (-1242)) |#1|)) (-15 -4012 ((-701 (-559)) |#1|))) +((-3604 (((-701 (-1242)) $) 12)) (-2992 (((-701 (-1240)) $) 8)) (-4305 (((-701 (-1239)) $) 10)) (-4012 (((-701 (-559)) $) 13)) (-1893 (((-701 (-557)) $) 9)) (-1537 (((-701 (-556)) $) 11)) (-2329 (((-781) $ (-129)) 7)) (-3813 (((-701 (-130)) $) 14)) (-1731 (($ $) 6))) (((-537) (-141)) (T -537)) -((-3982 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130))))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559))))) (-4336 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1241))))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556))))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1238))))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557))))) (-2752 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239))))) (-4318 (*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781))))) -(-13 (-175) (-10 -8 (-15 -3982 ((-701 (-130)) $)) (-15 -3692 ((-701 (-559)) $)) (-15 -4336 ((-701 (-1241)) $)) (-15 -1952 ((-701 (-556)) $)) (-15 -2492 ((-701 (-1238)) $)) (-15 -2673 ((-701 (-557)) $)) (-15 -2752 ((-701 (-1239)) $)) (-15 -4318 ((-781) $ (-129))))) +((-3813 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130))))) (-4012 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559))))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1242))))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556))))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239))))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557))))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1240))))) (-2329 (*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781))))) +(-13 (-175) (-10 -8 (-15 -3813 ((-701 (-130)) $)) (-15 -4012 ((-701 (-559)) $)) (-15 -3604 ((-701 (-1242)) $)) (-15 -1537 ((-701 (-556)) $)) (-15 -4305 ((-701 (-1239)) $)) (-15 -1893 ((-701 (-557)) $)) (-15 -2992 ((-701 (-1240)) $)) (-15 -2329 ((-781) $ (-129))))) (((-175) . T)) -((-3334 (((-1188 |#1|) (-781)) 115)) (-1645 (((-1283 |#1|) (-1283 |#1|) (-934)) 108)) (-2493 (((-1288) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) |#1|) 123)) (-1961 (((-1283 |#1|) (-1283 |#1|) (-781)) 53)) (-2834 (((-1283 |#1|) (-934)) 110)) (-2377 (((-1283 |#1|) (-1283 |#1|) (-574)) 30)) (-3038 (((-1188 |#1|) (-1283 |#1|)) 116)) (-3434 (((-1283 |#1|) (-934)) 137)) (-3743 (((-112) (-1283 |#1|)) 120)) (-1386 (((-1283 |#1|) (-1283 |#1|) (-934)) 100)) (-1950 (((-1188 |#1|) (-1283 |#1|)) 131)) (-3271 (((-934) (-1283 |#1|)) 96)) (-1327 (((-1283 |#1|) (-1283 |#1|)) 38)) (-2590 (((-1283 |#1|) (-934) (-934)) 140)) (-1639 (((-1283 |#1|) (-1283 |#1|) (-1135) (-1135)) 29)) (-1964 (((-1283 |#1|) (-1283 |#1|) (-781) (-1135)) 54)) (-2191 (((-1283 (-1283 |#1|)) (-934)) 136)) (-3098 (((-1283 |#1|) (-1283 |#1|) (-1283 |#1|)) 121)) (** (((-1283 |#1|) (-1283 |#1|) (-574)) 67)) (* (((-1283 |#1|) (-1283 |#1|) (-1283 |#1|)) 31))) -(((-538 |#1|) (-10 -7 (-15 -2493 ((-1288) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) |#1|)) (-15 -2834 ((-1283 |#1|) (-934))) (-15 -2590 ((-1283 |#1|) (-934) (-934))) (-15 -3038 ((-1188 |#1|) (-1283 |#1|))) (-15 -3334 ((-1188 |#1|) (-781))) (-15 -1964 ((-1283 |#1|) (-1283 |#1|) (-781) (-1135))) (-15 -1961 ((-1283 |#1|) (-1283 |#1|) (-781))) (-15 -1639 ((-1283 |#1|) (-1283 |#1|) (-1135) (-1135))) (-15 -2377 ((-1283 |#1|) (-1283 |#1|) (-574))) (-15 ** ((-1283 |#1|) (-1283 |#1|) (-574))) (-15 * ((-1283 |#1|) (-1283 |#1|) (-1283 |#1|))) (-15 -3098 ((-1283 |#1|) (-1283 |#1|) (-1283 |#1|))) (-15 -1386 ((-1283 |#1|) (-1283 |#1|) (-934))) (-15 -1645 ((-1283 |#1|) (-1283 |#1|) (-934))) (-15 -1327 ((-1283 |#1|) (-1283 |#1|))) (-15 -3271 ((-934) (-1283 |#1|))) (-15 -3743 ((-112) (-1283 |#1|))) (-15 -2191 ((-1283 (-1283 |#1|)) (-934))) (-15 -3434 ((-1283 |#1|) (-934))) (-15 -1950 ((-1188 |#1|) (-1283 |#1|)))) (-358)) (T -538)) -((-1950 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-1188 *4)) (-5 *1 (-538 *4)))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1283 (-1283 *4))) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-538 *4)))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-934)) (-5 *1 (-538 *4)))) (-1327 (*1 *2 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (-1645 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-934)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-1386 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-934)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3098 (*1 *2 *2 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-2377 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-1639 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1135)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-1961 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-1964 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1283 *5)) (-5 *3 (-781)) (-5 *4 (-1135)) (-4 *5 (-358)) (-5 *1 (-538 *5)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1188 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-1188 *4)) (-5 *1 (-538 *4)))) (-2590 (*1 *2 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) (-4 *4 (-358)) (-5 *2 (-1288)) (-5 *1 (-538 *4))))) -(-10 -7 (-15 -2493 ((-1288) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) |#1|)) (-15 -2834 ((-1283 |#1|) (-934))) (-15 -2590 ((-1283 |#1|) (-934) (-934))) (-15 -3038 ((-1188 |#1|) (-1283 |#1|))) (-15 -3334 ((-1188 |#1|) (-781))) (-15 -1964 ((-1283 |#1|) (-1283 |#1|) (-781) (-1135))) (-15 -1961 ((-1283 |#1|) (-1283 |#1|) (-781))) (-15 -1639 ((-1283 |#1|) (-1283 |#1|) (-1135) (-1135))) (-15 -2377 ((-1283 |#1|) (-1283 |#1|) (-574))) (-15 ** ((-1283 |#1|) (-1283 |#1|) (-574))) (-15 * ((-1283 |#1|) (-1283 |#1|) (-1283 |#1|))) (-15 -3098 ((-1283 |#1|) (-1283 |#1|) (-1283 |#1|))) (-15 -1386 ((-1283 |#1|) (-1283 |#1|) (-934))) (-15 -1645 ((-1283 |#1|) (-1283 |#1|) (-934))) (-15 -1327 ((-1283 |#1|) (-1283 |#1|))) (-15 -3271 ((-934) (-1283 |#1|))) (-15 -3743 ((-112) (-1283 |#1|))) (-15 -2191 ((-1283 (-1283 |#1|)) (-934))) (-15 -3434 ((-1283 |#1|) (-934))) (-15 -1950 ((-1188 |#1|) (-1283 |#1|)))) -((-4336 (((-701 (-1241)) $) NIL)) (-2752 (((-701 (-1239)) $) NIL)) (-2492 (((-701 (-1238)) $) NIL)) (-3692 (((-701 (-559)) $) NIL)) (-2673 (((-701 (-557)) $) NIL)) (-1952 (((-701 (-556)) $) NIL)) (-4318 (((-781) $ (-129)) NIL)) (-3982 (((-701 (-130)) $) 26)) (-2669 (((-1135) $ (-1135)) 31)) (-1451 (((-1135) $) 30)) (-3173 (((-112) $) 20)) (-3195 (($ (-398)) 14) (($ (-1174)) 16)) (-1649 (((-112) $) 27)) (-2950 (((-872) $) 34)) (-3894 (($ $) 28))) -(((-539) (-13 (-537) (-623 (-872)) (-10 -8 (-15 -3195 ($ (-398))) (-15 -3195 ($ (-1174))) (-15 -1649 ((-112) $)) (-15 -3173 ((-112) $)) (-15 -1451 ((-1135) $)) (-15 -2669 ((-1135) $ (-1135)))))) (T -539)) -((-3195 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539)))) (-3195 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-539)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-539)))) (-2669 (*1 *2 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-539))))) -(-13 (-537) (-623 (-872)) (-10 -8 (-15 -3195 ($ (-398))) (-15 -3195 ($ (-1174))) (-15 -1649 ((-112) $)) (-15 -3173 ((-112) $)) (-15 -1451 ((-1135) $)) (-15 -2669 ((-1135) $ (-1135))))) -((-2125 (((-1 |#1| |#1|) |#1|) 11)) (-2424 (((-1 |#1| |#1|)) 10))) -(((-540 |#1|) (-10 -7 (-15 -2424 ((-1 |#1| |#1|))) (-15 -2125 ((-1 |#1| |#1|) |#1|))) (-13 (-736) (-25))) (T -540)) -((-2125 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))) (-2424 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25)))))) -(-10 -7 (-15 -2424 ((-1 |#1| |#1|))) (-15 -2125 ((-1 |#1| |#1|) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-2620 (($ $ $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-4327 (($ (-781) |#1|) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-1786 (($ (-1 (-781) (-781)) $) NIL)) (-2984 ((|#1| $) NIL)) (-1377 (((-781) $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 27)) (-3838 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL))) +((-4021 (((-1189 |#1|) (-781)) 115)) (-1644 (((-1284 |#1|) (-1284 |#1|) (-935)) 108)) (-3988 (((-1289) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) |#1|) 123)) (-1770 (((-1284 |#1|) (-1284 |#1|) (-781)) 53)) (-2835 (((-1284 |#1|) (-935)) 110)) (-1440 (((-1284 |#1|) (-1284 |#1|) (-574)) 30)) (-3374 (((-1189 |#1|) (-1284 |#1|)) 116)) (-3841 (((-1284 |#1|) (-935)) 137)) (-3272 (((-112) (-1284 |#1|)) 120)) (-1681 (((-1284 |#1|) (-1284 |#1|) (-935)) 100)) (-3989 (((-1189 |#1|) (-1284 |#1|)) 131)) (-3383 (((-935) (-1284 |#1|)) 96)) (-1328 (((-1284 |#1|) (-1284 |#1|)) 38)) (-2591 (((-1284 |#1|) (-935) (-935)) 140)) (-2809 (((-1284 |#1|) (-1284 |#1|) (-1136) (-1136)) 29)) (-2852 (((-1284 |#1|) (-1284 |#1|) (-781) (-1136)) 54)) (-2391 (((-1284 (-1284 |#1|)) (-935)) 136)) (-3103 (((-1284 |#1|) (-1284 |#1|) (-1284 |#1|)) 121)) (** (((-1284 |#1|) (-1284 |#1|) (-574)) 67)) (* (((-1284 |#1|) (-1284 |#1|) (-1284 |#1|)) 31))) +(((-538 |#1|) (-10 -7 (-15 -3988 ((-1289) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) |#1|)) (-15 -2835 ((-1284 |#1|) (-935))) (-15 -2591 ((-1284 |#1|) (-935) (-935))) (-15 -3374 ((-1189 |#1|) (-1284 |#1|))) (-15 -4021 ((-1189 |#1|) (-781))) (-15 -2852 ((-1284 |#1|) (-1284 |#1|) (-781) (-1136))) (-15 -1770 ((-1284 |#1|) (-1284 |#1|) (-781))) (-15 -2809 ((-1284 |#1|) (-1284 |#1|) (-1136) (-1136))) (-15 -1440 ((-1284 |#1|) (-1284 |#1|) (-574))) (-15 ** ((-1284 |#1|) (-1284 |#1|) (-574))) (-15 * ((-1284 |#1|) (-1284 |#1|) (-1284 |#1|))) (-15 -3103 ((-1284 |#1|) (-1284 |#1|) (-1284 |#1|))) (-15 -1681 ((-1284 |#1|) (-1284 |#1|) (-935))) (-15 -1644 ((-1284 |#1|) (-1284 |#1|) (-935))) (-15 -1328 ((-1284 |#1|) (-1284 |#1|))) (-15 -3383 ((-935) (-1284 |#1|))) (-15 -3272 ((-112) (-1284 |#1|))) (-15 -2391 ((-1284 (-1284 |#1|)) (-935))) (-15 -3841 ((-1284 |#1|) (-935))) (-15 -3989 ((-1189 |#1|) (-1284 |#1|)))) (-358)) (T -538)) +((-3989 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-1189 *4)) (-5 *1 (-538 *4)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1284 (-1284 *4))) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-538 *4)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-935)) (-5 *1 (-538 *4)))) (-1328 (*1 *2 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (-1644 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-935)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-1681 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-935)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3103 (*1 *2 *2 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-1440 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-2809 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1136)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-1770 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-2852 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1284 *5)) (-5 *3 (-781)) (-5 *4 (-1136)) (-4 *5 (-358)) (-5 *1 (-538 *5)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1189 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-1189 *4)) (-5 *1 (-538 *4)))) (-2591 (*1 *2 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) (-4 *4 (-358)) (-5 *2 (-1289)) (-5 *1 (-538 *4))))) +(-10 -7 (-15 -3988 ((-1289) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) |#1|)) (-15 -2835 ((-1284 |#1|) (-935))) (-15 -2591 ((-1284 |#1|) (-935) (-935))) (-15 -3374 ((-1189 |#1|) (-1284 |#1|))) (-15 -4021 ((-1189 |#1|) (-781))) (-15 -2852 ((-1284 |#1|) (-1284 |#1|) (-781) (-1136))) (-15 -1770 ((-1284 |#1|) (-1284 |#1|) (-781))) (-15 -2809 ((-1284 |#1|) (-1284 |#1|) (-1136) (-1136))) (-15 -1440 ((-1284 |#1|) (-1284 |#1|) (-574))) (-15 ** ((-1284 |#1|) (-1284 |#1|) (-574))) (-15 * ((-1284 |#1|) (-1284 |#1|) (-1284 |#1|))) (-15 -3103 ((-1284 |#1|) (-1284 |#1|) (-1284 |#1|))) (-15 -1681 ((-1284 |#1|) (-1284 |#1|) (-935))) (-15 -1644 ((-1284 |#1|) (-1284 |#1|) (-935))) (-15 -1328 ((-1284 |#1|) (-1284 |#1|))) (-15 -3383 ((-935) (-1284 |#1|))) (-15 -3272 ((-112) (-1284 |#1|))) (-15 -2391 ((-1284 (-1284 |#1|)) (-935))) (-15 -3841 ((-1284 |#1|) (-935))) (-15 -3989 ((-1189 |#1|) (-1284 |#1|)))) +((-3604 (((-701 (-1242)) $) NIL)) (-2992 (((-701 (-1240)) $) NIL)) (-4305 (((-701 (-1239)) $) NIL)) (-4012 (((-701 (-559)) $) NIL)) (-1893 (((-701 (-557)) $) NIL)) (-1537 (((-701 (-556)) $) NIL)) (-2329 (((-781) $ (-129)) NIL)) (-3813 (((-701 (-130)) $) 26)) (-3828 (((-1136) $ (-1136)) 31)) (-1452 (((-1136) $) 30)) (-2987 (((-112) $) 20)) (-1715 (($ (-398)) 14) (($ (-1175)) 16)) (-2410 (((-112) $) 27)) (-2951 (((-872) $) 34)) (-1731 (($ $) 28))) +(((-539) (-13 (-537) (-623 (-872)) (-10 -8 (-15 -1715 ($ (-398))) (-15 -1715 ($ (-1175))) (-15 -2410 ((-112) $)) (-15 -2987 ((-112) $)) (-15 -1452 ((-1136) $)) (-15 -3828 ((-1136) $ (-1136)))))) (T -539)) +((-1715 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539)))) (-1715 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-539)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-539)))) (-3828 (*1 *2 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-539))))) +(-13 (-537) (-623 (-872)) (-10 -8 (-15 -1715 ($ (-398))) (-15 -1715 ($ (-1175))) (-15 -2410 ((-112) $)) (-15 -2987 ((-112) $)) (-15 -1452 ((-1136) $)) (-15 -3828 ((-1136) $ (-1136))))) +((-2124 (((-1 |#1| |#1|) |#1|) 11)) (-3809 (((-1 |#1| |#1|)) 10))) +(((-540 |#1|) (-10 -7 (-15 -3809 ((-1 |#1| |#1|))) (-15 -2124 ((-1 |#1| |#1|) |#1|))) (-13 (-736) (-25))) (T -540)) +((-2124 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))) (-3809 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25)))))) +(-10 -7 (-15 -3809 ((-1 |#1| |#1|))) (-15 -2124 ((-1 |#1| |#1|) |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-1968 (($ $ $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4328 (($ (-781) |#1|) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1785 (($ (-1 (-781) (-781)) $) NIL)) (-3758 ((|#1| $) NIL)) (-1378 (((-781) $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 27)) (-4069 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL))) (((-541 |#1|) (-13 (-803) (-519 (-781) |#1|)) (-860)) (T -541)) NIL (-13 (-803) (-519 (-781) |#1|)) -((-2295 (((-654 |#2|) (-1188 |#1|) |#3|) 98)) (-2552 (((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1188 |#1|)) (-1188 |#1|))) 114)) (-3022 (((-1188 |#1|) (-699 |#1|)) 110))) -(((-542 |#1| |#2| |#3|) (-10 -7 (-15 -3022 ((-1188 |#1|) (-699 |#1|))) (-15 -2295 ((-654 |#2|) (-1188 |#1|) |#3|)) (-15 -2552 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1188 |#1|)) (-1188 |#1|))))) (-372) (-372) (-13 (-372) (-858))) (T -542)) -((-2552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1188 *6)) (-1188 *6))) (-4 *6 (-372)) (-5 *2 (-654 (-2 (|:| |outval| *7) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *7)))))) (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858))))) (-2295 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6)) (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1188 *4)) (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858)))))) -(-10 -7 (-15 -3022 ((-1188 |#1|) (-699 |#1|))) (-15 -2295 ((-654 |#2|) (-1188 |#1|) |#3|)) (-15 -2552 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1188 |#1|)) (-1188 |#1|))))) -((-3828 (((-701 (-1241)) $ (-1241)) NIL)) (-2902 (((-701 (-559)) $ (-559)) NIL)) (-2910 (((-781) $ (-129)) 39)) (-4203 (((-701 (-130)) $ (-130)) 40)) (-4336 (((-701 (-1241)) $) NIL)) (-2752 (((-701 (-1239)) $) NIL)) (-2492 (((-701 (-1238)) $) NIL)) (-3692 (((-701 (-559)) $) NIL)) (-2673 (((-701 (-557)) $) NIL)) (-1952 (((-701 (-556)) $) NIL)) (-4318 (((-781) $ (-129)) 35)) (-3982 (((-701 (-130)) $) 37)) (-3097 (((-112) $) 27)) (-2728 (((-701 $) (-589) (-967)) 18) (((-701 $) (-501) (-967)) 24)) (-2950 (((-872) $) 48)) (-3894 (($ $) 42))) -(((-543) (-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -2728 ((-701 $) (-501) (-967)))))) (T -543)) -((-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-967)) (-5 *2 (-701 (-543))) (-5 *1 (-543))))) -(-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -2728 ((-701 $) (-501) (-967))))) -((-2320 (((-853 (-574))) 12)) (-2331 (((-853 (-574))) 14)) (-1754 (((-843 (-574))) 9))) -(((-544) (-10 -7 (-15 -1754 ((-843 (-574)))) (-15 -2320 ((-853 (-574)))) (-15 -2331 ((-853 (-574)))))) (T -544)) -((-2331 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-2320 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-1754 (*1 *2) (-12 (-5 *2 (-843 (-574))) (-5 *1 (-544))))) -(-10 -7 (-15 -1754 ((-843 (-574)))) (-15 -2320 ((-853 (-574)))) (-15 -2331 ((-853 (-574))))) -((-2405 (((-546) (-1192)) 15)) (-2298 ((|#1| (-546)) 20))) -(((-545 |#1|) (-10 -7 (-15 -2405 ((-546) (-1192))) (-15 -2298 (|#1| (-546)))) (-1233)) (T -545)) -((-2298 (*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1233)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-546)) (-5 *1 (-545 *4)) (-4 *4 (-1233))))) -(-10 -7 (-15 -2405 ((-546) (-1192))) (-15 -2298 (|#1| (-546)))) -((-2863 (((-112) $ $) NIL)) (-3159 (((-1174) $) 55)) (-4250 (((-112) $) 51)) (-3978 (((-1192) $) 52)) (-3454 (((-112) $) 49)) (-3231 (((-1174) $) 50)) (-3448 (($ (-1174)) 56)) (-1615 (((-112) $) NIL)) (-1634 (((-112) $) NIL)) (-1925 (((-112) $) NIL)) (-3945 (((-1174) $) NIL)) (-2165 (($ $ (-654 (-1192))) 21)) (-2298 (((-52) $) 23)) (-4317 (((-112) $) NIL)) (-3999 (((-574) $) NIL)) (-3939 (((-1135) $) NIL)) (-2724 (($ $ (-654 (-1192)) (-1192)) 73)) (-4185 (((-112) $) NIL)) (-2395 (((-227) $) NIL)) (-3780 (($ $) 44)) (-1455 (((-872) $) NIL)) (-4095 (((-112) $ $) NIL)) (-2208 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4281 (((-654 $) $) 30)) (-4235 (((-1192) (-654 $)) 57)) (-1845 (($ (-1174)) NIL) (($ (-1192)) 19) (($ (-574)) 8) (($ (-227)) 28) (($ (-872)) NIL) (($ (-654 $)) 65) (((-1119) $) 12) (($ (-1119)) 13)) (-2433 (((-1192) (-1192) (-654 $)) 60)) (-2950 (((-872) $) 54)) (-1550 (($ $) 59)) (-3730 (($ $) 58)) (-1522 (($ $ (-654 $)) 66)) (-3838 (((-112) $ $) NIL)) (-3677 (((-112) $) 29)) (-2142 (($) 9 T CONST)) (-2154 (($) 11 T CONST)) (-2985 (((-112) $ $) 74)) (-3098 (($ $ $) 82)) (-3074 (($ $ $) 75)) (** (($ $ (-781)) 81) (($ $ (-574)) 80)) (* (($ $ $) 76)) (-2876 (((-574) $) NIL))) -(((-546) (-13 (-1118 (-1174) (-1192) (-574) (-227) (-872)) (-624 (-1119)) (-10 -8 (-15 -2298 ((-52) $)) (-15 -1845 ($ (-1119))) (-15 -1522 ($ $ (-654 $))) (-15 -2724 ($ $ (-654 (-1192)) (-1192))) (-15 -2165 ($ $ (-654 (-1192)))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 -3098 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 0 ($) -1715) (-15 1 ($) -1715) (-15 -3780 ($ $)) (-15 -3159 ((-1174) $)) (-15 -3448 ($ (-1174))) (-15 -4235 ((-1192) (-654 $))) (-15 -2433 ((-1192) (-1192) (-654 $)))))) (T -546)) -((-2298 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546)))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-546)))) (-1522 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546)))) (-2724 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-1192)) (-5 *1 (-546)))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-546)))) (-3074 (*1 *1 *1 *1) (-5 *1 (-546))) (* (*1 *1 *1 *1) (-5 *1 (-546))) (-3098 (*1 *1 *1 *1) (-5 *1 (-546))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-546)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-546)))) (-2142 (*1 *1) (-5 *1 (-546))) (-2154 (*1 *1) (-5 *1 (-546))) (-3780 (*1 *1 *1) (-5 *1 (-546))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-546)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-546)))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1192)) (-5 *1 (-546)))) (-2433 (*1 *2 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-546))) (-5 *1 (-546))))) -(-13 (-1118 (-1174) (-1192) (-574) (-227) (-872)) (-624 (-1119)) (-10 -8 (-15 -2298 ((-52) $)) (-15 -1845 ($ (-1119))) (-15 -1522 ($ $ (-654 $))) (-15 -2724 ($ $ (-654 (-1192)) (-1192))) (-15 -2165 ($ $ (-654 (-1192)))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 -3098 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 (-2142) ($) -1715) (-15 (-2154) ($) -1715) (-15 -3780 ($ $)) (-15 -3159 ((-1174) $)) (-15 -3448 ($ (-1174))) (-15 -4235 ((-1192) (-654 $))) (-15 -2433 ((-1192) (-1192) (-654 $))))) -((-2158 ((|#2| |#2|) 17)) (-1923 ((|#2| |#2|) 13)) (-1610 ((|#2| |#2| (-574) (-574)) 20)) (-3192 ((|#2| |#2|) 15))) -(((-547 |#1| |#2|) (-10 -7 (-15 -1923 (|#2| |#2|)) (-15 -3192 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -1610 (|#2| |#2| (-574) (-574)))) (-13 (-566) (-148)) (-1274 |#1|)) (T -547)) -((-1610 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1274 *4)))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1274 *3)))) (-3192 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1274 *3)))) (-1923 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1274 *3))))) -(-10 -7 (-15 -1923 (|#2| |#2|)) (-15 -3192 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -1610 (|#2| |#2| (-574) (-574)))) -((-4013 (((-654 (-302 (-965 |#2|))) (-654 |#2|) (-654 (-1192))) 32)) (-3507 (((-654 |#2|) (-965 |#1|) |#3|) 54) (((-654 |#2|) (-1188 |#1|) |#3|) 53)) (-3273 (((-654 (-654 |#2|)) (-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192)) |#3|) 106))) -(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -3507 ((-654 |#2|) (-1188 |#1|) |#3|)) (-15 -3507 ((-654 |#2|) (-965 |#1|) |#3|)) (-15 -3273 ((-654 (-654 |#2|)) (-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192)) |#3|)) (-15 -4013 ((-654 (-302 (-965 |#2|))) (-654 |#2|) (-654 (-1192))))) (-462) (-372) (-13 (-372) (-858))) (T -548)) -((-4013 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1192))) (-4 *6 (-372)) (-5 *2 (-654 (-302 (-965 *6)))) (-5 *1 (-548 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858))))) (-3273 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) (-4 *6 (-462)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372)) (-4 *5 (-13 (-372) (-858))))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-965 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) -(-10 -7 (-15 -3507 ((-654 |#2|) (-1188 |#1|) |#3|)) (-15 -3507 ((-654 |#2|) (-965 |#1|) |#3|)) (-15 -3273 ((-654 (-654 |#2|)) (-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192)) |#3|)) (-15 -4013 ((-654 (-302 (-965 |#2|))) (-654 |#2|) (-654 (-1192))))) -((-2432 ((|#2| |#2| |#1|) 17)) (-2707 ((|#2| (-654 |#2|)) 31)) (-2127 ((|#2| (-654 |#2|)) 52))) -(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2707 (|#2| (-654 |#2|))) (-15 -2127 (|#2| (-654 |#2|))) (-15 -2432 (|#2| |#2| |#1|))) (-315) (-1259 |#1|) |#1| (-1 |#1| |#1| (-781))) (T -549)) -((-2432 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781))) (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1259 *3)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) -(-10 -7 (-15 -2707 (|#2| (-654 |#2|))) (-15 -2127 (|#2| (-654 |#2|))) (-15 -2432 (|#2| |#2| |#1|))) -((-4200 (((-428 (-1188 |#4|)) (-1188 |#4|) (-1 (-428 (-1188 |#3|)) (-1188 |#3|))) 89) (((-428 |#4|) |#4| (-1 (-428 (-1188 |#3|)) (-1188 |#3|))) 210))) -(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4| (-1 (-428 (-1188 |#3|)) (-1188 |#3|)))) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|) (-1 (-428 (-1188 |#3|)) (-1188 |#3|))))) (-860) (-803) (-13 (-315) (-148)) (-962 |#3| |#2| |#1|)) (T -550)) -((-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1188 *7)) (-1188 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-962 *7 *6 *5)) (-5 *2 (-428 (-1188 *8))) (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1188 *8)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1188 *7)) (-1188 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-962 *7 *6 *5))))) -(-10 -7 (-15 -4200 ((-428 |#4|) |#4| (-1 (-428 (-1188 |#3|)) (-1188 |#3|)))) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|) (-1 (-428 (-1188 |#3|)) (-1188 |#3|))))) -((-2158 ((|#4| |#4|) 74)) (-1923 ((|#4| |#4|) 70)) (-1610 ((|#4| |#4| (-574) (-574)) 76)) (-3192 ((|#4| |#4|) 72))) -(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1923 (|#4| |#4|)) (-15 -3192 (|#4| |#4|)) (-15 -2158 (|#4| |#4|)) (-15 -1610 (|#4| |#4| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1259 |#1|) (-734 |#1| |#2|) (-1274 |#3|)) (T -551)) -((-1610 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-4 *5 (-1259 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2)) (-4 *2 (-1274 *6)))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5)))) (-3192 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5)))) (-1923 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5))))) -(-10 -7 (-15 -1923 (|#4| |#4|)) (-15 -3192 (|#4| |#4|)) (-15 -2158 (|#4| |#4|)) (-15 -1610 (|#4| |#4| (-574) (-574)))) -((-2158 ((|#2| |#2|) 27)) (-1923 ((|#2| |#2|) 23)) (-1610 ((|#2| |#2| (-574) (-574)) 29)) (-3192 ((|#2| |#2|) 25))) -(((-552 |#1| |#2|) (-10 -7 (-15 -1923 (|#2| |#2|)) (-15 -3192 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -1610 (|#2| |#2| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1274 |#1|)) (T -552)) -((-1610 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-5 *1 (-552 *4 *2)) (-4 *2 (-1274 *4)))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1274 *3)))) (-3192 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1274 *3)))) (-1923 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1274 *3))))) -(-10 -7 (-15 -1923 (|#2| |#2|)) (-15 -3192 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -1610 (|#2| |#2| (-574) (-574)))) -((-1492 (((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)) 18) (((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|)) 14) (((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|)) 32))) -(((-553 |#1| |#2|) (-10 -7 (-15 -1492 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -1492 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -1492 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)))) (-1064) (-1259 |#1|)) (T -553)) -((-1492 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1259 *4)))) (-1492 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1259 *4)))) (-1492 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1064)) (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1259 *5))))) -(-10 -7 (-15 -1492 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -1492 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -1492 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)))) -((-3770 (($ $ $) 84)) (-3954 (((-428 $) $) 52)) (-1705 (((-3 (-574) "failed") $) 64)) (-2216 (((-574) $) 42)) (-1955 (((-3 (-417 (-574)) "failed") $) 79)) (-1519 (((-112) $) 26)) (-4188 (((-417 (-574)) $) 77)) (-1782 (((-112) $) 55)) (-1398 (($ $ $ $) 92)) (-1913 (((-112) $) 17)) (-3765 (($ $ $) 62)) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 74)) (-1353 (((-3 $ "failed") $) 69)) (-3784 (($ $) 24)) (-2953 (($ $ $) 90)) (-3791 (($) 65)) (-3289 (($ $) 58)) (-4200 (((-428 $) $) 50)) (-3694 (((-112) $) 15)) (-3364 (((-781) $) 32)) (-3878 (($ $) 11) (($ $ (-781)) NIL)) (-3156 (($ $) 18)) (-1845 (((-574) $) NIL) (((-546) $) 41) (((-903 (-574)) $) 45) (((-388) $) 35) (((-227) $) 38)) (-4019 (((-781)) 9)) (-3067 (((-112) $ $) 21)) (-1832 (($ $ $) 60))) -(((-554 |#1|) (-10 -8 (-15 -2953 (|#1| |#1| |#1|)) (-15 -1398 (|#1| |#1| |#1| |#1|)) (-15 -3784 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -1955 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4188 ((-417 (-574)) |#1|)) (-15 -1519 ((-112) |#1|)) (-15 -3770 (|#1| |#1| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -3694 ((-112) |#1|)) (-15 -3791 (|#1|)) (-15 -1353 ((-3 |#1| "failed") |#1|)) (-15 -1845 ((-227) |#1|)) (-15 -1845 ((-388) |#1|)) (-15 -3765 (|#1| |#1| |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -3552 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1845 ((-574) |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -1913 ((-112) |#1|)) (-15 -3364 ((-781) |#1|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3954 ((-428 |#1|) |#1|)) (-15 -1782 ((-112) |#1|)) (-15 -4019 ((-781)))) (-555)) (T -554)) -((-4019 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555))))) -(-10 -8 (-15 -2953 (|#1| |#1| |#1|)) (-15 -1398 (|#1| |#1| |#1| |#1|)) (-15 -3784 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -1955 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4188 ((-417 (-574)) |#1|)) (-15 -1519 ((-112) |#1|)) (-15 -3770 (|#1| |#1| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -3694 ((-112) |#1|)) (-15 -3791 (|#1|)) (-15 -1353 ((-3 |#1| "failed") |#1|)) (-15 -1845 ((-227) |#1|)) (-15 -1845 ((-388) |#1|)) (-15 -3765 (|#1| |#1| |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -3552 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1845 ((-574) |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -1913 ((-112) |#1|)) (-15 -3364 ((-781) |#1|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3954 ((-428 |#1|) |#1|)) (-15 -1782 ((-112) |#1|)) (-15 -4019 ((-781)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-3770 (($ $ $) 92)) (-1597 (((-3 $ "failed") $ $) 20)) (-3646 (($ $ $ $) 81)) (-3296 (($ $) 57)) (-3954 (((-428 $) $) 58)) (-3656 (((-112) $ $) 134)) (-3011 (((-574) $) 123)) (-3932 (($ $ $) 95)) (-3831 (($) 18 T CONST)) (-1705 (((-3 (-574) "failed") $) 115)) (-2216 (((-574) $) 116)) (-2799 (($ $ $) 138)) (-3465 (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 113) (((-699 (-574)) (-699 $)) 112) (((-699 (-574)) (-1283 $)) 111)) (-3911 (((-3 $ "failed") $) 37)) (-1955 (((-3 (-417 (-574)) "failed") $) 89)) (-1519 (((-112) $) 91)) (-4188 (((-417 (-574)) $) 90)) (-2834 (($) 88) (($ $) 87)) (-2811 (($ $ $) 137)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 132)) (-1782 (((-112) $) 59)) (-1398 (($ $ $ $) 79)) (-1674 (($ $ $) 93)) (-1913 (((-112) $) 125)) (-3765 (($ $ $) 104)) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 107)) (-3372 (((-112) $) 35)) (-3512 (((-112) $) 99)) (-1353 (((-3 $ "failed") $) 101)) (-1808 (((-112) $) 124)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 141)) (-2394 (($ $ $ $) 80)) (-3632 (($ $ $) 126)) (-1593 (($ $ $) 127)) (-3784 (($ $) 83)) (-4108 (($ $) 96)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-2953 (($ $ $) 78)) (-3791 (($) 100 T CONST)) (-1614 (($ $) 85)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-3289 (($ $) 105)) (-4200 (((-428 $) $) 56)) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 139)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 133)) (-3694 (((-112) $) 98)) (-3364 (((-781) $) 135)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 136)) (-3878 (($ $) 121) (($ $ (-781)) 119)) (-2310 (($ $) 84)) (-3156 (($ $) 86)) (-1845 (((-574) $) 117) (((-546) $) 109) (((-903 (-574)) $) 108) (((-388) $) 103) (((-227) $) 102)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 114)) (-4019 (((-781)) 32 T CONST)) (-3067 (((-112) $ $) 94)) (-1832 (($ $ $) 106)) (-3838 (((-112) $ $) 9)) (-2643 (($) 97)) (-1842 (((-112) $ $) 45)) (-1936 (($ $ $ $) 82)) (-3306 (($ $) 122)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $) 120) (($ $ (-781)) 118)) (-3041 (((-112) $ $) 129)) (-3018 (((-112) $ $) 130)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 128)) (-3009 (((-112) $ $) 131)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-574) $) 110))) +((-4143 (((-654 |#2|) (-1189 |#1|) |#3|) 98)) (-3628 (((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1189 |#1|)) (-1189 |#1|))) 114)) (-1477 (((-1189 |#1|) (-699 |#1|)) 110))) +(((-542 |#1| |#2| |#3|) (-10 -7 (-15 -1477 ((-1189 |#1|) (-699 |#1|))) (-15 -4143 ((-654 |#2|) (-1189 |#1|) |#3|)) (-15 -3628 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1189 |#1|)) (-1189 |#1|))))) (-372) (-372) (-13 (-372) (-858))) (T -542)) +((-3628 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1189 *6)) (-1189 *6))) (-4 *6 (-372)) (-5 *2 (-654 (-2 (|:| |outval| *7) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *7)))))) (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858))))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6)) (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1189 *4)) (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858)))))) +(-10 -7 (-15 -1477 ((-1189 |#1|) (-699 |#1|))) (-15 -4143 ((-654 |#2|) (-1189 |#1|) |#3|)) (-15 -3628 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1189 |#1|)) (-1189 |#1|))))) +((-2744 (((-701 (-1242)) $ (-1242)) NIL)) (-4193 (((-701 (-559)) $ (-559)) NIL)) (-2208 (((-781) $ (-129)) 39)) (-3848 (((-701 (-130)) $ (-130)) 40)) (-3604 (((-701 (-1242)) $) NIL)) (-2992 (((-701 (-1240)) $) NIL)) (-4305 (((-701 (-1239)) $) NIL)) (-4012 (((-701 (-559)) $) NIL)) (-1893 (((-701 (-557)) $) NIL)) (-1537 (((-701 (-556)) $) NIL)) (-2329 (((-781) $ (-129)) 35)) (-3813 (((-701 (-130)) $) 37)) (-4363 (((-112) $) 27)) (-3629 (((-701 $) (-589) (-968)) 18) (((-701 $) (-501) (-968)) 24)) (-2951 (((-872) $) 48)) (-1731 (($ $) 42))) +(((-543) (-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -3629 ((-701 $) (-501) (-968)))))) (T -543)) +((-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-968)) (-5 *2 (-701 (-543))) (-5 *1 (-543))))) +(-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -3629 ((-701 $) (-501) (-968))))) +((-2321 (((-853 (-574))) 12)) (-2331 (((-853 (-574))) 14)) (-1752 (((-843 (-574))) 9))) +(((-544) (-10 -7 (-15 -1752 ((-843 (-574)))) (-15 -2321 ((-853 (-574)))) (-15 -2331 ((-853 (-574)))))) (T -544)) +((-2331 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-2321 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-1752 (*1 *2) (-12 (-5 *2 (-843 (-574))) (-5 *1 (-544))))) +(-10 -7 (-15 -1752 ((-843 (-574)))) (-15 -2321 ((-853 (-574)))) (-15 -2331 ((-853 (-574))))) +((-2616 (((-546) (-1193)) 15)) (-2297 ((|#1| (-546)) 20))) +(((-545 |#1|) (-10 -7 (-15 -2616 ((-546) (-1193))) (-15 -2297 (|#1| (-546)))) (-1234)) (T -545)) +((-2297 (*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1234)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-546)) (-5 *1 (-545 *4)) (-4 *4 (-1234))))) +(-10 -7 (-15 -2616 ((-546) (-1193))) (-15 -2297 (|#1| (-546)))) +((-2864 (((-112) $ $) NIL)) (-4338 (((-1175) $) 55)) (-3065 (((-112) $) 51)) (-3979 (((-1193) $) 52)) (-4419 (((-112) $) 49)) (-3232 (((-1175) $) 50)) (-2514 (($ (-1175)) 56)) (-1908 (((-112) $) NIL)) (-3518 (((-112) $) NIL)) (-4258 (((-112) $) NIL)) (-1489 (((-1175) $) NIL)) (-2164 (($ $ (-654 (-1193))) 21)) (-2297 (((-52) $) 23)) (-2899 (((-112) $) NIL)) (-4000 (((-574) $) NIL)) (-3940 (((-1136) $) NIL)) (-2722 (($ $ (-654 (-1193)) (-1193)) 73)) (-3152 (((-112) $) NIL)) (-2399 (((-227) $) NIL)) (-3782 (($ $) 44)) (-1455 (((-872) $) NIL)) (-4094 (((-112) $ $) NIL)) (-2207 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4282 (((-654 $) $) 30)) (-4235 (((-1193) (-654 $)) 57)) (-1844 (($ (-1175)) NIL) (($ (-1193)) 19) (($ (-574)) 8) (($ (-227)) 28) (($ (-872)) NIL) (($ (-654 $)) 65) (((-1120) $) 12) (($ (-1120)) 13)) (-2435 (((-1193) (-1193) (-654 $)) 60)) (-2951 (((-872) $) 54)) (-4007 (($ $) 59)) (-4162 (($ $) 58)) (-2697 (($ $ (-654 $)) 66)) (-4069 (((-112) $ $) NIL)) (-2307 (((-112) $) 29)) (-2141 (($) 9 T CONST)) (-2153 (($) 11 T CONST)) (-2986 (((-112) $ $) 74)) (-3103 (($ $ $) 82)) (-3074 (($ $ $) 75)) (** (($ $ (-781)) 81) (($ $ (-574)) 80)) (* (($ $ $) 76)) (-2877 (((-574) $) NIL))) +(((-546) (-13 (-1119 (-1175) (-1193) (-574) (-227) (-872)) (-624 (-1120)) (-10 -8 (-15 -2297 ((-52) $)) (-15 -1844 ($ (-1120))) (-15 -2697 ($ $ (-654 $))) (-15 -2722 ($ $ (-654 (-1193)) (-1193))) (-15 -2164 ($ $ (-654 (-1193)))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 0 ($) -1714) (-15 1 ($) -1714) (-15 -3782 ($ $)) (-15 -4338 ((-1175) $)) (-15 -2514 ($ (-1175))) (-15 -4235 ((-1193) (-654 $))) (-15 -2435 ((-1193) (-1193) (-654 $)))))) (T -546)) +((-2297 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-546)))) (-2697 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546)))) (-2722 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-1193)) (-5 *1 (-546)))) (-2164 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-546)))) (-3074 (*1 *1 *1 *1) (-5 *1 (-546))) (* (*1 *1 *1 *1) (-5 *1 (-546))) (-3103 (*1 *1 *1 *1) (-5 *1 (-546))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-546)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-546)))) (-2141 (*1 *1) (-5 *1 (-546))) (-2153 (*1 *1) (-5 *1 (-546))) (-3782 (*1 *1 *1) (-5 *1 (-546))) (-4338 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-546)))) (-2514 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-546)))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1193)) (-5 *1 (-546)))) (-2435 (*1 *2 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-546))) (-5 *1 (-546))))) +(-13 (-1119 (-1175) (-1193) (-574) (-227) (-872)) (-624 (-1120)) (-10 -8 (-15 -2297 ((-52) $)) (-15 -1844 ($ (-1120))) (-15 -2697 ($ $ (-654 $))) (-15 -2722 ($ $ (-654 (-1193)) (-1193))) (-15 -2164 ($ $ (-654 (-1193)))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 (-2141) ($) -1714) (-15 (-2153) ($) -1714) (-15 -3782 ($ $)) (-15 -4338 ((-1175) $)) (-15 -2514 ($ (-1175))) (-15 -4235 ((-1193) (-654 $))) (-15 -2435 ((-1193) (-1193) (-654 $))))) +((-1936 ((|#2| |#2|) 17)) (-3646 ((|#2| |#2|) 13)) (-1779 ((|#2| |#2| (-574) (-574)) 20)) (-1951 ((|#2| |#2|) 15))) +(((-547 |#1| |#2|) (-10 -7 (-15 -3646 (|#2| |#2|)) (-15 -1951 (|#2| |#2|)) (-15 -1936 (|#2| |#2|)) (-15 -1779 (|#2| |#2| (-574) (-574)))) (-13 (-566) (-148)) (-1275 |#1|)) (T -547)) +((-1779 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1275 *4)))) (-1936 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1275 *3)))) (-1951 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1275 *3)))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1275 *3))))) +(-10 -7 (-15 -3646 (|#2| |#2|)) (-15 -1951 (|#2| |#2|)) (-15 -1936 (|#2| |#2|)) (-15 -1779 (|#2| |#2| (-574) (-574)))) +((-1547 (((-654 (-302 (-966 |#2|))) (-654 |#2|) (-654 (-1193))) 32)) (-4294 (((-654 |#2|) (-966 |#1|) |#3|) 54) (((-654 |#2|) (-1189 |#1|) |#3|) 53)) (-3570 (((-654 (-654 |#2|)) (-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193)) |#3|) 106))) +(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -4294 ((-654 |#2|) (-1189 |#1|) |#3|)) (-15 -4294 ((-654 |#2|) (-966 |#1|) |#3|)) (-15 -3570 ((-654 (-654 |#2|)) (-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193)) |#3|)) (-15 -1547 ((-654 (-302 (-966 |#2|))) (-654 |#2|) (-654 (-1193))))) (-462) (-372) (-13 (-372) (-858))) (T -548)) +((-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1193))) (-4 *6 (-372)) (-5 *2 (-654 (-302 (-966 *6)))) (-5 *1 (-548 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858))))) (-3570 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193))) (-4 *6 (-462)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372)) (-4 *5 (-13 (-372) (-858))))) (-4294 (*1 *2 *3 *4) (-12 (-5 *3 (-966 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-4294 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) +(-10 -7 (-15 -4294 ((-654 |#2|) (-1189 |#1|) |#3|)) (-15 -4294 ((-654 |#2|) (-966 |#1|) |#3|)) (-15 -3570 ((-654 (-654 |#2|)) (-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193)) |#3|)) (-15 -1547 ((-654 (-302 (-966 |#2|))) (-654 |#2|) (-654 (-1193))))) +((-3607 ((|#2| |#2| |#1|) 17)) (-3736 ((|#2| (-654 |#2|)) 31)) (-3606 ((|#2| (-654 |#2|)) 52))) +(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3736 (|#2| (-654 |#2|))) (-15 -3606 (|#2| (-654 |#2|))) (-15 -3607 (|#2| |#2| |#1|))) (-315) (-1260 |#1|) |#1| (-1 |#1| |#1| (-781))) (T -549)) +((-3607 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781))) (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1260 *3)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))) (-3736 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) +(-10 -7 (-15 -3736 (|#2| (-654 |#2|))) (-15 -3606 (|#2| (-654 |#2|))) (-15 -3607 (|#2| |#2| |#1|))) +((-4202 (((-428 (-1189 |#4|)) (-1189 |#4|) (-1 (-428 (-1189 |#3|)) (-1189 |#3|))) 89) (((-428 |#4|) |#4| (-1 (-428 (-1189 |#3|)) (-1189 |#3|))) 210))) +(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 ((-428 |#4|) |#4| (-1 (-428 (-1189 |#3|)) (-1189 |#3|)))) (-15 -4202 ((-428 (-1189 |#4|)) (-1189 |#4|) (-1 (-428 (-1189 |#3|)) (-1189 |#3|))))) (-860) (-803) (-13 (-315) (-148)) (-963 |#3| |#2| |#1|)) (T -550)) +((-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1189 *7)) (-1189 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-963 *7 *6 *5)) (-5 *2 (-428 (-1189 *8))) (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1189 *8)))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1189 *7)) (-1189 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-963 *7 *6 *5))))) +(-10 -7 (-15 -4202 ((-428 |#4|) |#4| (-1 (-428 (-1189 |#3|)) (-1189 |#3|)))) (-15 -4202 ((-428 (-1189 |#4|)) (-1189 |#4|) (-1 (-428 (-1189 |#3|)) (-1189 |#3|))))) +((-1936 ((|#4| |#4|) 74)) (-3646 ((|#4| |#4|) 70)) (-1779 ((|#4| |#4| (-574) (-574)) 76)) (-1951 ((|#4| |#4|) 72))) +(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3646 (|#4| |#4|)) (-15 -1951 (|#4| |#4|)) (-15 -1936 (|#4| |#4|)) (-15 -1779 (|#4| |#4| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1260 |#1|) (-734 |#1| |#2|) (-1275 |#3|)) (T -551)) +((-1779 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-4 *5 (-1260 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2)) (-4 *2 (-1275 *6)))) (-1936 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5)))) (-1951 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5)))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5))))) +(-10 -7 (-15 -3646 (|#4| |#4|)) (-15 -1951 (|#4| |#4|)) (-15 -1936 (|#4| |#4|)) (-15 -1779 (|#4| |#4| (-574) (-574)))) +((-1936 ((|#2| |#2|) 27)) (-3646 ((|#2| |#2|) 23)) (-1779 ((|#2| |#2| (-574) (-574)) 29)) (-1951 ((|#2| |#2|) 25))) +(((-552 |#1| |#2|) (-10 -7 (-15 -3646 (|#2| |#2|)) (-15 -1951 (|#2| |#2|)) (-15 -1936 (|#2| |#2|)) (-15 -1779 (|#2| |#2| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1275 |#1|)) (T -552)) +((-1779 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-5 *1 (-552 *4 *2)) (-4 *2 (-1275 *4)))) (-1936 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1275 *3)))) (-1951 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1275 *3)))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1275 *3))))) +(-10 -7 (-15 -3646 (|#2| |#2|)) (-15 -1951 (|#2| |#2|)) (-15 -1936 (|#2| |#2|)) (-15 -1779 (|#2| |#2| (-574) (-574)))) +((-3872 (((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)) 18) (((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|)) 14) (((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|)) 32))) +(((-553 |#1| |#2|) (-10 -7 (-15 -3872 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -3872 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -3872 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)))) (-1065) (-1260 |#1|)) (T -553)) +((-3872 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1260 *4)))) (-3872 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1260 *4)))) (-3872 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1065)) (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1260 *5))))) +(-10 -7 (-15 -3872 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -3872 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -3872 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)))) +((-4227 (($ $ $) 84)) (-1610 (((-428 $) $) 52)) (-1704 (((-3 (-574) "failed") $) 64)) (-2214 (((-574) $) 42)) (-3577 (((-3 (-417 (-574)) "failed") $) 79)) (-3839 (((-112) $) 26)) (-2842 (((-417 (-574)) $) 77)) (-3978 (((-112) $) 55)) (-1894 (($ $ $ $) 92)) (-3408 (((-112) $) 17)) (-4159 (($ $ $) 62)) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 74)) (-2414 (((-3 $ "failed") $) 69)) (-3785 (($ $) 24)) (-3106 (($ $ $) 90)) (-3791 (($) 65)) (-4412 (($ $) 58)) (-4202 (((-428 $) $) 50)) (-2120 (((-112) $) 15)) (-2098 (((-781) $) 32)) (-3879 (($ $) 11) (($ $ (-781)) NIL)) (-3157 (($ $) 18)) (-1844 (((-574) $) NIL) (((-546) $) 41) (((-903 (-574)) $) 45) (((-388) $) 35) (((-227) $) 38)) (-2898 (((-781)) 9)) (-2325 (((-112) $ $) 21)) (-3900 (($ $ $) 60))) +(((-554 |#1|) (-10 -8 (-15 -3106 (|#1| |#1| |#1|)) (-15 -1894 (|#1| |#1| |#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3577 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2842 ((-417 (-574)) |#1|)) (-15 -3839 ((-112) |#1|)) (-15 -4227 (|#1| |#1| |#1|)) (-15 -2325 ((-112) |#1| |#1|)) (-15 -2120 ((-112) |#1|)) (-15 -3791 (|#1|)) (-15 -2414 ((-3 |#1| "failed") |#1|)) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4412 (|#1| |#1|)) (-15 -3900 (|#1| |#1| |#1|)) (-15 -4078 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1844 ((-574) |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3408 ((-112) |#1|)) (-15 -2098 ((-781) |#1|)) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -1610 ((-428 |#1|) |#1|)) (-15 -3978 ((-112) |#1|)) (-15 -2898 ((-781)))) (-555)) (T -554)) +((-2898 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555))))) +(-10 -8 (-15 -3106 (|#1| |#1| |#1|)) (-15 -1894 (|#1| |#1| |#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3577 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2842 ((-417 (-574)) |#1|)) (-15 -3839 ((-112) |#1|)) (-15 -4227 (|#1| |#1| |#1|)) (-15 -2325 ((-112) |#1| |#1|)) (-15 -2120 ((-112) |#1|)) (-15 -3791 (|#1|)) (-15 -2414 ((-3 |#1| "failed") |#1|)) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4412 (|#1| |#1|)) (-15 -3900 (|#1| |#1| |#1|)) (-15 -4078 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1844 ((-574) |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3408 ((-112) |#1|)) (-15 -2098 ((-781) |#1|)) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -1610 ((-428 |#1|) |#1|)) (-15 -3978 ((-112) |#1|)) (-15 -2898 ((-781)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-4227 (($ $ $) 92)) (-2600 (((-3 $ "failed") $ $) 20)) (-4382 (($ $ $ $) 81)) (-2991 (($ $) 57)) (-1610 (((-428 $) $) 58)) (-3245 (((-112) $ $) 134)) (-2472 (((-574) $) 123)) (-3933 (($ $ $) 95)) (-3250 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 115)) (-2214 (((-574) $) 116)) (-2800 (($ $ $) 138)) (-1831 (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 113) (((-699 (-574)) (-699 $)) 112) (((-699 (-574)) (-1284 $)) 111)) (-4322 (((-3 $ "failed") $) 37)) (-3577 (((-3 (-417 (-574)) "failed") $) 89)) (-3839 (((-112) $) 91)) (-2842 (((-417 (-574)) $) 90)) (-2835 (($) 88) (($ $) 87)) (-2813 (($ $ $) 137)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 132)) (-3978 (((-112) $) 59)) (-1894 (($ $ $ $) 79)) (-3389 (($ $ $) 93)) (-3408 (((-112) $) 125)) (-4159 (($ $ $) 104)) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 107)) (-4226 (((-112) $) 35)) (-1823 (((-112) $) 99)) (-2414 (((-3 $ "failed") $) 101)) (-3182 (((-112) $) 124)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 141)) (-3398 (($ $ $ $) 80)) (-3634 (($ $ $) 126)) (-4380 (($ $ $) 127)) (-3785 (($ $) 83)) (-4109 (($ $) 96)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-3106 (($ $ $) 78)) (-3791 (($) 100 T CONST)) (-1613 (($ $) 85)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-4412 (($ $) 105)) (-4202 (((-428 $) $) 56)) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 139)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 133)) (-2120 (((-112) $) 98)) (-2098 (((-781) $) 135)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 136)) (-3879 (($ $) 121) (($ $ (-781)) 119)) (-2311 (($ $) 84)) (-3157 (($ $) 86)) (-1844 (((-574) $) 117) (((-546) $) 109) (((-903 (-574)) $) 108) (((-388) $) 103) (((-227) $) 102)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 114)) (-2898 (((-781)) 32 T CONST)) (-2325 (((-112) $ $) 94)) (-3900 (($ $ $) 106)) (-4069 (((-112) $ $) 9)) (-2644 (($) 97)) (-2836 (((-112) $ $) 45)) (-2776 (($ $ $ $) 82)) (-3936 (($ $) 122)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $) 120) (($ $ (-781)) 118)) (-3042 (((-112) $ $) 129)) (-3020 (((-112) $ $) 130)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 128)) (-3009 (((-112) $ $) 131)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-574) $) 110))) (((-555) (-141)) (T -555)) -((-3512 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2643 (*1 *1) (-4 *1 (-555))) (-4108 (*1 *1 *1) (-4 *1 (-555))) (-3932 (*1 *1 *1 *1) (-4 *1 (-555))) (-3067 (*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-1674 (*1 *1 *1 *1) (-4 *1 (-555))) (-3770 (*1 *1 *1 *1) (-4 *1 (-555))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-1955 (*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-2834 (*1 *1) (-4 *1 (-555))) (-2834 (*1 *1 *1) (-4 *1 (-555))) (-3156 (*1 *1 *1) (-4 *1 (-555))) (-1614 (*1 *1 *1) (-4 *1 (-555))) (-2310 (*1 *1 *1) (-4 *1 (-555))) (-3784 (*1 *1 *1) (-4 *1 (-555))) (-1936 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-3646 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-2394 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-1398 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-2953 (*1 *1 *1 *1) (-4 *1 (-555)))) -(-13 (-1237) (-315) (-830) (-239) (-624 (-574)) (-1053 (-574)) (-649 (-574)) (-624 (-546)) (-624 (-903 (-574))) (-897 (-574)) (-144) (-1037) (-148) (-1167) (-10 -8 (-15 -3512 ((-112) $)) (-15 -3694 ((-112) $)) (-6 -4457) (-15 -2643 ($)) (-15 -4108 ($ $)) (-15 -3932 ($ $ $)) (-15 -3067 ((-112) $ $)) (-15 -1674 ($ $ $)) (-15 -3770 ($ $ $)) (-15 -1519 ((-112) $)) (-15 -4188 ((-417 (-574)) $)) (-15 -1955 ((-3 (-417 (-574)) "failed") $)) (-15 -2834 ($)) (-15 -2834 ($ $)) (-15 -3156 ($ $)) (-15 -1614 ($ $)) (-15 -2310 ($ $)) (-15 -3784 ($ $)) (-15 -1936 ($ $ $ $)) (-15 -3646 ($ $ $ $)) (-15 -2394 ($ $ $ $)) (-15 -1398 ($ $ $ $)) (-15 -2953 ($ $ $)) (-6 -4456))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-144) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-546)) . T) ((-624 (-574)) . T) ((-624 (-903 (-574))) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0=(-574)) . T) ((-658 $) . T) ((-650 $) . T) ((-649 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-830) . T) ((-858) . T) ((-860) . T) ((-897 (-574)) . T) ((-933) . T) ((-1037) . T) ((-1053 (-574)) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) . T) ((-1233) . T) ((-1237) . T)) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3831 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-1593 (($ $ $) NIL) (($) NIL T CONST)) (-3271 (((-934) $) NIL)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) -(((-556) (-13 (-854) (-10 -8 (-15 -3831 ($) -1715)))) (T -556)) -((-3831 (*1 *1) (-5 *1 (-556)))) -(-13 (-854) (-10 -8 (-15 -3831 ($) -1715))) +((-1823 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2120 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2644 (*1 *1) (-4 *1 (-555))) (-4109 (*1 *1 *1) (-4 *1 (-555))) (-3933 (*1 *1 *1 *1) (-4 *1 (-555))) (-2325 (*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-3389 (*1 *1 *1 *1) (-4 *1 (-555))) (-4227 (*1 *1 *1 *1) (-4 *1 (-555))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-3577 (*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-2835 (*1 *1) (-4 *1 (-555))) (-2835 (*1 *1 *1) (-4 *1 (-555))) (-3157 (*1 *1 *1) (-4 *1 (-555))) (-1613 (*1 *1 *1) (-4 *1 (-555))) (-2311 (*1 *1 *1) (-4 *1 (-555))) (-3785 (*1 *1 *1) (-4 *1 (-555))) (-2776 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-4382 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-3398 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-1894 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-3106 (*1 *1 *1 *1) (-4 *1 (-555)))) +(-13 (-1238) (-315) (-830) (-239) (-624 (-574)) (-1054 (-574)) (-649 (-574)) (-624 (-546)) (-624 (-903 (-574))) (-897 (-574)) (-144) (-1038) (-148) (-1168) (-10 -8 (-15 -1823 ((-112) $)) (-15 -2120 ((-112) $)) (-6 -4458) (-15 -2644 ($)) (-15 -4109 ($ $)) (-15 -3933 ($ $ $)) (-15 -2325 ((-112) $ $)) (-15 -3389 ($ $ $)) (-15 -4227 ($ $ $)) (-15 -3839 ((-112) $)) (-15 -2842 ((-417 (-574)) $)) (-15 -3577 ((-3 (-417 (-574)) "failed") $)) (-15 -2835 ($)) (-15 -2835 ($ $)) (-15 -3157 ($ $)) (-15 -1613 ($ $)) (-15 -2311 ($ $)) (-15 -3785 ($ $)) (-15 -2776 ($ $ $ $)) (-15 -4382 ($ $ $ $)) (-15 -3398 ($ $ $ $)) (-15 -1894 ($ $ $ $)) (-15 -3106 ($ $ $)) (-6 -4457))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-144) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-546)) . T) ((-624 (-574)) . T) ((-624 (-903 (-574))) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0=(-574)) . T) ((-658 $) . T) ((-650 $) . T) ((-649 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-830) . T) ((-858) . T) ((-860) . T) ((-897 (-574)) . T) ((-934) . T) ((-1038) . T) ((-1054 (-574)) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) . T) ((-1234) . T) ((-1238) . T)) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3250 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-4380 (($ $ $) NIL) (($) NIL T CONST)) (-3383 (((-935) $) NIL)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) +(((-556) (-13 (-854) (-10 -8 (-15 -3250 ($) -1714)))) (T -556)) +((-3250 (*1 *1) (-5 *1 (-556)))) +(-13 (-854) (-10 -8 (-15 -3250 ($) -1714))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3831 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-1593 (($ $ $) NIL) (($) NIL T CONST)) (-3271 (((-934) $) NIL)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) -(((-557) (-13 (-854) (-10 -8 (-15 -3831 ($) -1715)))) (T -557)) -((-3831 (*1 *1) (-5 *1 (-557)))) -(-13 (-854) (-10 -8 (-15 -3831 ($) -1715))) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3250 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-4380 (($ $ $) NIL) (($) NIL T CONST)) (-3383 (((-935) $) NIL)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) +(((-557) (-13 (-854) (-10 -8 (-15 -3250 ($) -1714)))) (T -557)) +((-3250 (*1 *1) (-5 *1 (-557)))) +(-13 (-854) (-10 -8 (-15 -3250 ($) -1714))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3831 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-1593 (($ $ $) NIL) (($) NIL T CONST)) (-3271 (((-934) $) NIL)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) -(((-558) (-13 (-854) (-10 -8 (-15 -3831 ($) -1715)))) (T -558)) -((-3831 (*1 *1) (-5 *1 (-558)))) -(-13 (-854) (-10 -8 (-15 -3831 ($) -1715))) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3250 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-4380 (($ $ $) NIL) (($) NIL T CONST)) (-3383 (((-935) $) NIL)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) +(((-558) (-13 (-854) (-10 -8 (-15 -3250 ($) -1714)))) (T -558)) +((-3250 (*1 *1) (-5 *1 (-558)))) +(-13 (-854) (-10 -8 (-15 -3250 ($) -1714))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3831 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-1593 (($ $ $) NIL) (($) NIL T CONST)) (-3271 (((-934) $) NIL)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) -(((-559) (-13 (-854) (-10 -8 (-15 -3831 ($) -1715)))) (T -559)) -((-3831 (*1 *1) (-5 *1 (-559)))) -(-13 (-854) (-10 -8 (-15 -3831 ($) -1715))) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3250 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-4380 (($ $ $) NIL) (($) NIL T CONST)) (-3383 (((-935) $) NIL)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) +(((-559) (-13 (-854) (-10 -8 (-15 -3250 ($) -1714)))) (T -559)) +((-3250 (*1 *1) (-5 *1 (-559)))) +(-13 (-854) (-10 -8 (-15 -3250 ($) -1714))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3287 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) NIL)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2171 (((-3 |#2| "failed") |#1| $) NIL)) (-3831 (($) NIL T CONST)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-1941 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) NIL)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1873 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-860)))) (-2247 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1772 (((-654 |#1|) $) NIL)) (-2056 (((-112) |#1| $) NIL)) (-1748 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2609 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-3228 (((-654 |#1|) $) NIL)) (-3071 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-2294 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL)) (-4276 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3667 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3838 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-560 |#1| |#2| |#3|) (-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) (-1115) (-1115) (-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458)))) (T -560)) -NIL -(-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) -((-3994 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1188 |#2|) (-1188 |#2|))) 50))) -(((-561 |#1| |#2|) (-10 -7 (-15 -3994 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1188 |#2|) (-1188 |#2|))))) (-566) (-13 (-27) (-440 |#1|))) (T -561)) -((-3994 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1188 *3) (-1188 *3))) (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3)) (-5 *1 (-561 *6 *3))))) -(-10 -7 (-15 -3994 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1188 |#2|) (-1188 |#2|))))) -((-2626 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-2624 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2392 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 220))) -(((-562 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2392 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2626 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2624 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-566) (-1053 (-574))) (-13 (-27) (-440 |#1|)) (-1259 |#2|) (-1259 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -562)) -((-2624 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *7 (-1259 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2)) (-4 *2 (-351 *5 *6 *7)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1259 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)))) (-4 *8 (-1259 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1259 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)))) (-4 *8 (-1259 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) -(-10 -7 (-15 -2392 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2626 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2624 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-1846 (((-112) (-574) (-574)) 12)) (-2372 (((-574) (-574)) 7)) (-3378 (((-574) (-574) (-574)) 10))) -(((-563) (-10 -7 (-15 -2372 ((-574) (-574))) (-15 -3378 ((-574) (-574) (-574))) (-15 -1846 ((-112) (-574) (-574))))) (T -563)) -((-1846 (*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563)))) (-3378 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) -(-10 -7 (-15 -2372 ((-574) (-574))) (-15 -3378 ((-574) (-574) (-574))) (-15 -1846 ((-112) (-574) (-574)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3015 ((|#1| $) 67)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-2378 (($ $) 97)) (-2259 (($ $) 80)) (-2620 ((|#1| $) 68)) (-1597 (((-3 $ "failed") $ $) 20)) (-4211 (($ $) 79)) (-2357 (($ $) 96)) (-2237 (($ $) 81)) (-2403 (($ $) 95)) (-2281 (($ $) 82)) (-3831 (($) 18 T CONST)) (-1705 (((-3 (-574) "failed") $) 75)) (-2216 (((-574) $) 76)) (-3911 (((-3 $ "failed") $) 37)) (-2689 (($ |#1| |#1|) 72)) (-1913 (((-112) $) 66)) (-3003 (($) 107)) (-3372 (((-112) $) 35)) (-2132 (($ $ (-574)) 78)) (-1808 (((-112) $) 65)) (-3632 (($ $ $) 113)) (-1593 (($ $ $) 112)) (-3112 (($ $) 104)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-2921 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-417 (-574))) 70)) (-2664 ((|#1| $) 69)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2852 (((-3 $ "failed") $ $) 48)) (-1618 (($ $) 105)) (-2416 (($ $) 94)) (-2289 (($ $) 83)) (-2389 (($ $) 93)) (-2269 (($ $) 84)) (-2367 (($ $) 92)) (-2248 (($ $) 85)) (-1447 (((-112) $ |#1|) 64)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 74)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2455 (($ $) 103)) (-2319 (($ $) 91)) (-1842 (((-112) $ $) 45)) (-2427 (($ $) 102)) (-2300 (($ $) 90)) (-2479 (($ $) 101)) (-2339 (($ $) 89)) (-2535 (($ $) 100)) (-2348 (($ $) 88)) (-2466 (($ $) 99)) (-2329 (($ $) 87)) (-2442 (($ $) 98)) (-2311 (($ $) 86)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3041 (((-112) $ $) 110)) (-3018 (((-112) $ $) 109)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 111)) (-3009 (((-112) $ $) 108)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ $) 106) (($ $ (-417 (-574))) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-564 |#1|) (-141) (-13 (-414) (-1218))) (T -564)) -((-2921 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-2689 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-2921 (*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-1913 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112)))) (-1447 (*1 *2 *1 *3) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112))))) -(-13 (-462) (-860) (-1218) (-1017) (-1053 (-574)) (-10 -8 (-6 -3524) (-15 -2921 ($ |t#1| |t#1|)) (-15 -2689 ($ |t#1| |t#1|)) (-15 -2921 ($ |t#1|)) (-15 -2921 ($ (-417 (-574)))) (-15 -2664 (|t#1| $)) (-15 -2620 (|t#1| $)) (-15 -3015 (|t#1| $)) (-15 -1913 ((-112) $)) (-15 -1808 ((-112) $)) (-15 -1447 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-292) . T) ((-298) . T) ((-462) . T) ((-503) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1017) . T) ((-1053 (-574)) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) . T) ((-1221) . T)) -((-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 9)) (-3648 (($ $) 11)) (-1527 (((-112) $) 20)) (-3911 (((-3 $ "failed") $) 16)) (-1842 (((-112) $ $) 22))) -(((-565 |#1|) (-10 -8 (-15 -1527 ((-112) |#1|)) (-15 -1842 ((-112) |#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3737 ((-2 (|:| -3775 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3911 ((-3 |#1| "failed") |#1|))) (-566)) (T -565)) -NIL -(-10 -8 (-15 -1527 ((-112) |#1|)) (-15 -1842 ((-112) |#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3737 ((-2 (|:| -3775 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3911 ((-3 |#1| "failed") |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ $) 48)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2985 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) NIL)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2171 (((-3 |#2| "failed") |#1| $) NIL)) (-3250 (($) NIL T CONST)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2424 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) NIL)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2036 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-1698 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1771 (((-654 |#1|) $) NIL)) (-2229 (((-112) |#1| $) NIL)) (-2375 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3285 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1393 (((-654 |#1|) $) NIL)) (-1506 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-2183 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1822 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3162 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4069 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-560 |#1| |#2| |#3|) (-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) (-1116) (-1116) (-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459)))) (T -560)) +NIL +(-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) +((-1685 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1189 |#2|) (-1189 |#2|))) 50))) +(((-561 |#1| |#2|) (-10 -7 (-15 -1685 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1189 |#2|) (-1189 |#2|))))) (-566) (-13 (-27) (-440 |#1|))) (T -561)) +((-1685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1189 *3) (-1189 *3))) (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3)) (-5 *1 (-561 *6 *3))))) +(-10 -7 (-15 -1685 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1189 |#2|) (-1189 |#2|))))) +((-3277 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-3381 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2993 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 220))) +(((-562 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2993 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3277 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3381 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-566) (-1054 (-574))) (-13 (-27) (-440 |#1|)) (-1260 |#2|) (-1260 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -562)) +((-3381 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *7 (-1260 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2)) (-4 *2 (-351 *5 *6 *7)))) (-3277 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1260 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)))) (-4 *8 (-1260 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))) (-2993 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1260 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)))) (-4 *8 (-1260 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) +(-10 -7 (-15 -2993 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3277 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3381 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2382 (((-112) (-574) (-574)) 12)) (-2112 (((-574) (-574)) 7)) (-3318 (((-574) (-574) (-574)) 10))) +(((-563) (-10 -7 (-15 -2112 ((-574) (-574))) (-15 -3318 ((-574) (-574) (-574))) (-15 -2382 ((-112) (-574) (-574))))) (T -563)) +((-2382 (*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563)))) (-3318 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))) (-2112 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) +(-10 -7 (-15 -2112 ((-574) (-574))) (-15 -3318 ((-574) (-574) (-574))) (-15 -2382 ((-112) (-574) (-574)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-3016 ((|#1| $) 67)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2379 (($ $) 97)) (-2258 (($ $) 80)) (-1968 ((|#1| $) 68)) (-2600 (((-3 $ "failed") $ $) 20)) (-4212 (($ $) 79)) (-2358 (($ $) 96)) (-2235 (($ $) 81)) (-2404 (($ $) 95)) (-2280 (($ $) 82)) (-3250 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 75)) (-2214 (((-574) $) 76)) (-4322 (((-3 $ "failed") $) 37)) (-2563 (($ |#1| |#1|) 72)) (-3408 (((-112) $) 66)) (-3004 (($) 107)) (-4226 (((-112) $) 35)) (-3527 (($ $ (-574)) 78)) (-3182 (((-112) $) 65)) (-3634 (($ $ $) 113)) (-4380 (($ $ $) 112)) (-3113 (($ $) 104)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-3998 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-417 (-574))) 70)) (-4378 ((|#1| $) 69)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-2853 (((-3 $ "failed") $ $) 48)) (-1617 (($ $) 105)) (-2417 (($ $) 94)) (-2289 (($ $) 83)) (-2390 (($ $) 93)) (-2269 (($ $) 84)) (-2368 (($ $) 92)) (-2247 (($ $) 85)) (-3753 (((-112) $ |#1|) 64)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 74)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2456 (($ $) 103)) (-2320 (($ $) 91)) (-2836 (((-112) $ $) 45)) (-2429 (($ $) 102)) (-2301 (($ $) 90)) (-2480 (($ $) 101)) (-2340 (($ $) 89)) (-2536 (($ $) 100)) (-2349 (($ $) 88)) (-2468 (($ $) 99)) (-2330 (($ $) 87)) (-2443 (($ $) 98)) (-2312 (($ $) 86)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 110)) (-3020 (((-112) $ $) 109)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 111)) (-3009 (((-112) $ $) 108)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ $) 106) (($ $ (-417 (-574))) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-564 |#1|) (-141) (-13 (-414) (-1219))) (T -564)) +((-3998 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-2563 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-3998 (*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-3998 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112)))) (-3753 (*1 *2 *1 *3) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112))))) +(-13 (-462) (-860) (-1219) (-1018) (-1054 (-574)) (-10 -8 (-6 -3525) (-15 -3998 ($ |t#1| |t#1|)) (-15 -2563 ($ |t#1| |t#1|)) (-15 -3998 ($ |t#1|)) (-15 -3998 ($ (-417 (-574)))) (-15 -4378 (|t#1| $)) (-15 -1968 (|t#1| $)) (-15 -3016 (|t#1| $)) (-15 -3408 ((-112) $)) (-15 -3182 ((-112) $)) (-15 -3753 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-292) . T) ((-298) . T) ((-462) . T) ((-503) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1018) . T) ((-1054 (-574)) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) . T) ((-1222) . T)) +((-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 9)) (-2884 (($ $) 11)) (-1981 (((-112) $) 20)) (-4322 (((-3 $ "failed") $) 16)) (-2836 (((-112) $ $) 22))) +(((-565 |#1|) (-10 -8 (-15 -1981 ((-112) |#1|)) (-15 -2836 ((-112) |#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2313 ((-2 (|:| -4098 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4322 ((-3 |#1| "failed") |#1|))) (-566)) (T -565)) +NIL +(-10 -8 (-15 -1981 ((-112) |#1|)) (-15 -2836 ((-112) |#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2313 ((-2 (|:| -4098 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4322 ((-3 |#1| "failed") |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ $) 48)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-566) (-141)) (T -566)) -((-2852 (*1 *1 *1 *1) (|partial| -4 *1 (-566))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3775 *1) (|:| -4445 *1) (|:| |associate| *1))) (-4 *1 (-566)))) (-3648 (*1 *1 *1) (-4 *1 (-566))) (-1842 (*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) -(-13 (-174) (-38 $) (-298) (-10 -8 (-15 -2852 ((-3 $ "failed") $ $)) (-15 -3737 ((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $)) (-15 -3648 ($ $)) (-15 -1842 ((-112) $ $)) (-15 -1527 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-1911 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1192) (-654 |#2|)) 38)) (-2134 (((-596 |#2|) |#2| (-1192)) 63)) (-2602 (((-3 |#2| "failed") |#2| (-1192)) 156)) (-3732 (((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) (-622 |#2|) (-654 (-622 |#2|))) 159)) (-3421 (((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) |#2|) 41))) -(((-567 |#1| |#2|) (-10 -7 (-15 -3421 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) |#2|)) (-15 -1911 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1192) (-654 |#2|))) (-15 -2602 ((-3 |#2| "failed") |#2| (-1192))) (-15 -2134 ((-596 |#2|) |#2| (-1192))) (-15 -3732 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) (-622 |#2|) (-654 (-622 |#2|))))) (-13 (-462) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -567)) -((-3732 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1192)) (-5 *6 (-654 (-622 *3))) (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -3766 *3) (|:| |coeff| *3))) (-5 *1 (-567 *7 *3)))) (-2134 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-2602 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-1911 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *6 *3)))) (-3421 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -3766 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) -(-10 -7 (-15 -3421 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) |#2|)) (-15 -1911 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1192) (-654 |#2|))) (-15 -2602 ((-3 |#2| "failed") |#2| (-1192))) (-15 -2134 ((-596 |#2|) |#2| (-1192))) (-15 -3732 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) (-622 |#2|) (-654 (-622 |#2|))))) -((-3954 (((-428 |#1|) |#1|) 19)) (-4200 (((-428 |#1|) |#1|) 34)) (-2361 (((-3 |#1| "failed") |#1|) 49)) (-3974 (((-428 |#1|) |#1|) 60))) -(((-568 |#1|) (-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3954 ((-428 |#1|) |#1|)) (-15 -3974 ((-428 |#1|) |#1|)) (-15 -2361 ((-3 |#1| "failed") |#1|))) (-555)) (T -568)) -((-2361 (*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555)))) (-3974 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-3954 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))) -(-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3954 ((-428 |#1|) |#1|)) (-15 -3974 ((-428 |#1|) |#1|)) (-15 -2361 ((-3 |#1| "failed") |#1|))) -((-3688 (($) 9)) (-2016 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1772 (((-654 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2609 (($ (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-1544 (($ (-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-1917 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2379 (((-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-4103 (((-1288)) 11))) -(((-569) (-10 -8 (-15 -3688 ($)) (-15 -4103 ((-1288))) (-15 -1772 ((-654 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1544 ($ (-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2609 ($ (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2016 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2379 ((-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1917 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -569)) -((-1917 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-2016 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-569)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-569)))) (-4103 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-569)))) (-3688 (*1 *1) (-5 *1 (-569)))) -(-10 -8 (-15 -3688 ($)) (-15 -4103 ((-1288))) (-15 -1772 ((-654 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1544 ($ (-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2609 ($ (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2016 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2379 ((-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1917 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3362 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-4171 (((-1188 (-417 (-1188 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1188 |#2|)) 35)) (-2490 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1188 |#2|)) 115)) (-1444 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|))) 85) (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|)) 55)) (-3412 (((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1188 |#2|))) 92) (((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1188 |#2|)) 114)) (-2044 (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) (-622 |#2|) |#2| (-417 (-1188 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) |#2| (-1188 |#2|)) 116)) (-3928 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2191 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|))) 133 (|has| |#3| (-666 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2191 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|)) 132 (|has| |#3| (-666 |#2|)))) (-4338 ((|#2| (-1188 (-417 (-1188 |#2|))) (-622 |#2|) |#2|) 53)) (-2868 (((-1188 (-417 (-1188 |#2|))) (-1188 |#2|) (-622 |#2|)) 34))) -(((-570 |#1| |#2| |#3|) (-10 -7 (-15 -1444 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|))) (-15 -1444 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -3412 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1188 |#2|))) (-15 -3412 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -2490 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1188 |#2|))) (-15 -2490 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -2044 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) |#2| (-1188 |#2|))) (-15 -2044 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -4171 ((-1188 (-417 (-1188 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1188 |#2|))) (-15 -4338 (|#2| (-1188 (-417 (-1188 |#2|))) (-622 |#2|) |#2|)) (-15 -2868 ((-1188 (-417 (-1188 |#2|))) (-1188 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -3928 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2191 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|))) (-15 -3928 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2191 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|))))) |%noBranch|)) (-13 (-462) (-1053 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1218)) (-1115)) (T -570)) -((-3928 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1188 *4))) (-4 *4 (-13 (-440 *7) (-27) (-1218))) (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115)))) (-3928 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1188 *4)) (-4 *4 (-13 (-440 *7) (-27) (-1218))) (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1218))) (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1188 (-417 (-1188 *6)))) (-5 *1 (-570 *5 *6 *7)) (-5 *3 (-1188 *6)) (-4 *7 (-1115)))) (-4338 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1188 (-417 (-1188 *2)))) (-5 *4 (-622 *2)) (-4 *2 (-13 (-440 *5) (-27) (-1218))) (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1115)))) (-4171 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1188 (-417 (-1188 *3)))) (-5 *1 (-570 *6 *3 *7)) (-5 *5 (-1188 *3)) (-4 *7 (-1115)))) (-2044 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) (-5 *5 (-417 (-1188 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1115)))) (-2044 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) (-5 *5 (-1188 *2)) (-4 *2 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1115)))) (-2490 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-417 (-1188 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1218))) (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1115)))) (-2490 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1188 *3)) (-4 *3 (-13 (-440 *7) (-27) (-1218))) (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1115)))) (-3412 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1188 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -3766 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115)))) (-3412 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1188 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -3766 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115)))) (-1444 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1188 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115)))) (-1444 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1188 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115))))) -(-10 -7 (-15 -1444 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|))) (-15 -1444 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -3412 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1188 |#2|))) (-15 -3412 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -2490 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1188 |#2|))) (-15 -2490 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -2044 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) |#2| (-1188 |#2|))) (-15 -2044 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -4171 ((-1188 (-417 (-1188 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1188 |#2|))) (-15 -4338 (|#2| (-1188 (-417 (-1188 |#2|))) (-622 |#2|) |#2|)) (-15 -2868 ((-1188 (-417 (-1188 |#2|))) (-1188 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -3928 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2191 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|))) (-15 -3928 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2191 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|))))) |%noBranch|)) -((-2384 (((-574) (-574) (-781)) 85)) (-3129 (((-574) (-574)) 83)) (-3238 (((-574) (-574)) 81)) (-1448 (((-574) (-574)) 87)) (-1495 (((-574) (-574) (-574)) 65)) (-2702 (((-574) (-574) (-574)) 62)) (-3343 (((-417 (-574)) (-574)) 30)) (-1450 (((-574) (-574)) 34)) (-2850 (((-574) (-574)) 74)) (-1736 (((-574) (-574)) 46)) (-4122 (((-654 (-574)) (-574)) 80)) (-2842 (((-574) (-574) (-574) (-574) (-574)) 58)) (-4133 (((-417 (-574)) (-574)) 55))) -(((-571) (-10 -7 (-15 -4133 ((-417 (-574)) (-574))) (-15 -2842 ((-574) (-574) (-574) (-574) (-574))) (-15 -4122 ((-654 (-574)) (-574))) (-15 -1736 ((-574) (-574))) (-15 -2850 ((-574) (-574))) (-15 -1450 ((-574) (-574))) (-15 -3343 ((-417 (-574)) (-574))) (-15 -2702 ((-574) (-574) (-574))) (-15 -1495 ((-574) (-574) (-574))) (-15 -1448 ((-574) (-574))) (-15 -3238 ((-574) (-574))) (-15 -3129 ((-574) (-574))) (-15 -2384 ((-574) (-574) (-781))))) (T -571)) -((-2384 (*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571)))) (-3129 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3238 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-1448 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-1495 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2702 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3343 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-1450 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-1736 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-4122 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-2842 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-4133 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) -(-10 -7 (-15 -4133 ((-417 (-574)) (-574))) (-15 -2842 ((-574) (-574) (-574) (-574) (-574))) (-15 -4122 ((-654 (-574)) (-574))) (-15 -1736 ((-574) (-574))) (-15 -2850 ((-574) (-574))) (-15 -1450 ((-574) (-574))) (-15 -3343 ((-417 (-574)) (-574))) (-15 -2702 ((-574) (-574) (-574))) (-15 -1495 ((-574) (-574) (-574))) (-15 -1448 ((-574) (-574))) (-15 -3238 ((-574) (-574))) (-15 -3129 ((-574) (-574))) (-15 -2384 ((-574) (-574) (-781)))) -((-1336 (((-2 (|:| |answer| |#4|) (|:| -2974 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-572 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1336 ((-2 (|:| |answer| |#4|) (|:| -2974 |#4|)) |#4| (-1 |#2| |#2|)))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -572)) -((-1336 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-4 *7 (-1259 (-417 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2974 *3))) (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7))))) -(-10 -7 (-15 -1336 ((-2 (|:| |answer| |#4|) (|:| -2974 |#4|)) |#4| (-1 |#2| |#2|)))) -((-1336 (((-2 (|:| |answer| (-417 |#2|)) (|:| -2974 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 18))) -(((-573 |#1| |#2|) (-10 -7 (-15 -1336 ((-2 (|:| |answer| (-417 |#2|)) (|:| -2974 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1259 |#1|)) (T -573)) -((-1336 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| (-417 *6)) (|:| -2974 (-417 *6)) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6))))) -(-10 -7 (-15 -1336 ((-2 (|:| |answer| (-417 |#2|)) (|:| -2974 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 30)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 96)) (-3648 (($ $) 97)) (-1527 (((-112) $) NIL)) (-3770 (($ $ $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3646 (($ $ $ $) 52)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL)) (-3932 (($ $ $) 91)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL)) (-2216 (((-574) $) NIL)) (-2799 (($ $ $) 54)) (-3465 (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 77) (((-699 (-574)) (-699 $)) 73) (((-699 (-574)) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) 93)) (-1955 (((-3 (-417 (-574)) "failed") $) NIL)) (-1519 (((-112) $) NIL)) (-4188 (((-417 (-574)) $) NIL)) (-2834 (($) 79) (($ $) 80)) (-2811 (($ $ $) 90)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1398 (($ $ $ $) NIL)) (-1674 (($ $ $) 70)) (-1913 (((-112) $) NIL)) (-3765 (($ $ $) NIL)) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3372 (((-112) $) 34)) (-3512 (((-112) $) 85)) (-1353 (((-3 $ "failed") $) NIL)) (-1808 (((-112) $) 43)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2394 (($ $ $ $) 55)) (-3632 (($ $ $) 87)) (-1593 (($ $ $) 86)) (-3784 (($ $) NIL)) (-4108 (($ $) 49)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) 69)) (-2953 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-1614 (($ $) 38)) (-3939 (((-1135) $) 42)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 128)) (-2886 (($ $ $) 94) (($ (-654 $)) NIL)) (-3289 (($ $) NIL)) (-4200 (((-428 $) $) 114)) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) 112)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3694 (((-112) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 89)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-2310 (($ $) 40)) (-3156 (($ $) 36)) (-1845 (((-574) $) 48) (((-546) $) 64) (((-903 (-574)) $) NIL) (((-388) $) 58) (((-227) $) 61) (((-1174) $) 66)) (-2950 (((-872) $) 46) (($ (-574)) 47) (($ $) NIL) (($ (-574)) 47)) (-4019 (((-781)) NIL T CONST)) (-3067 (((-112) $ $) NIL)) (-1832 (($ $ $) NIL)) (-3838 (((-112) $ $) NIL)) (-2643 (($) 35)) (-1842 (((-112) $ $) NIL)) (-1936 (($ $ $ $) 51)) (-3306 (($ $) 78)) (-2142 (($) 6 T CONST)) (-2154 (($) 31 T CONST)) (-4057 (((-1174) $) 26) (((-1174) $ (-112)) 27) (((-1288) (-832) $) 28) (((-1288) (-832) $ (-112)) 29)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-3041 (((-112) $ $) 50)) (-3018 (((-112) $ $) 81)) (-2985 (((-112) $ $) 33)) (-3029 (((-112) $ $) 82)) (-3009 (((-112) $ $) 10)) (-3089 (($ $) 16) (($ $ $) 39)) (-3074 (($ $ $) 37)) (** (($ $ (-934)) NIL) (($ $ (-781)) 84)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 83) (($ $ $) 53) (($ (-574) $) 83))) -(((-574) (-13 (-555) (-624 (-1174)) (-838) (-10 -7 (-6 -4445) (-6 -4450) (-6 -4446) (-6 -4440)))) (T -574)) -NIL -(-13 (-555) (-624 (-1174)) (-838) (-10 -7 (-6 -4445) (-6 -4450) (-6 -4446) (-6 -4440))) -((-4260 (((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779) (-1078)) 116) (((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779)) 118)) (-1578 (((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1192)) 195) (((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1174)) 194) (((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388) (-1078)) 199) (((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388)) 200) (((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388)) 201) (((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388))))) 202) (((-1050) (-324 (-388)) (-1109 (-853 (-388)))) 190) (((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388)) 189) (((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388)) 185) (((-1050) (-779)) 177) (((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388) (-1078)) 184))) -(((-575) (-10 -7 (-15 -1578 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388) (-1078))) (-15 -1578 ((-1050) (-779))) (-15 -1578 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388))) (-15 -1578 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388))) (-15 -1578 ((-1050) (-324 (-388)) (-1109 (-853 (-388))))) (-15 -1578 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))))) (-15 -1578 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388))) (-15 -1578 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388))) (-15 -1578 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388) (-1078))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779) (-1078))) (-15 -1578 ((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1174))) (-15 -1578 ((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1192))))) (T -575)) -((-1578 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *5 (-1192)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-1578 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *5 (-1174)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-4260 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-1078)) (-5 *2 (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) (-5 *1 (-575)))) (-4260 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) (-5 *1 (-575)))) (-1578 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) (-5 *5 (-388)) (-5 *6 (-1078)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-1578 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-1578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) (-5 *2 (-1050)) (-5 *1 (-575)))) (-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) (-5 *2 (-1050)) (-5 *1 (-575)))) (-1578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-1578 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-1578 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) (-5 *5 (-388)) (-5 *6 (-1078)) (-5 *2 (-1050)) (-5 *1 (-575))))) -(-10 -7 (-15 -1578 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388) (-1078))) (-15 -1578 ((-1050) (-779))) (-15 -1578 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388))) (-15 -1578 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388))) (-15 -1578 ((-1050) (-324 (-388)) (-1109 (-853 (-388))))) (-15 -1578 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))))) (-15 -1578 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388))) (-15 -1578 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388))) (-15 -1578 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388) (-1078))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779) (-1078))) (-15 -1578 ((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1174))) (-15 -1578 ((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1192)))) -((-1862 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|)) 196)) (-3380 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|)) 99)) (-2374 (((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|) 192)) (-1985 (((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192))) 201)) (-3193 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2191 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1192)) 210 (|has| |#3| (-666 |#2|))))) -(((-576 |#1| |#2| |#3|) (-10 -7 (-15 -3380 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -2374 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -1862 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -1985 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)))) (IF (|has| |#3| (-666 |#2|)) (-15 -3193 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2191 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1192))) |%noBranch|)) (-13 (-462) (-1053 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1218)) (-1115)) (T -576)) -((-3193 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1192)) (-4 *4 (-13 (-440 *7) (-27) (-1218))) (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115)))) (-1985 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) (-4 *2 (-13 (-440 *5) (-27) (-1218))) (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1115)))) (-1862 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1115)))) (-2374 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1218))) (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -3766 *3) (|:| |coeff| *3))) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1115)))) (-3380 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1218))) (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1115))))) -(-10 -7 (-15 -3380 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -2374 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -1862 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -1985 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)))) (IF (|has| |#3| (-666 |#2|)) (-15 -3193 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2191 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1192))) |%noBranch|)) -((-4429 (((-2 (|:| -3533 |#2|) (|:| |nconst| |#2|)) |#2| (-1192)) 64)) (-2523 (((-3 |#2| "failed") |#2| (-1192) (-853 |#2|) (-853 |#2|)) 175 (-12 (|has| |#2| (-1154)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)) 154 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574)))))) (-2916 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)) 156 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574))))))) -(((-577 |#1| |#2|) (-10 -7 (-15 -4429 ((-2 (|:| -3533 |#2|) (|:| |nconst| |#2|)) |#2| (-1192))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -2916 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192))) (-15 -2523 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)))) |%noBranch|) (IF (|has| |#2| (-1154)) (-15 -2523 ((-3 |#2| "failed") |#2| (-1192) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1053 (-574)) (-462) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -577)) -((-2523 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1192)) (-5 *4 (-853 *2)) (-4 *2 (-1154)) (-4 *2 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) (-5 *1 (-577 *5 *2)))) (-2523 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-2916 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-4429 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| -3533 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) -(-10 -7 (-15 -4429 ((-2 (|:| -3533 |#2|) (|:| |nconst| |#2|)) |#2| (-1192))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -2916 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192))) (-15 -2523 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)))) |%noBranch|) (IF (|has| |#2| (-1154)) (-15 -2523 ((-3 |#2| "failed") |#2| (-1192) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3544 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))) 41)) (-1578 (((-596 (-417 |#2|)) (-417 |#2|)) 28)) (-3984 (((-3 (-417 |#2|) "failed") (-417 |#2|)) 17)) (-4289 (((-3 (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|)) 48))) -(((-578 |#1| |#2|) (-10 -7 (-15 -1578 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -3984 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -4289 ((-3 (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -3544 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1053 (-574))) (-1259 |#1|)) (T -578)) -((-3544 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *5 *6)))) (-4289 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| -3766 (-417 *5)) (|:| |coeff| (-417 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))) (-3984 (*1 *2 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-13 (-372) (-148) (-1053 (-574)))) (-5 *1 (-578 *3 *4)))) (-1578 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5))))) -(-10 -7 (-15 -1578 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -3984 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -4289 ((-3 (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -3544 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))))) -((-2568 (((-3 (-574) "failed") |#1|) 14)) (-4317 (((-112) |#1|) 13)) (-3999 (((-574) |#1|) 9))) -(((-579 |#1|) (-10 -7 (-15 -3999 ((-574) |#1|)) (-15 -4317 ((-112) |#1|)) (-15 -2568 ((-3 (-574) "failed") |#1|))) (-1053 (-574))) (T -579)) -((-2568 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1053 *2)))) (-4317 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1053 (-574))))) (-3999 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1053 *2))))) -(-10 -7 (-15 -3999 ((-574) |#1|)) (-15 -4317 ((-112) |#1|)) (-15 -2568 ((-3 (-574) "failed") |#1|))) -((-3868 (((-3 (-2 (|:| |mainpart| (-417 (-965 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-965 |#1|))) (|:| |logand| (-417 (-965 |#1|))))))) "failed") (-417 (-965 |#1|)) (-1192) (-654 (-417 (-965 |#1|)))) 48)) (-4329 (((-596 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-1192)) 28)) (-3969 (((-3 (-417 (-965 |#1|)) "failed") (-417 (-965 |#1|)) (-1192)) 23)) (-2869 (((-3 (-2 (|:| -3766 (-417 (-965 |#1|))) (|:| |coeff| (-417 (-965 |#1|)))) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|))) 35))) -(((-580 |#1|) (-10 -7 (-15 -4329 ((-596 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -3969 ((-3 (-417 (-965 |#1|)) "failed") (-417 (-965 |#1|)) (-1192))) (-15 -3868 ((-3 (-2 (|:| |mainpart| (-417 (-965 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-965 |#1|))) (|:| |logand| (-417 (-965 |#1|))))))) "failed") (-417 (-965 |#1|)) (-1192) (-654 (-417 (-965 |#1|))))) (-15 -2869 ((-3 (-2 (|:| -3766 (-417 (-965 |#1|))) (|:| |coeff| (-417 (-965 |#1|)))) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|))))) (-13 (-566) (-1053 (-574)) (-148))) (T -580)) -((-2869 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)) (-148))) (-5 *2 (-2 (|:| -3766 (-417 (-965 *5))) (|:| |coeff| (-417 (-965 *5))))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-965 *5))))) (-3868 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 (-417 (-965 *6)))) (-5 *3 (-417 (-965 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6)))) (-3969 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-417 (-965 *4))) (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)) (-148))) (-5 *1 (-580 *4)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)) (-148))) (-5 *2 (-596 (-417 (-965 *5)))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-965 *5)))))) -(-10 -7 (-15 -4329 ((-596 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -3969 ((-3 (-417 (-965 |#1|)) "failed") (-417 (-965 |#1|)) (-1192))) (-15 -3868 ((-3 (-2 (|:| |mainpart| (-417 (-965 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-965 |#1|))) (|:| |logand| (-417 (-965 |#1|))))))) "failed") (-417 (-965 |#1|)) (-1192) (-654 (-417 (-965 |#1|))))) (-15 -2869 ((-3 (-2 (|:| -3766 (-417 (-965 |#1|))) (|:| |coeff| (-417 (-965 |#1|)))) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|))))) -((-2863 (((-112) $ $) 75)) (-3520 (((-112) $) 48)) (-3015 ((|#1| $) 39)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) 79)) (-2378 (($ $) 139)) (-2259 (($ $) 118)) (-2620 ((|#1| $) 37)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL)) (-2357 (($ $) 141)) (-2237 (($ $) 114)) (-2403 (($ $) 143)) (-2281 (($ $) 122)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) 93)) (-2216 (((-574) $) 95)) (-3911 (((-3 $ "failed") $) 78)) (-2689 (($ |#1| |#1|) 35)) (-1913 (((-112) $) 44)) (-3003 (($) 104)) (-3372 (((-112) $) 55)) (-2132 (($ $ (-574)) NIL)) (-1808 (((-112) $) 45)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3112 (($ $) 106)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-2921 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-417 (-574))) 92)) (-2664 ((|#1| $) 36)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) 81) (($ (-654 $)) NIL)) (-2852 (((-3 $ "failed") $ $) 80)) (-1618 (($ $) 108)) (-2416 (($ $) 147)) (-2289 (($ $) 120)) (-2389 (($ $) 149)) (-2269 (($ $) 124)) (-2367 (($ $) 145)) (-2248 (($ $) 116)) (-1447 (((-112) $ |#1|) 42)) (-2950 (((-872) $) 100) (($ (-574)) 83) (($ $) NIL) (($ (-574)) 83)) (-4019 (((-781)) 102 T CONST)) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) 161)) (-2319 (($ $) 130)) (-1842 (((-112) $ $) NIL)) (-2427 (($ $) 159)) (-2300 (($ $) 126)) (-2479 (($ $) 157)) (-2339 (($ $) 137)) (-2535 (($ $) 155)) (-2348 (($ $) 135)) (-2466 (($ $) 153)) (-2329 (($ $) 132)) (-2442 (($ $) 151)) (-2311 (($ $) 128)) (-2142 (($) 30 T CONST)) (-2154 (($) 10 T CONST)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 49)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 47)) (-3089 (($ $) 53) (($ $ $) 54)) (-3074 (($ $ $) 52)) (** (($ $ (-934)) 71) (($ $ (-781)) NIL) (($ $ $) 110) (($ $ (-417 (-574))) 163)) (* (($ (-934) $) 66) (($ (-781) $) NIL) (($ (-574) $) 65) (($ $ $) 61))) -(((-581 |#1|) (-564 |#1|) (-13 (-414) (-1218))) (T -581)) +((-2853 (*1 *1 *1 *1) (|partial| -4 *1 (-566))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4098 *1) (|:| -4446 *1) (|:| |associate| *1))) (-4 *1 (-566)))) (-2884 (*1 *1 *1) (-4 *1 (-566))) (-2836 (*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) +(-13 (-174) (-38 $) (-298) (-10 -8 (-15 -2853 ((-3 $ "failed") $ $)) (-15 -2313 ((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $)) (-15 -2884 ($ $)) (-15 -2836 ((-112) $ $)) (-15 -1981 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-3539 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1193) (-654 |#2|)) 38)) (-3166 (((-596 |#2|) |#2| (-1193)) 63)) (-1583 (((-3 |#2| "failed") |#2| (-1193)) 156)) (-1973 (((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) (-622 |#2|) (-654 (-622 |#2|))) 159)) (-3114 (((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) |#2|) 41))) +(((-567 |#1| |#2|) (-10 -7 (-15 -3114 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) |#2|)) (-15 -3539 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1193) (-654 |#2|))) (-15 -1583 ((-3 |#2| "failed") |#2| (-1193))) (-15 -3166 ((-596 |#2|) |#2| (-1193))) (-15 -1973 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) (-622 |#2|) (-654 (-622 |#2|))))) (-13 (-462) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -567)) +((-1973 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1193)) (-5 *6 (-654 (-622 *3))) (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -3852 *3) (|:| |coeff| *3))) (-5 *1 (-567 *7 *3)))) (-3166 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-1583 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-3539 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *6 *3)))) (-3114 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -3852 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5)))))) +(-10 -7 (-15 -3114 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) |#2|)) (-15 -3539 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1193) (-654 |#2|))) (-15 -1583 ((-3 |#2| "failed") |#2| (-1193))) (-15 -3166 ((-596 |#2|) |#2| (-1193))) (-15 -1973 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) (-622 |#2|) (-654 (-622 |#2|))))) +((-1610 (((-428 |#1|) |#1|) 19)) (-4202 (((-428 |#1|) |#1|) 34)) (-3436 (((-3 |#1| "failed") |#1|) 49)) (-2677 (((-428 |#1|) |#1|) 60))) +(((-568 |#1|) (-10 -7 (-15 -4202 ((-428 |#1|) |#1|)) (-15 -1610 ((-428 |#1|) |#1|)) (-15 -2677 ((-428 |#1|) |#1|)) (-15 -3436 ((-3 |#1| "failed") |#1|))) (-555)) (T -568)) +((-3436 (*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555)))) (-2677 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-1610 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-4202 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))) +(-10 -7 (-15 -4202 ((-428 |#1|) |#1|)) (-15 -1610 ((-428 |#1|) |#1|)) (-15 -2677 ((-428 |#1|) |#1|)) (-15 -3436 ((-3 |#1| "failed") |#1|))) +((-3905 (($) 9)) (-2016 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1771 (((-654 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-3285 (($ (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-4058 (($ (-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-1916 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2315 (((-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-2765 (((-1289)) 11))) +(((-569) (-10 -8 (-15 -3905 ($)) (-15 -2765 ((-1289))) (-15 -1771 ((-654 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -4058 ($ (-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3285 ($ (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2016 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2315 ((-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1916 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -569)) +((-1916 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-2016 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-3285 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-569)))) (-4058 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-569)))) (-2765 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-569)))) (-3905 (*1 *1) (-5 *1 (-569)))) +(-10 -8 (-15 -3905 ($)) (-15 -2765 ((-1289))) (-15 -1771 ((-654 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -4058 ($ (-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3285 ($ (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2016 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2315 ((-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1916 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-4173 (((-1189 (-417 (-1189 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1189 |#2|)) 35)) (-4144 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1189 |#2|)) 115)) (-3574 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|))) 85) (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|)) 55)) (-2393 (((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1189 |#2|))) 92) (((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1189 |#2|)) 114)) (-4377 (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) (-622 |#2|) |#2| (-417 (-1189 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) |#2| (-1189 |#2|)) 116)) (-4111 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2391 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|))) 133 (|has| |#3| (-666 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2391 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|)) 132 (|has| |#3| (-666 |#2|)))) (-4339 ((|#2| (-1189 (-417 (-1189 |#2|))) (-622 |#2|) |#2|) 53)) (-2869 (((-1189 (-417 (-1189 |#2|))) (-1189 |#2|) (-622 |#2|)) 34))) +(((-570 |#1| |#2| |#3|) (-10 -7 (-15 -3574 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|))) (-15 -3574 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -2393 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1189 |#2|))) (-15 -2393 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -4144 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1189 |#2|))) (-15 -4144 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -4377 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) |#2| (-1189 |#2|))) (-15 -4377 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -4173 ((-1189 (-417 (-1189 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1189 |#2|))) (-15 -4339 (|#2| (-1189 (-417 (-1189 |#2|))) (-622 |#2|) |#2|)) (-15 -2869 ((-1189 (-417 (-1189 |#2|))) (-1189 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -4111 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2391 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|))) (-15 -4111 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2391 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|))))) |%noBranch|)) (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1219)) (-1116)) (T -570)) +((-4111 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1189 *4))) (-4 *4 (-13 (-440 *7) (-27) (-1219))) (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116)))) (-4111 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1189 *4)) (-4 *4 (-13 (-440 *7) (-27) (-1219))) (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116)))) (-2869 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1219))) (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1189 (-417 (-1189 *6)))) (-5 *1 (-570 *5 *6 *7)) (-5 *3 (-1189 *6)) (-4 *7 (-1116)))) (-4339 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1189 (-417 (-1189 *2)))) (-5 *4 (-622 *2)) (-4 *2 (-13 (-440 *5) (-27) (-1219))) (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1116)))) (-4173 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1189 (-417 (-1189 *3)))) (-5 *1 (-570 *6 *3 *7)) (-5 *5 (-1189 *3)) (-4 *7 (-1116)))) (-4377 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193))) (-5 *5 (-417 (-1189 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1116)))) (-4377 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193))) (-5 *5 (-1189 *2)) (-4 *2 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1116)))) (-4144 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-417 (-1189 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1219))) (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1116)))) (-4144 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1189 *3)) (-4 *3 (-13 (-440 *7) (-27) (-1219))) (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1116)))) (-2393 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1189 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -3852 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116)))) (-2393 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1189 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -3852 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116)))) (-3574 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1189 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116)))) (-3574 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1189 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116))))) +(-10 -7 (-15 -3574 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|))) (-15 -3574 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -2393 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1189 |#2|))) (-15 -2393 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -4144 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1189 |#2|))) (-15 -4144 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -4377 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) |#2| (-1189 |#2|))) (-15 -4377 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -4173 ((-1189 (-417 (-1189 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1189 |#2|))) (-15 -4339 (|#2| (-1189 (-417 (-1189 |#2|))) (-622 |#2|) |#2|)) (-15 -2869 ((-1189 (-417 (-1189 |#2|))) (-1189 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -4111 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2391 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|))) (-15 -4111 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2391 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|))))) |%noBranch|)) +((-4092 (((-574) (-574) (-781)) 85)) (-1592 (((-574) (-574)) 83)) (-3133 (((-574) (-574)) 81)) (-3402 (((-574) (-574)) 87)) (-3448 (((-574) (-574) (-574)) 65)) (-3041 (((-574) (-574) (-574)) 62)) (-3217 (((-417 (-574)) (-574)) 30)) (-3317 (((-574) (-574)) 34)) (-4207 (((-574) (-574)) 74)) (-3241 (((-574) (-574)) 46)) (-3415 (((-654 (-574)) (-574)) 80)) (-1735 (((-574) (-574) (-574) (-574) (-574)) 58)) (-4237 (((-417 (-574)) (-574)) 55))) +(((-571) (-10 -7 (-15 -4237 ((-417 (-574)) (-574))) (-15 -1735 ((-574) (-574) (-574) (-574) (-574))) (-15 -3415 ((-654 (-574)) (-574))) (-15 -3241 ((-574) (-574))) (-15 -4207 ((-574) (-574))) (-15 -3317 ((-574) (-574))) (-15 -3217 ((-417 (-574)) (-574))) (-15 -3041 ((-574) (-574) (-574))) (-15 -3448 ((-574) (-574) (-574))) (-15 -3402 ((-574) (-574))) (-15 -3133 ((-574) (-574))) (-15 -1592 ((-574) (-574))) (-15 -4092 ((-574) (-574) (-781))))) (T -571)) +((-4092 (*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3133 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3448 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3041 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3217 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-3317 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-4207 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3241 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3415 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-1735 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-4237 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) +(-10 -7 (-15 -4237 ((-417 (-574)) (-574))) (-15 -1735 ((-574) (-574) (-574) (-574) (-574))) (-15 -3415 ((-654 (-574)) (-574))) (-15 -3241 ((-574) (-574))) (-15 -4207 ((-574) (-574))) (-15 -3317 ((-574) (-574))) (-15 -3217 ((-417 (-574)) (-574))) (-15 -3041 ((-574) (-574) (-574))) (-15 -3448 ((-574) (-574) (-574))) (-15 -3402 ((-574) (-574))) (-15 -3133 ((-574) (-574))) (-15 -1592 ((-574) (-574))) (-15 -4092 ((-574) (-574) (-781)))) +((-2406 (((-2 (|:| |answer| |#4|) (|:| -4022 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-572 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2406 ((-2 (|:| |answer| |#4|) (|:| -4022 |#4|)) |#4| (-1 |#2| |#2|)))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -572)) +((-2406 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-4 *7 (-1260 (-417 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -4022 *3))) (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7))))) +(-10 -7 (-15 -2406 ((-2 (|:| |answer| |#4|) (|:| -4022 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2406 (((-2 (|:| |answer| (-417 |#2|)) (|:| -4022 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 18))) +(((-573 |#1| |#2|) (-10 -7 (-15 -2406 ((-2 (|:| |answer| (-417 |#2|)) (|:| -4022 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1260 |#1|)) (T -573)) +((-2406 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| (-417 *6)) (|:| -4022 (-417 *6)) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6))))) +(-10 -7 (-15 -2406 ((-2 (|:| |answer| (-417 |#2|)) (|:| -4022 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 30)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 96)) (-2884 (($ $) 97)) (-1981 (((-112) $) NIL)) (-4227 (($ $ $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-4382 (($ $ $ $) 52)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL)) (-3933 (($ $ $) 91)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL)) (-2214 (((-574) $) NIL)) (-2800 (($ $ $) 54)) (-1831 (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 77) (((-699 (-574)) (-699 $)) 73) (((-699 (-574)) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) 93)) (-3577 (((-3 (-417 (-574)) "failed") $) NIL)) (-3839 (((-112) $) NIL)) (-2842 (((-417 (-574)) $) NIL)) (-2835 (($) 79) (($ $) 80)) (-2813 (($ $ $) 90)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-1894 (($ $ $ $) NIL)) (-3389 (($ $ $) 70)) (-3408 (((-112) $) NIL)) (-4159 (($ $ $) NIL)) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-4226 (((-112) $) 34)) (-1823 (((-112) $) 85)) (-2414 (((-3 $ "failed") $) NIL)) (-3182 (((-112) $) 43)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3398 (($ $ $ $) 55)) (-3634 (($ $ $) 87)) (-4380 (($ $ $) 86)) (-3785 (($ $) NIL)) (-4109 (($ $) 49)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) 69)) (-3106 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-1613 (($ $) 38)) (-3940 (((-1136) $) 42)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 128)) (-2887 (($ $ $) 94) (($ (-654 $)) NIL)) (-4412 (($ $) NIL)) (-4202 (((-428 $) $) 114)) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) 112)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2120 (((-112) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 89)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-2311 (($ $) 40)) (-3157 (($ $) 36)) (-1844 (((-574) $) 48) (((-546) $) 64) (((-903 (-574)) $) NIL) (((-388) $) 58) (((-227) $) 61) (((-1175) $) 66)) (-2951 (((-872) $) 46) (($ (-574)) 47) (($ $) NIL) (($ (-574)) 47)) (-2898 (((-781)) NIL T CONST)) (-2325 (((-112) $ $) NIL)) (-3900 (($ $ $) NIL)) (-4069 (((-112) $ $) NIL)) (-2644 (($) 35)) (-2836 (((-112) $ $) NIL)) (-2776 (($ $ $ $) 51)) (-3936 (($ $) 78)) (-2141 (($) 6 T CONST)) (-2153 (($) 31 T CONST)) (-3927 (((-1175) $) 26) (((-1175) $ (-112)) 27) (((-1289) (-832) $) 28) (((-1289) (-832) $ (-112)) 29)) (-3584 (($ $) NIL) (($ $ (-781)) NIL)) (-3042 (((-112) $ $) 50)) (-3020 (((-112) $ $) 81)) (-2986 (((-112) $ $) 33)) (-3030 (((-112) $ $) 82)) (-3009 (((-112) $ $) 10)) (-3090 (($ $) 16) (($ $ $) 39)) (-3074 (($ $ $) 37)) (** (($ $ (-935)) NIL) (($ $ (-781)) 84)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 83) (($ $ $) 53) (($ (-574) $) 83))) +(((-574) (-13 (-555) (-624 (-1175)) (-838) (-10 -7 (-6 -4446) (-6 -4451) (-6 -4447) (-6 -4441)))) (T -574)) +NIL +(-13 (-555) (-624 (-1175)) (-838) (-10 -7 (-6 -4446) (-6 -4451) (-6 -4447) (-6 -4441))) +((-3175 (((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779) (-1079)) 116) (((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779)) 118)) (-3342 (((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1193)) 195) (((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1175)) 194) (((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388) (-1079)) 199) (((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388)) 200) (((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388)) 201) (((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388))))) 202) (((-1051) (-324 (-388)) (-1110 (-853 (-388)))) 190) (((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388)) 189) (((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388)) 185) (((-1051) (-779)) 177) (((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388) (-1079)) 184))) +(((-575) (-10 -7 (-15 -3342 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388) (-1079))) (-15 -3342 ((-1051) (-779))) (-15 -3342 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388))) (-15 -3342 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388))) (-15 -3342 ((-1051) (-324 (-388)) (-1110 (-853 (-388))))) (-15 -3342 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))))) (-15 -3342 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388))) (-15 -3342 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388))) (-15 -3342 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388) (-1079))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779) (-1079))) (-15 -3342 ((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1175))) (-15 -3342 ((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1193))))) (T -575)) +((-3342 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1108 (-853 (-388)))) (-5 *5 (-1193)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3342 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1108 (-853 (-388)))) (-5 *5 (-1175)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3175 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-1079)) (-5 *2 (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051)))) (-5 *1 (-575)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051)))) (-5 *1 (-575)))) (-3342 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) (-5 *5 (-388)) (-5 *6 (-1079)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3342 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3342 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3342 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3342 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3342 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) (-5 *5 (-388)) (-5 *6 (-1079)) (-5 *2 (-1051)) (-5 *1 (-575))))) +(-10 -7 (-15 -3342 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388) (-1079))) (-15 -3342 ((-1051) (-779))) (-15 -3342 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388))) (-15 -3342 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388))) (-15 -3342 ((-1051) (-324 (-388)) (-1110 (-853 (-388))))) (-15 -3342 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))))) (-15 -3342 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388))) (-15 -3342 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388))) (-15 -3342 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388) (-1079))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779) (-1079))) (-15 -3342 ((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1175))) (-15 -3342 ((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1193)))) +((-3385 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|)) 196)) (-2949 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|)) 99)) (-2295 (((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|) 192)) (-2996 (((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193))) 201)) (-3600 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2391 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1193)) 210 (|has| |#3| (-666 |#2|))))) +(((-576 |#1| |#2| |#3|) (-10 -7 (-15 -2949 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -2295 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -3385 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -2996 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)))) (IF (|has| |#3| (-666 |#2|)) (-15 -3600 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2391 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1193))) |%noBranch|)) (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1219)) (-1116)) (T -576)) +((-3600 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1193)) (-4 *4 (-13 (-440 *7) (-27) (-1219))) (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116)))) (-2996 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193))) (-4 *2 (-13 (-440 *5) (-27) (-1219))) (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1116)))) (-3385 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1116)))) (-2295 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1219))) (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -3852 *3) (|:| |coeff| *3))) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1116)))) (-2949 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1219))) (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1116))))) +(-10 -7 (-15 -2949 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -2295 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -3385 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -2996 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)))) (IF (|has| |#3| (-666 |#2|)) (-15 -3600 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2391 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1193))) |%noBranch|)) +((-1835 (((-2 (|:| -3725 |#2|) (|:| |nconst| |#2|)) |#2| (-1193)) 64)) (-3750 (((-3 |#2| "failed") |#2| (-1193) (-853 |#2|) (-853 |#2|)) 175 (-12 (|has| |#2| (-1155)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)) 154 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574)))))) (-4395 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)) 156 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574))))))) +(((-577 |#1| |#2|) (-10 -7 (-15 -1835 ((-2 (|:| -3725 |#2|) (|:| |nconst| |#2|)) |#2| (-1193))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -4395 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193))) (-15 -3750 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)))) |%noBranch|) (IF (|has| |#2| (-1155)) (-15 -3750 ((-3 |#2| "failed") |#2| (-1193) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1054 (-574)) (-462) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -577)) +((-3750 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1193)) (-5 *4 (-853 *2)) (-4 *2 (-1155)) (-4 *2 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) (-5 *1 (-577 *5 *2)))) (-3750 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-4395 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-1835 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| -3725 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5)))))) +(-10 -7 (-15 -1835 ((-2 (|:| -3725 |#2|) (|:| |nconst| |#2|)) |#2| (-1193))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -4395 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193))) (-15 -3750 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)))) |%noBranch|) (IF (|has| |#2| (-1155)) (-15 -3750 ((-3 |#2| "failed") |#2| (-1193) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3325 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))) 41)) (-3342 (((-596 (-417 |#2|)) (-417 |#2|)) 28)) (-1416 (((-3 (-417 |#2|) "failed") (-417 |#2|)) 17)) (-1687 (((-3 (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|)) 48))) +(((-578 |#1| |#2|) (-10 -7 (-15 -3342 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -1416 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -1687 ((-3 (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -3325 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1054 (-574))) (-1260 |#1|)) (T -578)) +((-3325 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *5 *6)))) (-1687 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| -3852 (-417 *5)) (|:| |coeff| (-417 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))) (-1416 (*1 *2 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-13 (-372) (-148) (-1054 (-574)))) (-5 *1 (-578 *3 *4)))) (-3342 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4)) (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5))))) +(-10 -7 (-15 -3342 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -1416 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -1687 ((-3 (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -3325 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))))) +((-2202 (((-3 (-574) "failed") |#1|) 14)) (-2899 (((-112) |#1|) 13)) (-4000 (((-574) |#1|) 9))) +(((-579 |#1|) (-10 -7 (-15 -4000 ((-574) |#1|)) (-15 -2899 ((-112) |#1|)) (-15 -2202 ((-3 (-574) "failed") |#1|))) (-1054 (-574))) (T -579)) +((-2202 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1054 *2)))) (-2899 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1054 (-574))))) (-4000 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1054 *2))))) +(-10 -7 (-15 -4000 ((-574) |#1|)) (-15 -2899 ((-112) |#1|)) (-15 -2202 ((-3 (-574) "failed") |#1|))) +((-3521 (((-3 (-2 (|:| |mainpart| (-417 (-966 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-966 |#1|))) (|:| |logand| (-417 (-966 |#1|))))))) "failed") (-417 (-966 |#1|)) (-1193) (-654 (-417 (-966 |#1|)))) 48)) (-2411 (((-596 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-1193)) 28)) (-3630 (((-3 (-417 (-966 |#1|)) "failed") (-417 (-966 |#1|)) (-1193)) 23)) (-4080 (((-3 (-2 (|:| -3852 (-417 (-966 |#1|))) (|:| |coeff| (-417 (-966 |#1|)))) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|))) 35))) +(((-580 |#1|) (-10 -7 (-15 -2411 ((-596 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -3630 ((-3 (-417 (-966 |#1|)) "failed") (-417 (-966 |#1|)) (-1193))) (-15 -3521 ((-3 (-2 (|:| |mainpart| (-417 (-966 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-966 |#1|))) (|:| |logand| (-417 (-966 |#1|))))))) "failed") (-417 (-966 |#1|)) (-1193) (-654 (-417 (-966 |#1|))))) (-15 -4080 ((-3 (-2 (|:| -3852 (-417 (-966 |#1|))) (|:| |coeff| (-417 (-966 |#1|)))) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|))))) (-13 (-566) (-1054 (-574)) (-148))) (T -580)) +((-4080 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)) (-148))) (-5 *2 (-2 (|:| -3852 (-417 (-966 *5))) (|:| |coeff| (-417 (-966 *5))))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-966 *5))))) (-3521 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 (-417 (-966 *6)))) (-5 *3 (-417 (-966 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6)))) (-3630 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-417 (-966 *4))) (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)) (-148))) (-5 *1 (-580 *4)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)) (-148))) (-5 *2 (-596 (-417 (-966 *5)))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-966 *5)))))) +(-10 -7 (-15 -2411 ((-596 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -3630 ((-3 (-417 (-966 |#1|)) "failed") (-417 (-966 |#1|)) (-1193))) (-15 -3521 ((-3 (-2 (|:| |mainpart| (-417 (-966 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-966 |#1|))) (|:| |logand| (-417 (-966 |#1|))))))) "failed") (-417 (-966 |#1|)) (-1193) (-654 (-417 (-966 |#1|))))) (-15 -4080 ((-3 (-2 (|:| -3852 (-417 (-966 |#1|))) (|:| |coeff| (-417 (-966 |#1|)))) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|))))) +((-2864 (((-112) $ $) 75)) (-1431 (((-112) $) 48)) (-3016 ((|#1| $) 39)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) 79)) (-2379 (($ $) 139)) (-2258 (($ $) 118)) (-1968 ((|#1| $) 37)) (-2600 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $) NIL)) (-2358 (($ $) 141)) (-2235 (($ $) 114)) (-2404 (($ $) 143)) (-2280 (($ $) 122)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) 93)) (-2214 (((-574) $) 95)) (-4322 (((-3 $ "failed") $) 78)) (-2563 (($ |#1| |#1|) 35)) (-3408 (((-112) $) 44)) (-3004 (($) 104)) (-4226 (((-112) $) 55)) (-3527 (($ $ (-574)) NIL)) (-3182 (((-112) $) 45)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-3113 (($ $) 106)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-3998 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-417 (-574))) 92)) (-4378 ((|#1| $) 36)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) 81) (($ (-654 $)) NIL)) (-2853 (((-3 $ "failed") $ $) 80)) (-1617 (($ $) 108)) (-2417 (($ $) 147)) (-2289 (($ $) 120)) (-2390 (($ $) 149)) (-2269 (($ $) 124)) (-2368 (($ $) 145)) (-2247 (($ $) 116)) (-3753 (((-112) $ |#1|) 42)) (-2951 (((-872) $) 100) (($ (-574)) 83) (($ $) NIL) (($ (-574)) 83)) (-2898 (((-781)) 102 T CONST)) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) 161)) (-2320 (($ $) 130)) (-2836 (((-112) $ $) NIL)) (-2429 (($ $) 159)) (-2301 (($ $) 126)) (-2480 (($ $) 157)) (-2340 (($ $) 137)) (-2536 (($ $) 155)) (-2349 (($ $) 135)) (-2468 (($ $) 153)) (-2330 (($ $) 132)) (-2443 (($ $) 151)) (-2312 (($ $) 128)) (-2141 (($) 30 T CONST)) (-2153 (($) 10 T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 49)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 47)) (-3090 (($ $) 53) (($ $ $) 54)) (-3074 (($ $ $) 52)) (** (($ $ (-935)) 71) (($ $ (-781)) NIL) (($ $ $) 110) (($ $ (-417 (-574))) 163)) (* (($ (-935) $) 66) (($ (-781) $) NIL) (($ (-574) $) 65) (($ $ $) 61))) +(((-581 |#1|) (-564 |#1|) (-13 (-414) (-1219))) (T -581)) NIL (-564 |#1|) -((-2352 (((-3 (-654 (-1188 (-574))) "failed") (-654 (-1188 (-574))) (-1188 (-574))) 27))) -(((-582) (-10 -7 (-15 -2352 ((-3 (-654 (-1188 (-574))) "failed") (-654 (-1188 (-574))) (-1188 (-574)))))) (T -582)) -((-2352 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 (-574)))) (-5 *3 (-1188 (-574))) (-5 *1 (-582))))) -(-10 -7 (-15 -2352 ((-3 (-654 (-1188 (-574))) "failed") (-654 (-1188 (-574))) (-1188 (-574))))) -((-3137 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1192)) 19)) (-2054 (((-654 (-622 |#2|)) (-654 |#2|) (-1192)) 23)) (-4352 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|))) 11)) (-4054 ((|#2| |#2| (-1192)) 59 (|has| |#1| (-566)))) (-3428 ((|#2| |#2| (-1192)) 87 (-12 (|has| |#2| (-292)) (|has| |#1| (-462))))) (-2909 (((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1192)) 25)) (-2263 (((-622 |#2|) (-654 (-622 |#2|))) 24)) (-4052 (((-596 |#2|) |#2| (-1192) (-1 (-596 |#2|) |#2| (-1192)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192))) 115 (-12 (|has| |#2| (-292)) (|has| |#2| (-639)) (|has| |#2| (-1053 (-1192))) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-462)) (|has| |#1| (-897 (-574))))))) -(((-583 |#1| |#2|) (-10 -7 (-15 -3137 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1192))) (-15 -2263 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -2909 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1192))) (-15 -4352 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -2054 ((-654 (-622 |#2|)) (-654 |#2|) (-1192))) (IF (|has| |#1| (-566)) (-15 -4054 (|#2| |#2| (-1192))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -3428 (|#2| |#2| (-1192))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1053 (-1192))) (-15 -4052 ((-596 |#2|) |#2| (-1192) (-1 (-596 |#2|) |#2| (-1192)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1115) (-440 |#1|)) (T -583)) -((-4052 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-596 *3) *3 (-1192))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1192))) (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1053 *4)) (-4 *3 (-440 *7)) (-5 *4 (-1192)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462)) (-4 *7 (-897 (-574))) (-4 *7 (-1115)) (-5 *2 (-596 *3)) (-5 *1 (-583 *7 *3)))) (-3428 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-462)) (-4 *4 (-1115)) (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4)))) (-4054 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-4 *4 (-1115)) (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4)))) (-2054 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-1192)) (-4 *6 (-440 *5)) (-4 *5 (-1115)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6)))) (-4352 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1115)) (-5 *1 (-583 *3 *4)))) (-2909 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1192)) (-5 *2 (-622 *6)) (-4 *6 (-440 *5)) (-4 *5 (-1115)) (-5 *1 (-583 *5 *6)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1115)) (-5 *2 (-622 *5)) (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4)))) (-3137 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1192)) (-4 *5 (-440 *4)) (-4 *4 (-1115)) (-5 *1 (-583 *4 *5))))) -(-10 -7 (-15 -3137 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1192))) (-15 -2263 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -2909 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1192))) (-15 -4352 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -2054 ((-654 (-622 |#2|)) (-654 |#2|) (-1192))) (IF (|has| |#1| (-566)) (-15 -4054 (|#2| |#2| (-1192))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -3428 (|#2| |#2| (-1192))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1053 (-1192))) (-15 -4052 ((-596 |#2|) |#2| (-1192) (-1 (-596 |#2|) |#2| (-1192)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1957 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|)) 199)) (-2556 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|))) 174)) (-2076 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|))) 171)) (-1869 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2221 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-1624 (((-3 (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|)) 202)) (-3955 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|)) 205)) (-4141 (((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 88)) (-3467 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-3659 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|))) 178)) (-2386 (((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 166)) (-3606 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 189)) (-1528 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|)) 210))) -(((-584 |#1| |#2|) (-10 -7 (-15 -2221 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3606 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -1957 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -3955 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -1528 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -2556 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -3659 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -1624 ((-3 (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -2076 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -1869 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2386 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -4141 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3467 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-372) (-1259 |#1|)) (T -584)) -((-3467 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-584 *5 *3)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-2386 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-633 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3877 *4) (|:| |sol?| (-112))) (-574) *4)) (-4 *4 (-372)) (-4 *5 (-1259 *4)) (-5 *1 (-584 *4 *5)))) (-1869 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3766 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1259 *4)))) (-2076 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7))) (-4 *7 (-1259 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-584 *6 *7)))) (-1624 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -3766 (-417 *6)) (|:| |coeff| (-417 *6)))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-3659 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3877 *7) (|:| |sol?| (-112))) (-574) *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1259 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-2556 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3766 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1259 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-1528 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3877 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -3766 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-3955 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3766 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -3766 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-1957 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-3606 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3877 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-2221 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3766 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) -(-10 -7 (-15 -2221 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3606 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -1957 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -3955 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -1528 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -2556 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -3659 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -1624 ((-3 (-2 (|:| -3766 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -2076 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -1869 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2386 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -4141 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3467 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1879 (((-3 |#2| "failed") |#2| (-1192) (-1192)) 10))) -(((-585 |#1| |#2|) (-10 -7 (-15 -1879 ((-3 |#2| "failed") |#2| (-1192) (-1192)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-972) (-1154) (-29 |#1|))) (T -585)) -((-1879 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-1218) (-972) (-1154) (-29 *4)))))) -(-10 -7 (-15 -1879 ((-3 |#2| "failed") |#2| (-1192) (-1192)))) -((-3828 (((-701 (-1241)) $ (-1241)) 26)) (-2902 (((-701 (-559)) $ (-559)) 25)) (-2910 (((-781) $ (-129)) 27)) (-4203 (((-701 (-130)) $ (-130)) 24)) (-4336 (((-701 (-1241)) $) 12)) (-2752 (((-701 (-1239)) $) 8)) (-2492 (((-701 (-1238)) $) 10)) (-3692 (((-701 (-559)) $) 13)) (-2673 (((-701 (-557)) $) 9)) (-1952 (((-701 (-556)) $) 11)) (-4318 (((-781) $ (-129)) 7)) (-3982 (((-701 (-130)) $) 14)) (-3894 (($ $) 6))) +((-2630 (((-3 (-654 (-1189 (-574))) "failed") (-654 (-1189 (-574))) (-1189 (-574))) 27))) +(((-582) (-10 -7 (-15 -2630 ((-3 (-654 (-1189 (-574))) "failed") (-654 (-1189 (-574))) (-1189 (-574)))))) (T -582)) +((-2630 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 (-574)))) (-5 *3 (-1189 (-574))) (-5 *1 (-582))))) +(-10 -7 (-15 -2630 ((-3 (-654 (-1189 (-574))) "failed") (-654 (-1189 (-574))) (-1189 (-574))))) +((-3417 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1193)) 19)) (-2936 (((-654 (-622 |#2|)) (-654 |#2|) (-1193)) 23)) (-4353 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|))) 11)) (-2573 ((|#2| |#2| (-1193)) 59 (|has| |#1| (-566)))) (-4398 ((|#2| |#2| (-1193)) 87 (-12 (|has| |#2| (-292)) (|has| |#1| (-462))))) (-2345 (((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1193)) 25)) (-4185 (((-622 |#2|) (-654 (-622 |#2|))) 24)) (-2933 (((-596 |#2|) |#2| (-1193) (-1 (-596 |#2|) |#2| (-1193)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193))) 115 (-12 (|has| |#2| (-292)) (|has| |#2| (-639)) (|has| |#2| (-1054 (-1193))) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-462)) (|has| |#1| (-897 (-574))))))) +(((-583 |#1| |#2|) (-10 -7 (-15 -3417 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1193))) (-15 -4185 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -2345 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1193))) (-15 -4353 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -2936 ((-654 (-622 |#2|)) (-654 |#2|) (-1193))) (IF (|has| |#1| (-566)) (-15 -2573 (|#2| |#2| (-1193))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -4398 (|#2| |#2| (-1193))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1054 (-1193))) (-15 -2933 ((-596 |#2|) |#2| (-1193) (-1 (-596 |#2|) |#2| (-1193)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1116) (-440 |#1|)) (T -583)) +((-2933 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-596 *3) *3 (-1193))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1193))) (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1054 *4)) (-4 *3 (-440 *7)) (-5 *4 (-1193)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462)) (-4 *7 (-897 (-574))) (-4 *7 (-1116)) (-5 *2 (-596 *3)) (-5 *1 (-583 *7 *3)))) (-4398 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-462)) (-4 *4 (-1116)) (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4)))) (-2573 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-4 *4 (-1116)) (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-1193)) (-4 *6 (-440 *5)) (-4 *5 (-1116)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6)))) (-4353 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1116)) (-5 *1 (-583 *3 *4)))) (-2345 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1193)) (-5 *2 (-622 *6)) (-4 *6 (-440 *5)) (-4 *5 (-1116)) (-5 *1 (-583 *5 *6)))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1116)) (-5 *2 (-622 *5)) (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4)))) (-3417 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1193)) (-4 *5 (-440 *4)) (-4 *4 (-1116)) (-5 *1 (-583 *4 *5))))) +(-10 -7 (-15 -3417 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1193))) (-15 -4185 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -2345 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1193))) (-15 -4353 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -2936 ((-654 (-622 |#2|)) (-654 |#2|) (-1193))) (IF (|has| |#1| (-566)) (-15 -2573 (|#2| |#2| (-1193))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -4398 (|#2| |#2| (-1193))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1054 (-1193))) (-15 -2933 ((-596 |#2|) |#2| (-1193) (-1 (-596 |#2|) |#2| (-1193)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3170 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|)) 199)) (-1800 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|))) 174)) (-2233 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|))) 171)) (-3172 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-4070 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-3689 (((-3 (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|)) 202)) (-3546 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|)) 205)) (-3887 (((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 88)) (-2251 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-3307 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|))) 178)) (-3847 (((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 166)) (-1574 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 189)) (-1651 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|)) 210))) +(((-584 |#1| |#2|) (-10 -7 (-15 -4070 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1574 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -3170 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -3546 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -1651 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -1800 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -3307 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -3689 ((-3 (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -2233 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -3172 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3847 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -3887 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -2251 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-372) (-1260 |#1|)) (T -584)) +((-2251 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-584 *5 *3)))) (-3887 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-3847 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-633 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3878 *4) (|:| |sol?| (-112))) (-574) *4)) (-4 *4 (-372)) (-4 *5 (-1260 *4)) (-5 *1 (-584 *4 *5)))) (-3172 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3852 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1260 *4)))) (-2233 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7))) (-4 *7 (-1260 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-584 *6 *7)))) (-3689 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -3852 (-417 *6)) (|:| |coeff| (-417 *6)))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-3307 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3878 *7) (|:| |sol?| (-112))) (-574) *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1260 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-1800 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3852 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1260 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-1651 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3878 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -3852 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-3546 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3852 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -3852 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-3170 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-1574 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3878 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-4070 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3852 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) +(-10 -7 (-15 -4070 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1574 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -3170 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -3546 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -1651 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -1800 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -3307 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -3689 ((-3 (-2 (|:| -3852 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -2233 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -3172 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3847 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -3887 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -2251 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-1727 (((-3 |#2| "failed") |#2| (-1193) (-1193)) 10))) +(((-585 |#1| |#2|) (-10 -7 (-15 -1727 ((-3 |#2| "failed") |#2| (-1193) (-1193)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-973) (-1155) (-29 |#1|))) (T -585)) +((-1727 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-1219) (-973) (-1155) (-29 *4)))))) +(-10 -7 (-15 -1727 ((-3 |#2| "failed") |#2| (-1193) (-1193)))) +((-2744 (((-701 (-1242)) $ (-1242)) 26)) (-4193 (((-701 (-559)) $ (-559)) 25)) (-2208 (((-781) $ (-129)) 27)) (-3848 (((-701 (-130)) $ (-130)) 24)) (-3604 (((-701 (-1242)) $) 12)) (-2992 (((-701 (-1240)) $) 8)) (-4305 (((-701 (-1239)) $) 10)) (-4012 (((-701 (-559)) $) 13)) (-1893 (((-701 (-557)) $) 9)) (-1537 (((-701 (-556)) $) 11)) (-2329 (((-781) $ (-129)) 7)) (-3813 (((-701 (-130)) $) 14)) (-1731 (($ $) 6))) (((-586) (-141)) (T -586)) NIL (-13 (-537) (-870)) (((-175) . T) ((-537) . T) ((-870) . T)) -((-3828 (((-701 (-1241)) $ (-1241)) NIL)) (-2902 (((-701 (-559)) $ (-559)) NIL)) (-2910 (((-781) $ (-129)) NIL)) (-4203 (((-701 (-130)) $ (-130)) NIL)) (-4336 (((-701 (-1241)) $) NIL)) (-2752 (((-701 (-1239)) $) NIL)) (-2492 (((-701 (-1238)) $) NIL)) (-3692 (((-701 (-559)) $) NIL)) (-2673 (((-701 (-557)) $) NIL)) (-1952 (((-701 (-556)) $) NIL)) (-4318 (((-781) $ (-129)) NIL)) (-3982 (((-701 (-130)) $) NIL)) (-3173 (((-112) $) NIL)) (-1813 (($ (-398)) 14) (($ (-1174)) 16)) (-2950 (((-872) $) NIL)) (-3894 (($ $) NIL))) -(((-587) (-13 (-586) (-623 (-872)) (-10 -8 (-15 -1813 ($ (-398))) (-15 -1813 ($ (-1174))) (-15 -3173 ((-112) $))))) (T -587)) -((-1813 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587)))) (-1813 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-587)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587))))) -(-13 (-586) (-623 (-872)) (-10 -8 (-15 -1813 ($ (-398))) (-15 -1813 ($ (-1174))) (-15 -3173 ((-112) $)))) -((-2863 (((-112) $ $) NIL)) (-3230 (($) 7 T CONST)) (-3945 (((-1174) $) NIL)) (-1462 (($) 6 T CONST)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15)) (-3130 (($) 9 T CONST)) (-1915 (($) 8 T CONST)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 11))) -(((-588) (-13 (-1115) (-10 -8 (-15 -1462 ($) -1715) (-15 -3230 ($) -1715) (-15 -1915 ($) -1715) (-15 -3130 ($) -1715)))) (T -588)) -((-1462 (*1 *1) (-5 *1 (-588))) (-3230 (*1 *1) (-5 *1 (-588))) (-1915 (*1 *1) (-5 *1 (-588))) (-3130 (*1 *1) (-5 *1 (-588)))) -(-13 (-1115) (-10 -8 (-15 -1462 ($) -1715) (-15 -3230 ($) -1715) (-15 -1915 ($) -1715) (-15 -3130 ($) -1715))) -((-2863 (((-112) $ $) NIL)) (-1815 (((-701 $) (-501)) 21)) (-3945 (((-1174) $) NIL)) (-4382 (($ (-1174)) 14)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 33)) (-2942 (((-215 4 (-130)) $) 24)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 26))) -(((-589) (-13 (-1115) (-10 -8 (-15 -4382 ($ (-1174))) (-15 -2942 ((-215 4 (-130)) $)) (-15 -1815 ((-701 $) (-501)))))) (T -589)) -((-4382 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-589)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701 (-589))) (-5 *1 (-589))))) -(-13 (-1115) (-10 -8 (-15 -4382 ($ (-1174))) (-15 -2942 ((-215 4 (-130)) $)) (-15 -1815 ((-701 $) (-501))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ (-574)) 75)) (-3656 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-1739 (($ (-1188 (-574)) (-574)) 81)) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) 66)) (-1325 (($ $) 43)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-2725 (((-781) $) 16)) (-3372 (((-112) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2078 (((-574)) 37)) (-1978 (((-574) $) 41)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2115 (($ $ (-574)) 24)) (-2852 (((-3 $ "failed") $ $) 71)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) 17)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 72)) (-2354 (((-1172 (-574)) $) 19)) (-4209 (($ $) 26)) (-2950 (((-872) $) 102) (($ (-574)) 61) (($ $) NIL)) (-4019 (((-781)) 15 T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3524 (((-574) $ (-574)) 46)) (-2142 (($) 44 T CONST)) (-2154 (($) 21 T CONST)) (-2985 (((-112) $ $) 52)) (-3089 (($ $) 60) (($ $ $) 48)) (-3074 (($ $ $) 59)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 62) (($ $ $) 63))) +((-2744 (((-701 (-1242)) $ (-1242)) NIL)) (-4193 (((-701 (-559)) $ (-559)) NIL)) (-2208 (((-781) $ (-129)) NIL)) (-3848 (((-701 (-130)) $ (-130)) NIL)) (-3604 (((-701 (-1242)) $) NIL)) (-2992 (((-701 (-1240)) $) NIL)) (-4305 (((-701 (-1239)) $) NIL)) (-4012 (((-701 (-559)) $) NIL)) (-1893 (((-701 (-557)) $) NIL)) (-1537 (((-701 (-556)) $) NIL)) (-2329 (((-781) $ (-129)) NIL)) (-3813 (((-701 (-130)) $) NIL)) (-2987 (((-112) $) NIL)) (-3501 (($ (-398)) 14) (($ (-1175)) 16)) (-2951 (((-872) $) NIL)) (-1731 (($ $) NIL))) +(((-587) (-13 (-586) (-623 (-872)) (-10 -8 (-15 -3501 ($ (-398))) (-15 -3501 ($ (-1175))) (-15 -2987 ((-112) $))))) (T -587)) +((-3501 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-587)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587))))) +(-13 (-586) (-623 (-872)) (-10 -8 (-15 -3501 ($ (-398))) (-15 -3501 ($ (-1175))) (-15 -2987 ((-112) $)))) +((-2864 (((-112) $ $) NIL)) (-3231 (($) 7 T CONST)) (-1489 (((-1175) $) NIL)) (-1463 (($) 6 T CONST)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15)) (-3551 (($) 9 T CONST)) (-3738 (($) 8 T CONST)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 11))) +(((-588) (-13 (-1116) (-10 -8 (-15 -1463 ($) -1714) (-15 -3231 ($) -1714) (-15 -3738 ($) -1714) (-15 -3551 ($) -1714)))) (T -588)) +((-1463 (*1 *1) (-5 *1 (-588))) (-3231 (*1 *1) (-5 *1 (-588))) (-3738 (*1 *1) (-5 *1 (-588))) (-3551 (*1 *1) (-5 *1 (-588)))) +(-13 (-1116) (-10 -8 (-15 -1463 ($) -1714) (-15 -3231 ($) -1714) (-15 -3738 ($) -1714) (-15 -3551 ($) -1714))) +((-2864 (((-112) $ $) NIL)) (-1812 (((-701 $) (-501)) 21)) (-1489 (((-1175) $) NIL)) (-2487 (($ (-1175)) 14)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 33)) (-3052 (((-215 4 (-130)) $) 24)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 26))) +(((-589) (-13 (-1116) (-10 -8 (-15 -2487 ($ (-1175))) (-15 -3052 ((-215 4 (-130)) $)) (-15 -1812 ((-701 $) (-501)))))) (T -589)) +((-2487 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-589)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701 (-589))) (-5 *1 (-589))))) +(-13 (-1116) (-10 -8 (-15 -2487 ($ (-1175))) (-15 -3052 ((-215 4 (-130)) $)) (-15 -1812 ((-701 $) (-501))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $ (-574)) 75)) (-3245 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-3298 (($ (-1189 (-574)) (-574)) 81)) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) 66)) (-4077 (($ $) 43)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3547 (((-781) $) 16)) (-4226 (((-112) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1510 (((-574)) 37)) (-1712 (((-574) $) 41)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2433 (($ $ (-574)) 24)) (-2853 (((-3 $ "failed") $ $) 71)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) 17)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 72)) (-4074 (((-1173 (-574)) $) 19)) (-2916 (($ $) 26)) (-2951 (((-872) $) 102) (($ (-574)) 61) (($ $) NIL)) (-2898 (((-781)) 15 T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3525 (((-574) $ (-574)) 46)) (-2141 (($) 44 T CONST)) (-2153 (($) 21 T CONST)) (-2986 (((-112) $ $) 52)) (-3090 (($ $) 60) (($ $ $) 48)) (-3074 (($ $ $) 59)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 62) (($ $ $) 63))) (((-590 |#1| |#2|) (-879 |#1|) (-574) (-112)) (T -590)) NIL (-879 |#1|) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 30)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 (($ $ (-934)) NIL (|has| $ (-377))) (($ $) NIL)) (-2541 (((-1205 (-934) (-781)) (-574)) 59)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 $ "failed") $) 95)) (-2216 (($ $) 94)) (-2919 (($ (-1283 $)) 93)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) 44)) (-2834 (($) NIL)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) 61)) (-3873 (((-112) $) NIL)) (-4158 (($ $) NIL) (($ $ (-781)) NIL)) (-1782 (((-112) $) NIL)) (-2725 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-3372 (((-112) $) NIL)) (-3434 (($) 49 (|has| $ (-377)))) (-3743 (((-112) $) NIL (|has| $ (-377)))) (-1386 (($ $ (-934)) NIL (|has| $ (-377))) (($ $) NIL)) (-1353 (((-3 $ "failed") $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 $) $ (-934)) NIL (|has| $ (-377))) (((-1188 $) $) 104)) (-3271 (((-934) $) 67)) (-3363 (((-1188 $) $) NIL (|has| $ (-377)))) (-4426 (((-3 (-1188 $) "failed") $ $) NIL (|has| $ (-377))) (((-1188 $) $) NIL (|has| $ (-377)))) (-4140 (($ $ (-1188 $)) NIL (|has| $ (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL T CONST)) (-2590 (($ (-934)) 60)) (-3854 (((-112) $) 87)) (-3939 (((-1135) $) NIL)) (-2975 (($) 28 (|has| $ (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) 54)) (-4200 (((-428 $) $) NIL)) (-1971 (((-934)) 86) (((-843 (-934))) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-3480 (((-135)) NIL)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-3584 (((-934) $) 85) (((-843 (-934)) $) NIL)) (-2290 (((-1188 $)) 102)) (-1417 (($) 66)) (-1549 (($) 50 (|has| $ (-377)))) (-4346 (((-699 $) (-1283 $)) NIL) (((-1283 $) $) 91)) (-1845 (((-574) $) 40)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) 42) (($ $) NIL) (($ (-417 (-574))) NIL)) (-3247 (((-3 $ "failed") $) NIL) (($ $) 105)) (-4019 (((-781)) 51 T CONST)) (-3838 (((-112) $ $) 107)) (-2191 (((-1283 $) (-934)) 97) (((-1283 $)) 96)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) 31 T CONST)) (-2154 (($) 27 T CONST)) (-2893 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 34)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 81) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-591 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-934)) (T -591)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 30)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 (($ $ (-935)) NIL (|has| $ (-377))) (($ $) NIL)) (-1928 (((-1206 (-935) (-781)) (-574)) 59)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 $ "failed") $) 95)) (-2214 (($ $) 94)) (-2580 (($ (-1284 $)) 93)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) 44)) (-2835 (($) NIL)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) 61)) (-3084 (((-112) $) NIL)) (-1995 (($ $) NIL) (($ $ (-781)) NIL)) (-3978 (((-112) $) NIL)) (-3547 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-4226 (((-112) $) NIL)) (-3841 (($) 49 (|has| $ (-377)))) (-3272 (((-112) $) NIL (|has| $ (-377)))) (-1681 (($ $ (-935)) NIL (|has| $ (-377))) (($ $) NIL)) (-2414 (((-3 $ "failed") $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 $) $ (-935)) NIL (|has| $ (-377))) (((-1189 $) $) 104)) (-3383 (((-935) $) 67)) (-2346 (((-1189 $) $) NIL (|has| $ (-377)))) (-3747 (((-3 (-1189 $) "failed") $ $) NIL (|has| $ (-377))) (((-1189 $) $) NIL (|has| $ (-377)))) (-1927 (($ $ (-1189 $)) NIL (|has| $ (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL T CONST)) (-2591 (($ (-935)) 60)) (-2228 (((-112) $) 87)) (-3940 (((-1136) $) NIL)) (-2975 (($) 28 (|has| $ (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) 54)) (-4202 (((-428 $) $) NIL)) (-2027 (((-935)) 86) (((-843 (-935))) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-2995 (((-135)) NIL)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-3580 (((-935) $) 85) (((-843 (-935)) $) NIL)) (-4379 (((-1189 $)) 102)) (-3603 (($) 66)) (-4219 (($) 50 (|has| $ (-377)))) (-1385 (((-699 $) (-1284 $)) NIL) (((-1284 $) $) 91)) (-1844 (((-574) $) 40)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) 42) (($ $) NIL) (($ (-417 (-574))) NIL)) (-3424 (((-3 $ "failed") $) NIL) (($ $) 105)) (-2898 (((-781)) 51 T CONST)) (-4069 (((-112) $ $) 107)) (-2391 (((-1284 $) (-935)) 97) (((-1284 $)) 96)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) 31 T CONST)) (-2153 (($) 27 T CONST)) (-2656 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3584 (($ $) NIL) (($ $ (-781)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 34)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 81) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-591 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-935)) (T -591)) NIL (-13 (-358) (-337 $) (-624 (-574))) -((-1461 (((-1288) (-1174)) 10))) -(((-592) (-10 -7 (-15 -1461 ((-1288) (-1174))))) (T -592)) -((-1461 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-592))))) -(-10 -7 (-15 -1461 ((-1288) (-1174)))) -((-3749 (((-596 |#2|) (-596 |#2|)) 42)) (-2138 (((-654 |#2|) (-596 |#2|)) 44)) (-3331 ((|#2| (-596 |#2|)) 50))) -(((-593 |#1| |#2|) (-10 -7 (-15 -3749 ((-596 |#2|) (-596 |#2|))) (-15 -2138 ((-654 |#2|) (-596 |#2|))) (-15 -3331 (|#2| (-596 |#2|)))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-29 |#1|) (-1218))) (T -593)) -((-3331 (*1 *2 *3) (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1218))) (-5 *1 (-593 *4 *2)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1218))) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-654 *5)) (-5 *1 (-593 *4 *5)))) (-3749 (*1 *2 *2) (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1218))) (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-593 *3 *4))))) -(-10 -7 (-15 -3749 ((-596 |#2|) (-596 |#2|))) (-15 -2138 ((-654 |#2|) (-596 |#2|))) (-15 -3331 (|#2| (-596 |#2|)))) -((-1786 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)) 30))) -(((-594 |#1| |#2|) (-10 -7 (-15 -1786 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1786 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1786 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1786 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-372) (-372)) (T -594)) -((-1786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-594 *5 *6)))) (-1786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-372)) (-4 *2 (-372)) (-5 *1 (-594 *5 *2)))) (-1786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3766 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| -3766 *6) (|:| |coeff| *6))) (-5 *1 (-594 *5 *6)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-596 *6)) (-5 *1 (-594 *5 *6))))) -(-10 -7 (-15 -1786 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1786 ((-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3766 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1786 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1786 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-1822 (($ (-516) (-607)) 14)) (-2820 (($ (-516) (-607) $) 16)) (-3963 (($ (-516) (-607)) 15)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-1197)) 7) (((-1197) $) 6)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-595) (-13 (-1115) (-500 (-1197)) (-10 -8 (-15 -1822 ($ (-516) (-607))) (-15 -3963 ($ (-516) (-607))) (-15 -2820 ($ (-516) (-607) $))))) (T -595)) -((-1822 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-3963 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-2820 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) -(-13 (-1115) (-500 (-1197)) (-10 -8 (-15 -1822 ($ (-516) (-607))) (-15 -3963 ($ (-516) (-607))) (-15 -2820 ($ (-516) (-607) $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) 76)) (-2216 ((|#1| $) NIL)) (-3766 ((|#1| $) 30)) (-1552 (((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3594 (($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2974 (((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) $) 31)) (-3945 (((-1174) $) NIL)) (-2028 (($ |#1| |#1|) 38) (($ |#1| (-1192)) 49 (|has| |#1| (-1053 (-1192))))) (-3939 (((-1135) $) NIL)) (-3973 (((-112) $) 35)) (-3878 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1192)) 89 (|has| |#1| (-913 (-1192))))) (-2950 (((-872) $) 110) (($ |#1|) 29)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 18 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) 17) (($ $ $) NIL)) (-3074 (($ $ $) 85)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 16) (($ (-417 (-574)) $) 41) (($ $ (-417 (-574))) NIL))) -(((-596 |#1|) (-13 (-727 (-417 (-574))) (-1053 |#1|) (-10 -8 (-15 -3594 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3766 (|#1| $)) (-15 -2974 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) $)) (-15 -1552 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3973 ((-112) $)) (-15 -2028 ($ |#1| |#1|)) (-15 -3878 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-913 (-1192))) (-15 -3878 (|#1| $ (-1192))) |%noBranch|) (IF (|has| |#1| (-1053 (-1192))) (-15 -2028 ($ |#1| (-1192))) |%noBranch|))) (-372)) (T -596)) -((-3594 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 *2)) (|:| |logand| (-1188 *2))))) (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-372)) (-5 *1 (-596 *2)))) (-3766 (*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 *3)) (|:| |logand| (-1188 *3))))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-2028 (*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3878 (*1 *2 *1 *3) (-12 (-4 *2 (-372)) (-4 *2 (-913 *3)) (-5 *1 (-596 *2)) (-5 *3 (-1192)))) (-2028 (*1 *1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *1 (-596 *2)) (-4 *2 (-1053 *3)) (-4 *2 (-372))))) -(-13 (-727 (-417 (-574))) (-1053 |#1|) (-10 -8 (-15 -3594 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3766 (|#1| $)) (-15 -2974 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) $)) (-15 -1552 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3973 ((-112) $)) (-15 -2028 ($ |#1| |#1|)) (-15 -3878 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-913 (-1192))) (-15 -3878 (|#1| $ (-1192))) |%noBranch|) (IF (|has| |#1| (-1053 (-1192))) (-15 -2028 ($ |#1| (-1192))) |%noBranch|))) -((-2973 (((-112) |#1|) 16)) (-4387 (((-3 |#1| "failed") |#1|) 14)) (-3028 (((-2 (|:| -2643 |#1|) (|:| -2017 (-781))) |#1|) 38) (((-3 |#1| "failed") |#1| (-781)) 18)) (-1799 (((-112) |#1| (-781)) 19)) (-2307 ((|#1| |#1|) 42)) (-3545 ((|#1| |#1| (-781)) 45))) -(((-597 |#1|) (-10 -7 (-15 -1799 ((-112) |#1| (-781))) (-15 -3028 ((-3 |#1| "failed") |#1| (-781))) (-15 -3028 ((-2 (|:| -2643 |#1|) (|:| -2017 (-781))) |#1|)) (-15 -3545 (|#1| |#1| (-781))) (-15 -2973 ((-112) |#1|)) (-15 -4387 ((-3 |#1| "failed") |#1|)) (-15 -2307 (|#1| |#1|))) (-555)) (T -597)) -((-2307 (*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-4387 (*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-2973 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-3545 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-3028 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2643 *3) (|:| -2017 (-781)))) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-3028 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) -(-10 -7 (-15 -1799 ((-112) |#1| (-781))) (-15 -3028 ((-3 |#1| "failed") |#1| (-781))) (-15 -3028 ((-2 (|:| -2643 |#1|) (|:| -2017 (-781))) |#1|)) (-15 -3545 (|#1| |#1| (-781))) (-15 -2973 ((-112) |#1|)) (-15 -4387 ((-3 |#1| "failed") |#1|)) (-15 -2307 (|#1| |#1|))) -((-3729 (((-1188 |#1|) (-934)) 44))) -(((-598 |#1|) (-10 -7 (-15 -3729 ((-1188 |#1|) (-934)))) (-358)) (T -598)) -((-3729 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-598 *4)) (-4 *4 (-358))))) -(-10 -7 (-15 -3729 ((-1188 |#1|) (-934)))) -((-3749 (((-596 (-417 (-965 |#1|))) (-596 (-417 (-965 |#1|)))) 27)) (-1578 (((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-965 |#1|)) (-1192)) 34 (|has| |#1| (-148)))) (-2138 (((-654 (-324 |#1|)) (-596 (-417 (-965 |#1|)))) 19)) (-3586 (((-324 |#1|) (-417 (-965 |#1|)) (-1192)) 32 (|has| |#1| (-148)))) (-3331 (((-324 |#1|) (-596 (-417 (-965 |#1|)))) 21))) -(((-599 |#1|) (-10 -7 (-15 -3749 ((-596 (-417 (-965 |#1|))) (-596 (-417 (-965 |#1|))))) (-15 -2138 ((-654 (-324 |#1|)) (-596 (-417 (-965 |#1|))))) (-15 -3331 ((-324 |#1|) (-596 (-417 (-965 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1578 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -3586 ((-324 |#1|) (-417 (-965 |#1|)) (-1192)))) |%noBranch|)) (-13 (-462) (-1053 (-574)) (-649 (-574)))) (T -599)) -((-3586 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-324 *5)) (-5 *1 (-599 *5)))) (-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-965 *4)))) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-599 *4)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-965 *4)))) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-654 (-324 *4))) (-5 *1 (-599 *4)))) (-3749 (*1 *2 *2) (-12 (-5 *2 (-596 (-417 (-965 *3)))) (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-599 *3))))) -(-10 -7 (-15 -3749 ((-596 (-417 (-965 |#1|))) (-596 (-417 (-965 |#1|))))) (-15 -2138 ((-654 (-324 |#1|)) (-596 (-417 (-965 |#1|))))) (-15 -3331 ((-324 |#1|) (-596 (-417 (-965 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1578 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -3586 ((-324 |#1|) (-417 (-965 |#1|)) (-1192)))) |%noBranch|)) -((-2162 (((-654 (-699 (-574))) (-654 (-934)) (-654 (-918 (-574)))) 78) (((-654 (-699 (-574))) (-654 (-934))) 79) (((-699 (-574)) (-654 (-934)) (-918 (-574))) 72)) (-1765 (((-781) (-654 (-934))) 69))) -(((-600) (-10 -7 (-15 -1765 ((-781) (-654 (-934)))) (-15 -2162 ((-699 (-574)) (-654 (-934)) (-918 (-574)))) (-15 -2162 ((-654 (-699 (-574))) (-654 (-934)))) (-15 -2162 ((-654 (-699 (-574))) (-654 (-934)) (-654 (-918 (-574))))))) (T -600)) -((-2162 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-934))) (-5 *4 (-654 (-918 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-2162 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-934))) (-5 *4 (-918 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-600)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-781)) (-5 *1 (-600))))) -(-10 -7 (-15 -1765 ((-781) (-654 (-934)))) (-15 -2162 ((-699 (-574)) (-654 (-934)) (-918 (-574)))) (-15 -2162 ((-654 (-699 (-574))) (-654 (-934)))) (-15 -2162 ((-654 (-699 (-574))) (-654 (-934)) (-654 (-918 (-574)))))) -((-2464 (((-654 |#5|) |#5| (-112)) 100)) (-3562 (((-112) |#5| (-654 |#5|)) 34))) -(((-601 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2464 ((-654 |#5|) |#5| (-112))) (-15 -3562 ((-112) |#5| (-654 |#5|)))) (-13 (-315) (-148)) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1124 |#1| |#2| |#3| |#4|)) (T -601)) -((-3562 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1124 *5 *6 *7 *8)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-601 *5 *6 *7 *8 *3)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-654 *3)) (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1124 *5 *6 *7 *8))))) -(-10 -7 (-15 -2464 ((-654 |#5|) |#5| (-112))) (-15 -3562 ((-112) |#5| (-654 |#5|)))) -((-2863 (((-112) $ $) NIL)) (-1818 (((-1150) $) 11)) (-1804 (((-1150) $) 9)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-602) (-13 (-1098) (-10 -8 (-15 -1804 ((-1150) $)) (-15 -1818 ((-1150) $))))) (T -602)) -((-1804 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-602)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-602))))) -(-13 (-1098) (-10 -8 (-15 -1804 ((-1150) $)) (-15 -1818 ((-1150) $)))) -((-2863 (((-112) $ $) NIL (|has| (-145) (-1115)))) (-3798 (($ $) 38)) (-3635 (($ $) NIL)) (-3929 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-3684 (((-112) $ $) 67)) (-3664 (((-112) $ $ (-574)) 62)) (-3749 (((-654 $) $ (-145)) 75) (((-654 $) $ (-142)) 76)) (-4331 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-3565 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-860))))) (-2785 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 (((-145) $ (-574) (-145)) 59 (|has| $ (-6 -4459))) (((-145) $ (-1250 (-574)) (-145)) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2631 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2279 (($ $ (-1250 (-574)) $) 57)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-3310 (($ (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2472 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4459)))) (-2399 (((-145) $ (-574)) NIL)) (-3706 (((-112) $ $) 88)) (-1451 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1115))) (((-574) (-145) $ (-574)) 64 (|has| (-145) (-1115))) (((-574) $ $ (-574)) 63) (((-574) (-142) $ (-574)) 66)) (-1873 (((-654 (-145)) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) (-145)) 9)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) 32 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| (-145) (-860)))) (-4297 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-2247 (((-654 (-145)) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2429 (((-574) $) 47 (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| (-145) (-860)))) (-1329 (((-112) $ $ (-145)) 89)) (-2697 (((-781) $ $ (-145)) 86)) (-2461 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1951 (($ $) 41)) (-3234 (($ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-2645 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-3945 (((-1174) $) 43 (|has| (-145) (-1115)))) (-1603 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) 27)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) 85 (|has| (-145) (-1115)))) (-2924 (((-145) $) NIL (|has| (-574) (-860)))) (-2294 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4276 (($ $ (-145)) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2379 (((-654 (-145)) $) NIL)) (-2880 (((-112) $) 15)) (-2833 (($) 10)) (-2208 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) 68) (($ $ (-1250 (-574))) 25) (($ $ $) NIL)) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2315 (($ $ $ (-574)) 81 (|has| $ (-6 -4459)))) (-3156 (($ $) 20)) (-1845 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2962 (($ (-654 (-145))) NIL)) (-4131 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-654 $)) 82)) (-2950 (($ (-145)) NIL) (((-872) $) 31 (|has| (-145) (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| (-145) (-1115)))) (-2980 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2985 (((-112) $ $) 17 (|has| (-145) (-1115)))) (-3029 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3009 (((-112) $ $) 18 (|has| (-145) (-860)))) (-2876 (((-781) $) 16 (|has| $ (-6 -4458))))) -(((-603 |#1|) (-1159) (-574)) (T -603)) -NIL -(-1159) -((-3534 (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1109 |#4|)) 32))) -(((-604 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1109 |#4|))) (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|))) (-803) (-860) (-566) (-962 |#3| |#1| |#2|)) (T -604)) -((-3534 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-962 *6 *5 *4)))) (-3534 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1109 *3)) (-4 *3 (-962 *7 *6 *4)) (-4 *6 (-803)) (-4 *4 (-860)) (-4 *7 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *6 *4 *7 *3))))) -(-10 -7 (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1109 |#4|))) (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 71)) (-4349 (((-654 (-1097)) $) NIL)) (-1497 (((-1192) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3842 (($ $ (-574)) 58) (($ $ (-574) (-574)) 59)) (-3786 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 65)) (-3478 (($ $) 109)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3704 (((-872) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1041 (-853 (-574))) (-1192) |#1| (-417 (-574))) 241)) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 36)) (-3831 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-3938 (((-112) $) NIL)) (-2725 (((-574) $) 63) (((-574) $ (-574)) 64)) (-3372 (((-112) $) NIL)) (-2057 (($ $ (-934)) 83)) (-1988 (($ (-1 |#1| (-574)) $) 80)) (-3257 (((-112) $) 26)) (-4327 (($ |#1| (-574)) 22) (($ $ (-1097) (-574)) NIL) (($ $ (-654 (-1097)) (-654 (-574))) NIL)) (-1786 (($ (-1 |#1| |#1|) $) 75)) (-1757 (($ (-1041 (-853 (-574))) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 13)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-1578 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-2723 (((-3 $ "failed") $ $ (-112)) 108)) (-4369 (($ $ $) 116)) (-3939 (((-1135) $) NIL)) (-2578 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 15)) (-3266 (((-1041 (-853 (-574))) $) 14)) (-2115 (($ $ (-574)) 47)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-2208 ((|#1| $ (-574)) 62) (($ $ $) NIL (|has| (-574) (-1127)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-3584 (((-574) $) NIL)) (-4209 (($ $) 48)) (-2950 (((-872) $) NIL) (($ (-574)) 29) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 28 (|has| |#1| (-174)))) (-2930 ((|#1| $ (-574)) 61)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) 39 T CONST)) (-3332 ((|#1| $) NIL)) (-2092 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-2864 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-1701 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-1349 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-3661 (($ $) 201 (|has| |#1| (-38 (-417 (-574)))))) (-1987 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-3860 (($ $ (-417 (-574))) 177 (|has| |#1| (-38 (-417 (-574)))))) (-2023 (($ $ |#1|) 157 (|has| |#1| (-38 (-417 (-574)))))) (-3753 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2504 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-3438 (($ $) 203 (|has| |#1| (-38 (-417 (-574)))))) (-3826 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-3432 (($ $) 199 (|has| |#1| (-38 (-417 (-574)))))) (-1512 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-3355 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-3640 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-3423 (($ $) 209 (|has| |#1| (-38 (-417 (-574)))))) (-4116 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-1570 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-3964 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-4409 (($ $) 213 (|has| |#1| (-38 (-417 (-574)))))) (-2591 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-1622 (($ $) 215 (|has| |#1| (-38 (-417 (-574)))))) (-2180 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-4399 (($ $) 211 (|has| |#1| (-38 (-417 (-574)))))) (-4073 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-2507 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2156 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3524 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2142 (($) 30 T CONST)) (-2154 (($) 40 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2985 (((-112) $ $) 73)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) 91) (($ $ $) 72)) (-3074 (($ $ $) 88)) (** (($ $ (-934)) NIL) (($ $ (-781)) 111)) (* (($ (-934) $) 98) (($ (-781) $) 96) (($ (-574) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-605 |#1|) (-13 (-1261 |#1| (-574)) (-10 -8 (-15 -1757 ($ (-1041 (-853 (-574))) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3266 ((-1041 (-853 (-574))) $)) (-15 -2578 ((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3596 ($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3257 ((-112) $)) (-15 -1988 ($ (-1 |#1| (-574)) $)) (-15 -2723 ((-3 $ "failed") $ $ (-112))) (-15 -3478 ($ $)) (-15 -4369 ($ $ $)) (-15 -3704 ((-872) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1041 (-853 (-574))) (-1192) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ($ $)) (-15 -2023 ($ $ |#1|)) (-15 -3860 ($ $ (-417 (-574)))) (-15 -2504 ($ $)) (-15 -3753 ($ $)) (-15 -1349 ($ $)) (-15 -3640 ($ $)) (-15 -2864 ($ $)) (-15 -1512 ($ $)) (-15 -1987 ($ $)) (-15 -3826 ($ $)) (-15 -3964 ($ $)) (-15 -2156 ($ $)) (-15 -4116 ($ $)) (-15 -4073 ($ $)) (-15 -2591 ($ $)) (-15 -2180 ($ $)) (-15 -1701 ($ $)) (-15 -3355 ($ $)) (-15 -2092 ($ $)) (-15 -3432 ($ $)) (-15 -3661 ($ $)) (-15 -3438 ($ $)) (-15 -1570 ($ $)) (-15 -2507 ($ $)) (-15 -3423 ($ $)) (-15 -4399 ($ $)) (-15 -4409 ($ $)) (-15 -1622 ($ $))) |%noBranch|))) (-1064)) (T -605)) -((-3257 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1064)))) (-1757 (*1 *1 *2 *3) (-12 (-5 *2 (-1041 (-853 (-574)))) (-5 *3 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1064)) (-5 *1 (-605 *4)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-1041 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1064)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-5 *1 (-605 *3)) (-4 *3 (-1064)))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1064)) (-5 *1 (-605 *3)))) (-1988 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1064)) (-5 *1 (-605 *3)))) (-2723 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1064)))) (-3478 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1064)))) (-4369 (*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1064)))) (-3704 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *6)))) (-5 *4 (-1041 (-853 (-574)))) (-5 *5 (-1192)) (-5 *7 (-417 (-574))) (-4 *6 (-1064)) (-5 *2 (-872)) (-5 *1 (-605 *6)))) (-1578 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2023 (*1 *1 *1 *2) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3860 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1064)))) (-2504 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3753 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1349 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3640 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2864 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1512 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1987 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3826 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3964 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-4116 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-4073 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2591 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2180 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1701 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3355 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2092 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3432 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3661 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3438 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1570 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2507 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3423 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-4399 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-4409 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1622 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(-13 (-1261 |#1| (-574)) (-10 -8 (-15 -1757 ($ (-1041 (-853 (-574))) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3266 ((-1041 (-853 (-574))) $)) (-15 -2578 ((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3596 ($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3257 ((-112) $)) (-15 -1988 ($ (-1 |#1| (-574)) $)) (-15 -2723 ((-3 $ "failed") $ $ (-112))) (-15 -3478 ($ $)) (-15 -4369 ($ $ $)) (-15 -3704 ((-872) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1041 (-853 (-574))) (-1192) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ($ $)) (-15 -2023 ($ $ |#1|)) (-15 -3860 ($ $ (-417 (-574)))) (-15 -2504 ($ $)) (-15 -3753 ($ $)) (-15 -1349 ($ $)) (-15 -3640 ($ $)) (-15 -2864 ($ $)) (-15 -1512 ($ $)) (-15 -1987 ($ $)) (-15 -3826 ($ $)) (-15 -3964 ($ $)) (-15 -2156 ($ $)) (-15 -4116 ($ $)) (-15 -4073 ($ $)) (-15 -2591 ($ $)) (-15 -2180 ($ $)) (-15 -1701 ($ $)) (-15 -3355 ($ $)) (-15 -2092 ($ $)) (-15 -3432 ($ $)) (-15 -3661 ($ $)) (-15 -3438 ($ $)) (-15 -1570 ($ $)) (-15 -2507 ($ $)) (-15 -3423 ($ $)) (-15 -4399 ($ $)) (-15 -4409 ($ $)) (-15 -1622 ($ $))) |%noBranch|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 63)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3596 (($ (-1172 |#1|)) 9)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) 44)) (-3938 (((-112) $) 56)) (-2725 (((-781) $) 61) (((-781) $ (-781)) 60)) (-3372 (((-112) $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ $) 46 (|has| |#1| (-566)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566)))) (-2836 (((-1172 |#1|) $) 25)) (-4019 (((-781)) 55 T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2142 (($) 10 T CONST)) (-2154 (($) 14 T CONST)) (-2985 (((-112) $ $) 24)) (-3089 (($ $) 32) (($ $ $) 16)) (-3074 (($ $ $) 27)) (** (($ $ (-934)) NIL) (($ $ (-781)) 53)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-574)) 38))) -(((-606 |#1|) (-13 (-1064) (-111 |#1| |#1|) (-10 -8 (-15 -2836 ((-1172 |#1|) $)) (-15 -3596 ($ (-1172 |#1|))) (-15 -3938 ((-112) $)) (-15 -2725 ((-781) $)) (-15 -2725 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|))) (-1064)) (T -606)) -((-2836 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-606 *3)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) (-2725 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1064))))) -(-13 (-1064) (-111 |#1| |#1|) (-10 -8 (-15 -2836 ((-1172 |#1|) $)) (-15 -3596 ($ (-1172 |#1|))) (-15 -3938 ((-112) $)) (-15 -2725 ((-781) $)) (-15 -2725 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|))) -((-2863 (((-112) $ $) NIL)) (-3347 (($) 8 T CONST)) (-4238 (($) 7 T CONST)) (-2003 (($ $ (-654 $)) 16)) (-3945 (((-1174) $) NIL)) (-2539 (($) 6 T CONST)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-1197)) 15) (((-1197) $) 10)) (-3229 (($) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-607) (-13 (-1115) (-500 (-1197)) (-10 -8 (-15 -2539 ($) -1715) (-15 -4238 ($) -1715) (-15 -3347 ($) -1715) (-15 -3229 ($) -1715) (-15 -2003 ($ $ (-654 $)))))) (T -607)) -((-2539 (*1 *1) (-5 *1 (-607))) (-4238 (*1 *1) (-5 *1 (-607))) (-3347 (*1 *1) (-5 *1 (-607))) (-3229 (*1 *1) (-5 *1 (-607))) (-2003 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607))))) -(-13 (-1115) (-500 (-1197)) (-10 -8 (-15 -2539 ($) -1715) (-15 -4238 ($) -1715) (-15 -3347 ($) -1715) (-15 -3229 ($) -1715) (-15 -2003 ($ $ (-654 $))))) -((-1786 (((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)) 15))) -(((-608 |#1| |#2|) (-10 -7 (-15 -1786 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)))) (-1233) (-1233)) (T -608)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6))))) -(-10 -7 (-15 -1786 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)))) -((-1786 (((-1172 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1172 |#2|)) 20) (((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-611 |#2|)) 19) (((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|)) 18))) -(((-609 |#1| |#2| |#3|) (-10 -7 (-15 -1786 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1786 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-611 |#2|))) (-15 -1786 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1172 |#2|)))) (-1233) (-1233) (-1233)) (T -609)) -((-1786 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1172 *7)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1786 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1172 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1786 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-611 *8)) (-5 *1 (-609 *6 *7 *8))))) -(-10 -7 (-15 -1786 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1786 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-611 |#2|))) (-15 -1786 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1172 |#2|)))) -((-2099 ((|#3| |#3| (-654 (-622 |#3|)) (-654 (-1192))) 57)) (-3398 (((-171 |#2|) |#3|) 122)) (-3200 ((|#3| (-171 |#2|)) 46)) (-2388 ((|#2| |#3|) 21)) (-3436 ((|#3| |#2|) 35))) -(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -3200 (|#3| (-171 |#2|))) (-15 -2388 (|#2| |#3|)) (-15 -3436 (|#3| |#2|)) (-15 -3398 ((-171 |#2|) |#3|)) (-15 -2099 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1192))))) (-566) (-13 (-440 |#1|) (-1017) (-1218)) (-13 (-440 (-171 |#1|)) (-1017) (-1218))) (T -610)) -((-2099 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1192))) (-4 *2 (-13 (-440 (-171 *5)) (-1017) (-1218))) (-4 *5 (-566)) (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1017) (-1218))))) (-3398 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) (-4 *5 (-13 (-440 *4) (-1017) (-1218))) (-4 *3 (-13 (-440 (-171 *4)) (-1017) (-1218))))) (-3436 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1017) (-1218))) (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1017) (-1218))))) (-2388 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1017) (-1218))) (-5 *1 (-610 *4 *2 *3)) (-4 *3 (-13 (-440 (-171 *4)) (-1017) (-1218))))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1017) (-1218))) (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1017) (-1218))) (-5 *1 (-610 *4 *5 *2))))) -(-10 -7 (-15 -3200 (|#3| (-171 |#2|))) (-15 -2388 (|#2| |#3|)) (-15 -3436 (|#3| |#2|)) (-15 -3398 ((-171 |#2|) |#3|)) (-15 -2099 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1192))))) -((-2173 (($ (-1 (-112) |#1|) $) 17)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-2103 (($ (-1 |#1| |#1|) |#1|) 9)) (-2149 (($ (-1 (-112) |#1|) $) 13)) (-2160 (($ (-1 (-112) |#1|) $) 15)) (-2962 (((-1172 |#1|) $) 18)) (-2950 (((-872) $) NIL))) -(((-611 |#1|) (-13 (-623 (-872)) (-10 -8 (-15 -1786 ($ (-1 |#1| |#1|) $)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2160 ($ (-1 (-112) |#1|) $)) (-15 -2173 ($ (-1 (-112) |#1|) $)) (-15 -2103 ($ (-1 |#1| |#1|) |#1|)) (-15 -2962 ((-1172 |#1|) $)))) (-1233)) (T -611)) -((-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) (-2149 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) (-2160 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) (-2173 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) (-2103 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1233))))) -(-13 (-623 (-872)) (-10 -8 (-15 -1786 ($ (-1 |#1| |#1|) $)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2160 ($ (-1 (-112) |#1|) $)) (-15 -2173 ($ (-1 (-112) |#1|) $)) (-15 -2103 ($ (-1 |#1| |#1|) |#1|)) (-15 -2962 ((-1172 |#1|) $)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2226 (($ (-781)) NIL (|has| |#1| (-23)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3872 (((-699 |#1|) $ $) NIL (|has| |#1| (-1064)))) (-3763 (($ (-781) |#1|) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4316 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-3625 (((-112) $ (-781)) NIL)) (-4108 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1603 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4276 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3036 ((|#1| $ $) NIL (|has| |#1| (-1064)))) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-4237 (($ $ $) NIL (|has| |#1| (-1064)))) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3089 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3074 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-612 |#1| |#2|) (-1281 |#1|) (-1233) (-574)) (T -612)) -NIL -(-1281 |#1|) -((-3287 (((-1288) $ |#2| |#2|) 35)) (-1767 ((|#2| $) 23)) (-2429 ((|#2| $) 21)) (-2461 (($ (-1 |#3| |#3|) $) 32)) (-1786 (($ (-1 |#3| |#3|) $) 30)) (-2924 ((|#3| $) 26)) (-4276 (($ $ |#3|) 33)) (-2764 (((-112) |#3| $) 17)) (-2379 (((-654 |#3|) $) 15)) (-2208 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-613 |#1| |#2| |#3|) (-10 -8 (-15 -3287 ((-1288) |#1| |#2| |#2|)) (-15 -4276 (|#1| |#1| |#3|)) (-15 -2924 (|#3| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -2429 (|#2| |#1|)) (-15 -2764 ((-112) |#3| |#1|)) (-15 -2379 ((-654 |#3|) |#1|)) (-15 -2208 (|#3| |#1| |#2|)) (-15 -2208 (|#3| |#1| |#2| |#3|)) (-15 -2461 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1786 (|#1| (-1 |#3| |#3|) |#1|))) (-614 |#2| |#3|) (-1115) (-1233)) (T -613)) -NIL -(-10 -8 (-15 -3287 ((-1288) |#1| |#2| |#2|)) (-15 -4276 (|#1| |#1| |#3|)) (-15 -2924 (|#3| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -2429 (|#2| |#1|)) (-15 -2764 ((-112) |#3| |#1|)) (-15 -2379 ((-654 |#3|) |#1|)) (-15 -2208 (|#3| |#1| |#2|)) (-15 -2208 (|#3| |#1| |#2| |#3|)) (-15 -2461 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1786 (|#1| (-1 |#3| |#3|) |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#2| (-1115)))) (-3287 (((-1288) $ |#1| |#1|) 41 (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) 8)) (-3134 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4459)))) (-3831 (($) 7 T CONST)) (-2472 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) 52)) (-1873 (((-654 |#2|) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-1767 ((|#1| $) 44 (|has| |#1| (-860)))) (-2247 (((-654 |#2|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-2429 ((|#1| $) 45 (|has| |#1| (-860)))) (-2461 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#2| |#2|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#2| (-1115)))) (-3228 (((-654 |#1|) $) 47)) (-3071 (((-112) |#1| $) 48)) (-3939 (((-1135) $) 21 (|has| |#2| (-1115)))) (-2924 ((|#2| $) 43 (|has| |#1| (-860)))) (-4276 (($ $ |#2|) 42 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) 49)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3948 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4458))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#2| (-1115)))) (-2980 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#2| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-614 |#1| |#2|) (-141) (-1115) (-1233)) (T -614)) -((-2379 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) (-5 *2 (-654 *4)))) (-3071 (*1 *2 *3 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) (-5 *2 (-112)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) (-5 *2 (-654 *3)))) (-2764 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1115)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1115)) (-4 *2 (-860)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1115)) (-4 *2 (-860)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1115)) (-4 *3 (-860)) (-4 *2 (-1233)))) (-4276 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) (-3287 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) (-5 *2 (-1288))))) -(-13 (-499 |t#2|) (-296 |t#1| |t#2|) (-10 -8 (-15 -2379 ((-654 |t#2|) $)) (-15 -3071 ((-112) |t#1| $)) (-15 -3228 ((-654 |t#1|) $)) (IF (|has| |t#2| (-1115)) (IF (|has| $ (-6 -4458)) (-15 -2764 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -2429 (|t#1| $)) (-15 -1767 (|t#1| $)) (-15 -2924 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4459)) (PROGN (-15 -4276 ($ $ |t#2|)) (-15 -3287 ((-1288) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1115)) ((-623 (-872)) -2832 (|has| |#2| (-1115)) (|has| |#2| (-623 (-872)))) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-1115) |has| |#2| (-1115)) ((-1233) . T)) -((-2950 (((-872) $) 19) (($ (-130)) 13) (((-130) $) 14))) +((-2799 (((-1289) (-1175)) 10))) +(((-592) (-10 -7 (-15 -2799 ((-1289) (-1175))))) (T -592)) +((-2799 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-592))))) +(-10 -7 (-15 -2799 ((-1289) (-1175)))) +((-1408 (((-596 |#2|) (-596 |#2|)) 42)) (-2136 (((-654 |#2|) (-596 |#2|)) 44)) (-1358 ((|#2| (-596 |#2|)) 50))) +(((-593 |#1| |#2|) (-10 -7 (-15 -1408 ((-596 |#2|) (-596 |#2|))) (-15 -2136 ((-654 |#2|) (-596 |#2|))) (-15 -1358 (|#2| (-596 |#2|)))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-29 |#1|) (-1219))) (T -593)) +((-1358 (*1 *2 *3) (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1219))) (-5 *1 (-593 *4 *2)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1219))) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-654 *5)) (-5 *1 (-593 *4 *5)))) (-1408 (*1 *2 *2) (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1219))) (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-593 *3 *4))))) +(-10 -7 (-15 -1408 ((-596 |#2|) (-596 |#2|))) (-15 -2136 ((-654 |#2|) (-596 |#2|))) (-15 -1358 (|#2| (-596 |#2|)))) +((-1785 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)) 30))) +(((-594 |#1| |#2|) (-10 -7 (-15 -1785 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1785 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1785 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1785 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-372) (-372)) (T -594)) +((-1785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-594 *5 *6)))) (-1785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-372)) (-4 *2 (-372)) (-5 *1 (-594 *5 *2)))) (-1785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3852 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| -3852 *6) (|:| |coeff| *6))) (-5 *1 (-594 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-596 *6)) (-5 *1 (-594 *5 *6))))) +(-10 -7 (-15 -1785 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1785 ((-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3852 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1785 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1785 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-1876 (($ (-516) (-607)) 14)) (-2907 (($ (-516) (-607) $) 16)) (-2148 (($ (-516) (-607)) 15)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-1198)) 7) (((-1198) $) 6)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-595) (-13 (-1116) (-500 (-1198)) (-10 -8 (-15 -1876 ($ (-516) (-607))) (-15 -2148 ($ (-516) (-607))) (-15 -2907 ($ (-516) (-607) $))))) (T -595)) +((-1876 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-2148 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-2907 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) +(-13 (-1116) (-500 (-1198)) (-10 -8 (-15 -1876 ($ (-516) (-607))) (-15 -2148 ($ (-516) (-607))) (-15 -2907 ($ (-516) (-607) $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 76)) (-2214 ((|#1| $) NIL)) (-3852 ((|#1| $) 30)) (-3451 (((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-4158 (($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-4022 (((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) $) 31)) (-1489 (((-1175) $) NIL)) (-3031 (($ |#1| |#1|) 38) (($ |#1| (-1193)) 49 (|has| |#1| (-1054 (-1193))))) (-3940 (((-1136) $) NIL)) (-3970 (((-112) $) 35)) (-3879 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1193)) 89 (|has| |#1| (-912 (-1193))))) (-2951 (((-872) $) 110) (($ |#1|) 29)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 18 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) 17) (($ $ $) NIL)) (-3074 (($ $ $) 85)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 16) (($ (-417 (-574)) $) 41) (($ $ (-417 (-574))) NIL))) +(((-596 |#1|) (-13 (-727 (-417 (-574))) (-1054 |#1|) (-10 -8 (-15 -4158 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3852 (|#1| $)) (-15 -4022 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) $)) (-15 -3451 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3970 ((-112) $)) (-15 -3031 ($ |#1| |#1|)) (-15 -3879 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-912 (-1193))) (-15 -3879 (|#1| $ (-1193))) |%noBranch|) (IF (|has| |#1| (-1054 (-1193))) (-15 -3031 ($ |#1| (-1193))) |%noBranch|))) (-372)) (T -596)) +((-4158 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 *2)) (|:| |logand| (-1189 *2))))) (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-372)) (-5 *1 (-596 *2)))) (-3852 (*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 *3)) (|:| |logand| (-1189 *3))))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-3031 (*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3879 (*1 *2 *1 *3) (-12 (-4 *2 (-372)) (-4 *2 (-912 *3)) (-5 *1 (-596 *2)) (-5 *3 (-1193)))) (-3031 (*1 *1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *1 (-596 *2)) (-4 *2 (-1054 *3)) (-4 *2 (-372))))) +(-13 (-727 (-417 (-574))) (-1054 |#1|) (-10 -8 (-15 -4158 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3852 (|#1| $)) (-15 -4022 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) $)) (-15 -3451 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3970 ((-112) $)) (-15 -3031 ($ |#1| |#1|)) (-15 -3879 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-912 (-1193))) (-15 -3879 (|#1| $ (-1193))) |%noBranch|) (IF (|has| |#1| (-1054 (-1193))) (-15 -3031 ($ |#1| (-1193))) |%noBranch|))) +((-3985 (((-112) |#1|) 16)) (-2353 (((-3 |#1| "failed") |#1|) 14)) (-3413 (((-2 (|:| -2644 |#1|) (|:| -3139 (-781))) |#1|) 38) (((-3 |#1| "failed") |#1| (-781)) 18)) (-4172 (((-112) |#1| (-781)) 19)) (-3999 ((|#1| |#1|) 42)) (-1790 ((|#1| |#1| (-781)) 45))) +(((-597 |#1|) (-10 -7 (-15 -4172 ((-112) |#1| (-781))) (-15 -3413 ((-3 |#1| "failed") |#1| (-781))) (-15 -3413 ((-2 (|:| -2644 |#1|) (|:| -3139 (-781))) |#1|)) (-15 -1790 (|#1| |#1| (-781))) (-15 -3985 ((-112) |#1|)) (-15 -2353 ((-3 |#1| "failed") |#1|)) (-15 -3999 (|#1| |#1|))) (-555)) (T -597)) +((-3999 (*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-2353 (*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-3985 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-1790 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-3413 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2644 *3) (|:| -3139 (-781)))) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-3413 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) +(-10 -7 (-15 -4172 ((-112) |#1| (-781))) (-15 -3413 ((-3 |#1| "failed") |#1| (-781))) (-15 -3413 ((-2 (|:| -2644 |#1|) (|:| -3139 (-781))) |#1|)) (-15 -1790 (|#1| |#1| (-781))) (-15 -3985 ((-112) |#1|)) (-15 -2353 ((-3 |#1| "failed") |#1|)) (-15 -3999 (|#1| |#1|))) +((-2285 (((-1189 |#1|) (-935)) 44))) +(((-598 |#1|) (-10 -7 (-15 -2285 ((-1189 |#1|) (-935)))) (-358)) (T -598)) +((-2285 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-598 *4)) (-4 *4 (-358))))) +(-10 -7 (-15 -2285 ((-1189 |#1|) (-935)))) +((-1408 (((-596 (-417 (-966 |#1|))) (-596 (-417 (-966 |#1|)))) 27)) (-3342 (((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-966 |#1|)) (-1193)) 34 (|has| |#1| (-148)))) (-2136 (((-654 (-324 |#1|)) (-596 (-417 (-966 |#1|)))) 19)) (-3919 (((-324 |#1|) (-417 (-966 |#1|)) (-1193)) 32 (|has| |#1| (-148)))) (-1358 (((-324 |#1|) (-596 (-417 (-966 |#1|)))) 21))) +(((-599 |#1|) (-10 -7 (-15 -1408 ((-596 (-417 (-966 |#1|))) (-596 (-417 (-966 |#1|))))) (-15 -2136 ((-654 (-324 |#1|)) (-596 (-417 (-966 |#1|))))) (-15 -1358 ((-324 |#1|) (-596 (-417 (-966 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3342 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -3919 ((-324 |#1|) (-417 (-966 |#1|)) (-1193)))) |%noBranch|)) (-13 (-462) (-1054 (-574)) (-649 (-574)))) (T -599)) +((-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-324 *5)) (-5 *1 (-599 *5)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-966 *4)))) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-599 *4)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-966 *4)))) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-654 (-324 *4))) (-5 *1 (-599 *4)))) (-1408 (*1 *2 *2) (-12 (-5 *2 (-596 (-417 (-966 *3)))) (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-599 *3))))) +(-10 -7 (-15 -1408 ((-596 (-417 (-966 |#1|))) (-596 (-417 (-966 |#1|))))) (-15 -2136 ((-654 (-324 |#1|)) (-596 (-417 (-966 |#1|))))) (-15 -1358 ((-324 |#1|) (-596 (-417 (-966 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3342 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -3919 ((-324 |#1|) (-417 (-966 |#1|)) (-1193)))) |%noBranch|)) +((-4031 (((-654 (-699 (-574))) (-654 (-935)) (-654 (-919 (-574)))) 78) (((-654 (-699 (-574))) (-654 (-935))) 79) (((-699 (-574)) (-654 (-935)) (-919 (-574))) 72)) (-3850 (((-781) (-654 (-935))) 69))) +(((-600) (-10 -7 (-15 -3850 ((-781) (-654 (-935)))) (-15 -4031 ((-699 (-574)) (-654 (-935)) (-919 (-574)))) (-15 -4031 ((-654 (-699 (-574))) (-654 (-935)))) (-15 -4031 ((-654 (-699 (-574))) (-654 (-935)) (-654 (-919 (-574))))))) (T -600)) +((-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-935))) (-5 *4 (-654 (-919 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-935))) (-5 *4 (-919 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-600)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-781)) (-5 *1 (-600))))) +(-10 -7 (-15 -3850 ((-781) (-654 (-935)))) (-15 -4031 ((-699 (-574)) (-654 (-935)) (-919 (-574)))) (-15 -4031 ((-654 (-699 (-574))) (-654 (-935)))) (-15 -4031 ((-654 (-699 (-574))) (-654 (-935)) (-654 (-919 (-574)))))) +((-3846 (((-654 |#5|) |#5| (-112)) 100)) (-2671 (((-112) |#5| (-654 |#5|)) 34))) +(((-601 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3846 ((-654 |#5|) |#5| (-112))) (-15 -2671 ((-112) |#5| (-654 |#5|)))) (-13 (-315) (-148)) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1125 |#1| |#2| |#3| |#4|)) (T -601)) +((-2671 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1125 *5 *6 *7 *8)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-601 *5 *6 *7 *8 *3)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-654 *3)) (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1125 *5 *6 *7 *8))))) +(-10 -7 (-15 -3846 ((-654 |#5|) |#5| (-112))) (-15 -2671 ((-112) |#5| (-654 |#5|)))) +((-2864 (((-112) $ $) NIL)) (-1814 (((-1151) $) 11)) (-1804 (((-1151) $) 9)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-602) (-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1814 ((-1151) $))))) (T -602)) +((-1804 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-602)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-602))))) +(-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1814 ((-1151) $)))) +((-2864 (((-112) $ $) NIL (|has| (-145) (-1116)))) (-3512 (($ $) 38)) (-4149 (($ $) NIL)) (-2837 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3685 (((-112) $ $) 67)) (-3665 (((-112) $ $ (-574)) 62)) (-1408 (((-654 $) $ (-145)) 75) (((-654 $) $ (-142)) 76)) (-3861 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-4140 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-860))))) (-2786 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 (((-145) $ (-574) (-145)) 59 (|has| $ (-6 -4460))) (((-145) $ (-1251 (-574)) (-145)) NIL (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2632 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2781 (($ $ (-1251 (-574)) $) 57)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-3311 (($ (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2473 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4460)))) (-2400 (((-145) $ (-574)) NIL)) (-3707 (((-112) $ $) 88)) (-1452 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1116))) (((-574) (-145) $ (-574)) 64 (|has| (-145) (-1116))) (((-574) $ $ (-574)) 63) (((-574) (-142) $ (-574)) 66)) (-1871 (((-654 (-145)) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) (-145)) 9)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) 32 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| (-145) (-860)))) (-3404 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-2036 (((-654 (-145)) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-1698 (((-574) $) 47 (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| (-145) (-860)))) (-1330 (((-112) $ $ (-145)) 89)) (-2698 (((-781) $ $ (-145)) 86)) (-2462 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1749 (($ $) 41)) (-2089 (($ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-2646 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-1489 (((-1175) $) 43 (|has| (-145) (-1116)))) (-1602 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) 27)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) 85 (|has| (-145) (-1116)))) (-2925 (((-145) $) NIL (|has| (-574) (-860)))) (-2183 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1822 (($ $ (-145)) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2315 (((-654 (-145)) $) NIL)) (-2754 (((-112) $) 15)) (-3336 (($) 10)) (-2207 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) 68) (($ $ (-1251 (-574))) 25) (($ $ $) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-4036 (($ $ $ (-574)) 81 (|has| $ (-6 -4460)))) (-3157 (($ $) 20)) (-1844 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2963 (($ (-654 (-145))) NIL)) (-4132 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-654 $)) 82)) (-2951 (($ (-145)) NIL) (((-872) $) 31 (|has| (-145) (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| (-145) (-1116)))) (-2020 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2986 (((-112) $ $) 17 (|has| (-145) (-1116)))) (-3030 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3009 (((-112) $ $) 18 (|has| (-145) (-860)))) (-2877 (((-781) $) 16 (|has| $ (-6 -4459))))) +(((-603 |#1|) (-1160) (-574)) (T -603)) +NIL +(-1160) +((-3535 (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1110 |#4|)) 32))) +(((-604 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1110 |#4|))) (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|))) (-803) (-860) (-566) (-963 |#3| |#1| |#2|)) (T -604)) +((-3535 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-963 *6 *5 *4)))) (-3535 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1110 *3)) (-4 *3 (-963 *7 *6 *4)) (-4 *6 (-803)) (-4 *4 (-860)) (-4 *7 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *6 *4 *7 *3))))) +(-10 -7 (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1110 |#4|))) (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 71)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-3332 (($ $ (-574)) 58) (($ $ (-574) (-574)) 59)) (-3108 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 65)) (-1614 (($ $) 109)) (-2600 (((-3 $ "failed") $ $) NIL)) (-1618 (((-872) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1042 (-853 (-574))) (-1193) |#1| (-417 (-574))) 241)) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 36)) (-3250 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-4189 (((-112) $) NIL)) (-3547 (((-574) $) 63) (((-574) $ (-574)) 64)) (-4226 (((-112) $) NIL)) (-3966 (($ $ (-935)) 83)) (-4152 (($ (-1 |#1| (-574)) $) 80)) (-1555 (((-112) $) 26)) (-4328 (($ |#1| (-574)) 22) (($ $ (-1098) (-574)) NIL) (($ $ (-654 (-1098)) (-654 (-574))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-2107 (($ (-1042 (-853 (-574))) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 13)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3342 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-2854 (((-3 $ "failed") $ $ (-112)) 108)) (-1859 (($ $ $) 116)) (-3940 (((-1136) $) NIL)) (-2503 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 15)) (-3977 (((-1042 (-853 (-574))) $) 14)) (-2433 (($ $ (-574)) 47)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-2207 ((|#1| $ (-574)) 62) (($ $ $) NIL (|has| (-574) (-1128)))) (-3879 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-3580 (((-574) $) NIL)) (-2916 (($ $) 48)) (-2951 (((-872) $) NIL) (($ (-574)) 29) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 28 (|has| |#1| (-174)))) (-2706 ((|#1| $ (-574)) 61)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) 39 T CONST)) (-3333 ((|#1| $) NIL)) (-3976 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-4346 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-2279 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2821 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-1896 (($ $) 201 (|has| |#1| (-38 (-417 (-574)))))) (-1364 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-4167 (($ $ (-417 (-574))) 177 (|has| |#1| (-38 (-417 (-574)))))) (-2673 (($ $ |#1|) 157 (|has| |#1| (-38 (-417 (-574)))))) (-3728 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2760 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-3741 (($ $) 203 (|has| |#1| (-38 (-417 (-574)))))) (-2040 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-1707 (($ $) 199 (|has| |#1| (-38 (-417 (-574)))))) (-3534 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-2096 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-1486 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-1522 (($ $) 209 (|has| |#1| (-38 (-417 (-574)))))) (-2451 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-3837 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-3817 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-3532 (($ $) 213 (|has| |#1| (-38 (-417 (-574)))))) (-3101 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-3054 (($ $) 215 (|has| |#1| (-38 (-417 (-574)))))) (-4405 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-3177 (($ $) 211 (|has| |#1| (-38 (-417 (-574)))))) (-1956 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-2506 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-3598 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3525 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2141 (($) 30 T CONST)) (-2153 (($) 40 T CONST)) (-3584 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2986 (((-112) $ $) 73)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) 91) (($ $ $) 72)) (-3074 (($ $ $) 88)) (** (($ $ (-935)) NIL) (($ $ (-781)) 111)) (* (($ (-935) $) 98) (($ (-781) $) 96) (($ (-574) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-605 |#1|) (-13 (-1262 |#1| (-574)) (-10 -8 (-15 -2107 ($ (-1042 (-853 (-574))) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3977 ((-1042 (-853 (-574))) $)) (-15 -2503 ((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3597 ($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -1555 ((-112) $)) (-15 -4152 ($ (-1 |#1| (-574)) $)) (-15 -2854 ((-3 $ "failed") $ $ (-112))) (-15 -1614 ($ $)) (-15 -1859 ($ $ $)) (-15 -1618 ((-872) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1042 (-853 (-574))) (-1193) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ($ $)) (-15 -2673 ($ $ |#1|)) (-15 -4167 ($ $ (-417 (-574)))) (-15 -2760 ($ $)) (-15 -3728 ($ $)) (-15 -2821 ($ $)) (-15 -1486 ($ $)) (-15 -4346 ($ $)) (-15 -3534 ($ $)) (-15 -1364 ($ $)) (-15 -2040 ($ $)) (-15 -3817 ($ $)) (-15 -3598 ($ $)) (-15 -2451 ($ $)) (-15 -1956 ($ $)) (-15 -3101 ($ $)) (-15 -4405 ($ $)) (-15 -2279 ($ $)) (-15 -2096 ($ $)) (-15 -3976 ($ $)) (-15 -1707 ($ $)) (-15 -1896 ($ $)) (-15 -3741 ($ $)) (-15 -3837 ($ $)) (-15 -2506 ($ $)) (-15 -1522 ($ $)) (-15 -3177 ($ $)) (-15 -3532 ($ $)) (-15 -3054 ($ $))) |%noBranch|))) (-1065)) (T -605)) +((-1555 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1065)))) (-2107 (*1 *1 *2 *3) (-12 (-5 *2 (-1042 (-853 (-574)))) (-5 *3 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1065)) (-5 *1 (-605 *4)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-1042 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1065)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-5 *1 (-605 *3)) (-4 *3 (-1065)))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1065)) (-5 *1 (-605 *3)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1065)) (-5 *1 (-605 *3)))) (-2854 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1065)))) (-1614 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1065)))) (-1859 (*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1065)))) (-1618 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *6)))) (-5 *4 (-1042 (-853 (-574)))) (-5 *5 (-1193)) (-5 *7 (-417 (-574))) (-4 *6 (-1065)) (-5 *2 (-872)) (-5 *1 (-605 *6)))) (-3342 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2673 (*1 *1 *1 *2) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1065)))) (-2760 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3728 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2821 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1486 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-4346 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3534 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1364 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2040 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3817 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3598 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2451 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1956 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3101 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-4405 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2096 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3976 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1707 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1896 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3741 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3837 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2506 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1522 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3177 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3532 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3054 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(-13 (-1262 |#1| (-574)) (-10 -8 (-15 -2107 ($ (-1042 (-853 (-574))) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3977 ((-1042 (-853 (-574))) $)) (-15 -2503 ((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3597 ($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -1555 ((-112) $)) (-15 -4152 ($ (-1 |#1| (-574)) $)) (-15 -2854 ((-3 $ "failed") $ $ (-112))) (-15 -1614 ($ $)) (-15 -1859 ($ $ $)) (-15 -1618 ((-872) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1042 (-853 (-574))) (-1193) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ($ $)) (-15 -2673 ($ $ |#1|)) (-15 -4167 ($ $ (-417 (-574)))) (-15 -2760 ($ $)) (-15 -3728 ($ $)) (-15 -2821 ($ $)) (-15 -1486 ($ $)) (-15 -4346 ($ $)) (-15 -3534 ($ $)) (-15 -1364 ($ $)) (-15 -2040 ($ $)) (-15 -3817 ($ $)) (-15 -3598 ($ $)) (-15 -2451 ($ $)) (-15 -1956 ($ $)) (-15 -3101 ($ $)) (-15 -4405 ($ $)) (-15 -2279 ($ $)) (-15 -2096 ($ $)) (-15 -3976 ($ $)) (-15 -1707 ($ $)) (-15 -1896 ($ $)) (-15 -3741 ($ $)) (-15 -3837 ($ $)) (-15 -2506 ($ $)) (-15 -1522 ($ $)) (-15 -3177 ($ $)) (-15 -3532 ($ $)) (-15 -3054 ($ $))) |%noBranch|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 63)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-3597 (($ (-1173 |#1|)) 9)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) 44)) (-4189 (((-112) $) 56)) (-3547 (((-781) $) 61) (((-781) $ (-781)) 60)) (-4226 (((-112) $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ $) 46 (|has| |#1| (-566)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566)))) (-1634 (((-1173 |#1|) $) 25)) (-2898 (((-781)) 55 T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 10 T CONST)) (-2153 (($) 14 T CONST)) (-2986 (((-112) $ $) 24)) (-3090 (($ $) 32) (($ $ $) 16)) (-3074 (($ $ $) 27)) (** (($ $ (-935)) NIL) (($ $ (-781)) 53)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-574)) 38))) +(((-606 |#1|) (-13 (-1065) (-111 |#1| |#1|) (-10 -8 (-15 -1634 ((-1173 |#1|) $)) (-15 -3597 ($ (-1173 |#1|))) (-15 -4189 ((-112) $)) (-15 -3547 ((-781) $)) (-15 -3547 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|))) (-1065)) (T -606)) +((-1634 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-606 *3)))) (-4189 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) (-3547 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) (-3547 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1065))))) +(-13 (-1065) (-111 |#1| |#1|) (-10 -8 (-15 -1634 ((-1173 |#1|) $)) (-15 -3597 ($ (-1173 |#1|))) (-15 -4189 ((-112) $)) (-15 -3547 ((-781) $)) (-15 -3547 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|))) +((-2864 (((-112) $ $) NIL)) (-3838 (($) 8 T CONST)) (-3503 (($) 7 T CONST)) (-1699 (($ $ (-654 $)) 16)) (-1489 (((-1175) $) NIL)) (-2288 (($) 6 T CONST)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-1198)) 15) (((-1198) $) 10)) (-3019 (($) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-607) (-13 (-1116) (-500 (-1198)) (-10 -8 (-15 -2288 ($) -1714) (-15 -3503 ($) -1714) (-15 -3838 ($) -1714) (-15 -3019 ($) -1714) (-15 -1699 ($ $ (-654 $)))))) (T -607)) +((-2288 (*1 *1) (-5 *1 (-607))) (-3503 (*1 *1) (-5 *1 (-607))) (-3838 (*1 *1) (-5 *1 (-607))) (-3019 (*1 *1) (-5 *1 (-607))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607))))) +(-13 (-1116) (-500 (-1198)) (-10 -8 (-15 -2288 ($) -1714) (-15 -3503 ($) -1714) (-15 -3838 ($) -1714) (-15 -3019 ($) -1714) (-15 -1699 ($ $ (-654 $))))) +((-1785 (((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)) 15))) +(((-608 |#1| |#2|) (-10 -7 (-15 -1785 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)))) (-1234) (-1234)) (T -608)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6))))) +(-10 -7 (-15 -1785 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)))) +((-1785 (((-1173 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1173 |#2|)) 20) (((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-611 |#2|)) 19) (((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|)) 18))) +(((-609 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-611 |#2|))) (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1173 |#2|)))) (-1234) (-1234) (-1234)) (T -609)) +((-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1173 *7)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1173 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-611 *8)) (-5 *1 (-609 *6 *7 *8))))) +(-10 -7 (-15 -1785 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-611 |#2|))) (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1173 |#2|)))) +((-1661 ((|#3| |#3| (-654 (-622 |#3|)) (-654 (-1193))) 57)) (-4437 (((-171 |#2|) |#3|) 122)) (-3640 ((|#3| (-171 |#2|)) 46)) (-2157 ((|#2| |#3|) 21)) (-2365 ((|#3| |#2|) 35))) +(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -3640 (|#3| (-171 |#2|))) (-15 -2157 (|#2| |#3|)) (-15 -2365 (|#3| |#2|)) (-15 -4437 ((-171 |#2|) |#3|)) (-15 -1661 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1193))))) (-566) (-13 (-440 |#1|) (-1018) (-1219)) (-13 (-440 (-171 |#1|)) (-1018) (-1219))) (T -610)) +((-1661 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1193))) (-4 *2 (-13 (-440 (-171 *5)) (-1018) (-1219))) (-4 *5 (-566)) (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1018) (-1219))))) (-4437 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) (-4 *5 (-13 (-440 *4) (-1018) (-1219))) (-4 *3 (-13 (-440 (-171 *4)) (-1018) (-1219))))) (-2365 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1018) (-1219))) (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1018) (-1219))))) (-2157 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1018) (-1219))) (-5 *1 (-610 *4 *2 *3)) (-4 *3 (-13 (-440 (-171 *4)) (-1018) (-1219))))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1018) (-1219))) (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1018) (-1219))) (-5 *1 (-610 *4 *5 *2))))) +(-10 -7 (-15 -3640 (|#3| (-171 |#2|))) (-15 -2157 (|#2| |#3|)) (-15 -2365 (|#3| |#2|)) (-15 -4437 ((-171 |#2|) |#3|)) (-15 -1661 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1193))))) +((-2172 (($ (-1 (-112) |#1|) $) 17)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2102 (($ (-1 |#1| |#1|) |#1|) 9)) (-2149 (($ (-1 (-112) |#1|) $) 13)) (-2160 (($ (-1 (-112) |#1|) $) 15)) (-2963 (((-1173 |#1|) $) 18)) (-2951 (((-872) $) NIL))) +(((-611 |#1|) (-13 (-623 (-872)) (-10 -8 (-15 -1785 ($ (-1 |#1| |#1|) $)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2160 ($ (-1 (-112) |#1|) $)) (-15 -2172 ($ (-1 (-112) |#1|) $)) (-15 -2102 ($ (-1 |#1| |#1|) |#1|)) (-15 -2963 ((-1173 |#1|) $)))) (-1234)) (T -611)) +((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) (-2149 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) (-2160 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) (-2172 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) (-2102 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1234))))) +(-13 (-623 (-872)) (-10 -8 (-15 -1785 ($ (-1 |#1| |#1|) $)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2160 ($ (-1 (-112) |#1|) $)) (-15 -2172 ($ (-1 (-112) |#1|) $)) (-15 -2102 ($ (-1 |#1| |#1|) |#1|)) (-15 -2963 ((-1173 |#1|) $)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2225 (($ (-781)) NIL (|has| |#1| (-23)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3873 (((-699 |#1|) $ $) NIL (|has| |#1| (-1065)))) (-3764 (($ (-781) |#1|) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4397 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-1653 (((-112) $ (-781)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1822 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3918 ((|#1| $ $) NIL (|has| |#1| (-1065)))) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3712 (($ $ $) NIL (|has| |#1| (-1065)))) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3090 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3074 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-612 |#1| |#2|) (-1282 |#1|) (-1234) (-574)) (T -612)) +NIL +(-1282 |#1|) +((-2985 (((-1289) $ |#2| |#2|) 35)) (-3429 ((|#2| $) 23)) (-1698 ((|#2| $) 21)) (-2462 (($ (-1 |#3| |#3|) $) 32)) (-1785 (($ (-1 |#3| |#3|) $) 30)) (-2925 ((|#3| $) 26)) (-1822 (($ $ |#3|) 33)) (-2626 (((-112) |#3| $) 17)) (-2315 (((-654 |#3|) $) 15)) (-2207 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-613 |#1| |#2| |#3|) (-10 -8 (-15 -2985 ((-1289) |#1| |#2| |#2|)) (-15 -1822 (|#1| |#1| |#3|)) (-15 -2925 (|#3| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -1698 (|#2| |#1|)) (-15 -2626 ((-112) |#3| |#1|)) (-15 -2315 ((-654 |#3|) |#1|)) (-15 -2207 (|#3| |#1| |#2|)) (-15 -2207 (|#3| |#1| |#2| |#3|)) (-15 -2462 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1785 (|#1| (-1 |#3| |#3|) |#1|))) (-614 |#2| |#3|) (-1116) (-1234)) (T -613)) +NIL +(-10 -8 (-15 -2985 ((-1289) |#1| |#2| |#2|)) (-15 -1822 (|#1| |#1| |#3|)) (-15 -2925 (|#3| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -1698 (|#2| |#1|)) (-15 -2626 ((-112) |#3| |#1|)) (-15 -2315 ((-654 |#3|) |#1|)) (-15 -2207 (|#3| |#1| |#2|)) (-15 -2207 (|#3| |#1| |#2| |#3|)) (-15 -2462 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1785 (|#1| (-1 |#3| |#3|) |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#2| (-1116)))) (-2985 (((-1289) $ |#1| |#1|) 41 (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) 8)) (-3135 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4460)))) (-3250 (($) 7 T CONST)) (-2473 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) 52)) (-1871 (((-654 |#2|) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-3429 ((|#1| $) 44 (|has| |#1| (-860)))) (-2036 (((-654 |#2|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-1698 ((|#1| $) 45 (|has| |#1| (-860)))) (-2462 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#2| (-1116)))) (-1393 (((-654 |#1|) $) 47)) (-1506 (((-112) |#1| $) 48)) (-3940 (((-1136) $) 21 (|has| |#2| (-1116)))) (-2925 ((|#2| $) 43 (|has| |#1| (-860)))) (-1822 (($ $ |#2|) 42 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) 49)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3949 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4459))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#2| (-1116)))) (-2020 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#2| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-614 |#1| |#2|) (-141) (-1116) (-1234)) (T -614)) +((-2315 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234)) (-5 *2 (-654 *4)))) (-1506 (*1 *2 *3 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234)) (-5 *2 (-112)))) (-1393 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234)) (-5 *2 (-654 *3)))) (-2626 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1116)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1116)) (-4 *2 (-860)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1116)) (-4 *2 (-860)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1116)) (-4 *3 (-860)) (-4 *2 (-1234)))) (-1822 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234)))) (-2985 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234)) (-5 *2 (-1289))))) +(-13 (-499 |t#2|) (-296 |t#1| |t#2|) (-10 -8 (-15 -2315 ((-654 |t#2|) $)) (-15 -1506 ((-112) |t#1| $)) (-15 -1393 ((-654 |t#1|) $)) (IF (|has| |t#2| (-1116)) (IF (|has| $ (-6 -4459)) (-15 -2626 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -1698 (|t#1| $)) (-15 -3429 (|t#1| $)) (-15 -2925 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4460)) (PROGN (-15 -1822 ($ $ |t#2|)) (-15 -2985 ((-1289) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1116)) ((-623 (-872)) -2833 (|has| |#2| (-1116)) (|has| |#2| (-623 (-872)))) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-1116) |has| |#2| (-1116)) ((-1234) . T)) +((-2951 (((-872) $) 19) (($ (-130)) 13) (((-130) $) 14))) (((-615) (-13 (-623 (-872)) (-500 (-130)))) (T -615)) NIL (-13 (-623 (-872)) (-500 (-130))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-1197)) NIL) (((-1197) $) NIL) (((-1232) $) 14) (($ (-654 (-1232))) 13)) (-4280 (((-654 (-1232)) $) 10)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-616) (-13 (-1098) (-623 (-1232)) (-10 -8 (-15 -2950 ($ (-654 (-1232)))) (-15 -4280 ((-654 (-1232)) $))))) (T -616)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-616)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-616))))) -(-13 (-1098) (-623 (-1232)) (-10 -8 (-15 -2950 ($ (-654 (-1232)))) (-15 -4280 ((-654 (-1232)) $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3775 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-2588 (((-1283 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1283 (-699 |#1|)) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-4427 (((-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3831 (($) NIL T CONST)) (-2846 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1992 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2038 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2199 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-4189 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2484 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3149 (((-1188 (-965 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3204 (($ $ (-934)) NIL)) (-3272 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3866 (((-1188 |#1|) $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3414 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-4111 (((-1188 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-2182 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2919 (($ (-1283 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1283 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3911 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3557 (((-934)) NIL (|has| |#2| (-376 |#1|)))) (-2045 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3518 (($ $ (-934)) NIL)) (-2931 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2347 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3233 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3636 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3215 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2597 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2327 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3680 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2691 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1644 (((-1188 (-965 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-2177 (($ $ (-934)) NIL)) (-2614 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3201 (((-1188 |#1|) $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2903 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3401 (((-1188 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-1584 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3945 (((-1174) $) NIL)) (-1916 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3601 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1876 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3939 (((-1135) $) NIL)) (-2678 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2208 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-4346 (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-427 |#1|))) (((-1283 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $) (-1283 $)) NIL (|has| |#2| (-376 |#1|))) (((-1283 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-1845 (($ (-1283 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1283 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2074 (((-654 (-965 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-965 |#1|)) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3490 (($ $ $) NIL)) (-1355 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2950 (((-872) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL (|has| |#2| (-427 |#1|)))) (-3045 (((-654 (-1283 |#1|))) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2087 (($ $ $ $) NIL)) (-3500 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2911 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-3157 (($ $ $) NIL)) (-1778 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2956 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3005 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2142 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) 24)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-617 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2950 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -617)) -((-2950 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-617 *3 *2)) (-4 *2 (-754 *3))))) -(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2950 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) -((-2863 (((-112) $ $) NIL)) (-2506 (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) 39)) (-3751 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL) (($) NIL)) (-3287 (((-1288) $ (-1174) (-1174)) NIL (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-1174) |#1|) 49)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2171 (((-3 |#1| "failed") (-1174) $) 52)) (-3831 (($) NIL T CONST)) (-2695 (($ $ (-1174)) 25)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115))))) (-1941 (((-3 |#1| "failed") (-1174) $) 53) (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458))) (($ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL (|has| $ (-6 -4458)))) (-3310 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458))) (($ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115))))) (-2881 (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115))))) (-2412 (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) 38)) (-2472 ((|#1| $ (-1174) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-1174)) NIL)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-3400 (($ $) 54)) (-1684 (($ (-398)) 23) (($ (-398) (-1174)) 22)) (-2040 (((-398) $) 40)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-1174) $) NIL (|has| (-1174) (-860)))) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (((-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115))))) (-2429 (((-1174) $) NIL (|has| (-1174) (-860)))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-1772 (((-654 (-1174)) $) 45)) (-2056 (((-112) (-1174) $) NIL)) (-4293 (((-1174) $) 41)) (-1748 (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL)) (-2609 (($ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL)) (-3228 (((-654 (-1174)) $) NIL)) (-3071 (((-112) (-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 ((|#1| $) NIL (|has| (-1174) (-860)))) (-2294 (((-3 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) "failed") (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL)) (-4276 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (($ $ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (($ $ (-654 (-302 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) 43)) (-2208 ((|#1| $ (-1174) |#1|) NIL) ((|#1| $ (-1174)) 48)) (-3667 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL) (($) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (((-781) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (((-781) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL)) (-2950 (((-872) $) 21)) (-3894 (($ $) 26)) (-3838 (((-112) $ $) NIL)) (-3180 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL)) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) -(((-618 |#1|) (-13 (-373 (-398) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) (-1209 (-1174) |#1|) (-10 -8 (-6 -4458) (-15 -3400 ($ $)))) (-1115)) (T -618)) -((-3400 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1115))))) -(-13 (-373 (-398) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) (-1209 (-1174) |#1|) (-10 -8 (-6 -4458) (-15 -3400 ($ $)))) -((-2231 (((-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) $) 16)) (-1772 (((-654 |#2|) $) 20)) (-2056 (((-112) |#2| $) 12))) -(((-619 |#1| |#2| |#3|) (-10 -8 (-15 -1772 ((-654 |#2|) |#1|)) (-15 -2056 ((-112) |#2| |#1|)) (-15 -2231 ((-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|))) (-620 |#2| |#3|) (-1115) (-1115)) (T -619)) -NIL -(-10 -8 (-15 -1772 ((-654 |#2|) |#1|)) (-15 -2056 ((-112) |#2| |#1|)) (-15 -2231 ((-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|))) -((-2863 (((-112) $ $) 19 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-2818 (((-112) $ (-781)) 8)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 46 (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 56 (|has| $ (-6 -4458)))) (-2171 (((-3 |#2| "failed") |#1| $) 62)) (-3831 (($) 7 T CONST)) (-2560 (($ $) 59 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458))))) (-1941 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 47 (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 63)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 55 (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 57 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 54 (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 53 (|has| $ (-6 -4458)))) (-1873 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-1772 (((-654 |#1|) $) 64)) (-2056 (((-112) |#1| $) 65)) (-1748 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 40)) (-2609 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 41)) (-3939 (((-1135) $) 21 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-2294 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 52)) (-3484 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 42)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) 27 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 26 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 25 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 24 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3667 (($) 50) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 49)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 32 (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 60 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 51)) (-2950 (((-872) $) 18 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-3180 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 43)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-620 |#1| |#2|) (-141) (-1115) (-1115)) (T -620)) -((-2056 (*1 *2 *3 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-5 *2 (-112)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-5 *2 (-654 *3)))) (-1941 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) (-2171 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) -(-13 (-231 (-2 (|:| -3666 |t#1|) (|:| -1917 |t#2|))) (-10 -8 (-15 -2056 ((-112) |t#1| $)) (-15 -1772 ((-654 |t#1|) $)) (-15 -1941 ((-3 |t#2| "failed") |t#1| $)) (-15 -2171 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T) ((-102) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) ((-623 (-872)) -2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))) ((-499 #0#) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))) ((-1115) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) ((-1233) . T)) -((-1999 (((-622 |#2|) |#1|) 17)) (-1793 (((-3 |#1| "failed") (-622 |#2|)) 21))) -(((-621 |#1| |#2|) (-10 -7 (-15 -1999 ((-622 |#2|) |#1|)) (-15 -1793 ((-3 |#1| "failed") (-622 |#2|)))) (-1115) (-1115)) (T -621)) -((-1793 (*1 *2 *3) (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1115)) (-4 *2 (-1115)) (-5 *1 (-621 *2 *4)))) (-1999 (*1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115))))) -(-10 -7 (-15 -1999 ((-622 |#2|) |#1|)) (-15 -1793 ((-3 |#1| "failed") (-622 |#2|)))) -((-2863 (((-112) $ $) NIL)) (-2617 (((-3 (-1192) "failed") $) 46)) (-3591 (((-1288) $ (-781)) 22)) (-1451 (((-781) $) 20)) (-4150 (((-115) $) 9)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-1783 (($ (-115) (-654 |#1|) (-781)) 32) (($ (-1192)) 33)) (-3571 (((-112) $ (-115)) 15) (((-112) $ (-1192)) 13)) (-1847 (((-781) $) 17)) (-3939 (((-1135) $) NIL)) (-1845 (((-903 (-574)) $) 95 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 102 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 88 (|has| |#1| (-624 (-546))))) (-2950 (((-872) $) 72)) (-3838 (((-112) $ $) NIL)) (-1453 (((-654 |#1|) $) 19)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 51)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 53))) -(((-622 |#1|) (-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4150 ((-115) $)) (-15 -1453 ((-654 |#1|) $)) (-15 -1847 ((-781) $)) (-15 -1783 ($ (-115) (-654 |#1|) (-781))) (-15 -1783 ($ (-1192))) (-15 -2617 ((-3 (-1192) "failed") $)) (-15 -3571 ((-112) $ (-115))) (-15 -3571 ((-112) $ (-1192))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-1115)) (T -622)) -((-4150 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) (-1783 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1115)) (-5 *1 (-622 *5)))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) (-2617 (*1 *2 *1) (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) (-3571 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1115)))) (-3571 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1115))))) -(-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4150 ((-115) $)) (-15 -1453 ((-654 |#1|) $)) (-15 -1847 ((-781) $)) (-15 -1783 ($ (-115) (-654 |#1|) (-781))) (-15 -1783 ($ (-1192))) (-15 -2617 ((-3 (-1192) "failed") $)) (-15 -3571 ((-112) $ (-115))) (-15 -3571 ((-112) $ (-1192))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) -((-2950 ((|#1| $) 6))) -(((-623 |#1|) (-141) (-1233)) (T -623)) -((-2950 (*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1233))))) -(-13 (-10 -8 (-15 -2950 (|t#1| $)))) -((-1845 ((|#1| $) 6))) -(((-624 |#1|) (-141) (-1233)) (T -624)) -((-1845 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1233))))) -(-13 (-10 -8 (-15 -1845 (|t#1| $)))) -((-3634 (((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)) 15) (((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 16))) -(((-625 |#1| |#2|) (-10 -7 (-15 -3634 ((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -3634 ((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)))) (-13 (-148) (-27) (-1053 (-574)) (-1053 (-417 (-574)))) (-1259 |#1|)) (T -625)) -((-3634 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-148) (-27) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-1188 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6)))) (-3634 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-1188 (-417 *5))) (-5 *1 (-625 *4 *5)) (-5 *3 (-417 *5))))) -(-10 -7 (-15 -3634 ((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -3634 ((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)))) -((-2950 (($ |#1|) 6))) -(((-626 |#1|) (-141) (-1233)) (T -626)) -((-2950 (*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1233))))) -(-13 (-10 -8 (-15 -2950 ($ |t#1|)))) -((-2863 (((-112) $ $) NIL)) (-2042 (($) 14 T CONST)) (-1571 (($) 15 T CONST)) (-2107 (($ $ $) 29)) (-2085 (($ $) 27)) (-3945 (((-1174) $) NIL)) (-3007 (($ $ $) 30)) (-3939 (((-1135) $) NIL)) (-2895 (($) 11 T CONST)) (-3030 (($ $ $) 31)) (-2950 (((-872) $) 35)) (-2131 (((-112) $ (|[\|\|]| -2895)) 24) (((-112) $ (|[\|\|]| -2042)) 26) (((-112) $ (|[\|\|]| -1571)) 21)) (-3838 (((-112) $ $) NIL)) (-2096 (($ $ $) 28)) (-2985 (((-112) $ $) 18))) -(((-627) (-13 (-982) (-10 -8 (-15 -2042 ($) -1715) (-15 -2131 ((-112) $ (|[\|\|]| -2895))) (-15 -2131 ((-112) $ (|[\|\|]| -2042))) (-15 -2131 ((-112) $ (|[\|\|]| -1571)))))) (T -627)) -((-2042 (*1 *1) (-5 *1 (-627))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2895)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2042)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1571)) (-5 *2 (-112)) (-5 *1 (-627))))) -(-13 (-982) (-10 -8 (-15 -2042 ($) -1715) (-15 -2131 ((-112) $ (|[\|\|]| -2895))) (-15 -2131 ((-112) $ (|[\|\|]| -2042))) (-15 -2131 ((-112) $ (|[\|\|]| -1571))))) -((-1845 (($ |#1|) 6))) -(((-628 |#1|) (-141) (-1233)) (T -628)) -((-1845 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1233))))) -(-13 (-10 -8 (-15 -1845 ($ |t#1|)))) -((-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10))) -(((-629 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-630 |#2|) (-1064)) (T -629)) -NIL -(-10 -8 (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 41)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-630 |#1|) (-141) (-1064)) (T -630)) -((-2950 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1064))))) -(-13 (-1064) (-658 |t#1|) (-10 -8 (-15 -2950 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-736) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3011 (((-574) $) NIL (|has| |#1| (-858)))) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) NIL)) (-1913 (((-112) $) NIL (|has| |#1| (-858)))) (-3372 (((-112) $) NIL)) (-2970 ((|#1| $) 13)) (-1808 (((-112) $) NIL (|has| |#1| (-858)))) (-3632 (($ $ $) NIL (|has| |#1| (-858)))) (-1593 (($ $ $) NIL (|has| |#1| (-858)))) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2981 ((|#3| $) 15)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL)) (-4019 (((-781)) 20 T CONST)) (-3838 (((-112) $ $) NIL)) (-3306 (($ $) NIL (|has| |#1| (-858)))) (-2142 (($) NIL T CONST)) (-2154 (($) 12 T CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3098 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-631 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3098 ($ $ |#3|)) (-15 -3098 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2981 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -631)) -((-3098 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3098 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-631 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-631 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2981 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3098 ($ $ |#3|)) (-15 -3098 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2981 (|#3| $)))) -((-3240 ((|#2| |#2| (-1192) (-1192)) 16))) -(((-632 |#1| |#2|) (-10 -7 (-15 -3240 (|#2| |#2| (-1192) (-1192)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-972) (-29 |#1|))) (T -632)) -((-3240 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1218) (-972) (-29 *4)))))) -(-10 -7 (-15 -3240 (|#2| |#2| (-1192) (-1192)))) -((-2863 (((-112) $ $) 64)) (-3520 (((-112) $) 58)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-3738 ((|#1| $) 55)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1720 (((-2 (|:| -2573 $) (|:| -4266 (-417 |#2|))) (-417 |#2|)) 111 (|has| |#1| (-372)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) 27)) (-3911 (((-3 $ "failed") $) 88)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2725 (((-574) $) 22)) (-3372 (((-112) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3257 (((-112) $) 40)) (-4327 (($ |#1| (-574)) 24)) (-1377 ((|#1| $) 57)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) 101 (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ $) 93)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3364 (((-781) $) 115 (|has| |#1| (-372)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 114 (|has| |#1| (-372)))) (-3878 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-3584 (((-574) $) 38)) (-1845 (((-417 |#2|) $) 47)) (-2950 (((-872) $) 69) (($ (-574)) 35) (($ $) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) 34) (($ |#2|) 25)) (-2930 ((|#1| $ (-574)) 72)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-2142 (($) 9 T CONST)) (-2154 (($) 14 T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2985 (((-112) $ $) 21)) (-3089 (($ $) 51) (($ $ $) NIL)) (-3074 (($ $ $) 90)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 29) (($ $ $) 49))) -(((-633 |#1| |#2|) (-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1053 |#2|) (-10 -8 (-15 -3257 ((-112) $)) (-15 -3584 ((-574) $)) (-15 -2725 ((-574) $)) (-15 -1401 ($ $)) (-15 -1377 (|#1| $)) (-15 -3738 (|#1| $)) (-15 -2930 (|#1| $ (-574))) (-15 -4327 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -1720 ((-2 (|:| -2573 $) (|:| -4266 (-417 |#2|))) (-417 |#2|)))) |%noBranch|))) (-566) (-1259 |#1|)) (T -633)) -((-3257 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1259 *3)))) (-3584 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1259 *3)))) (-2725 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1259 *3)))) (-1401 (*1 *1 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2)))) (-1377 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2)))) (-3738 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1259 *2)))) (-4327 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1259 *2)))) (-1720 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| -2573 (-633 *4 *5)) (|:| -4266 (-417 *5)))) (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5))))) -(-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1053 |#2|) (-10 -8 (-15 -3257 ((-112) $)) (-15 -3584 ((-574) $)) (-15 -2725 ((-574) $)) (-15 -1401 ($ $)) (-15 -1377 (|#1| $)) (-15 -3738 (|#1| $)) (-15 -2930 (|#1| $ (-574))) (-15 -4327 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -1720 ((-2 (|:| -2573 $) (|:| -4266 (-417 |#2|))) (-417 |#2|)))) |%noBranch|))) -((-1721 (((-654 |#6|) (-654 |#4|) (-112)) 54)) (-2679 ((|#6| |#6|) 48))) -(((-634 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2679 (|#6| |#6|)) (-15 -1721 ((-654 |#6|) (-654 |#4|) (-112)))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|) (-1124 |#1| |#2| |#3| |#4|)) (T -634)) -((-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10)) (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *10 (-1124 *5 *6 *7 *8)))) (-2679 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *2 (-1124 *3 *4 *5 *6))))) -(-10 -7 (-15 -2679 (|#6| |#6|)) (-15 -1721 ((-654 |#6|) (-654 |#4|) (-112)))) -((-4084 (((-112) |#3| (-781) (-654 |#3|)) 29)) (-1631 (((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1188 |#3|)))) "failed") |#3| (-654 (-1188 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4279 (-654 (-2 (|:| |irr| |#4|) (|:| -2265 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)) 69))) -(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4084 ((-112) |#3| (-781) (-654 |#3|))) (-15 -1631 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1188 |#3|)))) "failed") |#3| (-654 (-1188 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4279 (-654 (-2 (|:| |irr| |#4|) (|:| -2265 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)))) (-860) (-803) (-315) (-962 |#3| |#2| |#1|)) (T -635)) -((-1631 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4279 (-654 (-2 (|:| |irr| *10) (|:| -2265 (-574))))))) (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315)) (-4 *10 (-962 *3 *9 *8)) (-4 *9 (-803)) (-5 *2 (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3) (|:| |corrfact| (-654 (-1188 *3))))) (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1188 *3))))) (-4084 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860)) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8)) (-4 *8 (-962 *3 *7 *6))))) -(-10 -7 (-15 -4084 ((-112) |#3| (-781) (-654 |#3|))) (-15 -1631 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1188 |#3|)))) "failed") |#3| (-654 (-1188 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4279 (-654 (-2 (|:| |irr| |#4|) (|:| -2265 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)))) -((-2863 (((-112) $ $) NIL)) (-1818 (((-1150) $) 11)) (-1804 (((-1150) $) 9)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-636) (-13 (-1098) (-10 -8 (-15 -1804 ((-1150) $)) (-15 -1818 ((-1150) $))))) (T -636)) -((-1804 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-636)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-636))))) -(-13 (-1098) (-10 -8 (-15 -1804 ((-1150) $)) (-15 -1818 ((-1150) $)))) -((-2863 (((-112) $ $) NIL)) (-1664 (((-654 |#1|) $) NIL)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) NIL)) (-3450 (($ $) 77)) (-3112 (((-674 |#1| |#2|) $) 60)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 81)) (-4419 (((-654 (-302 |#2|)) $ $) 42)) (-3939 (((-1135) $) NIL)) (-1618 (($ (-674 |#1| |#2|)) 56)) (-2202 (($ $ $) NIL)) (-3490 (($ $ $) NIL)) (-2950 (((-872) $) 66) (((-1298 |#1| |#2|) $) NIL) (((-1303 |#1| |#2|) $) 74)) (-3838 (((-112) $ $) NIL)) (-2154 (($) 61 T CONST)) (-2215 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) 41)) (-1960 (((-654 (-674 |#1| |#2|)) (-654 |#1|)) 73)) (-4154 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) 46)) (-2985 (((-112) $ $) 62)) (-3098 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 52))) -(((-637 |#1| |#2| |#3|) (-13 (-483) (-10 -8 (-15 -1618 ($ (-674 |#1| |#2|))) (-15 -3112 ((-674 |#1| |#2|) $)) (-15 -4154 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2950 ((-1298 |#1| |#2|) $)) (-15 -2950 ((-1303 |#1| |#2|) $)) (-15 -3450 ($ $)) (-15 -1664 ((-654 |#1|) $)) (-15 -1960 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -2215 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -4419 ((-654 (-302 |#2|)) $ $)))) (-860) (-13 (-174) (-727 (-417 (-574)))) (-934)) (T -637)) -((-1618 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-5 *1 (-637 *3 *4 *5)) (-14 *5 (-934)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-674 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-3450 (*1 *1 *1) (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-934)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5))) (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574))))) (-14 *6 (-934)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-4419 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934))))) -(-13 (-483) (-10 -8 (-15 -1618 ($ (-674 |#1| |#2|))) (-15 -3112 ((-674 |#1| |#2|) $)) (-15 -4154 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2950 ((-1298 |#1| |#2|) $)) (-15 -2950 ((-1303 |#1| |#2|) $)) (-15 -3450 ($ $)) (-15 -1664 ((-654 |#1|) $)) (-15 -1960 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -2215 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -4419 ((-654 (-302 |#2|)) $ $)))) -((-1721 (((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 103) (((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 77)) (-3291 (((-112) (-654 (-790 |#1| (-874 |#2|)))) 26)) (-2146 (((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 102)) (-1825 (((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 76)) (-1764 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) 30)) (-4340 (((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|)))) 29))) -(((-638 |#1| |#2|) (-10 -7 (-15 -3291 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -4340 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -1764 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -1825 ((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -2146 ((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1721 ((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1721 ((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)))) (-462) (-654 (-1192))) (T -638)) -((-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1161 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-638 *5 *6)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1161 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-1825 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-638 *5 *6)))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1192))) (-5 *1 (-638 *3 *4)))) (-4340 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1192))) (-5 *1 (-638 *3 *4)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462)) (-14 *5 (-654 (-1192))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) -(-10 -7 (-15 -3291 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -4340 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -1764 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -1825 ((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -2146 ((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1721 ((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1721 ((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)))) -((-2378 (($ $) 38)) (-2259 (($ $) 21)) (-2357 (($ $) 37)) (-2237 (($ $) 22)) (-2403 (($ $) 36)) (-2281 (($ $) 23)) (-3003 (($) 48)) (-3112 (($ $) 45)) (-4053 (($ $) 17)) (-2028 (($ $ (-1107 $)) 7) (($ $ (-1192)) 6)) (-1618 (($ $) 46)) (-4043 (($ $) 15)) (-2223 (($ $) 16)) (-2416 (($ $) 35)) (-2289 (($ $) 24)) (-2389 (($ $) 34)) (-2269 (($ $) 25)) (-2367 (($ $) 33)) (-2248 (($ $) 26)) (-2455 (($ $) 44)) (-2319 (($ $) 32)) (-2427 (($ $) 43)) (-2300 (($ $) 31)) (-2479 (($ $) 42)) (-2339 (($ $) 30)) (-2535 (($ $) 41)) (-2348 (($ $) 29)) (-2466 (($ $) 40)) (-2329 (($ $) 28)) (-2442 (($ $) 39)) (-2311 (($ $) 27)) (-3140 (($ $) 19)) (-3901 (($ $) 20)) (-2232 (($ $) 18)) (** (($ $ $) 47))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-1198)) NIL) (((-1198) $) NIL) (((-1233) $) 14) (($ (-654 (-1233))) 13)) (-4281 (((-654 (-1233)) $) 10)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-616) (-13 (-1099) (-623 (-1233)) (-10 -8 (-15 -2951 ($ (-654 (-1233)))) (-15 -4281 ((-654 (-1233)) $))))) (T -616)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-616)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-616))))) +(-13 (-1099) (-623 (-1233)) (-10 -8 (-15 -2951 ($ (-654 (-1233)))) (-15 -4281 ((-654 (-1233)) $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4098 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-1379 (((-1284 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1284 (-699 |#1|)) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3610 (((-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3250 (($) NIL T CONST)) (-4004 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3511 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1519 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-2569 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-4438 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1657 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4436 (((-1189 (-966 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3066 (($ $ (-935)) NIL)) (-2416 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3831 (((-1189 |#1|) $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3061 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-2026 (((-1189 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-2766 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2580 (($ (-1284 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1284 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-4322 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3558 (((-935)) NIL (|has| |#2| (-376 |#1|)))) (-1357 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4081 (($ $ (-935)) NIL)) (-4428 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4324 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3357 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3946 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3923 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1321 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3555 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3659 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3144 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2625 (((-1189 (-966 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-4308 (($ $ (-935)) NIL)) (-2448 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2122 (((-1189 |#1|) $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4052 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-4169 (((-1189 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-4035 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1489 (((-1175) $) NIL)) (-2381 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3120 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3338 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3940 (((-1136) $) NIL)) (-3453 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2207 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-1385 (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-427 |#1|))) (((-1284 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $) (-1284 $)) NIL (|has| |#2| (-376 |#1|))) (((-1284 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1844 (($ (-1284 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1284 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-3983 (((-654 (-966 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-966 |#1|)) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3955 (($ $ $) NIL)) (-2170 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2951 (((-872) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL (|has| |#2| (-427 |#1|)))) (-2717 (((-654 (-1284 |#1|))) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4010 (($ $ $ $) NIL)) (-3233 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2912 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-4099 (($ $ $) NIL)) (-3127 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4280 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4024 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2141 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) 24)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-617 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2951 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -617)) +((-2951 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-617 *3 *2)) (-4 *2 (-754 *3))))) +(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2951 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) +((-2864 (((-112) $ $) NIL)) (-4048 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) 39)) (-3752 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL) (($) NIL)) (-2985 (((-1289) $ (-1175) (-1175)) NIL (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-1175) |#1|) 49)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2171 (((-3 |#1| "failed") (-1175) $) 52)) (-3250 (($) NIL T CONST)) (-3538 (($ $ (-1175)) 25)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-2424 (((-3 |#1| "failed") (-1175) $) 53) (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (|has| $ (-6 -4459)))) (-3311 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-2882 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-3991 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) 38)) (-2473 ((|#1| $ (-1175) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-1175)) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2519 (($ $) 54)) (-1684 (($ (-398)) 23) (($ (-398) (-1175)) 22)) (-2039 (((-398) $) 40)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-1175) $) NIL (|has| (-1175) (-860)))) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (((-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-1698 (((-1175) $) NIL (|has| (-1175) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-1771 (((-654 (-1175)) $) 45)) (-2229 (((-112) (-1175) $) NIL)) (-2082 (((-1175) $) 41)) (-2375 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-3285 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-1393 (((-654 (-1175)) $) NIL)) (-1506 (((-112) (-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 ((|#1| $) NIL (|has| (-1175) (-860)))) (-2183 (((-3 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) "failed") (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL)) (-1822 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-654 (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) 43)) (-2207 ((|#1| $ (-1175) |#1|) NIL) ((|#1| $ (-1175)) 48)) (-3162 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL) (($) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (((-781) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (((-781) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-2951 (((-872) $) 21)) (-1731 (($ $) 26)) (-4069 (((-112) $ $) NIL)) (-2829 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459))))) +(((-618 |#1|) (-13 (-373 (-398) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) (-1210 (-1175) |#1|) (-10 -8 (-6 -4459) (-15 -2519 ($ $)))) (-1116)) (T -618)) +((-2519 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1116))))) +(-13 (-373 (-398) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) (-1210 (-1175) |#1|) (-10 -8 (-6 -4459) (-15 -2519 ($ $)))) +((-4134 (((-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) 16)) (-1771 (((-654 |#2|) $) 20)) (-2229 (((-112) |#2| $) 12))) +(((-619 |#1| |#2| |#3|) (-10 -8 (-15 -1771 ((-654 |#2|) |#1|)) (-15 -2229 ((-112) |#2| |#1|)) (-15 -4134 ((-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|))) (-620 |#2| |#3|) (-1116) (-1116)) (T -619)) +NIL +(-10 -8 (-15 -1771 ((-654 |#2|) |#1|)) (-15 -2229 ((-112) |#2| |#1|)) (-15 -4134 ((-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|))) +((-2864 (((-112) $ $) 19 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-3146 (((-112) $ (-781)) 8)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 46 (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 56 (|has| $ (-6 -4459)))) (-2171 (((-3 |#2| "failed") |#1| $) 62)) (-3250 (($) 7 T CONST)) (-2804 (($ $) 59 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))))) (-2424 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 47 (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 63)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 55 (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 57 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 54 (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-1771 (((-654 |#1|) $) 64)) (-2229 (((-112) |#1| $) 65)) (-2375 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 40)) (-3285 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 41)) (-3940 (((-1136) $) 21 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-2183 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 52)) (-3801 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 42)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) 27 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 26 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 25 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 24 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-3162 (($) 50) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 49)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 32 (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 51)) (-2951 (((-872) $) 18 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-2829 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 43)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-620 |#1| |#2|) (-141) (-1116) (-1116)) (T -620)) +((-2229 (*1 *2 *3 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-5 *2 (-654 *3)))) (-2424 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))) (-2171 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116))))) +(-13 (-231 (-2 (|:| -3667 |t#1|) (|:| -1916 |t#2|))) (-10 -8 (-15 -2229 ((-112) |t#1| $)) (-15 -1771 ((-654 |t#1|) $)) (-15 -2424 ((-3 |t#2| "failed") |t#1| $)) (-15 -2171 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((-102) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) ((-623 (-872)) -2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-499 #0#) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-1116) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) ((-1234) . T)) +((-3648 (((-622 |#2|) |#1|) 17)) (-3668 (((-3 |#1| "failed") (-622 |#2|)) 21))) +(((-621 |#1| |#2|) (-10 -7 (-15 -3648 ((-622 |#2|) |#1|)) (-15 -3668 ((-3 |#1| "failed") (-622 |#2|)))) (-1116) (-1116)) (T -621)) +((-3668 (*1 *2 *3) (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1116)) (-4 *2 (-1116)) (-5 *1 (-621 *2 *4)))) (-3648 (*1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116))))) +(-10 -7 (-15 -3648 ((-622 |#2|) |#1|)) (-15 -3668 ((-3 |#1| "failed") (-622 |#2|)))) +((-2864 (((-112) $ $) NIL)) (-1839 (((-3 (-1193) "failed") $) 46)) (-3126 (((-1289) $ (-781)) 22)) (-1452 (((-781) $) 20)) (-4150 (((-115) $) 9)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-1782 (($ (-115) (-654 |#1|) (-781)) 32) (($ (-1193)) 33)) (-2154 (((-112) $ (-115)) 15) (((-112) $ (-1193)) 13)) (-1847 (((-781) $) 17)) (-3940 (((-1136) $) NIL)) (-1844 (((-903 (-574)) $) 95 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 102 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 88 (|has| |#1| (-624 (-546))))) (-2951 (((-872) $) 72)) (-4069 (((-112) $ $) NIL)) (-4142 (((-654 |#1|) $) 19)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 51)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 53))) +(((-622 |#1|) (-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4150 ((-115) $)) (-15 -4142 ((-654 |#1|) $)) (-15 -1847 ((-781) $)) (-15 -1782 ($ (-115) (-654 |#1|) (-781))) (-15 -1782 ($ (-1193))) (-15 -1839 ((-3 (-1193) "failed") $)) (-15 -2154 ((-112) $ (-115))) (-15 -2154 ((-112) $ (-1193))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-1116)) (T -622)) +((-4150 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) (-1782 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1116)) (-5 *1 (-622 *5)))) (-1782 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) (-1839 (*1 *2 *1) (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1116)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1116))))) +(-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4150 ((-115) $)) (-15 -4142 ((-654 |#1|) $)) (-15 -1847 ((-781) $)) (-15 -1782 ($ (-115) (-654 |#1|) (-781))) (-15 -1782 ($ (-1193))) (-15 -1839 ((-3 (-1193) "failed") $)) (-15 -2154 ((-112) $ (-115))) (-15 -2154 ((-112) $ (-1193))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) +((-2951 ((|#1| $) 6))) +(((-623 |#1|) (-141) (-1234)) (T -623)) +((-2951 (*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1234))))) +(-13 (-10 -8 (-15 -2951 (|t#1| $)))) +((-1844 ((|#1| $) 6))) +(((-624 |#1|) (-141) (-1234)) (T -624)) +((-1844 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1234))))) +(-13 (-10 -8 (-15 -1844 (|t#1| $)))) +((-3189 (((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)) 15) (((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 16))) +(((-625 |#1| |#2|) (-10 -7 (-15 -3189 ((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -3189 ((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)))) (-13 (-148) (-27) (-1054 (-574)) (-1054 (-417 (-574)))) (-1260 |#1|)) (T -625)) +((-3189 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-148) (-27) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-1189 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6)))) (-3189 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-1189 (-417 *5))) (-5 *1 (-625 *4 *5)) (-5 *3 (-417 *5))))) +(-10 -7 (-15 -3189 ((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -3189 ((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)))) +((-2951 (($ |#1|) 6))) +(((-626 |#1|) (-141) (-1234)) (T -626)) +((-2951 (*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1234))))) +(-13 (-10 -8 (-15 -2951 ($ |t#1|)))) +((-2864 (((-112) $ $) NIL)) (-2041 (($) 14 T CONST)) (-1570 (($) 15 T CONST)) (-2106 (($ $ $) 29)) (-2084 (($ $) 27)) (-1489 (((-1175) $) NIL)) (-2604 (($ $ $) 30)) (-3940 (((-1136) $) NIL)) (-2896 (($) 11 T CONST)) (-1692 (($ $ $) 31)) (-2951 (((-872) $) 35)) (-2130 (((-112) $ (|[\|\|]| -2896)) 24) (((-112) $ (|[\|\|]| -2041)) 26) (((-112) $ (|[\|\|]| -1570)) 21)) (-4069 (((-112) $ $) NIL)) (-2095 (($ $ $) 28)) (-2986 (((-112) $ $) 18))) +(((-627) (-13 (-983) (-10 -8 (-15 -2041 ($) -1714) (-15 -2130 ((-112) $ (|[\|\|]| -2896))) (-15 -2130 ((-112) $ (|[\|\|]| -2041))) (-15 -2130 ((-112) $ (|[\|\|]| -1570)))))) (T -627)) +((-2041 (*1 *1) (-5 *1 (-627))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2896)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2041)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1570)) (-5 *2 (-112)) (-5 *1 (-627))))) +(-13 (-983) (-10 -8 (-15 -2041 ($) -1714) (-15 -2130 ((-112) $ (|[\|\|]| -2896))) (-15 -2130 ((-112) $ (|[\|\|]| -2041))) (-15 -2130 ((-112) $ (|[\|\|]| -1570))))) +((-1844 (($ |#1|) 6))) +(((-628 |#1|) (-141) (-1234)) (T -628)) +((-1844 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1234))))) +(-13 (-10 -8 (-15 -1844 ($ |t#1|)))) +((-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10))) +(((-629 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-630 |#2|) (-1065)) (T -629)) +NIL +(-10 -8 (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 41)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-630 |#1|) (-141) (-1065)) (T -630)) +((-2951 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1065))))) +(-13 (-1065) (-658 |t#1|) (-10 -8 (-15 -2951 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-736) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2472 (((-574) $) NIL (|has| |#1| (-858)))) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) NIL)) (-3408 (((-112) $) NIL (|has| |#1| (-858)))) (-4226 (((-112) $) NIL)) (-2971 ((|#1| $) 13)) (-3182 (((-112) $) NIL (|has| |#1| (-858)))) (-3634 (($ $ $) NIL (|has| |#1| (-858)))) (-4380 (($ $ $) NIL (|has| |#1| (-858)))) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2981 ((|#3| $) 15)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL)) (-2898 (((-781)) 20 T CONST)) (-4069 (((-112) $ $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-858)))) (-2141 (($) NIL T CONST)) (-2153 (($) 12 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3103 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-631 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2971 (|#1| $)) (-15 -2981 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -631)) +((-3103 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3103 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-631 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2971 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-631 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2981 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2971 (|#1| $)) (-15 -2981 (|#3| $)))) +((-1323 ((|#2| |#2| (-1193) (-1193)) 16))) +(((-632 |#1| |#2|) (-10 -7 (-15 -1323 (|#2| |#2| (-1193) (-1193)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-973) (-29 |#1|))) (T -632)) +((-1323 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1219) (-973) (-29 *4)))))) +(-10 -7 (-15 -1323 (|#2| |#2| (-1193) (-1193)))) +((-2864 (((-112) $ $) 64)) (-1431 (((-112) $) 58)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-3462 ((|#1| $) 55)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2017 (((-2 (|:| -3341 $) (|:| -1840 (-417 |#2|))) (-417 |#2|)) 111 (|has| |#1| (-372)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) 27)) (-4322 (((-3 $ "failed") $) 88)) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3547 (((-574) $) 22)) (-4226 (((-112) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1555 (((-112) $) 40)) (-4328 (($ |#1| (-574)) 24)) (-1378 ((|#1| $) 57)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) 101 (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ $) 93)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2098 (((-781) $) 115 (|has| |#1| (-372)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 114 (|has| |#1| (-372)))) (-3879 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-3580 (((-574) $) 38)) (-1844 (((-417 |#2|) $) 47)) (-2951 (((-872) $) 69) (($ (-574)) 35) (($ $) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) 34) (($ |#2|) 25)) (-2706 ((|#1| $ (-574)) 72)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-2141 (($) 9 T CONST)) (-2153 (($) 14 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2986 (((-112) $ $) 21)) (-3090 (($ $) 51) (($ $ $) NIL)) (-3074 (($ $ $) 90)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 29) (($ $ $) 49))) +(((-633 |#1| |#2|) (-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1054 |#2|) (-10 -8 (-15 -1555 ((-112) $)) (-15 -3580 ((-574) $)) (-15 -3547 ((-574) $)) (-15 -1402 ($ $)) (-15 -1378 (|#1| $)) (-15 -3462 (|#1| $)) (-15 -2706 (|#1| $ (-574))) (-15 -4328 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -2017 ((-2 (|:| -3341 $) (|:| -1840 (-417 |#2|))) (-417 |#2|)))) |%noBranch|))) (-566) (-1260 |#1|)) (T -633)) +((-1555 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1260 *3)))) (-3580 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1260 *3)))) (-3547 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1260 *3)))) (-1402 (*1 *1 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2)))) (-1378 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2)))) (-3462 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2)))) (-2706 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1260 *2)))) (-4328 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1260 *2)))) (-2017 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| -3341 (-633 *4 *5)) (|:| -1840 (-417 *5)))) (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5))))) +(-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1054 |#2|) (-10 -8 (-15 -1555 ((-112) $)) (-15 -3580 ((-574) $)) (-15 -3547 ((-574) $)) (-15 -1402 ($ $)) (-15 -1378 (|#1| $)) (-15 -3462 (|#1| $)) (-15 -2706 (|#1| $ (-574))) (-15 -4328 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -2017 ((-2 (|:| -3341 $) (|:| -1840 (-417 |#2|))) (-417 |#2|)))) |%noBranch|))) +((-3656 (((-654 |#6|) (-654 |#4|) (-112)) 54)) (-3553 ((|#6| |#6|) 48))) +(((-634 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3553 (|#6| |#6|)) (-15 -3656 ((-654 |#6|) (-654 |#4|) (-112)))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|) (-1125 |#1| |#2| |#3| |#4|)) (T -634)) +((-3656 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10)) (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *10 (-1125 *5 *6 *7 *8)))) (-3553 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *2 (-1125 *3 *4 *5 *6))))) +(-10 -7 (-15 -3553 (|#6| |#6|)) (-15 -3656 ((-654 |#6|) (-654 |#4|) (-112)))) +((-3854 (((-112) |#3| (-781) (-654 |#3|)) 29)) (-2994 (((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1189 |#3|)))) "failed") |#3| (-654 (-1189 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3314 (-654 (-2 (|:| |irr| |#4|) (|:| -3868 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)) 69))) +(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3854 ((-112) |#3| (-781) (-654 |#3|))) (-15 -2994 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1189 |#3|)))) "failed") |#3| (-654 (-1189 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3314 (-654 (-2 (|:| |irr| |#4|) (|:| -3868 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)))) (-860) (-803) (-315) (-963 |#3| |#2| |#1|)) (T -635)) +((-2994 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3314 (-654 (-2 (|:| |irr| *10) (|:| -3868 (-574))))))) (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315)) (-4 *10 (-963 *3 *9 *8)) (-4 *9 (-803)) (-5 *2 (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3) (|:| |corrfact| (-654 (-1189 *3))))) (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1189 *3))))) (-3854 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860)) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8)) (-4 *8 (-963 *3 *7 *6))))) +(-10 -7 (-15 -3854 ((-112) |#3| (-781) (-654 |#3|))) (-15 -2994 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1189 |#3|)))) "failed") |#3| (-654 (-1189 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3314 (-654 (-2 (|:| |irr| |#4|) (|:| -3868 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)))) +((-2864 (((-112) $ $) NIL)) (-1814 (((-1151) $) 11)) (-1804 (((-1151) $) 9)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-636) (-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1814 ((-1151) $))))) (T -636)) +((-1804 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-636)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-636))))) +(-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1814 ((-1151) $)))) +((-2864 (((-112) $ $) NIL)) (-1663 (((-654 |#1|) $) NIL)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) NIL)) (-3856 (($ $) 77)) (-3113 (((-674 |#1| |#2|) $) 60)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 81)) (-1479 (((-654 (-302 |#2|)) $ $) 42)) (-3940 (((-1136) $) NIL)) (-1617 (($ (-674 |#1| |#2|)) 56)) (-3617 (($ $ $) NIL)) (-3955 (($ $ $) NIL)) (-2951 (((-872) $) 66) (((-1299 |#1| |#2|) $) NIL) (((-1304 |#1| |#2|) $) 74)) (-4069 (((-112) $ $) NIL)) (-2153 (($) 61 T CONST)) (-2594 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) 41)) (-3507 (((-654 (-674 |#1| |#2|)) (-654 |#1|)) 73)) (-4148 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) 46)) (-2986 (((-112) $ $) 62)) (-3103 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 52))) +(((-637 |#1| |#2| |#3|) (-13 (-483) (-10 -8 (-15 -1617 ($ (-674 |#1| |#2|))) (-15 -3113 ((-674 |#1| |#2|) $)) (-15 -4148 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2951 ((-1299 |#1| |#2|) $)) (-15 -2951 ((-1304 |#1| |#2|) $)) (-15 -3856 ($ $)) (-15 -1663 ((-654 |#1|) $)) (-15 -3507 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -2594 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -1479 ((-654 (-302 |#2|)) $ $)))) (-860) (-13 (-174) (-727 (-417 (-574)))) (-935)) (T -637)) +((-1617 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-5 *1 (-637 *3 *4 *5)) (-14 *5 (-935)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-674 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-3856 (*1 *1 *1) (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-935)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5))) (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574))))) (-14 *6 (-935)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-1479 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935))))) +(-13 (-483) (-10 -8 (-15 -1617 ($ (-674 |#1| |#2|))) (-15 -3113 ((-674 |#1| |#2|) $)) (-15 -4148 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2951 ((-1299 |#1| |#2|) $)) (-15 -2951 ((-1304 |#1| |#2|) $)) (-15 -3856 ($ $)) (-15 -1663 ((-654 |#1|) $)) (-15 -3507 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -2594 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -1479 ((-654 (-302 |#2|)) $ $)))) +((-3656 (((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 103) (((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 77)) (-1709 (((-112) (-654 (-790 |#1| (-874 |#2|)))) 26)) (-3641 (((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 102)) (-2943 (((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 76)) (-4137 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) 30)) (-1776 (((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|)))) 29))) +(((-638 |#1| |#2|) (-10 -7 (-15 -1709 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -1776 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -4137 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -2943 ((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3641 ((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3656 ((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3656 ((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)))) (-462) (-654 (-1193))) (T -638)) +((-3656 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1162 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-3656 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-638 *5 *6)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1162 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-2943 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-638 *5 *6)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1193))) (-5 *1 (-638 *3 *4)))) (-1776 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1193))) (-5 *1 (-638 *3 *4)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462)) (-14 *5 (-654 (-1193))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) +(-10 -7 (-15 -1709 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -1776 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -4137 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -2943 ((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3641 ((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3656 ((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3656 ((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)))) +((-2379 (($ $) 38)) (-2258 (($ $) 21)) (-2358 (($ $) 37)) (-2235 (($ $) 22)) (-2404 (($ $) 36)) (-2280 (($ $) 23)) (-3004 (($) 48)) (-3113 (($ $) 45)) (-4053 (($ $) 17)) (-3031 (($ $ (-1108 $)) 7) (($ $ (-1193)) 6)) (-1617 (($ $) 46)) (-4043 (($ $) 15)) (-2222 (($ $) 16)) (-2417 (($ $) 35)) (-2289 (($ $) 24)) (-2390 (($ $) 34)) (-2269 (($ $) 25)) (-2368 (($ $) 33)) (-2247 (($ $) 26)) (-2456 (($ $) 44)) (-2320 (($ $) 32)) (-2429 (($ $) 43)) (-2301 (($ $) 31)) (-2480 (($ $) 42)) (-2340 (($ $) 30)) (-2536 (($ $) 41)) (-2349 (($ $) 29)) (-2468 (($ $) 40)) (-2330 (($ $) 28)) (-2443 (($ $) 39)) (-2312 (($ $) 27)) (-3274 (($ $) 19)) (-3275 (($ $) 20)) (-2713 (($ $) 18)) (** (($ $ $) 47))) (((-639) (-141)) (T -639)) -((-3901 (*1 *1 *1) (-4 *1 (-639))) (-3140 (*1 *1 *1) (-4 *1 (-639))) (-2232 (*1 *1 *1) (-4 *1 (-639))) (-4053 (*1 *1 *1) (-4 *1 (-639))) (-2223 (*1 *1 *1) (-4 *1 (-639))) (-4043 (*1 *1 *1) (-4 *1 (-639)))) -(-13 (-972) (-1218) (-10 -8 (-15 -3901 ($ $)) (-15 -3140 ($ $)) (-15 -2232 ($ $)) (-15 -4053 ($ $)) (-15 -2223 ($ $)) (-15 -4043 ($ $)))) -(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-972) . T) ((-1218) . T) ((-1221) . T)) -((-4150 (((-115) (-115)) 88)) (-4053 ((|#2| |#2|) 28)) (-2028 ((|#2| |#2| (-1107 |#2|)) 84) ((|#2| |#2| (-1192)) 50)) (-4043 ((|#2| |#2|) 27)) (-2223 ((|#2| |#2|) 29)) (-4207 (((-112) (-115)) 33)) (-3140 ((|#2| |#2|) 24)) (-3901 ((|#2| |#2|) 26)) (-2232 ((|#2| |#2|) 25))) -(((-640 |#1| |#2|) (-10 -7 (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3901 (|#2| |#2|)) (-15 -3140 (|#2| |#2|)) (-15 -2232 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -2223 (|#2| |#2|)) (-15 -2028 (|#2| |#2| (-1192))) (-15 -2028 (|#2| |#2| (-1107 |#2|)))) (-566) (-13 (-440 |#1|) (-1017) (-1218))) (T -640)) -((-2028 (*1 *2 *2 *3) (-12 (-5 *3 (-1107 *2)) (-4 *2 (-13 (-440 *4) (-1017) (-1218))) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)))) (-2028 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)) (-4 *2 (-13 (-440 *4) (-1017) (-1218))))) (-2223 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-4043 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-4053 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-3140 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-640 *3 *4)) (-4 *4 (-13 (-440 *3) (-1017) (-1218))))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1017) (-1218)))))) -(-10 -7 (-15 -4207 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3901 (|#2| |#2|)) (-15 -3140 (|#2| |#2|)) (-15 -2232 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -2223 (|#2| |#2|)) (-15 -2028 (|#2| |#2| (-1192))) (-15 -2028 (|#2| |#2| (-1107 |#2|)))) -((-3144 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-1559 (((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 89)) (-3419 (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 91) (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 90)) (-4109 (((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|))) 134)) (-2104 (((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 104)) (-3320 (((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|))) 145)) (-2201 (((-1283 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|))) 68)) (-1339 (((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 47)) (-4065 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 60)) (-2029 (((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 112))) -(((-641 |#1| |#2|) (-10 -7 (-15 -4109 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -3320 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -1559 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3419 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3419 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -1339 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2201 ((-1283 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -2029 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -2104 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -4065 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -3144 ((-491 |#1| |#2|) (-253 |#1| |#2|)))) (-654 (-1192)) (-462)) (T -641)) -((-3144 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5)))) (-4065 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-2104 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4)) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-2029 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462)) (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1192))) (-5 *1 (-641 *5 *6)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6)) (-14 *5 (-654 (-1192))) (-4 *6 (-462)) (-5 *2 (-1283 *6)) (-5 *1 (-641 *5 *6)))) (-1339 (*1 *2 *2) (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1192))) (-4 *4 (-462)) (-5 *1 (-641 *3 *4)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1192))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-3419 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1192))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5)))) (-3320 (*1 *2 *3) (-12 (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574))))) (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5))))) (-4109 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |gblist| (-654 (-253 *4 *5))) (|:| |gvlist| (-654 (-574))))) (-5 *1 (-641 *4 *5))))) -(-10 -7 (-15 -4109 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -3320 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -1559 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3419 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3419 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -1339 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2201 ((-1283 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -2029 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -2104 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -4065 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -3144 ((-491 |#1| |#2|) (-253 |#1| |#2|)))) -((-2863 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))))) NIL)) (-3287 (((-1288) $ (-1174) (-1174)) NIL (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 (((-52) $ (-1174) (-52)) 16) (((-52) $ (-1192) (-52)) 17)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2171 (((-3 (-52) "failed") (-1174) $) NIL)) (-3831 (($) NIL T CONST)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115))))) (-1941 (($ (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-3 (-52) "failed") (-1174) $) NIL)) (-3310 (($ (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $ (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115)))) (((-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $ (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2472 (((-52) $ (-1174) (-52)) NIL (|has| $ (-6 -4459)))) (-2399 (((-52) $ (-1174)) NIL)) (-1873 (((-654 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-3400 (($ $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-1174) $) NIL (|has| (-1174) (-860)))) (-2247 (((-654 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-2429 (((-1174) $) NIL (|has| (-1174) (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1474 (($ (-398)) 9)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115))))) (-1772 (((-654 (-1174)) $) NIL)) (-2056 (((-112) (-1174) $) NIL)) (-1748 (((-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) $) NIL)) (-2609 (($ (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) $) NIL)) (-3228 (((-654 (-1174)) $) NIL)) (-3071 (((-112) (-1174) $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115))))) (-2924 (((-52) $) NIL (|has| (-1174) (-860)))) (-2294 (((-3 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) "failed") (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL)) (-4276 (($ $ (-52)) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) $) NIL)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115)))) (($ $ (-302 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115)))) (($ $ (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115)))) (($ $ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-2379 (((-654 (-52)) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 (((-52) $ (-1174)) 14) (((-52) $ (-1174) (-52)) NIL) (((-52) $ (-1192)) 15)) (-3667 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-623 (-872)))))) (-3838 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))))) NIL)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-642) (-13 (-1209 (-1174) (-52)) (-294 (-1192) (-52)) (-10 -8 (-15 -1474 ($ (-398))) (-15 -3400 ($ $)) (-15 -3134 ((-52) $ (-1192) (-52)))))) (T -642)) -((-1474 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-642)))) (-3400 (*1 *1 *1) (-5 *1 (-642))) (-3134 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1192)) (-5 *1 (-642))))) -(-13 (-1209 (-1174) (-52)) (-294 (-1192) (-52)) (-10 -8 (-15 -1474 ($ (-398))) (-15 -3400 ($ $)) (-15 -3134 ((-52) $ (-1192) (-52))))) -((-3098 (($ $ |#2|) 10))) -(((-643 |#1| |#2|) (-10 -8 (-15 -3098 (|#1| |#1| |#2|))) (-644 |#2|) (-174)) (T -643)) -NIL -(-10 -8 (-15 -3098 (|#1| |#1| |#2|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2962 (($ $ $) 34)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 33 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-3275 (*1 *1 *1) (-4 *1 (-639))) (-3274 (*1 *1 *1) (-4 *1 (-639))) (-2713 (*1 *1 *1) (-4 *1 (-639))) (-4053 (*1 *1 *1) (-4 *1 (-639))) (-2222 (*1 *1 *1) (-4 *1 (-639))) (-4043 (*1 *1 *1) (-4 *1 (-639)))) +(-13 (-973) (-1219) (-10 -8 (-15 -3275 ($ $)) (-15 -3274 ($ $)) (-15 -2713 ($ $)) (-15 -4053 ($ $)) (-15 -2222 ($ $)) (-15 -4043 ($ $)))) +(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-973) . T) ((-1219) . T) ((-1222) . T)) +((-4150 (((-115) (-115)) 88)) (-4053 ((|#2| |#2|) 28)) (-3031 ((|#2| |#2| (-1108 |#2|)) 84) ((|#2| |#2| (-1193)) 50)) (-4043 ((|#2| |#2|) 27)) (-2222 ((|#2| |#2|) 29)) (-2420 (((-112) (-115)) 33)) (-3274 ((|#2| |#2|) 24)) (-3275 ((|#2| |#2|) 26)) (-2713 ((|#2| |#2|) 25))) +(((-640 |#1| |#2|) (-10 -7 (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3275 (|#2| |#2|)) (-15 -3274 (|#2| |#2|)) (-15 -2713 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -2222 (|#2| |#2|)) (-15 -3031 (|#2| |#2| (-1193))) (-15 -3031 (|#2| |#2| (-1108 |#2|)))) (-566) (-13 (-440 |#1|) (-1018) (-1219))) (T -640)) +((-3031 (*1 *2 *2 *3) (-12 (-5 *3 (-1108 *2)) (-4 *2 (-13 (-440 *4) (-1018) (-1219))) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)))) (-3031 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)) (-4 *2 (-13 (-440 *4) (-1018) (-1219))))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-4043 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-4053 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-2713 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-3274 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-3275 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-640 *3 *4)) (-4 *4 (-13 (-440 *3) (-1018) (-1219))))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1018) (-1219)))))) +(-10 -7 (-15 -2420 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3275 (|#2| |#2|)) (-15 -3274 (|#2| |#2|)) (-15 -2713 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -2222 (|#2| |#2|)) (-15 -3031 (|#2| |#2| (-1193))) (-15 -3031 (|#2| |#2| (-1108 |#2|)))) +((-1350 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-2116 (((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 89)) (-2552 (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 91) (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 90)) (-3800 (((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|))) 134)) (-2507 (((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 104)) (-2144 (((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|))) 145)) (-3844 (((-1284 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|))) 68)) (-3669 (((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 47)) (-3068 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 60)) (-2678 (((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 112))) +(((-641 |#1| |#2|) (-10 -7 (-15 -3800 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -2144 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -2116 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2552 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -2552 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3669 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3844 ((-1284 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -2678 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -2507 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3068 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -1350 ((-491 |#1| |#2|) (-253 |#1| |#2|)))) (-654 (-1193)) (-462)) (T -641)) +((-1350 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5)))) (-3068 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-2507 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4)) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-2678 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462)) (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1193))) (-5 *1 (-641 *5 *6)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6)) (-14 *5 (-654 (-1193))) (-4 *6 (-462)) (-5 *2 (-1284 *6)) (-5 *1 (-641 *5 *6)))) (-3669 (*1 *2 *2) (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1193))) (-4 *4 (-462)) (-5 *1 (-641 *3 *4)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1193))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-2552 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1193))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5)))) (-2144 (*1 *2 *3) (-12 (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574))))) (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5))))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |gblist| (-654 (-253 *4 *5))) (|:| |gvlist| (-654 (-574))))) (-5 *1 (-641 *4 *5))))) +(-10 -7 (-15 -3800 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -2144 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -2116 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2552 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -2552 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3669 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3844 ((-1284 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -2678 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -2507 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3068 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -1350 ((-491 |#1| |#2|) (-253 |#1| |#2|)))) +((-2864 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL)) (-2985 (((-1289) $ (-1175) (-1175)) NIL (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 (((-52) $ (-1175) (-52)) 16) (((-52) $ (-1193) (-52)) 17)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2171 (((-3 (-52) "failed") (-1175) $) NIL)) (-3250 (($) NIL T CONST)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-2424 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-3 (-52) "failed") (-1175) $) NIL)) (-3311 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (((-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2473 (((-52) $ (-1175) (-52)) NIL (|has| $ (-6 -4460)))) (-2400 (((-52) $ (-1175)) NIL)) (-1871 (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-2519 (($ $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-1175) $) NIL (|has| (-1175) (-860)))) (-2036 (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-1698 (((-1175) $) NIL (|has| (-1175) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1475 (($ (-398)) 9)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-1771 (((-654 (-1175)) $) NIL)) (-2229 (((-112) (-1175) $) NIL)) (-2375 (((-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL)) (-3285 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL)) (-1393 (((-654 (-1175)) $) NIL)) (-1506 (((-112) (-1175) $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-2925 (((-52) $) NIL (|has| (-1175) (-860)))) (-2183 (((-3 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) "failed") (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL)) (-1822 (($ $ (-52)) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (($ $ (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (($ $ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-2315 (((-654 (-52)) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 (((-52) $ (-1175)) 14) (((-52) $ (-1175) (-52)) NIL) (((-52) $ (-1193)) 15)) (-3162 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-623 (-872)))))) (-4069 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-642) (-13 (-1210 (-1175) (-52)) (-294 (-1193) (-52)) (-10 -8 (-15 -1475 ($ (-398))) (-15 -2519 ($ $)) (-15 -3135 ((-52) $ (-1193) (-52)))))) (T -642)) +((-1475 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-642)))) (-2519 (*1 *1 *1) (-5 *1 (-642))) (-3135 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1193)) (-5 *1 (-642))))) +(-13 (-1210 (-1175) (-52)) (-294 (-1193) (-52)) (-10 -8 (-15 -1475 ($ (-398))) (-15 -2519 ($ $)) (-15 -3135 ((-52) $ (-1193) (-52))))) +((-3103 (($ $ |#2|) 10))) +(((-643 |#1| |#2|) (-10 -8 (-15 -3103 (|#1| |#1| |#2|))) (-644 |#2|) (-174)) (T -643)) +NIL +(-10 -8 (-15 -3103 (|#1| |#1| |#2|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2963 (($ $ $) 34)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 33 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-644 |#1|) (-141) (-174)) (T -644)) -((-2962 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)))) (-3098 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)) (-4 *2 (-372))))) -(-13 (-727 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2962 ($ $ $)) (IF (|has| |t#1| (-372)) (-15 -3098 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3775 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-2588 (((-1283 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1283 (-699 |#1|)) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-4427 (((-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3831 (($) NIL T CONST)) (-2846 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1992 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2038 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2199 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-4189 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2484 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3149 (((-1188 (-965 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3204 (($ $ (-934)) NIL)) (-3272 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3866 (((-1188 |#1|) $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3414 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-4111 (((-1188 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-2182 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2919 (($ (-1283 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1283 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3911 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3557 (((-934)) NIL (|has| |#2| (-376 |#1|)))) (-2045 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3518 (($ $ (-934)) NIL)) (-2931 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2347 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3233 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3636 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3215 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2597 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2327 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3680 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2691 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1644 (((-1188 (-965 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-2177 (($ $ (-934)) NIL)) (-2614 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3201 (((-1188 |#1|) $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2903 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3401 (((-1188 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-1584 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3945 (((-1174) $) NIL)) (-1916 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3601 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1876 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3939 (((-1135) $) NIL)) (-2678 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2208 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-4346 (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-427 |#1|))) (((-1283 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $) (-1283 $)) NIL (|has| |#2| (-376 |#1|))) (((-1283 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-1845 (($ (-1283 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1283 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2074 (((-654 (-965 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-965 |#1|)) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3490 (($ $ $) NIL)) (-1355 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2950 (((-872) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL (|has| |#2| (-427 |#1|)))) (-3045 (((-654 (-1283 |#1|))) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2087 (($ $ $ $) NIL)) (-3500 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2911 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-3157 (($ $ $) NIL)) (-1778 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2956 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3005 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) 20)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-645 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2950 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -645)) -((-2950 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-645 *3 *2)) (-4 *2 (-754 *3))))) -(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2950 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) -((-4060 (((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1174)) 106) (((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|))) 131)) (-3326 (((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|))) 136))) -(((-646 |#1| |#2|) (-10 -7 (-15 -4060 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -3326 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -4060 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1174)))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -646)) -((-4060 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1174)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3)))) (-3326 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-302 (-843 *3))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-4060 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-646 *5 *3))))) -(-10 -7 (-15 -4060 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -3326 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -4060 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1174)))) -((-4060 (((-3 (-853 (-417 (-965 |#1|))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))) (-1174)) 86) (((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|)))) 20) (((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-853 (-965 |#1|)))) 35)) (-3326 (((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|)))) 23) (((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-843 (-965 |#1|)))) 43))) -(((-647 |#1|) (-10 -7 (-15 -4060 ((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-853 (-965 |#1|))))) (-15 -4060 ((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -3326 ((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-843 (-965 |#1|))))) (-15 -3326 ((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -4060 ((-3 (-853 (-417 (-965 |#1|))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))) (-1174)))) (-462)) (T -647)) -((-4060 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 (-417 (-965 *6)))) (-5 *5 (-1174)) (-5 *3 (-417 (-965 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3)) (-5 *1 (-647 *6)))) (-3326 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5)))) (-3326 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-843 (-965 *5)))) (-4 *5 (-462)) (-5 *2 (-843 (-417 (-965 *5)))) (-5 *1 (-647 *5)) (-5 *3 (-417 (-965 *5))))) (-4060 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) (-4 *5 (-462)) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-647 *5)))) (-4060 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 (-965 *5)))) (-4 *5 (-462)) (-5 *2 (-3 (-853 (-417 (-965 *5))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 *5))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 *5))) "failed"))) "failed")) (-5 *1 (-647 *5)) (-5 *3 (-417 (-965 *5)))))) -(-10 -7 (-15 -4060 ((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-853 (-965 |#1|))))) (-15 -4060 ((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -3326 ((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-843 (-965 |#1|))))) (-15 -3326 ((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -4060 ((-3 (-853 (-417 (-965 |#1|))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))) (-1174)))) -((-2030 (((-3 (-1283 (-417 |#1|)) "failed") (-1283 |#2|) |#2|) 64 (-2085 (|has| |#1| (-372)))) (((-3 (-1283 |#1|) "failed") (-1283 |#2|) |#2|) 49 (|has| |#1| (-372)))) (-4350 (((-112) (-1283 |#2|)) 33)) (-2771 (((-3 (-1283 |#1|) "failed") (-1283 |#2|)) 40))) -(((-648 |#1| |#2|) (-10 -7 (-15 -4350 ((-112) (-1283 |#2|))) (-15 -2771 ((-3 (-1283 |#1|) "failed") (-1283 |#2|))) (IF (|has| |#1| (-372)) (-15 -2030 ((-3 (-1283 |#1|) "failed") (-1283 |#2|) |#2|)) (-15 -2030 ((-3 (-1283 (-417 |#1|)) "failed") (-1283 |#2|) |#2|)))) (-566) (-13 (-1064) (-649 |#1|))) (T -648)) -((-2030 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 *5))) (-2085 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1283 (-417 *5))) (-5 *1 (-648 *5 *4)))) (-2030 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 *5))) (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1283 *5)) (-5 *1 (-648 *5 *4)))) (-2771 (*1 *2 *3) (|partial| -12 (-5 *3 (-1283 *5)) (-4 *5 (-13 (-1064) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-1283 *4)) (-5 *1 (-648 *4 *5)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-1283 *5)) (-4 *5 (-13 (-1064) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5))))) -(-10 -7 (-15 -4350 ((-112) (-1283 |#2|))) (-15 -2771 ((-3 (-1283 |#1|) "failed") (-1283 |#2|))) (IF (|has| |#1| (-372)) (-15 -2030 ((-3 (-1283 |#1|) "failed") (-1283 |#2|) |#2|)) (-15 -2030 ((-3 (-1283 (-417 |#1|)) "failed") (-1283 |#2|) |#2|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3465 (((-699 |#1|) (-1283 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 29)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) -(((-649 |#1|) (-141) (-1064)) (T -649)) -((-3465 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1064)) (-5 *2 (-699 *4)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1064)) (-5 *2 (-699 *4)))) (-3465 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *1)) (-5 *4 (-1283 *1)) (-4 *1 (-649 *5)) (-4 *5 (-1064)) (-5 *2 (-2 (|:| -4047 (-699 *5)) (|:| |vec| (-1283 *5))))))) -(-13 (-658 |t#1|) (-10 -8 (-15 -3465 ((-699 |t#1|) (-1283 $))) (-15 -3465 ((-699 |t#1|) (-699 $))) (-15 -3465 ((-2 (|:| -4047 (-699 |t#1|)) (|:| |vec| (-1283 |t#1|))) (-699 $) (-1283 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1115) . T)) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 16 T CONST)) (-2985 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) -(((-650 |#1|) (-141) (-1127)) (T -650)) -NIL -(-13 (-656 |t#1|) (-1066 |t#1|)) -(((-102) . T) ((-623 (-872)) . T) ((-656 |#1|) . T) ((-1066 |#1|) . T) ((-1115) . T)) -((-2697 ((|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|) 17) ((|#2| (-654 |#1|) (-654 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|)) 12))) -(((-651 |#1| |#2|) (-10 -7 (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)))) (-1115) (-1233)) (T -651)) -((-2697 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1115)) (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) (-2697 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1115)) (-4 *6 (-1233)) (-5 *1 (-651 *5 *6)))) (-2697 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1115)) (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) (-2697 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1115)) (-4 *5 (-1233)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5)))) (-2697 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1115)) (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1115)) (-4 *6 (-1233)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6))))) -(-10 -7 (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)))) -((-4214 (((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 16)) (-2881 ((|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 18)) (-1786 (((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)) 13))) -(((-652 |#1| |#2|) (-10 -7 (-15 -4214 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1786 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)))) (-1233) (-1233)) (T -652)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-652 *5 *2)))) (-4214 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1233)) (-4 *5 (-1233)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5))))) -(-10 -7 (-15 -4214 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1786 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)))) -((-1786 (((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)) 21))) -(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -1786 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)))) (-1233) (-1233) (-1233)) (T -653)) -((-1786 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-654 *6)) (-5 *5 (-654 *7)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-654 *8)) (-5 *1 (-653 *6 *7 *8))))) -(-10 -7 (-15 -1786 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) NIL)) (-2420 ((|#1| $) NIL)) (-1979 (($ $) NIL)) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-1344 (($ $ (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3565 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2785 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-3906 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3168 (($ $ $) NIL (|has| $ (-6 -4459)))) (-2976 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3576 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "rest" $) NIL (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-4143 (($ $ $) 37 (|has| |#1| (-1115)))) (-4406 (($ $ $) 41 (|has| |#1| (-1115)))) (-2242 (($ $ $) 44 (|has| |#1| (-1115)))) (-2551 (($ (-1 (-112) |#1|) $) NIL)) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2407 ((|#1| $) NIL)) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2934 (($ $) 23) (($ $ (-781)) NIL)) (-2098 (($ $) NIL (|has| |#1| (-1115)))) (-2560 (($ $) 36 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1941 (($ |#1| $) NIL (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) NIL)) (-3310 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2472 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1930 (((-112) $) NIL)) (-1451 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115))) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2073 (((-112) $) 11)) (-2898 (((-654 $) $) NIL)) (-2661 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3494 (($) 9 T CONST)) (-3763 (($ (-781) |#1|) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-2857 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4297 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1797 (($ |#1|) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3481 (((-654 |#1|) $) NIL)) (-4069 (((-112) $) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3333 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-2609 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1603 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) 20) (($ $ (-781)) NIL)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4276 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-1425 (((-112) $) NIL)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) 39)) (-2833 (($) 38)) (-2208 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1250 (-574))) NIL) ((|#1| $ (-574)) 42) ((|#1| $ (-574) |#1|) NIL)) (-4418 (((-574) $ $) NIL)) (-1317 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-2853 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-1966 (((-112) $) NIL)) (-2013 (($ $) NIL)) (-1429 (($ $) NIL (|has| $ (-6 -4459)))) (-2746 (((-781) $) NIL)) (-1476 (($ $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) 53 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-2234 (($ |#1| $) 12)) (-4226 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4131 (($ $ $) 35) (($ |#1| $) 43) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) NIL)) (-1870 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2870 (($ $ $) 13)) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-4057 (((-1174) $) 31 (|has| |#1| (-838))) (((-1174) $ (-112)) 32 (|has| |#1| (-838))) (((-1288) (-832) $) 33 (|has| |#1| (-838))) (((-1288) (-832) $ (-112)) 34 (|has| |#1| (-838)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-654 |#1|) (-13 (-676 |#1|) (-10 -8 (-15 -3494 ($) -1715) (-15 -2073 ((-112) $)) (-15 -2234 ($ |#1| $)) (-15 -2870 ($ $ $)) (IF (|has| |#1| (-1115)) (PROGN (-15 -4143 ($ $ $)) (-15 -4406 ($ $ $)) (-15 -2242 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) (-1233)) (T -654)) -((-3494 (*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1233)))) (-2234 (*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233)))) (-2870 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233)))) (-4143 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233)))) (-4406 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233)))) (-2242 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233))))) -(-13 (-676 |#1|) (-10 -8 (-15 -3494 ($) -1715) (-15 -2073 ((-112) $)) (-15 -2234 ($ |#1| $)) (-15 -2870 ($ $ $)) (IF (|has| |#1| (-1115)) (PROGN (-15 -4143 ($ $ $)) (-15 -4406 ($ $ $)) (-15 -2242 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 11) (($ (-1197)) NIL) (((-1197) $) NIL) ((|#1| $) 8)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-655 |#1|) (-13 (-1098) (-623 |#1|)) (-1115)) (T -655)) -NIL -(-13 (-1098) (-623 |#1|)) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 16 T CONST)) (-2985 (((-112) $ $) 6)) (* (($ |#1| $) 14))) -(((-656 |#1|) (-141) (-1127)) (T -656)) -((-2142 (*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1127)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1127)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1127))))) -(-13 (-1115) (-10 -8 (-15 (-2142) ($) -1715) (-15 -3520 ((-112) $)) (-15 * ($ |t#1| $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4022 (($ |#1| |#1| $) 43)) (-2818 (((-112) $ (-781)) NIL)) (-2551 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2098 (($ $) 45)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1941 (($ |#1| $) 56 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-1873 (((-654 |#1|) $) 9 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2461 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 37)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1748 ((|#1| $) 47)) (-2609 (($ |#1| $) 29) (($ |#1| $ (-781)) 42)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3484 ((|#1| $) 50)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 23)) (-2833 (($) 28)) (-2759 (((-112) $) 54)) (-3875 (((-654 (-2 (|:| -1917 |#1|) (|:| -3948 (-781)))) $) 67)) (-3667 (($) 26) (($ (-654 |#1|)) 19)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) 63 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 20)) (-1845 (((-546) $) 34 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-2950 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) 24)) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 69 (|has| |#1| (-1115)))) (-2876 (((-781) $) 17 (|has| $ (-6 -4458))))) -(((-657 |#1|) (-13 (-705 |#1|) (-10 -8 (-6 -4458) (-15 -2759 ((-112) $)) (-15 -4022 ($ |#1| |#1| $)))) (-1115)) (T -657)) -((-2759 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1115)))) (-4022 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1115))))) -(-13 (-705 |#1|) (-10 -8 (-6 -4458) (-15 -2759 ((-112) $)) (-15 -4022 ($ |#1| |#1| $)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) -(((-658 |#1|) (-141) (-1073)) (T -658)) +((-2963 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)) (-4 *2 (-372))))) +(-13 (-727 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2963 ($ $ $)) (IF (|has| |t#1| (-372)) (-15 -3103 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4098 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-1379 (((-1284 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1284 (-699 |#1|)) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3610 (((-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3250 (($) NIL T CONST)) (-4004 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3511 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1519 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-2569 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-4438 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1657 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4436 (((-1189 (-966 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3066 (($ $ (-935)) NIL)) (-2416 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3831 (((-1189 |#1|) $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3061 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-2026 (((-1189 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-2766 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2580 (($ (-1284 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1284 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-4322 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3558 (((-935)) NIL (|has| |#2| (-376 |#1|)))) (-1357 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4081 (($ $ (-935)) NIL)) (-4428 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4324 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3357 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3946 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3923 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1321 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3555 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3659 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3144 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2625 (((-1189 (-966 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-4308 (($ $ (-935)) NIL)) (-2448 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2122 (((-1189 |#1|) $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4052 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-4169 (((-1189 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-4035 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1489 (((-1175) $) NIL)) (-2381 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3120 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3338 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3940 (((-1136) $) NIL)) (-3453 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2207 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-1385 (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-427 |#1|))) (((-1284 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $) (-1284 $)) NIL (|has| |#2| (-376 |#1|))) (((-1284 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1844 (($ (-1284 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1284 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-3983 (((-654 (-966 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-966 |#1|)) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3955 (($ $ $) NIL)) (-2170 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2951 (((-872) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL (|has| |#2| (-427 |#1|)))) (-2717 (((-654 (-1284 |#1|))) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4010 (($ $ $ $) NIL)) (-3233 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2912 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-4099 (($ $ $) NIL)) (-3127 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4280 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4024 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) 20)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-645 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2951 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -645)) +((-2951 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-645 *3 *2)) (-4 *2 (-754 *3))))) +(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2951 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) +((-2905 (((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1175)) 106) (((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|))) 131)) (-2087 (((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|))) 136))) +(((-646 |#1| |#2|) (-10 -7 (-15 -2905 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -2087 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -2905 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1175)))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -646)) +((-2905 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1175)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3)))) (-2087 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-302 (-843 *3))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-2905 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-646 *5 *3))))) +(-10 -7 (-15 -2905 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -2087 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -2905 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1175)))) +((-2905 (((-3 (-853 (-417 (-966 |#1|))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))) (-1175)) 86) (((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|)))) 20) (((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-853 (-966 |#1|)))) 35)) (-2087 (((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|)))) 23) (((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-843 (-966 |#1|)))) 43))) +(((-647 |#1|) (-10 -7 (-15 -2905 ((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-853 (-966 |#1|))))) (-15 -2905 ((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -2087 ((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-843 (-966 |#1|))))) (-15 -2087 ((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -2905 ((-3 (-853 (-417 (-966 |#1|))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))) (-1175)))) (-462)) (T -647)) +((-2905 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 (-417 (-966 *6)))) (-5 *5 (-1175)) (-5 *3 (-417 (-966 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3)) (-5 *1 (-647 *6)))) (-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5))) (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5)))) (-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-843 (-966 *5)))) (-4 *5 (-462)) (-5 *2 (-843 (-417 (-966 *5)))) (-5 *1 (-647 *5)) (-5 *3 (-417 (-966 *5))))) (-2905 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5))) (-4 *5 (-462)) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-647 *5)))) (-2905 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 (-966 *5)))) (-4 *5 (-462)) (-5 *2 (-3 (-853 (-417 (-966 *5))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 *5))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 *5))) "failed"))) "failed")) (-5 *1 (-647 *5)) (-5 *3 (-417 (-966 *5)))))) +(-10 -7 (-15 -2905 ((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-853 (-966 |#1|))))) (-15 -2905 ((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -2087 ((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-843 (-966 |#1|))))) (-15 -2087 ((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -2905 ((-3 (-853 (-417 (-966 |#1|))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))) (-1175)))) +((-1325 (((-3 (-1284 (-417 |#1|)) "failed") (-1284 |#2|) |#2|) 64 (-2084 (|has| |#1| (-372)))) (((-3 (-1284 |#1|) "failed") (-1284 |#2|) |#2|) 49 (|has| |#1| (-372)))) (-3649 (((-112) (-1284 |#2|)) 33)) (-3571 (((-3 (-1284 |#1|) "failed") (-1284 |#2|)) 40))) +(((-648 |#1| |#2|) (-10 -7 (-15 -3649 ((-112) (-1284 |#2|))) (-15 -3571 ((-3 (-1284 |#1|) "failed") (-1284 |#2|))) (IF (|has| |#1| (-372)) (-15 -1325 ((-3 (-1284 |#1|) "failed") (-1284 |#2|) |#2|)) (-15 -1325 ((-3 (-1284 (-417 |#1|)) "failed") (-1284 |#2|) |#2|)))) (-566) (-13 (-1065) (-649 |#1|))) (T -648)) +((-1325 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 *5))) (-2084 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1284 (-417 *5))) (-5 *1 (-648 *5 *4)))) (-1325 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 *5))) (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1284 *5)) (-5 *1 (-648 *5 *4)))) (-3571 (*1 *2 *3) (|partial| -12 (-5 *3 (-1284 *5)) (-4 *5 (-13 (-1065) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-1284 *4)) (-5 *1 (-648 *4 *5)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-1284 *5)) (-4 *5 (-13 (-1065) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5))))) +(-10 -7 (-15 -3649 ((-112) (-1284 |#2|))) (-15 -3571 ((-3 (-1284 |#1|) "failed") (-1284 |#2|))) (IF (|has| |#1| (-372)) (-15 -1325 ((-3 (-1284 |#1|) "failed") (-1284 |#2|) |#2|)) (-15 -1325 ((-3 (-1284 (-417 |#1|)) "failed") (-1284 |#2|) |#2|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1831 (((-699 |#1|) (-1284 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 29)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) +(((-649 |#1|) (-141) (-1065)) (T -649)) +((-1831 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1065)) (-5 *2 (-699 *4)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1065)) (-5 *2 (-699 *4)))) (-1831 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *1)) (-5 *4 (-1284 *1)) (-4 *1 (-649 *5)) (-4 *5 (-1065)) (-5 *2 (-2 (|:| -3082 (-699 *5)) (|:| |vec| (-1284 *5))))))) +(-13 (-658 |t#1|) (-10 -8 (-15 -1831 ((-699 |t#1|) (-1284 $))) (-15 -1831 ((-699 |t#1|) (-699 $))) (-15 -1831 ((-2 (|:| -3082 (-699 |t#1|)) (|:| |vec| (-1284 |t#1|))) (-699 $) (-1284 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1116) . T)) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 16 T CONST)) (-2986 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) +(((-650 |#1|) (-141) (-1128)) (T -650)) +NIL +(-13 (-656 |t#1|) (-1067 |t#1|)) +(((-102) . T) ((-623 (-872)) . T) ((-656 |#1|) . T) ((-1067 |#1|) . T) ((-1116) . T)) +((-2698 ((|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|) 17) ((|#2| (-654 |#1|) (-654 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|)) 12))) +(((-651 |#1| |#2|) (-10 -7 (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)))) (-1116) (-1234)) (T -651)) +((-2698 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1116)) (-4 *2 (-1234)) (-5 *1 (-651 *5 *2)))) (-2698 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1116)) (-4 *6 (-1234)) (-5 *1 (-651 *5 *6)))) (-2698 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1116)) (-4 *2 (-1234)) (-5 *1 (-651 *5 *2)))) (-2698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1116)) (-4 *5 (-1234)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5)))) (-2698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1116)) (-4 *2 (-1234)) (-5 *1 (-651 *5 *2)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1116)) (-4 *6 (-1234)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6))))) +(-10 -7 (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)))) +((-3465 (((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 16)) (-2882 ((|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 18)) (-1785 (((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)) 13))) +(((-652 |#1| |#2|) (-10 -7 (-15 -3465 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1785 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)))) (-1234) (-1234)) (T -652)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-652 *5 *2)))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1234)) (-4 *5 (-1234)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5))))) +(-10 -7 (-15 -3465 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1785 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)))) +((-1785 (((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)) 21))) +(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)))) (-1234) (-1234) (-1234)) (T -653)) +((-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-654 *6)) (-5 *5 (-654 *7)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-654 *8)) (-5 *1 (-653 *6 *7 *8))))) +(-10 -7 (-15 -1785 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) NIL)) (-2421 ((|#1| $) NIL)) (-1978 (($ $) NIL)) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1652 (($ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4140 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2786 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-4433 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3370 (($ $ $) NIL (|has| $ (-6 -4460)))) (-2523 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-2186 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "rest" $) NIL (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-4205 (($ $ $) 37 (|has| |#1| (-1116)))) (-2360 (($ $ $) 41 (|has| |#1| (-1116)))) (-3327 (($ $ $) 44 (|has| |#1| (-1116)))) (-1923 (($ (-1 (-112) |#1|) $) NIL)) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2408 ((|#1| $) NIL)) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2935 (($ $) 23) (($ $ (-781)) NIL)) (-2088 (($ $) NIL (|has| |#1| (-1116)))) (-2804 (($ $) 36 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2424 (($ |#1| $) NIL (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) NIL)) (-3311 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-4186 (((-112) $) NIL)) (-1452 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116))) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2072 (((-112) $) 11)) (-1482 (((-654 $) $) NIL)) (-2622 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3495 (($) 9 T CONST)) (-3764 (($ (-781) |#1|) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-4349 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3404 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1795 (($ |#1|) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-3483 (((-654 |#1|) $) NIL)) (-1580 (((-112) $) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3334 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-3285 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) 20) (($ $ (-781)) NIL)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1822 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3070 (((-112) $) NIL)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) 39)) (-3336 (($) 38)) (-2207 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1251 (-574))) NIL) ((|#1| $ (-574)) 42) ((|#1| $ (-574) |#1|) NIL)) (-3615 (((-574) $ $) NIL)) (-4385 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-3911 (((-112) $) NIL)) (-1939 (($ $) NIL)) (-2043 (($ $) NIL (|has| $ (-6 -4460)))) (-1746 (((-781) $) NIL)) (-2386 (($ $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) 53 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-2234 (($ |#1| $) 12)) (-2982 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4132 (($ $ $) 35) (($ |#1| $) 43) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) NIL)) (-4208 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2874 (($ $ $) 13)) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3927 (((-1175) $) 31 (|has| |#1| (-838))) (((-1175) $ (-112)) 32 (|has| |#1| (-838))) (((-1289) (-832) $) 33 (|has| |#1| (-838))) (((-1289) (-832) $ (-112)) 34 (|has| |#1| (-838)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-654 |#1|) (-13 (-676 |#1|) (-10 -8 (-15 -3495 ($) -1714) (-15 -2072 ((-112) $)) (-15 -2234 ($ |#1| $)) (-15 -2874 ($ $ $)) (IF (|has| |#1| (-1116)) (PROGN (-15 -4205 ($ $ $)) (-15 -2360 ($ $ $)) (-15 -3327 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) (-1234)) (T -654)) +((-3495 (*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1234)))) (-2234 (*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234)))) (-2874 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234)))) (-4205 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234)))) (-2360 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234)))) (-3327 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234))))) +(-13 (-676 |#1|) (-10 -8 (-15 -3495 ($) -1714) (-15 -2072 ((-112) $)) (-15 -2234 ($ |#1| $)) (-15 -2874 ($ $ $)) (IF (|has| |#1| (-1116)) (PROGN (-15 -4205 ($ $ $)) (-15 -2360 ($ $ $)) (-15 -3327 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 11) (($ (-1198)) NIL) (((-1198) $) NIL) ((|#1| $) 8)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-655 |#1|) (-13 (-1099) (-623 |#1|)) (-1116)) (T -655)) +NIL +(-13 (-1099) (-623 |#1|)) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 16 T CONST)) (-2986 (((-112) $ $) 6)) (* (($ |#1| $) 14))) +(((-656 |#1|) (-141) (-1128)) (T -656)) +((-2141 (*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1128)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1128)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1128))))) +(-13 (-1116) (-10 -8 (-15 (-2141) ($) -1714) (-15 -1431 ((-112) $)) (-15 * ($ |t#1| $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2889 (($ |#1| |#1| $) 43)) (-3146 (((-112) $ (-781)) NIL)) (-1923 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2088 (($ $) 45)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2424 (($ |#1| $) 56 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 9 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 37)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-2375 ((|#1| $) 47)) (-3285 (($ |#1| $) 29) (($ |#1| $ (-781)) 42)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3801 ((|#1| $) 50)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 23)) (-3336 (($) 28)) (-1895 (((-112) $) 54)) (-2446 (((-654 (-2 (|:| -1916 |#1|) (|:| -3949 (-781)))) $) 67)) (-3162 (($) 26) (($ (-654 |#1|)) 19)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) 63 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 20)) (-1844 (((-546) $) 34 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-2951 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) 24)) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 69 (|has| |#1| (-1116)))) (-2877 (((-781) $) 17 (|has| $ (-6 -4459))))) +(((-657 |#1|) (-13 (-705 |#1|) (-10 -8 (-6 -4459) (-15 -1895 ((-112) $)) (-15 -2889 ($ |#1| |#1| $)))) (-1116)) (T -657)) +((-1895 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1116)))) (-2889 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1116))))) +(-13 (-705 |#1|) (-10 -8 (-6 -4459) (-15 -1895 ((-112) $)) (-15 -2889 ($ |#1| |#1| $)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) +(((-658 |#1|) (-141) (-1074)) (T -658)) NIL (-13 (-21) (-656 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781) $) 17)) (-2562 (($ $ |#1|) 69)) (-2163 (($ $) 39)) (-4424 (($ $) 37)) (-1705 (((-3 |#1| "failed") $) 61)) (-2216 ((|#1| $) NIL)) (-3719 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2152 (((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574)) 56)) (-2382 ((|#1| $ (-574)) 35)) (-4066 ((|#2| $ (-574)) 34)) (-3341 (($ (-1 |#1| |#1|) $) 41)) (-4081 (($ (-1 |#2| |#2|) $) 47)) (-2877 (($) 11)) (-2838 (($ |#1| |#2|) 24)) (-4422 (($ (-654 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|)))) 25)) (-4156 (((-654 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))) $) 14)) (-1409 (($ |#1| $) 71)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3787 (((-112) $ $) 76)) (-2950 (((-872) $) 21) (($ |#1|) 18)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 27))) -(((-659 |#1| |#2| |#3|) (-13 (-1115) (-1053 |#1|) (-10 -8 (-15 -2152 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -4156 ((-654 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))) $)) (-15 -2838 ($ |#1| |#2|)) (-15 -4422 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))))) (-15 -4066 (|#2| $ (-574))) (-15 -2382 (|#1| $ (-574))) (-15 -4424 ($ $)) (-15 -2163 ($ $)) (-15 -1496 ((-781) $)) (-15 -2877 ($)) (-15 -2562 ($ $ |#1|)) (-15 -1409 ($ |#1| $)) (-15 -3719 ($ |#1| |#2| $)) (-15 -3719 ($ $ $)) (-15 -3787 ((-112) $ $)) (-15 -4081 ($ (-1 |#2| |#2|) $)) (-15 -3341 ($ (-1 |#1| |#1|) $)))) (-1115) (-23) |#2|) (T -659)) -((-2152 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872)) (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1115)) (-4 *6 (-23)) (-14 *7 *6))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1618 *4)))) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4))) (-2838 (*1 *1 *2 *3) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-4422 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1618 *4)))) (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)))) (-4066 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5)) (-4 *4 (-1115)) (-14 *5 *2))) (-2382 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-1115)) (-5 *1 (-659 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4424 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4))) (-2877 (*1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-2562 (*1 *1 *1 *2) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-1409 (*1 *1 *2 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-3719 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-3719 (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-3787 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4))) (-4081 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)))) (-3341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-659 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1115) (-1053 |#1|) (-10 -8 (-15 -2152 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -4156 ((-654 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))) $)) (-15 -2838 ($ |#1| |#2|)) (-15 -4422 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))))) (-15 -4066 (|#2| $ (-574))) (-15 -2382 (|#1| $ (-574))) (-15 -4424 ($ $)) (-15 -2163 ($ $)) (-15 -1496 ((-781) $)) (-15 -2877 ($)) (-15 -2562 ($ $ |#1|)) (-15 -1409 ($ |#1| $)) (-15 -3719 ($ |#1| |#2| $)) (-15 -3719 ($ $ $)) (-15 -3787 ((-112) $ $)) (-15 -4081 ($ (-1 |#2| |#2|) $)) (-15 -3341 ($ (-1 |#1| |#1|) $)))) -((-2429 (((-574) $) 31)) (-1603 (($ |#2| $ (-574)) 27) (($ $ $ (-574)) NIL)) (-3228 (((-654 (-574)) $) 12)) (-3071 (((-112) (-574) $) 18)) (-4131 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-654 $)) NIL))) -(((-660 |#1| |#2|) (-10 -8 (-15 -1603 (|#1| |#1| |#1| (-574))) (-15 -1603 (|#1| |#2| |#1| (-574))) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -2429 ((-574) |#1|)) (-15 -3228 ((-654 (-574)) |#1|)) (-15 -3071 ((-112) (-574) |#1|))) (-661 |#2|) (-1233)) (T -660)) -NIL -(-10 -8 (-15 -1603 (|#1| |#1| |#1| (-574))) (-15 -1603 (|#1| |#2| |#1| (-574))) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -2429 ((-574) |#1|)) (-15 -3228 ((-654 (-574)) |#1|)) (-15 -3071 ((-112) (-574) |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3287 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2560 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 70)) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 44 (|has| (-574) (-860)))) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 45 (|has| (-574) (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1603 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-3228 (((-654 (-574)) $) 47)) (-3071 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4276 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) 49)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-2853 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 72)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-661 |#1|) (-141) (-1233)) (T -661)) -((-3763 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-4131 (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) (-4131 (*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) (-4131 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) (-4131 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-1786 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-2853 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-2853 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-1603 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1233)))) (-1603 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-3134 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1250 (-574))) (|has| *1 (-6 -4459)) (-4 *1 (-661 *2)) (-4 *2 (-1233))))) -(-13 (-614 (-574) |t#1|) (-152 |t#1|) (-294 (-1250 (-574)) $) (-10 -8 (-15 -3763 ($ (-781) |t#1|)) (-15 -4131 ($ $ |t#1|)) (-15 -4131 ($ |t#1| $)) (-15 -4131 ($ $ $)) (-15 -4131 ($ (-654 $))) (-15 -1786 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2853 ($ $ (-574))) (-15 -2853 ($ $ (-1250 (-574)))) (-15 -1603 ($ |t#1| $ (-574))) (-15 -1603 ($ $ $ (-574))) (IF (|has| $ (-6 -4459)) (-15 -3134 (|t#1| $ (-1250 (-574)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-2514 (((-3 |#2| "failed") |#3| |#2| (-1192) |#2| (-654 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) "failed") |#3| |#2| (-1192)) 44))) -(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -2514 ((-3 (-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) "failed") |#3| |#2| (-1192))) (-15 -2514 ((-3 |#2| "failed") |#3| |#2| (-1192) |#2| (-654 |#2|)))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1218) (-972)) (-666 |#2|)) (T -662)) -((-2514 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2)))) (-2514 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1192)) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1218) (-972))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2191 (-654 *4)))) (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4))))) -(-10 -7 (-15 -2514 ((-3 (-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) "failed") |#3| |#2| (-1192))) (-15 -2514 ((-3 |#2| "failed") |#3| |#2| (-1192) |#2| (-654 |#2|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-372)))) (-3221 (($ $ $) NIL (|has| |#1| (-372)))) (-2225 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-3209 (($ $ $) NIL (|has| |#1| (-372)))) (-3359 (($ $ $) NIL (|has| |#1| (-372)))) (-3309 (($ $ $) NIL (|has| |#1| (-372)))) (-1904 (($ $ $) NIL (|has| |#1| (-372)))) (-3607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-4342 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#1| (-462)))) (-3372 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) NIL)) (-2015 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-566)))) (-2892 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-566)))) (-1503 (((-781) $) NIL)) (-2194 (($ $ $) NIL (|has| |#1| (-372)))) (-2227 (($ $ $) NIL (|has| |#1| (-372)))) (-4177 (($ $ $) NIL (|has| |#1| (-372)))) (-4027 (($ $ $) NIL (|has| |#1| (-372)))) (-3553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2636 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2801 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2208 ((|#1| $ |#1|) NIL)) (-1662 (($ $ $) NIL (|has| |#1| (-372)))) (-3584 (((-781) $) NIL)) (-3631 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) NIL)) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-781)) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2911 ((|#1| $ |#1| |#1|) NIL)) (-3132 (($ $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($) NIL)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781) $) 17)) (-3387 (($ $ |#1|) 69)) (-2412 (($ $) 39)) (-4425 (($ $) 37)) (-1704 (((-3 |#1| "failed") $) 61)) (-2214 ((|#1| $) NIL)) (-3720 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-1678 (((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574)) 56)) (-1719 ((|#1| $ (-574)) 35)) (-2718 ((|#2| $ (-574)) 34)) (-4359 (($ (-1 |#1| |#1|) $) 41)) (-4013 (($ (-1 |#2| |#2|) $) 47)) (-2589 (($) 11)) (-1792 (($ |#1| |#2|) 24)) (-1791 (($ (-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|)))) 25)) (-3671 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))) $) 14)) (-2453 (($ |#1| $) 71)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1722 (((-112) $ $) 76)) (-2951 (((-872) $) 21) (($ |#1|) 18)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 27))) +(((-659 |#1| |#2| |#3|) (-13 (-1116) (-1054 |#1|) (-10 -8 (-15 -1678 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -3671 ((-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))) $)) (-15 -1792 ($ |#1| |#2|)) (-15 -1791 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))))) (-15 -2718 (|#2| $ (-574))) (-15 -1719 (|#1| $ (-574))) (-15 -4425 ($ $)) (-15 -2412 ($ $)) (-15 -1496 ((-781) $)) (-15 -2589 ($)) (-15 -3387 ($ $ |#1|)) (-15 -2453 ($ |#1| $)) (-15 -3720 ($ |#1| |#2| $)) (-15 -3720 ($ $ $)) (-15 -1722 ((-112) $ $)) (-15 -4013 ($ (-1 |#2| |#2|) $)) (-15 -4359 ($ (-1 |#1| |#1|) $)))) (-1116) (-23) |#2|) (T -659)) +((-1678 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872)) (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1116)) (-4 *6 (-23)) (-14 *7 *6))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4)))) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4))) (-1792 (*1 *1 *2 *3) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4)))) (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)))) (-2718 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5)) (-4 *4 (-1116)) (-14 *5 *2))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-1116)) (-5 *1 (-659 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4425 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-2412 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4))) (-2589 (*1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-3387 (*1 *1 *1 *2) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-2453 (*1 *1 *2 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-3720 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-3720 (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-1722 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4))) (-4013 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)))) (-4359 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-659 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1116) (-1054 |#1|) (-10 -8 (-15 -1678 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -3671 ((-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))) $)) (-15 -1792 ($ |#1| |#2|)) (-15 -1791 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))))) (-15 -2718 (|#2| $ (-574))) (-15 -1719 (|#1| $ (-574))) (-15 -4425 ($ $)) (-15 -2412 ($ $)) (-15 -1496 ((-781) $)) (-15 -2589 ($)) (-15 -3387 ($ $ |#1|)) (-15 -2453 ($ |#1| $)) (-15 -3720 ($ |#1| |#2| $)) (-15 -3720 ($ $ $)) (-15 -1722 ((-112) $ $)) (-15 -4013 ($ (-1 |#2| |#2|) $)) (-15 -4359 ($ (-1 |#1| |#1|) $)))) +((-1698 (((-574) $) 31)) (-1602 (($ |#2| $ (-574)) 27) (($ $ $ (-574)) NIL)) (-1393 (((-654 (-574)) $) 12)) (-1506 (((-112) (-574) $) 18)) (-4132 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-654 $)) NIL))) +(((-660 |#1| |#2|) (-10 -8 (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -1698 ((-574) |#1|)) (-15 -1393 ((-654 (-574)) |#1|)) (-15 -1506 ((-112) (-574) |#1|))) (-661 |#2|) (-1234)) (T -660)) +NIL +(-10 -8 (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -1698 ((-574) |#1|)) (-15 -1393 ((-654 (-574)) |#1|)) (-15 -1506 ((-112) (-574) |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2985 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2804 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 70)) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 44 (|has| (-574) (-860)))) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 45 (|has| (-574) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1393 (((-654 (-574)) $) 47)) (-1506 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1822 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) 49)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 72)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-661 |#1|) (-141) (-1234)) (T -661)) +((-3764 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-4132 (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234)))) (-4132 (*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234)))) (-4132 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-2855 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-2855 (*1 *1 *1 *2) (-12 (-5 *2 (-1251 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-1602 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1234)))) (-1602 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-3135 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1251 (-574))) (|has| *1 (-6 -4460)) (-4 *1 (-661 *2)) (-4 *2 (-1234))))) +(-13 (-614 (-574) |t#1|) (-152 |t#1|) (-294 (-1251 (-574)) $) (-10 -8 (-15 -3764 ($ (-781) |t#1|)) (-15 -4132 ($ $ |t#1|)) (-15 -4132 ($ |t#1| $)) (-15 -4132 ($ $ $)) (-15 -4132 ($ (-654 $))) (-15 -1785 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2855 ($ $ (-574))) (-15 -2855 ($ $ (-1251 (-574)))) (-15 -1602 ($ |t#1| $ (-574))) (-15 -1602 ($ $ $ (-574))) (IF (|has| $ (-6 -4460)) (-15 -3135 (|t#1| $ (-1251 (-574)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-3987 (((-3 |#2| "failed") |#3| |#2| (-1193) |#2| (-654 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) "failed") |#3| |#2| (-1193)) 44))) +(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) "failed") |#3| |#2| (-1193))) (-15 -3987 ((-3 |#2| "failed") |#3| |#2| (-1193) |#2| (-654 |#2|)))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1219) (-973)) (-666 |#2|)) (T -662)) +((-3987 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2)))) (-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1193)) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1219) (-973))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2391 (-654 *4)))) (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4))))) +(-10 -7 (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) "failed") |#3| |#2| (-1193))) (-15 -3987 ((-3 |#2| "failed") |#3| |#2| (-1193) |#2| (-654 |#2|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2213 (($ $) NIL (|has| |#1| (-372)))) (-1954 (($ $ $) NIL (|has| |#1| (-372)))) (-3684 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-3599 (($ $ $) NIL (|has| |#1| (-372)))) (-2245 (($ $ $) NIL (|has| |#1| (-372)))) (-1693 (($ $ $) NIL (|has| |#1| (-372)))) (-1615 (($ $ $) NIL (|has| |#1| (-372)))) (-3423 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-1920 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3375 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#1| (-462)))) (-4226 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) NIL)) (-1438 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-566)))) (-2634 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-566)))) (-3192 (((-781) $) NIL)) (-4123 (($ $ $) NIL (|has| |#1| (-372)))) (-3414 (($ $ $) NIL (|has| |#1| (-372)))) (-2767 (($ $ $) NIL (|has| |#1| (-372)))) (-3967 (($ $ $) NIL (|has| |#1| (-372)))) (-2528 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2581 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2337 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2207 ((|#1| $ |#1|) NIL)) (-4340 (($ $ $) NIL (|has| |#1| (-372)))) (-3580 (((-781) $) NIL)) (-2372 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) NIL)) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-781)) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2912 ((|#1| $ |#1| |#1|) NIL)) (-2181 (($ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($) NIL)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-663 |#1|) (-666 |#1|) (-239)) (T -663)) NIL (-666 |#1|) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-372)))) (-3221 (($ $ $) NIL (|has| |#1| (-372)))) (-2225 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-3209 (($ $ $) NIL (|has| |#1| (-372)))) (-3359 (($ $ $) NIL (|has| |#1| (-372)))) (-3309 (($ $ $) NIL (|has| |#1| (-372)))) (-1904 (($ $ $) NIL (|has| |#1| (-372)))) (-3607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-4342 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#1| (-462)))) (-3372 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) NIL)) (-2015 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-566)))) (-2892 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-566)))) (-1503 (((-781) $) NIL)) (-2194 (($ $ $) NIL (|has| |#1| (-372)))) (-2227 (($ $ $) NIL (|has| |#1| (-372)))) (-4177 (($ $ $) NIL (|has| |#1| (-372)))) (-4027 (($ $ $) NIL (|has| |#1| (-372)))) (-3553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2636 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2801 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2208 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1662 (($ $ $) NIL (|has| |#1| (-372)))) (-3584 (((-781) $) NIL)) (-3631 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) NIL)) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-781)) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2911 ((|#1| $ |#1| |#1|) NIL)) (-3132 (($ $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($) NIL)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-664 |#1| |#2|) (-13 (-666 |#1|) (-294 |#2| |#2|)) (-239) (-13 (-658 |#1|) (-10 -8 (-15 -3878 ($ $))))) (T -664)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2213 (($ $) NIL (|has| |#1| (-372)))) (-1954 (($ $ $) NIL (|has| |#1| (-372)))) (-3684 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-3599 (($ $ $) NIL (|has| |#1| (-372)))) (-2245 (($ $ $) NIL (|has| |#1| (-372)))) (-1693 (($ $ $) NIL (|has| |#1| (-372)))) (-1615 (($ $ $) NIL (|has| |#1| (-372)))) (-3423 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-1920 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3375 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#1| (-462)))) (-4226 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) NIL)) (-1438 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-566)))) (-2634 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-566)))) (-3192 (((-781) $) NIL)) (-4123 (($ $ $) NIL (|has| |#1| (-372)))) (-3414 (($ $ $) NIL (|has| |#1| (-372)))) (-2767 (($ $ $) NIL (|has| |#1| (-372)))) (-3967 (($ $ $) NIL (|has| |#1| (-372)))) (-2528 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2581 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2337 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2207 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4340 (($ $ $) NIL (|has| |#1| (-372)))) (-3580 (((-781) $) NIL)) (-2372 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) NIL)) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-781)) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2912 ((|#1| $ |#1| |#1|) NIL)) (-2181 (($ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($) NIL)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-664 |#1| |#2|) (-13 (-666 |#1|) (-294 |#2| |#2|)) (-239) (-13 (-658 |#1|) (-10 -8 (-15 -3879 ($ $))))) (T -664)) NIL (-13 (-666 |#1|) (-294 |#2| |#2|)) -((-1498 (($ $) 29)) (-3132 (($ $) 27)) (-3583 (($) 13))) -(((-665 |#1| |#2|) (-10 -8 (-15 -1498 (|#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -3583 (|#1|))) (-666 |#2|) (-1064)) (T -665)) -NIL -(-10 -8 (-15 -1498 (|#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -3583 (|#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1498 (($ $) 87 (|has| |#1| (-372)))) (-3221 (($ $ $) 89 (|has| |#1| (-372)))) (-2225 (($ $ (-781)) 88 (|has| |#1| (-372)))) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3209 (($ $ $) 50 (|has| |#1| (-372)))) (-3359 (($ $ $) 51 (|has| |#1| (-372)))) (-3309 (($ $ $) 53 (|has| |#1| (-372)))) (-1904 (($ $ $) 48 (|has| |#1| (-372)))) (-3607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 47 (|has| |#1| (-372)))) (-1321 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-4342 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 52 (|has| |#1| (-372)))) (-1705 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2216 (((-574) $) 79 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 75)) (-1401 (($ $) 69)) (-3911 (((-3 $ "failed") $) 37)) (-1509 (($ $) 60 (|has| |#1| (-462)))) (-3372 (((-112) $) 35)) (-4327 (($ |#1| (-781)) 67)) (-2015 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 62 (|has| |#1| (-566)))) (-2892 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63 (|has| |#1| (-566)))) (-1503 (((-781) $) 71)) (-2194 (($ $ $) 57 (|has| |#1| (-372)))) (-2227 (($ $ $) 58 (|has| |#1| (-372)))) (-4177 (($ $ $) 46 (|has| |#1| (-372)))) (-4027 (($ $ $) 55 (|has| |#1| (-372)))) (-3553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 54 (|has| |#1| (-372)))) (-2636 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-2801 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 59 (|has| |#1| (-372)))) (-1377 ((|#1| $) 70)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-2208 ((|#1| $ |#1|) 92)) (-1662 (($ $ $) 86 (|has| |#1| (-372)))) (-3584 (((-781) $) 72)) (-3631 ((|#1| $) 61 (|has| |#1| (-462)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) 73)) (-2836 (((-654 |#1|) $) 66)) (-2930 ((|#1| $ (-781)) 68)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2911 ((|#1| $ |#1| |#1|) 65)) (-3132 (($ $) 90)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($) 91)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-666 |#1|) (-141) (-1064)) (T -666)) -((-3583 (*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)))) (-3132 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)))) (-3221 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-2225 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1064)) (-4 *3 (-372)))) (-1498 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-1662 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) -(-13 (-862 |t#1|) (-294 |t#1| |t#1|) (-10 -8 (-15 -3583 ($)) (-15 -3132 ($ $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -3221 ($ $ $)) (-15 -2225 ($ $ (-781))) (-15 -1498 ($ $)) (-15 -1662 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1053 #0#) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) . T) ((-862 |#1|) . T)) -((-3888 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 85 (|has| |#1| (-27)))) (-4200 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 84 (|has| |#1| (-27))) (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 19))) -(((-667 |#1| |#2|) (-10 -7 (-15 -4200 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4200 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -3888 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|)) (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574)))) (-1259 |#1|)) (T -667)) -((-3888 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-663 (-417 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-663 (-417 *6)))))) -(-10 -7 (-15 -4200 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4200 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -3888 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-372)))) (-3221 (($ $ $) 28 (|has| |#1| (-372)))) (-2225 (($ $ (-781)) 31 (|has| |#1| (-372)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-3209 (($ $ $) NIL (|has| |#1| (-372)))) (-3359 (($ $ $) NIL (|has| |#1| (-372)))) (-3309 (($ $ $) NIL (|has| |#1| (-372)))) (-1904 (($ $ $) NIL (|has| |#1| (-372)))) (-3607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-4342 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#1| (-462)))) (-3372 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) NIL)) (-2015 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-566)))) (-2892 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-566)))) (-1503 (((-781) $) NIL)) (-2194 (($ $ $) NIL (|has| |#1| (-372)))) (-2227 (($ $ $) NIL (|has| |#1| (-372)))) (-4177 (($ $ $) NIL (|has| |#1| (-372)))) (-4027 (($ $ $) NIL (|has| |#1| (-372)))) (-3553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2636 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2801 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2208 ((|#1| $ |#1|) 24)) (-1662 (($ $ $) 33 (|has| |#1| (-372)))) (-3584 (((-781) $) NIL)) (-3631 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) 20) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) NIL)) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-781)) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2911 ((|#1| $ |#1| |#1|) 23)) (-3132 (($ $) NIL)) (-2142 (($) 21 T CONST)) (-2154 (($) 8 T CONST)) (-3583 (($) NIL)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-668 |#1| |#2|) (-666 |#1|) (-1064) (-1 |#1| |#1|)) (T -668)) +((-2213 (($ $) 29)) (-2181 (($ $) 27)) (-3584 (($) 13))) +(((-665 |#1| |#2|) (-10 -8 (-15 -2213 (|#1| |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -3584 (|#1|))) (-666 |#2|) (-1065)) (T -665)) +NIL +(-10 -8 (-15 -2213 (|#1| |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -3584 (|#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2213 (($ $) 87 (|has| |#1| (-372)))) (-1954 (($ $ $) 89 (|has| |#1| (-372)))) (-3684 (($ $ (-781)) 88 (|has| |#1| (-372)))) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-3599 (($ $ $) 50 (|has| |#1| (-372)))) (-2245 (($ $ $) 51 (|has| |#1| (-372)))) (-1693 (($ $ $) 53 (|has| |#1| (-372)))) (-1615 (($ $ $) 48 (|has| |#1| (-372)))) (-3423 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 47 (|has| |#1| (-372)))) (-1920 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-3375 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 52 (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2214 (((-574) $) 79 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 75)) (-1402 (($ $) 69)) (-4322 (((-3 $ "failed") $) 37)) (-3621 (($ $) 60 (|has| |#1| (-462)))) (-4226 (((-112) $) 35)) (-4328 (($ |#1| (-781)) 67)) (-1438 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 62 (|has| |#1| (-566)))) (-2634 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63 (|has| |#1| (-566)))) (-3192 (((-781) $) 71)) (-4123 (($ $ $) 57 (|has| |#1| (-372)))) (-3414 (($ $ $) 58 (|has| |#1| (-372)))) (-2767 (($ $ $) 46 (|has| |#1| (-372)))) (-3967 (($ $ $) 55 (|has| |#1| (-372)))) (-2528 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 54 (|has| |#1| (-372)))) (-2581 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-2337 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 59 (|has| |#1| (-372)))) (-1378 ((|#1| $) 70)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-2207 ((|#1| $ |#1|) 92)) (-4340 (($ $ $) 86 (|has| |#1| (-372)))) (-3580 (((-781) $) 72)) (-2372 ((|#1| $) 61 (|has| |#1| (-462)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) 73)) (-1634 (((-654 |#1|) $) 66)) (-2706 ((|#1| $ (-781)) 68)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2912 ((|#1| $ |#1| |#1|) 65)) (-2181 (($ $) 90)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($) 91)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-666 |#1|) (-141) (-1065)) (T -666)) +((-3584 (*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)))) (-2181 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)))) (-1954 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3684 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1065)) (-4 *3 (-372)))) (-2213 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-4340 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) +(-13 (-862 |t#1|) (-294 |t#1| |t#1|) (-10 -8 (-15 -3584 ($)) (-15 -2181 ($ $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -1954 ($ $ $)) (-15 -3684 ($ $ (-781))) (-15 -2213 ($ $)) (-15 -4340 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1054 #0#) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T) ((-862 |#1|) . T)) +((-1777 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 85 (|has| |#1| (-27)))) (-4202 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 84 (|has| |#1| (-27))) (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 19))) +(((-667 |#1| |#2|) (-10 -7 (-15 -4202 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4202 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -1777 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|)) (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))) (-1260 |#1|)) (T -667)) +((-1777 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4202 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-663 (-417 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-663 (-417 *6)))))) +(-10 -7 (-15 -4202 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4202 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -1777 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2213 (($ $) NIL (|has| |#1| (-372)))) (-1954 (($ $ $) 28 (|has| |#1| (-372)))) (-3684 (($ $ (-781)) 31 (|has| |#1| (-372)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-3599 (($ $ $) NIL (|has| |#1| (-372)))) (-2245 (($ $ $) NIL (|has| |#1| (-372)))) (-1693 (($ $ $) NIL (|has| |#1| (-372)))) (-1615 (($ $ $) NIL (|has| |#1| (-372)))) (-3423 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-1920 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3375 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#1| (-462)))) (-4226 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) NIL)) (-1438 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-566)))) (-2634 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-566)))) (-3192 (((-781) $) NIL)) (-4123 (($ $ $) NIL (|has| |#1| (-372)))) (-3414 (($ $ $) NIL (|has| |#1| (-372)))) (-2767 (($ $ $) NIL (|has| |#1| (-372)))) (-3967 (($ $ $) NIL (|has| |#1| (-372)))) (-2528 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2581 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2337 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2207 ((|#1| $ |#1|) 24)) (-4340 (($ $ $) 33 (|has| |#1| (-372)))) (-3580 (((-781) $) NIL)) (-2372 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) 20) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) NIL)) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-781)) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2912 ((|#1| $ |#1| |#1|) 23)) (-2181 (($ $) NIL)) (-2141 (($) 21 T CONST)) (-2153 (($) 8 T CONST)) (-3584 (($) NIL)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-668 |#1| |#2|) (-666 |#1|) (-1065) (-1 |#1| |#1|)) (T -668)) NIL (-666 |#1|) -((-3221 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-2225 ((|#2| |#2| (-781) (-1 |#1| |#1|)) 45)) (-1662 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) -(((-669 |#1| |#2|) (-10 -7 (-15 -3221 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2225 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -1662 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -669)) -((-1662 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4)))) (-2225 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5)))) (-3221 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4))))) -(-10 -7 (-15 -3221 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2225 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -1662 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2933 (($ $ $) 9))) -(((-670 |#1|) (-10 -8 (-15 -2933 (|#1| |#1| |#1|))) (-671)) (T -670)) -NIL -(-10 -8 (-15 -2933 (|#1| |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-2889 (($ $) 10)) (-2933 (($ $ $) 8)) (-2985 (((-112) $ $) 6)) (-2922 (($ $ $) 9))) +((-1954 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-3684 ((|#2| |#2| (-781) (-1 |#1| |#1|)) 45)) (-4340 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) +(((-669 |#1| |#2|) (-10 -7 (-15 -1954 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3684 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -4340 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -669)) +((-4340 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4)))) (-3684 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5)))) (-1954 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4))))) +(-10 -7 (-15 -1954 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3684 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -4340 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2934 (($ $ $) 9))) +(((-670 |#1|) (-10 -8 (-15 -2934 (|#1| |#1| |#1|))) (-671)) (T -670)) +NIL +(-10 -8 (-15 -2934 (|#1| |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-2890 (($ $) 10)) (-2934 (($ $ $) 8)) (-2986 (((-112) $ $) 6)) (-2922 (($ $ $) 9))) (((-671) (-141)) (T -671)) -((-2889 (*1 *1 *1) (-4 *1 (-671))) (-2922 (*1 *1 *1 *1) (-4 *1 (-671))) (-2933 (*1 *1 *1 *1) (-4 *1 (-671)))) -(-13 (-102) (-10 -8 (-15 -2889 ($ $)) (-15 -2922 ($ $ $)) (-15 -2933 ($ $ $)))) +((-2890 (*1 *1 *1) (-4 *1 (-671))) (-2922 (*1 *1 *1 *1) (-4 *1 (-671))) (-2934 (*1 *1 *1 *1) (-4 *1 (-671)))) +(-13 (-102) (-10 -8 (-15 -2890 ($ $)) (-15 -2922 ($ $ $)) (-15 -2934 ($ $ $)))) (((-102) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 15)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-2970 ((|#1| $) 23)) (-3632 (($ $ $) NIL (|has| |#1| (-801)))) (-1593 (($ $ $) NIL (|has| |#1| (-801)))) (-3945 (((-1174) $) 48)) (-3939 (((-1135) $) NIL)) (-2981 ((|#3| $) 24)) (-2950 (((-872) $) 43)) (-3838 (((-112) $ $) 22)) (-2142 (($) 10 T CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-801)))) (-2985 (((-112) $ $) 20)) (-3029 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3009 (((-112) $ $) 26 (|has| |#1| (-801)))) (-3098 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3089 (($ $) 17) (($ $ $) NIL)) (-3074 (($ $ $) 29)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-672 |#1| |#2| |#3|) (-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3098 ($ $ |#3|)) (-15 -3098 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2981 (|#3| $)))) (-727 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -672)) -((-3098 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3098 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-727 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-727 *3)) (-5 *1 (-672 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2981 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4))))) -(-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3098 ($ $ |#3|)) (-15 -3098 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2981 (|#3| $)))) -((-2456 (((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|)) 33))) -(((-673 |#1|) (-10 -7 (-15 -2456 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|)))) (-922)) (T -673)) -((-2456 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 *4))) (-5 *3 (-1188 *4)) (-4 *4 (-922)) (-5 *1 (-673 *4))))) -(-10 -7 (-15 -2456 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1664 (((-654 |#1|) $) 84)) (-2795 (($ $ (-781)) 94)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-4368 (((-1307 |#1| |#2|) (-1307 |#1| |#2|) $) 50)) (-1705 (((-3 (-682 |#1|) "failed") $) NIL)) (-2216 (((-682 |#1|) $) NIL)) (-1401 (($ $) 93)) (-3241 (((-781) $) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-3805 (($ (-682 |#1|) |#2|) 70)) (-3450 (($ $) 89)) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-1412 (((-1307 |#1| |#2|) (-1307 |#1| |#2|) $) 49)) (-3113 (((-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1365 (((-682 |#1|) $) NIL)) (-1377 ((|#2| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2660 (($ $ |#1| $) 32) (($ $ (-654 |#1|) (-654 $)) 34)) (-3584 (((-781) $) 91)) (-2962 (($ $ $) 20) (($ (-682 |#1|) (-682 |#1|)) 79) (($ (-682 |#1|) $) 77) (($ $ (-682 |#1|)) 78)) (-2950 (((-872) $) NIL) (($ |#1|) 76) (((-1298 |#1| |#2|) $) 60) (((-1307 |#1| |#2|) $) 43) (($ (-682 |#1|)) 27)) (-2836 (((-654 |#2|) $) NIL)) (-2930 ((|#2| $ (-682 |#1|)) NIL)) (-1867 ((|#2| (-1307 |#1| |#2|) $) 45)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 23 T CONST)) (-4154 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1483 (((-3 $ "failed") (-1298 |#1| |#2|)) 62)) (-2170 (($ (-682 |#1|)) 14)) (-2985 (((-112) $ $) 46)) (-3098 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) 68) (($ $ $) NIL)) (-3074 (($ $ $) 31)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-682 |#1|)) NIL))) -(((-674 |#1| |#2|) (-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -1483 ((-3 $ "failed") (-1298 |#1| |#2|))) (-15 -2962 ($ (-682 |#1|) (-682 |#1|))) (-15 -2962 ($ (-682 |#1|) $)) (-15 -2962 ($ $ (-682 |#1|))))) (-860) (-174)) (T -674)) -((-1483 (*1 *1 *2) (|partial| -12 (-5 *2 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-674 *3 *4)))) (-2962 (*1 *1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2962 (*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174))))) -(-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -1483 ((-3 $ "failed") (-1298 |#1| |#2|))) (-15 -2962 ($ (-682 |#1|) (-682 |#1|))) (-15 -2962 ($ (-682 |#1|) $)) (-15 -2962 ($ $ (-682 |#1|))))) -((-4331 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-3565 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2551 (($ (-1 (-112) |#2|) $) 29)) (-2163 (($ $) 65)) (-2098 (($ $) 74)) (-1941 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2881 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-1451 (((-574) |#2| $ (-574)) 71) (((-574) |#2| $) NIL) (((-574) (-1 (-112) |#2|) $) 54)) (-3763 (($ (-781) |#2|) 63)) (-2857 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-4297 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1786 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1797 (($ |#2|) 15)) (-2609 (($ $ $ (-574)) 42) (($ |#2| $ (-574)) 40)) (-2294 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1317 (($ $ (-1250 (-574))) 51) (($ $ (-574)) 44)) (-2315 (($ $ $ (-574)) 70)) (-3156 (($ $) 68)) (-3009 (((-112) $ $) 76))) -(((-675 |#1| |#2|) (-10 -8 (-15 -1797 (|#1| |#2|)) (-15 -1317 (|#1| |#1| (-574))) (-15 -1317 (|#1| |#1| (-1250 (-574)))) (-15 -1941 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2609 (|#1| |#2| |#1| (-574))) (-15 -2609 (|#1| |#1| |#1| (-574))) (-15 -2857 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2551 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1941 (|#1| |#2| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -4297 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4331 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -4297 (|#1| |#1| |#1|)) (-15 -4331 ((-112) |#1|)) (-15 -2315 (|#1| |#1| |#1| (-574))) (-15 -2163 (|#1| |#1|)) (-15 -3565 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3565 (|#1| |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2294 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3763 (|#1| (-781) |#2|)) (-15 -1786 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3156 (|#1| |#1|))) (-676 |#2|) (-1233)) (T -675)) -NIL -(-10 -8 (-15 -1797 (|#1| |#2|)) (-15 -1317 (|#1| |#1| (-574))) (-15 -1317 (|#1| |#1| (-1250 (-574)))) (-15 -1941 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2609 (|#1| |#2| |#1| (-574))) (-15 -2609 (|#1| |#1| |#1| (-574))) (-15 -2857 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2551 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1941 (|#1| |#2| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -4297 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4331 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -4297 (|#1| |#1| |#1|)) (-15 -4331 ((-112) |#1|)) (-15 -2315 (|#1| |#1| |#1| (-574))) (-15 -2163 (|#1| |#1|)) (-15 -3565 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3565 (|#1| |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2294 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3763 (|#1| (-781) |#2|)) (-15 -1786 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3156 (|#1| |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-2420 ((|#1| $) 66)) (-1979 (($ $) 68)) (-3287 (((-1288) $ (-574) (-574)) 99 (|has| $ (-6 -4459)))) (-1344 (($ $ (-574)) 53 (|has| $ (-6 -4459)))) (-4331 (((-112) $) 144 (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-3565 (($ $) 148 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4459)))) (-2785 (($ $) 143 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-2818 (((-112) $ (-781)) 8)) (-3906 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-3168 (($ $ $) 57 (|has| $ (-6 -4459)))) (-2976 ((|#1| $ |#1|) 55 (|has| $ (-6 -4459)))) (-3576 ((|#1| $ |#1|) 59 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4459))) (($ $ "rest" $) 56 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 119 (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-2551 (($ (-1 (-112) |#1|) $) 131)) (-2173 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4458)))) (-2407 ((|#1| $) 67)) (-3831 (($) 7 T CONST)) (-2163 (($ $) 146 (|has| $ (-6 -4459)))) (-4424 (($ $) 136)) (-2934 (($ $) 74) (($ $ (-781)) 72)) (-2098 (($ $) 133 (|has| |#1| (-1115)))) (-2560 (($ $) 101 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1941 (($ |#1| $) 132 (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) 127)) (-3310 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4458))) (($ |#1| $) 102 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2472 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 89)) (-1930 (((-112) $) 85)) (-1451 (((-574) |#1| $ (-574)) 141 (|has| |#1| (-1115))) (((-574) |#1| $) 140 (|has| |#1| (-1115))) (((-574) (-1 (-112) |#1|) $) 139)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) 51)) (-2661 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) 111)) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 97 (|has| (-574) (-860)))) (-3632 (($ $ $) 149 (|has| |#1| (-860)))) (-2857 (($ $ $) 134 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-4297 (($ $ $) 142 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 96 (|has| (-574) (-860)))) (-1593 (($ $ $) 150 (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1797 (($ |#1|) 124)) (-3625 (((-112) $ (-781)) 10)) (-3481 (((-654 |#1|) $) 46)) (-4069 (((-112) $) 50)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3333 ((|#1| $) 71) (($ $ (-781)) 69)) (-2609 (($ $ $ (-574)) 129) (($ |#1| $ (-574)) 128)) (-1603 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-3228 (((-654 (-574)) $) 94)) (-3071 (((-112) (-574) $) 93)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 77) (($ $ (-781)) 75)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4276 (($ $ |#1|) 98 (|has| $ (-6 -4459)))) (-1425 (((-112) $) 86)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) 92)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1250 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-4418 (((-574) $ $) 45)) (-1317 (($ $ (-1250 (-574))) 126) (($ $ (-574)) 125)) (-2853 (($ $ (-1250 (-574))) 116) (($ $ (-574)) 115)) (-1966 (((-112) $) 47)) (-2013 (($ $) 63)) (-1429 (($ $) 60 (|has| $ (-6 -4459)))) (-2746 (((-781) $) 64)) (-1476 (($ $) 65)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2315 (($ $ $ (-574)) 145 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1845 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 109)) (-4226 (($ $ $) 62) (($ $ |#1|) 61)) (-4131 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) 52)) (-1870 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) 152 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 153 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) 151 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 154 (|has| |#1| (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-676 |#1|) (-141) (-1233)) (T -676)) -((-1797 (*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1233))))) -(-13 (-1164 |t#1|) (-382 |t#1|) (-290 |t#1|) (-10 -8 (-15 -1797 ($ |t#1|)))) -(((-34) . T) ((-102) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-290 |#1|) . T) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1025 |#1|) . T) ((-1115) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-1164 |#1|) . T) ((-1233) . T) ((-1271 |#1|) . T)) -((-2514 (((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|))))) (-654 (-654 |#1|)) (-654 (-1283 |#1|))) 22) (((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|))))) (-699 |#1|) (-654 (-1283 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|)))) (-654 (-654 |#1|)) (-1283 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|)) 14)) (-3557 (((-781) (-699 |#1|) (-1283 |#1|)) 30)) (-3056 (((-3 (-1283 |#1|) "failed") (-699 |#1|) (-1283 |#1|)) 24)) (-2434 (((-112) (-699 |#1|) (-1283 |#1|)) 27))) -(((-677 |#1|) (-10 -7 (-15 -2514 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|))) (-15 -2514 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|)))) (-654 (-654 |#1|)) (-1283 |#1|))) (-15 -2514 ((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|))))) (-699 |#1|) (-654 (-1283 |#1|)))) (-15 -2514 ((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|))))) (-654 (-654 |#1|)) (-654 (-1283 |#1|)))) (-15 -3056 ((-3 (-1283 |#1|) "failed") (-699 |#1|) (-1283 |#1|))) (-15 -2434 ((-112) (-699 |#1|) (-1283 |#1|))) (-15 -3557 ((-781) (-699 |#1|) (-1283 |#1|)))) (-372)) (T -677)) -((-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-677 *5)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-372)) (-5 *2 (-112)) (-5 *1 (-677 *5)))) (-3056 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1283 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *1 (-677 *4)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1283 *5) "failed")) (|:| -2191 (-654 (-1283 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1283 *5))))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1283 *5) "failed")) (|:| -2191 (-654 (-1283 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1283 *5))))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1283 *5) "failed")) (|:| -2191 (-654 (-1283 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1283 *5)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1283 *5) "failed")) (|:| -2191 (-654 (-1283 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1283 *5))))) -(-10 -7 (-15 -2514 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|))) (-15 -2514 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|)))) (-654 (-654 |#1|)) (-1283 |#1|))) (-15 -2514 ((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|))))) (-699 |#1|) (-654 (-1283 |#1|)))) (-15 -2514 ((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|))))) (-654 (-654 |#1|)) (-654 (-1283 |#1|)))) (-15 -3056 ((-3 (-1283 |#1|) "failed") (-699 |#1|) (-1283 |#1|))) (-15 -2434 ((-112) (-699 |#1|) (-1283 |#1|))) (-15 -3557 ((-781) (-699 |#1|) (-1283 |#1|)))) -((-2514 (((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2191 (-654 |#3|)))) |#4| (-654 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2191 (-654 |#3|))) |#4| |#3|) 60)) (-3557 (((-781) |#4| |#3|) 18)) (-3056 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2434 (((-112) |#4| |#3|) 14))) -(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2514 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2191 (-654 |#3|))) |#4| |#3|)) (-15 -2514 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2191 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -3056 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2434 ((-112) |#4| |#3|)) (-15 -3557 ((-781) |#4| |#3|))) (-372) (-13 (-382 |#1|) (-10 -7 (-6 -4459))) (-13 (-382 |#1|) (-10 -7 (-6 -4459))) (-697 |#1| |#2| |#3|)) (T -678)) -((-3557 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-781)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-2434 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-112)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-3056 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-372)) (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4459)))) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459)))) (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2)))) (-2514 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-654 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2191 (-654 *7))))) (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7)) (-4 *3 (-697 *5 *6 *7)))) (-2514 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) -(-10 -7 (-15 -2514 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2191 (-654 |#3|))) |#4| |#3|)) (-15 -2514 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2191 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -3056 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2434 ((-112) |#4| |#3|)) (-15 -3557 ((-781) |#4| |#3|))) -((-1367 (((-2 (|:| |particular| (-3 (-1283 (-417 |#4|)) "failed")) (|:| -2191 (-654 (-1283 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)) 51))) -(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1367 ((-2 (|:| |particular| (-3 (-1283 (-417 |#4|)) "failed")) (|:| -2191 (-654 (-1283 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)))) (-566) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -679)) -((-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |particular| (-3 (-1283 (-417 *8)) "failed")) (|:| -2191 (-654 (-1283 (-417 *8)))))) (-5 *1 (-679 *5 *6 *7 *8))))) -(-10 -7 (-15 -1367 ((-2 (|:| |particular| (-3 (-1283 (-417 |#4|)) "failed")) (|:| -2191 (-654 (-1283 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3775 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-1645 ((|#2| $) NIL)) (-4319 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-2588 (((-1283 (-699 |#2|))) NIL) (((-1283 (-699 |#2|)) (-1283 $)) NIL)) (-2240 (((-112) $) NIL)) (-4427 (((-1283 $)) 42)) (-2818 (((-112) $ (-781)) NIL)) (-3107 (($ |#2|) NIL)) (-3831 (($) NIL T CONST)) (-3502 (($ $) NIL (|has| |#2| (-315)))) (-1860 (((-246 |#1| |#2|) $ (-574)) NIL)) (-2846 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-1992 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-2038 (((-699 |#2|)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-2199 ((|#2| $) NIL)) (-4189 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1283 $)) NIL)) (-2484 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-3149 (((-1188 (-965 |#2|))) NIL (|has| |#2| (-372)))) (-3204 (($ $ (-934)) NIL)) (-3272 ((|#2| $) NIL)) (-3866 (((-1188 |#2|) $) NIL (|has| |#2| (-566)))) (-3414 ((|#2|) NIL) ((|#2| (-1283 $)) NIL)) (-4111 (((-1188 |#2|) $) NIL)) (-2182 (((-112)) NIL)) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) ((|#2| $) NIL)) (-2919 (($ (-1283 |#2|)) NIL) (($ (-1283 |#2|) (-1283 $)) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-3557 (((-781) $) NIL (|has| |#2| (-566))) (((-934)) 43)) (-2399 ((|#2| $ (-574) (-574)) NIL)) (-2045 (((-112)) NIL)) (-3518 (($ $ (-934)) NIL)) (-1873 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3372 (((-112) $) NIL)) (-1835 (((-781) $) NIL (|has| |#2| (-566)))) (-3284 (((-654 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-566)))) (-2198 (((-781) $) NIL)) (-2931 (((-112)) NIL)) (-2207 (((-781) $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1680 ((|#2| $) NIL (|has| |#2| (-6 (-4460 "*"))))) (-3312 (((-574) $) NIL)) (-4378 (((-574) $) NIL)) (-2247 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2391 (((-574) $) NIL)) (-3280 (((-574) $) NIL)) (-2923 (($ (-654 (-654 |#2|))) NIL)) (-2461 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1626 (((-654 (-654 |#2|)) $) NIL)) (-2347 (((-112)) NIL)) (-3233 (((-112)) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3636 (((-3 (-2 (|:| |particular| $) (|:| -2191 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-3215 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-2597 (((-699 |#2|)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-2327 ((|#2| $) NIL)) (-3680 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1283 $)) NIL)) (-2691 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-1644 (((-1188 (-965 |#2|))) NIL (|has| |#2| (-372)))) (-2177 (($ $ (-934)) NIL)) (-2614 ((|#2| $) NIL)) (-3201 (((-1188 |#2|) $) NIL (|has| |#2| (-566)))) (-2903 ((|#2|) NIL) ((|#2| (-1283 $)) NIL)) (-3401 (((-1188 |#2|) $) NIL)) (-1584 (((-112)) NIL)) (-3945 (((-1174) $) NIL)) (-1916 (((-112)) NIL)) (-3601 (((-112)) NIL)) (-1876 (((-112)) NIL)) (-4333 (((-3 $ "failed") $) NIL (|has| |#2| (-372)))) (-3939 (((-1135) $) NIL)) (-2678 (((-112)) NIL)) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-2000 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) 28) ((|#2| $ (-574)) NIL)) (-3878 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2570 ((|#2| $) NIL)) (-1998 (($ (-654 |#2|)) NIL)) (-1609 (((-112) $) NIL)) (-4098 (((-246 |#1| |#2|) $) NIL)) (-1928 ((|#2| $) NIL (|has| |#2| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3156 (($ $) NIL)) (-4346 (((-699 |#2|) (-1283 $)) NIL) (((-1283 |#2|) $) NIL) (((-699 |#2|) (-1283 $) (-1283 $)) NIL) (((-1283 |#2|) $ (-1283 $)) 31)) (-1845 (($ (-1283 |#2|)) NIL) (((-1283 |#2|) $) NIL)) (-2074 (((-654 (-965 |#2|))) NIL) (((-654 (-965 |#2|)) (-1283 $)) NIL)) (-3490 (($ $ $) NIL)) (-1355 (((-112)) NIL)) (-1482 (((-246 |#1| |#2|) $ (-574)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1053 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) 41)) (-3045 (((-654 (-1283 |#2|))) NIL (|has| |#2| (-566)))) (-2087 (($ $ $ $) NIL)) (-3500 (((-112)) NIL)) (-2911 (($ (-699 |#2|) $) NIL)) (-2980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-1996 (((-112) $) NIL)) (-3157 (($ $ $) NIL)) (-1778 (((-112)) NIL)) (-2956 (((-112)) NIL)) (-3005 (((-112)) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#2| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-680 |#1| |#2|) (-13 (-1138 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|)) (-934) (-174)) (T -680)) -NIL -(-13 (-1138 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|)) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1547 (((-654 (-1150)) $) 10)) (-2950 (((-872) $) 16) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-681) (-13 (-1098) (-10 -8 (-15 -1547 ((-654 (-1150)) $))))) (T -681)) -((-1547 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-681))))) -(-13 (-1098) (-10 -8 (-15 -1547 ((-654 (-1150)) $)))) -((-2863 (((-112) $ $) NIL)) (-1664 (((-654 |#1|) $) NIL)) (-3877 (($ $) 62)) (-4040 (((-112) $) NIL)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-2305 (((-3 $ "failed") (-829 |#1|)) 27)) (-1520 (((-112) (-829 |#1|)) 17)) (-2526 (($ (-829 |#1|)) 28)) (-2491 (((-112) $ $) 36)) (-4108 (((-934) $) 43)) (-3864 (($ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4200 (((-654 $) (-829 |#1|)) 19)) (-2950 (((-872) $) 51) (($ |#1|) 40) (((-829 |#1|) $) 47) (((-687 |#1|) $) 52)) (-3838 (((-112) $ $) NIL)) (-2014 (((-59 (-654 $)) (-654 |#1|) (-934)) 67)) (-1943 (((-654 $) (-654 |#1|) (-934)) 70)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 63)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 46))) -(((-682 |#1|) (-13 (-860) (-1053 |#1|) (-10 -8 (-15 -4040 ((-112) $)) (-15 -3864 ($ $)) (-15 -3877 ($ $)) (-15 -4108 ((-934) $)) (-15 -2491 ((-112) $ $)) (-15 -2950 ((-829 |#1|) $)) (-15 -2950 ((-687 |#1|) $)) (-15 -4200 ((-654 $) (-829 |#1|))) (-15 -1520 ((-112) (-829 |#1|))) (-15 -2526 ($ (-829 |#1|))) (-15 -2305 ((-3 $ "failed") (-829 |#1|))) (-15 -1664 ((-654 |#1|) $)) (-15 -2014 ((-59 (-654 $)) (-654 |#1|) (-934))) (-15 -1943 ((-654 $) (-654 |#1|) (-934))))) (-860)) (T -682)) -((-4040 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-3864 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-3877 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2491 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-682 *4))) (-5 *1 (-682 *4)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112)) (-5 *1 (-682 *4)))) (-2526 (*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-2305 (*1 *1 *2) (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2014 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-934)) (-4 *5 (-860)) (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5)))) (-1943 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-934)) (-4 *5 (-860)) (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5))))) -(-13 (-860) (-1053 |#1|) (-10 -8 (-15 -4040 ((-112) $)) (-15 -3864 ($ $)) (-15 -3877 ($ $)) (-15 -4108 ((-934) $)) (-15 -2491 ((-112) $ $)) (-15 -2950 ((-829 |#1|) $)) (-15 -2950 ((-687 |#1|) $)) (-15 -4200 ((-654 $) (-829 |#1|))) (-15 -1520 ((-112) (-829 |#1|))) (-15 -2526 ($ (-829 |#1|))) (-15 -2305 ((-3 $ "failed") (-829 |#1|))) (-15 -1664 ((-654 |#1|) $)) (-15 -2014 ((-59 (-654 $)) (-654 |#1|) (-934))) (-15 -1943 ((-654 $) (-654 |#1|) (-934))))) -((-3078 ((|#2| $) 100)) (-1979 (($ $) 121)) (-2818 (((-112) $ (-781)) 35)) (-2934 (($ $) 109) (($ $ (-781)) 112)) (-1930 (((-112) $) 122)) (-2898 (((-654 $) $) 96)) (-2661 (((-112) $ $) 92)) (-2224 (((-112) $ (-781)) 33)) (-1767 (((-574) $) 66)) (-2429 (((-574) $) 65)) (-3625 (((-112) $ (-781)) 31)) (-4069 (((-112) $) 98)) (-3333 ((|#2| $) 113) (($ $ (-781)) 117)) (-1603 (($ $ $ (-574)) 83) (($ |#2| $ (-574)) 82)) (-3228 (((-654 (-574)) $) 64)) (-3071 (((-112) (-574) $) 59)) (-2924 ((|#2| $) NIL) (($ $ (-781)) 108)) (-2115 (($ $ (-574)) 125)) (-1425 (((-112) $) 124)) (-2000 (((-112) (-1 (-112) |#2|) $) 42)) (-2379 (((-654 |#2|) $) 46)) (-2208 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1250 (-574))) 79) ((|#2| $ (-574)) 57) ((|#2| $ (-574) |#2|) 58)) (-4418 (((-574) $ $) 91)) (-2853 (($ $ (-1250 (-574))) 78) (($ $ (-574)) 72)) (-1966 (((-112) $) 87)) (-2013 (($ $) 105)) (-2746 (((-781) $) 104)) (-1476 (($ $) 103)) (-2962 (($ (-654 |#2|)) 53)) (-4209 (($ $) 126)) (-4414 (((-654 $) $) 90)) (-1870 (((-112) $ $) 89)) (-2980 (((-112) (-1 (-112) |#2|) $) 41)) (-2985 (((-112) $ $) 20)) (-2876 (((-781) $) 39))) -(((-683 |#1| |#2|) (-10 -8 (-15 -4209 (|#1| |#1|)) (-15 -2115 (|#1| |#1| (-574))) (-15 -1930 ((-112) |#1|)) (-15 -1425 ((-112) |#1|)) (-15 -2208 (|#2| |#1| (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574))) (-15 -2379 ((-654 |#2|) |#1|)) (-15 -3071 ((-112) (-574) |#1|)) (-15 -3228 ((-654 (-574)) |#1|)) (-15 -2429 ((-574) |#1|)) (-15 -1767 ((-574) |#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -2208 (|#1| |#1| (-1250 (-574)))) (-15 -2853 (|#1| |#1| (-574))) (-15 -2853 (|#1| |#1| (-1250 (-574)))) (-15 -1603 (|#1| |#2| |#1| (-574))) (-15 -1603 (|#1| |#1| |#1| (-574))) (-15 -2013 (|#1| |#1|)) (-15 -2746 ((-781) |#1|)) (-15 -1476 (|#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -3333 (|#1| |#1| (-781))) (-15 -2208 (|#2| |#1| "last")) (-15 -3333 (|#2| |#1|)) (-15 -2934 (|#1| |#1| (-781))) (-15 -2208 (|#1| |#1| "rest")) (-15 -2934 (|#1| |#1|)) (-15 -2924 (|#1| |#1| (-781))) (-15 -2208 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -2661 ((-112) |#1| |#1|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -4418 ((-574) |#1| |#1|)) (-15 -1966 ((-112) |#1|)) (-15 -2208 (|#2| |#1| "value")) (-15 -3078 (|#2| |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -2898 ((-654 |#1|) |#1|)) (-15 -4414 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2000 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -2818 ((-112) |#1| (-781))) (-15 -2224 ((-112) |#1| (-781))) (-15 -3625 ((-112) |#1| (-781)))) (-684 |#2|) (-1233)) (T -683)) -NIL -(-10 -8 (-15 -4209 (|#1| |#1|)) (-15 -2115 (|#1| |#1| (-574))) (-15 -1930 ((-112) |#1|)) (-15 -1425 ((-112) |#1|)) (-15 -2208 (|#2| |#1| (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574))) (-15 -2379 ((-654 |#2|) |#1|)) (-15 -3071 ((-112) (-574) |#1|)) (-15 -3228 ((-654 (-574)) |#1|)) (-15 -2429 ((-574) |#1|)) (-15 -1767 ((-574) |#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -2208 (|#1| |#1| (-1250 (-574)))) (-15 -2853 (|#1| |#1| (-574))) (-15 -2853 (|#1| |#1| (-1250 (-574)))) (-15 -1603 (|#1| |#2| |#1| (-574))) (-15 -1603 (|#1| |#1| |#1| (-574))) (-15 -2013 (|#1| |#1|)) (-15 -2746 ((-781) |#1|)) (-15 -1476 (|#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -3333 (|#1| |#1| (-781))) (-15 -2208 (|#2| |#1| "last")) (-15 -3333 (|#2| |#1|)) (-15 -2934 (|#1| |#1| (-781))) (-15 -2208 (|#1| |#1| "rest")) (-15 -2934 (|#1| |#1|)) (-15 -2924 (|#1| |#1| (-781))) (-15 -2208 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -2661 ((-112) |#1| |#1|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -4418 ((-574) |#1| |#1|)) (-15 -1966 ((-112) |#1|)) (-15 -2208 (|#2| |#1| "value")) (-15 -3078 (|#2| |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -2898 ((-654 |#1|) |#1|)) (-15 -4414 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2000 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -2818 ((-112) |#1| (-781))) (-15 -2224 ((-112) |#1| (-781))) (-15 -3625 ((-112) |#1| (-781)))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-2420 ((|#1| $) 66)) (-1979 (($ $) 68)) (-3287 (((-1288) $ (-574) (-574)) 99 (|has| $ (-6 -4459)))) (-1344 (($ $ (-574)) 53 (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) 8)) (-3906 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-3168 (($ $ $) 57 (|has| $ (-6 -4459)))) (-2976 ((|#1| $ |#1|) 55 (|has| $ (-6 -4459)))) (-3576 ((|#1| $ |#1|) 59 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4459))) (($ $ "rest" $) 56 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 119 (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 104)) (-2407 ((|#1| $) 67)) (-3831 (($) 7 T CONST)) (-2475 (($ $) 126)) (-2934 (($ $) 74) (($ $ (-781)) 72)) (-2560 (($ $) 101 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 102 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 105)) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2472 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 89)) (-1930 (((-112) $) 85)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2252 (((-781) $) 125)) (-2898 (((-654 $) $) 51)) (-2661 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) 111)) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 97 (|has| (-574) (-860)))) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 96 (|has| (-574) (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-3625 (((-112) $ (-781)) 10)) (-3481 (((-654 |#1|) $) 46)) (-4069 (((-112) $) 50)) (-2441 (($ $) 128)) (-1676 (((-112) $) 129)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3333 ((|#1| $) 71) (($ $ (-781)) 69)) (-1603 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-3228 (((-654 (-574)) $) 94)) (-3071 (((-112) (-574) $) 93)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2716 ((|#1| $) 127)) (-2924 ((|#1| $) 77) (($ $ (-781)) 75)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4276 (($ $ |#1|) 98 (|has| $ (-6 -4459)))) (-2115 (($ $ (-574)) 124)) (-1425 (((-112) $) 86)) (-1766 (((-112) $) 130)) (-4315 (((-112) $) 131)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) 92)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1250 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-4418 (((-574) $ $) 45)) (-2853 (($ $ (-1250 (-574))) 116) (($ $ (-574)) 115)) (-1966 (((-112) $) 47)) (-2013 (($ $) 63)) (-1429 (($ $) 60 (|has| $ (-6 -4459)))) (-2746 (((-781) $) 64)) (-1476 (($ $) 65)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 109)) (-4226 (($ $ $) 62 (|has| $ (-6 -4459))) (($ $ |#1|) 61 (|has| $ (-6 -4459)))) (-4131 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-4209 (($ $) 123)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) 52)) (-1870 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-684 |#1|) (-141) (-1233)) (T -684)) -((-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) (-2173 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) (-4315 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-2441 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233)))) (-2716 (*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233)))) (-2475 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) (-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) (-4209 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233))))) -(-13 (-1164 |t#1|) (-10 -8 (-15 -3310 ($ (-1 (-112) |t#1|) $)) (-15 -2173 ($ (-1 (-112) |t#1|) $)) (-15 -4315 ((-112) $)) (-15 -1766 ((-112) $)) (-15 -1676 ((-112) $)) (-15 -2441 ($ $)) (-15 -2716 (|t#1| $)) (-15 -2475 ($ $)) (-15 -2252 ((-781) $)) (-15 -2115 ($ $ (-574))) (-15 -4209 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1164 |#1|) . T) ((-1233) . T) ((-1271 |#1|) . T)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2239 (($ (-781) (-781) (-781)) 53 (|has| |#1| (-1064)))) (-2818 (((-112) $ (-781)) NIL)) (-1806 ((|#1| $ (-781) (-781) (-781) |#1|) 47)) (-3831 (($) NIL T CONST)) (-3719 (($ $ $) 57 (|has| |#1| (-1064)))) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2018 (((-1283 (-781)) $) 12)) (-1839 (($ (-1192) $ $) 34)) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-2738 (($ (-781)) 55 (|has| |#1| (-1064)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-781) (-781) (-781)) 44)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2962 (($ (-654 (-654 (-654 |#1|)))) 67)) (-2950 (($ (-971 (-971 (-971 |#1|)))) 23) (((-971 (-971 (-971 |#1|))) $) 19) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-685 |#1|) (-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1064)) (PROGN (-15 -2239 ($ (-781) (-781) (-781))) (-15 -2738 ($ (-781))) (-15 -3719 ($ $ $))) |%noBranch|) (-15 -2962 ($ (-654 (-654 (-654 |#1|))))) (-15 -2208 (|#1| $ (-781) (-781) (-781))) (-15 -1806 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2950 ($ (-971 (-971 (-971 |#1|))))) (-15 -2950 ((-971 (-971 (-971 |#1|))) $)) (-15 -1839 ($ (-1192) $ $)) (-15 -2018 ((-1283 (-781)) $)))) (-1115)) (T -685)) -((-2239 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1064)) (-4 *3 (-1115)))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1064)) (-4 *3 (-1115)))) (-3719 (*1 *1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1064)) (-4 *2 (-1115)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1115)) (-5 *1 (-685 *3)))) (-2208 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1115)))) (-1806 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1115)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-971 (-971 (-971 *3)))) (-4 *3 (-1115)) (-5 *1 (-685 *3)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-971 (-971 (-971 *3)))) (-5 *1 (-685 *3)) (-4 *3 (-1115)))) (-1839 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-685 *3)) (-4 *3 (-1115)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-1283 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1115))))) -(-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1064)) (PROGN (-15 -2239 ($ (-781) (-781) (-781))) (-15 -2738 ($ (-781))) (-15 -3719 ($ $ $))) |%noBranch|) (-15 -2962 ($ (-654 (-654 (-654 |#1|))))) (-15 -2208 (|#1| $ (-781) (-781) (-781))) (-15 -1806 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2950 ($ (-971 (-971 (-971 |#1|))))) (-15 -2950 ((-971 (-971 (-971 |#1|))) $)) (-15 -1839 ($ (-1192) $ $)) (-15 -2018 ((-1283 (-781)) $)))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3391 (((-493) $) 10)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 19) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2051 (((-1150) $) 12)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-686) (-13 (-1098) (-10 -8 (-15 -3391 ((-493) $)) (-15 -2051 ((-1150) $))))) (T -686)) -((-3391 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-686))))) -(-13 (-1098) (-10 -8 (-15 -3391 ((-493) $)) (-15 -2051 ((-1150) $)))) -((-2863 (((-112) $ $) NIL)) (-1664 (((-654 |#1|) $) 15)) (-3877 (($ $) 19)) (-4040 (((-112) $) 20)) (-1705 (((-3 |#1| "failed") $) 23)) (-2216 ((|#1| $) 21)) (-2934 (($ $) 37)) (-3450 (($ $) 25)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-2491 (((-112) $ $) 47)) (-4108 (((-934) $) 40)) (-3864 (($ $) 18)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 ((|#1| $) 36)) (-2950 (((-872) $) 32) (($ |#1|) 24) (((-829 |#1|) $) 28)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 13)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-687 |#1|) (-13 (-860) (-1053 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2950 ((-829 |#1|) $)) (-15 -2924 (|#1| $)) (-15 -3864 ($ $)) (-15 -4108 ((-934) $)) (-15 -2491 ((-112) $ $)) (-15 -3450 ($ $)) (-15 -2934 ($ $)) (-15 -4040 ((-112) $)) (-15 -3877 ($ $)) (-15 -1664 ((-654 |#1|) $)))) (-860)) (T -687)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-2924 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-3864 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-2491 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-3450 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2934 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-3877 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860))))) -(-13 (-860) (-1053 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2950 ((-829 |#1|) $)) (-15 -2924 (|#1| $)) (-15 -3864 ($ $)) (-15 -4108 ((-934) $)) (-15 -2491 ((-112) $ $)) (-15 -3450 ($ $)) (-15 -2934 ($ $)) (-15 -4040 ((-112) $)) (-15 -3877 ($ $)) (-15 -1664 ((-654 |#1|) $)))) -((-3244 ((|#1| (-1 |#1| (-781) |#1|) (-781) |#1|) 11)) (-4104 ((|#1| (-1 |#1| |#1|) (-781) |#1|) 9))) -(((-688 |#1|) (-10 -7 (-15 -4104 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -3244 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|))) (-1115)) (T -688)) -((-3244 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1115)) (-5 *1 (-688 *2)))) (-4104 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1115)) (-5 *1 (-688 *2))))) -(-10 -7 (-15 -4104 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -3244 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|))) -((-2663 ((|#2| |#1| |#2|) 9)) (-2651 ((|#1| |#1| |#2|) 8))) -(((-689 |#1| |#2|) (-10 -7 (-15 -2651 (|#1| |#1| |#2|)) (-15 -2663 (|#2| |#1| |#2|))) (-1115) (-1115)) (T -689)) -((-2663 (*1 *2 *3 *2) (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) (-2651 (*1 *2 *2 *3) (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) -(-10 -7 (-15 -2651 (|#1| |#1| |#2|)) (-15 -2663 (|#2| |#1| |#2|))) -((-4404 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-690 |#1| |#2| |#3|) (-10 -7 (-15 -4404 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1115) (-1115) (-1115)) (T -690)) -((-4404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)) (-5 *1 (-690 *5 *6 *2))))) -(-10 -7 (-15 -4404 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2863 (((-112) $ $) NIL)) (-2349 (((-1232) $) 21)) (-2299 (((-654 (-1232)) $) 19)) (-2039 (($ (-654 (-1232)) (-1232)) 14)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 29) (($ (-1197)) NIL) (((-1197) $) NIL) (((-1232) $) 22) (($ (-1133)) 10)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-691) (-13 (-1098) (-623 (-1232)) (-10 -8 (-15 -2950 ($ (-1133))) (-15 -2039 ($ (-654 (-1232)) (-1232))) (-15 -2299 ((-654 (-1232)) $)) (-15 -2349 ((-1232) $))))) (T -691)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-691)))) (-2039 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1232))) (-5 *3 (-1232)) (-5 *1 (-691)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-691)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-691))))) -(-13 (-1098) (-623 (-1232)) (-10 -8 (-15 -2950 ($ (-1133))) (-15 -2039 ($ (-654 (-1232)) (-1232))) (-15 -2299 ((-654 (-1232)) $)) (-15 -2349 ((-1232) $)))) -((-3244 (((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)) 26)) (-2478 (((-1 |#1|) |#1|) 8)) (-2817 ((|#1| |#1|) 19)) (-2670 (((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2950 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-781)) 23))) -(((-692 |#1|) (-10 -7 (-15 -2478 ((-1 |#1|) |#1|)) (-15 -2950 ((-1 |#1|) |#1|)) (-15 -2670 (|#1| (-1 |#1| |#1|))) (-15 -2670 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2817 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -3244 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)))) (-1115)) (T -692)) -((-3244 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1115)) (-5 *1 (-692 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1115)) (-5 *1 (-692 *4)))) (-2817 (*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1115)))) (-2670 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574)) (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1115)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1115)))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1115)))) (-2478 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1115))))) -(-10 -7 (-15 -2478 ((-1 |#1|) |#1|)) (-15 -2950 ((-1 |#1|) |#1|)) (-15 -2670 (|#1| (-1 |#1| |#1|))) (-15 -2670 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2817 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -3244 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)))) -((-2904 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2204 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1715 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3533 (((-1 |#2| |#1|) |#2|) 11))) -(((-693 |#1| |#2|) (-10 -7 (-15 -3533 ((-1 |#2| |#1|) |#2|)) (-15 -2204 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1715 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2904 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1115) (-1115)) (T -693)) -((-2904 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1115)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)) (-4 *4 (-1115)))) (-2204 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5)))) (-3533 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1115)) (-4 *3 (-1115))))) -(-10 -7 (-15 -3533 ((-1 |#2| |#1|) |#2|)) (-15 -2204 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1715 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2904 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2779 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2810 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2206 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1768 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4228 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-694 |#1| |#2| |#3|) (-10 -7 (-15 -2810 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2206 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1768 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4228 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2779 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1115) (-1115) (-1115)) (T -694)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-1 *7 *5)) (-5 *1 (-694 *5 *6 *7)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6)))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1115)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1115)) (-4 *6 (-1115)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1115)))) (-2206 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1115)) (-4 *4 (-1115)) (-4 *6 (-1115)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6))))) -(-10 -7 (-15 -2810 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2206 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1768 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4228 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2779 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2881 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1786 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-695 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1786 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1786 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2881 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1064) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1064) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -695)) -((-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1064)) (-4 *2 (-1064)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *8 (-382 *2)) (-4 *9 (-382 *2)) (-5 *1 (-695 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-697 *5 *6 *7)) (-4 *10 (-697 *2 *8 *9)))) (-1786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1064)) (-4 *8 (-1064)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1064)) (-4 *8 (-1064)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8))))) -(-10 -7 (-15 -1786 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1786 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2881 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2226 (($ (-781) (-781)) 42)) (-2650 (($ $ $) 71)) (-2292 (($ |#3|) 66) (($ $) 67)) (-4319 (((-112) $) 36)) (-1514 (($ $ (-574) (-574)) 82)) (-4322 (($ $ (-574) (-574)) 83)) (-2251 (($ $ (-574) (-574) (-574) (-574)) 88)) (-3890 (($ $) 69)) (-2240 (((-112) $) 15)) (-3160 (($ $ (-574) (-574) $) 89)) (-3134 ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) 87)) (-3107 (($ (-781) |#2|) 53)) (-2923 (($ (-654 (-654 |#2|))) 51)) (-1626 (((-654 (-654 |#2|)) $) 78)) (-1800 (($ $ $) 70)) (-2852 (((-3 $ "failed") $ |#2|) 120)) (-2208 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-1998 (($ (-654 |#2|)) 54) (($ (-654 $)) 56)) (-1609 (((-112) $) 28)) (-2950 (($ |#4|) 61) (((-872) $) NIL)) (-1996 (((-112) $) 38)) (-3098 (($ $ |#2|) 122)) (-3089 (($ $ $) 93) (($ $) 96)) (-3074 (($ $ $) 91)) (** (($ $ (-781)) 109) (($ $ (-574)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-574) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) -(((-696 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3098 (|#1| |#1| |#2|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -3160 (|#1| |#1| (-574) (-574) |#1|)) (-15 -2251 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -4322 (|#1| |#1| (-574) (-574))) (-15 -1514 (|#1| |#1| (-574) (-574))) (-15 -3134 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2208 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -1626 ((-654 (-654 |#2|)) |#1|)) (-15 -2650 (|#1| |#1| |#1|)) (-15 -1800 (|#1| |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2292 (|#1| |#3|)) (-15 -2950 (|#1| |#4|)) (-15 -1998 (|#1| (-654 |#1|))) (-15 -1998 (|#1| (-654 |#2|))) (-15 -3107 (|#1| (-781) |#2|)) (-15 -2923 (|#1| (-654 (-654 |#2|)))) (-15 -2226 (|#1| (-781) (-781))) (-15 -1996 ((-112) |#1|)) (-15 -4319 ((-112) |#1|)) (-15 -1609 ((-112) |#1|)) (-15 -2240 ((-112) |#1|)) (-15 -3134 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574) (-574)))) (-697 |#2| |#3| |#4|) (-1064) (-382 |#2|) (-382 |#2|)) (T -696)) -NIL -(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3098 (|#1| |#1| |#2|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -3160 (|#1| |#1| (-574) (-574) |#1|)) (-15 -2251 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -4322 (|#1| |#1| (-574) (-574))) (-15 -1514 (|#1| |#1| (-574) (-574))) (-15 -3134 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2208 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -1626 ((-654 (-654 |#2|)) |#1|)) (-15 -2650 (|#1| |#1| |#1|)) (-15 -1800 (|#1| |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2292 (|#1| |#3|)) (-15 -2950 (|#1| |#4|)) (-15 -1998 (|#1| (-654 |#1|))) (-15 -1998 (|#1| (-654 |#2|))) (-15 -3107 (|#1| (-781) |#2|)) (-15 -2923 (|#1| (-654 (-654 |#2|)))) (-15 -2226 (|#1| (-781) (-781))) (-15 -1996 ((-112) |#1|)) (-15 -4319 ((-112) |#1|)) (-15 -1609 ((-112) |#1|)) (-15 -2240 ((-112) |#1|)) (-15 -3134 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574) (-574)))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2226 (($ (-781) (-781)) 98)) (-2650 (($ $ $) 88)) (-2292 (($ |#2|) 92) (($ $) 91)) (-4319 (((-112) $) 100)) (-1514 (($ $ (-574) (-574)) 84)) (-4322 (($ $ (-574) (-574)) 83)) (-2251 (($ $ (-574) (-574) (-574) (-574)) 82)) (-3890 (($ $) 90)) (-2240 (((-112) $) 102)) (-2818 (((-112) $ (-781)) 8)) (-3160 (($ $ (-574) (-574) $) 81)) (-3134 ((|#1| $ (-574) (-574) |#1|) 45) (($ $ (-654 (-574)) (-654 (-574)) $) 85)) (-2652 (($ $ (-574) |#2|) 43)) (-1861 (($ $ (-574) |#3|) 42)) (-3107 (($ (-781) |#1|) 96)) (-3831 (($) 7 T CONST)) (-3502 (($ $) 68 (|has| |#1| (-315)))) (-1860 ((|#2| $ (-574)) 47)) (-3557 (((-781) $) 67 (|has| |#1| (-566)))) (-2472 ((|#1| $ (-574) (-574) |#1|) 44)) (-2399 ((|#1| $ (-574) (-574)) 49)) (-1873 (((-654 |#1|) $) 31)) (-1835 (((-781) $) 66 (|has| |#1| (-566)))) (-3284 (((-654 |#3|) $) 65 (|has| |#1| (-566)))) (-2198 (((-781) $) 52)) (-3763 (($ (-781) (-781) |#1|) 58)) (-2207 (((-781) $) 51)) (-2224 (((-112) $ (-781)) 9)) (-1680 ((|#1| $) 63 (|has| |#1| (-6 (-4460 "*"))))) (-3312 (((-574) $) 56)) (-4378 (((-574) $) 54)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2391 (((-574) $) 55)) (-3280 (((-574) $) 53)) (-2923 (($ (-654 (-654 |#1|))) 97)) (-2461 (($ (-1 |#1| |#1|) $) 35)) (-1786 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1626 (((-654 (-654 |#1|)) $) 87)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-4333 (((-3 $ "failed") $) 62 (|has| |#1| (-372)))) (-1800 (($ $ $) 89)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-4276 (($ $ |#1|) 57)) (-2852 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-566)))) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-1998 (($ (-654 |#1|)) 95) (($ (-654 $)) 94)) (-1609 (((-112) $) 101)) (-1928 ((|#1| $) 64 (|has| |#1| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1482 ((|#3| $ (-574)) 46)) (-2950 (($ |#3|) 93) (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-1996 (((-112) $) 99)) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3098 (($ $ |#1|) 69 (|has| |#1| (-372)))) (-3089 (($ $ $) 79) (($ $) 78)) (-3074 (($ $ $) 80)) (** (($ $ (-781)) 71) (($ $ (-574)) 61 (|has| |#1| (-372)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-574) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-697 |#1| |#2| |#3|) (-141) (-1064) (-382 |t#1|) (-382 |t#1|)) (T -697)) -((-2240 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-4319 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2226 (*1 *1 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3107 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1998 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1998 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2950 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (-2292 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (-2292 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3890 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-1800 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-2650 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3))))) (-2208 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3134 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1514 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-4322 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2251 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3160 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3074 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3089 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3089 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1064)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-566)))) (-3098 (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-315)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-3284 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) (-4333 (*1 *1 *1) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-372))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4459) (-6 -4458) (-15 -2240 ((-112) $)) (-15 -1609 ((-112) $)) (-15 -4319 ((-112) $)) (-15 -1996 ((-112) $)) (-15 -2226 ($ (-781) (-781))) (-15 -2923 ($ (-654 (-654 |t#1|)))) (-15 -3107 ($ (-781) |t#1|)) (-15 -1998 ($ (-654 |t#1|))) (-15 -1998 ($ (-654 $))) (-15 -2950 ($ |t#3|)) (-15 -2292 ($ |t#2|)) (-15 -2292 ($ $)) (-15 -3890 ($ $)) (-15 -1800 ($ $ $)) (-15 -2650 ($ $ $)) (-15 -1626 ((-654 (-654 |t#1|)) $)) (-15 -2208 ($ $ (-654 (-574)) (-654 (-574)))) (-15 -3134 ($ $ (-654 (-574)) (-654 (-574)) $)) (-15 -1514 ($ $ (-574) (-574))) (-15 -4322 ($ $ (-574) (-574))) (-15 -2251 ($ $ (-574) (-574) (-574) (-574))) (-15 -3160 ($ $ (-574) (-574) $)) (-15 -3074 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-574) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-781))) (IF (|has| |t#1| (-566)) (-15 -2852 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -3098 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-315)) (-15 -3502 ($ $)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -3557 ((-781) $)) (-15 -1835 ((-781) $)) (-15 -3284 ((-654 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4460 "*"))) (PROGN (-15 -1928 (|t#1| $)) (-15 -1680 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -4333 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-57 |#1| |#2| |#3|) . T) ((-1233) . T)) -((-3502 ((|#4| |#4|) 92 (|has| |#1| (-315)))) (-3557 (((-781) |#4|) 120 (|has| |#1| (-566)))) (-1835 (((-781) |#4|) 96 (|has| |#1| (-566)))) (-3284 (((-654 |#3|) |#4|) 103 (|has| |#1| (-566)))) (-4146 (((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|) 135 (|has| |#1| (-315)))) (-1680 ((|#1| |#4|) 52)) (-2341 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-566)))) (-4333 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-372)))) (-3020 ((|#4| |#4|) 88 (|has| |#1| (-566)))) (-3691 ((|#4| |#4| |#1| (-574) (-574)) 60)) (-1984 ((|#4| |#4| (-574) (-574)) 55)) (-1415 ((|#4| |#4| |#1| (-574) (-574)) 65)) (-1928 ((|#1| |#4|) 98)) (-3132 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-566))))) -(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1928 (|#1| |#4|)) (-15 -1680 (|#1| |#4|)) (-15 -1984 (|#4| |#4| (-574) (-574))) (-15 -3691 (|#4| |#4| |#1| (-574) (-574))) (-15 -1415 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3557 ((-781) |#4|)) (-15 -1835 ((-781) |#4|)) (-15 -3284 ((-654 |#3|) |#4|)) (-15 -3020 (|#4| |#4|)) (-15 -2341 ((-3 |#4| "failed") |#4|)) (-15 -3132 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -3502 (|#4| |#4|)) (-15 -4146 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -4333 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -698)) -((-4333 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-4146 (*1 *2 *3 *3) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3132 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-2341 (*1 *2 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3020 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3284 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1835 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1415 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-3691 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-1984 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2)) (-4 *2 (-697 *4 *5 *6)))) (-1680 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-1928 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5))))) -(-10 -7 (-15 -1928 (|#1| |#4|)) (-15 -1680 (|#1| |#4|)) (-15 -1984 (|#4| |#4| (-574) (-574))) (-15 -3691 (|#4| |#4| |#1| (-574) (-574))) (-15 -1415 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3557 ((-781) |#4|)) (-15 -1835 ((-781) |#4|)) (-15 -3284 ((-654 |#3|) |#4|)) (-15 -3020 (|#4| |#4|)) (-15 -2341 ((-3 |#4| "failed") |#4|)) (-15 -3132 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -3502 (|#4| |#4|)) (-15 -4146 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -4333 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2226 (($ (-781) (-781)) 64)) (-2650 (($ $ $) NIL)) (-2292 (($ (-1283 |#1|)) NIL) (($ $) NIL)) (-4319 (((-112) $) NIL)) (-1514 (($ $ (-574) (-574)) 22)) (-4322 (($ $ (-574) (-574)) NIL)) (-2251 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-3890 (($ $) NIL)) (-2240 (((-112) $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-3160 (($ $ (-574) (-574) $) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-2652 (($ $ (-574) (-1283 |#1|)) NIL)) (-1861 (($ $ (-574) (-1283 |#1|)) NIL)) (-3107 (($ (-781) |#1|) 37)) (-3831 (($) NIL T CONST)) (-3502 (($ $) 46 (|has| |#1| (-315)))) (-1860 (((-1283 |#1|) $ (-574)) NIL)) (-3557 (((-781) $) 48 (|has| |#1| (-566)))) (-2472 ((|#1| $ (-574) (-574) |#1|) 69)) (-2399 ((|#1| $ (-574) (-574)) NIL)) (-1873 (((-654 |#1|) $) NIL)) (-1835 (((-781) $) 50 (|has| |#1| (-566)))) (-3284 (((-654 (-1283 |#1|)) $) 53 (|has| |#1| (-566)))) (-2198 (((-781) $) 32)) (-3763 (($ (-781) (-781) |#1|) 28)) (-2207 (((-781) $) 33)) (-2224 (((-112) $ (-781)) NIL)) (-1680 ((|#1| $) 44 (|has| |#1| (-6 (-4460 "*"))))) (-3312 (((-574) $) 10)) (-4378 (((-574) $) 11)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2391 (((-574) $) 14)) (-3280 (((-574) $) 65)) (-2923 (($ (-654 (-654 |#1|))) NIL)) (-2461 (($ (-1 |#1| |#1|) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1626 (((-654 (-654 |#1|)) $) 76)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-4333 (((-3 $ "failed") $) 60 (|has| |#1| (-372)))) (-1800 (($ $ $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4276 (($ $ |#1|) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-1998 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL) (($ (-1283 |#1|)) 70)) (-1609 (((-112) $) NIL)) (-1928 ((|#1| $) 42 (|has| |#1| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-1845 (((-546) $) 80 (|has| |#1| (-624 (-546))))) (-1482 (((-1283 |#1|) $ (-574)) NIL)) (-2950 (($ (-1283 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-1996 (((-112) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) 38) (($ $ (-574)) 62 (|has| |#1| (-372)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1283 |#1|) $ (-1283 |#1|)) NIL) (((-1283 |#1|) (-1283 |#1|) $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-699 |#1|) (-13 (-697 |#1| (-1283 |#1|) (-1283 |#1|)) (-10 -8 (-15 -1998 ($ (-1283 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -4333 ((-3 $ "failed") $)) |%noBranch|))) (-1064)) (T -699)) -((-4333 (*1 *1 *1) (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1064)))) (-1998 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1064)) (-5 *1 (-699 *3))))) -(-13 (-697 |#1| (-1283 |#1|) (-1283 |#1|)) (-10 -8 (-15 -1998 ($ (-1283 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -4333 ((-3 $ "failed") $)) |%noBranch|))) -((-3468 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 37)) (-2409 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 32)) (-2324 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781)) 43)) (-1332 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 25)) (-3920 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 29) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 27)) (-1671 (((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|)) 31)) (-3589 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 23)) (** (((-699 |#1|) (-699 |#1|) (-781)) 46))) -(((-700 |#1|) (-10 -7 (-15 -3589 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1332 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3920 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3920 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1671 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -2409 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3468 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2324 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781)))) (-1064)) (T -700)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1064)) (-5 *1 (-700 *4)))) (-2324 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1064)) (-5 *1 (-700 *4)))) (-3468 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-2409 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-1671 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-3920 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-3920 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-1332 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-3589 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) -(-10 -7 (-15 -3589 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1332 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3920 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3920 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1671 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -2409 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3468 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2324 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781)))) -((-1705 (((-3 |#1| "failed") $) 18)) (-2216 ((|#1| $) NIL)) (-2243 (($) 7 T CONST)) (-3105 (($ |#1|) 8)) (-2950 (($ |#1|) 16) (((-872) $) 23)) (-2131 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2243)) 11)) (-1337 ((|#1| $) 15))) -(((-701 |#1|) (-13 (-1278) (-1053 |#1|) (-623 (-872)) (-10 -8 (-15 -3105 ($ |#1|)) (-15 -2131 ((-112) $ (|[\|\|]| |#1|))) (-15 -2131 ((-112) $ (|[\|\|]| -2243))) (-15 -1337 (|#1| $)) (-15 -2243 ($) -1715))) (-623 (-872))) (T -701)) -((-3105 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-623 (-872))) (-5 *2 (-112)) (-5 *1 (-701 *4)))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2243)) (-5 *2 (-112)) (-5 *1 (-701 *4)) (-4 *4 (-623 (-872))))) (-1337 (*1 *2 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2243 (*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))) -(-13 (-1278) (-1053 |#1|) (-623 (-872)) (-10 -8 (-15 -3105 ($ |#1|)) (-15 -2131 ((-112) $ (|[\|\|]| |#1|))) (-15 -2131 ((-112) $ (|[\|\|]| -2243))) (-15 -1337 (|#1| $)) (-15 -2243 ($) -1715))) -((-3477 ((|#2| |#2| |#4|) 29)) (-3671 (((-699 |#2|) |#3| |#4|) 35)) (-4364 (((-699 |#2|) |#2| |#4|) 34)) (-3790 (((-1283 |#2|) |#2| |#4|) 16)) (-1918 ((|#2| |#3| |#4|) 28)) (-3716 (((-699 |#2|) |#3| |#4| (-781) (-781)) 47)) (-1556 (((-699 |#2|) |#2| |#4| (-781)) 46))) -(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3790 ((-1283 |#2|) |#2| |#4|)) (-15 -1918 (|#2| |#3| |#4|)) (-15 -3477 (|#2| |#2| |#4|)) (-15 -4364 ((-699 |#2|) |#2| |#4|)) (-15 -1556 ((-699 |#2|) |#2| |#4| (-781))) (-15 -3671 ((-699 |#2|) |#3| |#4|)) (-15 -3716 ((-699 |#2|) |#3| |#4| (-781) (-781)))) (-1115) (-913 |#1|) (-382 |#2|) (-13 (-382 |#1|) (-10 -7 (-6 -4458)))) (T -702)) -((-3716 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1115)) (-4 *7 (-913 *6)) (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4458)))))) (-3671 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-4 *6 (-913 *5)) (-5 *2 (-699 *6)) (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458)))))) (-1556 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1115)) (-4 *3 (-913 *6)) (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4458)))))) (-4364 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-4 *3 (-913 *5)) (-5 *2 (-699 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458)))))) (-3477 (*1 *2 *2 *3) (-12 (-4 *4 (-1115)) (-4 *2 (-913 *4)) (-5 *1 (-702 *4 *2 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4458)))))) (-1918 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-4 *2 (-913 *5)) (-5 *1 (-702 *5 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458)))))) (-3790 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-4 *3 (-913 *5)) (-5 *2 (-1283 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458))))))) -(-10 -7 (-15 -3790 ((-1283 |#2|) |#2| |#4|)) (-15 -1918 (|#2| |#3| |#4|)) (-15 -3477 (|#2| |#2| |#4|)) (-15 -4364 ((-699 |#2|) |#2| |#4|)) (-15 -1556 ((-699 |#2|) |#2| |#4| (-781))) (-15 -3671 ((-699 |#2|) |#3| |#4|)) (-15 -3716 ((-699 |#2|) |#3| |#4| (-781) (-781)))) -((-1699 (((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)) 20)) (-2365 ((|#1| (-699 |#2|)) 9)) (-3357 (((-699 |#1|) (-699 |#2|)) 18))) -(((-703 |#1| |#2|) (-10 -7 (-15 -2365 (|#1| (-699 |#2|))) (-15 -3357 ((-699 |#1|) (-699 |#2|))) (-15 -1699 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)))) (-566) (-1007 |#1|)) (T -703)) -((-1699 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1007 *4)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4))) (-5 *1 (-703 *4 *5)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1007 *4)) (-4 *4 (-566)) (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-703 *2 *4))))) -(-10 -7 (-15 -2365 (|#1| (-699 |#2|))) (-15 -3357 ((-699 |#1|) (-699 |#2|))) (-15 -1699 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-3644 (((-699 (-709))) NIL) (((-699 (-709)) (-1283 $)) NIL)) (-1645 (((-709) $) NIL)) (-2378 (($ $) NIL (|has| (-709) (-1218)))) (-2259 (($ $) NIL (|has| (-709) (-1218)))) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-709) (-358)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-922))))) (-3296 (($ $) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| (-709) (-922))) (|has| (-709) (-372))))) (-3954 (((-428 $) $) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| (-709) (-922))) (|has| (-709) (-372))))) (-4211 (($ $) NIL (-12 (|has| (-709) (-1017)) (|has| (-709) (-1218))))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-922))))) (-3656 (((-112) $ $) NIL (|has| (-709) (-315)))) (-1496 (((-781)) NIL (|has| (-709) (-377)))) (-2357 (($ $) NIL (|has| (-709) (-1218)))) (-2237 (($ $) NIL (|has| (-709) (-1218)))) (-2403 (($ $) NIL (|has| (-709) (-1218)))) (-2281 (($ $) NIL (|has| (-709) (-1218)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL) (((-3 (-709) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-1053 (-417 (-574)))))) (-2216 (((-574) $) NIL) (((-709) $) NIL) (((-417 (-574)) $) NIL (|has| (-709) (-1053 (-417 (-574)))))) (-2919 (($ (-1283 (-709))) NIL) (($ (-1283 (-709)) (-1283 $)) NIL)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-709) (-358)))) (-2799 (($ $ $) NIL (|has| (-709) (-315)))) (-3556 (((-699 (-709)) $) NIL) (((-699 (-709)) $ (-1283 $)) NIL)) (-3465 (((-699 (-709)) (-1283 $)) NIL) (((-699 (-709)) (-699 $)) NIL) (((-2 (|:| -4047 (-699 (-709))) (|:| |vec| (-1283 (-709)))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-1283 $)) NIL (|has| (-709) (-649 (-574))))) (-2881 (((-3 $ "failed") (-417 (-1188 (-709)))) NIL (|has| (-709) (-372))) (($ (-1188 (-709))) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-4222 (((-709) $) 29)) (-1955 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-555)))) (-1519 (((-112) $) NIL (|has| (-709) (-555)))) (-4188 (((-417 (-574)) $) NIL (|has| (-709) (-555)))) (-3557 (((-934)) NIL)) (-2834 (($) NIL (|has| (-709) (-377)))) (-2811 (($ $ $) NIL (|has| (-709) (-315)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| (-709) (-315)))) (-1912 (($) NIL (|has| (-709) (-358)))) (-3873 (((-112) $) NIL (|has| (-709) (-358)))) (-4158 (($ $) NIL (|has| (-709) (-358))) (($ $ (-781)) NIL (|has| (-709) (-358)))) (-1782 (((-112) $) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| (-709) (-922))) (|has| (-709) (-372))))) (-3810 (((-2 (|:| |r| (-709)) (|:| |phi| (-709))) $) NIL (-12 (|has| (-709) (-1075)) (|has| (-709) (-1218))))) (-3003 (($) NIL (|has| (-709) (-1218)))) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-709) (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-709) (-897 (-574))))) (-2725 (((-843 (-934)) $) NIL (|has| (-709) (-358))) (((-934) $) NIL (|has| (-709) (-358)))) (-3372 (((-112) $) NIL)) (-2132 (($ $ (-574)) NIL (-12 (|has| (-709) (-1017)) (|has| (-709) (-1218))))) (-1386 (((-709) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| (-709) (-358)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-1950 (((-1188 (-709)) $) NIL (|has| (-709) (-372)))) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-1786 (($ (-1 (-709) (-709)) $) NIL)) (-3271 (((-934) $) NIL (|has| (-709) (-377)))) (-3112 (($ $) NIL (|has| (-709) (-1218)))) (-2868 (((-1188 (-709)) $) NIL)) (-2848 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| (-709) (-372)))) (-3791 (($) NIL (|has| (-709) (-358)) CONST)) (-2590 (($ (-934)) NIL (|has| (-709) (-377)))) (-1734 (($) NIL)) (-4233 (((-709) $) 31)) (-3939 (((-1135) $) NIL)) (-2975 (($) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| (-709) (-315)))) (-2886 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| (-709) (-358)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-922))))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-922))))) (-4200 (((-428 $) $) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| (-709) (-922))) (|has| (-709) (-372))))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-709) (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| (-709) (-315)))) (-2852 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-709)) NIL (|has| (-709) (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-1618 (($ $) NIL (|has| (-709) (-1218)))) (-2660 (($ $ (-1192) (-709)) NIL (|has| (-709) (-524 (-1192) (-709)))) (($ $ (-654 (-1192)) (-654 (-709))) NIL (|has| (-709) (-524 (-1192) (-709)))) (($ $ (-654 (-302 (-709)))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-302 (-709))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-709) (-709)) NIL (|has| (-709) (-317 (-709)))) (($ $ (-654 (-709)) (-654 (-709))) NIL (|has| (-709) (-317 (-709))))) (-3364 (((-781) $) NIL (|has| (-709) (-315)))) (-2208 (($ $ (-709)) NIL (|has| (-709) (-294 (-709) (-709))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| (-709) (-315)))) (-1738 (((-709)) NIL) (((-709) (-1283 $)) NIL)) (-3881 (((-3 (-781) "failed") $ $) NIL (|has| (-709) (-358))) (((-781) $) NIL (|has| (-709) (-358)))) (-3878 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-1192)) NIL (|has| (-709) (-913 (-1192)))) (($ $) NIL (|has| (-709) (-239))) (($ $ (-781)) NIL (|has| (-709) (-239)))) (-1840 (((-699 (-709)) (-1283 $) (-1 (-709) (-709))) NIL (|has| (-709) (-372)))) (-2290 (((-1188 (-709))) NIL)) (-2416 (($ $) NIL (|has| (-709) (-1218)))) (-2289 (($ $) NIL (|has| (-709) (-1218)))) (-1417 (($) NIL (|has| (-709) (-358)))) (-2389 (($ $) NIL (|has| (-709) (-1218)))) (-2269 (($ $) NIL (|has| (-709) (-1218)))) (-2367 (($ $) NIL (|has| (-709) (-1218)))) (-2248 (($ $) NIL (|has| (-709) (-1218)))) (-4346 (((-699 (-709)) (-1283 $)) NIL) (((-1283 (-709)) $) NIL) (((-699 (-709)) (-1283 $) (-1283 $)) NIL) (((-1283 (-709)) $ (-1283 $)) NIL)) (-1845 (((-546) $) NIL (|has| (-709) (-624 (-546)))) (((-171 (-227)) $) NIL (|has| (-709) (-1037))) (((-171 (-388)) $) NIL (|has| (-709) (-1037))) (((-903 (-388)) $) NIL (|has| (-709) (-624 (-903 (-388))))) (((-903 (-574)) $) NIL (|has| (-709) (-624 (-903 (-574))))) (($ (-1188 (-709))) NIL) (((-1188 (-709)) $) NIL) (($ (-1283 (-709))) NIL) (((-1283 (-709)) $) NIL)) (-2202 (($ $) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-922))) (|has| (-709) (-358))))) (-3535 (($ (-709) (-709)) 12)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-709)) NIL) (($ (-171 (-388))) 13) (($ (-171 (-574))) 19) (($ (-171 (-709))) 28) (($ (-171 (-711))) 25) (((-171 (-388)) $) 33) (($ (-417 (-574))) NIL (-2832 (|has| (-709) (-1053 (-417 (-574)))) (|has| (-709) (-372))))) (-3247 (($ $) NIL (|has| (-709) (-358))) (((-3 $ "failed") $) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-922))) (|has| (-709) (-146))))) (-1539 (((-1188 (-709)) $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL)) (-2455 (($ $) NIL (|has| (-709) (-1218)))) (-2319 (($ $) NIL (|has| (-709) (-1218)))) (-1842 (((-112) $ $) NIL)) (-2427 (($ $) NIL (|has| (-709) (-1218)))) (-2300 (($ $) NIL (|has| (-709) (-1218)))) (-2479 (($ $) NIL (|has| (-709) (-1218)))) (-2339 (($ $) NIL (|has| (-709) (-1218)))) (-1453 (((-709) $) NIL (|has| (-709) (-1218)))) (-2535 (($ $) NIL (|has| (-709) (-1218)))) (-2348 (($ $) NIL (|has| (-709) (-1218)))) (-2466 (($ $) NIL (|has| (-709) (-1218)))) (-2329 (($ $) NIL (|has| (-709) (-1218)))) (-2442 (($ $) NIL (|has| (-709) (-1218)))) (-2311 (($ $) NIL (|has| (-709) (-1218)))) (-3306 (($ $) NIL (|has| (-709) (-1075)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-1192)) NIL (|has| (-709) (-913 (-1192)))) (($ $) NIL (|has| (-709) (-239))) (($ $ (-781)) NIL (|has| (-709) (-239)))) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL (|has| (-709) (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| (-709) (-1218))) (($ $ (-417 (-574))) NIL (-12 (|has| (-709) (-1017)) (|has| (-709) (-1218)))) (($ $ (-574)) NIL (|has| (-709) (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-709) $) NIL) (($ $ (-709)) NIL) (($ (-417 (-574)) $) NIL (|has| (-709) (-372))) (($ $ (-417 (-574))) NIL (|has| (-709) (-372))))) -(((-704) (-13 (-397) (-167 (-709)) (-10 -8 (-15 -2950 ($ (-171 (-388)))) (-15 -2950 ($ (-171 (-574)))) (-15 -2950 ($ (-171 (-709)))) (-15 -2950 ($ (-171 (-711)))) (-15 -2950 ((-171 (-388)) $))))) (T -704)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-171 (-574))) (-5 *1 (-704)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-704)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-704)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704))))) -(-13 (-397) (-167 (-709)) (-10 -8 (-15 -2950 ($ (-171 (-388)))) (-15 -2950 ($ (-171 (-574)))) (-15 -2950 ($ (-171 (-709)))) (-15 -2950 ($ (-171 (-711)))) (-15 -2950 ((-171 (-388)) $)))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) 8)) (-2551 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2098 (($ $) 63)) (-2560 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1941 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1748 ((|#1| $) 40)) (-2609 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3484 ((|#1| $) 42)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3875 (((-654 (-2 (|:| -1917 |#1|) (|:| -3948 (-781)))) $) 62)) (-3667 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) 43)) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-705 |#1|) (-141) (-1115)) (T -705)) -((-2609 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1115)))) (-2098 (*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1115)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1115)) (-5 *2 (-654 (-2 (|:| -1917 *3) (|:| -3948 (-781)))))))) -(-13 (-241 |t#1|) (-10 -8 (-15 -2609 ($ |t#1| $ (-781))) (-15 -2098 ($ $)) (-15 -3875 ((-654 (-2 (|:| -1917 |t#1|) (|:| -3948 (-781)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-1677 (((-654 |#1|) (-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574)))) (-574)) 65)) (-2476 ((|#1| |#1| (-574)) 62)) (-2886 ((|#1| |#1| |#1| (-574)) 46)) (-4200 (((-654 |#1|) |#1| (-574)) 49)) (-3277 ((|#1| |#1| (-574) |#1| (-574)) 40)) (-2926 (((-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574)))) |#1| (-574)) 61))) -(((-706 |#1|) (-10 -7 (-15 -2886 (|#1| |#1| |#1| (-574))) (-15 -2476 (|#1| |#1| (-574))) (-15 -4200 ((-654 |#1|) |#1| (-574))) (-15 -2926 ((-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574)))) |#1| (-574))) (-15 -1677 ((-654 |#1|) (-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574)))) (-574))) (-15 -3277 (|#1| |#1| (-574) |#1| (-574)))) (-1259 (-574))) (T -706)) -((-3277 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3)))) (-1677 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| -4200 *5) (|:| -3584 (-574))))) (-5 *4 (-574)) (-4 *5 (-1259 *4)) (-5 *2 (-654 *5)) (-5 *1 (-706 *5)))) (-2926 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4200 *3) (|:| -3584 *4)))) (-5 *1 (-706 *3)) (-4 *3 (-1259 *4)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 *3)) (-5 *1 (-706 *3)) (-4 *3 (-1259 *4)))) (-2476 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3)))) (-2886 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3))))) -(-10 -7 (-15 -2886 (|#1| |#1| |#1| (-574))) (-15 -2476 (|#1| |#1| (-574))) (-15 -4200 ((-654 |#1|) |#1| (-574))) (-15 -2926 ((-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574)))) |#1| (-574))) (-15 -1677 ((-654 |#1|) (-654 (-2 (|:| -4200 |#1|) (|:| -3584 (-574)))) (-574))) (-15 -3277 (|#1| |#1| (-574) |#1| (-574)))) -((-2332 (((-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-3058 (((-1148 (-227)) (-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270))) 53) (((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270))) 55) (((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270))) 57)) (-2717 (((-1148 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-654 (-270))) NIL)) (-1947 (((-1148 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270))) 58))) -(((-707) (-10 -7 (-15 -3058 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -3058 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -3058 ((-1148 (-227)) (-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -1947 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -2717 ((-1148 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -2332 ((-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -707)) -((-2332 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-956 (-227)) (-227) (-227))) (-5 *1 (-707)))) (-2717 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-707)))) (-1947 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-707)))) (-3058 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707)))) (-3058 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-227))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-707)))) (-3058 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-707))))) -(-10 -7 (-15 -3058 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -3058 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -3058 ((-1148 (-227)) (-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -1947 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -2717 ((-1148 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -2332 ((-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-4200 (((-428 (-1188 |#4|)) (-1188 |#4|)) 86) (((-428 |#4|) |#4|) 266))) -(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4|)) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|)))) (-860) (-803) (-358) (-962 |#3| |#2| |#1|)) (T -708)) -((-4200 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-962 *6 *5 *4))))) -(-10 -7 (-15 -4200 ((-428 |#4|) |#4|)) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 97)) (-4018 (((-574) $) 34)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-3842 (($ $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-4211 (($ $) NIL)) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL)) (-3831 (($) NIL T CONST)) (-3893 (($ $) NIL)) (-1705 (((-3 (-574) "failed") $) 85) (((-3 (-417 (-574)) "failed") $) 28) (((-3 (-388) "failed") $) 82)) (-2216 (((-574) $) 87) (((-417 (-574)) $) 79) (((-388) $) 80)) (-2799 (($ $ $) 109)) (-3911 (((-3 $ "failed") $) 100)) (-2811 (($ $ $) 108)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-3759 (((-934)) 89) (((-934) (-934)) 88)) (-1913 (((-112) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-2725 (((-574) $) NIL)) (-3372 (((-112) $) NIL)) (-2132 (($ $ (-574)) NIL)) (-1386 (($ $) NIL)) (-1808 (((-112) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2066 (((-574) (-574)) 94) (((-574)) 95)) (-3632 (($ $ $) NIL) (($) NIL (-12 (-2085 (|has| $ (-6 -4441))) (-2085 (|has| $ (-6 -4449)))))) (-3282 (((-574) (-574)) 92) (((-574)) 93)) (-1593 (($ $ $) NIL) (($) NIL (-12 (-2085 (|has| $ (-6 -4441))) (-2085 (|has| $ (-6 -4449)))))) (-4290 (((-574) $) 17)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 104)) (-1361 (((-934) (-574)) NIL (|has| $ (-6 -4449)))) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) NIL)) (-3471 (($ $) NIL)) (-2395 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-934)) NIL)) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) 105)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2017 (((-574) $) 24)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 107)) (-2354 (((-934)) NIL) (((-934) (-934)) NIL (|has| $ (-6 -4449)))) (-2260 (((-934) (-574)) NIL (|has| $ (-6 -4449)))) (-1845 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) NIL)) (-2950 (((-872) $) 63) (($ (-574)) 75) (($ $) NIL) (($ (-417 (-574))) 78) (($ (-574)) 75) (($ (-417 (-574))) 78) (($ (-388)) 72) (((-388) $) 61) (($ (-711)) 66)) (-4019 (((-781)) 119 T CONST)) (-2308 (($ (-574) (-574) (-934)) 54)) (-2753 (($ $) NIL)) (-1708 (((-934)) NIL) (((-934) (-934)) NIL (|has| $ (-6 -4449)))) (-3838 (((-112) $ $) NIL)) (-2643 (((-934)) 91) (((-934) (-934)) 90)) (-1842 (((-112) $ $) NIL)) (-3306 (($ $) NIL)) (-2142 (($) 37 T CONST)) (-2154 (($) 18 T CONST)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 96)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 118)) (-3098 (($ $ $) 77)) (-3089 (($ $) 115) (($ $ $) 116)) (-3074 (($ $ $) 114)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 103)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-709) (-13 (-414) (-397) (-372) (-1053 (-388)) (-1053 (-417 (-574))) (-148) (-10 -8 (-15 -3759 ((-934) (-934))) (-15 -3759 ((-934))) (-15 -2643 ((-934) (-934))) (-15 -3282 ((-574) (-574))) (-15 -3282 ((-574))) (-15 -2066 ((-574) (-574))) (-15 -2066 ((-574))) (-15 -2950 ((-388) $)) (-15 -2950 ($ (-711))) (-15 -4290 ((-574) $)) (-15 -2017 ((-574) $)) (-15 -2308 ($ (-574) (-574) (-934)))))) (T -709)) -((-2017 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3759 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709)))) (-2643 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709)))) (-3282 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3282 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2066 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-388)) (-5 *1 (-709)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-711)) (-5 *1 (-709)))) (-2308 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-934)) (-5 *1 (-709))))) -(-13 (-414) (-397) (-372) (-1053 (-388)) (-1053 (-417 (-574))) (-148) (-10 -8 (-15 -3759 ((-934) (-934))) (-15 -3759 ((-934))) (-15 -2643 ((-934) (-934))) (-15 -3282 ((-574) (-574))) (-15 -3282 ((-574))) (-15 -2066 ((-574) (-574))) (-15 -2066 ((-574))) (-15 -2950 ((-388) $)) (-15 -2950 ($ (-711))) (-15 -4290 ((-574) $)) (-15 -2017 ((-574) $)) (-15 -2308 ($ (-574) (-574) (-934))))) -((-1506 (((-699 |#1|) (-699 |#1|) |#1| |#1|) 85)) (-3502 (((-699 |#1|) (-699 |#1|) |#1|) 66)) (-3525 (((-699 |#1|) (-699 |#1|) |#1|) 86)) (-1695 (((-699 |#1|) (-699 |#1|)) 67)) (-4146 (((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|) 84))) -(((-710 |#1|) (-10 -7 (-15 -1695 ((-699 |#1|) (-699 |#1|))) (-15 -3502 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -3525 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -1506 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -4146 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|))) (-315)) (T -710)) -((-4146 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-710 *3)) (-4 *3 (-315)))) (-1506 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-3525 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-3502 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) -(-10 -7 (-15 -1695 ((-699 |#1|) (-699 |#1|))) (-15 -3502 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -3525 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -1506 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -4146 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-3770 (($ $ $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3646 (($ $ $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL)) (-3932 (($ $ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) 31)) (-2216 (((-574) $) 29)) (-2799 (($ $ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1955 (((-3 (-417 (-574)) "failed") $) NIL)) (-1519 (((-112) $) NIL)) (-4188 (((-417 (-574)) $) NIL)) (-2834 (($ $) NIL) (($) NIL)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1398 (($ $ $ $) NIL)) (-1674 (($ $ $) NIL)) (-1913 (((-112) $) NIL)) (-3765 (($ $ $) NIL)) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3372 (((-112) $) NIL)) (-3512 (((-112) $) NIL)) (-1353 (((-3 $ "failed") $) NIL)) (-1808 (((-112) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2394 (($ $ $ $) NIL)) (-3632 (($ $ $) NIL)) (-4218 (((-934) (-934)) 10) (((-934)) 9)) (-1593 (($ $ $) NIL)) (-3784 (($ $) NIL)) (-4108 (($ $) NIL)) (-2848 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-2953 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-1614 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3289 (($ $) NIL)) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3694 (((-112) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL) (($ $) NIL)) (-2310 (($ $) NIL)) (-3156 (($ $) NIL)) (-1845 (((-227) $) NIL) (((-388) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (((-574) $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) 28) (($ $) NIL) (($ (-574)) 28) (((-324 $) (-324 (-574))) 18)) (-4019 (((-781)) NIL T CONST)) (-3067 (((-112) $ $) NIL)) (-1832 (($ $ $) NIL)) (-3838 (((-112) $ $) NIL)) (-2643 (($) NIL)) (-1842 (((-112) $ $) NIL)) (-1936 (($ $ $ $) NIL)) (-3306 (($ $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL) (($ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) -(((-711) (-13 (-397) (-555) (-10 -8 (-15 -4218 ((-934) (-934))) (-15 -4218 ((-934))) (-15 -2950 ((-324 $) (-324 (-574))))))) (T -711)) -((-4218 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-711)))) (-4218 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-711)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-324 (-574))) (-5 *2 (-324 (-711))) (-5 *1 (-711))))) -(-13 (-397) (-555) (-10 -8 (-15 -4218 ((-934) (-934))) (-15 -4218 ((-934))) (-15 -2950 ((-324 $) (-324 (-574)))))) -((-3976 (((-1 |#4| |#2| |#3|) |#1| (-1192) (-1192)) 19)) (-3639 (((-1 |#4| |#2| |#3|) (-1192)) 12))) -(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3639 ((-1 |#4| |#2| |#3|) (-1192))) (-15 -3976 ((-1 |#4| |#2| |#3|) |#1| (-1192) (-1192)))) (-624 (-546)) (-1233) (-1233) (-1233)) (T -712)) -((-3976 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1192)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7)) (-4 *3 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233)) (-4 *7 (-1233)))) (-3639 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7)) (-4 *4 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233)) (-4 *7 (-1233))))) -(-10 -7 (-15 -3639 ((-1 |#4| |#2| |#3|) (-1192))) (-15 -3976 ((-1 |#4| |#2| |#3|) |#1| (-1192) (-1192)))) -((-3851 (((-1 (-227) (-227) (-227)) |#1| (-1192) (-1192)) 43) (((-1 (-227) (-227)) |#1| (-1192)) 48))) -(((-713 |#1|) (-10 -7 (-15 -3851 ((-1 (-227) (-227)) |#1| (-1192))) (-15 -3851 ((-1 (-227) (-227) (-227)) |#1| (-1192) (-1192)))) (-624 (-546))) (T -713)) -((-3851 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1192)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546))))) (-3851 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546)))))) -(-10 -7 (-15 -3851 ((-1 (-227) (-227)) |#1| (-1192))) (-15 -3851 ((-1 (-227) (-227) (-227)) |#1| (-1192) (-1192)))) -((-2724 (((-1192) |#1| (-1192) (-654 (-1192))) 10) (((-1192) |#1| (-1192) (-1192) (-1192)) 13) (((-1192) |#1| (-1192) (-1192)) 12) (((-1192) |#1| (-1192)) 11))) -(((-714 |#1|) (-10 -7 (-15 -2724 ((-1192) |#1| (-1192))) (-15 -2724 ((-1192) |#1| (-1192) (-1192))) (-15 -2724 ((-1192) |#1| (-1192) (-1192) (-1192))) (-15 -2724 ((-1192) |#1| (-1192) (-654 (-1192))))) (-624 (-546))) (T -714)) -((-2724 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-654 (-1192))) (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2724 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2724 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2724 (*1 *2 *3 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546)))))) -(-10 -7 (-15 -2724 ((-1192) |#1| (-1192))) (-15 -2724 ((-1192) |#1| (-1192) (-1192))) (-15 -2724 ((-1192) |#1| (-1192) (-1192) (-1192))) (-15 -2724 ((-1192) |#1| (-1192) (-654 (-1192))))) -((-2238 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-715 |#1| |#2|) (-10 -7 (-15 -2238 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1233) (-1233)) (T -715)) -((-2238 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-715 *3 *4)) (-4 *3 (-1233)) (-4 *4 (-1233))))) -(-10 -7 (-15 -2238 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-3941 (((-1 |#3| |#2|) (-1192)) 11)) (-3976 (((-1 |#3| |#2|) |#1| (-1192)) 21))) -(((-716 |#1| |#2| |#3|) (-10 -7 (-15 -3941 ((-1 |#3| |#2|) (-1192))) (-15 -3976 ((-1 |#3| |#2|) |#1| (-1192)))) (-624 (-546)) (-1233) (-1233)) (T -716)) -((-3976 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6)) (-4 *3 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6)) (-4 *4 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233))))) -(-10 -7 (-15 -3941 ((-1 |#3| |#2|) (-1192))) (-15 -3976 ((-1 |#3| |#2|) |#1| (-1192)))) -((-2211 (((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -2735 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1283 (-654 (-1188 |#3|))) |#3|) 92)) (-3440 (((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|) 110)) (-3360 (((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1188 |#4|)) (-1283 (-654 (-1188 |#3|))) |#3|) 47))) -(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3360 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1188 |#4|)) (-1283 (-654 (-1188 |#3|))) |#3|)) (-15 -3440 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -2211 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -2735 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1283 (-654 (-1188 |#3|))) |#3|))) (-803) (-860) (-315) (-962 |#3| |#1| |#2|)) (T -717)) -((-2211 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-654 (-1188 *13))) (-5 *3 (-1188 *13)) (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13)) (-5 *7 (-654 (-654 (-2 (|:| -2735 (-781)) (|:| |pcoef| *13))))) (-5 *8 (-654 (-781))) (-5 *9 (-1283 (-654 (-1188 *10)))) (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-962 *10 *11 *12)) (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13)))) (-3440 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1188 *9))) (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781))) (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-962 *9 *10 *11)) (-4 *10 (-803)) (-5 *2 (-654 (-1188 *12))) (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1188 *12)))) (-3360 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-654 (-1188 *11))) (-5 *3 (-1188 *11)) (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781))) (-5 *7 (-1283 (-654 (-1188 *8)))) (-4 *10 (-860)) (-4 *8 (-315)) (-4 *11 (-962 *8 *9 *10)) (-4 *9 (-803)) (-5 *1 (-717 *9 *10 *8 *11))))) -(-10 -7 (-15 -3360 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1188 |#4|)) (-1283 (-654 (-1188 |#3|))) |#3|)) (-15 -3440 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -2211 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -2735 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1283 (-654 (-1188 |#3|))) |#3|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-1401 (($ $) 48)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-4327 (($ |#1| (-781)) 46)) (-1503 (((-781) $) 50)) (-1377 ((|#1| $) 49)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3584 (((-781) $) 51)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-2930 ((|#1| $ (-781)) 47)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-718 |#1|) (-141) (-1064)) (T -718)) -((-3584 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1064)))) (-1401 (*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1064)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1064)))) (-4327 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1064))))) -(-13 (-1064) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3584 ((-781) $)) (-15 -1503 ((-781) $)) (-15 -1377 (|t#1| $)) (-15 -1401 ($ $)) (-15 -2930 (|t#1| $ (-781))) (-15 -4327 ($ |t#1| (-781))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-1786 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-719 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1786 (|#6| (-1 |#4| |#1|) |#3|))) (-566) (-1259 |#1|) (-1259 (-417 |#2|)) (-566) (-1259 |#4|) (-1259 (-417 |#5|))) (T -719)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-566)) (-4 *7 (-566)) (-4 *6 (-1259 *5)) (-4 *2 (-1259 (-417 *8))) (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1259 (-417 *6))) (-4 *8 (-1259 *7))))) -(-10 -7 (-15 -1786 (|#6| (-1 |#4| |#1|) |#3|))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2855 (((-1174) (-872)) 38)) (-1413 (((-1288) (-1174)) 31)) (-4219 (((-1174) (-872)) 28)) (-4091 (((-1174) (-872)) 29)) (-2950 (((-872) $) NIL) (((-1174) (-872)) 27)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-720) (-13 (-1115) (-10 -7 (-15 -2950 ((-1174) (-872))) (-15 -4219 ((-1174) (-872))) (-15 -4091 ((-1174) (-872))) (-15 -2855 ((-1174) (-872))) (-15 -1413 ((-1288) (-1174)))))) (T -720)) -((-2950 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720)))) (-4219 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720)))) (-4091 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-720))))) -(-13 (-1115) (-10 -7 (-15 -2950 ((-1174) (-872))) (-15 -4219 ((-1174) (-872))) (-15 -4091 ((-1174) (-872))) (-15 -2855 ((-1174) (-872))) (-15 -1413 ((-1288) (-1174))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-2799 (($ $ $) NIL)) (-2881 (($ |#1| |#2|) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-3372 (((-112) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2078 ((|#2| $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3039 (((-3 $ "failed") $ $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) ((|#1| $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-721 |#1| |#2| |#3| |#4| |#5|) (-13 (-372) (-10 -8 (-15 -2078 (|#2| $)) (-15 -2950 (|#1| $)) (-15 -2881 ($ |#1| |#2|)) (-15 -3039 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -721)) -((-2078 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2950 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2881 (*1 *1 *2 *3) (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3039 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-372) (-10 -8 (-15 -2078 (|#2| $)) (-15 -2950 (|#1| $)) (-15 -2881 ($ |#1| |#2|)) (-15 -3039 ((-3 $ "failed") $ $)))) -((-2863 (((-112) $ $) 87)) (-3520 (((-112) $) 36)) (-1420 (((-1283 |#1|) $ (-781)) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-3473 (($ (-1188 |#1|)) NIL)) (-4171 (((-1188 $) $ (-1097)) NIL) (((-1188 |#1|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 (-1097))) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-2891 (($ $ $) NIL (|has| |#1| (-566)))) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3296 (($ $) NIL (|has| |#1| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1496 (((-781)) 54 (|has| |#1| (-377)))) (-3186 (($ $ (-781)) NIL)) (-2939 (($ $ (-781)) NIL)) (-2531 ((|#2| |#2|) 50)) (-1720 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-1097) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-1097) $) NIL)) (-3496 (($ $ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) 40)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2881 (($ |#2|) 48)) (-3911 (((-3 $ "failed") $) 97)) (-2834 (($) 58 (|has| |#1| (-377)))) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-1490 (($ $ $) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-566)))) (-3960 (((-2 (|:| -1867 |#1|) (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-566)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1509 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#1| (-922)))) (-2265 (((-971 $)) 89)) (-4389 (($ $ |#1| (-781) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1097) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1097) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2725 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-1167)))) (-4338 (($ (-1188 |#1|) (-1097)) NIL) (($ (-1188 $) (-1097)) NIL)) (-2057 (($ $ (-781)) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) 85) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-1097)) NIL) (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-2078 ((|#2|) 51)) (-1503 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-3558 (($ (-1 (-781) (-781)) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3707 (((-1188 |#1|) $) NIL)) (-1803 (((-3 (-1097) "failed") $) NIL)) (-3271 (((-934) $) NIL (|has| |#1| (-377)))) (-2868 ((|#2| $) 47)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) 34)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3945 (((-1174) $) NIL)) (-1466 (((-2 (|:| -4415 $) (|:| -1484 $)) $ (-781)) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| (-1097)) (|:| -2017 (-781))) "failed") $) NIL)) (-1578 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#1| (-1167)) CONST)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1493 (($ $) 88 (|has| |#1| (-358)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1097) |#1|) NIL) (($ $ (-654 (-1097)) (-654 |#1|)) NIL) (($ $ (-1097) $) NIL) (($ $ (-654 (-1097)) (-654 $)) NIL)) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-2208 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-2595 (((-3 $ "failed") $ (-781)) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 98 (|has| |#1| (-372)))) (-1738 (($ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3878 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3584 (((-781) $) 38) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1097) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3631 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2249 (((-971 $)) 42)) (-2228 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2950 (((-872) $) 68) (($ (-574)) NIL) (($ |#1|) 65) (($ (-1097)) NIL) (($ |#2|) 75) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-781)) 70) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2142 (($) 25 T CONST)) (-3008 (((-1283 |#1|) $) 83)) (-3076 (($ (-1283 |#1|)) 57)) (-2154 (($) 8 T CONST)) (-3583 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4326 (((-1283 |#1|) $) NIL)) (-2985 (((-112) $ $) 76)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) 79) (($ $ $) NIL)) (-3074 (($ $ $) 39)) (** (($ $ (-934)) NIL) (($ $ (-781)) 92)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 64) (($ $ $) 82) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) -(((-722 |#1| |#2|) (-13 (-1259 |#1|) (-626 |#2|) (-10 -8 (-15 -2531 (|#2| |#2|)) (-15 -2078 (|#2|)) (-15 -2881 ($ |#2|)) (-15 -2868 (|#2| $)) (-15 -3008 ((-1283 |#1|) $)) (-15 -3076 ($ (-1283 |#1|))) (-15 -4326 ((-1283 |#1|) $)) (-15 -2265 ((-971 $))) (-15 -2249 ((-971 $))) (IF (|has| |#1| (-358)) (-15 -1493 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|))) (-1064) (-1259 |#1|)) (T -722)) -((-2531 (*1 *2 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1259 *3)))) (-2078 (*1 *2) (-12 (-4 *2 (-1259 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1064)))) (-2881 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1259 *3)))) (-2868 (*1 *2 *1) (-12 (-4 *2 (-1259 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1064)))) (-3008 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-5 *2 (-1283 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1259 *3)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1064)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1259 *3)))) (-4326 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-5 *2 (-1283 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1259 *3)))) (-2265 (*1 *2) (-12 (-4 *3 (-1064)) (-5 *2 (-971 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1259 *3)))) (-2249 (*1 *2) (-12 (-4 *3 (-1064)) (-5 *2 (-971 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1259 *3)))) (-1493 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *2 (-1064)) (-5 *1 (-722 *2 *3)) (-4 *3 (-1259 *2))))) -(-13 (-1259 |#1|) (-626 |#2|) (-10 -8 (-15 -2531 (|#2| |#2|)) (-15 -2078 (|#2|)) (-15 -2881 ($ |#2|)) (-15 -2868 (|#2| $)) (-15 -3008 ((-1283 |#1|) $)) (-15 -3076 ($ (-1283 |#1|))) (-15 -4326 ((-1283 |#1|) $)) (-15 -2265 ((-971 $))) (-15 -2249 ((-971 $))) (IF (|has| |#1| (-358)) (-15 -1493 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|))) -((-2863 (((-112) $ $) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-2590 ((|#1| $) 13)) (-3939 (((-1135) $) NIL)) (-2017 ((|#2| $) 12)) (-2962 (($ |#1| |#2|) 16)) (-2950 (((-872) $) NIL) (($ (-2 (|:| -2590 |#1|) (|:| -2017 |#2|))) 15) (((-2 (|:| -2590 |#1|) (|:| -2017 |#2|)) $) 14)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 11))) -(((-723 |#1| |#2| |#3|) (-13 (-860) (-500 (-2 (|:| -2590 |#1|) (|:| -2017 |#2|))) (-10 -8 (-15 -2017 (|#2| $)) (-15 -2590 (|#1| $)) (-15 -2962 ($ |#1| |#2|)))) (-860) (-1115) (-1 (-112) (-2 (|:| -2590 |#1|) (|:| -2017 |#2|)) (-2 (|:| -2590 |#1|) (|:| -2017 |#2|)))) (T -723)) -((-2017 (*1 *2 *1) (-12 (-4 *2 (-1115)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860)) (-14 *4 (-1 (-112) (-2 (|:| -2590 *3) (|:| -2017 *2)) (-2 (|:| -2590 *3) (|:| -2017 *2)))))) (-2590 (*1 *2 *1) (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1115)) (-14 *4 (-1 (-112) (-2 (|:| -2590 *2) (|:| -2017 *3)) (-2 (|:| -2590 *2) (|:| -2017 *3)))))) (-2962 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1115)) (-14 *4 (-1 (-112) (-2 (|:| -2590 *2) (|:| -2017 *3)) (-2 (|:| -2590 *2) (|:| -2017 *3))))))) -(-13 (-860) (-500 (-2 (|:| -2590 |#1|) (|:| -2017 |#2|))) (-10 -8 (-15 -2017 (|#2| $)) (-15 -2590 (|#1| $)) (-15 -2962 ($ |#1| |#2|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 66)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2216 ((|#1| $) NIL) (((-115) $) 39)) (-3911 (((-3 $ "failed") $) 103)) (-3189 ((|#2| (-115) |#2|) 93)) (-3372 (((-112) $) NIL)) (-2189 (($ |#1| (-370 (-115))) 14)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3329 (($ $ (-1 |#2| |#2|)) 65)) (-1980 (($ $ (-1 |#2| |#2|)) 44)) (-2208 ((|#2| $ |#2|) 33)) (-3165 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2950 (((-872) $) 73) (($ (-574)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) 37 T CONST)) (-3838 (((-112) $ $) NIL)) (-3132 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2142 (($) 21 T CONST)) (-2154 (($) 9 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) 48) (($ $ $) NIL)) (-3074 (($ $ $) 83)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) 64)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) -(((-724 |#1| |#2|) (-13 (-1064) (-1053 |#1|) (-1053 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3132 ($ $)) (-15 -3132 ($ $ $)) (-15 -3165 (|#1| |#1|))) |%noBranch|) (-15 -1980 ($ $ (-1 |#2| |#2|))) (-15 -3329 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3189 (|#2| (-115) |#2|)) (-15 -2189 ($ |#1| (-370 (-115)))))) (-1064) (-658 |#1|)) (T -724)) -((-3132 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-3132 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-3165 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-1980 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1064)) (-5 *1 (-724 *3 *4)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1064)) (-5 *1 (-724 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1064)) (-5 *1 (-724 *4 *5)) (-4 *5 (-658 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *3 (-1064)) (-5 *1 (-724 *3 *4)) (-4 *4 (-658 *3)))) (-3189 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1064)) (-5 *1 (-724 *4 *2)) (-4 *2 (-658 *4)))) (-2189 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1064)) (-5 *1 (-724 *2 *4)) (-4 *4 (-658 *2))))) -(-13 (-1064) (-1053 |#1|) (-1053 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3132 ($ $)) (-15 -3132 ($ $ $)) (-15 -3165 (|#1| |#1|))) |%noBranch|) (-15 -1980 ($ $ (-1 |#2| |#2|))) (-15 -3329 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3189 (|#2| (-115) |#2|)) (-15 -2189 ($ |#1| (-370 (-115)))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 33)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-2881 (($ |#1| |#2|) 25)) (-3911 (((-3 $ "failed") $) 51)) (-3372 (((-112) $) 35)) (-2078 ((|#2| $) 12)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 52)) (-3939 (((-1135) $) NIL)) (-3039 (((-3 $ "failed") $ $) 50)) (-2950 (((-872) $) 24) (($ (-574)) 19) ((|#1| $) 13)) (-4019 (((-781)) 28 T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 16 T CONST)) (-2154 (($) 30 T CONST)) (-2985 (((-112) $ $) 41)) (-3089 (($ $) 46) (($ $ $) 40)) (-3074 (($ $ $) 43)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21) (($ $ $) 20))) -(((-725 |#1| |#2| |#3| |#4| |#5|) (-13 (-1064) (-10 -8 (-15 -2078 (|#2| $)) (-15 -2950 (|#1| $)) (-15 -2881 ($ |#1| |#2|)) (-15 -3039 ((-3 $ "failed") $ $)) (-15 -3911 ((-3 $ "failed") $)) (-15 -1327 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -725)) -((-3911 (*1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2078 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2950 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2881 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3039 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1327 (*1 *1 *1) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1064) (-10 -8 (-15 -2078 (|#2| $)) (-15 -2950 (|#1| $)) (-15 -2881 ($ |#1| |#2|)) (-15 -3039 ((-3 $ "failed") $ $)) (-15 -3911 ((-3 $ "failed") $)) (-15 -1327 ($ $)))) -((* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-726 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) (-727 |#2|) (-174)) (T -726)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 15)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-2971 ((|#1| $) 23)) (-3634 (($ $ $) NIL (|has| |#1| (-801)))) (-4380 (($ $ $) NIL (|has| |#1| (-801)))) (-1489 (((-1175) $) 48)) (-3940 (((-1136) $) NIL)) (-2981 ((|#3| $) 24)) (-2951 (((-872) $) 43)) (-4069 (((-112) $ $) 22)) (-2141 (($) 10 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-801)))) (-2986 (((-112) $ $) 20)) (-3030 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3009 (((-112) $ $) 26 (|has| |#1| (-801)))) (-3103 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3090 (($ $) 17) (($ $ $) NIL)) (-3074 (($ $ $) 29)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-672 |#1| |#2| |#3|) (-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2971 (|#1| $)) (-15 -2981 (|#3| $)))) (-727 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -672)) +((-3103 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3103 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-727 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2971 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-727 *3)) (-5 *1 (-672 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2981 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4))))) +(-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2971 (|#1| $)) (-15 -2981 (|#3| $)))) +((-3777 (((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|)) 33))) +(((-673 |#1|) (-10 -7 (-15 -3777 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|)))) (-923)) (T -673)) +((-3777 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 *4))) (-5 *3 (-1189 *4)) (-4 *4 (-923)) (-5 *1 (-673 *4))))) +(-10 -7 (-15 -3777 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-1663 (((-654 |#1|) $) 84)) (-2825 (($ $ (-781)) 94)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-3369 (((-1308 |#1| |#2|) (-1308 |#1| |#2|) $) 50)) (-1704 (((-3 (-682 |#1|) "failed") $) NIL)) (-2214 (((-682 |#1|) $) NIL)) (-1402 (($ $) 93)) (-3023 (((-781) $) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-3806 (($ (-682 |#1|) |#2|) 70)) (-3856 (($ $) 89)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-4067 (((-1308 |#1| |#2|) (-1308 |#1| |#2|) $) 49)) (-3011 (((-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1366 (((-682 |#1|) $) NIL)) (-1378 ((|#2| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2661 (($ $ |#1| $) 32) (($ $ (-654 |#1|) (-654 $)) 34)) (-3580 (((-781) $) 91)) (-2963 (($ $ $) 20) (($ (-682 |#1|) (-682 |#1|)) 79) (($ (-682 |#1|) $) 77) (($ $ (-682 |#1|)) 78)) (-2951 (((-872) $) NIL) (($ |#1|) 76) (((-1299 |#1| |#2|) $) 60) (((-1308 |#1| |#2|) $) 43) (($ (-682 |#1|)) 27)) (-1634 (((-654 |#2|) $) NIL)) (-2706 ((|#2| $ (-682 |#1|)) NIL)) (-1866 ((|#2| (-1308 |#1| |#2|) $) 45)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 23 T CONST)) (-4148 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3246 (((-3 $ "failed") (-1299 |#1| |#2|)) 62)) (-2961 (($ (-682 |#1|)) 14)) (-2986 (((-112) $ $) 46)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) 68) (($ $ $) NIL)) (-3074 (($ $ $) 31)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-682 |#1|)) NIL))) +(((-674 |#1| |#2|) (-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -3246 ((-3 $ "failed") (-1299 |#1| |#2|))) (-15 -2963 ($ (-682 |#1|) (-682 |#1|))) (-15 -2963 ($ (-682 |#1|) $)) (-15 -2963 ($ $ (-682 |#1|))))) (-860) (-174)) (T -674)) +((-3246 (*1 *1 *2) (|partial| -12 (-5 *2 (-1299 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-674 *3 *4)))) (-2963 (*1 *1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2963 (*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2963 (*1 *1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174))))) +(-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -3246 ((-3 $ "failed") (-1299 |#1| |#2|))) (-15 -2963 ($ (-682 |#1|) (-682 |#1|))) (-15 -2963 ($ (-682 |#1|) $)) (-15 -2963 ($ $ (-682 |#1|))))) +((-3861 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-4140 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1923 (($ (-1 (-112) |#2|) $) 29)) (-2412 (($ $) 65)) (-2088 (($ $) 74)) (-2424 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2882 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-1452 (((-574) |#2| $ (-574)) 71) (((-574) |#2| $) NIL) (((-574) (-1 (-112) |#2|) $) 54)) (-3764 (($ (-781) |#2|) 63)) (-4349 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3404 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1785 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1795 (($ |#2|) 15)) (-3285 (($ $ $ (-574)) 42) (($ |#2| $ (-574)) 40)) (-2183 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-4385 (($ $ (-1251 (-574))) 51) (($ $ (-574)) 44)) (-4036 (($ $ $ (-574)) 70)) (-3157 (($ $) 68)) (-3009 (((-112) $ $) 76))) +(((-675 |#1| |#2|) (-10 -8 (-15 -1795 (|#1| |#2|)) (-15 -4385 (|#1| |#1| (-574))) (-15 -4385 (|#1| |#1| (-1251 (-574)))) (-15 -2424 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3285 (|#1| |#2| |#1| (-574))) (-15 -3285 (|#1| |#1| |#1| (-574))) (-15 -4349 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1923 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2424 (|#1| |#2| |#1|)) (-15 -2088 (|#1| |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -3404 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3861 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -3404 (|#1| |#1| |#1|)) (-15 -3861 ((-112) |#1|)) (-15 -4036 (|#1| |#1| |#1| (-574))) (-15 -2412 (|#1| |#1|)) (-15 -4140 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| (-781) |#2|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 (|#1| |#1|))) (-676 |#2|) (-1234)) (T -675)) +NIL +(-10 -8 (-15 -1795 (|#1| |#2|)) (-15 -4385 (|#1| |#1| (-574))) (-15 -4385 (|#1| |#1| (-1251 (-574)))) (-15 -2424 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3285 (|#1| |#2| |#1| (-574))) (-15 -3285 (|#1| |#1| |#1| (-574))) (-15 -4349 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1923 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2424 (|#1| |#2| |#1|)) (-15 -2088 (|#1| |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -3404 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3861 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -3404 (|#1| |#1| |#1|)) (-15 -3861 ((-112) |#1|)) (-15 -4036 (|#1| |#1| |#1| (-574))) (-15 -2412 (|#1| |#1|)) (-15 -4140 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| (-781) |#2|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 (|#1| |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-2421 ((|#1| $) 66)) (-1978 (($ $) 68)) (-2985 (((-1289) $ (-574) (-574)) 99 (|has| $ (-6 -4460)))) (-1652 (($ $ (-574)) 53 (|has| $ (-6 -4460)))) (-3861 (((-112) $) 144 (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-4140 (($ $) 148 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4460)))) (-2786 (($ $) 143 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-3146 (((-112) $ (-781)) 8)) (-4433 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3370 (($ $ $) 57 (|has| $ (-6 -4460)))) (-2523 ((|#1| $ |#1|) 55 (|has| $ (-6 -4460)))) (-2186 ((|#1| $ |#1|) 59 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4460))) (($ $ "rest" $) 56 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 119 (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-1923 (($ (-1 (-112) |#1|) $) 131)) (-2172 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4459)))) (-2408 ((|#1| $) 67)) (-3250 (($) 7 T CONST)) (-2412 (($ $) 146 (|has| $ (-6 -4460)))) (-4425 (($ $) 136)) (-2935 (($ $) 74) (($ $ (-781)) 72)) (-2088 (($ $) 133 (|has| |#1| (-1116)))) (-2804 (($ $) 101 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2424 (($ |#1| $) 132 (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) 127)) (-3311 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4459))) (($ |#1| $) 102 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2473 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 89)) (-4186 (((-112) $) 85)) (-1452 (((-574) |#1| $ (-574)) 141 (|has| |#1| (-1116))) (((-574) |#1| $) 140 (|has| |#1| (-1116))) (((-574) (-1 (-112) |#1|) $) 139)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) 51)) (-2622 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) 111)) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 97 (|has| (-574) (-860)))) (-3634 (($ $ $) 149 (|has| |#1| (-860)))) (-4349 (($ $ $) 134 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-3404 (($ $ $) 142 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 96 (|has| (-574) (-860)))) (-4380 (($ $ $) 150 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1795 (($ |#1|) 124)) (-1653 (((-112) $ (-781)) 10)) (-3483 (((-654 |#1|) $) 46)) (-1580 (((-112) $) 50)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3334 ((|#1| $) 71) (($ $ (-781)) 69)) (-3285 (($ $ $ (-574)) 129) (($ |#1| $ (-574)) 128)) (-1602 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-1393 (((-654 (-574)) $) 94)) (-1506 (((-112) (-574) $) 93)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 77) (($ $ (-781)) 75)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1822 (($ $ |#1|) 98 (|has| $ (-6 -4460)))) (-3070 (((-112) $) 86)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) 92)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1251 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-3615 (((-574) $ $) 45)) (-4385 (($ $ (-1251 (-574))) 126) (($ $ (-574)) 125)) (-2855 (($ $ (-1251 (-574))) 116) (($ $ (-574)) 115)) (-3911 (((-112) $) 47)) (-1939 (($ $) 63)) (-2043 (($ $) 60 (|has| $ (-6 -4460)))) (-1746 (((-781) $) 64)) (-2386 (($ $) 65)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-4036 (($ $ $ (-574)) 145 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 109)) (-2982 (($ $ $) 62) (($ $ |#1|) 61)) (-4132 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) 52)) (-4208 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 152 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 153 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3030 (((-112) $ $) 151 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 154 (|has| |#1| (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-676 |#1|) (-141) (-1234)) (T -676)) +((-1795 (*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1234))))) +(-13 (-1165 |t#1|) (-382 |t#1|) (-290 |t#1|) (-10 -8 (-15 -1795 ($ |t#1|)))) +(((-34) . T) ((-102) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-290 |#1|) . T) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1026 |#1|) . T) ((-1116) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-1165 |#1|) . T) ((-1234) . T) ((-1272 |#1|) . T)) +((-3987 (((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|))))) (-654 (-654 |#1|)) (-654 (-1284 |#1|))) 22) (((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|))))) (-699 |#1|) (-654 (-1284 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|)))) (-654 (-654 |#1|)) (-1284 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|)) 14)) (-3558 (((-781) (-699 |#1|) (-1284 |#1|)) 30)) (-4091 (((-3 (-1284 |#1|) "failed") (-699 |#1|) (-1284 |#1|)) 24)) (-3365 (((-112) (-699 |#1|) (-1284 |#1|)) 27))) +(((-677 |#1|) (-10 -7 (-15 -3987 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|))) (-15 -3987 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|)))) (-654 (-654 |#1|)) (-1284 |#1|))) (-15 -3987 ((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|))))) (-699 |#1|) (-654 (-1284 |#1|)))) (-15 -3987 ((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|))))) (-654 (-654 |#1|)) (-654 (-1284 |#1|)))) (-15 -4091 ((-3 (-1284 |#1|) "failed") (-699 |#1|) (-1284 |#1|))) (-15 -3365 ((-112) (-699 |#1|) (-1284 |#1|))) (-15 -3558 ((-781) (-699 |#1|) (-1284 |#1|)))) (-372)) (T -677)) +((-3558 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-677 *5)))) (-3365 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-372)) (-5 *2 (-112)) (-5 *1 (-677 *5)))) (-4091 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1284 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *1 (-677 *4)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1284 *5) "failed")) (|:| -2391 (-654 (-1284 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1284 *5))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1284 *5) "failed")) (|:| -2391 (-654 (-1284 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1284 *5))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1284 *5) "failed")) (|:| -2391 (-654 (-1284 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1284 *5)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1284 *5) "failed")) (|:| -2391 (-654 (-1284 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1284 *5))))) +(-10 -7 (-15 -3987 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|))) (-15 -3987 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|)))) (-654 (-654 |#1|)) (-1284 |#1|))) (-15 -3987 ((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|))))) (-699 |#1|) (-654 (-1284 |#1|)))) (-15 -3987 ((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|))))) (-654 (-654 |#1|)) (-654 (-1284 |#1|)))) (-15 -4091 ((-3 (-1284 |#1|) "failed") (-699 |#1|) (-1284 |#1|))) (-15 -3365 ((-112) (-699 |#1|) (-1284 |#1|))) (-15 -3558 ((-781) (-699 |#1|) (-1284 |#1|)))) +((-3987 (((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2391 (-654 |#3|)))) |#4| (-654 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2391 (-654 |#3|))) |#4| |#3|) 60)) (-3558 (((-781) |#4| |#3|) 18)) (-4091 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3365 (((-112) |#4| |#3|) 14))) +(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3987 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2391 (-654 |#3|))) |#4| |#3|)) (-15 -3987 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2391 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -4091 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3365 ((-112) |#4| |#3|)) (-15 -3558 ((-781) |#4| |#3|))) (-372) (-13 (-382 |#1|) (-10 -7 (-6 -4460))) (-13 (-382 |#1|) (-10 -7 (-6 -4460))) (-697 |#1| |#2| |#3|)) (T -678)) +((-3558 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-781)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-3365 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-112)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-4091 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-372)) (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4460)))) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460)))) (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2)))) (-3987 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-654 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2391 (-654 *7))))) (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7)) (-4 *3 (-697 *5 *6 *7)))) (-3987 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) +(-10 -7 (-15 -3987 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2391 (-654 |#3|))) |#4| |#3|)) (-15 -3987 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2391 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -4091 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3365 ((-112) |#4| |#3|)) (-15 -3558 ((-781) |#4| |#3|))) +((-2479 (((-2 (|:| |particular| (-3 (-1284 (-417 |#4|)) "failed")) (|:| -2391 (-654 (-1284 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)) 51))) +(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2479 ((-2 (|:| |particular| (-3 (-1284 (-417 |#4|)) "failed")) (|:| -2391 (-654 (-1284 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)))) (-566) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -679)) +((-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |particular| (-3 (-1284 (-417 *8)) "failed")) (|:| -2391 (-654 (-1284 (-417 *8)))))) (-5 *1 (-679 *5 *6 *7 *8))))) +(-10 -7 (-15 -2479 ((-2 (|:| |particular| (-3 (-1284 (-417 |#4|)) "failed")) (|:| -2391 (-654 (-1284 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4098 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-1644 ((|#2| $) NIL)) (-3399 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-1379 (((-1284 (-699 |#2|))) NIL) (((-1284 (-699 |#2|)) (-1284 $)) NIL)) (-2711 (((-112) $) NIL)) (-3610 (((-1284 $)) 42)) (-3146 (((-112) $ (-781)) NIL)) (-2317 (($ |#2|) NIL)) (-3250 (($) NIL T CONST)) (-1430 (($ $) NIL (|has| |#2| (-315)))) (-1959 (((-246 |#1| |#2|) $ (-574)) NIL)) (-4004 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-3511 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-1519 (((-699 |#2|)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-2569 ((|#2| $) NIL)) (-4438 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1284 $)) NIL)) (-1657 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-4436 (((-1189 (-966 |#2|))) NIL (|has| |#2| (-372)))) (-3066 (($ $ (-935)) NIL)) (-2416 ((|#2| $) NIL)) (-3831 (((-1189 |#2|) $) NIL (|has| |#2| (-566)))) (-3061 ((|#2|) NIL) ((|#2| (-1284 $)) NIL)) (-2026 (((-1189 |#2|) $) NIL)) (-2766 (((-112)) NIL)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) ((|#2| $) NIL)) (-2580 (($ (-1284 |#2|)) NIL) (($ (-1284 |#2|) (-1284 $)) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3558 (((-781) $) NIL (|has| |#2| (-566))) (((-935)) 43)) (-2400 ((|#2| $ (-574) (-574)) NIL)) (-1357 (((-112)) NIL)) (-4081 (($ $ (-935)) NIL)) (-1871 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4226 (((-112) $) NIL)) (-2893 (((-781) $) NIL (|has| |#2| (-566)))) (-1381 (((-654 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-566)))) (-2197 (((-781) $) NIL)) (-4428 (((-112)) NIL)) (-2206 (((-781) $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-1706 ((|#2| $) NIL (|has| |#2| (-6 (-4461 "*"))))) (-2219 (((-574) $) NIL)) (-2126 (((-574) $) NIL)) (-2036 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3352 (((-574) $) NIL)) (-1695 (((-574) $) NIL)) (-2924 (($ (-654 (-654 |#2|))) NIL)) (-2462 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2014 (((-654 (-654 |#2|)) $) NIL)) (-4324 (((-112)) NIL)) (-3357 (((-112)) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-3946 (((-3 (-2 (|:| |particular| $) (|:| -2391 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-3923 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-1321 (((-699 |#2|)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-3555 ((|#2| $) NIL)) (-3659 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1284 $)) NIL)) (-3144 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-2625 (((-1189 (-966 |#2|))) NIL (|has| |#2| (-372)))) (-4308 (($ $ (-935)) NIL)) (-2448 ((|#2| $) NIL)) (-2122 (((-1189 |#2|) $) NIL (|has| |#2| (-566)))) (-4052 ((|#2|) NIL) ((|#2| (-1284 $)) NIL)) (-4169 (((-1189 |#2|) $) NIL)) (-4035 (((-112)) NIL)) (-1489 (((-1175) $) NIL)) (-2381 (((-112)) NIL)) (-3120 (((-112)) NIL)) (-3338 (((-112)) NIL)) (-3593 (((-3 $ "failed") $) NIL (|has| |#2| (-372)))) (-3940 (((-1136) $) NIL)) (-3453 (((-112)) NIL)) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-3449 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) 28) ((|#2| $ (-574)) NIL)) (-3879 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2366 ((|#2| $) NIL)) (-1761 (($ (-654 |#2|)) NIL)) (-4049 (((-112) $) NIL)) (-4401 (((-246 |#1| |#2|) $) NIL)) (-1386 ((|#2| $) NIL (|has| |#2| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3157 (($ $) NIL)) (-1385 (((-699 |#2|) (-1284 $)) NIL) (((-1284 |#2|) $) NIL) (((-699 |#2|) (-1284 $) (-1284 $)) NIL) (((-1284 |#2|) $ (-1284 $)) 31)) (-1844 (($ (-1284 |#2|)) NIL) (((-1284 |#2|) $) NIL)) (-3983 (((-654 (-966 |#2|))) NIL) (((-654 (-966 |#2|)) (-1284 $)) NIL)) (-3955 (($ $ $) NIL)) (-2170 (((-112)) NIL)) (-1425 (((-246 |#1| |#2|) $ (-574)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1054 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) 41)) (-2717 (((-654 (-1284 |#2|))) NIL (|has| |#2| (-566)))) (-4010 (($ $ $ $) NIL)) (-3233 (((-112)) NIL)) (-2912 (($ (-699 |#2|) $) NIL)) (-2020 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2649 (((-112) $) NIL)) (-4099 (($ $ $) NIL)) (-3127 (((-112)) NIL)) (-4280 (((-112)) NIL)) (-4024 (((-112)) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#2| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-680 |#1| |#2|) (-13 (-1139 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|)) (-935) (-174)) (T -680)) +NIL +(-13 (-1139 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|)) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3123 (((-654 (-1151)) $) 10)) (-2951 (((-872) $) 16) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-681) (-13 (-1099) (-10 -8 (-15 -3123 ((-654 (-1151)) $))))) (T -681)) +((-3123 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-681))))) +(-13 (-1099) (-10 -8 (-15 -3123 ((-654 (-1151)) $)))) +((-2864 (((-112) $ $) NIL)) (-1663 (((-654 |#1|) $) NIL)) (-3878 (($ $) 62)) (-3566 (((-112) $) NIL)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2917 (((-3 $ "failed") (-829 |#1|)) 27)) (-2440 (((-112) (-829 |#1|)) 17)) (-4020 (($ (-829 |#1|)) 28)) (-2667 (((-112) $ $) 36)) (-4109 (((-935) $) 43)) (-3865 (($ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4202 (((-654 $) (-829 |#1|)) 19)) (-2951 (((-872) $) 51) (($ |#1|) 40) (((-829 |#1|) $) 47) (((-687 |#1|) $) 52)) (-4069 (((-112) $ $) NIL)) (-2565 (((-59 (-654 $)) (-654 |#1|) (-935)) 67)) (-3046 (((-654 $) (-654 |#1|) (-935)) 70)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 63)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 46))) +(((-682 |#1|) (-13 (-860) (-1054 |#1|) (-10 -8 (-15 -3566 ((-112) $)) (-15 -3865 ($ $)) (-15 -3878 ($ $)) (-15 -4109 ((-935) $)) (-15 -2667 ((-112) $ $)) (-15 -2951 ((-829 |#1|) $)) (-15 -2951 ((-687 |#1|) $)) (-15 -4202 ((-654 $) (-829 |#1|))) (-15 -2440 ((-112) (-829 |#1|))) (-15 -4020 ($ (-829 |#1|))) (-15 -2917 ((-3 $ "failed") (-829 |#1|))) (-15 -1663 ((-654 |#1|) $)) (-15 -2565 ((-59 (-654 $)) (-654 |#1|) (-935))) (-15 -3046 ((-654 $) (-654 |#1|) (-935))))) (-860)) (T -682)) +((-3566 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-3865 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-3878 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2667 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-4202 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-682 *4))) (-5 *1 (-682 *4)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112)) (-5 *1 (-682 *4)))) (-4020 (*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-2917 (*1 *1 *2) (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-935)) (-4 *5 (-860)) (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5)))) (-3046 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-935)) (-4 *5 (-860)) (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5))))) +(-13 (-860) (-1054 |#1|) (-10 -8 (-15 -3566 ((-112) $)) (-15 -3865 ($ $)) (-15 -3878 ($ $)) (-15 -4109 ((-935) $)) (-15 -2667 ((-112) $ $)) (-15 -2951 ((-829 |#1|) $)) (-15 -2951 ((-687 |#1|) $)) (-15 -4202 ((-654 $) (-829 |#1|))) (-15 -2440 ((-112) (-829 |#1|))) (-15 -4020 ($ (-829 |#1|))) (-15 -2917 ((-3 $ "failed") (-829 |#1|))) (-15 -1663 ((-654 |#1|) $)) (-15 -2565 ((-59 (-654 $)) (-654 |#1|) (-935))) (-15 -3046 ((-654 $) (-654 |#1|) (-935))))) +((-3079 ((|#2| $) 100)) (-1978 (($ $) 121)) (-3146 (((-112) $ (-781)) 35)) (-2935 (($ $) 109) (($ $ (-781)) 112)) (-4186 (((-112) $) 122)) (-1482 (((-654 $) $) 96)) (-2622 (((-112) $ $) 92)) (-2189 (((-112) $ (-781)) 33)) (-3429 (((-574) $) 66)) (-1698 (((-574) $) 65)) (-1653 (((-112) $ (-781)) 31)) (-1580 (((-112) $) 98)) (-3334 ((|#2| $) 113) (($ $ (-781)) 117)) (-1602 (($ $ $ (-574)) 83) (($ |#2| $ (-574)) 82)) (-1393 (((-654 (-574)) $) 64)) (-1506 (((-112) (-574) $) 59)) (-2925 ((|#2| $) NIL) (($ $ (-781)) 108)) (-2433 (($ $ (-574)) 125)) (-3070 (((-112) $) 124)) (-3449 (((-112) (-1 (-112) |#2|) $) 42)) (-2315 (((-654 |#2|) $) 46)) (-2207 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1251 (-574))) 79) ((|#2| $ (-574)) 57) ((|#2| $ (-574) |#2|) 58)) (-3615 (((-574) $ $) 91)) (-2855 (($ $ (-1251 (-574))) 78) (($ $ (-574)) 72)) (-3911 (((-112) $) 87)) (-1939 (($ $) 105)) (-1746 (((-781) $) 104)) (-2386 (($ $) 103)) (-2963 (($ (-654 |#2|)) 53)) (-2916 (($ $) 126)) (-4163 (((-654 $) $) 90)) (-4208 (((-112) $ $) 89)) (-2020 (((-112) (-1 (-112) |#2|) $) 41)) (-2986 (((-112) $ $) 20)) (-2877 (((-781) $) 39))) +(((-683 |#1| |#2|) (-10 -8 (-15 -2916 (|#1| |#1|)) (-15 -2433 (|#1| |#1| (-574))) (-15 -4186 ((-112) |#1|)) (-15 -3070 ((-112) |#1|)) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -2315 ((-654 |#2|) |#1|)) (-15 -1506 ((-112) (-574) |#1|)) (-15 -1393 ((-654 (-574)) |#1|)) (-15 -1698 ((-574) |#1|)) (-15 -3429 ((-574) |#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1939 (|#1| |#1|)) (-15 -1746 ((-781) |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3334 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "last")) (-15 -3334 (|#2| |#1|)) (-15 -2935 (|#1| |#1| (-781))) (-15 -2207 (|#1| |#1| "rest")) (-15 -2935 (|#1| |#1|)) (-15 -2925 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "first")) (-15 -2925 (|#2| |#1|)) (-15 -2622 ((-112) |#1| |#1|)) (-15 -4208 ((-112) |#1| |#1|)) (-15 -3615 ((-574) |#1| |#1|)) (-15 -3911 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -3079 (|#2| |#1|)) (-15 -1580 ((-112) |#1|)) (-15 -1482 ((-654 |#1|) |#1|)) (-15 -4163 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -3449 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -3146 ((-112) |#1| (-781))) (-15 -2189 ((-112) |#1| (-781))) (-15 -1653 ((-112) |#1| (-781)))) (-684 |#2|) (-1234)) (T -683)) +NIL +(-10 -8 (-15 -2916 (|#1| |#1|)) (-15 -2433 (|#1| |#1| (-574))) (-15 -4186 ((-112) |#1|)) (-15 -3070 ((-112) |#1|)) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -2315 ((-654 |#2|) |#1|)) (-15 -1506 ((-112) (-574) |#1|)) (-15 -1393 ((-654 (-574)) |#1|)) (-15 -1698 ((-574) |#1|)) (-15 -3429 ((-574) |#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1939 (|#1| |#1|)) (-15 -1746 ((-781) |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3334 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "last")) (-15 -3334 (|#2| |#1|)) (-15 -2935 (|#1| |#1| (-781))) (-15 -2207 (|#1| |#1| "rest")) (-15 -2935 (|#1| |#1|)) (-15 -2925 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "first")) (-15 -2925 (|#2| |#1|)) (-15 -2622 ((-112) |#1| |#1|)) (-15 -4208 ((-112) |#1| |#1|)) (-15 -3615 ((-574) |#1| |#1|)) (-15 -3911 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -3079 (|#2| |#1|)) (-15 -1580 ((-112) |#1|)) (-15 -1482 ((-654 |#1|) |#1|)) (-15 -4163 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -3449 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -3146 ((-112) |#1| (-781))) (-15 -2189 ((-112) |#1| (-781))) (-15 -1653 ((-112) |#1| (-781)))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-2421 ((|#1| $) 66)) (-1978 (($ $) 68)) (-2985 (((-1289) $ (-574) (-574)) 99 (|has| $ (-6 -4460)))) (-1652 (($ $ (-574)) 53 (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) 8)) (-4433 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3370 (($ $ $) 57 (|has| $ (-6 -4460)))) (-2523 ((|#1| $ |#1|) 55 (|has| $ (-6 -4460)))) (-2186 ((|#1| $ |#1|) 59 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4460))) (($ $ "rest" $) 56 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 119 (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) 104)) (-2408 ((|#1| $) 67)) (-3250 (($) 7 T CONST)) (-2335 (($ $) 126)) (-2935 (($ $) 74) (($ $ (-781)) 72)) (-2804 (($ $) 101 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 102 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 105)) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2473 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 89)) (-4186 (((-112) $) 85)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-4141 (((-781) $) 125)) (-1482 (((-654 $) $) 51)) (-2622 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) 111)) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 97 (|has| (-574) (-860)))) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 96 (|has| (-574) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1653 (((-112) $ (-781)) 10)) (-3483 (((-654 |#1|) $) 46)) (-1580 (((-112) $) 50)) (-1673 (($ $) 128)) (-3664 (((-112) $) 129)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3334 ((|#1| $) 71) (($ $ (-781)) 69)) (-1602 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-1393 (((-654 (-574)) $) 94)) (-1506 (((-112) (-574) $) 93)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-4130 ((|#1| $) 127)) (-2925 ((|#1| $) 77) (($ $ (-781)) 75)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1822 (($ $ |#1|) 98 (|has| $ (-6 -4460)))) (-2433 (($ $ (-574)) 124)) (-3070 (((-112) $) 86)) (-3701 (((-112) $) 130)) (-1584 (((-112) $) 131)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) 92)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1251 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-3615 (((-574) $ $) 45)) (-2855 (($ $ (-1251 (-574))) 116) (($ $ (-574)) 115)) (-3911 (((-112) $) 47)) (-1939 (($ $) 63)) (-2043 (($ $) 60 (|has| $ (-6 -4460)))) (-1746 (((-781) $) 64)) (-2386 (($ $) 65)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 109)) (-2982 (($ $ $) 62 (|has| $ (-6 -4460))) (($ $ |#1|) 61 (|has| $ (-6 -4460)))) (-4132 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2916 (($ $) 123)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) 52)) (-4208 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-684 |#1|) (-141) (-1234)) (T -684)) +((-3311 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1234)))) (-2172 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1234)))) (-1584 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-1673 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234)))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234)))) (-2335 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))) (-2433 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1234)))) (-2916 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234))))) +(-13 (-1165 |t#1|) (-10 -8 (-15 -3311 ($ (-1 (-112) |t#1|) $)) (-15 -2172 ($ (-1 (-112) |t#1|) $)) (-15 -1584 ((-112) $)) (-15 -3701 ((-112) $)) (-15 -3664 ((-112) $)) (-15 -1673 ($ $)) (-15 -4130 (|t#1| $)) (-15 -2335 ($ $)) (-15 -4141 ((-781) $)) (-15 -2433 ($ $ (-574))) (-15 -2916 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1165 |#1|) . T) ((-1234) . T) ((-1272 |#1|) . T)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2720 (($ (-781) (-781) (-781)) 53 (|has| |#1| (-1065)))) (-3146 (((-112) $ (-781)) NIL)) (-3642 ((|#1| $ (-781) (-781) (-781) |#1|) 47)) (-3250 (($) NIL T CONST)) (-3720 (($ $ $) 57 (|has| |#1| (-1065)))) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-1284 (-781)) $) 12)) (-3802 (($ (-1193) $ $) 34)) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-4376 (($ (-781)) 55 (|has| |#1| (-1065)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-781) (-781) (-781)) 44)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2963 (($ (-654 (-654 (-654 |#1|)))) 67)) (-2951 (($ (-972 (-972 (-972 |#1|)))) 23) (((-972 (-972 (-972 |#1|))) $) 19) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-685 |#1|) (-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1065)) (PROGN (-15 -2720 ($ (-781) (-781) (-781))) (-15 -4376 ($ (-781))) (-15 -3720 ($ $ $))) |%noBranch|) (-15 -2963 ($ (-654 (-654 (-654 |#1|))))) (-15 -2207 (|#1| $ (-781) (-781) (-781))) (-15 -3642 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2951 ($ (-972 (-972 (-972 |#1|))))) (-15 -2951 ((-972 (-972 (-972 |#1|))) $)) (-15 -3802 ($ (-1193) $ $)) (-15 -2790 ((-1284 (-781)) $)))) (-1116)) (T -685)) +((-2720 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1065)) (-4 *3 (-1116)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1065)) (-4 *3 (-1116)))) (-3720 (*1 *1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1065)) (-4 *2 (-1116)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1116)) (-5 *1 (-685 *3)))) (-2207 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1116)))) (-3642 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1116)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-972 (-972 (-972 *3)))) (-4 *3 (-1116)) (-5 *1 (-685 *3)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-972 (-972 (-972 *3)))) (-5 *1 (-685 *3)) (-4 *3 (-1116)))) (-3802 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-685 *3)) (-4 *3 (-1116)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1284 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1116))))) +(-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1065)) (PROGN (-15 -2720 ($ (-781) (-781) (-781))) (-15 -4376 ($ (-781))) (-15 -3720 ($ $ $))) |%noBranch|) (-15 -2963 ($ (-654 (-654 (-654 |#1|))))) (-15 -2207 (|#1| $ (-781) (-781) (-781))) (-15 -3642 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2951 ($ (-972 (-972 (-972 |#1|))))) (-15 -2951 ((-972 (-972 (-972 |#1|))) $)) (-15 -3802 ($ (-1193) $ $)) (-15 -2790 ((-1284 (-781)) $)))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-2216 (((-493) $) 10)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 19) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2050 (((-1151) $) 12)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-686) (-13 (-1099) (-10 -8 (-15 -2216 ((-493) $)) (-15 -2050 ((-1151) $))))) (T -686)) +((-2216 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-686))))) +(-13 (-1099) (-10 -8 (-15 -2216 ((-493) $)) (-15 -2050 ((-1151) $)))) +((-2864 (((-112) $ $) NIL)) (-1663 (((-654 |#1|) $) 15)) (-3878 (($ $) 19)) (-3566 (((-112) $) 20)) (-1704 (((-3 |#1| "failed") $) 23)) (-2214 ((|#1| $) 21)) (-2935 (($ $) 37)) (-3856 (($ $) 25)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2667 (((-112) $ $) 47)) (-4109 (((-935) $) 40)) (-3865 (($ $) 18)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 ((|#1| $) 36)) (-2951 (((-872) $) 32) (($ |#1|) 24) (((-829 |#1|) $) 28)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 13)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-687 |#1|) (-13 (-860) (-1054 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2951 ((-829 |#1|) $)) (-15 -2925 (|#1| $)) (-15 -3865 ($ $)) (-15 -4109 ((-935) $)) (-15 -2667 ((-112) $ $)) (-15 -3856 ($ $)) (-15 -2935 ($ $)) (-15 -3566 ((-112) $)) (-15 -3878 ($ $)) (-15 -1663 ((-654 |#1|) $)))) (-860)) (T -687)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-2925 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-3865 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-2667 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-3856 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2935 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-3878 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860))))) +(-13 (-860) (-1054 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2951 ((-829 |#1|) $)) (-15 -2925 (|#1| $)) (-15 -3865 ($ $)) (-15 -4109 ((-935) $)) (-15 -2667 ((-112) $ $)) (-15 -3856 ($ $)) (-15 -2935 ($ $)) (-15 -3566 ((-112) $)) (-15 -3878 ($ $)) (-15 -1663 ((-654 |#1|) $)))) +((-4192 ((|#1| (-1 |#1| (-781) |#1|) (-781) |#1|) 11)) (-4104 ((|#1| (-1 |#1| |#1|) (-781) |#1|) 9))) +(((-688 |#1|) (-10 -7 (-15 -4104 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -4192 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|))) (-1116)) (T -688)) +((-4192 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1116)) (-5 *1 (-688 *2)))) (-4104 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1116)) (-5 *1 (-688 *2))))) +(-10 -7 (-15 -4104 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -4192 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|))) +((-2664 ((|#2| |#1| |#2|) 9)) (-2652 ((|#1| |#1| |#2|) 8))) +(((-689 |#1| |#2|) (-10 -7 (-15 -2652 (|#1| |#1| |#2|)) (-15 -2664 (|#2| |#1| |#2|))) (-1116) (-1116)) (T -689)) +((-2664 (*1 *2 *3 *2) (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))) (-2652 (*1 *2 *2 *3) (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116))))) +(-10 -7 (-15 -2652 (|#1| |#1| |#2|)) (-15 -2664 (|#2| |#1| |#2|))) +((-4406 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-690 |#1| |#2| |#3|) (-10 -7 (-15 -4406 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1116) (-1116) (-1116)) (T -690)) +((-4406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)) (-5 *1 (-690 *5 *6 *2))))) +(-10 -7 (-15 -4406 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2864 (((-112) $ $) NIL)) (-2350 (((-1233) $) 21)) (-2299 (((-654 (-1233)) $) 19)) (-3258 (($ (-654 (-1233)) (-1233)) 14)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 29) (($ (-1198)) NIL) (((-1198) $) NIL) (((-1233) $) 22) (($ (-1134)) 10)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-691) (-13 (-1099) (-623 (-1233)) (-10 -8 (-15 -2951 ($ (-1134))) (-15 -3258 ($ (-654 (-1233)) (-1233))) (-15 -2299 ((-654 (-1233)) $)) (-15 -2350 ((-1233) $))))) (T -691)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-691)))) (-3258 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1233))) (-5 *3 (-1233)) (-5 *1 (-691)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-691)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-691))))) +(-13 (-1099) (-623 (-1233)) (-10 -8 (-15 -2951 ($ (-1134))) (-15 -3258 ($ (-654 (-1233)) (-1233))) (-15 -2299 ((-654 (-1233)) $)) (-15 -2350 ((-1233) $)))) +((-4192 (((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)) 26)) (-1319 (((-1 |#1|) |#1|) 8)) (-2818 ((|#1| |#1|) 19)) (-2396 (((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2951 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-781)) 23))) +(((-692 |#1|) (-10 -7 (-15 -1319 ((-1 |#1|) |#1|)) (-15 -2951 ((-1 |#1|) |#1|)) (-15 -2396 (|#1| (-1 |#1| |#1|))) (-15 -2396 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2818 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -4192 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)))) (-1116)) (T -692)) +((-4192 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1116)) (-5 *1 (-692 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1116)) (-5 *1 (-692 *4)))) (-2818 (*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1116)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574)) (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1116)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1116)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1116)))) (-1319 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1116))))) +(-10 -7 (-15 -1319 ((-1 |#1|) |#1|)) (-15 -2951 ((-1 |#1|) |#1|)) (-15 -2396 (|#1| (-1 |#1| |#1|))) (-15 -2396 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2818 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -4192 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)))) +((-2736 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1594 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1714 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3725 (((-1 |#2| |#1|) |#2|) 11))) +(((-693 |#1| |#2|) (-10 -7 (-15 -3725 ((-1 |#2| |#1|) |#2|)) (-15 -1594 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1714 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2736 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1116) (-1116)) (T -693)) +((-2736 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1116)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)) (-4 *4 (-1116)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5)))) (-3725 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1116)) (-4 *3 (-1116))))) +(-10 -7 (-15 -3725 ((-1 |#2| |#1|) |#2|)) (-15 -1594 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1714 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2736 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-3207 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3897 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2097 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1937 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3388 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-694 |#1| |#2| |#3|) (-10 -7 (-15 -3897 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2097 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1937 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3388 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3207 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1116) (-1116) (-1116)) (T -694)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-1 *7 *5)) (-5 *1 (-694 *5 *6 *7)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1116)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1116)) (-4 *6 (-1116)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1116)))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1116)) (-4 *4 (-1116)) (-4 *6 (-1116)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6))))) +(-10 -7 (-15 -3897 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2097 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1937 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3388 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3207 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2882 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1785 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-695 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1785 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1785 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2882 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1065) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1065) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -695)) +((-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1065)) (-4 *2 (-1065)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *8 (-382 *2)) (-4 *9 (-382 *2)) (-5 *1 (-695 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-697 *5 *6 *7)) (-4 *10 (-697 *2 *8 *9)))) (-1785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1065)) (-4 *8 (-1065)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1065)) (-4 *8 (-1065)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8))))) +(-10 -7 (-15 -1785 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1785 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2882 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2225 (($ (-781) (-781)) 42)) (-1960 (($ $ $) 71)) (-4033 (($ |#3|) 66) (($ $) 67)) (-3399 (((-112) $) 36)) (-3235 (($ $ (-574) (-574)) 82)) (-3048 (($ $ (-574) (-574)) 83)) (-4390 (($ $ (-574) (-574) (-574) (-574)) 88)) (-3310 (($ $) 69)) (-2711 (((-112) $) 15)) (-3392 (($ $ (-574) (-574) $) 89)) (-3135 ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) 87)) (-2317 (($ (-781) |#2|) 53)) (-2924 (($ (-654 (-654 |#2|))) 51)) (-2014 (((-654 (-654 |#2|)) $) 78)) (-2762 (($ $ $) 70)) (-2853 (((-3 $ "failed") $ |#2|) 120)) (-2207 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-1761 (($ (-654 |#2|)) 54) (($ (-654 $)) 56)) (-4049 (((-112) $) 28)) (-2951 (($ |#4|) 61) (((-872) $) NIL)) (-2649 (((-112) $) 38)) (-3103 (($ $ |#2|) 122)) (-3090 (($ $ $) 93) (($ $) 96)) (-3074 (($ $ $) 91)) (** (($ $ (-781)) 109) (($ $ (-574)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-574) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) +(((-696 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3103 (|#1| |#1| |#2|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -3392 (|#1| |#1| (-574) (-574) |#1|)) (-15 -4390 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -3048 (|#1| |#1| (-574) (-574))) (-15 -3235 (|#1| |#1| (-574) (-574))) (-15 -3135 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2207 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -2014 ((-654 (-654 |#2|)) |#1|)) (-15 -1960 (|#1| |#1| |#1|)) (-15 -2762 (|#1| |#1| |#1|)) (-15 -3310 (|#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 -4033 (|#1| |#3|)) (-15 -2951 (|#1| |#4|)) (-15 -1761 (|#1| (-654 |#1|))) (-15 -1761 (|#1| (-654 |#2|))) (-15 -2317 (|#1| (-781) |#2|)) (-15 -2924 (|#1| (-654 (-654 |#2|)))) (-15 -2225 (|#1| (-781) (-781))) (-15 -2649 ((-112) |#1|)) (-15 -3399 ((-112) |#1|)) (-15 -4049 ((-112) |#1|)) (-15 -2711 ((-112) |#1|)) (-15 -3135 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574)))) (-697 |#2| |#3| |#4|) (-1065) (-382 |#2|) (-382 |#2|)) (T -696)) +NIL +(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3103 (|#1| |#1| |#2|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -3392 (|#1| |#1| (-574) (-574) |#1|)) (-15 -4390 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -3048 (|#1| |#1| (-574) (-574))) (-15 -3235 (|#1| |#1| (-574) (-574))) (-15 -3135 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2207 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -2014 ((-654 (-654 |#2|)) |#1|)) (-15 -1960 (|#1| |#1| |#1|)) (-15 -2762 (|#1| |#1| |#1|)) (-15 -3310 (|#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 -4033 (|#1| |#3|)) (-15 -2951 (|#1| |#4|)) (-15 -1761 (|#1| (-654 |#1|))) (-15 -1761 (|#1| (-654 |#2|))) (-15 -2317 (|#1| (-781) |#2|)) (-15 -2924 (|#1| (-654 (-654 |#2|)))) (-15 -2225 (|#1| (-781) (-781))) (-15 -2649 ((-112) |#1|)) (-15 -3399 ((-112) |#1|)) (-15 -4049 ((-112) |#1|)) (-15 -2711 ((-112) |#1|)) (-15 -3135 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574)))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2225 (($ (-781) (-781)) 98)) (-1960 (($ $ $) 88)) (-4033 (($ |#2|) 92) (($ $) 91)) (-3399 (((-112) $) 100)) (-3235 (($ $ (-574) (-574)) 84)) (-3048 (($ $ (-574) (-574)) 83)) (-4390 (($ $ (-574) (-574) (-574) (-574)) 82)) (-3310 (($ $) 90)) (-2711 (((-112) $) 102)) (-3146 (((-112) $ (-781)) 8)) (-3392 (($ $ (-574) (-574) $) 81)) (-3135 ((|#1| $ (-574) (-574) |#1|) 45) (($ $ (-654 (-574)) (-654 (-574)) $) 85)) (-1966 (($ $ (-574) |#2|) 43)) (-3654 (($ $ (-574) |#3|) 42)) (-2317 (($ (-781) |#1|) 96)) (-3250 (($) 7 T CONST)) (-1430 (($ $) 68 (|has| |#1| (-315)))) (-1959 ((|#2| $ (-574)) 47)) (-3558 (((-781) $) 67 (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) 44)) (-2400 ((|#1| $ (-574) (-574)) 49)) (-1871 (((-654 |#1|) $) 31)) (-2893 (((-781) $) 66 (|has| |#1| (-566)))) (-1381 (((-654 |#3|) $) 65 (|has| |#1| (-566)))) (-2197 (((-781) $) 52)) (-3764 (($ (-781) (-781) |#1|) 58)) (-2206 (((-781) $) 51)) (-2189 (((-112) $ (-781)) 9)) (-1706 ((|#1| $) 63 (|has| |#1| (-6 (-4461 "*"))))) (-2219 (((-574) $) 56)) (-2126 (((-574) $) 54)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3352 (((-574) $) 55)) (-1695 (((-574) $) 53)) (-2924 (($ (-654 (-654 |#1|))) 97)) (-2462 (($ (-1 |#1| |#1|) $) 35)) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2014 (((-654 (-654 |#1|)) $) 87)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3593 (((-3 $ "failed") $) 62 (|has| |#1| (-372)))) (-2762 (($ $ $) 89)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-1822 (($ $ |#1|) 57)) (-2853 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-566)))) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-1761 (($ (-654 |#1|)) 95) (($ (-654 $)) 94)) (-4049 (((-112) $) 101)) (-1386 ((|#1| $) 64 (|has| |#1| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1425 ((|#3| $ (-574)) 46)) (-2951 (($ |#3|) 93) (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2649 (((-112) $) 99)) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3103 (($ $ |#1|) 69 (|has| |#1| (-372)))) (-3090 (($ $ $) 79) (($ $) 78)) (-3074 (($ $ $) 80)) (** (($ $ (-781)) 71) (($ $ (-574)) 61 (|has| |#1| (-372)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-574) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-697 |#1| |#2| |#3|) (-141) (-1065) (-382 |t#1|) (-382 |t#1|)) (T -697)) +((-2711 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2225 (*1 *1 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2317 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2951 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (-4033 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (-4033 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3310 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-2762 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-1960 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3))))) (-2207 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3135 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3235 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3048 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-4390 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3392 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3074 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3090 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3090 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1065)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2853 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-566)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (-1430 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-315)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))) (-3593 (*1 *1 *1) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-372))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4460) (-6 -4459) (-15 -2711 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -3399 ((-112) $)) (-15 -2649 ((-112) $)) (-15 -2225 ($ (-781) (-781))) (-15 -2924 ($ (-654 (-654 |t#1|)))) (-15 -2317 ($ (-781) |t#1|)) (-15 -1761 ($ (-654 |t#1|))) (-15 -1761 ($ (-654 $))) (-15 -2951 ($ |t#3|)) (-15 -4033 ($ |t#2|)) (-15 -4033 ($ $)) (-15 -3310 ($ $)) (-15 -2762 ($ $ $)) (-15 -1960 ($ $ $)) (-15 -2014 ((-654 (-654 |t#1|)) $)) (-15 -2207 ($ $ (-654 (-574)) (-654 (-574)))) (-15 -3135 ($ $ (-654 (-574)) (-654 (-574)) $)) (-15 -3235 ($ $ (-574) (-574))) (-15 -3048 ($ $ (-574) (-574))) (-15 -4390 ($ $ (-574) (-574) (-574) (-574))) (-15 -3392 ($ $ (-574) (-574) $)) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -3090 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-574) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-781))) (IF (|has| |t#1| (-566)) (-15 -2853 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -3103 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-315)) (-15 -1430 ($ $)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -3558 ((-781) $)) (-15 -2893 ((-781) $)) (-15 -1381 ((-654 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4461 "*"))) (PROGN (-15 -1386 (|t#1| $)) (-15 -1706 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -3593 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-57 |#1| |#2| |#3|) . T) ((-1234) . T)) +((-1430 ((|#4| |#4|) 92 (|has| |#1| (-315)))) (-3558 (((-781) |#4|) 120 (|has| |#1| (-566)))) (-2893 (((-781) |#4|) 96 (|has| |#1| (-566)))) (-1381 (((-654 |#3|) |#4|) 103 (|has| |#1| (-566)))) (-3007 (((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|) 135 (|has| |#1| (-315)))) (-1706 ((|#1| |#4|) 52)) (-1745 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-566)))) (-3593 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-372)))) (-1346 ((|#4| |#4|) 88 (|has| |#1| (-566)))) (-2942 ((|#4| |#4| |#1| (-574) (-574)) 60)) (-2999 ((|#4| |#4| (-574) (-574)) 55)) (-2958 ((|#4| |#4| |#1| (-574) (-574)) 65)) (-1386 ((|#1| |#4|) 98)) (-2181 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-566))))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1386 (|#1| |#4|)) (-15 -1706 (|#1| |#4|)) (-15 -2999 (|#4| |#4| (-574) (-574))) (-15 -2942 (|#4| |#4| |#1| (-574) (-574))) (-15 -2958 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3558 ((-781) |#4|)) (-15 -2893 ((-781) |#4|)) (-15 -1381 ((-654 |#3|) |#4|)) (-15 -1346 (|#4| |#4|)) (-15 -1745 ((-3 |#4| "failed") |#4|)) (-15 -2181 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -1430 (|#4| |#4|)) (-15 -3007 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3593 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -698)) +((-3593 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3007 (*1 *2 *3 *3) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5)))) (-1430 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2181 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1745 (*1 *2 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1346 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1381 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-2893 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3558 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-2958 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-2942 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-2999 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2)) (-4 *2 (-697 *4 *5 *6)))) (-1706 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-1386 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5))))) +(-10 -7 (-15 -1386 (|#1| |#4|)) (-15 -1706 (|#1| |#4|)) (-15 -2999 (|#4| |#4| (-574) (-574))) (-15 -2942 (|#4| |#4| |#1| (-574) (-574))) (-15 -2958 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3558 ((-781) |#4|)) (-15 -2893 ((-781) |#4|)) (-15 -1381 ((-654 |#3|) |#4|)) (-15 -1346 (|#4| |#4|)) (-15 -1745 ((-3 |#4| "failed") |#4|)) (-15 -2181 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -1430 (|#4| |#4|)) (-15 -3007 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3593 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2225 (($ (-781) (-781)) 64)) (-1960 (($ $ $) NIL)) (-4033 (($ (-1284 |#1|)) NIL) (($ $) NIL)) (-3399 (((-112) $) NIL)) (-3235 (($ $ (-574) (-574)) 22)) (-3048 (($ $ (-574) (-574)) NIL)) (-4390 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-3310 (($ $) NIL)) (-2711 (((-112) $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-3392 (($ $ (-574) (-574) $) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-1966 (($ $ (-574) (-1284 |#1|)) NIL)) (-3654 (($ $ (-574) (-1284 |#1|)) NIL)) (-2317 (($ (-781) |#1|) 37)) (-3250 (($) NIL T CONST)) (-1430 (($ $) 46 (|has| |#1| (-315)))) (-1959 (((-1284 |#1|) $ (-574)) NIL)) (-3558 (((-781) $) 48 (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) 69)) (-2400 ((|#1| $ (-574) (-574)) NIL)) (-1871 (((-654 |#1|) $) NIL)) (-2893 (((-781) $) 50 (|has| |#1| (-566)))) (-1381 (((-654 (-1284 |#1|)) $) 53 (|has| |#1| (-566)))) (-2197 (((-781) $) 32)) (-3764 (($ (-781) (-781) |#1|) 28)) (-2206 (((-781) $) 33)) (-2189 (((-112) $ (-781)) NIL)) (-1706 ((|#1| $) 44 (|has| |#1| (-6 (-4461 "*"))))) (-2219 (((-574) $) 10)) (-2126 (((-574) $) 11)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3352 (((-574) $) 14)) (-1695 (((-574) $) 65)) (-2924 (($ (-654 (-654 |#1|))) NIL)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2014 (((-654 (-654 |#1|)) $) 76)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3593 (((-3 $ "failed") $) 60 (|has| |#1| (-372)))) (-2762 (($ $ $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1822 (($ $ |#1|) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-1761 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL) (($ (-1284 |#1|)) 70)) (-4049 (((-112) $) NIL)) (-1386 ((|#1| $) 42 (|has| |#1| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-1844 (((-546) $) 80 (|has| |#1| (-624 (-546))))) (-1425 (((-1284 |#1|) $ (-574)) NIL)) (-2951 (($ (-1284 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2649 (((-112) $) NIL)) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) 38) (($ $ (-574)) 62 (|has| |#1| (-372)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1284 |#1|) $ (-1284 |#1|)) NIL) (((-1284 |#1|) (-1284 |#1|) $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-699 |#1|) (-13 (-697 |#1| (-1284 |#1|) (-1284 |#1|)) (-10 -8 (-15 -1761 ($ (-1284 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3593 ((-3 $ "failed") $)) |%noBranch|))) (-1065)) (T -699)) +((-3593 (*1 *1 *1) (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1065)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1065)) (-5 *1 (-699 *3))))) +(-13 (-697 |#1| (-1284 |#1|) (-1284 |#1|)) (-10 -8 (-15 -1761 ($ (-1284 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3593 ((-3 $ "failed") $)) |%noBranch|))) +((-1897 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 37)) (-1680 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 32)) (-3479 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781)) 43)) (-1834 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 25)) (-2915 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 29) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 27)) (-4365 (((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|)) 31)) (-3729 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 23)) (** (((-699 |#1|) (-699 |#1|) (-781)) 46))) +(((-700 |#1|) (-10 -7 (-15 -3729 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1834 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2915 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2915 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -4365 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -1680 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -1897 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3479 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781)))) (-1065)) (T -700)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1065)) (-5 *1 (-700 *4)))) (-3479 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1065)) (-5 *1 (-700 *4)))) (-1897 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-1680 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-4365 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-2915 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-2915 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-1834 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-3729 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3))))) +(-10 -7 (-15 -3729 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1834 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2915 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2915 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -4365 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -1680 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -1897 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3479 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781)))) +((-1704 (((-3 |#1| "failed") $) 18)) (-2214 ((|#1| $) NIL)) (-2242 (($) 7 T CONST)) (-1931 (($ |#1|) 8)) (-2951 (($ |#1|) 16) (((-872) $) 23)) (-2130 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2242)) 11)) (-1337 ((|#1| $) 15))) +(((-701 |#1|) (-13 (-1279) (-1054 |#1|) (-623 (-872)) (-10 -8 (-15 -1931 ($ |#1|)) (-15 -2130 ((-112) $ (|[\|\|]| |#1|))) (-15 -2130 ((-112) $ (|[\|\|]| -2242))) (-15 -1337 (|#1| $)) (-15 -2242 ($) -1714))) (-623 (-872))) (T -701)) +((-1931 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-623 (-872))) (-5 *2 (-112)) (-5 *1 (-701 *4)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2242)) (-5 *2 (-112)) (-5 *1 (-701 *4)) (-4 *4 (-623 (-872))))) (-1337 (*1 *2 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2242 (*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))) +(-13 (-1279) (-1054 |#1|) (-623 (-872)) (-10 -8 (-15 -1931 ($ |#1|)) (-15 -2130 ((-112) $ (|[\|\|]| |#1|))) (-15 -2130 ((-112) $ (|[\|\|]| -2242))) (-15 -1337 (|#1| $)) (-15 -2242 ($) -1714))) +((-4037 ((|#2| |#2| |#4|) 29)) (-3789 (((-699 |#2|) |#3| |#4|) 35)) (-2266 (((-699 |#2|) |#2| |#4|) 34)) (-1604 (((-1284 |#2|) |#2| |#4|) 16)) (-3151 ((|#2| |#3| |#4|) 28)) (-3154 (((-699 |#2|) |#3| |#4| (-781) (-781)) 47)) (-4055 (((-699 |#2|) |#2| |#4| (-781)) 46))) +(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1604 ((-1284 |#2|) |#2| |#4|)) (-15 -3151 (|#2| |#3| |#4|)) (-15 -4037 (|#2| |#2| |#4|)) (-15 -2266 ((-699 |#2|) |#2| |#4|)) (-15 -4055 ((-699 |#2|) |#2| |#4| (-781))) (-15 -3789 ((-699 |#2|) |#3| |#4|)) (-15 -3154 ((-699 |#2|) |#3| |#4| (-781) (-781)))) (-1116) (-912 |#1|) (-382 |#2|) (-13 (-382 |#1|) (-10 -7 (-6 -4459)))) (T -702)) +((-3154 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1116)) (-4 *7 (-912 *6)) (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4459)))))) (-3789 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-4 *6 (-912 *5)) (-5 *2 (-699 *6)) (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))))) (-4055 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1116)) (-4 *3 (-912 *6)) (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4459)))))) (-2266 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-4 *3 (-912 *5)) (-5 *2 (-699 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))))) (-4037 (*1 *2 *2 *3) (-12 (-4 *4 (-1116)) (-4 *2 (-912 *4)) (-5 *1 (-702 *4 *2 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4459)))))) (-3151 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-4 *2 (-912 *5)) (-5 *1 (-702 *5 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))))) (-1604 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-4 *3 (-912 *5)) (-5 *2 (-1284 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459))))))) +(-10 -7 (-15 -1604 ((-1284 |#2|) |#2| |#4|)) (-15 -3151 (|#2| |#3| |#4|)) (-15 -4037 (|#2| |#2| |#4|)) (-15 -2266 ((-699 |#2|) |#2| |#4|)) (-15 -4055 ((-699 |#2|) |#2| |#4| (-781))) (-15 -3789 ((-699 |#2|) |#3| |#4|)) (-15 -3154 ((-699 |#2|) |#3| |#4| (-781) (-781)))) +((-4431 (((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)) 20)) (-4231 ((|#1| (-699 |#2|)) 9)) (-3810 (((-699 |#1|) (-699 |#2|)) 18))) +(((-703 |#1| |#2|) (-10 -7 (-15 -4231 (|#1| (-699 |#2|))) (-15 -3810 ((-699 |#1|) (-699 |#2|))) (-15 -4431 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)))) (-566) (-1008 |#1|)) (T -703)) +((-4431 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1008 *4)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4))) (-5 *1 (-703 *4 *5)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1008 *4)) (-4 *4 (-566)) (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5)))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-703 *2 *4))))) +(-10 -7 (-15 -4231 (|#1| (-699 |#2|))) (-15 -3810 ((-699 |#1|) (-699 |#2|))) (-15 -4431 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-3835 (((-699 (-709))) NIL) (((-699 (-709)) (-1284 $)) NIL)) (-1644 (((-709) $) NIL)) (-2379 (($ $) NIL (|has| (-709) (-1219)))) (-2258 (($ $) NIL (|has| (-709) (-1219)))) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-709) (-358)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-923))))) (-2991 (($ $) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| (-709) (-923))) (|has| (-709) (-372))))) (-1610 (((-428 $) $) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| (-709) (-923))) (|has| (-709) (-372))))) (-4212 (($ $) NIL (-12 (|has| (-709) (-1018)) (|has| (-709) (-1219))))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-923))))) (-3245 (((-112) $ $) NIL (|has| (-709) (-315)))) (-1496 (((-781)) NIL (|has| (-709) (-377)))) (-2358 (($ $) NIL (|has| (-709) (-1219)))) (-2235 (($ $) NIL (|has| (-709) (-1219)))) (-2404 (($ $) NIL (|has| (-709) (-1219)))) (-2280 (($ $) NIL (|has| (-709) (-1219)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-709) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-1054 (-417 (-574)))))) (-2214 (((-574) $) NIL) (((-709) $) NIL) (((-417 (-574)) $) NIL (|has| (-709) (-1054 (-417 (-574)))))) (-2580 (($ (-1284 (-709))) NIL) (($ (-1284 (-709)) (-1284 $)) NIL)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-709) (-358)))) (-2800 (($ $ $) NIL (|has| (-709) (-315)))) (-2640 (((-699 (-709)) $) NIL) (((-699 (-709)) $ (-1284 $)) NIL)) (-1831 (((-699 (-709)) (-1284 $)) NIL) (((-699 (-709)) (-699 $)) NIL) (((-2 (|:| -3082 (-699 (-709))) (|:| |vec| (-1284 (-709)))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-1284 $)) NIL (|has| (-709) (-649 (-574))))) (-2882 (((-3 $ "failed") (-417 (-1189 (-709)))) NIL (|has| (-709) (-372))) (($ (-1189 (-709))) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-4223 (((-709) $) 29)) (-3577 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-555)))) (-3839 (((-112) $) NIL (|has| (-709) (-555)))) (-2842 (((-417 (-574)) $) NIL (|has| (-709) (-555)))) (-3558 (((-935)) NIL)) (-2835 (($) NIL (|has| (-709) (-377)))) (-2813 (($ $ $) NIL (|has| (-709) (-315)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| (-709) (-315)))) (-3556 (($) NIL (|has| (-709) (-358)))) (-3084 (((-112) $) NIL (|has| (-709) (-358)))) (-1995 (($ $) NIL (|has| (-709) (-358))) (($ $ (-781)) NIL (|has| (-709) (-358)))) (-3978 (((-112) $) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| (-709) (-923))) (|has| (-709) (-372))))) (-2883 (((-2 (|:| |r| (-709)) (|:| |phi| (-709))) $) NIL (-12 (|has| (-709) (-1076)) (|has| (-709) (-1219))))) (-3004 (($) NIL (|has| (-709) (-1219)))) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-709) (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-709) (-897 (-574))))) (-3547 (((-843 (-935)) $) NIL (|has| (-709) (-358))) (((-935) $) NIL (|has| (-709) (-358)))) (-4226 (((-112) $) NIL)) (-3527 (($ $ (-574)) NIL (-12 (|has| (-709) (-1018)) (|has| (-709) (-1219))))) (-1681 (((-709) $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| (-709) (-358)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-3989 (((-1189 (-709)) $) NIL (|has| (-709) (-372)))) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1785 (($ (-1 (-709) (-709)) $) NIL)) (-3383 (((-935) $) NIL (|has| (-709) (-377)))) (-3113 (($ $) NIL (|has| (-709) (-1219)))) (-2869 (((-1189 (-709)) $) NIL)) (-2849 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| (-709) (-372)))) (-3791 (($) NIL (|has| (-709) (-358)) CONST)) (-2591 (($ (-935)) NIL (|has| (-709) (-377)))) (-1958 (($) NIL)) (-4234 (((-709) $) 31)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| (-709) (-315)))) (-2887 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| (-709) (-358)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-923))))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-923))))) (-4202 (((-428 $) $) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| (-709) (-923))) (|has| (-709) (-372))))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-709) (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| (-709) (-315)))) (-2853 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-709)) NIL (|has| (-709) (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-1617 (($ $) NIL (|has| (-709) (-1219)))) (-2661 (($ $ (-1193) (-709)) NIL (|has| (-709) (-524 (-1193) (-709)))) (($ $ (-654 (-1193)) (-654 (-709))) NIL (|has| (-709) (-524 (-1193) (-709)))) (($ $ (-654 (-302 (-709)))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-302 (-709))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-709) (-709)) NIL (|has| (-709) (-317 (-709)))) (($ $ (-654 (-709)) (-654 (-709))) NIL (|has| (-709) (-317 (-709))))) (-2098 (((-781) $) NIL (|has| (-709) (-315)))) (-2207 (($ $ (-709)) NIL (|has| (-709) (-294 (-709) (-709))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| (-709) (-315)))) (-2394 (((-709)) NIL) (((-709) (-1284 $)) NIL)) (-3261 (((-3 (-781) "failed") $ $) NIL (|has| (-709) (-358))) (((-781) $) NIL (|has| (-709) (-358)))) (-3879 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-1193)) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-709) (-912 (-1193)))) (($ $) NIL (|has| (-709) (-239))) (($ $ (-781)) NIL (|has| (-709) (-239)))) (-3303 (((-699 (-709)) (-1284 $) (-1 (-709) (-709))) NIL (|has| (-709) (-372)))) (-4379 (((-1189 (-709))) NIL)) (-2417 (($ $) NIL (|has| (-709) (-1219)))) (-2289 (($ $) NIL (|has| (-709) (-1219)))) (-3603 (($) NIL (|has| (-709) (-358)))) (-2390 (($ $) NIL (|has| (-709) (-1219)))) (-2269 (($ $) NIL (|has| (-709) (-1219)))) (-2368 (($ $) NIL (|has| (-709) (-1219)))) (-2247 (($ $) NIL (|has| (-709) (-1219)))) (-1385 (((-699 (-709)) (-1284 $)) NIL) (((-1284 (-709)) $) NIL) (((-699 (-709)) (-1284 $) (-1284 $)) NIL) (((-1284 (-709)) $ (-1284 $)) NIL)) (-1844 (((-546) $) NIL (|has| (-709) (-624 (-546)))) (((-171 (-227)) $) NIL (|has| (-709) (-1038))) (((-171 (-388)) $) NIL (|has| (-709) (-1038))) (((-903 (-388)) $) NIL (|has| (-709) (-624 (-903 (-388))))) (((-903 (-574)) $) NIL (|has| (-709) (-624 (-903 (-574))))) (($ (-1189 (-709))) NIL) (((-1189 (-709)) $) NIL) (($ (-1284 (-709))) NIL) (((-1284 (-709)) $) NIL)) (-3617 (($ $) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-923))) (|has| (-709) (-358))))) (-3536 (($ (-709) (-709)) 12)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-709)) NIL) (($ (-171 (-388))) 13) (($ (-171 (-574))) 19) (($ (-171 (-709))) 28) (($ (-171 (-711))) 25) (((-171 (-388)) $) 33) (($ (-417 (-574))) NIL (-2833 (|has| (-709) (-1054 (-417 (-574)))) (|has| (-709) (-372))))) (-3424 (($ $) NIL (|has| (-709) (-358))) (((-3 $ "failed") $) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-923))) (|has| (-709) (-146))))) (-2648 (((-1189 (-709)) $) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL)) (-2456 (($ $) NIL (|has| (-709) (-1219)))) (-2320 (($ $) NIL (|has| (-709) (-1219)))) (-2836 (((-112) $ $) NIL)) (-2429 (($ $) NIL (|has| (-709) (-1219)))) (-2301 (($ $) NIL (|has| (-709) (-1219)))) (-2480 (($ $) NIL (|has| (-709) (-1219)))) (-2340 (($ $) NIL (|has| (-709) (-1219)))) (-4142 (((-709) $) NIL (|has| (-709) (-1219)))) (-2536 (($ $) NIL (|has| (-709) (-1219)))) (-2349 (($ $) NIL (|has| (-709) (-1219)))) (-2468 (($ $) NIL (|has| (-709) (-1219)))) (-2330 (($ $) NIL (|has| (-709) (-1219)))) (-2443 (($ $) NIL (|has| (-709) (-1219)))) (-2312 (($ $) NIL (|has| (-709) (-1219)))) (-3936 (($ $) NIL (|has| (-709) (-1076)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-1193)) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-709) (-912 (-1193)))) (($ $) NIL (|has| (-709) (-239))) (($ $ (-781)) NIL (|has| (-709) (-239)))) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| (-709) (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| (-709) (-1219))) (($ $ (-417 (-574))) NIL (-12 (|has| (-709) (-1018)) (|has| (-709) (-1219)))) (($ $ (-574)) NIL (|has| (-709) (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-709) $) NIL) (($ $ (-709)) NIL) (($ (-417 (-574)) $) NIL (|has| (-709) (-372))) (($ $ (-417 (-574))) NIL (|has| (-709) (-372))))) +(((-704) (-13 (-397) (-167 (-709)) (-10 -8 (-15 -2951 ($ (-171 (-388)))) (-15 -2951 ($ (-171 (-574)))) (-15 -2951 ($ (-171 (-709)))) (-15 -2951 ($ (-171 (-711)))) (-15 -2951 ((-171 (-388)) $))))) (T -704)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-171 (-574))) (-5 *1 (-704)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-704)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-704)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704))))) +(-13 (-397) (-167 (-709)) (-10 -8 (-15 -2951 ($ (-171 (-388)))) (-15 -2951 ($ (-171 (-574)))) (-15 -2951 ($ (-171 (-709)))) (-15 -2951 ($ (-171 (-711)))) (-15 -2951 ((-171 (-388)) $)))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) 8)) (-1923 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2088 (($ $) 63)) (-2804 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2424 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-2375 ((|#1| $) 40)) (-3285 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3801 ((|#1| $) 42)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2446 (((-654 (-2 (|:| -1916 |#1|) (|:| -3949 (-781)))) $) 62)) (-3162 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) 43)) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-705 |#1|) (-141) (-1116)) (T -705)) +((-3285 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1116)))) (-2088 (*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1116)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1116)) (-5 *2 (-654 (-2 (|:| -1916 *3) (|:| -3949 (-781)))))))) +(-13 (-241 |t#1|) (-10 -8 (-15 -3285 ($ |t#1| $ (-781))) (-15 -2088 ($ $)) (-15 -2446 ((-654 (-2 (|:| -1916 |t#1|) (|:| -3949 (-781)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-3477 (((-654 |#1|) (-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574)))) (-574)) 65)) (-1585 ((|#1| |#1| (-574)) 62)) (-2887 ((|#1| |#1| |#1| (-574)) 46)) (-4202 (((-654 |#1|) |#1| (-574)) 49)) (-2913 ((|#1| |#1| (-574) |#1| (-574)) 40)) (-3616 (((-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574)))) |#1| (-574)) 61))) +(((-706 |#1|) (-10 -7 (-15 -2887 (|#1| |#1| |#1| (-574))) (-15 -1585 (|#1| |#1| (-574))) (-15 -4202 ((-654 |#1|) |#1| (-574))) (-15 -3616 ((-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574)))) |#1| (-574))) (-15 -3477 ((-654 |#1|) (-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574)))) (-574))) (-15 -2913 (|#1| |#1| (-574) |#1| (-574)))) (-1260 (-574))) (T -706)) +((-2913 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3)))) (-3477 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| -4202 *5) (|:| -3580 (-574))))) (-5 *4 (-574)) (-4 *5 (-1260 *4)) (-5 *2 (-654 *5)) (-5 *1 (-706 *5)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4202 *3) (|:| -3580 *4)))) (-5 *1 (-706 *3)) (-4 *3 (-1260 *4)))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 *3)) (-5 *1 (-706 *3)) (-4 *3 (-1260 *4)))) (-1585 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3)))) (-2887 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3))))) +(-10 -7 (-15 -2887 (|#1| |#1| |#1| (-574))) (-15 -1585 (|#1| |#1| (-574))) (-15 -4202 ((-654 |#1|) |#1| (-574))) (-15 -3616 ((-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574)))) |#1| (-574))) (-15 -3477 ((-654 |#1|) (-654 (-2 (|:| -4202 |#1|) (|:| -3580 (-574)))) (-574))) (-15 -2913 (|#1| |#1| (-574) |#1| (-574)))) +((-1813 (((-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-2178 (((-1149 (-227)) (-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270))) 53) (((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270))) 55) (((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270))) 57)) (-2696 (((-1149 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-654 (-270))) NIL)) (-1656 (((-1149 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270))) 58))) +(((-707) (-10 -7 (-15 -2178 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -2178 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -2178 ((-1149 (-227)) (-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -1656 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -2696 ((-1149 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -1813 ((-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -707)) +((-1813 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-957 (-227)) (-227) (-227))) (-5 *1 (-707)))) (-2696 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-707)))) (-1656 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-707)))) (-2178 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707)))) (-2178 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-227))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-707)))) (-2178 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-707))))) +(-10 -7 (-15 -2178 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -2178 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -2178 ((-1149 (-227)) (-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -1656 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -2696 ((-1149 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -1813 ((-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-4202 (((-428 (-1189 |#4|)) (-1189 |#4|)) 86) (((-428 |#4|) |#4|) 266))) +(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 ((-428 |#4|) |#4|)) (-15 -4202 ((-428 (-1189 |#4|)) (-1189 |#4|)))) (-860) (-803) (-358) (-963 |#3| |#2| |#1|)) (T -708)) +((-4202 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-4202 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-963 *6 *5 *4))))) +(-10 -7 (-15 -4202 ((-428 |#4|) |#4|)) (-15 -4202 ((-428 (-1189 |#4|)) (-1189 |#4|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 97)) (-4146 (((-574) $) 34)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-3332 (($ $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-4212 (($ $) NIL)) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL)) (-3250 (($) NIL T CONST)) (-3361 (($ $) NIL)) (-1704 (((-3 (-574) "failed") $) 85) (((-3 (-417 (-574)) "failed") $) 28) (((-3 (-388) "failed") $) 82)) (-2214 (((-574) $) 87) (((-417 (-574)) $) 79) (((-388) $) 80)) (-2800 (($ $ $) 109)) (-4322 (((-3 $ "failed") $) 100)) (-2813 (($ $ $) 108)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3760 (((-935)) 89) (((-935) (-935)) 88)) (-3408 (((-112) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-3547 (((-574) $) NIL)) (-4226 (((-112) $) NIL)) (-3527 (($ $ (-574)) NIL)) (-1681 (($ $) NIL)) (-3182 (((-112) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2256 (((-574) (-574)) 94) (((-574)) 95)) (-3634 (($ $ $) NIL) (($) NIL (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-3239 (((-574) (-574)) 92) (((-574)) 93)) (-4380 (($ $ $) NIL) (($) NIL (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-4290 (((-574) $) 17)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 104)) (-3206 (((-935) (-574)) NIL (|has| $ (-6 -4450)))) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) NIL)) (-2260 (($ $) NIL)) (-2399 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-935)) NIL)) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) 105)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3139 (((-574) $) 24)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 107)) (-4074 (((-935)) NIL) (((-935) (-935)) NIL (|has| $ (-6 -4450)))) (-3691 (((-935) (-574)) NIL (|has| $ (-6 -4450)))) (-1844 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) NIL)) (-2951 (((-872) $) 63) (($ (-574)) 75) (($ $) NIL) (($ (-417 (-574))) 78) (($ (-574)) 75) (($ (-417 (-574))) 78) (($ (-388)) 72) (((-388) $) 61) (($ (-711)) 66)) (-2898 (((-781)) 119 T CONST)) (-1654 (($ (-574) (-574) (-935)) 54)) (-2544 (($ $) NIL)) (-2562 (((-935)) NIL) (((-935) (-935)) NIL (|has| $ (-6 -4450)))) (-4069 (((-112) $ $) NIL)) (-2644 (((-935)) 91) (((-935) (-935)) 90)) (-2836 (((-112) $ $) NIL)) (-3936 (($ $) NIL)) (-2141 (($) 37 T CONST)) (-2153 (($) 18 T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 96)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 118)) (-3103 (($ $ $) 77)) (-3090 (($ $) 115) (($ $ $) 116)) (-3074 (($ $ $) 114)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 103)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-709) (-13 (-414) (-397) (-372) (-1054 (-388)) (-1054 (-417 (-574))) (-148) (-10 -8 (-15 -3760 ((-935) (-935))) (-15 -3760 ((-935))) (-15 -2644 ((-935) (-935))) (-15 -3239 ((-574) (-574))) (-15 -3239 ((-574))) (-15 -2256 ((-574) (-574))) (-15 -2256 ((-574))) (-15 -2951 ((-388) $)) (-15 -2951 ($ (-711))) (-15 -4290 ((-574) $)) (-15 -3139 ((-574) $)) (-15 -1654 ($ (-574) (-574) (-935)))))) (T -709)) +((-3139 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3760 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709)))) (-2644 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709)))) (-3239 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3239 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2256 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2256 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-388)) (-5 *1 (-709)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-711)) (-5 *1 (-709)))) (-1654 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-935)) (-5 *1 (-709))))) +(-13 (-414) (-397) (-372) (-1054 (-388)) (-1054 (-417 (-574))) (-148) (-10 -8 (-15 -3760 ((-935) (-935))) (-15 -3760 ((-935))) (-15 -2644 ((-935) (-935))) (-15 -3239 ((-574) (-574))) (-15 -3239 ((-574))) (-15 -2256 ((-574) (-574))) (-15 -2256 ((-574))) (-15 -2951 ((-388) $)) (-15 -2951 ($ (-711))) (-15 -4290 ((-574) $)) (-15 -3139 ((-574) $)) (-15 -1654 ($ (-574) (-574) (-935))))) +((-2261 (((-699 |#1|) (-699 |#1|) |#1| |#1|) 85)) (-1430 (((-699 |#1|) (-699 |#1|) |#1|) 66)) (-2385 (((-699 |#1|) (-699 |#1|) |#1|) 86)) (-3997 (((-699 |#1|) (-699 |#1|)) 67)) (-3007 (((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|) 84))) +(((-710 |#1|) (-10 -7 (-15 -3997 ((-699 |#1|) (-699 |#1|))) (-15 -1430 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -2385 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -2261 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -3007 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|))) (-315)) (T -710)) +((-3007 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-710 *3)) (-4 *3 (-315)))) (-2261 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-2385 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-1430 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) +(-10 -7 (-15 -3997 ((-699 |#1|) (-699 |#1|))) (-15 -1430 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -2385 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -2261 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -3007 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-4227 (($ $ $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-4382 (($ $ $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL)) (-3933 (($ $ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) 31)) (-2214 (((-574) $) 29)) (-2800 (($ $ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3577 (((-3 (-417 (-574)) "failed") $) NIL)) (-3839 (((-112) $) NIL)) (-2842 (((-417 (-574)) $) NIL)) (-2835 (($ $) NIL) (($) NIL)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-1894 (($ $ $ $) NIL)) (-3389 (($ $ $) NIL)) (-3408 (((-112) $) NIL)) (-4159 (($ $ $) NIL)) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-4226 (((-112) $) NIL)) (-1823 (((-112) $) NIL)) (-2414 (((-3 $ "failed") $) NIL)) (-3182 (((-112) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3398 (($ $ $ $) NIL)) (-3634 (($ $ $) NIL)) (-4252 (((-935) (-935)) 10) (((-935)) 9)) (-4380 (($ $ $) NIL)) (-3785 (($ $) NIL)) (-4109 (($ $) NIL)) (-2849 (($ (-654 $)) NIL) (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3106 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-1613 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4412 (($ $) NIL)) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2120 (((-112) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL) (($ $) NIL)) (-2311 (($ $) NIL)) (-3157 (($ $) NIL)) (-1844 (((-227) $) NIL) (((-388) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (((-574) $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) 28) (($ $) NIL) (($ (-574)) 28) (((-324 $) (-324 (-574))) 18)) (-2898 (((-781)) NIL T CONST)) (-2325 (((-112) $ $) NIL)) (-3900 (($ $ $) NIL)) (-4069 (((-112) $ $) NIL)) (-2644 (($) NIL)) (-2836 (((-112) $ $) NIL)) (-2776 (($ $ $ $) NIL)) (-3936 (($ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-781)) NIL) (($ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) +(((-711) (-13 (-397) (-555) (-10 -8 (-15 -4252 ((-935) (-935))) (-15 -4252 ((-935))) (-15 -2951 ((-324 $) (-324 (-574))))))) (T -711)) +((-4252 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-711)))) (-4252 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-711)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-324 (-574))) (-5 *2 (-324 (-711))) (-5 *1 (-711))))) +(-13 (-397) (-555) (-10 -8 (-15 -4252 ((-935) (-935))) (-15 -4252 ((-935))) (-15 -2951 ((-324 $) (-324 (-574)))))) +((-4087 (((-1 |#4| |#2| |#3|) |#1| (-1193) (-1193)) 19)) (-2803 (((-1 |#4| |#2| |#3|) (-1193)) 12))) +(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 ((-1 |#4| |#2| |#3|) (-1193))) (-15 -4087 ((-1 |#4| |#2| |#3|) |#1| (-1193) (-1193)))) (-624 (-546)) (-1234) (-1234) (-1234)) (T -712)) +((-4087 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1193)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7)) (-4 *3 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234)) (-4 *7 (-1234)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7)) (-4 *4 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234)) (-4 *7 (-1234))))) +(-10 -7 (-15 -2803 ((-1 |#4| |#2| |#3|) (-1193))) (-15 -4087 ((-1 |#4| |#2| |#3|) |#1| (-1193) (-1193)))) +((-3956 (((-1 (-227) (-227) (-227)) |#1| (-1193) (-1193)) 43) (((-1 (-227) (-227)) |#1| (-1193)) 48))) +(((-713 |#1|) (-10 -7 (-15 -3956 ((-1 (-227) (-227)) |#1| (-1193))) (-15 -3956 ((-1 (-227) (-227) (-227)) |#1| (-1193) (-1193)))) (-624 (-546))) (T -713)) +((-3956 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1193)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546))))) (-3956 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546)))))) +(-10 -7 (-15 -3956 ((-1 (-227) (-227)) |#1| (-1193))) (-15 -3956 ((-1 (-227) (-227) (-227)) |#1| (-1193) (-1193)))) +((-2722 (((-1193) |#1| (-1193) (-654 (-1193))) 10) (((-1193) |#1| (-1193) (-1193) (-1193)) 13) (((-1193) |#1| (-1193) (-1193)) 12) (((-1193) |#1| (-1193)) 11))) +(((-714 |#1|) (-10 -7 (-15 -2722 ((-1193) |#1| (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-1193) (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-654 (-1193))))) (-624 (-546))) (T -714)) +((-2722 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-654 (-1193))) (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2722 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2722 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2722 (*1 *2 *3 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546)))))) +(-10 -7 (-15 -2722 ((-1193) |#1| (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-1193) (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-654 (-1193))))) +((-2237 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-715 |#1| |#2|) (-10 -7 (-15 -2237 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1234) (-1234)) (T -715)) +((-2237 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-715 *3 *4)) (-4 *3 (-1234)) (-4 *4 (-1234))))) +(-10 -7 (-15 -2237 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3517 (((-1 |#3| |#2|) (-1193)) 11)) (-4087 (((-1 |#3| |#2|) |#1| (-1193)) 21))) +(((-716 |#1| |#2| |#3|) (-10 -7 (-15 -3517 ((-1 |#3| |#2|) (-1193))) (-15 -4087 ((-1 |#3| |#2|) |#1| (-1193)))) (-624 (-546)) (-1234) (-1234)) (T -716)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6)) (-4 *3 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6)) (-4 *4 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234))))) +(-10 -7 (-15 -3517 ((-1 |#3| |#2|) (-1193))) (-15 -4087 ((-1 |#3| |#2|) |#1| (-1193)))) +((-4249 (((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -3407 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1284 (-654 (-1189 |#3|))) |#3|) 92)) (-1977 (((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|) 110)) (-4300 (((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1189 |#4|)) (-1284 (-654 (-1189 |#3|))) |#3|) 47))) +(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4300 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1189 |#4|)) (-1284 (-654 (-1189 |#3|))) |#3|)) (-15 -1977 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -4249 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -3407 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1284 (-654 (-1189 |#3|))) |#3|))) (-803) (-860) (-315) (-963 |#3| |#1| |#2|)) (T -717)) +((-4249 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-654 (-1189 *13))) (-5 *3 (-1189 *13)) (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13)) (-5 *7 (-654 (-654 (-2 (|:| -3407 (-781)) (|:| |pcoef| *13))))) (-5 *8 (-654 (-781))) (-5 *9 (-1284 (-654 (-1189 *10)))) (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-963 *10 *11 *12)) (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13)))) (-1977 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1189 *9))) (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781))) (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-963 *9 *10 *11)) (-4 *10 (-803)) (-5 *2 (-654 (-1189 *12))) (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1189 *12)))) (-4300 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-654 (-1189 *11))) (-5 *3 (-1189 *11)) (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781))) (-5 *7 (-1284 (-654 (-1189 *8)))) (-4 *10 (-860)) (-4 *8 (-315)) (-4 *11 (-963 *8 *9 *10)) (-4 *9 (-803)) (-5 *1 (-717 *9 *10 *8 *11))))) +(-10 -7 (-15 -4300 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1189 |#4|)) (-1284 (-654 (-1189 |#3|))) |#3|)) (-15 -1977 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -4249 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -3407 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1284 (-654 (-1189 |#3|))) |#3|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1402 (($ $) 48)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-4328 (($ |#1| (-781)) 46)) (-3192 (((-781) $) 50)) (-1378 ((|#1| $) 49)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3580 (((-781) $) 51)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-2706 ((|#1| $ (-781)) 47)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-718 |#1|) (-141) (-1065)) (T -718)) +((-3580 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1065)))) (-1402 (*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1065)))) (-2706 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1065)))) (-4328 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1065))))) +(-13 (-1065) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3580 ((-781) $)) (-15 -3192 ((-781) $)) (-15 -1378 (|t#1| $)) (-15 -1402 ($ $)) (-15 -2706 (|t#1| $ (-781))) (-15 -4328 ($ |t#1| (-781))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-1785 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-719 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1785 (|#6| (-1 |#4| |#1|) |#3|))) (-566) (-1260 |#1|) (-1260 (-417 |#2|)) (-566) (-1260 |#4|) (-1260 (-417 |#5|))) (T -719)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-566)) (-4 *7 (-566)) (-4 *6 (-1260 *5)) (-4 *2 (-1260 (-417 *8))) (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1260 (-417 *6))) (-4 *8 (-1260 *7))))) +(-10 -7 (-15 -1785 (|#6| (-1 |#4| |#1|) |#3|))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3168 (((-1175) (-872)) 38)) (-1414 (((-1289) (-1175)) 31)) (-3964 (((-1175) (-872)) 28)) (-2515 (((-1175) (-872)) 29)) (-2951 (((-872) $) NIL) (((-1175) (-872)) 27)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-720) (-13 (-1116) (-10 -7 (-15 -2951 ((-1175) (-872))) (-15 -3964 ((-1175) (-872))) (-15 -2515 ((-1175) (-872))) (-15 -3168 ((-1175) (-872))) (-15 -1414 ((-1289) (-1175)))))) (T -720)) +((-2951 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-720))))) +(-13 (-1116) (-10 -7 (-15 -2951 ((-1175) (-872))) (-15 -3964 ((-1175) (-872))) (-15 -2515 ((-1175) (-872))) (-15 -3168 ((-1175) (-872))) (-15 -1414 ((-1289) (-1175))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-2882 (($ |#1| |#2|) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-4226 (((-112) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1510 ((|#2| $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3288 (((-3 $ "failed") $ $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) ((|#1| $) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-721 |#1| |#2| |#3| |#4| |#5|) (-13 (-372) (-10 -8 (-15 -1510 (|#2| $)) (-15 -2951 (|#1| $)) (-15 -2882 ($ |#1| |#2|)) (-15 -3288 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -721)) +((-1510 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2951 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2882 (*1 *1 *2 *3) (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3288 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-372) (-10 -8 (-15 -1510 (|#2| $)) (-15 -2951 (|#1| $)) (-15 -2882 ($ |#1| |#2|)) (-15 -3288 ((-3 $ "failed") $ $)))) +((-2864 (((-112) $ $) 87)) (-1431 (((-112) $) 36)) (-3613 (((-1284 |#1|) $ (-781)) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-4298 (($ (-1189 |#1|)) NIL)) (-4173 (((-1189 $) $ (-1098)) NIL) (((-1189 |#1|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 (-1098))) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3022 (($ $ $) NIL (|has| |#1| (-566)))) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2991 (($ $) NIL (|has| |#1| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1496 (((-781)) 54 (|has| |#1| (-377)))) (-1751 (($ $ (-781)) NIL)) (-3805 (($ $ (-781)) NIL)) (-3284 ((|#2| |#2|) 50)) (-2017 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-1098) "failed") $) NIL)) (-2214 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-1098) $) NIL)) (-3319 (($ $ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) 40)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-2882 (($ |#2|) 48)) (-4322 (((-3 $ "failed") $) 97)) (-2835 (($) 58 (|has| |#1| (-377)))) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4347 (($ $ $) NIL)) (-3778 (($ $ $) NIL (|has| |#1| (-566)))) (-2861 (((-2 (|:| -1866 |#1|) (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-566)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3621 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#1| (-923)))) (-3868 (((-972 $)) 89)) (-1849 (($ $ |#1| (-781) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1098) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1098) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3547 (((-781) $ $) NIL (|has| |#1| (-566)))) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-1168)))) (-4339 (($ (-1189 |#1|) (-1098)) NIL) (($ (-1189 $) (-1098)) NIL)) (-3966 (($ $ (-781)) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) 85) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-1098)) NIL) (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-1510 ((|#2|) 51)) (-3192 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-4303 (($ (-1 (-781) (-781)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2077 (((-1189 |#1|) $) NIL)) (-2284 (((-3 (-1098) "failed") $) NIL)) (-3383 (((-935) $) NIL (|has| |#1| (-377)))) (-2869 ((|#2| $) 47)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) 34)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1489 (((-1175) $) NIL)) (-3821 (((-2 (|:| -3901 $) (|:| -1880 $)) $ (-781)) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| (-1098)) (|:| -3139 (-781))) "failed") $) NIL)) (-3342 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#1| (-1168)) CONST)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2367 (($ $) 88 (|has| |#1| (-358)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-923)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1098) |#1|) NIL) (($ $ (-654 (-1098)) (-654 |#1|)) NIL) (($ $ (-1098) $) NIL) (($ $ (-654 (-1098)) (-654 $)) NIL)) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-3224 (((-3 $ "failed") $ (-781)) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 98 (|has| |#1| (-372)))) (-2394 (($ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3580 (((-781) $) 38) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1098) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-2372 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-3951 (((-972 $)) 42)) (-4374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2951 (((-872) $) 68) (($ (-574)) NIL) (($ |#1|) 65) (($ (-1098)) NIL) (($ |#2|) 75) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-781)) 70) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 25 T CONST)) (-2243 (((-1284 |#1|) $) 83)) (-2109 (($ (-1284 |#1|)) 57)) (-2153 (($) 8 T CONST)) (-3584 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2602 (((-1284 |#1|) $) NIL)) (-2986 (((-112) $ $) 76)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) 79) (($ $ $) NIL)) (-3074 (($ $ $) 39)) (** (($ $ (-935)) NIL) (($ $ (-781)) 92)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 64) (($ $ $) 82) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) +(((-722 |#1| |#2|) (-13 (-1260 |#1|) (-626 |#2|) (-10 -8 (-15 -3284 (|#2| |#2|)) (-15 -1510 (|#2|)) (-15 -2882 ($ |#2|)) (-15 -2869 (|#2| $)) (-15 -2243 ((-1284 |#1|) $)) (-15 -2109 ($ (-1284 |#1|))) (-15 -2602 ((-1284 |#1|) $)) (-15 -3868 ((-972 $))) (-15 -3951 ((-972 $))) (IF (|has| |#1| (-358)) (-15 -2367 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|))) (-1065) (-1260 |#1|)) (T -722)) +((-3284 (*1 *2 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1260 *3)))) (-1510 (*1 *2) (-12 (-4 *2 (-1260 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1065)))) (-2882 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1260 *3)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-1260 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1065)))) (-2243 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-5 *2 (-1284 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1260 *3)))) (-2109 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1065)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1260 *3)))) (-2602 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-5 *2 (-1284 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1260 *3)))) (-3868 (*1 *2) (-12 (-4 *3 (-1065)) (-5 *2 (-972 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1260 *3)))) (-3951 (*1 *2) (-12 (-4 *3 (-1065)) (-5 *2 (-972 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1260 *3)))) (-2367 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *2 (-1065)) (-5 *1 (-722 *2 *3)) (-4 *3 (-1260 *2))))) +(-13 (-1260 |#1|) (-626 |#2|) (-10 -8 (-15 -3284 (|#2| |#2|)) (-15 -1510 (|#2|)) (-15 -2882 ($ |#2|)) (-15 -2869 (|#2| $)) (-15 -2243 ((-1284 |#1|) $)) (-15 -2109 ($ (-1284 |#1|))) (-15 -2602 ((-1284 |#1|) $)) (-15 -3868 ((-972 $))) (-15 -3951 ((-972 $))) (IF (|has| |#1| (-358)) (-15 -2367 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|))) +((-2864 (((-112) $ $) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-2591 ((|#1| $) 13)) (-3940 (((-1136) $) NIL)) (-3139 ((|#2| $) 12)) (-2963 (($ |#1| |#2|) 16)) (-2951 (((-872) $) NIL) (($ (-2 (|:| -2591 |#1|) (|:| -3139 |#2|))) 15) (((-2 (|:| -2591 |#1|) (|:| -3139 |#2|)) $) 14)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 11))) +(((-723 |#1| |#2| |#3|) (-13 (-860) (-500 (-2 (|:| -2591 |#1|) (|:| -3139 |#2|))) (-10 -8 (-15 -3139 (|#2| $)) (-15 -2591 (|#1| $)) (-15 -2963 ($ |#1| |#2|)))) (-860) (-1116) (-1 (-112) (-2 (|:| -2591 |#1|) (|:| -3139 |#2|)) (-2 (|:| -2591 |#1|) (|:| -3139 |#2|)))) (T -723)) +((-3139 (*1 *2 *1) (-12 (-4 *2 (-1116)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860)) (-14 *4 (-1 (-112) (-2 (|:| -2591 *3) (|:| -3139 *2)) (-2 (|:| -2591 *3) (|:| -3139 *2)))))) (-2591 (*1 *2 *1) (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1116)) (-14 *4 (-1 (-112) (-2 (|:| -2591 *2) (|:| -3139 *3)) (-2 (|:| -2591 *2) (|:| -3139 *3)))))) (-2963 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1116)) (-14 *4 (-1 (-112) (-2 (|:| -2591 *2) (|:| -3139 *3)) (-2 (|:| -2591 *2) (|:| -3139 *3))))))) +(-13 (-860) (-500 (-2 (|:| -2591 |#1|) (|:| -3139 |#2|))) (-10 -8 (-15 -3139 (|#2| $)) (-15 -2591 (|#1| $)) (-15 -2963 ($ |#1| |#2|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 66)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2214 ((|#1| $) NIL) (((-115) $) 39)) (-4322 (((-3 $ "failed") $) 103)) (-1836 ((|#2| (-115) |#2|) 93)) (-4226 (((-112) $) NIL)) (-1421 (($ |#1| (-370 (-115))) 14)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4259 (($ $ (-1 |#2| |#2|)) 65)) (-3282 (($ $ (-1 |#2| |#2|)) 44)) (-2207 ((|#2| $ |#2|) 33)) (-2053 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2951 (((-872) $) 73) (($ (-574)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) 37 T CONST)) (-4069 (((-112) $ $) NIL)) (-2181 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2141 (($) 21 T CONST)) (-2153 (($) 9 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) 48) (($ $ $) NIL)) (-3074 (($ $ $) 83)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) 64)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) +(((-724 |#1| |#2|) (-13 (-1065) (-1054 |#1|) (-1054 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2181 ($ $)) (-15 -2181 ($ $ $)) (-15 -2053 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#2| |#2|))) (-15 -4259 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -1836 (|#2| (-115) |#2|)) (-15 -1421 ($ |#1| (-370 (-115)))))) (-1065) (-658 |#1|)) (T -724)) +((-2181 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-2181 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-2053 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1065)) (-5 *1 (-724 *3 *4)))) (-4259 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1065)) (-5 *1 (-724 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1065)) (-5 *1 (-724 *4 *5)) (-4 *5 (-658 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *3 (-1065)) (-5 *1 (-724 *3 *4)) (-4 *4 (-658 *3)))) (-1836 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1065)) (-5 *1 (-724 *4 *2)) (-4 *2 (-658 *4)))) (-1421 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1065)) (-5 *1 (-724 *2 *4)) (-4 *4 (-658 *2))))) +(-13 (-1065) (-1054 |#1|) (-1054 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2181 ($ $)) (-15 -2181 ($ $ $)) (-15 -2053 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#2| |#2|))) (-15 -4259 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -1836 (|#2| (-115) |#2|)) (-15 -1421 ($ |#1| (-370 (-115)))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 33)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-2882 (($ |#1| |#2|) 25)) (-4322 (((-3 $ "failed") $) 51)) (-4226 (((-112) $) 35)) (-1510 ((|#2| $) 12)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 52)) (-3940 (((-1136) $) NIL)) (-3288 (((-3 $ "failed") $ $) 50)) (-2951 (((-872) $) 24) (($ (-574)) 19) ((|#1| $) 13)) (-2898 (((-781)) 28 T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 16 T CONST)) (-2153 (($) 30 T CONST)) (-2986 (((-112) $ $) 41)) (-3090 (($ $) 46) (($ $ $) 40)) (-3074 (($ $ $) 43)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21) (($ $ $) 20))) +(((-725 |#1| |#2| |#3| |#4| |#5|) (-13 (-1065) (-10 -8 (-15 -1510 (|#2| $)) (-15 -2951 (|#1| $)) (-15 -2882 ($ |#1| |#2|)) (-15 -3288 ((-3 $ "failed") $ $)) (-15 -4322 ((-3 $ "failed") $)) (-15 -1328 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -725)) +((-4322 (*1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1510 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2951 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2882 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3288 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1328 (*1 *1 *1) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1065) (-10 -8 (-15 -1510 (|#2| $)) (-15 -2951 (|#1| $)) (-15 -2882 ($ |#1| |#2|)) (-15 -3288 ((-3 $ "failed") $ $)) (-15 -4322 ((-3 $ "failed") $)) (-15 -1328 ($ $)))) +((* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-726 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) (-727 |#2|) (-174)) (T -726)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-727 |#1|) (-141) (-174)) (T -727)) NIL (-13 (-111 |t#1| |t#1|) (-650 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3932 (($ |#1|) 17) (($ $ |#1|) 20)) (-3387 (($ |#1|) 18) (($ $ |#1|) 21)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3372 (((-112) $) NIL)) (-2766 (($ |#1| |#1| |#1| |#1|) 8)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 16)) (-3939 (((-1135) $) NIL)) (-2660 ((|#1| $ |#1|) 24) (((-843 |#1|) $ (-843 |#1|)) 32)) (-2202 (($ $ $) NIL)) (-3490 (($ $ $) NIL)) (-2950 (((-872) $) 39)) (-3838 (((-112) $ $) NIL)) (-2154 (($) 9 T CONST)) (-2985 (((-112) $ $) 48)) (-3098 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 14))) -(((-728 |#1|) (-13 (-483) (-10 -8 (-15 -2766 ($ |#1| |#1| |#1| |#1|)) (-15 -3932 ($ |#1|)) (-15 -3387 ($ |#1|)) (-15 -3911 ($)) (-15 -3932 ($ $ |#1|)) (-15 -3387 ($ $ |#1|)) (-15 -3911 ($ $)) (-15 -2660 (|#1| $ |#1|)) (-15 -2660 ((-843 |#1|) $ (-843 |#1|))))) (-372)) (T -728)) -((-2766 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3932 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3387 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3911 (*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3932 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3387 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3911 (*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2660 (*1 *2 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2660 (*1 *2 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *3 (-372)) (-5 *1 (-728 *3))))) -(-13 (-483) (-10 -8 (-15 -2766 ($ |#1| |#1| |#1| |#1|)) (-15 -3932 ($ |#1|)) (-15 -3387 ($ |#1|)) (-15 -3911 ($)) (-15 -3932 ($ $ |#1|)) (-15 -3387 ($ $ |#1|)) (-15 -3911 ($ $)) (-15 -2660 (|#1| $ |#1|)) (-15 -2660 ((-843 |#1|) $ (-843 |#1|))))) -((-3204 (($ $ (-934)) 19)) (-2177 (($ $ (-934)) 20)) (** (($ $ (-934)) 10))) -(((-729 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-934))) (-15 -2177 (|#1| |#1| (-934))) (-15 -3204 (|#1| |#1| (-934)))) (-730)) (T -729)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-934))) (-15 -2177 (|#1| |#1| (-934))) (-15 -3204 (|#1| |#1| (-934)))) -((-2863 (((-112) $ $) 7)) (-3204 (($ $ (-934)) 16)) (-2177 (($ $ (-934)) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6)) (** (($ $ (-934)) 14)) (* (($ $ $) 17))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-3933 (($ |#1|) 17) (($ $ |#1|) 20)) (-4251 (($ |#1|) 18) (($ $ |#1|) 21)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-4226 (((-112) $) NIL)) (-3140 (($ |#1| |#1| |#1| |#1|) 8)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 16)) (-3940 (((-1136) $) NIL)) (-2661 ((|#1| $ |#1|) 24) (((-843 |#1|) $ (-843 |#1|)) 32)) (-3617 (($ $ $) NIL)) (-3955 (($ $ $) NIL)) (-2951 (((-872) $) 39)) (-4069 (((-112) $ $) NIL)) (-2153 (($) 9 T CONST)) (-2986 (((-112) $ $) 48)) (-3103 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 14))) +(((-728 |#1|) (-13 (-483) (-10 -8 (-15 -3140 ($ |#1| |#1| |#1| |#1|)) (-15 -3933 ($ |#1|)) (-15 -4251 ($ |#1|)) (-15 -4322 ($)) (-15 -3933 ($ $ |#1|)) (-15 -4251 ($ $ |#1|)) (-15 -4322 ($ $)) (-15 -2661 (|#1| $ |#1|)) (-15 -2661 ((-843 |#1|) $ (-843 |#1|))))) (-372)) (T -728)) +((-3140 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3933 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-4251 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-4322 (*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-4251 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-4322 (*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2661 (*1 *2 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2661 (*1 *2 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *3 (-372)) (-5 *1 (-728 *3))))) +(-13 (-483) (-10 -8 (-15 -3140 ($ |#1| |#1| |#1| |#1|)) (-15 -3933 ($ |#1|)) (-15 -4251 ($ |#1|)) (-15 -4322 ($)) (-15 -3933 ($ $ |#1|)) (-15 -4251 ($ $ |#1|)) (-15 -4322 ($ $)) (-15 -2661 (|#1| $ |#1|)) (-15 -2661 ((-843 |#1|) $ (-843 |#1|))))) +((-3066 (($ $ (-935)) 19)) (-4308 (($ $ (-935)) 20)) (** (($ $ (-935)) 10))) +(((-729 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-935))) (-15 -4308 (|#1| |#1| (-935))) (-15 -3066 (|#1| |#1| (-935)))) (-730)) (T -729)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-935))) (-15 -4308 (|#1| |#1| (-935))) (-15 -3066 (|#1| |#1| (-935)))) +((-2864 (((-112) $ $) 7)) (-3066 (($ $ (-935)) 16)) (-4308 (($ $ (-935)) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)) (** (($ $ (-935)) 14)) (* (($ $ $) 17))) (((-730) (-141)) (T -730)) -((* (*1 *1 *1 *1) (-4 *1 (-730))) (-3204 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934)))) (-2177 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934))))) -(-13 (-1115) (-10 -8 (-15 * ($ $ $)) (-15 -3204 ($ $ (-934))) (-15 -2177 ($ $ (-934))) (-15 ** ($ $ (-934))))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-3204 (($ $ (-934)) NIL) (($ $ (-781)) 18)) (-3372 (((-112) $) 10)) (-2177 (($ $ (-934)) NIL) (($ $ (-781)) 19)) (** (($ $ (-934)) NIL) (($ $ (-781)) 16))) -(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -2177 (|#1| |#1| (-781))) (-15 -3204 (|#1| |#1| (-781))) (-15 -3372 ((-112) |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 -2177 (|#1| |#1| (-934))) (-15 -3204 (|#1| |#1| (-934)))) (-732)) (T -731)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -2177 (|#1| |#1| (-781))) (-15 -3204 (|#1| |#1| (-781))) (-15 -3372 ((-112) |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 -2177 (|#1| |#1| (-934))) (-15 -3204 (|#1| |#1| (-934)))) -((-2863 (((-112) $ $) 7)) (-2484 (((-3 $ "failed") $) 18)) (-3204 (($ $ (-934)) 16) (($ $ (-781)) 23)) (-3911 (((-3 $ "failed") $) 20)) (-3372 (((-112) $) 24)) (-2691 (((-3 $ "failed") $) 19)) (-2177 (($ $ (-934)) 15) (($ $ (-781)) 22)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2154 (($) 25 T CONST)) (-2985 (((-112) $ $) 6)) (** (($ $ (-934)) 14) (($ $ (-781)) 21)) (* (($ $ $) 17))) +((* (*1 *1 *1 *1) (-4 *1 (-730))) (-3066 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935)))) (-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935))))) +(-13 (-1116) (-10 -8 (-15 * ($ $ $)) (-15 -3066 ($ $ (-935))) (-15 -4308 ($ $ (-935))) (-15 ** ($ $ (-935))))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-3066 (($ $ (-935)) NIL) (($ $ (-781)) 18)) (-4226 (((-112) $) 10)) (-4308 (($ $ (-935)) NIL) (($ $ (-781)) 19)) (** (($ $ (-935)) NIL) (($ $ (-781)) 16))) +(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -4308 (|#1| |#1| (-781))) (-15 -3066 (|#1| |#1| (-781))) (-15 -4226 ((-112) |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 -4308 (|#1| |#1| (-935))) (-15 -3066 (|#1| |#1| (-935)))) (-732)) (T -731)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -4308 (|#1| |#1| (-781))) (-15 -3066 (|#1| |#1| (-781))) (-15 -4226 ((-112) |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 -4308 (|#1| |#1| (-935))) (-15 -3066 (|#1| |#1| (-935)))) +((-2864 (((-112) $ $) 7)) (-1657 (((-3 $ "failed") $) 18)) (-3066 (($ $ (-935)) 16) (($ $ (-781)) 23)) (-4322 (((-3 $ "failed") $) 20)) (-4226 (((-112) $) 24)) (-3144 (((-3 $ "failed") $) 19)) (-4308 (($ $ (-935)) 15) (($ $ (-781)) 22)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2153 (($) 25 T CONST)) (-2986 (((-112) $ $) 6)) (** (($ $ (-935)) 14) (($ $ (-781)) 21)) (* (($ $ $) 17))) (((-732) (-141)) (T -732)) -((-2154 (*1 *1) (-4 *1 (-732))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) (-3204 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-2177 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-3911 (*1 *1 *1) (|partial| -4 *1 (-732))) (-2691 (*1 *1 *1) (|partial| -4 *1 (-732))) (-2484 (*1 *1 *1) (|partial| -4 *1 (-732)))) -(-13 (-730) (-10 -8 (-15 (-2154) ($) -1715) (-15 -3372 ((-112) $)) (-15 -3204 ($ $ (-781))) (-15 -2177 ($ $ (-781))) (-15 ** ($ $ (-781))) (-15 -3911 ((-3 $ "failed") $)) (-15 -2691 ((-3 $ "failed") $)) (-15 -2484 ((-3 $ "failed") $)))) -(((-102) . T) ((-623 (-872)) . T) ((-730) . T) ((-1115) . T)) -((-1496 (((-781)) 39)) (-1705 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 23)) (-2881 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) 49)) (-3911 (((-3 $ "failed") $) 69)) (-2834 (($) 43)) (-1386 ((|#2| $) 21)) (-2975 (($) 18)) (-3878 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-1840 (((-699 |#2|) (-1283 $) (-1 |#2| |#2|)) 64)) (-1845 (((-1283 |#2|) $) NIL) (($ (-1283 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1539 ((|#3| $) 36)) (-2191 (((-1283 $)) 33))) -(((-733 |#1| |#2| |#3|) (-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -2834 (|#1|)) (-15 -1496 ((-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -1840 ((-699 |#2|) (-1283 |#1|) (-1 |#2| |#2|))) (-15 -2881 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1845 (|#1| |#3|)) (-15 -2881 (|#1| |#3|)) (-15 -2975 (|#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -1845 (|#3| |#1|)) (-15 -1845 (|#1| (-1283 |#2|))) (-15 -1845 ((-1283 |#2|) |#1|)) (-15 -2191 ((-1283 |#1|))) (-15 -1539 (|#3| |#1|)) (-15 -1386 (|#2| |#1|)) (-15 -3911 ((-3 |#1| "failed") |#1|))) (-734 |#2| |#3|) (-174) (-1259 |#2|)) (T -733)) -((-1496 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-781)) (-5 *1 (-733 *3 *4 *5)) (-4 *3 (-734 *4 *5))))) -(-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -2834 (|#1|)) (-15 -1496 ((-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -1840 ((-699 |#2|) (-1283 |#1|) (-1 |#2| |#2|))) (-15 -2881 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1845 (|#1| |#3|)) (-15 -2881 (|#1| |#3|)) (-15 -2975 (|#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -1845 (|#3| |#1|)) (-15 -1845 (|#1| (-1283 |#2|))) (-15 -1845 ((-1283 |#2|) |#1|)) (-15 -2191 ((-1283 |#1|))) (-15 -1539 (|#3| |#1|)) (-15 -1386 (|#2| |#1|)) (-15 -3911 ((-3 |#1| "failed") |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 103 (|has| |#1| (-372)))) (-3648 (($ $) 104 (|has| |#1| (-372)))) (-1527 (((-112) $) 106 (|has| |#1| (-372)))) (-3644 (((-699 |#1|) (-1283 $)) 53) (((-699 |#1|)) 68)) (-1645 ((|#1| $) 59)) (-2541 (((-1205 (-934) (-781)) (-574)) 156 (|has| |#1| (-358)))) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 123 (|has| |#1| (-372)))) (-3954 (((-428 $) $) 124 (|has| |#1| (-372)))) (-3656 (((-112) $ $) 114 (|has| |#1| (-372)))) (-1496 (((-781)) 97 (|has| |#1| (-377)))) (-3831 (($) 18 T CONST)) (-1705 (((-3 (-574) "failed") $) 181 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 176)) (-2216 (((-574) $) 180 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 178 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 177)) (-2919 (($ (-1283 |#1|) (-1283 $)) 55) (($ (-1283 |#1|)) 71)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-358)))) (-2799 (($ $ $) 118 (|has| |#1| (-372)))) (-3556 (((-699 |#1|) $ (-1283 $)) 60) (((-699 |#1|) $) 66)) (-3465 (((-699 (-574)) (-1283 $)) 175 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 173 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 172) (((-699 |#1|) (-699 $)) 171) (((-699 |#1|) (-1283 $)) 170)) (-2881 (($ |#2|) 167) (((-3 $ "failed") (-417 |#2|)) 164 (|has| |#1| (-372)))) (-3911 (((-3 $ "failed") $) 37)) (-3557 (((-934)) 61)) (-2834 (($) 100 (|has| |#1| (-377)))) (-2811 (($ $ $) 117 (|has| |#1| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 112 (|has| |#1| (-372)))) (-1912 (($) 158 (|has| |#1| (-358)))) (-3873 (((-112) $) 159 (|has| |#1| (-358)))) (-4158 (($ $ (-781)) 150 (|has| |#1| (-358))) (($ $) 149 (|has| |#1| (-358)))) (-1782 (((-112) $) 125 (|has| |#1| (-372)))) (-2725 (((-934) $) 161 (|has| |#1| (-358))) (((-843 (-934)) $) 147 (|has| |#1| (-358)))) (-3372 (((-112) $) 35)) (-1386 ((|#1| $) 58)) (-1353 (((-3 $ "failed") $) 151 (|has| |#1| (-358)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| |#1| (-372)))) (-1950 ((|#2| $) 51 (|has| |#1| (-372)))) (-3271 (((-934) $) 99 (|has| |#1| (-377)))) (-2868 ((|#2| $) 165)) (-2848 (($ (-654 $)) 110 (|has| |#1| (-372))) (($ $ $) 109 (|has| |#1| (-372)))) (-3945 (((-1174) $) 10)) (-1327 (($ $) 126 (|has| |#1| (-372)))) (-3791 (($) 152 (|has| |#1| (-358)) CONST)) (-2590 (($ (-934)) 98 (|has| |#1| (-377)))) (-3939 (((-1135) $) 11)) (-2975 (($) 169)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 111 (|has| |#1| (-372)))) (-2886 (($ (-654 $)) 108 (|has| |#1| (-372))) (($ $ $) 107 (|has| |#1| (-372)))) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) 155 (|has| |#1| (-358)))) (-4200 (((-428 $) $) 122 (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 119 (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ $) 102 (|has| |#1| (-372)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| |#1| (-372)))) (-3364 (((-781) $) 115 (|has| |#1| (-372)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 116 (|has| |#1| (-372)))) (-1738 ((|#1| (-1283 $)) 54) ((|#1|) 67)) (-3881 (((-781) $) 160 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 148 (|has| |#1| (-358)))) (-3878 (($ $ (-781)) 145 (-2832 (-2096 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) 143 (-2832 (-2096 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1192)) 142 (-2096 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-654 (-1192))) 141 (-2096 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-1192) (-781)) 140 (-2096 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 (-781))) 139 (-2096 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 132 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 131 (|has| |#1| (-372)))) (-1840 (((-699 |#1|) (-1283 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-372)))) (-2290 ((|#2|) 168)) (-1417 (($) 157 (|has| |#1| (-358)))) (-4346 (((-1283 |#1|) $ (-1283 $)) 57) (((-699 |#1|) (-1283 $) (-1283 $)) 56) (((-1283 |#1|) $) 73) (((-699 |#1|) (-1283 $)) 72)) (-1845 (((-1283 |#1|) $) 70) (($ (-1283 |#1|)) 69) ((|#2| $) 182) (($ |#2|) 166)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 154 (|has| |#1| (-358)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ $) 101 (|has| |#1| (-372))) (($ (-417 (-574))) 96 (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574))))))) (-3247 (($ $) 153 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1539 ((|#2| $) 52)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2191 (((-1283 $)) 74)) (-1842 (((-112) $ $) 105 (|has| |#1| (-372)))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-781)) 146 (-2832 (-2096 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) 144 (-2832 (-2096 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1192)) 138 (-2096 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-654 (-1192))) 137 (-2096 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-1192) (-781)) 136 (-2096 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 (-781))) 135 (-2096 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 134 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 133 (|has| |#1| (-372)))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ $) 130 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 127 (|has| |#1| (-372)))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 129 (|has| |#1| (-372))) (($ $ (-417 (-574))) 128 (|has| |#1| (-372))))) -(((-734 |#1| |#2|) (-141) (-174) (-1259 |t#1|)) (T -734)) -((-2975 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1259 *2)))) (-2290 (*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) (-2881 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1259 *3)))) (-1845 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1259 *3)))) (-2868 (*1 *2 *1) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) (-2881 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-372)) (-4 *3 (-174)) (-4 *1 (-734 *3 *4)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-1283 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1259 *5)) (-5 *2 (-699 *5))))) -(-13 (-419 |t#1| |t#2|) (-174) (-624 |t#2|) (-421 |t#1|) (-386 |t#1|) (-10 -8 (-15 -2975 ($)) (-15 -2290 (|t#2|)) (-15 -2881 ($ |t#2|)) (-15 -1845 ($ |t#2|)) (-15 -2868 (|t#2| $)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-372)) (-6 (-233 |t#1|)) (-15 -2881 ((-3 $ "failed") (-417 |t#2|))) (-15 -1840 ((-699 |t#1|) (-1283 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-102) . T) ((-111 #0# #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2832 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#2|) . T) ((-235 $) -2832 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-233 |#1|) |has| |#1| (-372)) ((-239) -2832 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-238) -2832 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-249) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-298) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-315) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-372) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2832 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| |#2|) . T) ((-419 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-566) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192)))) ((-933) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1066 |#1|) . T) ((-1066 $) . T) ((-1071 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| |#1| (-358)) ((-1233) -2832 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-1237) -2832 (|has| |#1| (-358)) (|has| |#1| (-372)))) -((-3831 (($) 11)) (-3911 (((-3 $ "failed") $) 14)) (-3372 (((-112) $) 10)) (** (($ $ (-934)) NIL) (($ $ (-781)) 20))) -(((-735 |#1|) (-10 -8 (-15 -3911 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -3372 ((-112) |#1|)) (-15 -3831 (|#1|)) (-15 ** (|#1| |#1| (-934)))) (-736)) (T -735)) -NIL -(-10 -8 (-15 -3911 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -3372 ((-112) |#1|)) (-15 -3831 (|#1|)) (-15 ** (|#1| |#1| (-934)))) -((-2863 (((-112) $ $) 7)) (-3831 (($) 19 T CONST)) (-3911 (((-3 $ "failed") $) 16)) (-3372 (((-112) $) 18)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2154 (($) 20 T CONST)) (-2985 (((-112) $ $) 6)) (** (($ $ (-934)) 14) (($ $ (-781)) 17)) (* (($ $ $) 15))) +((-2153 (*1 *1) (-4 *1 (-732))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) (-3066 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-4322 (*1 *1 *1) (|partial| -4 *1 (-732))) (-3144 (*1 *1 *1) (|partial| -4 *1 (-732))) (-1657 (*1 *1 *1) (|partial| -4 *1 (-732)))) +(-13 (-730) (-10 -8 (-15 (-2153) ($) -1714) (-15 -4226 ((-112) $)) (-15 -3066 ($ $ (-781))) (-15 -4308 ($ $ (-781))) (-15 ** ($ $ (-781))) (-15 -4322 ((-3 $ "failed") $)) (-15 -3144 ((-3 $ "failed") $)) (-15 -1657 ((-3 $ "failed") $)))) +(((-102) . T) ((-623 (-872)) . T) ((-730) . T) ((-1116) . T)) +((-1496 (((-781)) 39)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2214 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 23)) (-2882 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) 49)) (-4322 (((-3 $ "failed") $) 69)) (-2835 (($) 43)) (-1681 ((|#2| $) 21)) (-2975 (($) 18)) (-3879 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-3303 (((-699 |#2|) (-1284 $) (-1 |#2| |#2|)) 64)) (-1844 (((-1284 |#2|) $) NIL) (($ (-1284 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2648 ((|#3| $) 36)) (-2391 (((-1284 $)) 33))) +(((-733 |#1| |#2| |#3|) (-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -2835 (|#1|)) (-15 -1496 ((-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3303 ((-699 |#2|) (-1284 |#1|) (-1 |#2| |#2|))) (-15 -2882 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1844 (|#1| |#3|)) (-15 -2882 (|#1| |#3|)) (-15 -2975 (|#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 (|#3| |#1|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -2391 ((-1284 |#1|))) (-15 -2648 (|#3| |#1|)) (-15 -1681 (|#2| |#1|)) (-15 -4322 ((-3 |#1| "failed") |#1|))) (-734 |#2| |#3|) (-174) (-1260 |#2|)) (T -733)) +((-1496 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-781)) (-5 *1 (-733 *3 *4 *5)) (-4 *3 (-734 *4 *5))))) +(-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -2835 (|#1|)) (-15 -1496 ((-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3303 ((-699 |#2|) (-1284 |#1|) (-1 |#2| |#2|))) (-15 -2882 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1844 (|#1| |#3|)) (-15 -2882 (|#1| |#3|)) (-15 -2975 (|#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 (|#3| |#1|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -2391 ((-1284 |#1|))) (-15 -2648 (|#3| |#1|)) (-15 -1681 (|#2| |#1|)) (-15 -4322 ((-3 |#1| "failed") |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 104 (|has| |#1| (-372)))) (-2884 (($ $) 105 (|has| |#1| (-372)))) (-1981 (((-112) $) 107 (|has| |#1| (-372)))) (-3835 (((-699 |#1|) (-1284 $)) 53) (((-699 |#1|)) 68)) (-1644 ((|#1| $) 59)) (-1928 (((-1206 (-935) (-781)) (-574)) 157 (|has| |#1| (-358)))) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 124 (|has| |#1| (-372)))) (-1610 (((-428 $) $) 125 (|has| |#1| (-372)))) (-3245 (((-112) $ $) 115 (|has| |#1| (-372)))) (-1496 (((-781)) 98 (|has| |#1| (-377)))) (-3250 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 182 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 180 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 177)) (-2214 (((-574) $) 181 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 179 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 178)) (-2580 (($ (-1284 |#1|) (-1284 $)) 55) (($ (-1284 |#1|)) 71)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| |#1| (-358)))) (-2800 (($ $ $) 119 (|has| |#1| (-372)))) (-2640 (((-699 |#1|) $ (-1284 $)) 60) (((-699 |#1|) $) 66)) (-1831 (((-699 (-574)) (-1284 $)) 176 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 175 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 173) (((-699 |#1|) (-699 $)) 172) (((-699 |#1|) (-1284 $)) 171)) (-2882 (($ |#2|) 168) (((-3 $ "failed") (-417 |#2|)) 165 (|has| |#1| (-372)))) (-4322 (((-3 $ "failed") $) 37)) (-3558 (((-935)) 61)) (-2835 (($) 101 (|has| |#1| (-377)))) (-2813 (($ $ $) 118 (|has| |#1| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 113 (|has| |#1| (-372)))) (-3556 (($) 159 (|has| |#1| (-358)))) (-3084 (((-112) $) 160 (|has| |#1| (-358)))) (-1995 (($ $ (-781)) 151 (|has| |#1| (-358))) (($ $) 150 (|has| |#1| (-358)))) (-3978 (((-112) $) 126 (|has| |#1| (-372)))) (-3547 (((-935) $) 162 (|has| |#1| (-358))) (((-843 (-935)) $) 148 (|has| |#1| (-358)))) (-4226 (((-112) $) 35)) (-1681 ((|#1| $) 58)) (-2414 (((-3 $ "failed") $) 152 (|has| |#1| (-358)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 122 (|has| |#1| (-372)))) (-3989 ((|#2| $) 51 (|has| |#1| (-372)))) (-3383 (((-935) $) 100 (|has| |#1| (-377)))) (-2869 ((|#2| $) 166)) (-2849 (($ (-654 $)) 111 (|has| |#1| (-372))) (($ $ $) 110 (|has| |#1| (-372)))) (-1489 (((-1175) $) 10)) (-1328 (($ $) 127 (|has| |#1| (-372)))) (-3791 (($) 153 (|has| |#1| (-358)) CONST)) (-2591 (($ (-935)) 99 (|has| |#1| (-377)))) (-3940 (((-1136) $) 11)) (-2975 (($) 170)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 112 (|has| |#1| (-372)))) (-2887 (($ (-654 $)) 109 (|has| |#1| (-372))) (($ $ $) 108 (|has| |#1| (-372)))) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) 156 (|has| |#1| (-358)))) (-4202 (((-428 $) $) 123 (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 120 (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ $) 103 (|has| |#1| (-372)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 114 (|has| |#1| (-372)))) (-2098 (((-781) $) 116 (|has| |#1| (-372)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 117 (|has| |#1| (-372)))) (-2394 ((|#1| (-1284 $)) 54) ((|#1|) 67)) (-3261 (((-781) $) 161 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 149 (|has| |#1| (-358)))) (-3879 (($ $ (-781)) 146 (-2833 (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) 144 (-2833 (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-654 (-1193)) (-654 (-781))) 140 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1193) (-781)) 139 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-654 (-1193))) 138 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1193)) 136 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 133 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-372)))) (-3303 (((-699 |#1|) (-1284 $) (-1 |#1| |#1|)) 164 (|has| |#1| (-372)))) (-4379 ((|#2|) 169)) (-3603 (($) 158 (|has| |#1| (-358)))) (-1385 (((-1284 |#1|) $ (-1284 $)) 57) (((-699 |#1|) (-1284 $) (-1284 $)) 56) (((-1284 |#1|) $) 73) (((-699 |#1|) (-1284 $)) 72)) (-1844 (((-1284 |#1|) $) 70) (($ (-1284 |#1|)) 69) ((|#2| $) 183) (($ |#2|) 167)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 155 (|has| |#1| (-358)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ $) 102 (|has| |#1| (-372))) (($ (-417 (-574))) 97 (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574))))))) (-3424 (($ $) 154 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2648 ((|#2| $) 52)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2391 (((-1284 $)) 74)) (-2836 (((-112) $ $) 106 (|has| |#1| (-372)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-781)) 147 (-2833 (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) 145 (-2833 (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-654 (-1193)) (-654 (-781))) 143 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1193) (-781)) 142 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-654 (-1193))) 141 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1193)) 137 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 135 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-372)))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ $) 131 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 128 (|has| |#1| (-372)))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 130 (|has| |#1| (-372))) (($ $ (-417 (-574))) 129 (|has| |#1| (-372))))) +(((-734 |#1| |#2|) (-141) (-174) (-1260 |t#1|)) (T -734)) +((-2975 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1260 *2)))) (-4379 (*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3)))) (-2882 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1260 *3)))) (-1844 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1260 *3)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3)))) (-2882 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-372)) (-4 *3 (-174)) (-4 *1 (-734 *3 *4)))) (-3303 (*1 *2 *3 *4) (-12 (-5 *3 (-1284 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1260 *5)) (-5 *2 (-699 *5))))) +(-13 (-419 |t#1| |t#2|) (-174) (-624 |t#2|) (-421 |t#1|) (-386 |t#1|) (-10 -8 (-15 -2975 ($)) (-15 -4379 (|t#2|)) (-15 -2882 ($ |t#2|)) (-15 -1844 ($ |t#2|)) (-15 -2869 (|t#2| $)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-372)) (-6 (-233 |t#1|)) (-15 -2882 ((-3 $ "failed") (-417 |t#2|))) (-15 -3303 ((-699 |t#1|) (-1284 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-102) . T) ((-111 #0# #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2833 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#2|) . T) ((-235 $) -2833 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-233 |#1|) |has| |#1| (-372)) ((-239) -2833 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-238) -2833 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-249) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-298) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-315) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-372) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2833 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| |#2|) . T) ((-419 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-566) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-736) . T) ((-907 $ #2=(-1193)) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))) ((-912 #2#) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))) ((-914 #2#) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))) ((-934) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1072 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| |#1| (-358)) ((-1234) -2833 (|has| |#1| (-358)) (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-1238) -2833 (|has| |#1| (-358)) (|has| |#1| (-372)))) +((-3250 (($) 11)) (-4322 (((-3 $ "failed") $) 14)) (-4226 (((-112) $) 10)) (** (($ $ (-935)) NIL) (($ $ (-781)) 20))) +(((-735 |#1|) (-10 -8 (-15 -4322 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -4226 ((-112) |#1|)) (-15 -3250 (|#1|)) (-15 ** (|#1| |#1| (-935)))) (-736)) (T -735)) +NIL +(-10 -8 (-15 -4322 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -4226 ((-112) |#1|)) (-15 -3250 (|#1|)) (-15 ** (|#1| |#1| (-935)))) +((-2864 (((-112) $ $) 7)) (-3250 (($) 19 T CONST)) (-4322 (((-3 $ "failed") $) 16)) (-4226 (((-112) $) 18)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2153 (($) 20 T CONST)) (-2986 (((-112) $ $) 6)) (** (($ $ (-935)) 14) (($ $ (-781)) 17)) (* (($ $ $) 15))) (((-736) (-141)) (T -736)) -((-2154 (*1 *1) (-4 *1 (-736))) (-3831 (*1 *1) (-4 *1 (-736))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-781)))) (-3911 (*1 *1 *1) (|partial| -4 *1 (-736)))) -(-13 (-1127) (-10 -8 (-15 (-2154) ($) -1715) (-15 -3831 ($) -1715) (-15 -3372 ((-112) $)) (-15 ** ($ $ (-781))) (-15 -3911 ((-3 $ "failed") $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1127) . T) ((-1115) . T)) -((-3083 (((-2 (|:| -1366 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3749 (((-2 (|:| -1366 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4074 ((|#2| (-417 |#2|) (-1 |#2| |#2|)) 13)) (-3930 (((-2 (|:| |poly| |#2|) (|:| -1366 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)) 48))) -(((-737 |#1| |#2|) (-10 -7 (-15 -3749 ((-2 (|:| -1366 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3083 ((-2 (|:| -1366 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4074 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -3930 ((-2 (|:| |poly| |#2|) (|:| -1366 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1259 |#1|)) (T -737)) -((-3930 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1366 (-417 *6)) (|:| |special| (-417 *6)))) (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6)))) (-4074 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1259 *5)) (-5 *1 (-737 *5 *2)) (-4 *5 (-372)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1366 (-428 *3)) (|:| |special| (-428 *3)))) (-5 *1 (-737 *5 *3)))) (-3749 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1366 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3))))) -(-10 -7 (-15 -3749 ((-2 (|:| -1366 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3083 ((-2 (|:| -1366 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4074 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -3930 ((-2 (|:| |poly| |#2|) (|:| -1366 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)))) -((-1343 ((|#7| (-654 |#5|) |#6|) NIL)) (-1786 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-738 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1786 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1343 (|#7| (-654 |#5|) |#6|))) (-860) (-803) (-803) (-1064) (-1064) (-962 |#4| |#2| |#1|) (-962 |#5| |#3| |#1|)) (T -738)) -((-1343 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *9)) (-4 *9 (-1064)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-1064)) (-4 *2 (-962 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-962 *8 *6 *5)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1064)) (-4 *9 (-1064)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-962 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-962 *8 *6 *5))))) -(-10 -7 (-15 -1786 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1343 (|#7| (-654 |#5|) |#6|))) -((-1786 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-739 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1786 (|#7| (-1 |#2| |#1|) |#6|))) (-860) (-860) (-803) (-803) (-1064) (-962 |#5| |#3| |#1|) (-962 |#5| |#4| |#2|)) (T -739)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-803)) (-4 *9 (-1064)) (-4 *2 (-962 *9 *8 *6)) (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-803)) (-4 *4 (-962 *9 *7 *5))))) -(-10 -7 (-15 -1786 (|#7| (-1 |#2| |#1|) |#6|))) -((-4200 (((-428 |#4|) |#4|) 42))) -(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)) (-15 -1497 ((-3 $ "failed") (-1192))))) (-315) (-962 (-965 |#3|) |#1| |#2|)) (T -740)) -((-4200 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)) (-15 -1497 ((-3 $ "failed") (-1192)))))) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-962 (-965 *6) *4 *5))))) -(-10 -7 (-15 -4200 ((-428 |#4|) |#4|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 (-874 |#1|)) $) NIL)) (-4171 (((-1188 $) $ (-874 |#1|)) NIL) (((-1188 |#2|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-3648 (($ $) NIL (|has| |#2| (-566)))) (-1527 (((-112) $) NIL (|has| |#2| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3296 (($ $) NIL (|has| |#2| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-874 |#1|) $) NIL)) (-3496 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-1401 (($ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#2| (-922)))) (-4389 (($ $ |#2| (-541 (-874 |#1|)) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-4338 (($ (-1188 |#2|) (-874 |#1|)) NIL) (($ (-1188 $) (-874 |#1|)) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#2| (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-874 |#1|)) NIL)) (-1503 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3558 (($ (-1 (-541 (-874 |#1|)) (-541 (-874 |#1|))) $) NIL)) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-1803 (((-3 (-874 |#1|) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#2| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3945 (((-1174) $) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2017 (-781))) "failed") $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#2| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-922)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-1738 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3878 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3584 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3631 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ $) NIL (|has| |#2| (-566))) (($ (-417 (-574))) NIL (-2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574))))))) (-2836 (((-654 |#2|) $) NIL)) (-2930 ((|#2| $ (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-741 |#1| |#2|) (-962 |#2| (-541 (-874 |#1|)) (-874 |#1|)) (-654 (-1192)) (-1064)) (T -741)) -NIL -(-962 |#2| (-541 (-874 |#1|)) (-874 |#1|)) -((-2100 (((-2 (|:| -2620 (-965 |#3|)) (|:| -2664 (-965 |#3|))) |#4|) 14)) (-1850 ((|#4| |#4| |#2|) 33)) (-3559 ((|#4| (-417 (-965 |#3|)) |#2|) 64)) (-3962 ((|#4| (-1188 (-965 |#3|)) |#2|) 77)) (-2767 ((|#4| (-1188 |#4|) |#2|) 51)) (-2563 ((|#4| |#4| |#2|) 54)) (-4200 (((-428 |#4|) |#4|) 40))) -(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2100 ((-2 (|:| -2620 (-965 |#3|)) (|:| -2664 (-965 |#3|))) |#4|)) (-15 -2563 (|#4| |#4| |#2|)) (-15 -2767 (|#4| (-1188 |#4|) |#2|)) (-15 -1850 (|#4| |#4| |#2|)) (-15 -3962 (|#4| (-1188 (-965 |#3|)) |#2|)) (-15 -3559 (|#4| (-417 (-965 |#3|)) |#2|)) (-15 -4200 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)))) (-566) (-962 (-417 (-965 |#3|)) |#1| |#2|)) (T -742)) -((-4200 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))) (-4 *6 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-962 (-417 (-965 *6)) *4 *5)))) (-3559 (*1 *2 *3 *4) (-12 (-4 *6 (-566)) (-4 *2 (-962 *3 *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-965 *6))) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))))) (-3962 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 (-965 *6))) (-4 *6 (-566)) (-4 *2 (-962 (-417 (-965 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))))) (-1850 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-962 (-417 (-965 *5)) *4 *3)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *2)) (-4 *2 (-962 (-417 (-965 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))) (-4 *6 (-566)))) (-2563 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-962 (-417 (-965 *5)) *4 *3)))) (-2100 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))) (-4 *6 (-566)) (-5 *2 (-2 (|:| -2620 (-965 *6)) (|:| -2664 (-965 *6)))) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-962 (-417 (-965 *6)) *4 *5))))) -(-10 -7 (-15 -2100 ((-2 (|:| -2620 (-965 |#3|)) (|:| -2664 (-965 |#3|))) |#4|)) (-15 -2563 (|#4| |#4| |#2|)) (-15 -2767 (|#4| (-1188 |#4|) |#2|)) (-15 -1850 (|#4| |#4| |#2|)) (-15 -3962 (|#4| (-1188 (-965 |#3|)) |#2|)) (-15 -3559 (|#4| (-417 (-965 |#3|)) |#2|)) (-15 -4200 ((-428 |#4|) |#4|))) -((-4200 (((-428 |#4|) |#4|) 54))) -(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4|))) (-803) (-860) (-13 (-315) (-148)) (-962 (-417 |#3|) |#1| |#2|)) (T -743)) -((-4200 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-962 (-417 *6) *4 *5))))) -(-10 -7 (-15 -4200 ((-428 |#4|) |#4|))) -((-1786 (((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)) 18))) -(((-744 |#1| |#2| |#3|) (-10 -7 (-15 -1786 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)))) (-1064) (-1064) (-736)) (T -744)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7)) (-5 *1 (-744 *5 *6 *7))))) -(-10 -7 (-15 -1786 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 36)) (-3786 (((-654 (-2 (|:| -1867 |#1|) (|:| -3805 |#2|))) $) 37)) (-1597 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781)) 22 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2216 ((|#2| $) NIL) ((|#1| $) NIL)) (-1401 (($ $) 102 (|has| |#2| (-860)))) (-3911 (((-3 $ "failed") $) 85)) (-2834 (($) 48 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) 70)) (-1854 (((-654 $) $) 52)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| |#2|) 17)) (-1786 (($ (-1 |#1| |#1|) $) 68)) (-3271 (((-934) $) 43 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-1365 ((|#2| $) 101 (|has| |#2| (-860)))) (-1377 ((|#1| $) 100 (|has| |#2| (-860)))) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) 35 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 99) (($ (-574)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-654 (-2 (|:| -1867 |#1|) (|:| -3805 |#2|)))) 11)) (-2836 (((-654 |#1|) $) 54)) (-2930 ((|#1| $ |#2|) 115)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 12 T CONST)) (-2154 (($) 44 T CONST)) (-2985 (((-112) $ $) 105)) (-3089 (($ $) 61) (($ $ $) NIL)) (-3074 (($ $ $) 33)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-745 |#1| |#2|) (-13 (-1064) (-1053 |#2|) (-1053 |#1|) (-10 -8 (-15 -4327 ($ |#1| |#2|)) (-15 -2930 (|#1| $ |#2|)) (-15 -2950 ($ (-654 (-2 (|:| -1867 |#1|) (|:| -3805 |#2|))))) (-15 -3786 ((-654 (-2 (|:| -1867 |#1|) (|:| -3805 |#2|))) $)) (-15 -1786 ($ (-1 |#1| |#1|) $)) (-15 -3257 ((-112) $)) (-15 -2836 ((-654 |#1|) $)) (-15 -1854 ((-654 $) $)) (-15 -3241 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1365 (|#2| $)) (-15 -1377 (|#1| $)) (-15 -1401 ($ $))) |%noBranch|))) (-1064) (-736)) (T -745)) -((-4327 (*1 *1 *2 *3) (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-736)))) (-2930 (*1 *2 *1 *3) (-12 (-4 *2 (-1064)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -1867 *3) (|:| -3805 *4)))) (-4 *3 (-1064)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4)))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -1867 *3) (|:| -3805 *4)))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-745 *3 *4)) (-4 *4 (-736)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) (-1854 (*1 *2 *1) (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) (-1365 (*1 *2 *1) (-12 (-4 *2 (-736)) (-4 *2 (-860)) (-5 *1 (-745 *3 *2)) (-4 *3 (-1064)))) (-1377 (*1 *2 *1) (-12 (-4 *2 (-1064)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *3 (-736)))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1064)) (-4 *3 (-736))))) -(-13 (-1064) (-1053 |#2|) (-1053 |#1|) (-10 -8 (-15 -4327 ($ |#1| |#2|)) (-15 -2930 (|#1| $ |#2|)) (-15 -2950 ($ (-654 (-2 (|:| -1867 |#1|) (|:| -3805 |#2|))))) (-15 -3786 ((-654 (-2 (|:| -1867 |#1|) (|:| -3805 |#2|))) $)) (-15 -1786 ($ (-1 |#1| |#1|) $)) (-15 -3257 ((-112) $)) (-15 -2836 ((-654 |#1|) $)) (-15 -1854 ((-654 $) $)) (-15 -3241 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1365 (|#2| $)) (-15 -1377 (|#1| $)) (-15 -1401 ($ $))) |%noBranch|))) -((-2863 (((-112) $ $) 19)) (-4352 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2627 (($ $ $) 73)) (-3415 (((-112) $ $) 74)) (-2818 (((-112) $ (-781)) 8)) (-1516 (($ (-654 |#1|)) 69) (($) 68)) (-2551 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2098 (($ $) 63)) (-2560 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1941 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3304 (((-112) $ $) 65)) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22)) (-1454 (($ $ $) 70)) (-1748 ((|#1| $) 40)) (-2609 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3939 (((-1135) $) 21)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3484 ((|#1| $) 42)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3875 (((-654 (-2 (|:| -1917 |#1|) (|:| -3948 (-781)))) $) 62)) (-3728 (($ $ |#1|) 72) (($ $ $) 71)) (-3667 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-2950 (((-872) $) 18)) (-4268 (($ (-654 |#1|)) 67) (($) 66)) (-3838 (((-112) $ $) 23)) (-3180 (($ (-654 |#1|)) 43)) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20)) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-746 |#1|) (-141) (-1115)) (T -746)) -NIL -(-13 (-705 |t#1|) (-1113 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-705 |#1|) . T) ((-1113 |#1|) . T) ((-1115) . T) ((-1233) . T)) -((-2863 (((-112) $ $) NIL)) (-4352 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-2627 (($ $ $) 96)) (-3415 (((-112) $ $) 104)) (-2818 (((-112) $ (-781)) NIL)) (-1516 (($ (-654 |#1|)) 26) (($) 17)) (-2551 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2098 (($ $) 85)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1941 (($ |#1| $) 70 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458))) (($ |#1| $ (-574)) 75) (($ (-1 (-112) |#1|) $ (-574)) 78)) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (($ |#1| $ (-574)) 80) (($ (-1 (-112) |#1|) $ (-574)) 81)) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-1873 (((-654 |#1|) $) 32 (|has| $ (-6 -4458)))) (-3304 (((-112) $ $) 103)) (-3769 (($) 15) (($ |#1|) 28) (($ (-654 |#1|)) 23)) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) 38)) (-2231 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2461 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 89)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-1454 (($ $ $) 94)) (-1748 ((|#1| $) 62)) (-2609 (($ |#1| $) 63) (($ |#1| $ (-781)) 86)) (-3939 (((-1135) $) NIL)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3484 ((|#1| $) 61)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 56)) (-2833 (($) 14)) (-3875 (((-654 (-2 (|:| -1917 |#1|) (|:| -3948 (-781)))) $) 55)) (-3728 (($ $ |#1|) NIL) (($ $ $) 95)) (-3667 (($) 16) (($ (-654 |#1|)) 25)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) 68 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 79)) (-1845 (((-546) $) 36 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 22)) (-2950 (((-872) $) 49)) (-4268 (($ (-654 |#1|)) 27) (($) 18)) (-3838 (((-112) $ $) NIL)) (-3180 (($ (-654 |#1|)) 24)) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 100)) (-2876 (((-781) $) 67 (|has| $ (-6 -4458))))) -(((-747 |#1|) (-13 (-746 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -3769 ($)) (-15 -3769 ($ |#1|)) (-15 -3769 ($ (-654 |#1|))) (-15 -2247 ((-654 |#1|) $)) (-15 -3310 ($ |#1| $ (-574))) (-15 -3310 ($ (-1 (-112) |#1|) $ (-574))) (-15 -1941 ($ |#1| $ (-574))) (-15 -1941 ($ (-1 (-112) |#1|) $ (-574))))) (-1115)) (T -747)) -((-3769 (*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1115)))) (-3769 (*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1115)))) (-3769 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-747 *3)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1115)))) (-3310 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1115)))) (-3310 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1115)) (-5 *1 (-747 *4)))) (-1941 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1115)))) (-1941 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1115)) (-5 *1 (-747 *4))))) -(-13 (-746 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -3769 ($)) (-15 -3769 ($ |#1|)) (-15 -3769 ($ (-654 |#1|))) (-15 -2247 ((-654 |#1|) $)) (-15 -3310 ($ |#1| $ (-574))) (-15 -3310 ($ (-1 (-112) |#1|) $ (-574))) (-15 -1941 ($ |#1| $ (-574))) (-15 -1941 ($ (-1 (-112) |#1|) $ (-574))))) -((-1326 (((-1288) (-1174)) 8))) -(((-748) (-10 -7 (-15 -1326 ((-1288) (-1174))))) (T -748)) -((-1326 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-748))))) -(-10 -7 (-15 -1326 ((-1288) (-1174)))) -((-1656 (((-654 |#1|) (-654 |#1|) (-654 |#1|)) 15))) -(((-749 |#1|) (-10 -7 (-15 -1656 ((-654 |#1|) (-654 |#1|) (-654 |#1|)))) (-860)) (T -749)) -((-1656 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3))))) -(-10 -7 (-15 -1656 ((-654 |#1|) (-654 |#1|) (-654 |#1|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4349 (((-654 |#2|) $) 148)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 141 (|has| |#1| (-566)))) (-3648 (($ $) 140 (|has| |#1| (-566)))) (-1527 (((-112) $) 138 (|has| |#1| (-566)))) (-2378 (($ $) 97 (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) 80 (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) 20)) (-4211 (($ $) 79 (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-2403 (($ $) 95 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) 18 T CONST)) (-1401 (($ $) 132)) (-3911 (((-3 $ "failed") $) 37)) (-4025 (((-965 |#1|) $ (-781)) 110) (((-965 |#1|) $ (-781) (-781)) 109)) (-3938 (((-112) $) 149)) (-3003 (($) 107 (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-781) $ |#2|) 112) (((-781) $ |#2| (-781)) 111)) (-3372 (((-112) $) 35)) (-2132 (($ $ (-574)) 78 (|has| |#1| (-38 (-417 (-574)))))) (-3257 (((-112) $) 130)) (-4327 (($ $ (-654 |#2|) (-654 (-541 |#2|))) 147) (($ $ |#2| (-541 |#2|)) 146) (($ |#1| (-541 |#2|)) 131) (($ $ |#2| (-781)) 114) (($ $ (-654 |#2|) (-654 (-781))) 113)) (-1786 (($ (-1 |#1| |#1|) $) 129)) (-3112 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 127)) (-1377 ((|#1| $) 126)) (-3945 (((-1174) $) 10)) (-1578 (($ $ |#2|) 108 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) 11)) (-2115 (($ $ (-781)) 115)) (-2852 (((-3 $ "failed") $ $) 142 (|has| |#1| (-566)))) (-1618 (($ $) 105 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (($ $ |#2| $) 123) (($ $ (-654 |#2|) (-654 $)) 122) (($ $ (-654 (-302 $))) 121) (($ $ (-302 $)) 120) (($ $ $ $) 119) (($ $ (-654 $) (-654 $)) 118)) (-3878 (($ $ |#2|) 46) (($ $ (-654 |#2|)) 45) (($ $ |#2| (-781)) 44) (($ $ (-654 |#2|) (-654 (-781))) 43)) (-3584 (((-541 |#2|) $) 128)) (-2416 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 83 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 93 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 84 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) 85 (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) 150)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 145 (|has| |#1| (-174))) (($ $) 143 (|has| |#1| (-566))) (($ (-417 (-574))) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2930 ((|#1| $ (-541 |#2|)) 133) (($ $ |#2| (-781)) 117) (($ $ (-654 |#2|) (-654 (-781))) 116)) (-3247 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2455 (($ $) 103 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 91 (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) 139 (|has| |#1| (-566)))) (-2427 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 101 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 89 (|has| |#1| (-38 (-417 (-574)))))) (-2535 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) 99 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 87 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 86 (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ |#2|) 42) (($ $ (-654 |#2|)) 41) (($ $ |#2| (-781)) 40) (($ $ (-654 |#2|) (-654 (-781))) 39)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 134 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ $) 106 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 77 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 137 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 136 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 125) (($ $ |#1|) 124))) -(((-750 |#1| |#2|) (-141) (-1064) (-860)) (T -750)) -((-2930 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1064)) (-4 *2 (-860)))) (-2930 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) (-4 *5 (-860)))) (-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-860)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1064)) (-4 *2 (-860)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) (-4 *5 (-860)))) (-2725 (*1 *2 *1 *3) (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1064)) (-4 *3 (-860)) (-5 *2 (-781)))) (-2725 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1064)) (-4 *3 (-860)))) (-4025 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) (-4 *5 (-860)) (-5 *2 (-965 *4)))) (-4025 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) (-4 *5 (-860)) (-5 *2 (-965 *4)))) (-1578 (*1 *1 *1 *2) (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-860)) (-4 *3 (-38 (-417 (-574))))))) -(-13 (-913 |t#2|) (-988 |t#1| (-541 |t#2|) |t#2|) (-524 |t#2| $) (-317 $) (-10 -8 (-15 -2930 ($ $ |t#2| (-781))) (-15 -2930 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -2115 ($ $ (-781))) (-15 -4327 ($ $ |t#2| (-781))) (-15 -4327 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -2725 ((-781) $ |t#2|)) (-15 -2725 ((-781) $ |t#2| (-781))) (-15 -4025 ((-965 |t#1|) $ (-781))) (-15 -4025 ((-965 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ($ $ |t#2|)) (-6 (-1017)) (-6 (-1218))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-541 |#2|)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-298) |has| |#1| (-566)) ((-317 $) . T) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 |#2| $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-913 |#2|) . T) ((-988 |#1| #0# |#2|) . T) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1066 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574))))) -((-4200 (((-428 (-1188 |#4|)) (-1188 |#4|)) 30) (((-428 |#4|) |#4|) 26))) -(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4|)) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|)))) (-860) (-803) (-13 (-315) (-148)) (-962 |#3| |#2| |#1|)) (T -751)) -((-4200 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-962 *6 *5 *4))))) -(-10 -7 (-15 -4200 ((-428 |#4|) |#4|)) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|)))) -((-2168 (((-428 |#4|) |#4| |#2|) 140)) (-3459 (((-428 |#4|) |#4|) NIL)) (-3954 (((-428 (-1188 |#4|)) (-1188 |#4|)) 127) (((-428 |#4|) |#4|) 52)) (-1771 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4200 (-1188 |#4|)) (|:| -2017 (-574)))))) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 81)) (-3663 (((-1188 |#3|) (-1188 |#3|) (-574)) 166)) (-3861 (((-654 (-781)) (-1188 |#4|) (-654 |#2|) (-781)) 75)) (-2868 (((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-1188 |#3|) (-1188 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|)) 79)) (-2680 (((-2 (|:| |upol| (-1188 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574))))) (|:| |ctpol| |#3|)) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 27)) (-3176 (((-2 (|:| -3038 (-1188 |#4|)) (|:| |polval| (-1188 |#3|))) (-1188 |#4|) (-1188 |#3|) (-574)) 72)) (-4032 (((-574) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574))))) 162)) (-3907 ((|#4| (-574) (-428 |#4|)) 73)) (-2275 (((-112) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574)))) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574))))) NIL))) -(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 ((-428 |#4|) |#4|)) (-15 -3954 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -3459 ((-428 |#4|) |#4|)) (-15 -4032 ((-574) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574)))))) (-15 -2168 ((-428 |#4|) |#4| |#2|)) (-15 -3176 ((-2 (|:| -3038 (-1188 |#4|)) (|:| |polval| (-1188 |#3|))) (-1188 |#4|) (-1188 |#3|) (-574))) (-15 -1771 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4200 (-1188 |#4|)) (|:| -2017 (-574)))))) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -2680 ((-2 (|:| |upol| (-1188 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574))))) (|:| |ctpol| |#3|)) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3907 (|#4| (-574) (-428 |#4|))) (-15 -2275 ((-112) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574)))) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574)))))) (-15 -2868 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-1188 |#3|) (-1188 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -3861 ((-654 (-781)) (-1188 |#4|) (-654 |#2|) (-781))) (-15 -3663 ((-1188 |#3|) (-1188 |#3|) (-574)))) (-803) (-860) (-315) (-962 |#3| |#1| |#2|)) (T -752)) -((-3663 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) (-3861 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *9 (-962 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781)))) (-2868 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1188 *11)) (-5 *6 (-654 *10)) (-5 *7 (-654 (-781))) (-5 *8 (-654 *11)) (-4 *10 (-860)) (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-962 *11 *9 *10)) (-5 *2 (-654 (-1188 *5))) (-5 *1 (-752 *9 *10 *11 *5)) (-5 *3 (-1188 *5)))) (-2275 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-2 (|:| -4200 (-1188 *6)) (|:| -2017 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-962 *7 *5 *6)) (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-315)))) (-2680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-962 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |upol| (-1188 *8)) (|:| |Lval| (-654 *8)) (|:| |Lfact| (-654 (-2 (|:| -4200 (-1188 *8)) (|:| -2017 (-574))))) (|:| |ctpol| *8))) (-5 *1 (-752 *6 *7 *8 *9)))) (-1771 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-962 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-654 (-2 (|:| -4200 (-1188 *9)) (|:| -2017 (-574))))))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1188 *9)))) (-3176 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-962 *8 *6 *7)) (-5 *2 (-2 (|:| -3038 (-1188 *9)) (|:| |polval| (-1188 *8)))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1188 *9)) (-5 *4 (-1188 *8)))) (-2168 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-962 *6 *5 *4)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4200 (-1188 *6)) (|:| -2017 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-962 *6 *4 *5)))) (-3954 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-3954 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-962 *6 *4 *5))))) -(-10 -7 (-15 -3954 ((-428 |#4|) |#4|)) (-15 -3954 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -3459 ((-428 |#4|) |#4|)) (-15 -4032 ((-574) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574)))))) (-15 -2168 ((-428 |#4|) |#4| |#2|)) (-15 -3176 ((-2 (|:| -3038 (-1188 |#4|)) (|:| |polval| (-1188 |#3|))) (-1188 |#4|) (-1188 |#3|) (-574))) (-15 -1771 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4200 (-1188 |#4|)) (|:| -2017 (-574)))))) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -2680 ((-2 (|:| |upol| (-1188 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574))))) (|:| |ctpol| |#3|)) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3907 (|#4| (-574) (-428 |#4|))) (-15 -2275 ((-112) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574)))) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -2017 (-574)))))) (-15 -2868 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-1188 |#3|) (-1188 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -3861 ((-654 (-781)) (-1188 |#4|) (-654 |#2|) (-781))) (-15 -3663 ((-1188 |#3|) (-1188 |#3|) (-574)))) -((-3518 (($ $ (-934)) 17))) -(((-753 |#1| |#2|) (-10 -8 (-15 -3518 (|#1| |#1| (-934)))) (-754 |#2|) (-174)) (T -753)) -NIL -(-10 -8 (-15 -3518 (|#1| |#1| (-934)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3204 (($ $ (-934)) 31)) (-3518 (($ $ (-934)) 38)) (-2177 (($ $ (-934)) 32)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3490 (($ $ $) 28)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2087 (($ $ $ $) 29)) (-3157 (($ $ $) 27)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 33)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-2153 (*1 *1) (-4 *1 (-736))) (-3250 (*1 *1) (-4 *1 (-736))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-781)))) (-4322 (*1 *1 *1) (|partial| -4 *1 (-736)))) +(-13 (-1128) (-10 -8 (-15 (-2153) ($) -1714) (-15 -3250 ($) -1714) (-15 -4226 ((-112) $)) (-15 ** ($ $ (-781))) (-15 -4322 ((-3 $ "failed") $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1128) . T) ((-1116) . T)) +((-1888 (((-2 (|:| -1367 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-1408 (((-2 (|:| -1367 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1631 ((|#2| (-417 |#2|) (-1 |#2| |#2|)) 13)) (-1377 (((-2 (|:| |poly| |#2|) (|:| -1367 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)) 48))) +(((-737 |#1| |#2|) (-10 -7 (-15 -1408 ((-2 (|:| -1367 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1888 ((-2 (|:| -1367 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1631 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -1377 ((-2 (|:| |poly| |#2|) (|:| -1367 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1260 |#1|)) (T -737)) +((-1377 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1367 (-417 *6)) (|:| |special| (-417 *6)))) (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6)))) (-1631 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1260 *5)) (-5 *1 (-737 *5 *2)) (-4 *5 (-372)))) (-1888 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1367 (-428 *3)) (|:| |special| (-428 *3)))) (-5 *1 (-737 *5 *3)))) (-1408 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1367 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3))))) +(-10 -7 (-15 -1408 ((-2 (|:| -1367 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1888 ((-2 (|:| -1367 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1631 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -1377 ((-2 (|:| |poly| |#2|) (|:| -1367 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)))) +((-1344 ((|#7| (-654 |#5|) |#6|) NIL)) (-1785 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-738 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1785 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1344 (|#7| (-654 |#5|) |#6|))) (-860) (-803) (-803) (-1065) (-1065) (-963 |#4| |#2| |#1|) (-963 |#5| |#3| |#1|)) (T -738)) +((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *9)) (-4 *9 (-1065)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-1065)) (-4 *2 (-963 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-963 *8 *6 *5)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1065)) (-4 *9 (-1065)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-963 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-963 *8 *6 *5))))) +(-10 -7 (-15 -1785 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1344 (|#7| (-654 |#5|) |#6|))) +((-1785 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-739 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1785 (|#7| (-1 |#2| |#1|) |#6|))) (-860) (-860) (-803) (-803) (-1065) (-963 |#5| |#3| |#1|) (-963 |#5| |#4| |#2|)) (T -739)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-803)) (-4 *9 (-1065)) (-4 *2 (-963 *9 *8 *6)) (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-803)) (-4 *4 (-963 *9 *7 *5))))) +(-10 -7 (-15 -1785 (|#7| (-1 |#2| |#1|) |#6|))) +((-4202 (((-428 |#4|) |#4|) 42))) +(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193))))) (-315) (-963 (-966 |#3|) |#1| |#2|)) (T -740)) +((-4202 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-963 (-966 *6) *4 *5))))) +(-10 -7 (-15 -4202 ((-428 |#4|) |#4|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 (-874 |#1|)) $) NIL)) (-4173 (((-1189 $) $ (-874 |#1|)) NIL) (((-1189 |#2|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-2884 (($ $) NIL (|has| |#2| (-566)))) (-1981 (((-112) $) NIL (|has| |#2| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2991 (($ $) NIL (|has| |#2| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2214 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-874 |#1|) $) NIL)) (-3319 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-1402 (($ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#2| (-923)))) (-1849 (($ $ |#2| (-541 (-874 |#1|)) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-4339 (($ (-1189 |#2|) (-874 |#1|)) NIL) (($ (-1189 $) (-874 |#1|)) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#2| (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-874 |#1|)) NIL)) (-3192 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-4303 (($ (-1 (-541 (-874 |#1|)) (-541 (-874 |#1|))) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-2284 (((-3 (-874 |#1|) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#2| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-1489 (((-1175) $) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3139 (-781))) "failed") $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#2| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#2| (-923)))) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-2394 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3879 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-3580 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-2372 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ $) NIL (|has| |#2| (-566))) (($ (-417 (-574))) NIL (-2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574))))))) (-1634 (((-654 |#2|) $) NIL)) (-2706 ((|#2| $ (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-741 |#1| |#2|) (-963 |#2| (-541 (-874 |#1|)) (-874 |#1|)) (-654 (-1193)) (-1065)) (T -741)) +NIL +(-963 |#2| (-541 (-874 |#1|)) (-874 |#1|)) +((-3386 (((-2 (|:| -1968 (-966 |#3|)) (|:| -4378 (-966 |#3|))) |#4|) 14)) (-2273 ((|#4| |#4| |#2|) 33)) (-4114 ((|#4| (-417 (-966 |#3|)) |#2|) 64)) (-2467 ((|#4| (-1189 (-966 |#3|)) |#2|) 77)) (-1748 ((|#4| (-1189 |#4|) |#2|) 51)) (-1705 ((|#4| |#4| |#2|) 54)) (-4202 (((-428 |#4|) |#4|) 40))) +(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3386 ((-2 (|:| -1968 (-966 |#3|)) (|:| -4378 (-966 |#3|))) |#4|)) (-15 -1705 (|#4| |#4| |#2|)) (-15 -1748 (|#4| (-1189 |#4|) |#2|)) (-15 -2273 (|#4| |#4| |#2|)) (-15 -2467 (|#4| (-1189 (-966 |#3|)) |#2|)) (-15 -4114 (|#4| (-417 (-966 |#3|)) |#2|)) (-15 -4202 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)))) (-566) (-963 (-417 (-966 |#3|)) |#1| |#2|)) (T -742)) +((-4202 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *6 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-963 (-417 (-966 *6)) *4 *5)))) (-4114 (*1 *2 *3 *4) (-12 (-4 *6 (-566)) (-4 *2 (-963 *3 *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-966 *6))) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 (-966 *6))) (-4 *6 (-566)) (-4 *2 (-963 (-417 (-966 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))))) (-2273 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-963 (-417 (-966 *5)) *4 *3)))) (-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *2)) (-4 *2 (-963 (-417 (-966 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *6 (-566)))) (-1705 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-963 (-417 (-966 *5)) *4 *3)))) (-3386 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *6 (-566)) (-5 *2 (-2 (|:| -1968 (-966 *6)) (|:| -4378 (-966 *6)))) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-963 (-417 (-966 *6)) *4 *5))))) +(-10 -7 (-15 -3386 ((-2 (|:| -1968 (-966 |#3|)) (|:| -4378 (-966 |#3|))) |#4|)) (-15 -1705 (|#4| |#4| |#2|)) (-15 -1748 (|#4| (-1189 |#4|) |#2|)) (-15 -2273 (|#4| |#4| |#2|)) (-15 -2467 (|#4| (-1189 (-966 |#3|)) |#2|)) (-15 -4114 (|#4| (-417 (-966 |#3|)) |#2|)) (-15 -4202 ((-428 |#4|) |#4|))) +((-4202 (((-428 |#4|) |#4|) 54))) +(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 ((-428 |#4|) |#4|))) (-803) (-860) (-13 (-315) (-148)) (-963 (-417 |#3|) |#1| |#2|)) (T -743)) +((-4202 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-963 (-417 *6) *4 *5))))) +(-10 -7 (-15 -4202 ((-428 |#4|) |#4|))) +((-1785 (((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)) 18))) +(((-744 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)))) (-1065) (-1065) (-736)) (T -744)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7)) (-5 *1 (-744 *5 *6 *7))))) +(-10 -7 (-15 -1785 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 36)) (-3108 (((-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|))) $) 37)) (-2600 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781)) 22 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2214 ((|#2| $) NIL) ((|#1| $) NIL)) (-1402 (($ $) 102 (|has| |#2| (-860)))) (-4322 (((-3 $ "failed") $) 85)) (-2835 (($) 48 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) 70)) (-1963 (((-654 $) $) 52)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| |#2|) 17)) (-1785 (($ (-1 |#1| |#1|) $) 68)) (-3383 (((-935) $) 43 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-1366 ((|#2| $) 101 (|has| |#2| (-860)))) (-1378 ((|#1| $) 100 (|has| |#2| (-860)))) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) 35 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 99) (($ (-574)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|)))) 11)) (-1634 (((-654 |#1|) $) 54)) (-2706 ((|#1| $ |#2|) 115)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 12 T CONST)) (-2153 (($) 44 T CONST)) (-2986 (((-112) $ $) 105)) (-3090 (($ $) 61) (($ $ $) NIL)) (-3074 (($ $ $) 33)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-745 |#1| |#2|) (-13 (-1065) (-1054 |#2|) (-1054 |#1|) (-10 -8 (-15 -4328 ($ |#1| |#2|)) (-15 -2706 (|#1| $ |#2|)) (-15 -2951 ($ (-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|))))) (-15 -3108 ((-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|))) $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (-15 -1555 ((-112) $)) (-15 -1634 ((-654 |#1|) $)) (-15 -1963 ((-654 $) $)) (-15 -3023 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1366 (|#2| $)) (-15 -1378 (|#1| $)) (-15 -1402 ($ $))) |%noBranch|))) (-1065) (-736)) (T -745)) +((-4328 (*1 *1 *2 *3) (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-736)))) (-2706 (*1 *2 *1 *3) (-12 (-4 *2 (-1065)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -1866 *3) (|:| -3806 *4)))) (-4 *3 (-1065)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -1866 *3) (|:| -3806 *4)))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-745 *3 *4)) (-4 *4 (-736)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736)))) (-1366 (*1 *2 *1) (-12 (-4 *2 (-736)) (-4 *2 (-860)) (-5 *1 (-745 *3 *2)) (-4 *3 (-1065)))) (-1378 (*1 *2 *1) (-12 (-4 *2 (-1065)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *3 (-736)))) (-1402 (*1 *1 *1) (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1065)) (-4 *3 (-736))))) +(-13 (-1065) (-1054 |#2|) (-1054 |#1|) (-10 -8 (-15 -4328 ($ |#1| |#2|)) (-15 -2706 (|#1| $ |#2|)) (-15 -2951 ($ (-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|))))) (-15 -3108 ((-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|))) $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (-15 -1555 ((-112) $)) (-15 -1634 ((-654 |#1|) $)) (-15 -1963 ((-654 $) $)) (-15 -3023 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1366 (|#2| $)) (-15 -1378 (|#1| $)) (-15 -1402 ($ $))) |%noBranch|))) +((-2864 (((-112) $ $) 19)) (-4353 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4302 (($ $ $) 73)) (-1917 (((-112) $ $) 74)) (-3146 (((-112) $ (-781)) 8)) (-1515 (($ (-654 |#1|)) 69) (($) 68)) (-1923 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2088 (($ $) 63)) (-2804 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2424 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2714 (((-112) $ $) 65)) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22)) (-3891 (($ $ $) 70)) (-2375 ((|#1| $) 40)) (-3285 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3940 (((-1136) $) 21)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3801 ((|#1| $) 42)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2446 (((-654 (-2 (|:| -1916 |#1|) (|:| -3949 (-781)))) $) 62)) (-2533 (($ $ |#1|) 72) (($ $ $) 71)) (-3162 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2951 (((-872) $) 18)) (-4269 (($ (-654 |#1|)) 67) (($) 66)) (-4069 (((-112) $ $) 23)) (-2829 (($ (-654 |#1|)) 43)) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20)) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-746 |#1|) (-141) (-1116)) (T -746)) +NIL +(-13 (-705 |t#1|) (-1114 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-705 |#1|) . T) ((-1114 |#1|) . T) ((-1116) . T) ((-1234) . T)) +((-2864 (((-112) $ $) NIL)) (-4353 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-4302 (($ $ $) 96)) (-1917 (((-112) $ $) 104)) (-3146 (((-112) $ (-781)) NIL)) (-1515 (($ (-654 |#1|)) 26) (($) 17)) (-1923 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2088 (($ $) 85)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2424 (($ |#1| $) 70 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459))) (($ |#1| $ (-574)) 75) (($ (-1 (-112) |#1|) $ (-574)) 78)) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (($ |#1| $ (-574)) 80) (($ (-1 (-112) |#1|) $ (-574)) 81)) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 32 (|has| $ (-6 -4459)))) (-2714 (((-112) $ $) 103)) (-2278 (($) 15) (($ |#1|) 28) (($ (-654 |#1|)) 23)) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) 38)) (-4134 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 89)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-3891 (($ $ $) 94)) (-2375 ((|#1| $) 62)) (-3285 (($ |#1| $) 63) (($ |#1| $ (-781)) 86)) (-3940 (((-1136) $) NIL)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3801 ((|#1| $) 61)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 56)) (-3336 (($) 14)) (-2446 (((-654 (-2 (|:| -1916 |#1|) (|:| -3949 (-781)))) $) 55)) (-2533 (($ $ |#1|) NIL) (($ $ $) 95)) (-3162 (($) 16) (($ (-654 |#1|)) 25)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) 68 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 79)) (-1844 (((-546) $) 36 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 22)) (-2951 (((-872) $) 49)) (-4269 (($ (-654 |#1|)) 27) (($) 18)) (-4069 (((-112) $ $) NIL)) (-2829 (($ (-654 |#1|)) 24)) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 100)) (-2877 (((-781) $) 67 (|has| $ (-6 -4459))))) +(((-747 |#1|) (-13 (-746 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -2278 ($)) (-15 -2278 ($ |#1|)) (-15 -2278 ($ (-654 |#1|))) (-15 -2036 ((-654 |#1|) $)) (-15 -3311 ($ |#1| $ (-574))) (-15 -3311 ($ (-1 (-112) |#1|) $ (-574))) (-15 -2424 ($ |#1| $ (-574))) (-15 -2424 ($ (-1 (-112) |#1|) $ (-574))))) (-1116)) (T -747)) +((-2278 (*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1116)))) (-2278 (*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1116)))) (-2278 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-747 *3)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1116)))) (-3311 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1116)))) (-3311 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1116)) (-5 *1 (-747 *4)))) (-2424 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1116)))) (-2424 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1116)) (-5 *1 (-747 *4))))) +(-13 (-746 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -2278 ($)) (-15 -2278 ($ |#1|)) (-15 -2278 ($ (-654 |#1|))) (-15 -2036 ((-654 |#1|) $)) (-15 -3311 ($ |#1| $ (-574))) (-15 -3311 ($ (-1 (-112) |#1|) $ (-574))) (-15 -2424 ($ |#1| $ (-574))) (-15 -2424 ($ (-1 (-112) |#1|) $ (-574))))) +((-1327 (((-1289) (-1175)) 8))) +(((-748) (-10 -7 (-15 -1327 ((-1289) (-1175))))) (T -748)) +((-1327 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-748))))) +(-10 -7 (-15 -1327 ((-1289) (-1175)))) +((-1548 (((-654 |#1|) (-654 |#1|) (-654 |#1|)) 15))) +(((-749 |#1|) (-10 -7 (-15 -1548 ((-654 |#1|) (-654 |#1|) (-654 |#1|)))) (-860)) (T -749)) +((-1548 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3))))) +(-10 -7 (-15 -1548 ((-654 |#1|) (-654 |#1|) (-654 |#1|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4350 (((-654 |#2|) $) 149)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 142 (|has| |#1| (-566)))) (-2884 (($ $) 141 (|has| |#1| (-566)))) (-1981 (((-112) $) 139 (|has| |#1| (-566)))) (-2379 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) 20)) (-4212 (($ $) 80 (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) 97 (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-2404 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 83 (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) 18 T CONST)) (-1402 (($ $) 133)) (-4322 (((-3 $ "failed") $) 37)) (-4027 (((-966 |#1|) $ (-781)) 111) (((-966 |#1|) $ (-781) (-781)) 110)) (-4189 (((-112) $) 150)) (-3004 (($) 108 (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-781) $ |#2|) 113) (((-781) $ |#2| (-781)) 112)) (-4226 (((-112) $) 35)) (-3527 (($ $ (-574)) 79 (|has| |#1| (-38 (-417 (-574)))))) (-1555 (((-112) $) 131)) (-4328 (($ $ (-654 |#2|) (-654 (-541 |#2|))) 148) (($ $ |#2| (-541 |#2|)) 147) (($ |#1| (-541 |#2|)) 132) (($ $ |#2| (-781)) 115) (($ $ (-654 |#2|) (-654 (-781))) 114)) (-1785 (($ (-1 |#1| |#1|) $) 130)) (-3113 (($ $) 105 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 128)) (-1378 ((|#1| $) 127)) (-1489 (((-1175) $) 10)) (-3342 (($ $ |#2|) 109 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) 11)) (-2433 (($ $ (-781)) 116)) (-2853 (((-3 $ "failed") $ $) 143 (|has| |#1| (-566)))) (-1617 (($ $) 106 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (($ $ |#2| $) 124) (($ $ (-654 |#2|) (-654 $)) 123) (($ $ (-654 (-302 $))) 122) (($ $ (-302 $)) 121) (($ $ $ $) 120) (($ $ (-654 $) (-654 $)) 119)) (-3879 (($ $ (-654 |#2|) (-654 (-781))) 44) (($ $ |#2| (-781)) 43) (($ $ (-654 |#2|)) 42) (($ $ |#2|) 40)) (-3580 (((-541 |#2|) $) 129)) (-2417 (($ $) 95 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 84 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 85 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 93 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 86 (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) 151)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-566))) (($ (-417 (-574))) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2706 ((|#1| $ (-541 |#2|)) 134) (($ $ |#2| (-781)) 118) (($ $ (-654 |#2|) (-654 (-781))) 117)) (-3424 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2456 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) 140 (|has| |#1| (-566)))) (-2429 (($ $) 103 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 91 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-2536 (($ $) 101 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 89 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 99 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 87 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-654 |#2|) (-654 (-781))) 47) (($ $ |#2| (-781)) 46) (($ $ (-654 |#2|)) 45) (($ $ |#2|) 41)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 135 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ $) 107 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 78 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 138 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 137 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 126) (($ $ |#1|) 125))) +(((-750 |#1| |#2|) (-141) (-1065) (-860)) (T -750)) +((-2706 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1065)) (-4 *2 (-860)))) (-2706 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065)) (-4 *5 (-860)))) (-2433 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-860)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1065)) (-4 *2 (-860)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065)) (-4 *5 (-860)))) (-3547 (*1 *2 *1 *3) (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1065)) (-4 *3 (-860)) (-5 *2 (-781)))) (-3547 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1065)) (-4 *3 (-860)))) (-4027 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065)) (-4 *5 (-860)) (-5 *2 (-966 *4)))) (-4027 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065)) (-4 *5 (-860)) (-5 *2 (-966 *4)))) (-3342 (*1 *1 *1 *2) (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-860)) (-4 *3 (-38 (-417 (-574))))))) +(-13 (-912 |t#2|) (-989 |t#1| (-541 |t#2|) |t#2|) (-524 |t#2| $) (-317 $) (-10 -8 (-15 -2706 ($ $ |t#2| (-781))) (-15 -2706 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -2433 ($ $ (-781))) (-15 -4328 ($ $ |t#2| (-781))) (-15 -4328 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -3547 ((-781) $ |t#2|)) (-15 -3547 ((-781) $ |t#2| (-781))) (-15 -4027 ((-966 |t#1|) $ (-781))) (-15 -4027 ((-966 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ($ $ |t#2|)) (-6 (-1018)) (-6 (-1219))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-541 |#2|)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-298) |has| |#1| (-566)) ((-317 $) . T) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 |#2| $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-907 $ |#2|) . T) ((-912 |#2|) . T) ((-914 |#2|) . T) ((-989 |#1| #0# |#2|) . T) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1067 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T)) +((-4202 (((-428 (-1189 |#4|)) (-1189 |#4|)) 30) (((-428 |#4|) |#4|) 26))) +(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 ((-428 |#4|) |#4|)) (-15 -4202 ((-428 (-1189 |#4|)) (-1189 |#4|)))) (-860) (-803) (-13 (-315) (-148)) (-963 |#3| |#2| |#1|)) (T -751)) +((-4202 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-4202 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-963 *6 *5 *4))))) +(-10 -7 (-15 -4202 ((-428 |#4|) |#4|)) (-15 -4202 ((-428 (-1189 |#4|)) (-1189 |#4|)))) +((-3002 (((-428 |#4|) |#4| |#2|) 140)) (-3895 (((-428 |#4|) |#4|) NIL)) (-1610 (((-428 (-1189 |#4|)) (-1189 |#4|)) 127) (((-428 |#4|) |#4|) 52)) (-4056 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4202 (-1189 |#4|)) (|:| -3139 (-574)))))) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 81)) (-2653 (((-1189 |#3|) (-1189 |#3|) (-574)) 166)) (-2715 (((-654 (-781)) (-1189 |#4|) (-654 |#2|) (-781)) 75)) (-2869 (((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-1189 |#3|) (-1189 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|)) 79)) (-2146 (((-2 (|:| |upol| (-1189 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574))))) (|:| |ctpol| |#3|)) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 27)) (-4256 (((-2 (|:| -3374 (-1189 |#4|)) (|:| |polval| (-1189 |#3|))) (-1189 |#4|) (-1189 |#3|) (-574)) 72)) (-3862 (((-574) (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574))))) 162)) (-3096 ((|#4| (-574) (-428 |#4|)) 73)) (-3706 (((-112) (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574)))) (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574))))) NIL))) +(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1610 ((-428 |#4|) |#4|)) (-15 -1610 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -3895 ((-428 |#4|) |#4|)) (-15 -3862 ((-574) (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574)))))) (-15 -3002 ((-428 |#4|) |#4| |#2|)) (-15 -4256 ((-2 (|:| -3374 (-1189 |#4|)) (|:| |polval| (-1189 |#3|))) (-1189 |#4|) (-1189 |#3|) (-574))) (-15 -4056 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4202 (-1189 |#4|)) (|:| -3139 (-574)))))) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -2146 ((-2 (|:| |upol| (-1189 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574))))) (|:| |ctpol| |#3|)) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3096 (|#4| (-574) (-428 |#4|))) (-15 -3706 ((-112) (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574)))) (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574)))))) (-15 -2869 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-1189 |#3|) (-1189 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -2715 ((-654 (-781)) (-1189 |#4|) (-654 |#2|) (-781))) (-15 -2653 ((-1189 |#3|) (-1189 |#3|) (-574)))) (-803) (-860) (-315) (-963 |#3| |#1| |#2|)) (T -752)) +((-2653 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))) (-2715 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *9 (-963 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781)))) (-2869 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1189 *11)) (-5 *6 (-654 *10)) (-5 *7 (-654 (-781))) (-5 *8 (-654 *11)) (-4 *10 (-860)) (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-963 *11 *9 *10)) (-5 *2 (-654 (-1189 *5))) (-5 *1 (-752 *9 *10 *11 *5)) (-5 *3 (-1189 *5)))) (-3706 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-2 (|:| -4202 (-1189 *6)) (|:| -3139 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))) (-3096 (*1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-963 *7 *5 *6)) (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-315)))) (-2146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-963 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |upol| (-1189 *8)) (|:| |Lval| (-654 *8)) (|:| |Lfact| (-654 (-2 (|:| -4202 (-1189 *8)) (|:| -3139 (-574))))) (|:| |ctpol| *8))) (-5 *1 (-752 *6 *7 *8 *9)))) (-4056 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-963 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-654 (-2 (|:| -4202 (-1189 *9)) (|:| -3139 (-574))))))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1189 *9)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-963 *8 *6 *7)) (-5 *2 (-2 (|:| -3374 (-1189 *9)) (|:| |polval| (-1189 *8)))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1189 *9)) (-5 *4 (-1189 *8)))) (-3002 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-963 *6 *5 *4)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4202 (-1189 *6)) (|:| -3139 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-963 *6 *4 *5)))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-963 *6 *4 *5))))) +(-10 -7 (-15 -1610 ((-428 |#4|) |#4|)) (-15 -1610 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -3895 ((-428 |#4|) |#4|)) (-15 -3862 ((-574) (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574)))))) (-15 -3002 ((-428 |#4|) |#4| |#2|)) (-15 -4256 ((-2 (|:| -3374 (-1189 |#4|)) (|:| |polval| (-1189 |#3|))) (-1189 |#4|) (-1189 |#3|) (-574))) (-15 -4056 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4202 (-1189 |#4|)) (|:| -3139 (-574)))))) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -2146 ((-2 (|:| |upol| (-1189 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574))))) (|:| |ctpol| |#3|)) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3096 (|#4| (-574) (-428 |#4|))) (-15 -3706 ((-112) (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574)))) (-654 (-2 (|:| -4202 (-1189 |#3|)) (|:| -3139 (-574)))))) (-15 -2869 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-1189 |#3|) (-1189 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -2715 ((-654 (-781)) (-1189 |#4|) (-654 |#2|) (-781))) (-15 -2653 ((-1189 |#3|) (-1189 |#3|) (-574)))) +((-4081 (($ $ (-935)) 17))) +(((-753 |#1| |#2|) (-10 -8 (-15 -4081 (|#1| |#1| (-935)))) (-754 |#2|) (-174)) (T -753)) +NIL +(-10 -8 (-15 -4081 (|#1| |#1| (-935)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-3066 (($ $ (-935)) 31)) (-4081 (($ $ (-935)) 38)) (-4308 (($ $ (-935)) 32)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3955 (($ $ $) 28)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-4010 (($ $ $ $) 29)) (-4099 (($ $ $) 27)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 33)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-754 |#1|) (-141) (-174)) (T -754)) -((-3518 (*1 *1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-754 *3)) (-4 *3 (-174))))) -(-13 (-771) (-727 |t#1|) (-10 -8 (-15 -3518 ($ $ (-934))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-771) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) -((-2878 (((-1050) (-699 (-227)) (-574) (-112) (-574)) 25)) (-2700 (((-1050) (-699 (-227)) (-574) (-112) (-574)) 24))) -(((-755) (-10 -7 (-15 -2700 ((-1050) (-699 (-227)) (-574) (-112) (-574))) (-15 -2878 ((-1050) (-699 (-227)) (-574) (-112) (-574))))) (T -755)) -((-2878 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1050)) (-5 *1 (-755)))) (-2700 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1050)) (-5 *1 (-755))))) -(-10 -7 (-15 -2700 ((-1050) (-699 (-227)) (-574) (-112) (-574))) (-15 -2878 ((-1050) (-699 (-227)) (-574) (-112) (-574)))) -((-3612 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) 43)) (-1358 (((-1050) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) 39)) (-2071 (((-1050) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) 32))) -(((-756) (-10 -7 (-15 -2071 ((-1050) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -1358 ((-1050) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -3612 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN))))))) (T -756)) -((-3612 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1050)) (-5 *1 (-756)))) (-1358 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1050)) (-5 *1 (-756)))) (-2071 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *2 (-1050)) (-5 *1 (-756))))) -(-10 -7 (-15 -2071 ((-1050) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -1358 ((-1050) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -3612 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))))) -((-2647 (((-1050) (-574) (-574) (-699 (-227)) (-574)) 34)) (-2262 (((-1050) (-574) (-574) (-699 (-227)) (-574)) 33)) (-3985 (((-1050) (-574) (-699 (-227)) (-574)) 32)) (-4294 (((-1050) (-574) (-699 (-227)) (-574)) 31)) (-3511 (((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 30)) (-3993 (((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-1558 (((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-3426 (((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-2402 (((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-3672 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-3687 (((-1050) (-574) (-699 (-227)) (-574)) 22)) (-2890 (((-1050) (-574) (-699 (-227)) (-574)) 21))) -(((-757) (-10 -7 (-15 -2890 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -3687 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -3672 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2402 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3426 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1558 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3993 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3511 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4294 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -3985 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -2262 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -2647 ((-1050) (-574) (-574) (-699 (-227)) (-574))))) (T -757)) -((-2647 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-2262 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-3985 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-4294 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-3511 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-3993 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-1558 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-3426 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-2402 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-3672 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-3687 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-2890 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757))))) -(-10 -7 (-15 -2890 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -3687 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -3672 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2402 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3426 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1558 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3993 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3511 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4294 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -3985 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -2262 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -2647 ((-1050) (-574) (-574) (-699 (-227)) (-574)))) -((-3208 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2619 (((-1050) (-699 (-227)) (-699 (-227)) (-574) (-574)) 51)) (-2948 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1982 (((-1050) (-227) (-227) (-574) (-574) (-574) (-574)) 46)) (-3530 (((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 45)) (-2303 (((-1050) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 44)) (-4067 (((-1050) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 43)) (-2778 (((-1050) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 42)) (-3393 (((-1050) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) 38)) (-3944 (((-1050) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) 37)) (-3125 (((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) 33)) (-3934 (((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) 32))) -(((-758) (-10 -7 (-15 -3934 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3125 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3944 ((-1050) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3393 ((-1050) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -2778 ((-1050) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -4067 ((-1050) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -2303 ((-1050) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3530 ((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1982 ((-1050) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -2948 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -2619 ((-1050) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -3208 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))))) (T -758)) -((-3208 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-2619 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-758)))) (-2948 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-1982 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-758)))) (-3530 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-2303 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-4067 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-2778 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-3393 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-3944 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-758)))) (-3125 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-3934 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *2 (-1050)) (-5 *1 (-758))))) -(-10 -7 (-15 -3934 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3125 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3944 ((-1050) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3393 ((-1050) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -2778 ((-1050) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -4067 ((-1050) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -2303 ((-1050) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3530 ((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1982 ((-1050) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -2948 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -2619 ((-1050) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -3208 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))))) -((-4416 (((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3965 (((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398)) 69) (((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2998 (((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) 57)) (-3122 (((-1050) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 50)) (-2574 (((-1050) (-227) (-574) (-574) (-1174) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2628 (((-1050) (-227) (-574) (-574) (-227) (-1174) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 45)) (-1390 (((-1050) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 42)) (-1433 (((-1050) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-759) (-10 -7 (-15 -1433 ((-1050) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -1390 ((-1050) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -2628 ((-1050) (-227) (-574) (-574) (-227) (-1174) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -2574 ((-1050) (-227) (-574) (-574) (-1174) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3122 ((-1050) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -2998 ((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -3965 ((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -3965 ((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -4416 ((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -759)) -((-4416 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-3965 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-398)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-3965 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1050)) (-5 *1 (-759)))) (-2998 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-3122 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1050)) (-5 *1 (-759)))) (-2574 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-574)) (-5 *5 (-1174)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-2628 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-574)) (-5 *5 (-1174)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-1390 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-1433 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759))))) -(-10 -7 (-15 -1433 ((-1050) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -1390 ((-1050) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -2628 ((-1050) (-227) (-574) (-574) (-227) (-1174) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -2574 ((-1050) (-227) (-574) (-574) (-1174) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3122 ((-1050) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -2998 ((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -3965 ((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -3965 ((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -4416 ((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-2316 (((-1050) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574)) 45)) (-2710 (((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1174) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) 41)) (-2698 (((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 23))) -(((-760) (-10 -7 (-15 -2698 ((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2710 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1174) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -2316 ((-1050) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574))))) (T -760)) -((-2316 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-760)))) (-2710 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1174)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1050)) (-5 *1 (-760)))) (-2698 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-760))))) -(-10 -7 (-15 -2698 ((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2710 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1174) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -2316 ((-1050) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574)))) -((-3485 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574)) 35)) (-2139 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574)) 34)) (-1323 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574)) 33)) (-2593 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-1575 (((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-2020 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574)) 27)) (-3573 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 24)) (-1779 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 23)) (-1432 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574)) 22)) (-2815 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 21))) -(((-761) (-10 -7 (-15 -2815 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -1432 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1779 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -3573 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -2020 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -1575 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2593 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1323 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -2139 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -3485 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574))))) (T -761)) -((-3485 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-761)))) (-2139 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-761)))) (-1323 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-761)))) (-2593 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761)))) (-1575 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761)))) (-2020 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-761)))) (-3573 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761)))) (-1779 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761)))) (-1432 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761)))) (-2815 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761))))) -(-10 -7 (-15 -2815 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -1432 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1779 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -3573 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -2020 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -1575 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2593 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1323 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -2139 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -3485 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574)))) -((-1962 (((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 45)) (-2847 (((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574)) 44)) (-1667 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 43)) (-3040 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 42)) (-2520 (((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574)) 41)) (-1716 (((-1050) (-1174) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 40)) (-4282 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574)) 39)) (-2113 (((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574))) 38)) (-1672 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574)) 35)) (-4271 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574)) 34)) (-4434 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574)) 33)) (-3836 (((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 32)) (-2792 (((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574)) 31)) (-4328 (((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574)) 30)) (-3942 (((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 29)) (-2276 (((-1050) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574)) 28)) (-1472 (((-1050) (-574) (-699 (-227)) (-227) (-574)) 24)) (-3001 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 21))) -(((-762) (-10 -7 (-15 -3001 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1472 ((-1050) (-574) (-699 (-227)) (-227) (-574))) (-15 -2276 ((-1050) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -3942 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -4328 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -2792 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -3836 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4434 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -4271 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -1672 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2113 ((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -4282 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -1716 ((-1050) (-1174) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -2520 ((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3040 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1667 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -2847 ((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1962 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))))) (T -762)) -((-1962 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762)))) (-2847 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-1667 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762)))) (-3040 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762)))) (-2520 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-1716 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-4282 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-2113 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-1672 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762)))) (-4271 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-4434 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-3836 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762)))) (-2792 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-4328 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-3942 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-2276 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-1472 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-3001 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762))))) -(-10 -7 (-15 -3001 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1472 ((-1050) (-574) (-699 (-227)) (-227) (-574))) (-15 -2276 ((-1050) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -3942 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -4328 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -2792 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -3836 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4434 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -4271 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -1672 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2113 ((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -4282 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -1716 ((-1050) (-1174) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -2520 ((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3040 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1667 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -2847 ((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1962 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)))) -((-3002 (((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574)) 63)) (-2417 (((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4251 (((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) 58)) (-3733 (((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574)) 51)) (-4357 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) 50)) (-1673 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) 46)) (-4015 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3700 (((-1050) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-763) (-10 -7 (-15 -3700 ((-1050) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -4015 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -1673 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -4357 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -3733 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -4251 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -2417 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -3002 ((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574))))) (T -763)) -((-3002 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-763)))) (-2417 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-763)))) (-4251 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-763)))) (-3733 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *2 (-1050)) (-5 *1 (-763)))) (-4357 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1050)) (-5 *1 (-763)))) (-1673 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1050)) (-5 *1 (-763)))) (-4015 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1050)) (-5 *1 (-763)))) (-3700 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-763))))) -(-10 -7 (-15 -3700 ((-1050) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -4015 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -1673 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -4357 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -3733 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -4251 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -2417 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -3002 ((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574)))) -((-2463 (((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 47)) (-4412 (((-1050) (-1174) (-1174) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574)) 46)) (-4044 (((-1050) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 45)) (-4365 (((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 40)) (-2283 (((-1050) (-1174) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574)) 39)) (-3845 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-574)) 36)) (-3590 (((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574)) 35)) (-3693 (((-1050) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574)) 34)) (-3344 (((-1050) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574)) 33)) (-2854 (((-1050) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574)) 32))) -(((-764) (-10 -7 (-15 -2854 ((-1050) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -3344 ((-1050) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -3693 ((-1050) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -3590 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -3845 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -2283 ((-1050) (-1174) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -4365 ((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4044 ((-1050) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -4412 ((-1050) (-1174) (-1174) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2463 ((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -764)) -((-2463 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-4412 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-4044 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-4365 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-2283 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-3845 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-3590 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-764)))) (-3693 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-764)))) (-3344 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227))) (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1050)) (-5 *1 (-764)))) (-2854 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227))) (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1050)) (-5 *1 (-764))))) -(-10 -7 (-15 -2854 ((-1050) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -3344 ((-1050) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -3693 ((-1050) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -3590 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -3845 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -2283 ((-1050) (-1174) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -4365 ((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4044 ((-1050) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -4412 ((-1050) (-1174) (-1174) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2463 ((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)))) -((-4380 (((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 79)) (-1924 (((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 68)) (-2524 (((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398)) 56) (((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) 55)) (-4370 (((-1050) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 37)) (-4304 (((-1050) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574)) 33)) (-2114 (((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 30)) (-3460 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-1604 (((-1050) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-3365 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-3021 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574)) 26)) (-4036 (((-1050) (-574) (-574) (-699 (-227)) (-574)) 25)) (-2271 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-4092 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-1753 (((-1050) (-699 (-227)) (-574) (-574) (-574) (-574)) 22)) (-3604 (((-1050) (-574) (-574) (-699 (-227)) (-574)) 21))) -(((-765) (-10 -7 (-15 -3604 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -1753 ((-1050) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -4092 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2271 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4036 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -3021 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -3365 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1604 ((-1050) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3460 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2114 ((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -4304 ((-1050) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -4370 ((-1050) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2524 ((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -2524 ((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -1924 ((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4380 ((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -765)) -((-4380 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-1924 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-2524 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398)) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-2524 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-4370 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-4304 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-2114 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-3460 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-1604 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-3365 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-3021 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-4036 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-2271 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-4092 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-1753 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-3604 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765))))) -(-10 -7 (-15 -3604 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -1753 ((-1050) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -4092 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2271 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4036 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -3021 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -3365 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1604 ((-1050) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3460 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2114 ((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -4304 ((-1050) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -4370 ((-1050) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2524 ((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -2524 ((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -1924 ((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4380 ((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)))) -((-1657 (((-1050) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) 64)) (-2410 (((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574)) 60)) (-1817 (((-1050) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) 59)) (-4204 (((-1050) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 37)) (-3373 (((-1050) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574)) 36)) (-1478 (((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 33)) (-4229 (((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227))) 32)) (-3025 (((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574)) 28)) (-4153 (((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 27)) (-2350 (((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 26)) (-3857 (((-1050) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 22))) -(((-766) (-10 -7 (-15 -3857 ((-1050) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2350 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4153 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -3025 ((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -4229 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -1478 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3373 ((-1050) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4204 ((-1050) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -1817 ((-1050) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -2410 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -1657 ((-1050) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD))))))) (T -766)) -((-1657 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-2410 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-1817 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1050)) (-5 *1 (-766)))) (-4204 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-3373 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-1478 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-766)))) (-4229 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-3025 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-4153 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-766)))) (-2350 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-766)))) (-3857 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1050)) (-5 *1 (-766))))) -(-10 -7 (-15 -3857 ((-1050) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2350 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4153 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -3025 ((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -4229 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -1478 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3373 ((-1050) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4204 ((-1050) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -1817 ((-1050) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -2410 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -1657 ((-1050) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))))) -((-3094 (((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227))) 29)) (-2186 (((-1050) (-1174) (-574) (-574) (-699 (-227))) 28)) (-2666 (((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227))) 27)) (-2612 (((-1050) (-574) (-574) (-574) (-699 (-227))) 21))) -(((-767) (-10 -7 (-15 -2612 ((-1050) (-574) (-574) (-574) (-699 (-227)))) (-15 -2666 ((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -2186 ((-1050) (-1174) (-574) (-574) (-699 (-227)))) (-15 -3094 ((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)))))) (T -767)) -((-3094 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-767)))) (-2186 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-767)))) (-2666 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-767)))) (-2612 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-767))))) -(-10 -7 (-15 -2612 ((-1050) (-574) (-574) (-574) (-699 (-227)))) (-15 -2666 ((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -2186 ((-1050) (-1174) (-574) (-574) (-699 (-227)))) (-15 -3094 ((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227))))) -((-2364 (((-1050) (-227) (-227) (-227) (-227) (-574)) 62)) (-3295 (((-1050) (-227) (-227) (-227) (-574)) 61)) (-4021 (((-1050) (-227) (-227) (-227) (-574)) 60)) (-2368 (((-1050) (-227) (-227) (-574)) 59)) (-2488 (((-1050) (-227) (-574)) 58)) (-2093 (((-1050) (-227) (-574)) 57)) (-3420 (((-1050) (-227) (-574)) 56)) (-3406 (((-1050) (-227) (-574)) 55)) (-2273 (((-1050) (-227) (-574)) 54)) (-2532 (((-1050) (-227) (-574)) 53)) (-3501 (((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574)) 52)) (-2313 (((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574)) 51)) (-4184 (((-1050) (-227) (-574)) 50)) (-1581 (((-1050) (-227) (-574)) 49)) (-4169 (((-1050) (-227) (-574)) 48)) (-3409 (((-1050) (-227) (-574)) 47)) (-3681 (((-1050) (-574) (-227) (-171 (-227)) (-574) (-1174) (-574)) 46)) (-3563 (((-1050) (-1174) (-171 (-227)) (-1174) (-574)) 45)) (-3442 (((-1050) (-1174) (-171 (-227)) (-1174) (-574)) 44)) (-3676 (((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574)) 43)) (-2296 (((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574)) 42)) (-2648 (((-1050) (-227) (-574)) 39)) (-1769 (((-1050) (-227) (-574)) 38)) (-3088 (((-1050) (-227) (-574)) 37)) (-4183 (((-1050) (-227) (-574)) 36)) (-4002 (((-1050) (-227) (-574)) 35)) (-3622 (((-1050) (-227) (-574)) 34)) (-3758 (((-1050) (-227) (-574)) 33)) (-4371 (((-1050) (-227) (-574)) 32)) (-3818 (((-1050) (-227) (-574)) 31)) (-2827 (((-1050) (-227) (-574)) 30)) (-4041 (((-1050) (-227) (-227) (-227) (-574)) 29)) (-4045 (((-1050) (-227) (-574)) 28)) (-1391 (((-1050) (-227) (-574)) 27)) (-2733 (((-1050) (-227) (-574)) 26)) (-1885 (((-1050) (-227) (-574)) 25)) (-2144 (((-1050) (-227) (-574)) 24)) (-2603 (((-1050) (-171 (-227)) (-574)) 21))) -(((-768) (-10 -7 (-15 -2603 ((-1050) (-171 (-227)) (-574))) (-15 -2144 ((-1050) (-227) (-574))) (-15 -1885 ((-1050) (-227) (-574))) (-15 -2733 ((-1050) (-227) (-574))) (-15 -1391 ((-1050) (-227) (-574))) (-15 -4045 ((-1050) (-227) (-574))) (-15 -4041 ((-1050) (-227) (-227) (-227) (-574))) (-15 -2827 ((-1050) (-227) (-574))) (-15 -3818 ((-1050) (-227) (-574))) (-15 -4371 ((-1050) (-227) (-574))) (-15 -3758 ((-1050) (-227) (-574))) (-15 -3622 ((-1050) (-227) (-574))) (-15 -4002 ((-1050) (-227) (-574))) (-15 -4183 ((-1050) (-227) (-574))) (-15 -3088 ((-1050) (-227) (-574))) (-15 -1769 ((-1050) (-227) (-574))) (-15 -2648 ((-1050) (-227) (-574))) (-15 -2296 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -3676 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -3442 ((-1050) (-1174) (-171 (-227)) (-1174) (-574))) (-15 -3563 ((-1050) (-1174) (-171 (-227)) (-1174) (-574))) (-15 -3681 ((-1050) (-574) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -3409 ((-1050) (-227) (-574))) (-15 -4169 ((-1050) (-227) (-574))) (-15 -1581 ((-1050) (-227) (-574))) (-15 -4184 ((-1050) (-227) (-574))) (-15 -2313 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -3501 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -2532 ((-1050) (-227) (-574))) (-15 -2273 ((-1050) (-227) (-574))) (-15 -3406 ((-1050) (-227) (-574))) (-15 -3420 ((-1050) (-227) (-574))) (-15 -2093 ((-1050) (-227) (-574))) (-15 -2488 ((-1050) (-227) (-574))) (-15 -2368 ((-1050) (-227) (-227) (-574))) (-15 -4021 ((-1050) (-227) (-227) (-227) (-574))) (-15 -3295 ((-1050) (-227) (-227) (-227) (-574))) (-15 -2364 ((-1050) (-227) (-227) (-227) (-227) (-574))))) (T -768)) -((-2364 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3295 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4021 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2368 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2093 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2532 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3501 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2313 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4184 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-1581 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3409 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3681 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1174)) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3563 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1174)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3442 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1174)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3676 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2296 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-1769 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4002 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3758 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2827 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4041 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2733 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2144 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2603 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(-10 -7 (-15 -2603 ((-1050) (-171 (-227)) (-574))) (-15 -2144 ((-1050) (-227) (-574))) (-15 -1885 ((-1050) (-227) (-574))) (-15 -2733 ((-1050) (-227) (-574))) (-15 -1391 ((-1050) (-227) (-574))) (-15 -4045 ((-1050) (-227) (-574))) (-15 -4041 ((-1050) (-227) (-227) (-227) (-574))) (-15 -2827 ((-1050) (-227) (-574))) (-15 -3818 ((-1050) (-227) (-574))) (-15 -4371 ((-1050) (-227) (-574))) (-15 -3758 ((-1050) (-227) (-574))) (-15 -3622 ((-1050) (-227) (-574))) (-15 -4002 ((-1050) (-227) (-574))) (-15 -4183 ((-1050) (-227) (-574))) (-15 -3088 ((-1050) (-227) (-574))) (-15 -1769 ((-1050) (-227) (-574))) (-15 -2648 ((-1050) (-227) (-574))) (-15 -2296 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -3676 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -3442 ((-1050) (-1174) (-171 (-227)) (-1174) (-574))) (-15 -3563 ((-1050) (-1174) (-171 (-227)) (-1174) (-574))) (-15 -3681 ((-1050) (-574) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -3409 ((-1050) (-227) (-574))) (-15 -4169 ((-1050) (-227) (-574))) (-15 -1581 ((-1050) (-227) (-574))) (-15 -4184 ((-1050) (-227) (-574))) (-15 -2313 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -3501 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -2532 ((-1050) (-227) (-574))) (-15 -2273 ((-1050) (-227) (-574))) (-15 -3406 ((-1050) (-227) (-574))) (-15 -3420 ((-1050) (-227) (-574))) (-15 -2093 ((-1050) (-227) (-574))) (-15 -2488 ((-1050) (-227) (-574))) (-15 -2368 ((-1050) (-227) (-227) (-574))) (-15 -4021 ((-1050) (-227) (-227) (-227) (-574))) (-15 -3295 ((-1050) (-227) (-227) (-227) (-574))) (-15 -2364 ((-1050) (-227) (-227) (-227) (-227) (-574)))) -((-1368 (((-1288)) 20)) (-1608 (((-1174)) 31)) (-3452 (((-1174)) 30)) (-2470 (((-1119) (-1192) (-699 (-574))) 45) (((-1119) (-1192) (-699 (-227))) 41)) (-3660 (((-112)) 19)) (-1410 (((-1174) (-1174)) 34))) -(((-769) (-10 -7 (-15 -3452 ((-1174))) (-15 -1608 ((-1174))) (-15 -1410 ((-1174) (-1174))) (-15 -2470 ((-1119) (-1192) (-699 (-227)))) (-15 -2470 ((-1119) (-1192) (-699 (-574)))) (-15 -3660 ((-112))) (-15 -1368 ((-1288))))) (T -769)) -((-1368 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-769)))) (-3660 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-769)))) (-2470 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-699 (-574))) (-5 *2 (-1119)) (-5 *1 (-769)))) (-2470 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-699 (-227))) (-5 *2 (-1119)) (-5 *1 (-769)))) (-1410 (*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769)))) (-1608 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769)))) (-3452 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769))))) -(-10 -7 (-15 -3452 ((-1174))) (-15 -1608 ((-1174))) (-15 -1410 ((-1174) (-1174))) (-15 -2470 ((-1119) (-1192) (-699 (-227)))) (-15 -2470 ((-1119) (-1192) (-699 (-574)))) (-15 -3660 ((-112))) (-15 -1368 ((-1288)))) -((-3490 (($ $ $) 10)) (-2087 (($ $ $ $) 9)) (-3157 (($ $ $) 12))) -(((-770 |#1|) (-10 -8 (-15 -3157 (|#1| |#1| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -2087 (|#1| |#1| |#1| |#1|))) (-771)) (T -770)) -NIL -(-10 -8 (-15 -3157 (|#1| |#1| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -2087 (|#1| |#1| |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3204 (($ $ (-934)) 31)) (-2177 (($ $ (-934)) 32)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3490 (($ $ $) 28)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2087 (($ $ $ $) 29)) (-3157 (($ $ $) 27)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 33)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30))) +((-4081 (*1 *1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-754 *3)) (-4 *3 (-174))))) +(-13 (-771) (-727 |t#1|) (-10 -8 (-15 -4081 ($ $ (-935))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-771) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T)) +((-1345 (((-1051) (-699 (-227)) (-574) (-112) (-574)) 25)) (-1730 (((-1051) (-699 (-227)) (-574) (-112) (-574)) 24))) +(((-755) (-10 -7 (-15 -1730 ((-1051) (-699 (-227)) (-574) (-112) (-574))) (-15 -1345 ((-1051) (-699 (-227)) (-574) (-112) (-574))))) (T -755)) +((-1345 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1051)) (-5 *1 (-755)))) (-1730 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1051)) (-5 *1 (-755))))) +(-10 -7 (-15 -1730 ((-1051) (-699 (-227)) (-574) (-112) (-574))) (-15 -1345 ((-1051) (-699 (-227)) (-574) (-112) (-574)))) +((-3300 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) 43)) (-1627 (((-1051) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) 39)) (-4410 (((-1051) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) 32))) +(((-756) (-10 -7 (-15 -4410 ((-1051) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -1627 ((-1051) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -3300 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN))))))) (T -756)) +((-3300 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1051)) (-5 *1 (-756)))) (-1627 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1051)) (-5 *1 (-756)))) (-4410 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *2 (-1051)) (-5 *1 (-756))))) +(-10 -7 (-15 -4410 ((-1051) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -1627 ((-1051) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -3300 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))))) +((-1553 (((-1051) (-574) (-574) (-699 (-227)) (-574)) 34)) (-2135 (((-1051) (-574) (-574) (-699 (-227)) (-574)) 33)) (-2865 (((-1051) (-574) (-699 (-227)) (-574)) 32)) (-3003 (((-1051) (-574) (-699 (-227)) (-574)) 31)) (-4063 (((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 30)) (-3155 (((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-2376 (((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-3017 (((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-4184 (((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-2570 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-4198 (((-1051) (-574) (-699 (-227)) (-574)) 22)) (-1397 (((-1051) (-574) (-699 (-227)) (-574)) 21))) +(((-757) (-10 -7 (-15 -1397 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -4198 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -2570 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4184 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3017 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2376 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3155 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4063 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3003 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -2865 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -2135 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -1553 ((-1051) (-574) (-574) (-699 (-227)) (-574))))) (T -757)) +((-1553 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-2135 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-2865 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-3003 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-4063 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-3155 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-2376 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-3017 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-4184 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-2570 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-4198 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-1397 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757))))) +(-10 -7 (-15 -1397 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -4198 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -2570 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4184 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3017 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2376 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3155 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4063 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3003 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -2865 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -2135 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -1553 ((-1051) (-574) (-574) (-699 (-227)) (-574)))) +((-3908 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3267 (((-1051) (-699 (-227)) (-699 (-227)) (-574) (-574)) 51)) (-1633 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2710 (((-1051) (-227) (-227) (-574) (-574) (-574) (-574)) 46)) (-1818 (((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 45)) (-1666 (((-1051) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 44)) (-1435 (((-1051) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 43)) (-1523 (((-1051) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 42)) (-3280 (((-1051) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) 38)) (-3718 (((-1051) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) 37)) (-4093 (((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) 33)) (-1454 (((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) 32))) +(((-758) (-10 -7 (-15 -1454 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -4093 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -3718 ((-1051) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -3280 ((-1051) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -1523 ((-1051) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1435 ((-1051) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1666 ((-1051) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1818 ((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -2710 ((-1051) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -1633 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -3267 ((-1051) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -3908 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))))) (T -758)) +((-3908 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-3267 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-758)))) (-1633 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-2710 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-758)))) (-1818 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-1666 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-1435 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-1523 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-3280 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-3718 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-758)))) (-4093 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-1454 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *2 (-1051)) (-5 *1 (-758))))) +(-10 -7 (-15 -1454 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -4093 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -3718 ((-1051) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -3280 ((-1051) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -1523 ((-1051) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1435 ((-1051) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1666 ((-1051) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1818 ((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -2710 ((-1051) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -1633 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -3267 ((-1051) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -3908 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))))) +((-2354 (((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2449 (((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398)) 69) (((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3184 (((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) 57)) (-1334 (((-1051) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 50)) (-3445 (((-1051) (-227) (-574) (-574) (-1175) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 49)) (-4006 (((-1051) (-227) (-574) (-574) (-227) (-1175) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2556 (((-1051) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 42)) (-3952 (((-1051) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-759) (-10 -7 (-15 -3952 ((-1051) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -2556 ((-1051) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -4006 ((-1051) (-227) (-574) (-574) (-227) (-1175) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3445 ((-1051) (-227) (-574) (-574) (-1175) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -1334 ((-1051) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -3184 ((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -2449 ((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -2449 ((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -2354 ((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -759)) +((-2354 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-2449 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-398)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-2449 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1051)) (-5 *1 (-759)))) (-3184 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-1334 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1051)) (-5 *1 (-759)))) (-3445 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-574)) (-5 *5 (-1175)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-4006 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-574)) (-5 *5 (-1175)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-2556 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-3952 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759))))) +(-10 -7 (-15 -3952 ((-1051) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -2556 ((-1051) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -4006 ((-1051) (-227) (-574) (-574) (-227) (-1175) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3445 ((-1051) (-227) (-574) (-574) (-1175) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -1334 ((-1051) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -3184 ((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -2449 ((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -2449 ((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -2354 ((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-3943 (((-1051) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574)) 45)) (-4343 (((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1175) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) 41)) (-3735 (((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 23))) +(((-760) (-10 -7 (-15 -3735 ((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4343 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1175) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -3943 ((-1051) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574))))) (T -760)) +((-3943 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-760)))) (-4343 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1175)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1051)) (-5 *1 (-760)))) (-3735 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-760))))) +(-10 -7 (-15 -3735 ((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4343 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1175) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -3943 ((-1051) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574)))) +((-1667 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574)) 35)) (-3366 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574)) 34)) (-3499 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574)) 33)) (-1575 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-2355 (((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-1422 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574)) 27)) (-3874 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 24)) (-2839 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 23)) (-4319 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574)) 22)) (-1997 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 21))) +(((-761) (-10 -7 (-15 -1997 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -4319 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2839 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -3874 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1422 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -2355 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1575 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3499 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3366 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -1667 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574))))) (T -761)) +((-1667 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-761)))) (-3366 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-761)))) (-3499 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-761)))) (-1575 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761)))) (-2355 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761)))) (-1422 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-761)))) (-3874 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761)))) (-2839 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761)))) (-4319 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761)))) (-1997 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761))))) +(-10 -7 (-15 -1997 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -4319 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2839 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -3874 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1422 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -2355 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1575 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3499 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3366 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -1667 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574)))) +((-1517 (((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 45)) (-2524 (((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574)) 44)) (-3957 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 43)) (-2000 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 42)) (-3560 (((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574)) 41)) (-3482 (((-1051) (-1175) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 40)) (-1911 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574)) 39)) (-1982 (((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574))) 38)) (-3692 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574)) 35)) (-2169 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574)) 34)) (-3008 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574)) 33)) (-2425 (((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 32)) (-1433 (((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574)) 31)) (-4278 (((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574)) 30)) (-3292 (((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 29)) (-2458 (((-1051) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574)) 28)) (-3276 (((-1051) (-574) (-699 (-227)) (-227) (-574)) 24)) (-3309 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 21))) +(((-762) (-10 -7 (-15 -3309 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3276 ((-1051) (-574) (-699 (-227)) (-227) (-574))) (-15 -2458 ((-1051) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -3292 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -4278 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -1433 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -2425 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3008 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -2169 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -3692 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1982 ((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -1911 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -3482 ((-1051) (-1175) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -3560 ((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2000 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3957 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -2524 ((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1517 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))))) (T -762)) +((-1517 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762)))) (-2524 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3957 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762)))) (-2000 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3560 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3482 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-1911 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-1982 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3692 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762)))) (-2169 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3008 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-2425 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762)))) (-1433 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-4278 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3292 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-2458 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3276 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3309 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762))))) +(-10 -7 (-15 -3309 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3276 ((-1051) (-574) (-699 (-227)) (-227) (-574))) (-15 -2458 ((-1051) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -3292 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -4278 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -1433 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -2425 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3008 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -2169 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -3692 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1982 ((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -1911 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -3482 ((-1051) (-1175) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -3560 ((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2000 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3957 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -2524 ((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1517 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)))) +((-4264 (((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574)) 63)) (-3702 (((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2690 (((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) 58)) (-3723 (((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574)) 51)) (-2068 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2224 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2743 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3776 (((-1051) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-763) (-10 -7 (-15 -3776 ((-1051) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -2743 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -2224 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -2068 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -3723 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -2690 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -3702 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -4264 ((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574))))) (T -763)) +((-4264 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-763)))) (-3702 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-763)))) (-2690 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-763)))) (-3723 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *2 (-1051)) (-5 *1 (-763)))) (-2068 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1051)) (-5 *1 (-763)))) (-2224 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1051)) (-5 *1 (-763)))) (-2743 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1051)) (-5 *1 (-763)))) (-3776 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-763))))) +(-10 -7 (-15 -3776 ((-1051) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -2743 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -2224 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -2068 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -3723 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -2690 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -3702 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -4264 ((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574)))) +((-2880 (((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 47)) (-2647 (((-1051) (-1175) (-1175) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574)) 46)) (-1659 (((-1051) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 45)) (-4310 (((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 40)) (-2930 (((-1051) (-1175) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574)) 39)) (-3305 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-574)) 36)) (-3372 (((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574)) 35)) (-2464 (((-1051) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574)) 34)) (-2049 (((-1051) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574)) 33)) (-3150 (((-1051) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574)) 32))) +(((-764) (-10 -7 (-15 -3150 ((-1051) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -2049 ((-1051) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -2464 ((-1051) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -3372 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -3305 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -2930 ((-1051) (-1175) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -4310 ((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1659 ((-1051) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2647 ((-1051) (-1175) (-1175) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2880 ((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -764)) +((-2880 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-2647 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-1659 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-4310 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-2930 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-3305 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-3372 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-764)))) (-2464 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-764)))) (-2049 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227))) (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1051)) (-5 *1 (-764)))) (-3150 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227))) (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1051)) (-5 *1 (-764))))) +(-10 -7 (-15 -3150 ((-1051) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -2049 ((-1051) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -2464 ((-1051) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -3372 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -3305 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -2930 ((-1051) (-1175) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -4310 ((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1659 ((-1051) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2647 ((-1051) (-1175) (-1175) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2880 ((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)))) +((-2248 (((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 79)) (-2539 (((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 68)) (-3467 (((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398)) 56) (((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) 55)) (-1609 (((-1051) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 37)) (-1342 (((-1051) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574)) 33)) (-3773 (((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 30)) (-3920 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-1952 (((-1051) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-3824 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-2878 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574)) 26)) (-1507 (((-1051) (-574) (-574) (-699 (-227)) (-574)) 25)) (-2432 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-4283 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-4248 (((-1051) (-699 (-227)) (-574) (-574) (-574) (-574)) 22)) (-3156 (((-1051) (-574) (-574) (-699 (-227)) (-574)) 21))) +(((-765) (-10 -7 (-15 -3156 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -4248 ((-1051) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -4283 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2432 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1507 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -2878 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -3824 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1952 ((-1051) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3920 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3773 ((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -1342 ((-1051) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -1609 ((-1051) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3467 ((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -3467 ((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -2539 ((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2248 ((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -765)) +((-2248 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-2539 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-3467 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398)) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-3467 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-1609 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-1342 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-3773 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-3920 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-1952 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-3824 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-2878 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-1507 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-2432 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-4283 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-4248 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-3156 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765))))) +(-10 -7 (-15 -3156 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -4248 ((-1051) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -4283 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2432 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1507 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -2878 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -3824 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1952 ((-1051) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3920 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3773 ((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -1342 ((-1051) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -1609 ((-1051) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3467 ((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -3467 ((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -2539 ((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2248 ((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)))) +((-3169 (((-1051) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) 64)) (-4392 (((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574)) 60)) (-2323 (((-1051) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2520 (((-1051) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 37)) (-2682 (((-1051) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574)) 36)) (-4105 (((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 33)) (-1868 (((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227))) 32)) (-1576 (((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574)) 28)) (-2496 (((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 27)) (-4085 (((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 26)) (-2100 (((-1051) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 22))) +(((-766) (-10 -7 (-15 -2100 ((-1051) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -4085 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -2496 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1576 ((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -1868 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -4105 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2682 ((-1051) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2520 ((-1051) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -2323 ((-1051) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -4392 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -3169 ((-1051) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD))))))) (T -766)) +((-3169 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-4392 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-2323 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1051)) (-5 *1 (-766)))) (-2520 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-2682 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-4105 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-766)))) (-1868 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-1576 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-2496 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-766)))) (-4085 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-766)))) (-2100 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1051)) (-5 *1 (-766))))) +(-10 -7 (-15 -2100 ((-1051) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -4085 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -2496 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1576 ((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -1868 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -4105 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2682 ((-1051) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2520 ((-1051) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -2323 ((-1051) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -4392 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -3169 ((-1051) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))))) +((-3496 (((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227))) 29)) (-3609 (((-1051) (-1175) (-574) (-574) (-699 (-227))) 28)) (-2879 (((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227))) 27)) (-2018 (((-1051) (-574) (-574) (-574) (-699 (-227))) 21))) +(((-767) (-10 -7 (-15 -2018 ((-1051) (-574) (-574) (-574) (-699 (-227)))) (-15 -2879 ((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -3609 ((-1051) (-1175) (-574) (-574) (-699 (-227)))) (-15 -3496 ((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)))))) (T -767)) +((-3496 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-767)))) (-3609 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-767)))) (-2879 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-767)))) (-2018 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-767))))) +(-10 -7 (-15 -2018 ((-1051) (-574) (-574) (-574) (-699 (-227)))) (-15 -2879 ((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -3609 ((-1051) (-1175) (-574) (-574) (-699 (-227)))) (-15 -3496 ((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227))))) +((-2436 (((-1051) (-227) (-227) (-227) (-227) (-574)) 62)) (-4335 (((-1051) (-227) (-227) (-227) (-574)) 61)) (-4291 (((-1051) (-227) (-227) (-227) (-574)) 60)) (-2327 (((-1051) (-227) (-227) (-574)) 59)) (-4420 (((-1051) (-227) (-574)) 58)) (-4312 (((-1051) (-227) (-574)) 57)) (-4273 (((-1051) (-227) (-574)) 56)) (-1335 (((-1051) (-227) (-574)) 55)) (-3122 (((-1051) (-227) (-574)) 54)) (-3237 (((-1051) (-227) (-574)) 53)) (-2774 (((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574)) 52)) (-2834 (((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574)) 51)) (-1411 (((-1051) (-227) (-574)) 50)) (-3469 (((-1051) (-227) (-574)) 49)) (-3790 (((-1051) (-227) (-574)) 48)) (-3583 (((-1051) (-227) (-574)) 47)) (-1629 (((-1051) (-574) (-227) (-171 (-227)) (-574) (-1175) (-574)) 46)) (-4214 (((-1051) (-1175) (-171 (-227)) (-1175) (-574)) 45)) (-2336 (((-1051) (-1175) (-171 (-227)) (-1175) (-574)) 44)) (-3666 (((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574)) 43)) (-3494 (((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574)) 42)) (-3756 (((-1051) (-227) (-574)) 39)) (-1600 (((-1051) (-227) (-574)) 38)) (-3271 (((-1051) (-227) (-574)) 37)) (-2872 (((-1051) (-227) (-574)) 36)) (-3704 (((-1051) (-227) (-574)) 35)) (-2516 (((-1051) (-227) (-574)) 34)) (-1828 (((-1051) (-227) (-574)) 33)) (-3229 (((-1051) (-227) (-574)) 32)) (-2063 (((-1051) (-227) (-574)) 31)) (-1864 (((-1051) (-227) (-574)) 30)) (-4415 (((-1051) (-227) (-227) (-227) (-574)) 29)) (-1410 (((-1051) (-227) (-574)) 28)) (-4304 (((-1051) (-227) (-574)) 27)) (-2159 (((-1051) (-227) (-574)) 26)) (-2795 (((-1051) (-227) (-574)) 25)) (-2223 (((-1051) (-227) (-574)) 24)) (-3426 (((-1051) (-171 (-227)) (-574)) 21))) +(((-768) (-10 -7 (-15 -3426 ((-1051) (-171 (-227)) (-574))) (-15 -2223 ((-1051) (-227) (-574))) (-15 -2795 ((-1051) (-227) (-574))) (-15 -2159 ((-1051) (-227) (-574))) (-15 -4304 ((-1051) (-227) (-574))) (-15 -1410 ((-1051) (-227) (-574))) (-15 -4415 ((-1051) (-227) (-227) (-227) (-574))) (-15 -1864 ((-1051) (-227) (-574))) (-15 -2063 ((-1051) (-227) (-574))) (-15 -3229 ((-1051) (-227) (-574))) (-15 -1828 ((-1051) (-227) (-574))) (-15 -2516 ((-1051) (-227) (-574))) (-15 -3704 ((-1051) (-227) (-574))) (-15 -2872 ((-1051) (-227) (-574))) (-15 -3271 ((-1051) (-227) (-574))) (-15 -1600 ((-1051) (-227) (-574))) (-15 -3756 ((-1051) (-227) (-574))) (-15 -3494 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -3666 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -2336 ((-1051) (-1175) (-171 (-227)) (-1175) (-574))) (-15 -4214 ((-1051) (-1175) (-171 (-227)) (-1175) (-574))) (-15 -1629 ((-1051) (-574) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -3583 ((-1051) (-227) (-574))) (-15 -3790 ((-1051) (-227) (-574))) (-15 -3469 ((-1051) (-227) (-574))) (-15 -1411 ((-1051) (-227) (-574))) (-15 -2834 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -2774 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -3237 ((-1051) (-227) (-574))) (-15 -3122 ((-1051) (-227) (-574))) (-15 -1335 ((-1051) (-227) (-574))) (-15 -4273 ((-1051) (-227) (-574))) (-15 -4312 ((-1051) (-227) (-574))) (-15 -4420 ((-1051) (-227) (-574))) (-15 -2327 ((-1051) (-227) (-227) (-574))) (-15 -4291 ((-1051) (-227) (-227) (-227) (-574))) (-15 -4335 ((-1051) (-227) (-227) (-227) (-574))) (-15 -2436 ((-1051) (-227) (-227) (-227) (-227) (-574))))) (T -768)) +((-2436 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4335 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4291 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2327 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4420 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4312 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4273 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3237 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2774 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2834 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1411 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3469 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1629 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1175)) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4214 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1175)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2336 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1175)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3666 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3494 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3271 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2872 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3704 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1828 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3229 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2063 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1864 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4415 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1410 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4304 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2223 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(-10 -7 (-15 -3426 ((-1051) (-171 (-227)) (-574))) (-15 -2223 ((-1051) (-227) (-574))) (-15 -2795 ((-1051) (-227) (-574))) (-15 -2159 ((-1051) (-227) (-574))) (-15 -4304 ((-1051) (-227) (-574))) (-15 -1410 ((-1051) (-227) (-574))) (-15 -4415 ((-1051) (-227) (-227) (-227) (-574))) (-15 -1864 ((-1051) (-227) (-574))) (-15 -2063 ((-1051) (-227) (-574))) (-15 -3229 ((-1051) (-227) (-574))) (-15 -1828 ((-1051) (-227) (-574))) (-15 -2516 ((-1051) (-227) (-574))) (-15 -3704 ((-1051) (-227) (-574))) (-15 -2872 ((-1051) (-227) (-574))) (-15 -3271 ((-1051) (-227) (-574))) (-15 -1600 ((-1051) (-227) (-574))) (-15 -3756 ((-1051) (-227) (-574))) (-15 -3494 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -3666 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -2336 ((-1051) (-1175) (-171 (-227)) (-1175) (-574))) (-15 -4214 ((-1051) (-1175) (-171 (-227)) (-1175) (-574))) (-15 -1629 ((-1051) (-574) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -3583 ((-1051) (-227) (-574))) (-15 -3790 ((-1051) (-227) (-574))) (-15 -3469 ((-1051) (-227) (-574))) (-15 -1411 ((-1051) (-227) (-574))) (-15 -2834 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -2774 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -3237 ((-1051) (-227) (-574))) (-15 -3122 ((-1051) (-227) (-574))) (-15 -1335 ((-1051) (-227) (-574))) (-15 -4273 ((-1051) (-227) (-574))) (-15 -4312 ((-1051) (-227) (-574))) (-15 -4420 ((-1051) (-227) (-574))) (-15 -2327 ((-1051) (-227) (-227) (-574))) (-15 -4291 ((-1051) (-227) (-227) (-227) (-574))) (-15 -4335 ((-1051) (-227) (-227) (-227) (-574))) (-15 -2436 ((-1051) (-227) (-227) (-227) (-227) (-574)))) +((-2465 (((-1289)) 20)) (-2275 (((-1175)) 31)) (-1676 (((-1175)) 30)) (-3371 (((-1120) (-1193) (-699 (-574))) 45) (((-1120) (-1193) (-699 (-227))) 41)) (-3660 (((-112)) 19)) (-2262 (((-1175) (-1175)) 34))) +(((-769) (-10 -7 (-15 -1676 ((-1175))) (-15 -2275 ((-1175))) (-15 -2262 ((-1175) (-1175))) (-15 -3371 ((-1120) (-1193) (-699 (-227)))) (-15 -3371 ((-1120) (-1193) (-699 (-574)))) (-15 -3660 ((-112))) (-15 -2465 ((-1289))))) (T -769)) +((-2465 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-769)))) (-3660 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-769)))) (-3371 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-699 (-574))) (-5 *2 (-1120)) (-5 *1 (-769)))) (-3371 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-699 (-227))) (-5 *2 (-1120)) (-5 *1 (-769)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769)))) (-2275 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769)))) (-1676 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769))))) +(-10 -7 (-15 -1676 ((-1175))) (-15 -2275 ((-1175))) (-15 -2262 ((-1175) (-1175))) (-15 -3371 ((-1120) (-1193) (-699 (-227)))) (-15 -3371 ((-1120) (-1193) (-699 (-574)))) (-15 -3660 ((-112))) (-15 -2465 ((-1289)))) +((-3955 (($ $ $) 10)) (-4010 (($ $ $ $) 9)) (-4099 (($ $ $) 12))) +(((-770 |#1|) (-10 -8 (-15 -4099 (|#1| |#1| |#1|)) (-15 -3955 (|#1| |#1| |#1|)) (-15 -4010 (|#1| |#1| |#1| |#1|))) (-771)) (T -770)) +NIL +(-10 -8 (-15 -4099 (|#1| |#1| |#1|)) (-15 -3955 (|#1| |#1| |#1|)) (-15 -4010 (|#1| |#1| |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-3066 (($ $ (-935)) 31)) (-4308 (($ $ (-935)) 32)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3955 (($ $ $) 28)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-4010 (($ $ $ $) 29)) (-4099 (($ $ $) 27)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 33)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30))) (((-771) (-141)) (T -771)) -((-2087 (*1 *1 *1 *1 *1) (-4 *1 (-771))) (-3490 (*1 *1 *1 *1) (-4 *1 (-771))) (-3157 (*1 *1 *1 *1) (-4 *1 (-771)))) -(-13 (-21) (-730) (-10 -8 (-15 -2087 ($ $ $ $)) (-15 -3490 ($ $ $)) (-15 -3157 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-1115) . T)) -((-2950 (((-872) $) NIL) (($ (-574)) 10))) -(((-772 |#1|) (-10 -8 (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-773)) (T -772)) -NIL -(-10 -8 (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-2484 (((-3 $ "failed") $) 43)) (-3204 (($ $ (-934)) 31) (($ $ (-781)) 38)) (-3911 (((-3 $ "failed") $) 41)) (-3372 (((-112) $) 37)) (-2691 (((-3 $ "failed") $) 42)) (-2177 (($ $ (-934)) 32) (($ $ (-781)) 39)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3490 (($ $ $) 28)) (-2950 (((-872) $) 12) (($ (-574)) 34)) (-4019 (((-781)) 35 T CONST)) (-3838 (((-112) $ $) 9)) (-2087 (($ $ $ $) 29)) (-3157 (($ $ $) 27)) (-2142 (($) 19 T CONST)) (-2154 (($) 36 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 33) (($ $ (-781)) 40)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30))) +((-4010 (*1 *1 *1 *1 *1) (-4 *1 (-771))) (-3955 (*1 *1 *1 *1) (-4 *1 (-771))) (-4099 (*1 *1 *1 *1) (-4 *1 (-771)))) +(-13 (-21) (-730) (-10 -8 (-15 -4010 ($ $ $ $)) (-15 -3955 ($ $ $)) (-15 -4099 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-1116) . T)) +((-2951 (((-872) $) NIL) (($ (-574)) 10))) +(((-772 |#1|) (-10 -8 (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-773)) (T -772)) +NIL +(-10 -8 (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1657 (((-3 $ "failed") $) 43)) (-3066 (($ $ (-935)) 31) (($ $ (-781)) 38)) (-4322 (((-3 $ "failed") $) 41)) (-4226 (((-112) $) 37)) (-3144 (((-3 $ "failed") $) 42)) (-4308 (($ $ (-935)) 32) (($ $ (-781)) 39)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3955 (($ $ $) 28)) (-2951 (((-872) $) 12) (($ (-574)) 34)) (-2898 (((-781)) 35 T CONST)) (-4069 (((-112) $ $) 9)) (-4010 (($ $ $ $) 29)) (-4099 (($ $ $) 27)) (-2141 (($) 19 T CONST)) (-2153 (($) 36 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 33) (($ $ (-781)) 40)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30))) (((-773) (-141)) (T -773)) -((-4019 (*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-773))))) -(-13 (-771) (-732) (-10 -8 (-15 -4019 ((-781)) -1715) (-15 -2950 ($ (-574))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-732) . T) ((-771) . T) ((-1115) . T)) -((-3374 (((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|) 33)) (-1993 (((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|) 23)) (-1539 (((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1192)) 20) (((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574))))) 19))) -(((-774 |#1|) (-10 -7 (-15 -1539 ((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -1539 ((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1192))) (-15 -1993 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -3374 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|))) (-13 (-372) (-858))) (T -774)) -((-3374 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 *4))))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1192)) (-5 *2 (-965 (-171 (-417 (-574))))) (-5 *1 (-774 *5)) (-4 *5 (-13 (-372) (-858))))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-965 (-171 (-417 (-574))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) -(-10 -7 (-15 -1539 ((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -1539 ((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1192))) (-15 -1993 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -3374 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|))) -((-1863 (((-176 (-574)) |#1|) 27))) -(((-775 |#1|) (-10 -7 (-15 -1863 ((-176 (-574)) |#1|))) (-414)) (T -775)) -((-1863 (*1 *2 *3) (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414))))) -(-10 -7 (-15 -1863 ((-176 (-574)) |#1|))) -((-2194 ((|#1| |#1| |#1|) 28)) (-2227 ((|#1| |#1| |#1|) 27)) (-4177 ((|#1| |#1| |#1|) 38)) (-4027 ((|#1| |#1| |#1|) 34)) (-2636 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2801 (((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|) 26))) -(((-776 |#1| |#2|) (-10 -7 (-15 -2801 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -2227 (|#1| |#1| |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -2636 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4177 (|#1| |#1| |#1|))) (-718 |#2|) (-372)) (T -776)) -((-4177 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-4027 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2636 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2194 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2227 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2801 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4))))) -(-10 -7 (-15 -2801 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -2227 (|#1| |#1| |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -2636 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4177 (|#1| |#1| |#1|))) -((-3828 (((-701 (-1241)) $ (-1241)) 26)) (-2902 (((-701 (-559)) $ (-559)) 25)) (-2910 (((-781) $ (-129)) 27)) (-4203 (((-701 (-130)) $ (-130)) 24)) (-4336 (((-701 (-1241)) $) 12)) (-2752 (((-701 (-1239)) $) 8)) (-2492 (((-701 (-1238)) $) 10)) (-3692 (((-701 (-559)) $) 13)) (-2673 (((-701 (-557)) $) 9)) (-1952 (((-701 (-556)) $) 11)) (-4318 (((-781) $ (-129)) 7)) (-3982 (((-701 (-130)) $) 14)) (-3097 (((-112) $) 31)) (-2728 (((-701 $) |#1| (-967)) 32)) (-3894 (($ $) 6))) -(((-777 |#1|) (-141) (-1115)) (T -777)) -((-2728 (*1 *2 *3 *4) (-12 (-5 *4 (-967)) (-4 *3 (-1115)) (-5 *2 (-701 *1)) (-4 *1 (-777 *3)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) -(-13 (-586) (-10 -8 (-15 -2728 ((-701 $) |t#1| (-967))) (-15 -3097 ((-112) $)))) +((-2898 (*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-773))))) +(-13 (-771) (-732) (-10 -8 (-15 -2898 ((-781)) -1714) (-15 -2951 ($ (-574))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-732) . T) ((-771) . T) ((-1116) . T)) +((-1333 (((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|) 33)) (-2142 (((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|) 23)) (-2648 (((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1193)) 20) (((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574))))) 19))) +(((-774 |#1|) (-10 -7 (-15 -2648 ((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -2648 ((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1193))) (-15 -2142 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -1333 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|))) (-13 (-372) (-858))) (T -774)) +((-1333 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 *4))))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1193)) (-5 *2 (-966 (-171 (-417 (-574))))) (-5 *1 (-774 *5)) (-4 *5 (-13 (-372) (-858))))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-966 (-171 (-417 (-574))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) +(-10 -7 (-15 -2648 ((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -2648 ((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1193))) (-15 -2142 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -1333 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|))) +((-2173 (((-176 (-574)) |#1|) 27))) +(((-775 |#1|) (-10 -7 (-15 -2173 ((-176 (-574)) |#1|))) (-414)) (T -775)) +((-2173 (*1 *2 *3) (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414))))) +(-10 -7 (-15 -2173 ((-176 (-574)) |#1|))) +((-4123 ((|#1| |#1| |#1|) 28)) (-3414 ((|#1| |#1| |#1|) 27)) (-2767 ((|#1| |#1| |#1|) 38)) (-3967 ((|#1| |#1| |#1|) 34)) (-2581 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2337 (((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|) 26))) +(((-776 |#1| |#2|) (-10 -7 (-15 -2337 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -3414 (|#1| |#1| |#1|)) (-15 -4123 (|#1| |#1| |#1|)) (-15 -2581 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3967 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1|))) (-718 |#2|) (-372)) (T -776)) +((-2767 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-3967 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2581 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-4123 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-3414 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2337 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4))))) +(-10 -7 (-15 -2337 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -3414 (|#1| |#1| |#1|)) (-15 -4123 (|#1| |#1| |#1|)) (-15 -2581 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3967 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1|))) +((-2744 (((-701 (-1242)) $ (-1242)) 26)) (-4193 (((-701 (-559)) $ (-559)) 25)) (-2208 (((-781) $ (-129)) 27)) (-3848 (((-701 (-130)) $ (-130)) 24)) (-3604 (((-701 (-1242)) $) 12)) (-2992 (((-701 (-1240)) $) 8)) (-4305 (((-701 (-1239)) $) 10)) (-4012 (((-701 (-559)) $) 13)) (-1893 (((-701 (-557)) $) 9)) (-1537 (((-701 (-556)) $) 11)) (-2329 (((-781) $ (-129)) 7)) (-3813 (((-701 (-130)) $) 14)) (-4363 (((-112) $) 31)) (-3629 (((-701 $) |#1| (-968)) 32)) (-1731 (($ $) 6))) +(((-777 |#1|) (-141) (-1116)) (T -777)) +((-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-968)) (-4 *3 (-1116)) (-5 *2 (-701 *1)) (-4 *1 (-777 *3)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1116)) (-5 *2 (-112))))) +(-13 (-586) (-10 -8 (-15 -3629 ((-701 $) |t#1| (-968))) (-15 -4363 ((-112) $)))) (((-175) . T) ((-537) . T) ((-586) . T) ((-870) . T)) -((-1949 (((-2 (|:| -2191 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)) 71)) (-1555 (((-2 (|:| -2191 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) 69)) (-1738 (((-574)) 85))) -(((-778 |#1| |#2|) (-10 -7 (-15 -1738 ((-574))) (-15 -1555 ((-2 (|:| -2191 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -1949 ((-2 (|:| -2191 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)))) (-1259 (-574)) (-419 (-574) |#1|)) (T -778)) -((-1949 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1259 *3)) (-5 *2 (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1555 (*1 *2) (-12 (-4 *3 (-1259 (-574))) (-5 *2 (-2 (|:| -2191 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3)))) (-1738 (*1 *2) (-12 (-4 *3 (-1259 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 *2 *3))))) -(-10 -7 (-15 -1738 ((-574))) (-15 -1555 ((-2 (|:| -2191 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -1949 ((-2 (|:| -2191 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)))) -((-2863 (((-112) $ $) NIL)) (-2216 (((-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 20) (($ (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-779) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2950 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2950 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2216 ((-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -779)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779))))) -(-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2950 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2950 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2216 ((-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) -((-2565 (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|))) 18) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192))) 17)) (-2514 (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|))) 20) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192))) 19))) -(((-780 |#1|) (-10 -7 (-15 -2565 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -2565 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|))))) (-566)) (T -780)) -((-2514 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-780 *4)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-780 *5)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-780 *4)))) (-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-780 *5))))) -(-10 -7 (-15 -2565 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -2565 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-2620 (($ $ $) 10)) (-1597 (((-3 $ "failed") $ $) 15)) (-3932 (($ $ (-574)) 11)) (-3831 (($) NIL T CONST)) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($ $) NIL)) (-2811 (($ $ $) NIL)) (-3372 (((-112) $) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2886 (($ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 6 T CONST)) (-2154 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ $ $) NIL))) -(((-781) (-13 (-803) (-736) (-10 -8 (-15 -2811 ($ $ $)) (-15 -2799 ($ $ $)) (-15 -2886 ($ $ $)) (-15 -3444 ((-2 (|:| -4415 $) (|:| -1484 $)) $ $)) (-15 -2852 ((-3 $ "failed") $ $)) (-15 -3932 ($ $ (-574))) (-15 -2834 ($ $)) (-6 (-4460 "*"))))) (T -781)) -((-2811 (*1 *1 *1 *1) (-5 *1 (-781))) (-2799 (*1 *1 *1 *1) (-5 *1 (-781))) (-2886 (*1 *1 *1 *1) (-5 *1 (-781))) (-3444 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4415 (-781)) (|:| -1484 (-781)))) (-5 *1 (-781)))) (-2852 (*1 *1 *1 *1) (|partial| -5 *1 (-781))) (-3932 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781)))) (-2834 (*1 *1 *1) (-5 *1 (-781)))) -(-13 (-803) (-736) (-10 -8 (-15 -2811 ($ $ $)) (-15 -2799 ($ $ $)) (-15 -2886 ($ $ $)) (-15 -3444 ((-2 (|:| -4415 $) (|:| -1484 $)) $ $)) (-15 -2852 ((-3 $ "failed") $ $)) (-15 -3932 ($ $ (-574))) (-15 -2834 ($ $)) (-6 (-4460 "*")))) +((-2232 (((-2 (|:| -2391 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)) 71)) (-4367 (((-2 (|:| -2391 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) 69)) (-2394 (((-574)) 85))) +(((-778 |#1| |#2|) (-10 -7 (-15 -2394 ((-574))) (-15 -4367 ((-2 (|:| -2391 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -2232 ((-2 (|:| -2391 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)))) (-1260 (-574)) (-419 (-574) |#1|)) (T -778)) +((-2232 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1260 *3)) (-5 *2 (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4)))) (-4367 (*1 *2) (-12 (-4 *3 (-1260 (-574))) (-5 *2 (-2 (|:| -2391 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3)))) (-2394 (*1 *2) (-12 (-4 *3 (-1260 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 *2 *3))))) +(-10 -7 (-15 -2394 ((-574))) (-15 -4367 ((-2 (|:| -2391 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -2232 ((-2 (|:| -2391 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)))) +((-2864 (((-112) $ $) NIL)) (-2214 (((-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 20) (($ (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-779) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2951 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2951 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2214 ((-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -779)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779))))) +(-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2951 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2951 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2214 ((-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) +((-3056 (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|))) 18) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193))) 17)) (-3987 (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|))) 20) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193))) 19))) +(((-780 |#1|) (-10 -7 (-15 -3056 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -3056 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|))))) (-566)) (T -780)) +((-3987 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-780 *4)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-780 *5)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-780 *4)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-780 *5))))) +(-10 -7 (-15 -3056 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -3056 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-1968 (($ $ $) 10)) (-2600 (((-3 $ "failed") $ $) 15)) (-3933 (($ $ (-574)) 11)) (-3250 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($ $) NIL)) (-2813 (($ $ $) NIL)) (-4226 (((-112) $) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2887 (($ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 6 T CONST)) (-2153 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ $ $) NIL))) +(((-781) (-13 (-803) (-736) (-10 -8 (-15 -2813 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -2887 ($ $ $)) (-15 -2969 ((-2 (|:| -3901 $) (|:| -1880 $)) $ $)) (-15 -2853 ((-3 $ "failed") $ $)) (-15 -3933 ($ $ (-574))) (-15 -2835 ($ $)) (-6 (-4461 "*"))))) (T -781)) +((-2813 (*1 *1 *1 *1) (-5 *1 (-781))) (-2800 (*1 *1 *1 *1) (-5 *1 (-781))) (-2887 (*1 *1 *1 *1) (-5 *1 (-781))) (-2969 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3901 (-781)) (|:| -1880 (-781)))) (-5 *1 (-781)))) (-2853 (*1 *1 *1 *1) (|partial| -5 *1 (-781))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781)))) (-2835 (*1 *1 *1) (-5 *1 (-781)))) +(-13 (-803) (-736) (-10 -8 (-15 -2813 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -2887 ($ $ $)) (-15 -2969 ((-2 (|:| -3901 $) (|:| -1880 $)) $ $)) (-15 -2853 ((-3 $ "failed") $ $)) (-15 -3933 ($ $ (-574))) (-15 -2835 ($ $)) (-6 (-4461 "*")))) ((|Integer|) (|%ige| |#1| 0)) -((-2514 (((-3 |#2| "failed") |#2| |#2| (-115) (-1192)) 37))) -(((-782 |#1| |#2|) (-10 -7 (-15 -2514 ((-3 |#2| "failed") |#2| |#2| (-115) (-1192)))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1218) (-972))) (T -782)) -((-2514 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1218) (-972)))))) -(-10 -7 (-15 -2514 ((-3 |#2| "failed") |#2| |#2| (-115) (-1192)))) -((-2950 (((-784) |#1|) 8))) -(((-783 |#1|) (-10 -7 (-15 -2950 ((-784) |#1|))) (-1233)) (T -783)) -((-2950 (*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1233))))) -(-10 -7 (-15 -2950 ((-784) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 7)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9))) -(((-784) (-1115)) (T -784)) -NIL -(-1115) -((-1386 ((|#2| |#4|) 35))) -(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1386 (|#2| |#4|))) (-462) (-1259 |#1|) (-734 |#1| |#2|) (-1259 |#3|)) (T -785)) -((-1386 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1259 *5))))) -(-10 -7 (-15 -1386 (|#2| |#4|))) -((-3911 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1728 (((-1288) (-1174) (-1174) |#4| |#5|) 33)) (-3031 ((|#4| |#4| |#5|) 74)) (-1427 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#5|) 79)) (-3491 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|) 16))) -(((-786 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3911 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3031 (|#4| |#4| |#5|)) (-15 -1427 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#5|)) (-15 -1728 ((-1288) (-1174) (-1174) |#4| |#5|)) (-15 -3491 ((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -786)) -((-3491 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-1728 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1174)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *4 (-1080 *6 *7 *8)) (-5 *2 (-1288)) (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1086 *6 *7 *8 *4)))) (-1427 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3031 (*1 *2 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *2 (-1080 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3)) (-4 *3 (-1086 *4 *5 *6 *2)))) (-3911 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(-10 -7 (-15 -3911 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3031 (|#4| |#4| |#5|)) (-15 -1427 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#5|)) (-15 -1728 ((-1288) (-1174) (-1174) |#4| |#5|)) (-15 -3491 ((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|))) -((-1705 (((-3 (-1188 (-1188 |#1|)) "failed") |#4|) 51)) (-1458 (((-654 |#4|) |#4|) 22)) (-2893 ((|#4| |#4|) 17))) -(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1458 ((-654 |#4|) |#4|)) (-15 -1705 ((-3 (-1188 (-1188 |#1|)) "failed") |#4|)) (-15 -2893 (|#4| |#4|))) (-358) (-337 |#1|) (-1259 |#2|) (-1259 |#3|) (-934)) (T -787)) -((-2893 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1259 *4)) (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1259 *5)) (-14 *6 (-934)))) (-1705 (*1 *2 *3) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1259 *5)) (-5 *2 (-1188 (-1188 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1259 *6)) (-14 *7 (-934)))) (-1458 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1259 *5)) (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1259 *6)) (-14 *7 (-934))))) -(-10 -7 (-15 -1458 ((-654 |#4|) |#4|)) (-15 -1705 ((-3 (-1188 (-1188 |#1|)) "failed") |#4|)) (-15 -2893 (|#4| |#4|))) -((-2009 (((-2 (|:| |deter| (-654 (-1188 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -2735 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1188 |#5|) (-654 |#1|) (-654 |#5|)) 72)) (-1888 (((-654 (-781)) |#1|) 20))) -(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2009 ((-2 (|:| |deter| (-654 (-1188 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -2735 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1188 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -1888 ((-654 (-781)) |#1|))) (-1259 |#4|) (-803) (-860) (-315) (-962 |#4| |#2| |#3|)) (T -788)) -((-1888 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7)) (-4 *3 (-1259 *6)) (-4 *7 (-962 *6 *4 *5)))) (-2009 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1259 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315)) (-4 *10 (-962 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-654 (-1188 *10))) (|:| |dterm| (-654 (-654 (-2 (|:| -2735 (-781)) (|:| |pcoef| *10))))) (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10)))) (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1188 *10)) (-5 *4 (-654 *6)) (-5 *5 (-654 *10))))) -(-10 -7 (-15 -2009 ((-2 (|:| |deter| (-654 (-1188 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -2735 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1188 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -1888 ((-654 (-781)) |#1|))) -((-3453 (((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|) 31)) (-3479 (((-654 |#1|) (-699 (-417 (-574))) |#1|) 21)) (-1539 (((-965 (-417 (-574))) (-699 (-417 (-574))) (-1192)) 18) (((-965 (-417 (-574))) (-699 (-417 (-574)))) 17))) -(((-789 |#1|) (-10 -7 (-15 -1539 ((-965 (-417 (-574))) (-699 (-417 (-574))))) (-15 -1539 ((-965 (-417 (-574))) (-699 (-417 (-574))) (-1192))) (-15 -3479 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -3453 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|))) (-13 (-372) (-858))) (T -789)) -((-3453 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 (-2 (|:| |outval| *4) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *4)))))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1192)) (-5 *2 (-965 (-417 (-574)))) (-5 *1 (-789 *5)) (-4 *5 (-13 (-372) (-858))))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-965 (-417 (-574)))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858)))))) -(-10 -7 (-15 -1539 ((-965 (-417 (-574))) (-699 (-417 (-574))))) (-15 -1539 ((-965 (-417 (-574))) (-699 (-417 (-574))) (-1192))) (-15 -3479 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -3453 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 36)) (-4349 (((-654 |#2|) $) NIL)) (-4171 (((-1188 $) $ |#2|) NIL) (((-1188 |#1|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 |#2|)) NIL)) (-1979 (($ $) 30)) (-3801 (((-112) $ $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-2891 (($ $ $) 110 (|has| |#1| (-566)))) (-1896 (((-654 $) $ $) 123 (|has| |#1| (-566)))) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3296 (($ $) NIL (|has| |#1| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-965 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192))))) (((-3 $ "failed") (-965 (-574))) NIL (-2832 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1192))) (-2085 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192)))))) (((-3 $ "failed") (-965 |#1|)) NIL (-2832 (-12 (|has| |#2| (-624 (-1192))) (-2085 (|has| |#1| (-38 (-417 (-574))))) (-2085 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1192))) (-2085 (|has| |#1| (-38 (-417 (-574))))) (-2085 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192))) (-2085 (|has| |#1| (-1007 (-574))))))) (((-3 (-1140 |#1| |#2|) "failed") $) 21)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) ((|#2| $) NIL) (($ (-965 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192))))) (($ (-965 (-574))) NIL (-2832 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1192))) (-2085 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192)))))) (($ (-965 |#1|)) NIL (-2832 (-12 (|has| |#2| (-624 (-1192))) (-2085 (|has| |#1| (-38 (-417 (-574))))) (-2085 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1192))) (-2085 (|has| |#1| (-38 (-417 (-574))))) (-2085 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192))) (-2085 (|has| |#1| (-1007 (-574))))))) (((-1140 |#1| |#2|) $) NIL)) (-3496 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-566)))) (-1401 (($ $) NIL) (($ $ |#2|) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-3369 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-4385 (((-112) $) NIL)) (-3960 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 81)) (-3323 (($ $) 136 (|has| |#1| (-462)))) (-1509 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#1| (-922)))) (-3724 (($ $) NIL (|has| |#1| (-566)))) (-1565 (($ $) NIL (|has| |#1| (-566)))) (-3755 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-4058 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-4389 (($ $ |#1| (-541 |#2|) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3372 (((-112) $) 57)) (-3241 (((-781) $) NIL)) (-3762 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-4193 (($ $ $ $ $) 107 (|has| |#1| (-566)))) (-2968 ((|#2| $) 22)) (-4338 (($ (-1188 |#1|) |#2|) NIL) (($ (-1188 $) |#2|) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 38) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2579 (($ $ $) 63)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ |#2|) NIL)) (-4186 (((-112) $) NIL)) (-1503 (((-541 |#2|) $) NIL) (((-781) $ |#2|) NIL) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-3417 (((-781) $) 23)) (-3558 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-1803 (((-3 |#2| "failed") $) NIL)) (-3072 (($ $) NIL (|has| |#1| (-462)))) (-1750 (($ $) NIL (|has| |#1| (-462)))) (-2671 (((-654 $) $) NIL)) (-4130 (($ $) 39)) (-3466 (($ $) NIL (|has| |#1| (-462)))) (-4306 (((-654 $) $) 43)) (-2528 (($ $) 41)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3541 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4301 (-781))) $ $) 96)) (-3887 (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -4415 $) (|:| -1484 $)) $ $) 78) (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -4415 $) (|:| -1484 $)) $ $ |#2|) NIL)) (-2821 (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -1484 $)) $ $) NIL) (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -1484 $)) $ $ |#2|) NIL)) (-3214 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-4097 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3945 (((-1174) $) NIL)) (-2971 (($ $ $) 125 (|has| |#1| (-566)))) (-2253 (((-654 $) $) 32)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| |#2|) (|:| -2017 (-781))) "failed") $) NIL)) (-2397 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-1576 (($ $ $) NIL)) (-3791 (($ $) 24)) (-2326 (((-112) $ $) NIL)) (-1548 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-3503 (($ $ $) NIL)) (-3391 (($ $) 26)) (-3939 (((-1135) $) NIL)) (-4194 (((-2 (|:| -2886 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-566)))) (-3286 (((-2 (|:| -2886 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-566)))) (-1342 (((-112) $) 56)) (-1354 ((|#1| $) 58)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 ((|#1| |#1| $) 133 (|has| |#1| (-462))) (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-1545 (((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-566)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-566)))) (-2564 (($ $ |#1|) 129 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-3431 (($ $ |#1|) 128 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-654 |#2|) (-654 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-654 |#2|) (-654 $)) NIL)) (-1738 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3878 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3584 (((-541 |#2|) $) NIL) (((-781) $ |#2|) 45) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-1538 (($ $) NIL)) (-1691 (($ $) 35)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546))))) (($ (-965 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192))))) (($ (-965 (-574))) NIL (-2832 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1192))) (-2085 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192)))))) (($ (-965 |#1|)) NIL (|has| |#2| (-624 (-1192)))) (((-1174) $) NIL (-12 (|has| |#1| (-1053 (-574))) (|has| |#2| (-624 (-1192))))) (((-965 |#1|) $) NIL (|has| |#2| (-624 (-1192))))) (-3631 ((|#1| $) 132 (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-965 |#1|) $) NIL (|has| |#2| (-624 (-1192)))) (((-1140 |#1| |#2|) $) 18) (($ (-1140 |#1| |#2|)) 19) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) 47) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2142 (($) 13 T CONST)) (-2622 (((-3 (-112) "failed") $ $) NIL)) (-2154 (($) 37 T CONST)) (-3449 (($ $ $ $ (-781)) 105 (|has| |#1| (-566)))) (-1796 (($ $ $ (-781)) 104 (|has| |#1| (-566)))) (-3583 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) 75)) (-3074 (($ $ $) 85)) (** (($ $ (-934)) NIL) (($ $ (-781)) 70)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 62) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-790 |#1| |#2|) (-13 (-1080 |#1| (-541 |#2|) |#2|) (-623 (-1140 |#1| |#2|)) (-1053 (-1140 |#1| |#2|))) (-1064) (-860)) (T -790)) -NIL -(-13 (-1080 |#1| (-541 |#2|) |#2|) (-623 (-1140 |#1| |#2|)) (-1053 (-1140 |#1| |#2|))) -((-1786 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 13))) -(((-791 |#1| |#2|) (-10 -7 (-15 -1786 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1064) (-1064)) (T -791)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))) -(-10 -7 (-15 -1786 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 12)) (-1420 (((-1283 |#1|) $ (-781)) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-3473 (($ (-1188 |#1|)) NIL)) (-4171 (((-1188 $) $ (-1097)) NIL) (((-1188 |#1|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 (-1097))) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3760 (((-654 $) $ $) 54 (|has| |#1| (-566)))) (-2891 (($ $ $) 50 (|has| |#1| (-566)))) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3296 (($ $) NIL (|has| |#1| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-3186 (($ $ (-781)) NIL)) (-2939 (($ $ (-781)) NIL)) (-1720 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-1097) "failed") $) NIL) (((-3 (-1188 |#1|) "failed") $) 10)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-1097) $) NIL) (((-1188 |#1|) $) NIL)) (-3496 (($ $ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-1490 (($ $ $) NIL)) (-2816 (($ $ $) 87 (|has| |#1| (-566)))) (-3960 (((-2 (|:| -1867 |#1|) (|:| -4415 $) (|:| -1484 $)) $ $) 86 (|has| |#1| (-566)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1509 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#1| (-922)))) (-4389 (($ $ |#1| (-781) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1097) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1097) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2725 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-1167)))) (-4338 (($ (-1188 |#1|) (-1097)) NIL) (($ (-1188 $) (-1097)) NIL)) (-2057 (($ $ (-781)) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-2579 (($ $ $) 27)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-1097)) NIL) (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-1503 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-3558 (($ (-1 (-781) (-781)) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3707 (((-1188 |#1|) $) NIL)) (-1803 (((-3 (-1097) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3541 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4301 (-781))) $ $) 37)) (-2445 (($ $ $) 41)) (-1586 (($ $ $) 47)) (-3887 (((-2 (|:| -1867 |#1|) (|:| |gap| (-781)) (|:| -4415 $) (|:| -1484 $)) $ $) 46)) (-3945 (((-1174) $) NIL)) (-2971 (($ $ $) 56 (|has| |#1| (-566)))) (-1466 (((-2 (|:| -4415 $) (|:| -1484 $)) $ (-781)) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| (-1097)) (|:| -2017 (-781))) "failed") $) NIL)) (-1578 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#1| (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-4194 (((-2 (|:| -2886 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-566)))) (-3286 (((-2 (|:| -2886 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-566)))) (-3673 (((-2 (|:| -3496 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-566)))) (-2483 (((-2 (|:| -3496 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-566)))) (-1342 (((-112) $) 13)) (-1354 ((|#1| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1687 (($ $ (-781) |#1| $) 26)) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-1545 (((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-566)))) (-3123 (((-2 (|:| -3496 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-566)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1097) |#1|) NIL) (($ $ (-654 (-1097)) (-654 |#1|)) NIL) (($ $ (-1097) $) NIL) (($ $ (-654 (-1097)) (-654 $)) NIL)) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-2208 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-2595 (((-3 $ "failed") $ (-781)) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-1738 (($ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3878 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3584 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1097) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3631 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2228 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1097)) NIL) (((-1188 |#1|) $) 7) (($ (-1188 |#1|)) 8) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-781)) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2142 (($) 28 T CONST)) (-2154 (($) 32 T CONST)) (-3583 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) 40) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-792 |#1|) (-13 (-1259 |#1|) (-623 (-1188 |#1|)) (-1053 (-1188 |#1|)) (-10 -8 (-15 -1687 ($ $ (-781) |#1| $)) (-15 -2579 ($ $ $)) (-15 -3541 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4301 (-781))) $ $)) (-15 -2445 ($ $ $)) (-15 -3887 ((-2 (|:| -1867 |#1|) (|:| |gap| (-781)) (|:| -4415 $) (|:| -1484 $)) $ $)) (-15 -1586 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -3760 ((-654 $) $ $)) (-15 -2971 ($ $ $)) (-15 -1545 ((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3286 ((-2 (|:| -2886 $) (|:| |coef1| $)) $ $)) (-15 -4194 ((-2 (|:| -2886 $) (|:| |coef2| $)) $ $)) (-15 -3123 ((-2 (|:| -3496 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2483 ((-2 (|:| -3496 |#1|) (|:| |coef1| $)) $ $)) (-15 -3673 ((-2 (|:| -3496 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1064)) (T -792)) -((-1687 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1064)))) (-2579 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064)))) (-3541 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -4301 (-781)))) (-5 *1 (-792 *3)) (-4 *3 (-1064)))) (-2445 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064)))) (-3887 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1867 *3) (|:| |gap| (-781)) (|:| -4415 (-792 *3)) (|:| -1484 (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-1064)))) (-1586 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064)))) (-3760 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-2971 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1064)))) (-1545 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2886 (-792 *3)) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-3286 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2886 (-792 *3)) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-4194 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2886 (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-3123 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3496 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-2483 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3496 *3) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-3673 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3496 *3) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064))))) -(-13 (-1259 |#1|) (-623 (-1188 |#1|)) (-1053 (-1188 |#1|)) (-10 -8 (-15 -1687 ($ $ (-781) |#1| $)) (-15 -2579 ($ $ $)) (-15 -3541 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4301 (-781))) $ $)) (-15 -2445 ($ $ $)) (-15 -3887 ((-2 (|:| -1867 |#1|) (|:| |gap| (-781)) (|:| -4415 $) (|:| -1484 $)) $ $)) (-15 -1586 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -3760 ((-654 $) $ $)) (-15 -2971 ($ $ $)) (-15 -1545 ((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3286 ((-2 (|:| -2886 $) (|:| |coef1| $)) $ $)) (-15 -4194 ((-2 (|:| -2886 $) (|:| |coef2| $)) $ $)) (-15 -3123 ((-2 (|:| -3496 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2483 ((-2 (|:| -3496 |#1|) (|:| |coef1| $)) $ $)) (-15 -3673 ((-2 (|:| -3496 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-4291 ((|#1| (-781) |#1|) 33 (|has| |#1| (-38 (-417 (-574)))))) (-2594 ((|#1| (-781) |#1|) 23)) (-2477 ((|#1| (-781) |#1|) 35 (|has| |#1| (-38 (-417 (-574))))))) -(((-793 |#1|) (-10 -7 (-15 -2594 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2477 (|#1| (-781) |#1|)) (-15 -4291 (|#1| (-781) |#1|))) |%noBranch|)) (-174)) (T -793)) -((-4291 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-2477 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-2594 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -2594 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2477 (|#1| (-781) |#1|)) (-15 -4291 (|#1| (-781) |#1|))) |%noBranch|)) -((-2863 (((-112) $ $) 7)) (-4205 (((-654 (-2 (|:| -1389 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) 86)) (-1721 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4349 (((-654 |#3|) $) 34)) (-3278 (((-112) $) 27)) (-3814 (((-112) $) 18 (|has| |#1| (-566)))) (-3522 (((-112) |#4| $) 102) (((-112) $) 98)) (-3885 ((|#4| |#4| $) 93)) (-3296 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| $) 127)) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#3|) 28)) (-2818 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 80)) (-3831 (($) 46 T CONST)) (-4241 (((-112) $) 23 (|has| |#1| (-566)))) (-3297 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2860 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2450 (((-112) $) 26 (|has| |#1| (-566)))) (-3665 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4010 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1438 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2934 (((-3 $ "failed") $) 83)) (-1685 ((|#4| |#4| $) 90)) (-2560 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3369 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4037 ((|#4| |#4| $) 88)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1426 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) 106)) (-2667 (((-112) |#4| $) 137)) (-2797 (((-112) |#4| $) 134)) (-1566 (((-112) |#4| $) 138) (((-112) $) 135)) (-1873 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-3762 (((-112) |#4| $) 105) (((-112) $) 104)) (-2968 ((|#3| $) 35)) (-2224 (((-112) $ (-781)) 44)) (-2247 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) 48)) (-2740 (((-654 |#3|) $) 33)) (-2080 (((-112) |#3| $) 32)) (-3625 (((-112) $ (-781)) 43)) (-3945 (((-1174) $) 10)) (-4258 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2971 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| |#4| $) 128)) (-3333 (((-3 |#4| "failed") $) 84)) (-2133 (((-654 $) |#4| $) 130)) (-1537 (((-3 (-112) (-654 $)) |#4| $) 133)) (-1884 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1454 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3750 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-3981 (((-654 |#4|) $) 108)) (-2397 (((-112) |#4| $) 100) (((-112) $) 96)) (-1576 ((|#4| |#4| $) 91)) (-2326 (((-112) $ $) 111)) (-3081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1548 (((-112) |#4| $) 101) (((-112) $) 97)) (-3503 ((|#4| |#4| $) 92)) (-3939 (((-1135) $) 11)) (-2924 (((-3 |#4| "failed") $) 85)) (-2294 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2200 (((-3 $ "failed") $ |#4|) 79)) (-2115 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-2000 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) 39)) (-2880 (((-112) $) 42)) (-2833 (($) 41)) (-3584 (((-781) $) 107)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1845 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-1689 (($ $ |#3|) 29)) (-2639 (($ $ |#3|) 31)) (-4330 (($ $) 89)) (-3386 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2706 (((-781) $) 77 (|has| |#3| (-377)))) (-3838 (((-112) $ $) 9)) (-2270 (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1587 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2536 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-1437 (((-654 |#3|) $) 82)) (-1651 (((-112) |#4| $) 136)) (-1469 (((-112) |#3| $) 81)) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) -(((-794 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -794)) -NIL -(-13 (-1086 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-991 |#1| |#2| |#3| |#4|) . T) ((-1086 |#1| |#2| |#3| |#4|) . T) ((-1115) . T) ((-1226 |#1| |#2| |#3| |#4|) . T) ((-1233) . T)) -((-3988 (((-3 (-388) "failed") (-324 |#1|) (-934)) 62 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-324 |#1|)) 54 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-417 (-965 |#1|)) (-934)) 41 (|has| |#1| (-566))) (((-3 (-388) "failed") (-417 (-965 |#1|))) 40 (|has| |#1| (-566))) (((-3 (-388) "failed") (-965 |#1|) (-934)) 31 (|has| |#1| (-1064))) (((-3 (-388) "failed") (-965 |#1|)) 30 (|has| |#1| (-1064)))) (-3084 (((-388) (-324 |#1|) (-934)) 99 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-324 |#1|)) 94 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-417 (-965 |#1|)) (-934)) 91 (|has| |#1| (-566))) (((-388) (-417 (-965 |#1|))) 90 (|has| |#1| (-566))) (((-388) (-965 |#1|) (-934)) 86 (|has| |#1| (-1064))) (((-388) (-965 |#1|)) 85 (|has| |#1| (-1064))) (((-388) |#1| (-934)) 76) (((-388) |#1|) 22)) (-4078 (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-934)) 71 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|))) 70 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|) (-934)) 63 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|)) 61 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|))) (-934)) 46 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|)))) 45 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-965 |#1|)) (-934)) 39 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-965 |#1|))) 38 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-965 |#1|) (-934)) 28 (|has| |#1| (-1064))) (((-3 (-171 (-388)) "failed") (-965 |#1|)) 26 (|has| |#1| (-1064))) (((-3 (-171 (-388)) "failed") (-965 (-171 |#1|)) (-934)) 18 (|has| |#1| (-174))) (((-3 (-171 (-388)) "failed") (-965 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4117 (((-171 (-388)) (-324 (-171 |#1|)) (-934)) 102 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 (-171 |#1|))) 101 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|) (-934)) 100 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|)) 98 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-417 (-965 (-171 |#1|))) (-934)) 93 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-965 (-171 |#1|)))) 92 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-965 |#1|)) (-934)) 89 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-965 |#1|))) 88 (|has| |#1| (-566))) (((-171 (-388)) (-965 |#1|) (-934)) 84 (|has| |#1| (-1064))) (((-171 (-388)) (-965 |#1|)) 83 (|has| |#1| (-1064))) (((-171 (-388)) (-965 (-171 |#1|)) (-934)) 78 (|has| |#1| (-174))) (((-171 (-388)) (-965 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|) (-934)) 80 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-388)) |#1| (-934)) 27) (((-171 (-388)) |#1|) 25))) -(((-795 |#1|) (-10 -7 (-15 -3084 ((-388) |#1|)) (-15 -3084 ((-388) |#1| (-934))) (-15 -4117 ((-171 (-388)) |#1|)) (-15 -4117 ((-171 (-388)) |#1| (-934))) (IF (|has| |#1| (-174)) (PROGN (-15 -4117 ((-171 (-388)) (-171 |#1|))) (-15 -4117 ((-171 (-388)) (-171 |#1|) (-934))) (-15 -4117 ((-171 (-388)) (-965 (-171 |#1|)))) (-15 -4117 ((-171 (-388)) (-965 (-171 |#1|)) (-934)))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-15 -3084 ((-388) (-965 |#1|))) (-15 -3084 ((-388) (-965 |#1|) (-934))) (-15 -4117 ((-171 (-388)) (-965 |#1|))) (-15 -4117 ((-171 (-388)) (-965 |#1|) (-934)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3084 ((-388) (-417 (-965 |#1|)))) (-15 -3084 ((-388) (-417 (-965 |#1|)) (-934))) (-15 -4117 ((-171 (-388)) (-417 (-965 |#1|)))) (-15 -4117 ((-171 (-388)) (-417 (-965 |#1|)) (-934))) (-15 -4117 ((-171 (-388)) (-417 (-965 (-171 |#1|))))) (-15 -4117 ((-171 (-388)) (-417 (-965 (-171 |#1|))) (-934))) (IF (|has| |#1| (-860)) (PROGN (-15 -3084 ((-388) (-324 |#1|))) (-15 -3084 ((-388) (-324 |#1|) (-934))) (-15 -4117 ((-171 (-388)) (-324 |#1|))) (-15 -4117 ((-171 (-388)) (-324 |#1|) (-934))) (-15 -4117 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4117 ((-171 (-388)) (-324 (-171 |#1|)) (-934)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -4078 ((-3 (-171 (-388)) "failed") (-965 (-171 |#1|)))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-965 (-171 |#1|)) (-934)))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-15 -3988 ((-3 (-388) "failed") (-965 |#1|))) (-15 -3988 ((-3 (-388) "failed") (-965 |#1|) (-934))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-965 |#1|))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-965 |#1|) (-934)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3988 ((-3 (-388) "failed") (-417 (-965 |#1|)))) (-15 -3988 ((-3 (-388) "failed") (-417 (-965 |#1|)) (-934))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-417 (-965 |#1|)))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-417 (-965 |#1|)) (-934))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|))))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|))) (-934))) (IF (|has| |#1| (-860)) (PROGN (-15 -3988 ((-3 (-388) "failed") (-324 |#1|))) (-15 -3988 ((-3 (-388) "failed") (-324 |#1|) (-934))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-934))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-934)))) |%noBranch|)) |%noBranch|)) (-624 (-388))) (T -795)) -((-4078 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4078 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4078 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4078 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3988 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3988 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4078 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-965 (-171 *5)))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4078 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-965 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4078 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4078 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3988 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3988 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4078 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4078 (*1 *2 *3) (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3988 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3988 (*1 *2 *3) (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4078 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4078 (*1 *2 *3) (|partial| -12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 (-171 *5)))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-934)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-4117 (*1 *2 *3) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))) (-3084 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2))))) -(-10 -7 (-15 -3084 ((-388) |#1|)) (-15 -3084 ((-388) |#1| (-934))) (-15 -4117 ((-171 (-388)) |#1|)) (-15 -4117 ((-171 (-388)) |#1| (-934))) (IF (|has| |#1| (-174)) (PROGN (-15 -4117 ((-171 (-388)) (-171 |#1|))) (-15 -4117 ((-171 (-388)) (-171 |#1|) (-934))) (-15 -4117 ((-171 (-388)) (-965 (-171 |#1|)))) (-15 -4117 ((-171 (-388)) (-965 (-171 |#1|)) (-934)))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-15 -3084 ((-388) (-965 |#1|))) (-15 -3084 ((-388) (-965 |#1|) (-934))) (-15 -4117 ((-171 (-388)) (-965 |#1|))) (-15 -4117 ((-171 (-388)) (-965 |#1|) (-934)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3084 ((-388) (-417 (-965 |#1|)))) (-15 -3084 ((-388) (-417 (-965 |#1|)) (-934))) (-15 -4117 ((-171 (-388)) (-417 (-965 |#1|)))) (-15 -4117 ((-171 (-388)) (-417 (-965 |#1|)) (-934))) (-15 -4117 ((-171 (-388)) (-417 (-965 (-171 |#1|))))) (-15 -4117 ((-171 (-388)) (-417 (-965 (-171 |#1|))) (-934))) (IF (|has| |#1| (-860)) (PROGN (-15 -3084 ((-388) (-324 |#1|))) (-15 -3084 ((-388) (-324 |#1|) (-934))) (-15 -4117 ((-171 (-388)) (-324 |#1|))) (-15 -4117 ((-171 (-388)) (-324 |#1|) (-934))) (-15 -4117 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4117 ((-171 (-388)) (-324 (-171 |#1|)) (-934)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -4078 ((-3 (-171 (-388)) "failed") (-965 (-171 |#1|)))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-965 (-171 |#1|)) (-934)))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-15 -3988 ((-3 (-388) "failed") (-965 |#1|))) (-15 -3988 ((-3 (-388) "failed") (-965 |#1|) (-934))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-965 |#1|))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-965 |#1|) (-934)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3988 ((-3 (-388) "failed") (-417 (-965 |#1|)))) (-15 -3988 ((-3 (-388) "failed") (-417 (-965 |#1|)) (-934))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-417 (-965 |#1|)))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-417 (-965 |#1|)) (-934))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|))))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|))) (-934))) (IF (|has| |#1| (-860)) (PROGN (-15 -3988 ((-3 (-388) "failed") (-324 |#1|))) (-15 -3988 ((-3 (-388) "failed") (-324 |#1|) (-934))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-934))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -4078 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-934)))) |%noBranch|)) |%noBranch|)) -((-2730 (((-934) (-1174)) 89)) (-1467 (((-3 (-388) "failed") (-1174)) 36)) (-3054 (((-388) (-1174)) 34)) (-2123 (((-934) (-1174)) 63)) (-2508 (((-1174) (-934)) 73)) (-1440 (((-1174) (-934)) 62))) -(((-796) (-10 -7 (-15 -1440 ((-1174) (-934))) (-15 -2123 ((-934) (-1174))) (-15 -2508 ((-1174) (-934))) (-15 -2730 ((-934) (-1174))) (-15 -3054 ((-388) (-1174))) (-15 -1467 ((-3 (-388) "failed") (-1174))))) (T -796)) -((-1467 (*1 *2 *3) (|partial| -12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-796)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-796)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-934)) (-5 *1 (-796)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1174)) (-5 *1 (-796)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-934)) (-5 *1 (-796)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1174)) (-5 *1 (-796))))) -(-10 -7 (-15 -1440 ((-1174) (-934))) (-15 -2123 ((-934) (-1174))) (-15 -2508 ((-1174) (-934))) (-15 -2730 ((-934) (-1174))) (-15 -3054 ((-388) (-1174))) (-15 -1467 ((-3 (-388) "failed") (-1174)))) -((-2863 (((-112) $ $) 7)) (-3610 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 16) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 14)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +((-3987 (((-3 |#2| "failed") |#2| |#2| (-115) (-1193)) 37))) +(((-782 |#1| |#2|) (-10 -7 (-15 -3987 ((-3 |#2| "failed") |#2| |#2| (-115) (-1193)))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1219) (-973))) (T -782)) +((-3987 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1219) (-973)))))) +(-10 -7 (-15 -3987 ((-3 |#2| "failed") |#2| |#2| (-115) (-1193)))) +((-2951 (((-784) |#1|) 8))) +(((-783 |#1|) (-10 -7 (-15 -2951 ((-784) |#1|))) (-1234)) (T -783)) +((-2951 (*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1234))))) +(-10 -7 (-15 -2951 ((-784) |#1|))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 7)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9))) +(((-784) (-1116)) (T -784)) +NIL +(-1116) +((-1681 ((|#2| |#4|) 35))) +(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1681 (|#2| |#4|))) (-462) (-1260 |#1|) (-734 |#1| |#2|) (-1260 |#3|)) (T -785)) +((-1681 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1260 *5))))) +(-10 -7 (-15 -1681 (|#2| |#4|))) +((-4322 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2537 (((-1289) (-1175) (-1175) |#4| |#5|) 33)) (-1528 ((|#4| |#4| |#5|) 74)) (-1348 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|) 79)) (-3892 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|) 16))) +(((-786 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4322 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1528 (|#4| |#4| |#5|)) (-15 -1348 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -2537 ((-1289) (-1175) (-1175) |#4| |#5|)) (-15 -3892 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -786)) +((-3892 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2537 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1175)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *4 (-1081 *6 *7 *8)) (-5 *2 (-1289)) (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1087 *6 *7 *8 *4)))) (-1348 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1528 (*1 *2 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *2 (-1081 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3)) (-4 *3 (-1087 *4 *5 *6 *2)))) (-4322 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(-10 -7 (-15 -4322 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1528 (|#4| |#4| |#5|)) (-15 -1348 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -2537 ((-1289) (-1175) (-1175) |#4| |#5|)) (-15 -3892 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|))) +((-1704 (((-3 (-1189 (-1189 |#1|)) "failed") |#4|) 51)) (-1563 (((-654 |#4|) |#4|) 22)) (-2656 ((|#4| |#4|) 17))) +(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1563 ((-654 |#4|) |#4|)) (-15 -1704 ((-3 (-1189 (-1189 |#1|)) "failed") |#4|)) (-15 -2656 (|#4| |#4|))) (-358) (-337 |#1|) (-1260 |#2|) (-1260 |#3|) (-935)) (T -787)) +((-2656 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1260 *4)) (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1260 *5)) (-14 *6 (-935)))) (-1704 (*1 *2 *3) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1260 *5)) (-5 *2 (-1189 (-1189 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1260 *6)) (-14 *7 (-935)))) (-1563 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1260 *5)) (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1260 *6)) (-14 *7 (-935))))) +(-10 -7 (-15 -1563 ((-654 |#4|) |#4|)) (-15 -1704 ((-3 (-1189 (-1189 |#1|)) "failed") |#4|)) (-15 -2656 (|#4| |#4|))) +((-3633 (((-2 (|:| |deter| (-654 (-1189 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -3407 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1189 |#5|) (-654 |#1|) (-654 |#5|)) 72)) (-1793 (((-654 (-781)) |#1|) 20))) +(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3633 ((-2 (|:| |deter| (-654 (-1189 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -3407 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1189 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -1793 ((-654 (-781)) |#1|))) (-1260 |#4|) (-803) (-860) (-315) (-963 |#4| |#2| |#3|)) (T -788)) +((-1793 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7)) (-4 *3 (-1260 *6)) (-4 *7 (-963 *6 *4 *5)))) (-3633 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1260 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315)) (-4 *10 (-963 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-654 (-1189 *10))) (|:| |dterm| (-654 (-654 (-2 (|:| -3407 (-781)) (|:| |pcoef| *10))))) (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10)))) (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1189 *10)) (-5 *4 (-654 *6)) (-5 *5 (-654 *10))))) +(-10 -7 (-15 -3633 ((-2 (|:| |deter| (-654 (-1189 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -3407 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1189 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -1793 ((-654 (-781)) |#1|))) +((-1543 (((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|) 31)) (-1368 (((-654 |#1|) (-699 (-417 (-574))) |#1|) 21)) (-2648 (((-966 (-417 (-574))) (-699 (-417 (-574))) (-1193)) 18) (((-966 (-417 (-574))) (-699 (-417 (-574)))) 17))) +(((-789 |#1|) (-10 -7 (-15 -2648 ((-966 (-417 (-574))) (-699 (-417 (-574))))) (-15 -2648 ((-966 (-417 (-574))) (-699 (-417 (-574))) (-1193))) (-15 -1368 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -1543 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|))) (-13 (-372) (-858))) (T -789)) +((-1543 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 (-2 (|:| |outval| *4) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *4)))))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1193)) (-5 *2 (-966 (-417 (-574)))) (-5 *1 (-789 *5)) (-4 *5 (-13 (-372) (-858))))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-966 (-417 (-574)))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858)))))) +(-10 -7 (-15 -2648 ((-966 (-417 (-574))) (-699 (-417 (-574))))) (-15 -2648 ((-966 (-417 (-574))) (-699 (-417 (-574))) (-1193))) (-15 -1368 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -1543 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 36)) (-4350 (((-654 |#2|) $) NIL)) (-4173 (((-1189 $) $ |#2|) NIL) (((-1189 |#1|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 |#2|)) NIL)) (-1978 (($ $) 30)) (-1382 (((-112) $ $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3022 (($ $ $) 110 (|has| |#1| (-566)))) (-3130 (((-654 $) $ $) 123 (|has| |#1| (-566)))) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2991 (($ $) NIL (|has| |#1| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-966 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193))))) (((-3 $ "failed") (-966 (-574))) NIL (-2833 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193)))))) (((-3 $ "failed") (-966 |#1|)) NIL (-2833 (-12 (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-1008 (-574))))))) (((-3 (-1141 |#1| |#2|) "failed") $) 21)) (-2214 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) ((|#2| $) NIL) (($ (-966 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193))))) (($ (-966 (-574))) NIL (-2833 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193)))))) (($ (-966 |#1|)) NIL (-2833 (-12 (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-1008 (-574))))))) (((-1141 |#1| |#2|) $) NIL)) (-3319 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-566)))) (-1402 (($ $) NIL) (($ $ |#2|) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-1857 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2494 (((-112) $) NIL)) (-2861 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 81)) (-4352 (($ $) 136 (|has| |#1| (-462)))) (-3621 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#1| (-923)))) (-1741 (($ $) NIL (|has| |#1| (-566)))) (-1979 (($ $) NIL (|has| |#1| (-566)))) (-2038 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-2362 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1849 (($ $ |#1| (-541 |#2|) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-4226 (((-112) $) 57)) (-3023 (((-781) $) NIL)) (-3145 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-3293 (($ $ $ $ $) 107 (|has| |#1| (-566)))) (-4241 ((|#2| $) 22)) (-4339 (($ (-1189 |#1|) |#2|) NIL) (($ (-1189 $) |#2|) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 38) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3249 (($ $ $) 63)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ |#2|) NIL)) (-1759 (((-112) $) NIL)) (-3192 (((-541 |#2|) $) NIL) (((-781) $ |#2|) NIL) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-3476 (((-781) $) 23)) (-4303 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2284 (((-3 |#2| "failed") $) NIL)) (-1903 (($ $) NIL (|has| |#1| (-462)))) (-3845 (($ $) NIL (|has| |#1| (-462)))) (-4317 (((-654 $) $) NIL)) (-4439 (($ $) 39)) (-2518 (($ $) NIL (|has| |#1| (-462)))) (-2006 (((-654 $) $) 43)) (-2132 (($ $) 41)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1758 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2226 (-781))) $ $) 96)) (-3368 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3901 $) (|:| -1880 $)) $ $) 78) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3901 $) (|:| -1880 $)) $ $ |#2|) NIL)) (-1442 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -1880 $)) $ $) NIL) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -1880 $)) $ $ |#2|) NIL)) (-4409 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2746 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-1489 (((-1175) $) NIL)) (-2623 (($ $ $) 125 (|has| |#1| (-566)))) (-1883 (((-654 $) $) 32)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| |#2|) (|:| -3139 (-781))) "failed") $) NIL)) (-3749 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-2254 (($ $ $) NIL)) (-3791 (($ $) 24)) (-3877 (((-112) $ $) NIL)) (-2712 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-3173 (($ $ $) NIL)) (-2216 (($ $) 26)) (-3940 (((-1136) $) NIL)) (-2704 (((-2 (|:| -2887 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-566)))) (-1417 (((-2 (|:| -2887 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-566)))) (-1343 (((-112) $) 56)) (-1355 ((|#1| $) 58)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 ((|#1| |#1| $) 133 (|has| |#1| (-462))) (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-923)))) (-1902 (((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-566)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-566)))) (-1375 (($ $ |#1|) 129 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-2747 (($ $ |#1|) 128 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-654 |#2|) (-654 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-654 |#2|) (-654 $)) NIL)) (-2394 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) NIL)) (-3580 (((-541 |#2|) $) NIL) (((-781) $ |#2|) 45) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-4384 (($ $) NIL)) (-2184 (($ $) 35)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546))))) (($ (-966 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193))))) (($ (-966 (-574))) NIL (-2833 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193)))))) (($ (-966 |#1|)) NIL (|has| |#2| (-624 (-1193)))) (((-1175) $) NIL (-12 (|has| |#1| (-1054 (-574))) (|has| |#2| (-624 (-1193))))) (((-966 |#1|) $) NIL (|has| |#2| (-624 (-1193))))) (-2372 ((|#1| $) 132 (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-966 |#1|) $) NIL (|has| |#2| (-624 (-1193)))) (((-1141 |#1| |#2|) $) 18) (($ (-1141 |#1| |#2|)) 19) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) 47) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 13 T CONST)) (-1724 (((-3 (-112) "failed") $ $) NIL)) (-2153 (($) 37 T CONST)) (-4120 (($ $ $ $ (-781)) 105 (|has| |#1| (-566)))) (-2547 (($ $ $ (-781)) 104 (|has| |#1| (-566)))) (-3584 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) 75)) (-3074 (($ $ $) 85)) (** (($ $ (-935)) NIL) (($ $ (-781)) 70)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 62) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-790 |#1| |#2|) (-13 (-1081 |#1| (-541 |#2|) |#2|) (-623 (-1141 |#1| |#2|)) (-1054 (-1141 |#1| |#2|))) (-1065) (-860)) (T -790)) +NIL +(-13 (-1081 |#1| (-541 |#2|) |#2|) (-623 (-1141 |#1| |#2|)) (-1054 (-1141 |#1| |#2|))) +((-1785 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 13))) +(((-791 |#1| |#2|) (-10 -7 (-15 -1785 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1065) (-1065)) (T -791)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))) +(-10 -7 (-15 -1785 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 12)) (-3613 (((-1284 |#1|) $ (-781)) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-4298 (($ (-1189 |#1|)) NIL)) (-4173 (((-1189 $) $ (-1098)) NIL) (((-1189 |#1|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 (-1098))) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-1424 (((-654 $) $ $) 54 (|has| |#1| (-566)))) (-3022 (($ $ $) 50 (|has| |#1| (-566)))) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2991 (($ $) NIL (|has| |#1| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1751 (($ $ (-781)) NIL)) (-3805 (($ $ (-781)) NIL)) (-2017 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-1098) "failed") $) NIL) (((-3 (-1189 |#1|) "failed") $) 10)) (-2214 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-1098) $) NIL) (((-1189 |#1|) $) NIL)) (-3319 (($ $ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4347 (($ $ $) NIL)) (-3778 (($ $ $) 87 (|has| |#1| (-566)))) (-2861 (((-2 (|:| -1866 |#1|) (|:| -3901 $) (|:| -1880 $)) $ $) 86 (|has| |#1| (-566)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3621 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#1| (-923)))) (-1849 (($ $ |#1| (-781) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1098) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1098) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3547 (((-781) $ $) NIL (|has| |#1| (-566)))) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-1168)))) (-4339 (($ (-1189 |#1|) (-1098)) NIL) (($ (-1189 $) (-1098)) NIL)) (-3966 (($ $ (-781)) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-3249 (($ $ $) 27)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-1098)) NIL) (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3192 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-4303 (($ (-1 (-781) (-781)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2077 (((-1189 |#1|) $) NIL)) (-2284 (((-3 (-1098) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1758 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2226 (-781))) $ $) 37)) (-4161 (($ $ $) 41)) (-2249 (($ $ $) 47)) (-3368 (((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3901 $) (|:| -1880 $)) $ $) 46)) (-1489 (((-1175) $) NIL)) (-2623 (($ $ $) 56 (|has| |#1| (-566)))) (-3821 (((-2 (|:| -3901 $) (|:| -1880 $)) $ (-781)) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| (-1098)) (|:| -3139 (-781))) "failed") $) NIL)) (-3342 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#1| (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2704 (((-2 (|:| -2887 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-566)))) (-1417 (((-2 (|:| -2887 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-566)))) (-4245 (((-2 (|:| -3319 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-566)))) (-1965 (((-2 (|:| -3319 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-566)))) (-1343 (((-112) $) 13)) (-1355 ((|#1| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2997 (($ $ (-781) |#1| $) 26)) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-923)))) (-1902 (((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-566)))) (-2373 (((-2 (|:| -3319 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-566)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1098) |#1|) NIL) (($ $ (-654 (-1098)) (-654 |#1|)) NIL) (($ $ (-1098) $) NIL) (($ $ (-654 (-1098)) (-654 $)) NIL)) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-3224 (((-3 $ "failed") $ (-781)) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-2394 (($ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3580 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1098) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-2372 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-4374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1098)) NIL) (((-1189 |#1|) $) 7) (($ (-1189 |#1|)) 8) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-781)) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 28 T CONST)) (-2153 (($) 32 T CONST)) (-3584 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) 40) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-792 |#1|) (-13 (-1260 |#1|) (-623 (-1189 |#1|)) (-1054 (-1189 |#1|)) (-10 -8 (-15 -2997 ($ $ (-781) |#1| $)) (-15 -3249 ($ $ $)) (-15 -1758 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2226 (-781))) $ $)) (-15 -4161 ($ $ $)) (-15 -3368 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3901 $) (|:| -1880 $)) $ $)) (-15 -2249 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -1424 ((-654 $) $ $)) (-15 -2623 ($ $ $)) (-15 -1902 ((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1417 ((-2 (|:| -2887 $) (|:| |coef1| $)) $ $)) (-15 -2704 ((-2 (|:| -2887 $) (|:| |coef2| $)) $ $)) (-15 -2373 ((-2 (|:| -3319 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1965 ((-2 (|:| -3319 |#1|) (|:| |coef1| $)) $ $)) (-15 -4245 ((-2 (|:| -3319 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1065)) (T -792)) +((-2997 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1065)))) (-3249 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065)))) (-1758 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -2226 (-781)))) (-5 *1 (-792 *3)) (-4 *3 (-1065)))) (-4161 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065)))) (-3368 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1866 *3) (|:| |gap| (-781)) (|:| -3901 (-792 *3)) (|:| -1880 (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-1065)))) (-2249 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065)))) (-1424 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-2623 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1065)))) (-1902 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2887 (-792 *3)) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-1417 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2887 (-792 *3)) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-2704 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2887 (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-2373 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3319 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-1965 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3319 *3) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-4245 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3319 *3) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065))))) +(-13 (-1260 |#1|) (-623 (-1189 |#1|)) (-1054 (-1189 |#1|)) (-10 -8 (-15 -2997 ($ $ (-781) |#1| $)) (-15 -3249 ($ $ $)) (-15 -1758 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2226 (-781))) $ $)) (-15 -4161 ($ $ $)) (-15 -3368 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3901 $) (|:| -1880 $)) $ $)) (-15 -2249 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -1424 ((-654 $) $ $)) (-15 -2623 ($ $ $)) (-15 -1902 ((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1417 ((-2 (|:| -2887 $) (|:| |coef1| $)) $ $)) (-15 -2704 ((-2 (|:| -2887 $) (|:| |coef2| $)) $ $)) (-15 -2373 ((-2 (|:| -3319 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1965 ((-2 (|:| -3319 |#1|) (|:| |coef1| $)) $ $)) (-15 -4245 ((-2 (|:| -3319 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-3509 ((|#1| (-781) |#1|) 33 (|has| |#1| (-38 (-417 (-574)))))) (-1371 ((|#1| (-781) |#1|) 23)) (-2964 ((|#1| (-781) |#1|) 35 (|has| |#1| (-38 (-417 (-574))))))) +(((-793 |#1|) (-10 -7 (-15 -1371 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2964 (|#1| (-781) |#1|)) (-15 -3509 (|#1| (-781) |#1|))) |%noBranch|)) (-174)) (T -793)) +((-3509 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-2964 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-1371 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -1371 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2964 (|#1| (-781) |#1|)) (-15 -3509 (|#1| (-781) |#1|))) |%noBranch|)) +((-2864 (((-112) $ $) 7)) (-2298 (((-654 (-2 (|:| -1390 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) 86)) (-3656 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4350 (((-654 |#3|) $) 34)) (-1437 (((-112) $) 27)) (-2176 (((-112) $) 18 (|has| |#1| (-566)))) (-2972 (((-112) |#4| $) 102) (((-112) $) 98)) (-2104 ((|#4| |#4| $) 93)) (-2991 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 127)) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#3|) 28)) (-3146 (((-112) $ (-781)) 45)) (-2172 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 80)) (-3250 (($) 46 T CONST)) (-3721 (((-112) $) 23 (|has| |#1| (-566)))) (-3913 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2196 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3564 (((-112) $) 26 (|has| |#1| (-566)))) (-4434 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1855 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3406 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2214 (($ (-654 |#4|)) 36)) (-2935 (((-3 $ "failed") $) 83)) (-2660 ((|#4| |#4| $) 90)) (-2804 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-1857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3347 ((|#4| |#4| $) 88)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2830 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) 106)) (-1647 (((-112) |#4| $) 137)) (-4126 (((-112) |#4| $) 134)) (-3832 (((-112) |#4| $) 138) (((-112) $) 135)) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-3145 (((-112) |#4| $) 105) (((-112) $) 104)) (-4241 ((|#3| $) 35)) (-2189 (((-112) $ (-781)) 44)) (-2036 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2737 (((-654 |#3|) $) 33)) (-3161 (((-112) |#3| $) 32)) (-1653 (((-112) $ (-781)) 43)) (-1489 (((-1175) $) 10)) (-1900 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2623 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 128)) (-3334 (((-3 |#4| "failed") $) 84)) (-1976 (((-654 $) |#4| $) 130)) (-2659 (((-3 (-112) (-654 $)) |#4| $) 133)) (-3029 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3891 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3268 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-1957 (((-654 |#4|) $) 108)) (-3749 (((-112) |#4| $) 100) (((-112) $) 96)) (-2254 ((|#4| |#4| $) 91)) (-3877 (((-112) $ $) 111)) (-3581 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2712 (((-112) |#4| $) 101) (((-112) $) 97)) (-3173 ((|#4| |#4| $) 92)) (-3940 (((-1136) $) 11)) (-2925 (((-3 |#4| "failed") $) 85)) (-2183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4233 (((-3 $ "failed") $ |#4|) 79)) (-2433 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-3449 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) 39)) (-2754 (((-112) $) 42)) (-3336 (($) 41)) (-3580 (((-781) $) 107)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-1423 (($ $ |#3|) 29)) (-1671 (($ $ |#3|) 31)) (-2167 (($ $) 89)) (-2287 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2105 (((-781) $) 77 (|has| |#3| (-377)))) (-4069 (((-112) $ $) 9)) (-3917 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3912 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-3896 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2020 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-1642 (((-654 |#3|) $) 82)) (-2945 (((-112) |#4| $) 136)) (-3504 (((-112) |#3| $) 81)) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459))))) +(((-794 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -794)) +NIL +(-13 (-1087 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1087 |#1| |#2| |#3| |#4|) . T) ((-1116) . T) ((-1227 |#1| |#2| |#3| |#4|) . T) ((-1234) . T)) +((-2001 (((-3 (-388) "failed") (-324 |#1|) (-935)) 62 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-324 |#1|)) 54 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-417 (-966 |#1|)) (-935)) 41 (|has| |#1| (-566))) (((-3 (-388) "failed") (-417 (-966 |#1|))) 40 (|has| |#1| (-566))) (((-3 (-388) "failed") (-966 |#1|) (-935)) 31 (|has| |#1| (-1065))) (((-3 (-388) "failed") (-966 |#1|)) 30 (|has| |#1| (-1065)))) (-3085 (((-388) (-324 |#1|) (-935)) 99 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-324 |#1|)) 94 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-417 (-966 |#1|)) (-935)) 91 (|has| |#1| (-566))) (((-388) (-417 (-966 |#1|))) 90 (|has| |#1| (-566))) (((-388) (-966 |#1|) (-935)) 86 (|has| |#1| (-1065))) (((-388) (-966 |#1|)) 85 (|has| |#1| (-1065))) (((-388) |#1| (-935)) 76) (((-388) |#1|) 22)) (-3266 (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-935)) 71 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|))) 70 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|) (-935)) 63 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|)) 61 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|))) (-935)) 46 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|)))) 45 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-966 |#1|)) (-935)) 39 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-966 |#1|))) 38 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-966 |#1|) (-935)) 28 (|has| |#1| (-1065))) (((-3 (-171 (-388)) "failed") (-966 |#1|)) 26 (|has| |#1| (-1065))) (((-3 (-171 (-388)) "failed") (-966 (-171 |#1|)) (-935)) 18 (|has| |#1| (-174))) (((-3 (-171 (-388)) "failed") (-966 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4115 (((-171 (-388)) (-324 (-171 |#1|)) (-935)) 102 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 (-171 |#1|))) 101 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|) (-935)) 100 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|)) 98 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-417 (-966 (-171 |#1|))) (-935)) 93 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-966 (-171 |#1|)))) 92 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-966 |#1|)) (-935)) 89 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-966 |#1|))) 88 (|has| |#1| (-566))) (((-171 (-388)) (-966 |#1|) (-935)) 84 (|has| |#1| (-1065))) (((-171 (-388)) (-966 |#1|)) 83 (|has| |#1| (-1065))) (((-171 (-388)) (-966 (-171 |#1|)) (-935)) 78 (|has| |#1| (-174))) (((-171 (-388)) (-966 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|) (-935)) 80 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-388)) |#1| (-935)) 27) (((-171 (-388)) |#1|) 25))) +(((-795 |#1|) (-10 -7 (-15 -3085 ((-388) |#1|)) (-15 -3085 ((-388) |#1| (-935))) (-15 -4115 ((-171 (-388)) |#1|)) (-15 -4115 ((-171 (-388)) |#1| (-935))) (IF (|has| |#1| (-174)) (PROGN (-15 -4115 ((-171 (-388)) (-171 |#1|))) (-15 -4115 ((-171 (-388)) (-171 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-966 (-171 |#1|)))) (-15 -4115 ((-171 (-388)) (-966 (-171 |#1|)) (-935)))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-15 -3085 ((-388) (-966 |#1|))) (-15 -3085 ((-388) (-966 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-966 |#1|))) (-15 -4115 ((-171 (-388)) (-966 |#1|) (-935)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3085 ((-388) (-417 (-966 |#1|)))) (-15 -3085 ((-388) (-417 (-966 |#1|)) (-935))) (-15 -4115 ((-171 (-388)) (-417 (-966 |#1|)))) (-15 -4115 ((-171 (-388)) (-417 (-966 |#1|)) (-935))) (-15 -4115 ((-171 (-388)) (-417 (-966 (-171 |#1|))))) (-15 -4115 ((-171 (-388)) (-417 (-966 (-171 |#1|))) (-935))) (IF (|has| |#1| (-860)) (PROGN (-15 -3085 ((-388) (-324 |#1|))) (-15 -3085 ((-388) (-324 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-324 |#1|))) (-15 -4115 ((-171 (-388)) (-324 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4115 ((-171 (-388)) (-324 (-171 |#1|)) (-935)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3266 ((-3 (-171 (-388)) "failed") (-966 (-171 |#1|)))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-966 (-171 |#1|)) (-935)))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-15 -2001 ((-3 (-388) "failed") (-966 |#1|))) (-15 -2001 ((-3 (-388) "failed") (-966 |#1|) (-935))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-966 |#1|))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-966 |#1|) (-935)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -2001 ((-3 (-388) "failed") (-417 (-966 |#1|)))) (-15 -2001 ((-3 (-388) "failed") (-417 (-966 |#1|)) (-935))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-417 (-966 |#1|)))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-417 (-966 |#1|)) (-935))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|))))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|))) (-935))) (IF (|has| |#1| (-860)) (PROGN (-15 -2001 ((-3 (-388) "failed") (-324 |#1|))) (-15 -2001 ((-3 (-388) "failed") (-324 |#1|) (-935))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-935))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-935)))) |%noBranch|)) |%noBranch|)) (-624 (-388))) (T -795)) +((-3266 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3266 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3266 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3266 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-2001 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-2001 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-3266 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-966 (-171 *5)))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3266 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-966 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3266 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3266 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-2001 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-2001 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-3266 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3266 (*1 *2 *3) (|partial| -12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-2001 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-2001 (*1 *2 *3) (|partial| -12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-3266 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-966 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3266 (*1 *2 *3) (|partial| -12 (-5 *3 (-966 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 (-171 *5)))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-966 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-966 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-935)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-4115 (*1 *2 *3) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-3085 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))) (-3085 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2))))) +(-10 -7 (-15 -3085 ((-388) |#1|)) (-15 -3085 ((-388) |#1| (-935))) (-15 -4115 ((-171 (-388)) |#1|)) (-15 -4115 ((-171 (-388)) |#1| (-935))) (IF (|has| |#1| (-174)) (PROGN (-15 -4115 ((-171 (-388)) (-171 |#1|))) (-15 -4115 ((-171 (-388)) (-171 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-966 (-171 |#1|)))) (-15 -4115 ((-171 (-388)) (-966 (-171 |#1|)) (-935)))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-15 -3085 ((-388) (-966 |#1|))) (-15 -3085 ((-388) (-966 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-966 |#1|))) (-15 -4115 ((-171 (-388)) (-966 |#1|) (-935)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3085 ((-388) (-417 (-966 |#1|)))) (-15 -3085 ((-388) (-417 (-966 |#1|)) (-935))) (-15 -4115 ((-171 (-388)) (-417 (-966 |#1|)))) (-15 -4115 ((-171 (-388)) (-417 (-966 |#1|)) (-935))) (-15 -4115 ((-171 (-388)) (-417 (-966 (-171 |#1|))))) (-15 -4115 ((-171 (-388)) (-417 (-966 (-171 |#1|))) (-935))) (IF (|has| |#1| (-860)) (PROGN (-15 -3085 ((-388) (-324 |#1|))) (-15 -3085 ((-388) (-324 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-324 |#1|))) (-15 -4115 ((-171 (-388)) (-324 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4115 ((-171 (-388)) (-324 (-171 |#1|)) (-935)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3266 ((-3 (-171 (-388)) "failed") (-966 (-171 |#1|)))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-966 (-171 |#1|)) (-935)))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-15 -2001 ((-3 (-388) "failed") (-966 |#1|))) (-15 -2001 ((-3 (-388) "failed") (-966 |#1|) (-935))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-966 |#1|))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-966 |#1|) (-935)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -2001 ((-3 (-388) "failed") (-417 (-966 |#1|)))) (-15 -2001 ((-3 (-388) "failed") (-417 (-966 |#1|)) (-935))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-417 (-966 |#1|)))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-417 (-966 |#1|)) (-935))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|))))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|))) (-935))) (IF (|has| |#1| (-860)) (PROGN (-15 -2001 ((-3 (-388) "failed") (-324 |#1|))) (-15 -2001 ((-3 (-388) "failed") (-324 |#1|) (-935))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-935))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -3266 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-935)))) |%noBranch|)) |%noBranch|)) +((-1728 (((-935) (-1175)) 89)) (-2339 (((-3 (-388) "failed") (-1175)) 36)) (-4421 (((-388) (-1175)) 34)) (-2863 (((-935) (-1175)) 63)) (-2205 (((-1175) (-935)) 73)) (-4030 (((-1175) (-935)) 62))) +(((-796) (-10 -7 (-15 -4030 ((-1175) (-935))) (-15 -2863 ((-935) (-1175))) (-15 -2205 ((-1175) (-935))) (-15 -1728 ((-935) (-1175))) (-15 -4421 ((-388) (-1175))) (-15 -2339 ((-3 (-388) "failed") (-1175))))) (T -796)) +((-2339 (*1 *2 *3) (|partial| -12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-796)))) (-4421 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-796)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-935)) (-5 *1 (-796)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1175)) (-5 *1 (-796)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-935)) (-5 *1 (-796)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1175)) (-5 *1 (-796))))) +(-10 -7 (-15 -4030 ((-1175) (-935))) (-15 -2863 ((-935) (-1175))) (-15 -2205 ((-1175) (-935))) (-15 -1728 ((-935) (-1175))) (-15 -4421 ((-388) (-1175))) (-15 -2339 ((-3 (-388) "failed") (-1175)))) +((-2864 (((-112) $ $) 7)) (-1830 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 16) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 14)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) (((-797) (-141)) (T -797)) -((-4260 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050)))))) (-3610 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1050)) (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-4260 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050)))))) (-3610 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1050)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(-13 (-1115) (-10 -7 (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3610 ((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3610 ((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050))))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-3657 (((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388))) 55) (((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388))) 52)) (-1663 (((-1288) (-1283 (-388)) (-574) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388))) 61)) (-3245 (((-1288) (-1283 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388))) 50)) (-1341 (((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388))) 63) (((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388))) 62))) -(((-798) (-10 -7 (-15 -1341 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -1341 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)))) (-15 -3245 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -3657 ((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -3657 ((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)))) (-15 -1663 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))))) (T -798)) -((-1663 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798)))) (-3657 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388)))) (-5 *7 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798)))) (-3657 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388)))) (-5 *7 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798)))) (-3245 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798)))) (-1341 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798)))) (-1341 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798))))) -(-10 -7 (-15 -1341 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -1341 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)))) (-15 -3245 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -3657 ((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -3657 ((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)))) (-15 -1663 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388))))) -((-1560 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 64)) (-2632 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 40)) (-2674 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 63)) (-2914 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 38)) (-2334 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 62)) (-3424 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 24)) (-3006 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 41)) (-4213 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 39)) (-4358 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 37))) -(((-799) (-10 -7 (-15 -4358 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -4213 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3006 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3424 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2914 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2632 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2334 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2674 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -1560 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))))) (T -799)) -((-1560 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2674 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2334 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2632 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2914 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3424 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3006 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-4213 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-4358 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574))))) -(-10 -7 (-15 -4358 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -4213 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3006 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3424 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2914 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2632 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2334 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2674 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -1560 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)))) -((-3695 (((-1228 |#1|) |#1| (-227) (-574)) 69))) -(((-800 |#1|) (-10 -7 (-15 -3695 ((-1228 |#1|) |#1| (-227) (-574)))) (-989)) (T -800)) -((-3695 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1228 *3)) (-5 *1 (-800 *3)) (-4 *3 (-989))))) -(-10 -7 (-15 -3695 ((-1228 |#1|) |#1| (-227) (-574)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 25)) (-1597 (((-3 $ "failed") $ $) 27)) (-3831 (($) 24 T CONST)) (-3632 (($ $ $) 14)) (-1593 (($ $ $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 23 T CONST)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3089 (($ $ $) 31) (($ $) 30)) (-3074 (($ $ $) 21)) (* (($ (-934) $) 22) (($ (-781) $) 26) (($ (-574) $) 29))) +((-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051)))))) (-1830 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1051)) (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051)))))) (-1830 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1051)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(-13 (-1116) (-10 -7 (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1830 ((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1830 ((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051))))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-1843 (((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3954 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388))) 55) (((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3954 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388))) 52)) (-3960 (((-1289) (-1284 (-388)) (-574) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388))) 61)) (-3705 (((-1289) (-1284 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388))) 50)) (-1890 (((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388))) 63) (((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388))) 62))) +(((-798) (-10 -7 (-15 -1890 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -1890 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)))) (-15 -3705 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -1843 ((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3954 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -1843 ((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3954 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)))) (-15 -3960 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))))) (T -798)) +((-3960 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798)))) (-1843 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3954 (-388)))) (-5 *7 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798)))) (-1843 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3954 (-388)))) (-5 *7 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798)))) (-3705 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798)))) (-1890 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798)))) (-1890 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798))))) +(-10 -7 (-15 -1890 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -1890 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)))) (-15 -3705 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -1843 ((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3954 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -1843 ((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3954 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)))) (-15 -3960 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388))))) +((-3751 (((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 64)) (-3202 (((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 40)) (-3826 (((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 63)) (-2607 (((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 38)) (-1621 (((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 62)) (-3396 (((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 24)) (-2680 (((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 41)) (-3823 (((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 39)) (-3928 (((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 37))) +(((-799) (-10 -7 (-15 -3928 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3823 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2680 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3396 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2607 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3202 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -1621 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3826 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3751 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))))) (T -799)) +((-3751 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3826 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-1621 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3202 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2607 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3396 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2680 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3823 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3928 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574))))) +(-10 -7 (-15 -3928 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3823 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2680 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3396 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2607 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3202 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -1621 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3826 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3751 ((-2 (|:| -3079 (-388)) (|:| -2693 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)))) +((-3696 (((-1229 |#1|) |#1| (-227) (-574)) 69))) +(((-800 |#1|) (-10 -7 (-15 -3696 ((-1229 |#1|) |#1| (-227) (-574)))) (-990)) (T -800)) +((-3696 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1229 *3)) (-5 *1 (-800 *3)) (-4 *3 (-990))))) +(-10 -7 (-15 -3696 ((-1229 |#1|) |#1| (-227) (-574)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 25)) (-2600 (((-3 $ "failed") $ $) 27)) (-3250 (($) 24 T CONST)) (-3634 (($ $ $) 14)) (-4380 (($ $ $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3090 (($ $ $) 31) (($ $) 30)) (-3074 (($ $ $) 21)) (* (($ (-935) $) 22) (($ (-781) $) 26) (($ (-574) $) 29))) (((-801) (-141)) (T -801)) NIL (-13 (-805) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1115) . T)) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 25)) (-3831 (($) 24 T CONST)) (-3632 (($ $ $) 14)) (-1593 (($ $ $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 23 T CONST)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-934) $) 22) (($ (-781) $) 26))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1116) . T)) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 25)) (-3250 (($) 24 T CONST)) (-3634 (($ $ $) 14)) (-4380 (($ $ $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-935) $) 22) (($ (-781) $) 26))) (((-802) (-141)) (T -802)) NIL (-13 (-804) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-804) . T) ((-860) . T) ((-1115) . T)) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 25)) (-2620 (($ $ $) 28)) (-1597 (((-3 $ "failed") $ $) 27)) (-3831 (($) 24 T CONST)) (-3632 (($ $ $) 14)) (-1593 (($ $ $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 23 T CONST)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-934) $) 22) (($ (-781) $) 26))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-804) . T) ((-860) . T) ((-1116) . T)) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 25)) (-1968 (($ $ $) 28)) (-2600 (((-3 $ "failed") $ $) 27)) (-3250 (($) 24 T CONST)) (-3634 (($ $ $) 14)) (-4380 (($ $ $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-935) $) 22) (($ (-781) $) 26))) (((-803) (-141)) (T -803)) -((-2620 (*1 *1 *1 *1) (-4 *1 (-803)))) -(-13 (-805) (-10 -8 (-15 -2620 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1115) . T)) -((-2863 (((-112) $ $) 7)) (-3632 (($ $ $) 14)) (-1593 (($ $ $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-934) $) 22))) +((-1968 (*1 *1 *1 *1) (-4 *1 (-803)))) +(-13 (-805) (-10 -8 (-15 -1968 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1116) . T)) +((-2864 (((-112) $ $) 7)) (-3634 (($ $ $) 14)) (-4380 (($ $ $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-935) $) 22))) (((-804) (-141)) (T -804)) NIL (-13 (-860) (-25)) -(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1115) . T)) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 25)) (-1597 (((-3 $ "failed") $ $) 27)) (-3831 (($) 24 T CONST)) (-3632 (($ $ $) 14)) (-1593 (($ $ $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 23 T CONST)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-934) $) 22) (($ (-781) $) 26))) +(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1116) . T)) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 25)) (-2600 (((-3 $ "failed") $ $) 27)) (-3250 (($) 24 T CONST)) (-3634 (($ $ $) 14)) (-4380 (($ $ $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-935) $) 22) (($ (-781) $) 26))) (((-805) (-141)) (T -805)) NIL (-13 (-802) (-132)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-860) . T) ((-1115) . T)) -((-3520 (((-112) $) 42)) (-1705 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 43)) (-1955 (((-3 (-417 (-574)) "failed") $) 78)) (-1519 (((-112) $) 72)) (-4188 (((-417 (-574)) $) 76)) (-1386 ((|#2| $) 26)) (-1786 (($ (-1 |#2| |#2|) $) 23)) (-1327 (($ $) 58)) (-1845 (((-546) $) 67)) (-2202 (($ $) 21)) (-2950 (((-872) $) 53) (($ (-574)) 40) (($ |#2|) 38) (($ (-417 (-574))) NIL)) (-4019 (((-781)) 10)) (-3306 ((|#2| $) 71)) (-2985 (((-112) $ $) 30)) (-3009 (((-112) $ $) 69)) (-3089 (($ $) 32) (($ $ $) NIL)) (-3074 (($ $ $) 31)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-806 |#1| |#2|) (-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -1955 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4188 ((-417 (-574)) |#1|)) (-15 -1519 ((-112) |#1|)) (-15 -3306 (|#2| |#1|)) (-15 -1386 (|#2| |#1|)) (-15 -2202 (|#1| |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4019 ((-781))) (-15 -2950 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -3520 ((-112) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-807 |#2|) (-174)) (T -806)) -((-4019 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4)) (-4 *3 (-807 *4))))) -(-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -1955 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4188 ((-417 (-574)) |#1|)) (-15 -1519 ((-112) |#1|)) (-15 -3306 (|#2| |#1|)) (-15 -1386 (|#2| |#1|)) (-15 -2202 (|#1| |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4019 ((-781))) (-15 -2950 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -3520 ((-112) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-1496 (((-781)) 58 (|has| |#1| (-377)))) (-3831 (($) 18 T CONST)) (-1705 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 94)) (-2216 (((-574) $) 99 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 96 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 95)) (-3911 (((-3 $ "failed") $) 37)) (-4222 ((|#1| $) 84)) (-1955 (((-3 (-417 (-574)) "failed") $) 71 (|has| |#1| (-555)))) (-1519 (((-112) $) 73 (|has| |#1| (-555)))) (-4188 (((-417 (-574)) $) 72 (|has| |#1| (-555)))) (-2834 (($) 61 (|has| |#1| (-377)))) (-3372 (((-112) $) 35)) (-4155 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-1386 ((|#1| $) 76)) (-3632 (($ $ $) 67 (|has| |#1| (-860)))) (-1593 (($ $ $) 66 (|has| |#1| (-860)))) (-1786 (($ (-1 |#1| |#1|) $) 86)) (-3271 (((-934) $) 60 (|has| |#1| (-377)))) (-3945 (((-1174) $) 10)) (-1327 (($ $) 70 (|has| |#1| (-372)))) (-2590 (($ (-934)) 59 (|has| |#1| (-377)))) (-3315 ((|#1| $) 81)) (-4405 ((|#1| $) 82)) (-4173 ((|#1| $) 83)) (-1807 ((|#1| $) 77)) (-1865 ((|#1| $) 78)) (-2446 ((|#1| $) 79)) (-3685 ((|#1| $) 80)) (-3939 (((-1135) $) 11)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) 92 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 90 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 89 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 88 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) 87 (|has| |#1| (-524 (-1192) |#1|)))) (-2208 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|)))) (-1845 (((-546) $) 68 (|has| |#1| (-624 (-546))))) (-2202 (($ $) 85)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 98 (|has| |#1| (-1053 (-417 (-574)))))) (-3247 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-3306 ((|#1| $) 74 (|has| |#1| (-1075)))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3041 (((-112) $ $) 64 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 63 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 65 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 62 (|has| |#1| (-860)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-860) . T) ((-1116) . T)) +((-1431 (((-112) $) 42)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2214 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 43)) (-3577 (((-3 (-417 (-574)) "failed") $) 78)) (-3839 (((-112) $) 72)) (-2842 (((-417 (-574)) $) 76)) (-1681 ((|#2| $) 26)) (-1785 (($ (-1 |#2| |#2|) $) 23)) (-1328 (($ $) 58)) (-1844 (((-546) $) 67)) (-3617 (($ $) 21)) (-2951 (((-872) $) 53) (($ (-574)) 40) (($ |#2|) 38) (($ (-417 (-574))) NIL)) (-2898 (((-781)) 10)) (-3936 ((|#2| $) 71)) (-2986 (((-112) $ $) 30)) (-3009 (((-112) $ $) 69)) (-3090 (($ $) 32) (($ $ $) NIL)) (-3074 (($ $ $) 31)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-806 |#1| |#2|) (-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3577 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2842 ((-417 (-574)) |#1|)) (-15 -3839 ((-112) |#1|)) (-15 -3936 (|#2| |#1|)) (-15 -1681 (|#2| |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2898 ((-781))) (-15 -2951 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -1431 ((-112) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-807 |#2|) (-174)) (T -806)) +((-2898 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4)) (-4 *3 (-807 *4))))) +(-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3577 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2842 ((-417 (-574)) |#1|)) (-15 -3839 ((-112) |#1|)) (-15 -3936 (|#2| |#1|)) (-15 -1681 (|#2| |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2898 ((-781))) (-15 -2951 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -1431 ((-112) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-1496 (((-781)) 58 (|has| |#1| (-377)))) (-3250 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 94)) (-2214 (((-574) $) 99 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 96 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 95)) (-4322 (((-3 $ "failed") $) 37)) (-4223 ((|#1| $) 84)) (-3577 (((-3 (-417 (-574)) "failed") $) 71 (|has| |#1| (-555)))) (-3839 (((-112) $) 73 (|has| |#1| (-555)))) (-2842 (((-417 (-574)) $) 72 (|has| |#1| (-555)))) (-2835 (($) 61 (|has| |#1| (-377)))) (-4226 (((-112) $) 35)) (-4017 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-1681 ((|#1| $) 76)) (-3634 (($ $ $) 67 (|has| |#1| (-860)))) (-4380 (($ $ $) 66 (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) 86)) (-3383 (((-935) $) 60 (|has| |#1| (-377)))) (-1489 (((-1175) $) 10)) (-1328 (($ $) 70 (|has| |#1| (-372)))) (-2591 (($ (-935)) 59 (|has| |#1| (-377)))) (-4364 ((|#1| $) 81)) (-1953 ((|#1| $) 82)) (-3379 ((|#1| $) 83)) (-3394 ((|#1| $) 77)) (-2263 ((|#1| $) 78)) (-2732 ((|#1| $) 79)) (-3579 ((|#1| $) 80)) (-3940 (((-1136) $) 11)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) 92 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 90 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 89 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 88 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) 87 (|has| |#1| (-524 (-1193) |#1|)))) (-2207 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|)))) (-1844 (((-546) $) 68 (|has| |#1| (-624 (-546))))) (-3617 (($ $) 85)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 98 (|has| |#1| (-1054 (-417 (-574)))))) (-3424 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-3936 ((|#1| $) 74 (|has| |#1| (-1076)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 64 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 63 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 65 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 62 (|has| |#1| (-860)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-807 |#1|) (-141) (-174)) (T -807)) -((-2202 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4173 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4405 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4155 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1955 (*1 *2 *1) (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1327 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-372))))) -(-13 (-38 |t#1|) (-421 |t#1|) (-347 |t#1|) (-10 -8 (-15 -2202 ($ $)) (-15 -4222 (|t#1| $)) (-15 -4173 (|t#1| $)) (-15 -4405 (|t#1| $)) (-15 -3315 (|t#1| $)) (-15 -3685 (|t#1| $)) (-15 -2446 (|t#1| $)) (-15 -1865 (|t#1| $)) (-15 -1807 (|t#1| $)) (-15 -1386 (|t#1| $)) (-15 -4155 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1075)) (-15 -3306 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -1519 ((-112) $)) (-15 -4188 ((-417 (-574)) $)) (-15 -1955 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -1327 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0=(-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-377) |has| |#1| (-377)) ((-347 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1053 #0#) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) |has| |#1| (-294 |#1| |#1|))) -((-1786 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1786 (|#3| (-1 |#4| |#2|) |#1|))) (-807 |#2|) (-174) (-807 |#4|) (-174)) (T -808)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-807 *6)) (-5 *1 (-808 *4 *5 *2 *6)) (-4 *4 (-807 *5))))) -(-10 -7 (-15 -1786 (|#3| (-1 |#4| |#2|) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL) (((-3 (-1014 |#1|) "failed") $) 35) (((-3 (-574) "failed") $) NIL (-2832 (|has| (-1014 |#1|) (-1053 (-574))) (|has| |#1| (-1053 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL (-2832 (|has| (-1014 |#1|) (-1053 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-2216 ((|#1| $) NIL) (((-1014 |#1|) $) 33) (((-574) $) NIL (-2832 (|has| (-1014 |#1|) (-1053 (-574))) (|has| |#1| (-1053 (-574))))) (((-417 (-574)) $) NIL (-2832 (|has| (-1014 |#1|) (-1053 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-3911 (((-3 $ "failed") $) NIL)) (-4222 ((|#1| $) 16)) (-1955 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-1519 (((-112) $) NIL (|has| |#1| (-555)))) (-4188 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-2834 (($) NIL (|has| |#1| (-377)))) (-3372 (((-112) $) NIL)) (-4155 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1014 |#1|) (-1014 |#1|)) 29)) (-1386 ((|#1| $) NIL)) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3271 (((-934) $) NIL (|has| |#1| (-377)))) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-3315 ((|#1| $) 22)) (-4405 ((|#1| $) 20)) (-4173 ((|#1| $) 18)) (-1807 ((|#1| $) 26)) (-1865 ((|#1| $) 25)) (-2446 ((|#1| $) 24)) (-3685 ((|#1| $) 23)) (-3939 (((-1135) $) NIL)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-524 (-1192) |#1|)))) (-2208 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2202 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1014 |#1|)) 30) (($ (-417 (-574))) NIL (-2832 (|has| (-1014 |#1|) (-1053 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-3306 ((|#1| $) NIL (|has| |#1| (-1075)))) (-2142 (($) 8 T CONST)) (-2154 (($) 12 T CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-809 |#1|) (-13 (-807 |#1|) (-421 (-1014 |#1|)) (-10 -8 (-15 -4155 ($ (-1014 |#1|) (-1014 |#1|))))) (-174)) (T -809)) -((-4155 (*1 *1 *2 *2) (-12 (-5 *2 (-1014 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3))))) -(-13 (-807 |#1|) (-421 (-1014 |#1|)) (-10 -8 (-15 -4155 ($ (-1014 |#1|) (-1014 |#1|))))) -((-2863 (((-112) $ $) 7)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-3662 (((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2985 (((-112) $ $) 6))) +((-3617 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-1953 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2263 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4017 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1076)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-3577 (*1 *2 *1) (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1328 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-372))))) +(-13 (-38 |t#1|) (-421 |t#1|) (-347 |t#1|) (-10 -8 (-15 -3617 ($ $)) (-15 -4223 (|t#1| $)) (-15 -3379 (|t#1| $)) (-15 -1953 (|t#1| $)) (-15 -4364 (|t#1| $)) (-15 -3579 (|t#1| $)) (-15 -2732 (|t#1| $)) (-15 -2263 (|t#1| $)) (-15 -3394 (|t#1| $)) (-15 -1681 (|t#1| $)) (-15 -4017 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1076)) (-15 -3936 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -3839 ((-112) $)) (-15 -2842 ((-417 (-574)) $)) (-15 -3577 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -1328 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0=(-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-377) |has| |#1| (-377)) ((-347 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1054 #0#) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) |has| |#1| (-294 |#1| |#1|))) +((-1785 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|))) (-807 |#2|) (-174) (-807 |#4|) (-174)) (T -808)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-807 *6)) (-5 *1 (-808 *4 *5 *2 *6)) (-4 *4 (-807 *5))))) +(-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-1015 |#1|) "failed") $) 35) (((-3 (-574) "failed") $) NIL (-2833 (|has| (-1015 |#1|) (-1054 (-574))) (|has| |#1| (-1054 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL (-2833 (|has| (-1015 |#1|) (-1054 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-2214 ((|#1| $) NIL) (((-1015 |#1|) $) 33) (((-574) $) NIL (-2833 (|has| (-1015 |#1|) (-1054 (-574))) (|has| |#1| (-1054 (-574))))) (((-417 (-574)) $) NIL (-2833 (|has| (-1015 |#1|) (-1054 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-4322 (((-3 $ "failed") $) NIL)) (-4223 ((|#1| $) 16)) (-3577 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-3839 (((-112) $) NIL (|has| |#1| (-555)))) (-2842 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-2835 (($) NIL (|has| |#1| (-377)))) (-4226 (((-112) $) NIL)) (-4017 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1015 |#1|) (-1015 |#1|)) 29)) (-1681 ((|#1| $) NIL)) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3383 (((-935) $) NIL (|has| |#1| (-377)))) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-4364 ((|#1| $) 22)) (-1953 ((|#1| $) 20)) (-3379 ((|#1| $) 18)) (-3394 ((|#1| $) 26)) (-2263 ((|#1| $) 25)) (-2732 ((|#1| $) 24)) (-3579 ((|#1| $) 23)) (-3940 (((-1136) $) NIL)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-524 (-1193) |#1|)))) (-2207 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-3617 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1015 |#1|)) 30) (($ (-417 (-574))) NIL (-2833 (|has| (-1015 |#1|) (-1054 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-3936 ((|#1| $) NIL (|has| |#1| (-1076)))) (-2141 (($) 8 T CONST)) (-2153 (($) 12 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-809 |#1|) (-13 (-807 |#1|) (-421 (-1015 |#1|)) (-10 -8 (-15 -4017 ($ (-1015 |#1|) (-1015 |#1|))))) (-174)) (T -809)) +((-4017 (*1 *1 *2 *2) (-12 (-5 *2 (-1015 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3))))) +(-13 (-807 |#1|) (-421 (-1015 |#1|)) (-10 -8 (-15 -4017 ($ (-1015 |#1|) (-1015 |#1|))))) +((-2864 (((-112) $ $) 7)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2782 (((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2986 (((-112) $ $) 6))) (((-810) (-141)) (T -810)) -((-4260 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)))))) (-3662 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1050))))) -(-13 (-1115) (-10 -7 (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3662 ((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2812 (((-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) |#3| |#2| (-1192)) 19))) -(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -2812 ((-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) |#3| |#2| (-1192)))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1218) (-972)) (-666 |#2|)) (T -811)) -((-2812 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1192)) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1218) (-972))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2191 (-654 *4)))) (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4))))) -(-10 -7 (-15 -2812 ((-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) |#3| |#2| (-1192)))) -((-2514 (((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)) 28) (((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1192)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1192)) 18) (((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -2191 (-654 (-1283 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1192)) 24) (((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -2191 (-654 (-1283 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1192)) 26) (((-3 (-654 (-1283 |#2|)) "failed") (-699 |#2|) (-1192)) 37) (((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -2191 (-654 (-1283 |#2|)))) "failed") (-699 |#2|) (-1283 |#2|) (-1192)) 35))) -(((-812 |#1| |#2|) (-10 -7 (-15 -2514 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -2191 (-654 (-1283 |#2|)))) "failed") (-699 |#2|) (-1283 |#2|) (-1192))) (-15 -2514 ((-3 (-654 (-1283 |#2|)) "failed") (-699 |#2|) (-1192))) (-15 -2514 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -2191 (-654 (-1283 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1192))) (-15 -2514 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -2191 (-654 (-1283 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1192))) (-15 -2514 ((-3 (-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1192))) (-15 -2514 ((-3 (-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1192))) (-15 -2514 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -2514 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1218) (-972))) (T -812)) -((-2514 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *1 (-812 *6 *2)))) (-2514 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1218) (-972))) (-5 *1 (-812 *6 *2)) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))))) (-2514 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1192)) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2191 (-654 *3))) *3 "failed")) (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1218) (-972))))) (-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2191 (-654 *7))) *7 "failed")) (-5 *1 (-812 *6 *7)))) (-2514 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1283 *7)) (|:| -2191 (-654 (-1283 *7))))) (-5 *1 (-812 *6 *7)))) (-2514 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1283 *7)) (|:| -2191 (-654 (-1283 *7))))) (-5 *1 (-812 *6 *7)))) (-2514 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1192)) (-4 *6 (-13 (-29 *5) (-1218) (-972))) (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-1283 *6))) (-5 *1 (-812 *5 *6)))) (-2514 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1283 *7)) (|:| -2191 (-654 (-1283 *7))))) (-5 *1 (-812 *6 *7)) (-5 *4 (-1283 *7))))) -(-10 -7 (-15 -2514 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -2191 (-654 (-1283 |#2|)))) "failed") (-699 |#2|) (-1283 |#2|) (-1192))) (-15 -2514 ((-3 (-654 (-1283 |#2|)) "failed") (-699 |#2|) (-1192))) (-15 -2514 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -2191 (-654 (-1283 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1192))) (-15 -2514 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -2191 (-654 (-1283 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1192))) (-15 -2514 ((-3 (-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1192))) (-15 -2514 ((-3 (-2 (|:| |particular| |#2|) (|:| -2191 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1192))) (-15 -2514 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -2514 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)))) -((-4305 (($) 9)) (-1436 (((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1772 (((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2609 (($ (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) 24)) (-2569 (($ (-654 (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) 22)) (-2172 (((-1288)) 11))) -(((-813) (-10 -8 (-15 -4305 ($)) (-15 -2172 ((-1288))) (-15 -1772 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2569 ($ (-654 (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -2609 ($ (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -1436 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -813)) -((-1436 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *1 (-813)))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) (-5 *1 (-813)))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-5 *1 (-813)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-813)))) (-2172 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-813)))) (-4305 (*1 *1) (-5 *1 (-813)))) -(-10 -8 (-15 -4305 ($)) (-15 -2172 ((-1288))) (-15 -1772 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2569 ($ (-654 (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -2609 ($ (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1917 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -1436 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3086 ((|#2| |#2| (-1192)) 17)) (-3740 ((|#2| |#2| (-1192)) 56)) (-4129 (((-1 |#2| |#2|) (-1192)) 11))) -(((-814 |#1| |#2|) (-10 -7 (-15 -3086 (|#2| |#2| (-1192))) (-15 -3740 (|#2| |#2| (-1192))) (-15 -4129 ((-1 |#2| |#2|) (-1192)))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1218) (-972))) (T -814)) -((-4129 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5)) (-4 *5 (-13 (-29 *4) (-1218) (-972))))) (-3740 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1218) (-972))))) (-3086 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1218) (-972)))))) -(-10 -7 (-15 -3086 (|#2| |#2| (-1192))) (-15 -3740 (|#2| |#2| (-1192))) (-15 -4129 ((-1 |#2| |#2|) (-1192)))) -((-2514 (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388)) 128) (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388)) 129) (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388)) 131) (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388)) 133) (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388)) 134) (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388))) 136) (((-1050) (-818) (-1078)) 120) (((-1050) (-818)) 121)) (-4260 (((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818) (-1078)) 80) (((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818)) 82))) -(((-815) (-10 -7 (-15 -2514 ((-1050) (-818))) (-15 -2514 ((-1050) (-818) (-1078))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818) (-1078))))) (T -815)) -((-4260 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1078)) (-5 *2 (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-815)))) (-4260 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-815)))) (-2514 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2514 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2514 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2514 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2514 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2514 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1050)) (-5 *1 (-815))))) -(-10 -7 (-15 -2514 ((-1050) (-818))) (-15 -2514 ((-1050) (-818) (-1078))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -2514 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818) (-1078)))) -((-1403 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2191 (-654 |#4|))) (-663 |#4|) |#4|) 33))) -(((-816 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1403 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2191 (-654 |#4|))) (-663 |#4|) |#4|))) (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574)))) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -816)) -((-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) (-5 *1 (-816 *5 *6 *7 *4))))) -(-10 -7 (-15 -1403 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2191 (-654 |#4|))) (-663 |#4|) |#4|))) -((-1699 (((-2 (|:| -4095 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))) 53)) (-2110 (((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#4| |#2|) 62) (((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#4|) 61) (((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#3| |#2|) 20) (((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#3|) 21)) (-4031 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-4099 ((|#2| |#3| (-654 (-417 |#2|))) 109) (((-3 |#2| "failed") |#3| (-417 |#2|)) 105))) -(((-817 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4099 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -4099 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -2110 ((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#3|)) (-15 -2110 ((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#3| |#2|)) (-15 -4031 (|#2| |#3| |#1|)) (-15 -2110 ((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#4|)) (-15 -2110 ((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#4| |#2|)) (-15 -4031 (|#2| |#4| |#1|)) (-15 -1699 ((-2 (|:| -4095 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1053 (-417 (-574)))) (-1259 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -817)) -((-1699 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-2 (|:| -4095 *7) (|:| |rh| (-654 (-417 *6))))) (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6))) (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6))))) (-4031 (*1 *2 *3 *4) (-12 (-4 *2 (-1259 *4)) (-5 *1 (-817 *4 *2 *5 *3)) (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-666 *2)) (-4 *3 (-666 (-417 *2))))) (-2110 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *4 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2704 *4)))) (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4)) (-4 *3 (-666 (-417 *4))))) (-2110 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2704 *5)))) (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 (-417 *5))))) (-4031 (*1 *2 *3 *4) (-12 (-4 *2 (-1259 *4)) (-5 *1 (-817 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2))))) (-2110 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *4 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2704 *4)))) (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4)) (-4 *6 (-666 (-417 *4))))) (-2110 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2704 *5)))) (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-4099 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1259 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 (-417 *2))))) (-4099 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1259 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 *4))))) -(-10 -7 (-15 -4099 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -4099 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -2110 ((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#3|)) (-15 -2110 ((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#3| |#2|)) (-15 -4031 (|#2| |#3| |#1|)) (-15 -2110 ((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#4|)) (-15 -2110 ((-654 (-2 (|:| -3332 |#2|) (|:| -2704 |#2|))) |#4| |#2|)) (-15 -4031 (|#2| |#4| |#1|)) (-15 -1699 ((-2 (|:| -4095 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))))) -((-2863 (((-112) $ $) NIL)) (-2216 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-818) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2216 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -818)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818))))) -(-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2216 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) -((-4206 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4095 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1188 |#2|)) (-1 (-428 |#2|) |#2|)) 154)) (-2108 (((-654 (-2 (|:| |poly| |#2|) (|:| -4095 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 52)) (-1632 (((-654 (-2 (|:| |deg| (-781)) (|:| -4095 |#2|))) |#3|) 122)) (-1747 ((|#2| |#3|) 42)) (-3115 (((-654 (-2 (|:| -1715 |#1|) (|:| -4095 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 99)) (-4017 ((|#3| |#3| (-417 |#2|)) 72) ((|#3| |#3| |#2|) 96))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1747 (|#2| |#3|)) (-15 -1632 ((-654 (-2 (|:| |deg| (-781)) (|:| -4095 |#2|))) |#3|)) (-15 -3115 ((-654 (-2 (|:| -1715 |#1|) (|:| -4095 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -2108 ((-654 (-2 (|:| |poly| |#2|) (|:| -4095 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -4206 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4095 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1188 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -4017 (|#3| |#3| |#2|)) (-15 -4017 (|#3| |#3| (-417 |#2|)))) (-13 (-372) (-148) (-1053 (-417 (-574)))) (-1259 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -819)) -((-4017 (*1 *2 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3)))) (-4017 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-1259 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3)) (-4 *5 (-666 (-417 *3))))) (-4206 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-654 *7) *7 (-1188 *7))) (-5 *5 (-1 (-428 *7) *7)) (-4 *7 (-1259 *6)) (-4 *6 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4095 *3)))) (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7)) (-4 *8 (-666 (-417 *7))))) (-2108 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4095 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-3115 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -1715 *5) (|:| -4095 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-1632 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4095 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-1747 (*1 *2 *3) (-12 (-4 *2 (-1259 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2)))))) -(-10 -7 (-15 -1747 (|#2| |#3|)) (-15 -1632 ((-654 (-2 (|:| |deg| (-781)) (|:| -4095 |#2|))) |#3|)) (-15 -3115 ((-654 (-2 (|:| -1715 |#1|) (|:| -4095 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -2108 ((-654 (-2 (|:| |poly| |#2|) (|:| -4095 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -4206 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4095 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1188 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -4017 (|#3| |#3| |#2|)) (-15 -4017 (|#3| |#3| (-417 |#2|)))) -((-3874 (((-2 (|:| -2191 (-654 (-417 |#2|))) (|:| -4047 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|))) 147) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2191 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|)) 146) (((-2 (|:| -2191 (-654 (-417 |#2|))) (|:| -4047 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|))) 141) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2191 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|)) 139)) (-1369 ((|#2| (-664 |#2| (-417 |#2|))) 88) ((|#2| (-663 (-417 |#2|))) 91))) -(((-820 |#1| |#2|) (-10 -7 (-15 -3874 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2191 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -3874 ((-2 (|:| -2191 (-654 (-417 |#2|))) (|:| -4047 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -3874 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2191 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -3874 ((-2 (|:| -2191 (-654 (-417 |#2|))) (|:| -4047 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -1369 (|#2| (-663 (-417 |#2|)))) (-15 -1369 (|#2| (-664 |#2| (-417 |#2|))))) (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574)))) (-1259 |#1|)) (T -820)) -((-1369 (*1 *2 *3) (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1259 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1259 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))))) (-3874 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-2 (|:| -2191 (-654 (-417 *6))) (|:| -4047 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-3874 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) (-5 *1 (-820 *5 *6)))) (-3874 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-2 (|:| -2191 (-654 (-417 *6))) (|:| -4047 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-3874 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) (-5 *1 (-820 *5 *6))))) -(-10 -7 (-15 -3874 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2191 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -3874 ((-2 (|:| -2191 (-654 (-417 |#2|))) (|:| -4047 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -3874 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2191 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -3874 ((-2 (|:| -2191 (-654 (-417 |#2|))) (|:| -4047 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -1369 (|#2| (-663 (-417 |#2|)))) (-15 -1369 (|#2| (-664 |#2| (-417 |#2|))))) -((-2993 (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) |#5| |#4|) 49))) -(((-821 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2993 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) |#5| |#4|))) (-372) (-666 |#1|) (-1259 |#1|) (-734 |#1| |#3|) (-666 |#4|)) (T -821)) -((-2993 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *7 (-1259 *5)) (-4 *4 (-734 *5 *7)) (-5 *2 (-2 (|:| -4047 (-699 *6)) (|:| |vec| (-1283 *5)))) (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4))))) -(-10 -7 (-15 -2993 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) |#5| |#4|))) -((-4206 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4095 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 47)) (-2001 (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|))) 164 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|))) 166 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 38) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 39) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 36) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 37)) (-2108 (((-654 (-2 (|:| |poly| |#2|) (|:| -4095 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 96))) -(((-822 |#1| |#2|) (-10 -7 (-15 -2001 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2001 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -2001 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2001 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -4206 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4095 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2108 ((-654 (-2 (|:| |poly| |#2|) (|:| -4095 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2001 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -2001 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2001 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -2001 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|)) (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574)))) (-1259 |#1|)) (T -822)) -((-2001 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1259 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-2001 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1259 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4095 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-4206 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4095 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-2001 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *7 (-1259 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-2001 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-2001 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *7 (-1259 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-2001 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))) -(-10 -7 (-15 -2001 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2001 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -2001 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2001 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -4206 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4095 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2108 ((-654 (-2 (|:| |poly| |#2|) (|:| -4095 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2001 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -2001 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2001 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -2001 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|)) -((-2480 (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) (-699 |#2|) (-1283 |#1|)) 110) (((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)) (|:| -4095 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1283 |#1|)) 15)) (-2565 (((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|)))) (-699 |#2|) (-1283 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2191 (-654 |#1|))) |#2| |#1|)) 116)) (-2514 (((-3 (-2 (|:| |particular| (-1283 |#1|)) (|:| -2191 (-699 |#1|))) "failed") (-699 |#1|) (-1283 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2191 (-654 |#1|))) "failed") |#2| |#1|)) 54))) -(((-823 |#1| |#2|) (-10 -7 (-15 -2480 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)) (|:| -4095 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1283 |#1|))) (-15 -2480 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) (-699 |#2|) (-1283 |#1|))) (-15 -2514 ((-3 (-2 (|:| |particular| (-1283 |#1|)) (|:| -2191 (-699 |#1|))) "failed") (-699 |#1|) (-1283 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2191 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -2565 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|)))) (-699 |#2|) (-1283 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2191 (-654 |#1|))) |#2| |#1|)))) (-372) (-666 |#1|)) (T -823)) -((-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2191 (-654 *6))) *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1283 *6) "failed")) (|:| -2191 (-654 (-1283 *6))))) (-5 *1 (-823 *6 *7)) (-5 *4 (-1283 *6)))) (-2514 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2191 (-654 *6))) "failed") *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-1283 *6)) (|:| -2191 (-699 *6)))) (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1283 *6)))) (-2480 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-666 *5)) (-5 *2 (-2 (|:| -4047 (-699 *6)) (|:| |vec| (-1283 *5)))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1283 *5)))) (-2480 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| A (-699 *5)) (|:| |eqs| (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1283 *5)) (|:| -4095 *6) (|:| |rh| *5)))))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) (-4 *6 (-666 *5))))) -(-10 -7 (-15 -2480 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)) (|:| -4095 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1283 |#1|))) (-15 -2480 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) (-699 |#2|) (-1283 |#1|))) (-15 -2514 ((-3 (-2 (|:| |particular| (-1283 |#1|)) (|:| -2191 (-699 |#1|))) "failed") (-699 |#1|) (-1283 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2191 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -2565 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -2191 (-654 (-1283 |#1|)))) (-699 |#2|) (-1283 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2191 (-654 |#1|))) |#2| |#1|)))) -((-2606 (((-699 |#1|) (-654 |#1|) (-781)) 14) (((-699 |#1|) (-654 |#1|)) 15)) (-4398 (((-3 (-1283 |#1|) "failed") |#2| |#1| (-654 |#1|)) 39)) (-3056 (((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)) 46))) -(((-824 |#1| |#2|) (-10 -7 (-15 -2606 ((-699 |#1|) (-654 |#1|))) (-15 -2606 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -4398 ((-3 (-1283 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -3056 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -824)) -((-3056 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372)) (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2)))) (-4398 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1283 *4)) (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)) (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4))))) -(-10 -7 (-15 -2606 ((-699 |#1|) (-654 |#1|))) (-15 -2606 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -4398 ((-3 (-1283 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -3056 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)))) -((-2863 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-3520 (((-112) $) NIL (-2832 (|has| |#2| (-132)) (|has| |#2| (-736))))) (-3196 (($ (-934)) NIL (|has| |#2| (-1064)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-2620 (($ $ $) NIL (|has| |#2| (-803)))) (-1597 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2818 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#2| (-377)))) (-3134 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1115)))) (-2216 (((-574) $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) ((|#2| $) NIL (|has| |#2| (-1115)))) (-3465 (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-1283 $)) NIL (|has| |#2| (-1064)))) (-3911 (((-3 $ "failed") $) NIL (|has| |#2| (-1064)))) (-2834 (($) NIL (|has| |#2| (-377)))) (-2472 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ (-574)) NIL)) (-1873 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3372 (((-112) $) NIL (|has| |#2| (-1064)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#2| (-860)))) (-2247 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#2| (-860)))) (-2461 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-3271 (((-934) $) NIL (|has| |#2| (-377)))) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#2| (-1115)))) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#2| (-377)))) (-3939 (((-1135) $) NIL (|has| |#2| (-1115)))) (-2924 ((|#2| $) NIL (|has| (-574) (-860)))) (-4276 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-3036 ((|#2| $ $) NIL (|has| |#2| (-1064)))) (-4246 (($ (-1283 |#2|)) NIL)) (-3480 (((-135)) NIL (|has| |#2| (-372)))) (-3878 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3948 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#2|) $) NIL) (($ (-574)) NIL (-2832 (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (($ |#2|) NIL (|has| |#2| (-1115))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-4019 (((-781)) NIL (|has| |#2| (-1064)) CONST)) (-3838 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-2980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2142 (($) NIL (-2832 (|has| |#2| (-132)) (|has| |#2| (-736))) CONST)) (-2154 (($) NIL (|has| |#2| (-1064)) CONST)) (-3583 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3041 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) 11 (|has| |#2| (-860)))) (-3098 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $ $) NIL (|has| |#2| (-1064))) (($ $) NIL (|has| |#2| (-1064)))) (-3074 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-1064))) (($ $ (-934)) NIL (|has| |#2| (-1064)))) (* (($ (-574) $) NIL (|has| |#2| (-1064))) (($ $ $) NIL (|has| |#2| (-1064))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-934) $) NIL (|has| |#2| (-25)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-825 |#1| |#2| |#3|) (-244 |#1| |#2|) (-781) (-803) (-1 (-112) (-1283 |#2|) (-1283 |#2|))) (T -825)) +((-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)))))) (-2782 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1051))))) +(-13 (-1116) (-10 -7 (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2782 ((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2444 (((-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) |#3| |#2| (-1193)) 19))) +(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -2444 ((-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) |#3| |#2| (-1193)))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1219) (-973)) (-666 |#2|)) (T -811)) +((-2444 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1193)) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1219) (-973))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2391 (-654 *4)))) (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4))))) +(-10 -7 (-15 -2444 ((-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) |#3| |#2| (-1193)))) +((-3987 (((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)) 28) (((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1193)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1193)) 18) (((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -2391 (-654 (-1284 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1193)) 24) (((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -2391 (-654 (-1284 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1193)) 26) (((-3 (-654 (-1284 |#2|)) "failed") (-699 |#2|) (-1193)) 37) (((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -2391 (-654 (-1284 |#2|)))) "failed") (-699 |#2|) (-1284 |#2|) (-1193)) 35))) +(((-812 |#1| |#2|) (-10 -7 (-15 -3987 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -2391 (-654 (-1284 |#2|)))) "failed") (-699 |#2|) (-1284 |#2|) (-1193))) (-15 -3987 ((-3 (-654 (-1284 |#2|)) "failed") (-699 |#2|) (-1193))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -2391 (-654 (-1284 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1193))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -2391 (-654 (-1284 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1193))) (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1193))) (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1193))) (-15 -3987 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -3987 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1219) (-973))) (T -812)) +((-3987 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *1 (-812 *6 *2)))) (-3987 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1219) (-973))) (-5 *1 (-812 *6 *2)) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))))) (-3987 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1193)) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2391 (-654 *3))) *3 "failed")) (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1219) (-973))))) (-3987 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2391 (-654 *7))) *7 "failed")) (-5 *1 (-812 *6 *7)))) (-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1284 *7)) (|:| -2391 (-654 (-1284 *7))))) (-5 *1 (-812 *6 *7)))) (-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1284 *7)) (|:| -2391 (-654 (-1284 *7))))) (-5 *1 (-812 *6 *7)))) (-3987 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1193)) (-4 *6 (-13 (-29 *5) (-1219) (-973))) (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-1284 *6))) (-5 *1 (-812 *5 *6)))) (-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1284 *7)) (|:| -2391 (-654 (-1284 *7))))) (-5 *1 (-812 *6 *7)) (-5 *4 (-1284 *7))))) +(-10 -7 (-15 -3987 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -2391 (-654 (-1284 |#2|)))) "failed") (-699 |#2|) (-1284 |#2|) (-1193))) (-15 -3987 ((-3 (-654 (-1284 |#2|)) "failed") (-699 |#2|) (-1193))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -2391 (-654 (-1284 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1193))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -2391 (-654 (-1284 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1193))) (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1193))) (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2391 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1193))) (-15 -3987 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -3987 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)))) +((-3109 (($) 9)) (-1756 (((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1771 (((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-3285 (($ (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) 24)) (-1360 (($ (-654 (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) 22)) (-2847 (((-1289)) 11))) +(((-813) (-10 -8 (-15 -3109 ($)) (-15 -2847 ((-1289))) (-15 -1771 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1360 ($ (-654 (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -3285 ($ (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -1756 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -813)) +((-1756 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *1 (-813)))) (-3285 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) (-5 *1 (-813)))) (-1360 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-5 *1 (-813)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-813)))) (-2847 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-813)))) (-3109 (*1 *1) (-5 *1 (-813)))) +(-10 -8 (-15 -3109 ($)) (-15 -2847 ((-1289))) (-15 -1771 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1360 ($ (-654 (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -3285 ($ (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -1756 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3087 ((|#2| |#2| (-1193)) 17)) (-3073 ((|#2| |#2| (-1193)) 56)) (-2815 (((-1 |#2| |#2|) (-1193)) 11))) +(((-814 |#1| |#2|) (-10 -7 (-15 -3087 (|#2| |#2| (-1193))) (-15 -3073 (|#2| |#2| (-1193))) (-15 -2815 ((-1 |#2| |#2|) (-1193)))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1219) (-973))) (T -814)) +((-2815 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5)) (-4 *5 (-13 (-29 *4) (-1219) (-973))))) (-3073 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1219) (-973))))) (-3087 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1219) (-973)))))) +(-10 -7 (-15 -3087 (|#2| |#2| (-1193))) (-15 -3073 (|#2| |#2| (-1193))) (-15 -2815 ((-1 |#2| |#2|) (-1193)))) +((-3987 (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388)) 128) (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388)) 129) (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388)) 131) (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388)) 133) (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388)) 134) (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388))) 136) (((-1051) (-818) (-1079)) 120) (((-1051) (-818)) 121)) (-3175 (((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818) (-1079)) 80) (((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818)) 82))) +(((-815) (-10 -7 (-15 -3987 ((-1051) (-818))) (-15 -3987 ((-1051) (-818) (-1079))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818) (-1079))))) (T -815)) +((-3175 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1079)) (-5 *2 (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-815)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-815)))) (-3987 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3987 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3987 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3987 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3987 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3987 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1051)) (-5 *1 (-815))))) +(-10 -7 (-15 -3987 ((-1051) (-818))) (-15 -3987 ((-1051) (-818) (-1079))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -3987 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818) (-1079)))) +((-4059 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2391 (-654 |#4|))) (-663 |#4|) |#4|) 33))) +(((-816 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4059 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2391 (-654 |#4|))) (-663 |#4|) |#4|))) (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -816)) +((-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) (-5 *1 (-816 *5 *6 *7 *4))))) +(-10 -7 (-15 -4059 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2391 (-654 |#4|))) (-663 |#4|) |#4|))) +((-4431 (((-2 (|:| -4094 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))) 53)) (-3124 (((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#4| |#2|) 62) (((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#4|) 61) (((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#3| |#2|) 20) (((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#3|) 21)) (-2023 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-4151 ((|#2| |#3| (-654 (-417 |#2|))) 109) (((-3 |#2| "failed") |#3| (-417 |#2|)) 105))) +(((-817 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4151 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -4151 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -3124 ((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#3|)) (-15 -3124 ((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#3| |#2|)) (-15 -2023 (|#2| |#3| |#1|)) (-15 -3124 ((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#4|)) (-15 -3124 ((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#4| |#2|)) (-15 -2023 (|#2| |#4| |#1|)) (-15 -4431 ((-2 (|:| -4094 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1054 (-417 (-574)))) (-1260 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -817)) +((-4431 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-2 (|:| -4094 *7) (|:| |rh| (-654 (-417 *6))))) (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6))) (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6))))) (-2023 (*1 *2 *3 *4) (-12 (-4 *2 (-1260 *4)) (-5 *1 (-817 *4 *2 *5 *3)) (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-666 *2)) (-4 *3 (-666 (-417 *2))))) (-3124 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *4 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -3333 *4) (|:| -2707 *4)))) (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4)) (-4 *3 (-666 (-417 *4))))) (-3124 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-2 (|:| -3333 *5) (|:| -2707 *5)))) (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 (-417 *5))))) (-2023 (*1 *2 *3 *4) (-12 (-4 *2 (-1260 *4)) (-5 *1 (-817 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2))))) (-3124 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *4 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -3333 *4) (|:| -2707 *4)))) (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4)) (-4 *6 (-666 (-417 *4))))) (-3124 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-2 (|:| -3333 *5) (|:| -2707 *5)))) (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-4151 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1260 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 (-417 *2))))) (-4151 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1260 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 *4))))) +(-10 -7 (-15 -4151 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -4151 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -3124 ((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#3|)) (-15 -3124 ((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#3| |#2|)) (-15 -2023 (|#2| |#3| |#1|)) (-15 -3124 ((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#4|)) (-15 -3124 ((-654 (-2 (|:| -3333 |#2|) (|:| -2707 |#2|))) |#4| |#2|)) (-15 -2023 (|#2| |#4| |#1|)) (-15 -4431 ((-2 (|:| -4094 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))))) +((-2864 (((-112) $ $) NIL)) (-2214 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-818) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2214 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -818)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818))))) +(-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2214 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) +((-3947 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4094 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1189 |#2|)) (-1 (-428 |#2|) |#2|)) 154)) (-2900 (((-654 (-2 (|:| |poly| |#2|) (|:| -4094 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 52)) (-2885 (((-654 (-2 (|:| |deg| (-781)) (|:| -4094 |#2|))) |#3|) 122)) (-3857 ((|#2| |#3|) 42)) (-4387 (((-654 (-2 (|:| -1714 |#1|) (|:| -4094 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 99)) (-3119 ((|#3| |#3| (-417 |#2|)) 72) ((|#3| |#3| |#2|) 96))) +(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3857 (|#2| |#3|)) (-15 -2885 ((-654 (-2 (|:| |deg| (-781)) (|:| -4094 |#2|))) |#3|)) (-15 -4387 ((-654 (-2 (|:| -1714 |#1|) (|:| -4094 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -2900 ((-654 (-2 (|:| |poly| |#2|) (|:| -4094 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -3947 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4094 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1189 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -3119 (|#3| |#3| |#2|)) (-15 -3119 (|#3| |#3| (-417 |#2|)))) (-13 (-372) (-148) (-1054 (-417 (-574)))) (-1260 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -819)) +((-3119 (*1 *2 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3)))) (-3119 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-1260 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3)) (-4 *5 (-666 (-417 *3))))) (-3947 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-654 *7) *7 (-1189 *7))) (-5 *5 (-1 (-428 *7) *7)) (-4 *7 (-1260 *6)) (-4 *6 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4094 *3)))) (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7)) (-4 *8 (-666 (-417 *7))))) (-2900 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4094 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-4387 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -1714 *5) (|:| -4094 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-2885 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4094 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-3857 (*1 *2 *3) (-12 (-4 *2 (-1260 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2)))))) +(-10 -7 (-15 -3857 (|#2| |#3|)) (-15 -2885 ((-654 (-2 (|:| |deg| (-781)) (|:| -4094 |#2|))) |#3|)) (-15 -4387 ((-654 (-2 (|:| -1714 |#1|) (|:| -4094 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -2900 ((-654 (-2 (|:| |poly| |#2|) (|:| -4094 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -3947 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4094 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1189 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -3119 (|#3| |#3| |#2|)) (-15 -3119 (|#3| |#3| (-417 |#2|)))) +((-4181 (((-2 (|:| -2391 (-654 (-417 |#2|))) (|:| -3082 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|))) 147) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2391 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|)) 146) (((-2 (|:| -2391 (-654 (-417 |#2|))) (|:| -3082 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|))) 141) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2391 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|)) 139)) (-2944 ((|#2| (-664 |#2| (-417 |#2|))) 88) ((|#2| (-663 (-417 |#2|))) 91))) +(((-820 |#1| |#2|) (-10 -7 (-15 -4181 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2391 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -4181 ((-2 (|:| -2391 (-654 (-417 |#2|))) (|:| -3082 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -4181 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2391 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -4181 ((-2 (|:| -2391 (-654 (-417 |#2|))) (|:| -3082 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -2944 (|#2| (-663 (-417 |#2|)))) (-15 -2944 (|#2| (-664 |#2| (-417 |#2|))))) (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))) (-1260 |#1|)) (T -820)) +((-2944 (*1 *2 *3) (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1260 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1260 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))))) (-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-2 (|:| -2391 (-654 (-417 *6))) (|:| -3082 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) (-5 *1 (-820 *5 *6)))) (-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-2 (|:| -2391 (-654 (-417 *6))) (|:| -3082 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) (-5 *1 (-820 *5 *6))))) +(-10 -7 (-15 -4181 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2391 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -4181 ((-2 (|:| -2391 (-654 (-417 |#2|))) (|:| -3082 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -4181 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2391 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -4181 ((-2 (|:| -2391 (-654 (-417 |#2|))) (|:| -3082 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -2944 (|#2| (-663 (-417 |#2|)))) (-15 -2944 (|#2| (-664 |#2| (-417 |#2|))))) +((-3478 (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) |#5| |#4|) 49))) +(((-821 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3478 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) |#5| |#4|))) (-372) (-666 |#1|) (-1260 |#1|) (-734 |#1| |#3|) (-666 |#4|)) (T -821)) +((-3478 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *7 (-1260 *5)) (-4 *4 (-734 *5 *7)) (-5 *2 (-2 (|:| -3082 (-699 *6)) (|:| |vec| (-1284 *5)))) (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4))))) +(-10 -7 (-15 -3478 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) |#5| |#4|))) +((-3947 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4094 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 47)) (-2066 (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|))) 164 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|))) 166 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 38) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 39) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 36) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 37)) (-2900 (((-654 (-2 (|:| |poly| |#2|) (|:| -4094 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 96))) +(((-822 |#1| |#2|) (-10 -7 (-15 -2066 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2066 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -2066 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2066 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -3947 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4094 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2900 ((-654 (-2 (|:| |poly| |#2|) (|:| -4094 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2066 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -2066 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2066 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -2066 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|)) (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))) (-1260 |#1|)) (T -822)) +((-2066 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1260 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-2066 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1260 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4094 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-3947 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4094 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-2066 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *7 (-1260 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-2066 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-2066 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *7 (-1260 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-2066 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))) +(-10 -7 (-15 -2066 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2066 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -2066 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2066 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -3947 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4094 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2900 ((-654 (-2 (|:| |poly| |#2|) (|:| -4094 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2066 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -2066 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2066 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -2066 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|)) +((-4054 (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) (-699 |#2|) (-1284 |#1|)) 110) (((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)) (|:| -4094 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1284 |#1|)) 15)) (-3056 (((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|)))) (-699 |#2|) (-1284 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2391 (-654 |#1|))) |#2| |#1|)) 116)) (-3987 (((-3 (-2 (|:| |particular| (-1284 |#1|)) (|:| -2391 (-699 |#1|))) "failed") (-699 |#1|) (-1284 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2391 (-654 |#1|))) "failed") |#2| |#1|)) 54))) +(((-823 |#1| |#2|) (-10 -7 (-15 -4054 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)) (|:| -4094 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1284 |#1|))) (-15 -4054 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) (-699 |#2|) (-1284 |#1|))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1284 |#1|)) (|:| -2391 (-699 |#1|))) "failed") (-699 |#1|) (-1284 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2391 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -3056 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|)))) (-699 |#2|) (-1284 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2391 (-654 |#1|))) |#2| |#1|)))) (-372) (-666 |#1|)) (T -823)) +((-3056 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2391 (-654 *6))) *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1284 *6) "failed")) (|:| -2391 (-654 (-1284 *6))))) (-5 *1 (-823 *6 *7)) (-5 *4 (-1284 *6)))) (-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2391 (-654 *6))) "failed") *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-1284 *6)) (|:| -2391 (-699 *6)))) (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1284 *6)))) (-4054 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-666 *5)) (-5 *2 (-2 (|:| -3082 (-699 *6)) (|:| |vec| (-1284 *5)))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1284 *5)))) (-4054 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| A (-699 *5)) (|:| |eqs| (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1284 *5)) (|:| -4094 *6) (|:| |rh| *5)))))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)) (-4 *6 (-666 *5))))) +(-10 -7 (-15 -4054 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)) (|:| -4094 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1284 |#1|))) (-15 -4054 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) (-699 |#2|) (-1284 |#1|))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1284 |#1|)) (|:| -2391 (-699 |#1|))) "failed") (-699 |#1|) (-1284 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2391 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -3056 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -2391 (-654 (-1284 |#1|)))) (-699 |#2|) (-1284 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2391 (-654 |#1|))) |#2| |#1|)))) +((-2914 (((-699 |#1|) (-654 |#1|) (-781)) 14) (((-699 |#1|) (-654 |#1|)) 15)) (-3549 (((-3 (-1284 |#1|) "failed") |#2| |#1| (-654 |#1|)) 39)) (-4091 (((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)) 46))) +(((-824 |#1| |#2|) (-10 -7 (-15 -2914 ((-699 |#1|) (-654 |#1|))) (-15 -2914 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -3549 ((-3 (-1284 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -4091 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -824)) +((-4091 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372)) (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2)))) (-3549 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1284 *4)) (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4)))) (-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)) (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4))))) +(-10 -7 (-15 -2914 ((-699 |#1|) (-654 |#1|))) (-15 -2914 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -3549 ((-3 (-1284 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -4091 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)))) +((-2864 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-1431 (((-112) $) NIL (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))))) (-1399 (($ (-935)) NIL (|has| |#2| (-1065)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1968 (($ $ $) NIL (|has| |#2| (-803)))) (-2600 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3146 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#2| (-377)))) (-3135 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1116)))) (-2214 (((-574) $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) ((|#2| $) NIL (|has| |#2| (-1116)))) (-1831 (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-1284 $)) NIL (|has| |#2| (-1065)))) (-4322 (((-3 $ "failed") $) NIL (|has| |#2| (-1065)))) (-2835 (($) NIL (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ (-574)) NIL)) (-1871 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4226 (((-112) $) NIL (|has| |#2| (-1065)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#2| (-860)))) (-2036 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#2| (-860)))) (-2462 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-3383 (((-935) $) NIL (|has| |#2| (-377)))) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#2| (-1116)))) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#2| (-377)))) (-3940 (((-1136) $) NIL (|has| |#2| (-1116)))) (-2925 ((|#2| $) NIL (|has| (-574) (-860)))) (-1822 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-3918 ((|#2| $ $) NIL (|has| |#2| (-1065)))) (-4247 (($ (-1284 |#2|)) NIL)) (-2995 (((-135)) NIL (|has| |#2| (-372)))) (-3879 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3949 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#2|) $) NIL) (($ (-574)) NIL (-2833 (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (($ |#2|) NIL (|has| |#2| (-1116))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-2898 (((-781)) NIL (|has| |#2| (-1065)) CONST)) (-4069 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-2020 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) NIL (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))) CONST)) (-2153 (($) NIL (|has| |#2| (-1065)) CONST)) (-3584 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3042 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) 11 (|has| |#2| (-860)))) (-3103 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $ $) NIL (|has| |#2| (-1065))) (($ $) NIL (|has| |#2| (-1065)))) (-3074 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-1065))) (($ $ (-935)) NIL (|has| |#2| (-1065)))) (* (($ (-574) $) NIL (|has| |#2| (-1065))) (($ $ $) NIL (|has| |#2| (-1065))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-935) $) NIL (|has| |#2| (-25)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-825 |#1| |#2| |#3|) (-244 |#1| |#2|) (-781) (-803) (-1 (-112) (-1284 |#2|) (-1284 |#2|))) (T -825)) NIL (-244 |#1| |#2|) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4302 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1192)) NIL)) (-2102 (((-781) $) NIL) (((-781) $ (-1192)) NIL)) (-4349 (((-654 (-828 (-1192))) $) NIL)) (-4171 (((-1188 $) $ (-828 (-1192))) NIL) (((-1188 |#1|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 (-828 (-1192)))) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3296 (($ $) NIL (|has| |#1| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3618 (($ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-828 (-1192)) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL) (((-3 (-1140 |#1| (-1192)) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-828 (-1192)) $) NIL) (((-1192) $) NIL) (((-1140 |#1| (-1192)) $) NIL)) (-3496 (($ $ $ (-828 (-1192))) NIL (|has| |#1| (-174)))) (-1401 (($ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1192))) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#1| (-922)))) (-4389 (($ $ |#1| (-541 (-828 (-1192))) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-828 (-1192)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-828 (-1192)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2725 (((-781) $ (-1192)) NIL) (((-781) $) NIL)) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-4338 (($ (-1188 |#1|) (-828 (-1192))) NIL) (($ (-1188 $) (-828 (-1192))) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-541 (-828 (-1192)))) NIL) (($ $ (-828 (-1192)) (-781)) NIL) (($ $ (-654 (-828 (-1192))) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-828 (-1192))) NIL)) (-1503 (((-541 (-828 (-1192))) $) NIL) (((-781) $ (-828 (-1192))) NIL) (((-654 (-781)) $ (-654 (-828 (-1192)))) NIL)) (-3558 (($ (-1 (-541 (-828 (-1192))) (-541 (-828 (-1192)))) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-4191 (((-1 $ (-781)) (-1192)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-1803 (((-3 (-828 (-1192)) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3679 (((-828 (-1192)) $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3945 (((-1174) $) NIL)) (-3187 (((-112) $) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| (-828 (-1192))) (|:| -2017 (-781))) "failed") $) NIL)) (-2605 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-828 (-1192)) |#1|) NIL) (($ $ (-654 (-828 (-1192))) (-654 |#1|)) NIL) (($ $ (-828 (-1192)) $) NIL) (($ $ (-654 (-828 (-1192))) (-654 $)) NIL) (($ $ (-1192) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1192)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-1738 (($ $ (-828 (-1192))) NIL (|has| |#1| (-174)))) (-3878 (($ $ (-828 (-1192))) NIL) (($ $ (-654 (-828 (-1192)))) NIL) (($ $ (-828 (-1192)) (-781)) NIL) (($ $ (-654 (-828 (-1192))) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3475 (((-654 (-1192)) $) NIL)) (-3584 (((-541 (-828 (-1192))) $) NIL) (((-781) $ (-828 (-1192))) NIL) (((-654 (-781)) $ (-654 (-828 (-1192)))) NIL) (((-781) $ (-1192)) NIL)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| (-828 (-1192)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-828 (-1192)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-828 (-1192)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3631 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1192))) NIL (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-828 (-1192))) NIL) (($ (-1192)) NIL) (($ (-1140 |#1| (-1192))) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-541 (-828 (-1192)))) NIL) (($ $ (-828 (-1192)) (-781)) NIL) (($ $ (-654 (-828 (-1192))) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-828 (-1192))) NIL) (($ $ (-654 (-828 (-1192)))) NIL) (($ $ (-828 (-1192)) (-781)) NIL) (($ $ (-654 (-828 (-1192))) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-826 |#1|) (-13 (-260 |#1| (-1192) (-828 (-1192)) (-541 (-828 (-1192)))) (-1053 (-1140 |#1| (-1192)))) (-1064)) (T -826)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4002 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1193)) NIL)) (-1540 (((-781) $) NIL) (((-781) $ (-1193)) NIL)) (-4350 (((-654 (-828 (-1193))) $) NIL)) (-4173 (((-1189 $) $ (-828 (-1193))) NIL) (((-1189 |#1|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 (-828 (-1193)))) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2991 (($ $) NIL (|has| |#1| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3278 (($ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-828 (-1193)) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL) (((-3 (-1141 |#1| (-1193)) "failed") $) NIL)) (-2214 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-828 (-1193)) $) NIL) (((-1193) $) NIL) (((-1141 |#1| (-1193)) $) NIL)) (-3319 (($ $ $ (-828 (-1193))) NIL (|has| |#1| (-174)))) (-1402 (($ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1193))) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#1| (-923)))) (-1849 (($ $ |#1| (-541 (-828 (-1193))) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-828 (-1193)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-828 (-1193)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3547 (((-781) $ (-1193)) NIL) (((-781) $) NIL)) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-4339 (($ (-1189 |#1|) (-828 (-1193))) NIL) (($ (-1189 $) (-828 (-1193))) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-541 (-828 (-1193)))) NIL) (($ $ (-828 (-1193)) (-781)) NIL) (($ $ (-654 (-828 (-1193))) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-828 (-1193))) NIL)) (-3192 (((-541 (-828 (-1193))) $) NIL) (((-781) $ (-828 (-1193))) NIL) (((-654 (-781)) $ (-654 (-828 (-1193)))) NIL)) (-4303 (($ (-1 (-541 (-828 (-1193))) (-541 (-828 (-1193)))) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2558 (((-1 $ (-781)) (-1193)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-2284 (((-3 (-828 (-1193)) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-3680 (((-828 (-1193)) $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1489 (((-1175) $) NIL)) (-1380 (((-112) $) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| (-828 (-1193))) (|:| -3139 (-781))) "failed") $) NIL)) (-2606 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-828 (-1193)) |#1|) NIL) (($ $ (-654 (-828 (-1193))) (-654 |#1|)) NIL) (($ $ (-828 (-1193)) $) NIL) (($ $ (-654 (-828 (-1193))) (-654 $)) NIL) (($ $ (-1193) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-2394 (($ $ (-828 (-1193))) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-828 (-1193))) (-654 (-781))) NIL) (($ $ (-828 (-1193)) (-781)) NIL) (($ $ (-654 (-828 (-1193)))) NIL) (($ $ (-828 (-1193))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2495 (((-654 (-1193)) $) NIL)) (-3580 (((-541 (-828 (-1193))) $) NIL) (((-781) $ (-828 (-1193))) NIL) (((-654 (-781)) $ (-654 (-828 (-1193)))) NIL) (((-781) $ (-1193)) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-828 (-1193)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-828 (-1193)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-828 (-1193)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-2372 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1193))) NIL (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-828 (-1193))) NIL) (($ (-1193)) NIL) (($ (-1141 |#1| (-1193))) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-541 (-828 (-1193)))) NIL) (($ $ (-828 (-1193)) (-781)) NIL) (($ $ (-654 (-828 (-1193))) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-654 (-828 (-1193))) (-654 (-781))) NIL) (($ $ (-828 (-1193)) (-781)) NIL) (($ $ (-654 (-828 (-1193)))) NIL) (($ $ (-828 (-1193))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-826 |#1|) (-13 (-260 |#1| (-1193) (-828 (-1193)) (-541 (-828 (-1193)))) (-1054 (-1141 |#1| (-1193)))) (-1065)) (T -826)) NIL -(-13 (-260 |#1| (-1192) (-828 (-1192)) (-541 (-828 (-1192)))) (-1053 (-1140 |#1| (-1192)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-372)))) (-3648 (($ $) NIL (|has| |#2| (-372)))) (-1527 (((-112) $) NIL (|has| |#2| (-372)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL (|has| |#2| (-372)))) (-3954 (((-428 $) $) NIL (|has| |#2| (-372)))) (-3656 (((-112) $ $) NIL (|has| |#2| (-372)))) (-3831 (($) NIL T CONST)) (-2799 (($ $ $) NIL (|has| |#2| (-372)))) (-3911 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#2| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-1782 (((-112) $) NIL (|has| |#2| (-372)))) (-3372 (((-112) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2848 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 20 (|has| |#2| (-372)))) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-3364 (((-781) $) NIL (|has| |#2| (-372)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#2| (-372)))) (-3878 (($ $) 13) (($ $ (-781)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-417 (-574))) NIL (|has| |#2| (-372))) (($ $) NIL (|has| |#2| (-372)))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#2| (-372)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) 15 (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL) (($ $ (-574)) 18 (|has| |#2| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) NIL (|has| |#2| (-372))) (($ $ (-417 (-574))) NIL (|has| |#2| (-372))))) -(((-827 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-500 |#2|) (-10 -7 (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|))) (-1115) (-913 |#1|) |#1|) (T -827)) +(-13 (-260 |#1| (-1193) (-828 (-1193)) (-541 (-828 (-1193)))) (-1054 (-1141 |#1| (-1193)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-372)))) (-2884 (($ $) NIL (|has| |#2| (-372)))) (-1981 (((-112) $) NIL (|has| |#2| (-372)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL (|has| |#2| (-372)))) (-1610 (((-428 $) $) NIL (|has| |#2| (-372)))) (-3245 (((-112) $ $) NIL (|has| |#2| (-372)))) (-3250 (($) NIL T CONST)) (-2800 (($ $ $) NIL (|has| |#2| (-372)))) (-4322 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#2| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-3978 (((-112) $) NIL (|has| |#2| (-372)))) (-4226 (((-112) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2849 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 20 (|has| |#2| (-372)))) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-4202 (((-428 $) $) NIL (|has| |#2| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2098 (((-781) $) NIL (|has| |#2| (-372)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#2| (-372)))) (-3879 (($ $) 13) (($ $ (-781)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-417 (-574))) NIL (|has| |#2| (-372))) (($ $) NIL (|has| |#2| (-372)))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#2| (-372)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $) NIL) (($ $ (-781)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) 15 (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL) (($ $ (-574)) 18 (|has| |#2| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) NIL (|has| |#2| (-372))) (($ $ (-417 (-574))) NIL (|has| |#2| (-372))))) +(((-827 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-500 |#2|) (-10 -7 (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|))) (-1116) (-912 |#1|) |#1|) (T -827)) NIL (-13 (-111 $ $) (-239) (-500 |#2|) (-10 -7 (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|))) -((-2863 (((-112) $ $) NIL)) (-2102 (((-781) $) NIL)) (-1497 ((|#1| $) 10)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2725 (((-781) $) 11)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-4191 (($ |#1| (-781)) 9)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3878 (($ $ (-781)) NIL) (($ $) NIL)) (-2950 (((-872) $) NIL) (($ |#1|) NIL)) (-3838 (((-112) $ $) NIL)) (-3583 (($ $ (-781)) NIL) (($ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) +((-2864 (((-112) $ $) NIL)) (-1540 (((-781) $) NIL)) (-1498 ((|#1| $) 10)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-3547 (((-781) $) 11)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2558 (($ |#1| (-781)) 9)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3879 (($ $ (-781)) NIL) (($ $) NIL)) (-2951 (((-872) $) NIL) (($ |#1|) NIL)) (-4069 (((-112) $ $) NIL)) (-3584 (($ $ (-781)) NIL) (($ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) (((-828 |#1|) (-273 |#1|) (-860)) (T -828)) NIL (-273 |#1|) -((-2863 (((-112) $ $) NIL)) (-1664 (((-654 |#1|) $) 38)) (-1496 (((-781) $) NIL)) (-3831 (($) NIL T CONST)) (-4368 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2934 (($ $) 42)) (-3911 (((-3 $ "failed") $) NIL)) (-2782 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2382 ((|#1| $ (-574)) NIL)) (-4066 (((-781) $ (-574)) NIL)) (-3450 (($ $) 54)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3341 (($ (-1 |#1| |#1|) $) NIL)) (-4081 (($ (-1 (-781) (-781)) $) NIL)) (-1412 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2491 (((-112) $ $) 51)) (-4108 (((-781) $) 34)) (-3945 (((-1174) $) NIL)) (-3504 (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 ((|#1| $) 41)) (-4279 (((-654 (-2 (|:| |gen| |#1|) (|:| -1618 (-781)))) $) NIL)) (-3444 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2839 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2950 (((-872) $) NIL) (($ |#1|) NIL)) (-3838 (((-112) $ $) NIL)) (-2154 (($) 20 T CONST)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 53)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-829 |#1|) (-13 (-395 |#1|) (-856) (-10 -8 (-15 -2924 (|#1| $)) (-15 -2934 ($ $)) (-15 -3450 ($ $)) (-15 -2491 ((-112) $ $)) (-15 -1412 ((-3 $ "failed") $ |#1|)) (-15 -4368 ((-3 $ "failed") $ |#1|)) (-15 -2839 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4108 ((-781) $)) (-15 -1664 ((-654 |#1|) $)))) (-860)) (T -829)) -((-2924 (*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2934 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-3450 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2491 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-1412 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-4368 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2839 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3)))) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-829 *3)) (-4 *3 (-860))))) -(-13 (-395 |#1|) (-856) (-10 -8 (-15 -2924 (|#1| $)) (-15 -2934 ($ $)) (-15 -3450 ($ $)) (-15 -2491 ((-112) $ $)) (-15 -1412 ((-3 $ "failed") $ |#1|)) (-15 -4368 ((-3 $ "failed") $ |#1|)) (-15 -2839 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4108 ((-781) $)) (-15 -1664 ((-654 |#1|) $)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-3011 (((-574) $) 59)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-1913 (((-112) $) 57)) (-3372 (((-112) $) 35)) (-1808 (((-112) $) 58)) (-3632 (($ $ $) 56)) (-1593 (($ $ $) 55)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ $) 48)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-3306 (($ $) 60)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3041 (((-112) $ $) 53)) (-3018 (((-112) $ $) 52)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 54)) (-3009 (((-112) $ $) 51)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-2864 (((-112) $ $) NIL)) (-1663 (((-654 |#1|) $) 38)) (-1496 (((-781) $) NIL)) (-3250 (($) NIL T CONST)) (-3369 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-2935 (($ $) 42)) (-4322 (((-3 $ "failed") $) NIL)) (-4372 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-4226 (((-112) $) NIL)) (-1719 ((|#1| $ (-574)) NIL)) (-2718 (((-781) $ (-574)) NIL)) (-3856 (($ $) 54)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-4359 (($ (-1 |#1| |#1|) $) NIL)) (-4013 (($ (-1 (-781) (-781)) $) NIL)) (-4067 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2667 (((-112) $ $) 51)) (-4109 (((-781) $) 34)) (-1489 (((-1175) $) NIL)) (-3227 (($ $ $) NIL)) (-2555 (($ $ $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 ((|#1| $) 41)) (-3314 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-781)))) $) NIL)) (-2969 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2840 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2951 (((-872) $) NIL) (($ |#1|) NIL)) (-4069 (((-112) $ $) NIL)) (-2153 (($) 20 T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 53)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-829 |#1|) (-13 (-395 |#1|) (-856) (-10 -8 (-15 -2925 (|#1| $)) (-15 -2935 ($ $)) (-15 -3856 ($ $)) (-15 -2667 ((-112) $ $)) (-15 -4067 ((-3 $ "failed") $ |#1|)) (-15 -3369 ((-3 $ "failed") $ |#1|)) (-15 -2840 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4109 ((-781) $)) (-15 -1663 ((-654 |#1|) $)))) (-860)) (T -829)) +((-2925 (*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2935 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-3856 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2667 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-4067 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-3369 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2840 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3)))) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-829 *3)) (-4 *3 (-860))))) +(-13 (-395 |#1|) (-856) (-10 -8 (-15 -2925 (|#1| $)) (-15 -2935 ($ $)) (-15 -3856 ($ $)) (-15 -2667 ((-112) $ $)) (-15 -4067 ((-3 $ "failed") $ |#1|)) (-15 -3369 ((-3 $ "failed") $ |#1|)) (-15 -2840 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4109 ((-781) $)) (-15 -1663 ((-654 |#1|) $)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-2472 (((-574) $) 59)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-3408 (((-112) $) 57)) (-4226 (((-112) $) 35)) (-3182 (((-112) $) 58)) (-3634 (($ $ $) 56)) (-4380 (($ $ $) 55)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ $) 48)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-3936 (($ $) 60)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 53)) (-3020 (((-112) $ $) 52)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 54)) (-3009 (((-112) $ $) 51)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-830) (-141)) (T -830)) NIL (-13 (-566) (-858)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-4220 (($ (-1135)) 7)) (-2217 (((-112) $ (-1174) (-1135)) 15)) (-1392 (((-832) $) 12)) (-3968 (((-832) $) 11)) (-2330 (((-1288) $) 9)) (-3531 (((-112) $ (-1135)) 16))) -(((-831) (-10 -8 (-15 -4220 ($ (-1135))) (-15 -2330 ((-1288) $)) (-15 -3968 ((-832) $)) (-15 -1392 ((-832) $)) (-15 -2217 ((-112) $ (-1174) (-1135))) (-15 -3531 ((-112) $ (-1135))))) (T -831)) -((-3531 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-831)))) (-2217 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-1135)) (-5 *2 (-112)) (-5 *1 (-831)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-831)))) (-4220 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-831))))) -(-10 -8 (-15 -4220 ($ (-1135))) (-15 -2330 ((-1288) $)) (-15 -3968 ((-832) $)) (-15 -1392 ((-832) $)) (-15 -2217 ((-112) $ (-1174) (-1135))) (-15 -3531 ((-112) $ (-1135)))) -((-3397 (((-1288) $ (-833)) 12)) (-1464 (((-1288) $ (-1192)) 32)) (-4114 (((-1288) $ (-1174) (-1174)) 34)) (-2642 (((-1288) $ (-1174)) 33)) (-1681 (((-1288) $) 19)) (-1972 (((-1288) $ (-574)) 28)) (-4201 (((-1288) $ (-227)) 30)) (-2884 (((-1288) $) 18)) (-2109 (((-1288) $) 26)) (-3100 (((-1288) $) 25)) (-2791 (((-1288) $) 23)) (-2459 (((-1288) $) 24)) (-4343 (((-1288) $) 22)) (-2094 (((-1288) $) 21)) (-2949 (((-1288) $) 20)) (-4345 (((-1288) $) 16)) (-3492 (((-1288) $) 17)) (-3216 (((-1288) $) 15)) (-3858 (((-1288) $) 14)) (-3154 (((-1288) $) 13)) (-4337 (($ (-1174) (-833)) 9)) (-2729 (($ (-1174) (-1174) (-833)) 8)) (-1434 (((-1192) $) 51)) (-2370 (((-1192) $) 55)) (-2592 (((-2 (|:| |cd| (-1174)) (|:| -2040 (-1174))) $) 54)) (-1703 (((-1174) $) 52)) (-2203 (((-1288) $) 41)) (-3336 (((-574) $) 49)) (-4287 (((-227) $) 50)) (-1424 (((-1288) $) 40)) (-3566 (((-1288) $) 48)) (-3895 (((-1288) $) 47)) (-2499 (((-1288) $) 45)) (-1694 (((-1288) $) 46)) (-3325 (((-1288) $) 44)) (-1801 (((-1288) $) 43)) (-2540 (((-1288) $) 42)) (-3710 (((-1288) $) 38)) (-2598 (((-1288) $) 39)) (-1823 (((-1288) $) 37)) (-3809 (((-1288) $) 36)) (-2742 (((-1288) $) 35)) (-3350 (((-1288) $) 11))) -(((-832) (-10 -8 (-15 -2729 ($ (-1174) (-1174) (-833))) (-15 -4337 ($ (-1174) (-833))) (-15 -3350 ((-1288) $)) (-15 -3397 ((-1288) $ (-833))) (-15 -3154 ((-1288) $)) (-15 -3858 ((-1288) $)) (-15 -3216 ((-1288) $)) (-15 -4345 ((-1288) $)) (-15 -3492 ((-1288) $)) (-15 -2884 ((-1288) $)) (-15 -1681 ((-1288) $)) (-15 -2949 ((-1288) $)) (-15 -2094 ((-1288) $)) (-15 -4343 ((-1288) $)) (-15 -2791 ((-1288) $)) (-15 -2459 ((-1288) $)) (-15 -3100 ((-1288) $)) (-15 -2109 ((-1288) $)) (-15 -1972 ((-1288) $ (-574))) (-15 -4201 ((-1288) $ (-227))) (-15 -1464 ((-1288) $ (-1192))) (-15 -2642 ((-1288) $ (-1174))) (-15 -4114 ((-1288) $ (-1174) (-1174))) (-15 -2742 ((-1288) $)) (-15 -3809 ((-1288) $)) (-15 -1823 ((-1288) $)) (-15 -3710 ((-1288) $)) (-15 -2598 ((-1288) $)) (-15 -1424 ((-1288) $)) (-15 -2203 ((-1288) $)) (-15 -2540 ((-1288) $)) (-15 -1801 ((-1288) $)) (-15 -3325 ((-1288) $)) (-15 -2499 ((-1288) $)) (-15 -1694 ((-1288) $)) (-15 -3895 ((-1288) $)) (-15 -3566 ((-1288) $)) (-15 -3336 ((-574) $)) (-15 -4287 ((-227) $)) (-15 -1434 ((-1192) $)) (-15 -1703 ((-1174) $)) (-15 -2592 ((-2 (|:| |cd| (-1174)) (|:| -2040 (-1174))) $)) (-15 -2370 ((-1192) $)))) (T -832)) -((-2370 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-832)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1174)) (|:| -2040 (-1174)))) (-5 *1 (-832)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-832)))) (-1434 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-832)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2742 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-4114 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-2642 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-1464 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-4201 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2459 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-4343 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3397 (*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-4337 (*1 *1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-833)) (-5 *1 (-832)))) (-2729 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-833)) (-5 *1 (-832))))) -(-10 -8 (-15 -2729 ($ (-1174) (-1174) (-833))) (-15 -4337 ($ (-1174) (-833))) (-15 -3350 ((-1288) $)) (-15 -3397 ((-1288) $ (-833))) (-15 -3154 ((-1288) $)) (-15 -3858 ((-1288) $)) (-15 -3216 ((-1288) $)) (-15 -4345 ((-1288) $)) (-15 -3492 ((-1288) $)) (-15 -2884 ((-1288) $)) (-15 -1681 ((-1288) $)) (-15 -2949 ((-1288) $)) (-15 -2094 ((-1288) $)) (-15 -4343 ((-1288) $)) (-15 -2791 ((-1288) $)) (-15 -2459 ((-1288) $)) (-15 -3100 ((-1288) $)) (-15 -2109 ((-1288) $)) (-15 -1972 ((-1288) $ (-574))) (-15 -4201 ((-1288) $ (-227))) (-15 -1464 ((-1288) $ (-1192))) (-15 -2642 ((-1288) $ (-1174))) (-15 -4114 ((-1288) $ (-1174) (-1174))) (-15 -2742 ((-1288) $)) (-15 -3809 ((-1288) $)) (-15 -1823 ((-1288) $)) (-15 -3710 ((-1288) $)) (-15 -2598 ((-1288) $)) (-15 -1424 ((-1288) $)) (-15 -2203 ((-1288) $)) (-15 -2540 ((-1288) $)) (-15 -1801 ((-1288) $)) (-15 -3325 ((-1288) $)) (-15 -2499 ((-1288) $)) (-15 -1694 ((-1288) $)) (-15 -3895 ((-1288) $)) (-15 -3566 ((-1288) $)) (-15 -3336 ((-574) $)) (-15 -4287 ((-227) $)) (-15 -1434 ((-1192) $)) (-15 -1703 ((-1174) $)) (-15 -2592 ((-2 (|:| |cd| (-1174)) (|:| -2040 (-1174))) $)) (-15 -2370 ((-1192) $))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 13)) (-3838 (((-112) $ $) NIL)) (-4423 (($) 16)) (-3619 (($) 14)) (-4202 (($) 17)) (-1827 (($) 15)) (-2985 (((-112) $ $) 9))) -(((-833) (-13 (-1115) (-10 -8 (-15 -3619 ($)) (-15 -4423 ($)) (-15 -4202 ($)) (-15 -1827 ($))))) (T -833)) -((-3619 (*1 *1) (-5 *1 (-833))) (-4423 (*1 *1) (-5 *1 (-833))) (-4202 (*1 *1) (-5 *1 (-833))) (-1827 (*1 *1) (-5 *1 (-833)))) -(-13 (-1115) (-10 -8 (-15 -3619 ($)) (-15 -4423 ($)) (-15 -4202 ($)) (-15 -1827 ($)))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 23) (($ (-1192)) 19)) (-3838 (((-112) $ $) NIL)) (-3876 (((-112) $) 10)) (-3603 (((-112) $) 9)) (-1414 (((-112) $) 11)) (-2435 (((-112) $) 8)) (-2985 (((-112) $ $) 21))) -(((-834) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-1192))) (-15 -2435 ((-112) $)) (-15 -3603 ((-112) $)) (-15 -3876 ((-112) $)) (-15 -1414 ((-112) $))))) (T -834)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-834)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) -(-13 (-1115) (-10 -8 (-15 -2950 ($ (-1192))) (-15 -2435 ((-112) $)) (-15 -3603 ((-112) $)) (-15 -3876 ((-112) $)) (-15 -1414 ((-112) $)))) -((-2863 (((-112) $ $) NIL)) (-3720 (($ (-834) (-654 (-1192))) 32)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1525 (((-834) $) 33)) (-3182 (((-654 (-1192)) $) 34)) (-2950 (((-872) $) 31)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-835) (-13 (-1115) (-10 -8 (-15 -1525 ((-834) $)) (-15 -3182 ((-654 (-1192)) $)) (-15 -3720 ($ (-834) (-654 (-1192))))))) (T -835)) -((-1525 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-835)))) (-3720 (*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1192))) (-5 *1 (-835))))) -(-13 (-1115) (-10 -8 (-15 -1525 ((-834) $)) (-15 -3182 ((-654 (-1192)) $)) (-15 -3720 ($ (-834) (-654 (-1192)))))) -((-4057 (((-1288) (-832) (-324 |#1|) (-112)) 23) (((-1288) (-832) (-324 |#1|)) 89) (((-1174) (-324 |#1|) (-112)) 88) (((-1174) (-324 |#1|)) 87))) -(((-836 |#1|) (-10 -7 (-15 -4057 ((-1174) (-324 |#1|))) (-15 -4057 ((-1174) (-324 |#1|) (-112))) (-15 -4057 ((-1288) (-832) (-324 |#1|))) (-15 -4057 ((-1288) (-832) (-324 |#1|) (-112)))) (-13 (-838) (-1064))) (T -836)) -((-4057 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-838) (-1064))) (-5 *2 (-1288)) (-5 *1 (-836 *6)))) (-4057 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1064))) (-5 *2 (-1288)) (-5 *1 (-836 *5)))) (-4057 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1064))) (-5 *2 (-1174)) (-5 *1 (-836 *5)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1064))) (-5 *2 (-1174)) (-5 *1 (-836 *4))))) -(-10 -7 (-15 -4057 ((-1174) (-324 |#1|))) (-15 -4057 ((-1174) (-324 |#1|) (-112))) (-15 -4057 ((-1288) (-832) (-324 |#1|))) (-15 -4057 ((-1288) (-832) (-324 |#1|) (-112)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-3620 ((|#1| $) 10)) (-4284 (($ |#1|) 9)) (-3372 (((-112) $) NIL)) (-4327 (($ |#2| (-781)) NIL)) (-1503 (((-781) $) NIL)) (-1377 ((|#2| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3878 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-3584 (((-781) $) NIL)) (-2950 (((-872) $) 17) (($ (-574)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-2930 ((|#2| $ (-781)) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-837 |#1| |#2|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4284 ($ |#1|)) (-15 -3620 (|#1| $)))) (-718 |#2|) (-1064)) (T -837)) -((-4284 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3)))) (-3620 (*1 *2 *1) (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1064))))) -(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4284 ($ |#1|)) (-15 -3620 (|#1| $)))) -((-4057 (((-1288) (-832) $ (-112)) 9) (((-1288) (-832) $) 8) (((-1174) $ (-112)) 7) (((-1174) $) 6))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2378 (($ (-1136)) 7)) (-4257 (((-112) $ (-1175) (-1136)) 15)) (-4147 (((-832) $) 12)) (-3994 (((-832) $) 11)) (-3201 (((-1289) $) 9)) (-3647 (((-112) $ (-1136)) 16))) +(((-831) (-10 -8 (-15 -2378 ($ (-1136))) (-15 -3201 ((-1289) $)) (-15 -3994 ((-832) $)) (-15 -4147 ((-832) $)) (-15 -4257 ((-112) $ (-1175) (-1136))) (-15 -3647 ((-112) $ (-1136))))) (T -831)) +((-3647 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-112)) (-5 *1 (-831)))) (-4257 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-1136)) (-5 *2 (-112)) (-5 *1 (-831)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-831)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-831))))) +(-10 -8 (-15 -2378 ($ (-1136))) (-15 -3201 ((-1289) $)) (-15 -3994 ((-832) $)) (-15 -4147 ((-832) $)) (-15 -4257 ((-112) $ (-1175) (-1136))) (-15 -3647 ((-112) $ (-1136)))) +((-2826 (((-1289) $ (-833)) 12)) (-1940 (((-1289) $ (-1193)) 32)) (-2956 (((-1289) $ (-1175) (-1175)) 34)) (-3867 (((-1289) $ (-1175)) 33)) (-1491 (((-1289) $) 19)) (-3569 (((-1289) $ (-574)) 28)) (-2564 (((-1289) $ (-227)) 30)) (-2352 (((-1289) $) 18)) (-1487 (((-1289) $) 26)) (-3799 (((-1289) $) 25)) (-2212 (((-1289) $) 23)) (-2668 (((-1289) $) 24)) (-1842 (((-1289) $) 22)) (-4015 (((-1289) $) 21)) (-1349 (((-1289) $) 20)) (-2734 (((-1289) $) 16)) (-2356 (((-1289) $) 17)) (-2442 (((-1289) $) 15)) (-1773 (((-1289) $) 14)) (-1691 (((-1289) $) 13)) (-3412 (($ (-1175) (-833)) 9)) (-3419 (($ (-1175) (-1175) (-833)) 8)) (-4429 (((-1193) $) 51)) (-3786 (((-1193) $) 55)) (-1726 (((-2 (|:| |cd| (-1175)) (|:| -2039 (-1175))) $) 54)) (-1947 (((-1175) $) 52)) (-1915 (((-1289) $) 41)) (-1365 (((-574) $) 49)) (-3440 (((-227) $) 50)) (-1376 (((-1289) $) 40)) (-2601 (((-1289) $) 48)) (-1467 (((-1289) $) 47)) (-4411 (((-1289) $) 45)) (-4230 (((-1289) $) 46)) (-2437 (((-1289) $) 44)) (-3637 (((-1289) $) 43)) (-3358 (((-1289) $) 42)) (-1480 (((-1289) $) 38)) (-1322 (((-1289) $) 39)) (-1550 (((-1289) $) 37)) (-3147 (((-1289) $) 36)) (-4408 (((-1289) $) 35)) (-2268 (((-1289) $) 11))) +(((-832) (-10 -8 (-15 -3419 ($ (-1175) (-1175) (-833))) (-15 -3412 ($ (-1175) (-833))) (-15 -2268 ((-1289) $)) (-15 -2826 ((-1289) $ (-833))) (-15 -1691 ((-1289) $)) (-15 -1773 ((-1289) $)) (-15 -2442 ((-1289) $)) (-15 -2734 ((-1289) $)) (-15 -2356 ((-1289) $)) (-15 -2352 ((-1289) $)) (-15 -1491 ((-1289) $)) (-15 -1349 ((-1289) $)) (-15 -4015 ((-1289) $)) (-15 -1842 ((-1289) $)) (-15 -2212 ((-1289) $)) (-15 -2668 ((-1289) $)) (-15 -3799 ((-1289) $)) (-15 -1487 ((-1289) $)) (-15 -3569 ((-1289) $ (-574))) (-15 -2564 ((-1289) $ (-227))) (-15 -1940 ((-1289) $ (-1193))) (-15 -3867 ((-1289) $ (-1175))) (-15 -2956 ((-1289) $ (-1175) (-1175))) (-15 -4408 ((-1289) $)) (-15 -3147 ((-1289) $)) (-15 -1550 ((-1289) $)) (-15 -1480 ((-1289) $)) (-15 -1322 ((-1289) $)) (-15 -1376 ((-1289) $)) (-15 -1915 ((-1289) $)) (-15 -3358 ((-1289) $)) (-15 -3637 ((-1289) $)) (-15 -2437 ((-1289) $)) (-15 -4411 ((-1289) $)) (-15 -4230 ((-1289) $)) (-15 -1467 ((-1289) $)) (-15 -2601 ((-1289) $)) (-15 -1365 ((-574) $)) (-15 -3440 ((-227) $)) (-15 -4429 ((-1193) $)) (-15 -1947 ((-1175) $)) (-15 -1726 ((-2 (|:| |cd| (-1175)) (|:| -2039 (-1175))) $)) (-15 -3786 ((-1193) $)))) (T -832)) +((-3786 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-832)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1175)) (|:| -2039 (-1175)))) (-5 *1 (-832)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-832)))) (-4429 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-832)))) (-3440 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-4230 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-4411 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3147 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-4408 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2956 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-1940 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-2564 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2212 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1349 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2352 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2734 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2826 (*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3412 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-833)) (-5 *1 (-832)))) (-3419 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-833)) (-5 *1 (-832))))) +(-10 -8 (-15 -3419 ($ (-1175) (-1175) (-833))) (-15 -3412 ($ (-1175) (-833))) (-15 -2268 ((-1289) $)) (-15 -2826 ((-1289) $ (-833))) (-15 -1691 ((-1289) $)) (-15 -1773 ((-1289) $)) (-15 -2442 ((-1289) $)) (-15 -2734 ((-1289) $)) (-15 -2356 ((-1289) $)) (-15 -2352 ((-1289) $)) (-15 -1491 ((-1289) $)) (-15 -1349 ((-1289) $)) (-15 -4015 ((-1289) $)) (-15 -1842 ((-1289) $)) (-15 -2212 ((-1289) $)) (-15 -2668 ((-1289) $)) (-15 -3799 ((-1289) $)) (-15 -1487 ((-1289) $)) (-15 -3569 ((-1289) $ (-574))) (-15 -2564 ((-1289) $ (-227))) (-15 -1940 ((-1289) $ (-1193))) (-15 -3867 ((-1289) $ (-1175))) (-15 -2956 ((-1289) $ (-1175) (-1175))) (-15 -4408 ((-1289) $)) (-15 -3147 ((-1289) $)) (-15 -1550 ((-1289) $)) (-15 -1480 ((-1289) $)) (-15 -1322 ((-1289) $)) (-15 -1376 ((-1289) $)) (-15 -1915 ((-1289) $)) (-15 -3358 ((-1289) $)) (-15 -3637 ((-1289) $)) (-15 -2437 ((-1289) $)) (-15 -4411 ((-1289) $)) (-15 -4230 ((-1289) $)) (-15 -1467 ((-1289) $)) (-15 -2601 ((-1289) $)) (-15 -1365 ((-574) $)) (-15 -3440 ((-227) $)) (-15 -4429 ((-1193) $)) (-15 -1947 ((-1175) $)) (-15 -1726 ((-2 (|:| |cd| (-1175)) (|:| -2039 (-1175))) $)) (-15 -3786 ((-1193) $))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 13)) (-4069 (((-112) $ $) NIL)) (-1383 (($) 16)) (-2858 (($) 14)) (-2161 (($) 17)) (-4323 (($) 15)) (-2986 (((-112) $ $) 9))) +(((-833) (-13 (-1116) (-10 -8 (-15 -2858 ($)) (-15 -1383 ($)) (-15 -2161 ($)) (-15 -4323 ($))))) (T -833)) +((-2858 (*1 *1) (-5 *1 (-833))) (-1383 (*1 *1) (-5 *1 (-833))) (-2161 (*1 *1) (-5 *1 (-833))) (-4323 (*1 *1) (-5 *1 (-833)))) +(-13 (-1116) (-10 -8 (-15 -2858 ($)) (-15 -1383 ($)) (-15 -2161 ($)) (-15 -4323 ($)))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 23) (($ (-1193)) 19)) (-4069 (((-112) $ $) NIL)) (-2397 (((-112) $) 10)) (-4396 (((-112) $) 9)) (-2740 (((-112) $) 11)) (-1650 (((-112) $) 8)) (-2986 (((-112) $ $) 21))) +(((-834) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-1193))) (-15 -1650 ((-112) $)) (-15 -4396 ((-112) $)) (-15 -2397 ((-112) $)) (-15 -2740 ((-112) $))))) (T -834)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-834)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-2740 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) +(-13 (-1116) (-10 -8 (-15 -2951 ($ (-1193))) (-15 -1650 ((-112) $)) (-15 -4396 ((-112) $)) (-15 -2397 ((-112) $)) (-15 -2740 ((-112) $)))) +((-2864 (((-112) $ $) NIL)) (-2485 (($ (-834) (-654 (-1193))) 32)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3942 (((-834) $) 33)) (-4254 (((-654 (-1193)) $) 34)) (-2951 (((-872) $) 31)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-835) (-13 (-1116) (-10 -8 (-15 -3942 ((-834) $)) (-15 -4254 ((-654 (-1193)) $)) (-15 -2485 ($ (-834) (-654 (-1193))))))) (T -835)) +((-3942 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835)))) (-4254 (*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-835)))) (-2485 (*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1193))) (-5 *1 (-835))))) +(-13 (-1116) (-10 -8 (-15 -3942 ((-834) $)) (-15 -4254 ((-654 (-1193)) $)) (-15 -2485 ($ (-834) (-654 (-1193)))))) +((-3927 (((-1289) (-832) (-324 |#1|) (-112)) 23) (((-1289) (-832) (-324 |#1|)) 89) (((-1175) (-324 |#1|) (-112)) 88) (((-1175) (-324 |#1|)) 87))) +(((-836 |#1|) (-10 -7 (-15 -3927 ((-1175) (-324 |#1|))) (-15 -3927 ((-1175) (-324 |#1|) (-112))) (-15 -3927 ((-1289) (-832) (-324 |#1|))) (-15 -3927 ((-1289) (-832) (-324 |#1|) (-112)))) (-13 (-838) (-1065))) (T -836)) +((-3927 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-838) (-1065))) (-5 *2 (-1289)) (-5 *1 (-836 *6)))) (-3927 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1065))) (-5 *2 (-1289)) (-5 *1 (-836 *5)))) (-3927 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1065))) (-5 *2 (-1175)) (-5 *1 (-836 *5)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1065))) (-5 *2 (-1175)) (-5 *1 (-836 *4))))) +(-10 -7 (-15 -3927 ((-1175) (-324 |#1|))) (-15 -3927 ((-1175) (-324 |#1|) (-112))) (-15 -3927 ((-1289) (-832) (-324 |#1|))) (-15 -3927 ((-1289) (-832) (-324 |#1|) (-112)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-4388 ((|#1| $) 10)) (-4285 (($ |#1|) 9)) (-4226 (((-112) $) NIL)) (-4328 (($ |#2| (-781)) NIL)) (-3192 (((-781) $) NIL)) (-1378 ((|#2| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3879 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-3580 (((-781) $) NIL)) (-2951 (((-872) $) 17) (($ (-574)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-2706 ((|#2| $ (-781)) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-837 |#1| |#2|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4285 ($ |#1|)) (-15 -4388 (|#1| $)))) (-718 |#2|) (-1065)) (T -837)) +((-4285 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3)))) (-4388 (*1 *2 *1) (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1065))))) +(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4285 ($ |#1|)) (-15 -4388 (|#1| $)))) +((-3927 (((-1289) (-832) $ (-112)) 9) (((-1289) (-832) $) 8) (((-1175) $ (-112)) 7) (((-1175) $) 6))) (((-838) (-141)) (T -838)) -((-4057 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1288)))) (-4057 (*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1288)))) (-4057 (*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1174)))) (-4057 (*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1174))))) -(-13 (-10 -8 (-15 -4057 ((-1174) $)) (-15 -4057 ((-1174) $ (-112))) (-15 -4057 ((-1288) (-832) $)) (-15 -4057 ((-1288) (-832) $ (-112))))) -((-1465 (((-320) (-1174) (-1174)) 12)) (-2322 (((-112) (-1174) (-1174)) 34)) (-3951 (((-112) (-1174)) 33)) (-3361 (((-52) (-1174)) 25)) (-3017 (((-52) (-1174)) 23)) (-2436 (((-52) (-832)) 17)) (-3218 (((-654 (-1174)) (-1174)) 28)) (-3569 (((-654 (-1174))) 27))) -(((-839) (-10 -7 (-15 -2436 ((-52) (-832))) (-15 -3017 ((-52) (-1174))) (-15 -3361 ((-52) (-1174))) (-15 -3569 ((-654 (-1174)))) (-15 -3218 ((-654 (-1174)) (-1174))) (-15 -3951 ((-112) (-1174))) (-15 -2322 ((-112) (-1174) (-1174))) (-15 -1465 ((-320) (-1174) (-1174))))) (T -839)) -((-1465 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-839)))) (-2322 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-112)) (-5 *1 (-839)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-112)) (-5 *1 (-839)))) (-3218 (*1 *2 *3) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-839)) (-5 *3 (-1174)))) (-3569 (*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-839)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-839)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-839)))) (-2436 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839))))) -(-10 -7 (-15 -2436 ((-52) (-832))) (-15 -3017 ((-52) (-1174))) (-15 -3361 ((-52) (-1174))) (-15 -3569 ((-654 (-1174)))) (-15 -3218 ((-654 (-1174)) (-1174))) (-15 -3951 ((-112) (-1174))) (-15 -2322 ((-112) (-1174) (-1174))) (-15 -1465 ((-320) (-1174) (-1174)))) -((-2863 (((-112) $ $) 19)) (-4352 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2627 (($ $ $) 73)) (-3415 (((-112) $ $) 74)) (-2818 (((-112) $ (-781)) 8)) (-1516 (($ (-654 |#1|)) 69) (($) 68)) (-2551 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2098 (($ $) 63)) (-2560 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1941 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3304 (((-112) $ $) 65)) (-2224 (((-112) $ (-781)) 9)) (-3632 ((|#1| $) 79)) (-2857 (($ $ $) 82)) (-4297 (($ $ $) 81)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1593 ((|#1| $) 80)) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22)) (-1454 (($ $ $) 70)) (-1748 ((|#1| $) 40)) (-2609 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3939 (((-1135) $) 21)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3484 ((|#1| $) 42)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3875 (((-654 (-2 (|:| -1917 |#1|) (|:| -3948 (-781)))) $) 62)) (-3728 (($ $ |#1|) 72) (($ $ $) 71)) (-3667 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-2950 (((-872) $) 18)) (-4268 (($ (-654 |#1|)) 67) (($) 66)) (-3838 (((-112) $ $) 23)) (-3180 (($ (-654 |#1|)) 43)) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20)) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +((-3927 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1289)))) (-3927 (*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1289)))) (-3927 (*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1175)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1175))))) +(-13 (-10 -8 (-15 -3927 ((-1175) $)) (-15 -3927 ((-1175) $ (-112))) (-15 -3927 ((-1289) (-832) $)) (-15 -3927 ((-1289) (-832) $ (-112))))) +((-4209 (((-320) (-1175) (-1175)) 12)) (-3812 (((-112) (-1175) (-1175)) 34)) (-2947 (((-112) (-1175)) 33)) (-3759 (((-52) (-1175)) 25)) (-3195 (((-52) (-1175)) 23)) (-4422 (((-52) (-832)) 17)) (-2190 (((-654 (-1175)) (-1175)) 28)) (-2742 (((-654 (-1175))) 27))) +(((-839) (-10 -7 (-15 -4422 ((-52) (-832))) (-15 -3195 ((-52) (-1175))) (-15 -3759 ((-52) (-1175))) (-15 -2742 ((-654 (-1175)))) (-15 -2190 ((-654 (-1175)) (-1175))) (-15 -2947 ((-112) (-1175))) (-15 -3812 ((-112) (-1175) (-1175))) (-15 -4209 ((-320) (-1175) (-1175))))) (T -839)) +((-4209 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-839)))) (-3812 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-839)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-839)))) (-2190 (*1 *2 *3) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-839)) (-5 *3 (-1175)))) (-2742 (*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-839)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-839)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-839)))) (-4422 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839))))) +(-10 -7 (-15 -4422 ((-52) (-832))) (-15 -3195 ((-52) (-1175))) (-15 -3759 ((-52) (-1175))) (-15 -2742 ((-654 (-1175)))) (-15 -2190 ((-654 (-1175)) (-1175))) (-15 -2947 ((-112) (-1175))) (-15 -3812 ((-112) (-1175) (-1175))) (-15 -4209 ((-320) (-1175) (-1175)))) +((-2864 (((-112) $ $) 19)) (-4353 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4302 (($ $ $) 73)) (-1917 (((-112) $ $) 74)) (-3146 (((-112) $ (-781)) 8)) (-1515 (($ (-654 |#1|)) 69) (($) 68)) (-1923 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2088 (($ $) 63)) (-2804 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2424 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2714 (((-112) $ $) 65)) (-2189 (((-112) $ (-781)) 9)) (-3634 ((|#1| $) 79)) (-4349 (($ $ $) 82)) (-3404 (($ $ $) 81)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-4380 ((|#1| $) 80)) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22)) (-3891 (($ $ $) 70)) (-2375 ((|#1| $) 40)) (-3285 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3940 (((-1136) $) 21)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3801 ((|#1| $) 42)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2446 (((-654 (-2 (|:| -1916 |#1|) (|:| -3949 (-781)))) $) 62)) (-2533 (($ $ |#1|) 72) (($ $ $) 71)) (-3162 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2951 (((-872) $) 18)) (-4269 (($ (-654 |#1|)) 67) (($) 66)) (-4069 (((-112) $ $) 23)) (-2829 (($ (-654 |#1|)) 43)) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20)) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) (((-840 |#1|) (-141) (-860)) (T -840)) -((-3632 (*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-860))))) -(-13 (-746 |t#1|) (-983 |t#1|) (-10 -8 (-15 -3632 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-705 |#1|) . T) ((-746 |#1|) . T) ((-983 |#1|) . T) ((-1113 |#1|) . T) ((-1115) . T) ((-1233) . T)) -((-4147 (((-1288) (-1135) (-1135)) 48)) (-2088 (((-1288) (-831) (-52)) 45)) (-2082 (((-52) (-831)) 16))) -(((-841) (-10 -7 (-15 -2082 ((-52) (-831))) (-15 -2088 ((-1288) (-831) (-52))) (-15 -4147 ((-1288) (-1135) (-1135))))) (T -841)) -((-4147 (*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1288)) (-5 *1 (-841)))) (-2088 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1288)) (-5 *1 (-841)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841))))) -(-10 -7 (-15 -2082 ((-52) (-831))) (-15 -2088 ((-1288) (-831) (-52))) (-15 -4147 ((-1288) (-1135) (-1135)))) -((-1786 (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)) 12) (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|)) 13))) -(((-842 |#1| |#2|) (-10 -7 (-15 -1786 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1786 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)))) (-1115) (-1115)) (T -842)) -((-1786 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *1 (-842 *5 *6)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6))))) -(-10 -7 (-15 -1786 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1786 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL (|has| |#1| (-21)))) (-1597 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3011 (((-574) $) NIL (|has| |#1| (-858)))) (-3831 (($) NIL (|has| |#1| (-21)) CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 15)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 9)) (-3911 (((-3 $ "failed") $) 42 (|has| |#1| (-858)))) (-1955 (((-3 (-417 (-574)) "failed") $) 52 (|has| |#1| (-555)))) (-1519 (((-112) $) 46 (|has| |#1| (-555)))) (-4188 (((-417 (-574)) $) 49 (|has| |#1| (-555)))) (-1913 (((-112) $) NIL (|has| |#1| (-858)))) (-3372 (((-112) $) NIL (|has| |#1| (-858)))) (-1808 (((-112) $) NIL (|has| |#1| (-858)))) (-3632 (($ $ $) NIL (|has| |#1| (-858)))) (-1593 (($ $ $) NIL (|has| |#1| (-858)))) (-3945 (((-1174) $) NIL)) (-1754 (($) 13)) (-3605 (((-112) $) 12)) (-3939 (((-1135) $) NIL)) (-2342 (((-112) $) 11)) (-2950 (((-872) $) 18) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2832 (|has| |#1| (-858)) (|has| |#1| (-1053 (-574)))))) (-4019 (((-781)) 36 (|has| |#1| (-858)) CONST)) (-3838 (((-112) $ $) 54)) (-3306 (($ $) NIL (|has| |#1| (-858)))) (-2142 (($) 23 (|has| |#1| (-21)) CONST)) (-2154 (($) 33 (|has| |#1| (-858)) CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2985 (((-112) $ $) 21)) (-3029 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3009 (((-112) $ $) 45 (|has| |#1| (-858)))) (-3089 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3074 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-934)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 39 (|has| |#1| (-858))) (($ (-574) $) 27 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-934) $) NIL (|has| |#1| (-21))))) -(((-843 |#1|) (-13 (-1115) (-421 |#1|) (-10 -8 (-15 -1754 ($)) (-15 -2342 ((-112) $)) (-15 -3605 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1519 ((-112) $)) (-15 -4188 ((-417 (-574)) $)) (-15 -1955 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1115)) (T -843)) -((-1754 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1115)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1115)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1115)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) (-1955 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1115))))) -(-13 (-1115) (-421 |#1|) (-10 -8 (-15 -1754 ($)) (-15 -2342 ((-112) $)) (-15 -3605 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1519 ((-112) $)) (-15 -4188 ((-417 (-574)) $)) (-15 -1955 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) -((-3571 (((-112) $ |#2|) 14)) (-2950 (((-872) $) 11))) -(((-844 |#1| |#2|) (-10 -8 (-15 -3571 ((-112) |#1| |#2|)) (-15 -2950 ((-872) |#1|))) (-845 |#2|) (-1115)) (T -844)) -NIL -(-10 -8 (-15 -3571 ((-112) |#1| |#2|)) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-2040 ((|#1| $) 16)) (-3945 (((-1174) $) 10)) (-3571 (((-112) $ |#1|) 14)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2533 (((-55) $) 15)) (-2985 (((-112) $ $) 6))) -(((-845 |#1|) (-141) (-1115)) (T -845)) -((-2040 (*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1115)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1115)) (-5 *2 (-55)))) (-3571 (*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) -(-13 (-1115) (-10 -8 (-15 -2040 (|t#1| $)) (-15 -2533 ((-55) $)) (-15 -3571 ((-112) $ |t#1|)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-115) $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-3189 ((|#1| (-115) |#1|) NIL)) (-3372 (((-112) $) NIL)) (-2189 (($ |#1| (-370 (-115))) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3329 (($ $ (-1 |#1| |#1|)) NIL)) (-1980 (($ $ (-1 |#1| |#1|)) NIL)) (-2208 ((|#1| $ |#1|) NIL)) (-3165 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-3132 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-846 |#1|) (-13 (-1064) (-1053 |#1|) (-1053 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3132 ($ $)) (-15 -3132 ($ $ $)) (-15 -3165 (|#1| |#1|))) |%noBranch|) (-15 -1980 ($ $ (-1 |#1| |#1|))) (-15 -3329 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3189 (|#1| (-115) |#1|)) (-15 -2189 ($ |#1| (-370 (-115)))))) (-1064)) (T -846)) -((-3132 (*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064)))) (-3132 (*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064)))) (-3165 (*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064)))) (-1980 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-846 *3)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-846 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1064)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1064)))) (-3189 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1064)))) (-2189 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1064))))) -(-13 (-1064) (-1053 |#1|) (-1053 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3132 ($ $)) (-15 -3132 ($ $ $)) (-15 -3165 (|#1| |#1|))) |%noBranch|) (-15 -1980 ($ $ (-1 |#1| |#1|))) (-15 -3329 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3189 (|#1| (-115) |#1|)) (-15 -2189 ($ |#1| (-370 (-115)))))) -((-4396 (((-216 (-512)) (-1174)) 9))) -(((-847) (-10 -7 (-15 -4396 ((-216 (-512)) (-1174))))) (T -847)) -((-4396 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-216 (-512))) (-5 *1 (-847))))) -(-10 -7 (-15 -4396 ((-216 (-512)) (-1174)))) -((-2863 (((-112) $ $) NIL)) (-3131 (((-1133) $) 10)) (-2040 (((-516) $) 9)) (-3945 (((-1174) $) NIL)) (-3571 (((-112) $ (-516)) NIL)) (-3939 (((-1135) $) NIL)) (-2962 (($ (-516) (-1133)) 8)) (-2950 (((-872) $) 25)) (-3838 (((-112) $ $) NIL)) (-2533 (((-55) $) 20)) (-2985 (((-112) $ $) 12))) -(((-848) (-13 (-845 (-516)) (-10 -8 (-15 -3131 ((-1133) $)) (-15 -2962 ($ (-516) (-1133)))))) (T -848)) -((-3131 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-848)))) (-2962 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1133)) (-5 *1 (-848))))) -(-13 (-845 (-516)) (-10 -8 (-15 -3131 ((-1133) $)) (-15 -2962 ($ (-516) (-1133))))) -((-2863 (((-112) $ $) 7)) (-1795 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 15) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 17) (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 16)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +((-3634 (*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-860))))) +(-13 (-746 |t#1|) (-984 |t#1|) (-10 -8 (-15 -3634 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-705 |#1|) . T) ((-746 |#1|) . T) ((-984 |#1|) . T) ((-1114 |#1|) . T) ((-1116) . T) ((-1234) . T)) +((-2895 (((-1289) (-1136) (-1136)) 48)) (-3519 (((-1289) (-831) (-52)) 45)) (-2689 (((-52) (-831)) 16))) +(((-841) (-10 -7 (-15 -2689 ((-52) (-831))) (-15 -3519 ((-1289) (-831) (-52))) (-15 -2895 ((-1289) (-1136) (-1136))))) (T -841)) +((-2895 (*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1289)) (-5 *1 (-841)))) (-3519 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1289)) (-5 *1 (-841)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841))))) +(-10 -7 (-15 -2689 ((-52) (-831))) (-15 -3519 ((-1289) (-831) (-52))) (-15 -2895 ((-1289) (-1136) (-1136)))) +((-1785 (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)) 12) (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|)) 13))) +(((-842 |#1| |#2|) (-10 -7 (-15 -1785 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1785 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)))) (-1116) (-1116)) (T -842)) +((-1785 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *1 (-842 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6))))) +(-10 -7 (-15 -1785 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1785 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL (|has| |#1| (-21)))) (-2600 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2472 (((-574) $) NIL (|has| |#1| (-858)))) (-3250 (($) NIL (|has| |#1| (-21)) CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 15)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 9)) (-4322 (((-3 $ "failed") $) 42 (|has| |#1| (-858)))) (-3577 (((-3 (-417 (-574)) "failed") $) 52 (|has| |#1| (-555)))) (-3839 (((-112) $) 46 (|has| |#1| (-555)))) (-2842 (((-417 (-574)) $) 49 (|has| |#1| (-555)))) (-3408 (((-112) $) NIL (|has| |#1| (-858)))) (-4226 (((-112) $) NIL (|has| |#1| (-858)))) (-3182 (((-112) $) NIL (|has| |#1| (-858)))) (-3634 (($ $ $) NIL (|has| |#1| (-858)))) (-4380 (($ $ $) NIL (|has| |#1| (-858)))) (-1489 (((-1175) $) NIL)) (-1752 (($) 13)) (-1668 (((-112) $) 12)) (-3940 (((-1136) $) NIL)) (-1623 (((-112) $) 11)) (-2951 (((-872) $) 18) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2833 (|has| |#1| (-858)) (|has| |#1| (-1054 (-574)))))) (-2898 (((-781)) 36 (|has| |#1| (-858)) CONST)) (-4069 (((-112) $ $) 54)) (-3936 (($ $) NIL (|has| |#1| (-858)))) (-2141 (($) 23 (|has| |#1| (-21)) CONST)) (-2153 (($) 33 (|has| |#1| (-858)) CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2986 (((-112) $ $) 21)) (-3030 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3009 (((-112) $ $) 45 (|has| |#1| (-858)))) (-3090 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3074 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-935)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 39 (|has| |#1| (-858))) (($ (-574) $) 27 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-935) $) NIL (|has| |#1| (-21))))) +(((-843 |#1|) (-13 (-1116) (-421 |#1|) (-10 -8 (-15 -1752 ($)) (-15 -1623 ((-112) $)) (-15 -1668 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3839 ((-112) $)) (-15 -2842 ((-417 (-574)) $)) (-15 -3577 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1116)) (T -843)) +((-1752 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1116)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1116)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1116)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))) (-3577 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1116))))) +(-13 (-1116) (-421 |#1|) (-10 -8 (-15 -1752 ($)) (-15 -1623 ((-112) $)) (-15 -1668 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3839 ((-112) $)) (-15 -2842 ((-417 (-574)) $)) (-15 -3577 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) +((-2154 (((-112) $ |#2|) 14)) (-2951 (((-872) $) 11))) +(((-844 |#1| |#2|) (-10 -8 (-15 -2154 ((-112) |#1| |#2|)) (-15 -2951 ((-872) |#1|))) (-845 |#2|) (-1116)) (T -844)) +NIL +(-10 -8 (-15 -2154 ((-112) |#1| |#2|)) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-2039 ((|#1| $) 16)) (-1489 (((-1175) $) 10)) (-2154 (((-112) $ |#1|) 14)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2875 (((-55) $) 15)) (-2986 (((-112) $ $) 6))) +(((-845 |#1|) (-141) (-1116)) (T -845)) +((-2039 (*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1116)))) (-2875 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1116)) (-5 *2 (-55)))) (-2154 (*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1116)) (-5 *2 (-112))))) +(-13 (-1116) (-10 -8 (-15 -2039 (|t#1| $)) (-15 -2875 ((-55) $)) (-15 -2154 ((-112) $ |t#1|)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2214 ((|#1| $) NIL) (((-115) $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-1836 ((|#1| (-115) |#1|) NIL)) (-4226 (((-112) $) NIL)) (-1421 (($ |#1| (-370 (-115))) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4259 (($ $ (-1 |#1| |#1|)) NIL)) (-3282 (($ $ (-1 |#1| |#1|)) NIL)) (-2207 ((|#1| $ |#1|) NIL)) (-2053 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2181 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-846 |#1|) (-13 (-1065) (-1054 |#1|) (-1054 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2181 ($ $)) (-15 -2181 ($ $ $)) (-15 -2053 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#1| |#1|))) (-15 -4259 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -1836 (|#1| (-115) |#1|)) (-15 -1421 ($ |#1| (-370 (-115)))))) (-1065)) (T -846)) +((-2181 (*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065)))) (-2181 (*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065)))) (-2053 (*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-846 *3)))) (-4259 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-846 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1065)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1065)))) (-1836 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1065)))) (-1421 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1065))))) +(-13 (-1065) (-1054 |#1|) (-1054 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2181 ($ $)) (-15 -2181 ($ $ $)) (-15 -2053 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#1| |#1|))) (-15 -4259 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -1836 (|#1| (-115) |#1|)) (-15 -1421 ($ |#1| (-370 (-115)))))) +((-3143 (((-216 (-512)) (-1175)) 9))) +(((-847) (-10 -7 (-15 -3143 ((-216 (-512)) (-1175))))) (T -847)) +((-3143 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-216 (-512))) (-5 *1 (-847))))) +(-10 -7 (-15 -3143 ((-216 (-512)) (-1175)))) +((-2864 (((-112) $ $) NIL)) (-3132 (((-1134) $) 10)) (-2039 (((-516) $) 9)) (-1489 (((-1175) $) NIL)) (-2154 (((-112) $ (-516)) NIL)) (-3940 (((-1136) $) NIL)) (-2963 (($ (-516) (-1134)) 8)) (-2951 (((-872) $) 25)) (-4069 (((-112) $ $) NIL)) (-2875 (((-55) $) 20)) (-2986 (((-112) $ $) 12))) +(((-848) (-13 (-845 (-516)) (-10 -8 (-15 -3132 ((-1134) $)) (-15 -2963 ($ (-516) (-1134)))))) (T -848)) +((-3132 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-848)))) (-2963 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1134)) (-5 *1 (-848))))) +(-13 (-845 (-516)) (-10 -8 (-15 -3132 ((-1134) $)) (-15 -2963 ($ (-516) (-1134))))) +((-2864 (((-112) $ $) 7)) (-3869 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 15) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 17) (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 16)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) (((-849) (-141)) (T -849)) -((-4260 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)))))) (-4260 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)))))) (-1795 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-1050)))) (-1795 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-1050))))) -(-13 (-1115) (-10 -7 (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1795 ((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1795 ((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2726 (((-1050) (-654 (-324 (-388))) (-654 (-388))) 166) (((-1050) (-324 (-388)) (-654 (-388))) 164) (((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388)))) 162) (((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388)))) 160) (((-1050) (-851)) 125) (((-1050) (-851) (-1078)) 124)) (-4260 (((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851) (-1078)) 85) (((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851)) 87)) (-4339 (((-1050) (-654 (-324 (-388))) (-654 (-388))) 167) (((-1050) (-851)) 150))) -(((-850) (-10 -7 (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851) (-1078))) (-15 -2726 ((-1050) (-851) (-1078))) (-15 -2726 ((-1050) (-851))) (-15 -4339 ((-1050) (-851))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)))) (-15 -2726 ((-1050) (-654 (-324 (-388))) (-654 (-388)))) (-15 -4339 ((-1050) (-654 (-324 (-388))) (-654 (-388)))))) (T -850)) -((-4339 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1050)) (-5 *1 (-850)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-850)))) (-4260 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1078)) (-5 *2 (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-850)))) (-4260 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-850))))) -(-10 -7 (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851) (-1078))) (-15 -2726 ((-1050) (-851) (-1078))) (-15 -2726 ((-1050) (-851))) (-15 -4339 ((-1050) (-851))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)))) (-15 -2726 ((-1050) (-654 (-324 (-388))) (-654 (-388)))) (-15 -4339 ((-1050) (-654 (-324 (-388))) (-654 (-388))))) -((-2863 (((-112) $ $) NIL)) (-2216 (((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) $) 21)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 20) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14) (($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) 18)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-851) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2950 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -2950 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))))) (-15 -2216 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) $))))) (T -851)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-851)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *1 (-851)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) (-5 *1 (-851)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) (-5 *1 (-851))))) -(-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2950 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -2950 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))))) (-15 -2216 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) $)))) -((-1786 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)) 13) (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14))) -(((-852 |#1| |#2|) (-10 -7 (-15 -1786 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1786 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)))) (-1115) (-1115)) (T -852)) -((-1786 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *1 (-852 *5 *6)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))) -(-10 -7 (-15 -1786 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1786 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL (|has| |#1| (-21)))) (-3651 (((-1135) $) 31)) (-1597 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3011 (((-574) $) NIL (|has| |#1| (-858)))) (-3831 (($) NIL (|has| |#1| (-21)) CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 18)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 9)) (-3911 (((-3 $ "failed") $) 58 (|has| |#1| (-858)))) (-1955 (((-3 (-417 (-574)) "failed") $) 65 (|has| |#1| (-555)))) (-1519 (((-112) $) 60 (|has| |#1| (-555)))) (-4188 (((-417 (-574)) $) 63 (|has| |#1| (-555)))) (-1913 (((-112) $) NIL (|has| |#1| (-858)))) (-2320 (($) 14)) (-3372 (((-112) $) NIL (|has| |#1| (-858)))) (-1808 (((-112) $) NIL (|has| |#1| (-858)))) (-2331 (($) 16)) (-3632 (($ $ $) NIL (|has| |#1| (-858)))) (-1593 (($ $ $) NIL (|has| |#1| (-858)))) (-3945 (((-1174) $) NIL)) (-3605 (((-112) $) 12)) (-3939 (((-1135) $) NIL)) (-2342 (((-112) $) 11)) (-2950 (((-872) $) 24) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2832 (|has| |#1| (-858)) (|has| |#1| (-1053 (-574)))))) (-4019 (((-781)) 51 (|has| |#1| (-858)) CONST)) (-3838 (((-112) $ $) NIL)) (-3306 (($ $) NIL (|has| |#1| (-858)))) (-2142 (($) 37 (|has| |#1| (-21)) CONST)) (-2154 (($) 48 (|has| |#1| (-858)) CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2985 (((-112) $ $) 35)) (-3029 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3009 (((-112) $ $) 59 (|has| |#1| (-858)))) (-3089 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3074 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-934)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 55 (|has| |#1| (-858))) (($ (-574) $) 42 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-934) $) NIL (|has| |#1| (-21))))) -(((-853 |#1|) (-13 (-1115) (-421 |#1|) (-10 -8 (-15 -2320 ($)) (-15 -2331 ($)) (-15 -2342 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -3651 ((-1135) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1519 ((-112) $)) (-15 -4188 ((-417 (-574)) $)) (-15 -1955 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1115)) (T -853)) -((-2320 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1115)))) (-2331 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1115)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1115)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1115)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-853 *3)) (-4 *3 (-1115)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) (-1955 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1115))))) -(-13 (-1115) (-421 |#1|) (-10 -8 (-15 -2320 ($)) (-15 -2331 ($)) (-15 -2342 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -3651 ((-1135) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1519 ((-112) $)) (-15 -4188 ((-417 (-574)) $)) (-15 -1955 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) -((-2863 (((-112) $ $) 7)) (-1496 (((-781)) 23)) (-2834 (($) 26)) (-3632 (($ $ $) 14) (($) 22 T CONST)) (-1593 (($ $ $) 15) (($) 21 T CONST)) (-3271 (((-934) $) 25)) (-3945 (((-1174) $) 10)) (-2590 (($ (-934)) 24)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19))) +((-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)))))) (-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)))))) (-3869 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-1051)))) (-3869 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-1051))))) +(-13 (-1116) (-10 -7 (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -3869 ((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -3869 ((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2727 (((-1051) (-654 (-324 (-388))) (-654 (-388))) 166) (((-1051) (-324 (-388)) (-654 (-388))) 164) (((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388)))) 162) (((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388)))) 160) (((-1051) (-851)) 125) (((-1051) (-851) (-1079)) 124)) (-3175 (((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851) (-1079)) 85) (((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851)) 87)) (-3301 (((-1051) (-654 (-324 (-388))) (-654 (-388))) 167) (((-1051) (-851)) 150))) +(((-850) (-10 -7 (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851) (-1079))) (-15 -2727 ((-1051) (-851) (-1079))) (-15 -2727 ((-1051) (-851))) (-15 -3301 ((-1051) (-851))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)))) (-15 -2727 ((-1051) (-654 (-324 (-388))) (-654 (-388)))) (-15 -3301 ((-1051) (-654 (-324 (-388))) (-654 (-388)))))) (T -850)) +((-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1051)) (-5 *1 (-850)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-850)))) (-3175 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1079)) (-5 *2 (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-850)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-850))))) +(-10 -7 (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851) (-1079))) (-15 -2727 ((-1051) (-851) (-1079))) (-15 -2727 ((-1051) (-851))) (-15 -3301 ((-1051) (-851))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)))) (-15 -2727 ((-1051) (-654 (-324 (-388))) (-654 (-388)))) (-15 -3301 ((-1051) (-654 (-324 (-388))) (-654 (-388))))) +((-2864 (((-112) $ $) NIL)) (-2214 (((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) $) 21)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 20) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14) (($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) 18)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-851) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2951 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -2951 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))))) (-15 -2214 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) $))))) (T -851)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-851)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *1 (-851)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) (-5 *1 (-851)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) (-5 *1 (-851))))) +(-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2951 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -2951 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))))) (-15 -2214 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) $)))) +((-1785 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)) 13) (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14))) +(((-852 |#1| |#2|) (-10 -7 (-15 -1785 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1785 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)))) (-1116) (-1116)) (T -852)) +((-1785 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *1 (-852 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))) +(-10 -7 (-15 -1785 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1785 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL (|has| |#1| (-21)))) (-3105 (((-1136) $) 31)) (-2600 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2472 (((-574) $) NIL (|has| |#1| (-858)))) (-3250 (($) NIL (|has| |#1| (-21)) CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 18)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 9)) (-4322 (((-3 $ "failed") $) 58 (|has| |#1| (-858)))) (-3577 (((-3 (-417 (-574)) "failed") $) 65 (|has| |#1| (-555)))) (-3839 (((-112) $) 60 (|has| |#1| (-555)))) (-2842 (((-417 (-574)) $) 63 (|has| |#1| (-555)))) (-3408 (((-112) $) NIL (|has| |#1| (-858)))) (-2321 (($) 14)) (-4226 (((-112) $) NIL (|has| |#1| (-858)))) (-3182 (((-112) $) NIL (|has| |#1| (-858)))) (-2331 (($) 16)) (-3634 (($ $ $) NIL (|has| |#1| (-858)))) (-4380 (($ $ $) NIL (|has| |#1| (-858)))) (-1489 (((-1175) $) NIL)) (-1668 (((-112) $) 12)) (-3940 (((-1136) $) NIL)) (-1623 (((-112) $) 11)) (-2951 (((-872) $) 24) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2833 (|has| |#1| (-858)) (|has| |#1| (-1054 (-574)))))) (-2898 (((-781)) 51 (|has| |#1| (-858)) CONST)) (-4069 (((-112) $ $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-858)))) (-2141 (($) 37 (|has| |#1| (-21)) CONST)) (-2153 (($) 48 (|has| |#1| (-858)) CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2986 (((-112) $ $) 35)) (-3030 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3009 (((-112) $ $) 59 (|has| |#1| (-858)))) (-3090 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3074 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-935)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 55 (|has| |#1| (-858))) (($ (-574) $) 42 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-935) $) NIL (|has| |#1| (-21))))) +(((-853 |#1|) (-13 (-1116) (-421 |#1|) (-10 -8 (-15 -2321 ($)) (-15 -2331 ($)) (-15 -1623 ((-112) $)) (-15 -1668 ((-112) $)) (-15 -3105 ((-1136) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3839 ((-112) $)) (-15 -2842 ((-417 (-574)) $)) (-15 -3577 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1116)) (T -853)) +((-2321 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1116)))) (-2331 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1116)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1116)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1116)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-853 *3)) (-4 *3 (-1116)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))) (-3577 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1116))))) +(-13 (-1116) (-421 |#1|) (-10 -8 (-15 -2321 ($)) (-15 -2331 ($)) (-15 -1623 ((-112) $)) (-15 -1668 ((-112) $)) (-15 -3105 ((-1136) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3839 ((-112) $)) (-15 -2842 ((-417 (-574)) $)) (-15 -3577 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) +((-2864 (((-112) $ $) 7)) (-1496 (((-781)) 23)) (-2835 (($) 26)) (-3634 (($ $ $) 14) (($) 22 T CONST)) (-4380 (($ $ $) 15) (($) 21 T CONST)) (-3383 (((-935) $) 25)) (-1489 (((-1175) $) 10)) (-2591 (($ (-935)) 24)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19))) (((-854) (-141)) (T -854)) -((-3632 (*1 *1) (-4 *1 (-854))) (-1593 (*1 *1) (-4 *1 (-854)))) -(-13 (-860) (-377) (-10 -8 (-15 -3632 ($) -1715) (-15 -1593 ($) -1715))) -(((-102) . T) ((-623 (-872)) . T) ((-377) . T) ((-860) . T) ((-1115) . T)) -((-3641 (((-112) (-1283 |#2|) (-1283 |#2|)) 19)) (-2235 (((-112) (-1283 |#2|) (-1283 |#2|)) 20)) (-3843 (((-112) (-1283 |#2|) (-1283 |#2|)) 16))) -(((-855 |#1| |#2|) (-10 -7 (-15 -3843 ((-112) (-1283 |#2|) (-1283 |#2|))) (-15 -3641 ((-112) (-1283 |#2|) (-1283 |#2|))) (-15 -2235 ((-112) (-1283 |#2|) (-1283 |#2|)))) (-781) (-802)) (T -855)) -((-2235 (*1 *2 *3 *3) (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-3641 (*1 *2 *3 *3) (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-3843 (*1 *2 *3 *3) (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) -(-10 -7 (-15 -3843 ((-112) (-1283 |#2|) (-1283 |#2|))) (-15 -3641 ((-112) (-1283 |#2|) (-1283 |#2|))) (-15 -2235 ((-112) (-1283 |#2|) (-1283 |#2|)))) -((-2863 (((-112) $ $) 7)) (-3831 (($) 24 T CONST)) (-3911 (((-3 $ "failed") $) 27)) (-3372 (((-112) $) 25)) (-3632 (($ $ $) 14)) (-1593 (($ $ $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2154 (($) 23 T CONST)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (** (($ $ (-934)) 22) (($ $ (-781)) 26)) (* (($ $ $) 21))) +((-3634 (*1 *1) (-4 *1 (-854))) (-4380 (*1 *1) (-4 *1 (-854)))) +(-13 (-860) (-377) (-10 -8 (-15 -3634 ($) -1714) (-15 -4380 ($) -1714))) +(((-102) . T) ((-623 (-872)) . T) ((-377) . T) ((-860) . T) ((-1116) . T)) +((-3430 (((-112) (-1284 |#2|) (-1284 |#2|)) 19)) (-3230 (((-112) (-1284 |#2|) (-1284 |#2|)) 20)) (-1856 (((-112) (-1284 |#2|) (-1284 |#2|)) 16))) +(((-855 |#1| |#2|) (-10 -7 (-15 -1856 ((-112) (-1284 |#2|) (-1284 |#2|))) (-15 -3430 ((-112) (-1284 |#2|) (-1284 |#2|))) (-15 -3230 ((-112) (-1284 |#2|) (-1284 |#2|)))) (-781) (-802)) (T -855)) +((-3230 (*1 *2 *3 *3) (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-3430 (*1 *2 *3 *3) (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-1856 (*1 *2 *3 *3) (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) +(-10 -7 (-15 -1856 ((-112) (-1284 |#2|) (-1284 |#2|))) (-15 -3430 ((-112) (-1284 |#2|) (-1284 |#2|))) (-15 -3230 ((-112) (-1284 |#2|) (-1284 |#2|)))) +((-2864 (((-112) $ $) 7)) (-3250 (($) 24 T CONST)) (-4322 (((-3 $ "failed") $) 27)) (-4226 (((-112) $) 25)) (-3634 (($ $ $) 14)) (-4380 (($ $ $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2153 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (** (($ $ (-935)) 22) (($ $ (-781)) 26)) (* (($ $ $) 21))) (((-856) (-141)) (T -856)) NIL (-13 (-867) (-736)) -(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-867) . T) ((-860) . T) ((-1127) . T) ((-1115) . T)) -((-3011 (((-574) $) 21)) (-1913 (((-112) $) 10)) (-1808 (((-112) $) 12)) (-3306 (($ $) 23))) -(((-857 |#1|) (-10 -8 (-15 -3306 (|#1| |#1|)) (-15 -3011 ((-574) |#1|)) (-15 -1808 ((-112) |#1|)) (-15 -1913 ((-112) |#1|))) (-858)) (T -857)) +(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-867) . T) ((-860) . T) ((-1128) . T) ((-1116) . T)) +((-2472 (((-574) $) 21)) (-3408 (((-112) $) 10)) (-3182 (((-112) $) 12)) (-3936 (($ $) 23))) +(((-857 |#1|) (-10 -8 (-15 -3936 (|#1| |#1|)) (-15 -2472 ((-574) |#1|)) (-15 -3182 ((-112) |#1|)) (-15 -3408 ((-112) |#1|))) (-858)) (T -857)) NIL -(-10 -8 (-15 -3306 (|#1| |#1|)) (-15 -3011 ((-574) |#1|)) (-15 -1808 ((-112) |#1|)) (-15 -1913 ((-112) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 25)) (-1597 (((-3 $ "failed") $ $) 27)) (-3011 (((-574) $) 37)) (-3831 (($) 24 T CONST)) (-3911 (((-3 $ "failed") $) 42)) (-1913 (((-112) $) 39)) (-3372 (((-112) $) 44)) (-1808 (((-112) $) 38)) (-3632 (($ $ $) 14)) (-1593 (($ $ $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 46)) (-4019 (((-781)) 47 T CONST)) (-3838 (((-112) $ $) 9)) (-3306 (($ $) 36)) (-2142 (($) 23 T CONST)) (-2154 (($) 45 T CONST)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3089 (($ $ $) 31) (($ $) 30)) (-3074 (($ $ $) 21)) (** (($ $ (-781)) 43) (($ $ (-934)) 40)) (* (($ (-934) $) 22) (($ (-781) $) 26) (($ (-574) $) 29) (($ $ $) 41))) +(-10 -8 (-15 -3936 (|#1| |#1|)) (-15 -2472 ((-574) |#1|)) (-15 -3182 ((-112) |#1|)) (-15 -3408 ((-112) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 25)) (-2600 (((-3 $ "failed") $ $) 27)) (-2472 (((-574) $) 37)) (-3250 (($) 24 T CONST)) (-4322 (((-3 $ "failed") $) 42)) (-3408 (((-112) $) 39)) (-4226 (((-112) $) 44)) (-3182 (((-112) $) 38)) (-3634 (($ $ $) 14)) (-4380 (($ $ $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 46)) (-2898 (((-781)) 47 T CONST)) (-4069 (((-112) $ $) 9)) (-3936 (($ $) 36)) (-2141 (($) 23 T CONST)) (-2153 (($) 45 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3090 (($ $ $) 31) (($ $) 30)) (-3074 (($ $ $) 21)) (** (($ $ (-781)) 43) (($ $ (-935)) 40)) (* (($ (-935) $) 22) (($ (-781) $) 26) (($ (-574) $) 29) (($ $ $) 41))) (((-858) (-141)) (T -858)) -((-1913 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574)))) (-3306 (*1 *1 *1) (-4 *1 (-858)))) -(-13 (-801) (-1064) (-736) (-10 -8 (-15 -1913 ((-112) $)) (-15 -1808 ((-112) $)) (-15 -3011 ((-574) $)) (-15 -3306 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-3632 (($ $ $) 12)) (-1593 (($ $ $) 11)) (-3838 (((-112) $ $) 9)) (-3041 (((-112) $ $) 15)) (-3018 (((-112) $ $) 13)) (-3029 (((-112) $ $) 16))) -(((-859 |#1|) (-10 -8 (-15 -3632 (|#1| |#1| |#1|)) (-15 -1593 (|#1| |#1| |#1|)) (-15 -3029 ((-112) |#1| |#1|)) (-15 -3041 ((-112) |#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -3838 ((-112) |#1| |#1|))) (-860)) (T -859)) -NIL -(-10 -8 (-15 -3632 (|#1| |#1| |#1|)) (-15 -1593 (|#1| |#1| |#1|)) (-15 -3029 ((-112) |#1| |#1|)) (-15 -3041 ((-112) |#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -3838 ((-112) |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-3632 (($ $ $) 14)) (-1593 (($ $ $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19))) +((-3408 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574)))) (-3936 (*1 *1 *1) (-4 *1 (-858)))) +(-13 (-801) (-1065) (-736) (-10 -8 (-15 -3408 ((-112) $)) (-15 -3182 ((-112) $)) (-15 -2472 ((-574) $)) (-15 -3936 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-3634 (($ $ $) 12)) (-4380 (($ $ $) 11)) (-4069 (((-112) $ $) 9)) (-3042 (((-112) $ $) 15)) (-3020 (((-112) $ $) 13)) (-3030 (((-112) $ $) 16))) +(((-859 |#1|) (-10 -8 (-15 -3634 (|#1| |#1| |#1|)) (-15 -4380 (|#1| |#1| |#1|)) (-15 -3030 ((-112) |#1| |#1|)) (-15 -3042 ((-112) |#1| |#1|)) (-15 -3020 ((-112) |#1| |#1|)) (-15 -4069 ((-112) |#1| |#1|))) (-860)) (T -859)) +NIL +(-10 -8 (-15 -3634 (|#1| |#1| |#1|)) (-15 -4380 (|#1| |#1| |#1|)) (-15 -3030 ((-112) |#1| |#1|)) (-15 -3042 ((-112) |#1| |#1|)) (-15 -3020 ((-112) |#1| |#1|)) (-15 -4069 ((-112) |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-3634 (($ $ $) 14)) (-4380 (($ $ $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19))) (((-860) (-141)) (T -860)) -((-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3018 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3041 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-1593 (*1 *1 *1 *1) (-4 *1 (-860))) (-3632 (*1 *1 *1 *1) (-4 *1 (-860)))) -(-13 (-1115) (-10 -8 (-15 -3009 ((-112) $ $)) (-15 -3018 ((-112) $ $)) (-15 -3041 ((-112) $ $)) (-15 -3029 ((-112) $ $)) (-15 -1593 ($ $ $)) (-15 -3632 ($ $ $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-3209 (($ $ $) 49)) (-3359 (($ $ $) 48)) (-3309 (($ $ $) 46)) (-1904 (($ $ $) 55)) (-3607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 50)) (-1321 (((-3 $ "failed") $ $) 53)) (-1705 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1509 (($ $) 39)) (-2194 (($ $ $) 43)) (-2227 (($ $ $) 42)) (-4177 (($ $ $) 51)) (-4027 (($ $ $) 57)) (-3553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 45)) (-2636 (((-3 $ "failed") $ $) 52)) (-2852 (((-3 $ "failed") $ |#2|) 32)) (-3631 ((|#2| $) 36)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#2|) 13)) (-2836 (((-654 |#2|) $) 21)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-861 |#1| |#2|) (-10 -8 (-15 -4177 (|#1| |#1| |#1|)) (-15 -3607 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -1904 (|#1| |#1| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3209 (|#1| |#1| |#1|)) (-15 -3359 (|#1| |#1| |#1|)) (-15 -3309 (|#1| |#1| |#1|)) (-15 -3553 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -2636 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -2227 (|#1| |#1| |#1|)) (-15 -1509 (|#1| |#1|)) (-15 -3631 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2836 ((-654 |#2|) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -2950 ((-872) |#1|))) (-862 |#2|) (-1064)) (T -861)) -NIL -(-10 -8 (-15 -4177 (|#1| |#1| |#1|)) (-15 -3607 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -1904 (|#1| |#1| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3209 (|#1| |#1| |#1|)) (-15 -3359 (|#1| |#1| |#1|)) (-15 -3309 (|#1| |#1| |#1|)) (-15 -3553 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -2636 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -2227 (|#1| |#1| |#1|)) (-15 -1509 (|#1| |#1|)) (-15 -3631 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2836 ((-654 |#2|) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3209 (($ $ $) 50 (|has| |#1| (-372)))) (-3359 (($ $ $) 51 (|has| |#1| (-372)))) (-3309 (($ $ $) 53 (|has| |#1| (-372)))) (-1904 (($ $ $) 48 (|has| |#1| (-372)))) (-3607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 47 (|has| |#1| (-372)))) (-1321 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-4342 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 52 (|has| |#1| (-372)))) (-1705 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2216 (((-574) $) 79 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 75)) (-1401 (($ $) 69)) (-3911 (((-3 $ "failed") $) 37)) (-1509 (($ $) 60 (|has| |#1| (-462)))) (-3372 (((-112) $) 35)) (-4327 (($ |#1| (-781)) 67)) (-2015 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 62 (|has| |#1| (-566)))) (-2892 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63 (|has| |#1| (-566)))) (-1503 (((-781) $) 71)) (-2194 (($ $ $) 57 (|has| |#1| (-372)))) (-2227 (($ $ $) 58 (|has| |#1| (-372)))) (-4177 (($ $ $) 46 (|has| |#1| (-372)))) (-4027 (($ $ $) 55 (|has| |#1| (-372)))) (-3553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 54 (|has| |#1| (-372)))) (-2636 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-2801 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 59 (|has| |#1| (-372)))) (-1377 ((|#1| $) 70)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-3584 (((-781) $) 72)) (-3631 ((|#1| $) 61 (|has| |#1| (-462)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) 73)) (-2836 (((-654 |#1|) $) 66)) (-2930 ((|#1| $ (-781)) 68)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2911 ((|#1| $ |#1| |#1|) 65)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-862 |#1|) (-141) (-1064)) (T -862)) -((-3584 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) (-1401 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1064)))) (-4327 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1064)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-654 *3)))) (-2911 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-566)))) (-2892 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-862 *3)))) (-2015 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-862 *3)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-462)))) (-1509 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-462)))) (-2801 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-862 *3)))) (-2227 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-2194 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-2636 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-4027 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-3553 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) (-4 *1 (-862 *3)))) (-3309 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-4342 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-862 *3)))) (-3359 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-3209 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-1321 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-1904 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-3607 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) (-4 *1 (-862 *3)))) (-4177 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) -(-13 (-1064) (-111 |t#1| |t#1|) (-421 |t#1|) (-10 -8 (-15 -3584 ((-781) $)) (-15 -1503 ((-781) $)) (-15 -1377 (|t#1| $)) (-15 -1401 ($ $)) (-15 -2930 (|t#1| $ (-781))) (-15 -4327 ($ |t#1| (-781))) (-15 -2836 ((-654 |t#1|) $)) (-15 -2911 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -2852 ((-3 $ "failed") $ |t#1|)) (-15 -2892 ((-2 (|:| -4415 $) (|:| -1484 $)) $ $)) (-15 -2015 ((-2 (|:| -4415 $) (|:| -1484 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -3631 (|t#1| $)) (-15 -1509 ($ $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -2801 ((-2 (|:| -4415 $) (|:| -1484 $)) $ $)) (-15 -2227 ($ $ $)) (-15 -2194 ($ $ $)) (-15 -2636 ((-3 $ "failed") $ $)) (-15 -4027 ($ $ $)) (-15 -3553 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $)) (-15 -3309 ($ $ $)) (-15 -4342 ((-2 (|:| -4415 $) (|:| -1484 $)) $ $)) (-15 -3359 ($ $ $)) (-15 -3209 ($ $ $)) (-15 -1321 ((-3 $ "failed") $ $)) (-15 -1904 ($ $ $)) (-15 -3607 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $)) (-15 -4177 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1053 #0#) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-3761 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-4342 (((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-372)))) (-2015 (((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-566)))) (-2892 (((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-566)))) (-2801 (((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-372)))) (-2911 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) -(((-863 |#1| |#2|) (-10 -7 (-15 -3761 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2911 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -2892 ((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2015 ((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2801 ((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4342 ((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1064) (-862 |#1|)) (T -863)) -((-4342 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2801 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2015 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1064)) (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2892 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1064)) (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2911 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1064)) (-5 *1 (-863 *2 *3)) (-4 *3 (-862 *2)))) (-3761 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1064)) (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5))))) -(-10 -7 (-15 -3761 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2911 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -2892 ((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2015 ((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2801 ((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4342 ((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-3209 (($ $ $) NIL (|has| |#1| (-372)))) (-3359 (($ $ $) NIL (|has| |#1| (-372)))) (-3309 (($ $ $) NIL (|has| |#1| (-372)))) (-1904 (($ $ $) NIL (|has| |#1| (-372)))) (-3607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-4342 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 34 (|has| |#1| (-372)))) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#1| (-462)))) (-2152 (((-872) $ (-872)) NIL)) (-3372 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) NIL)) (-2015 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 30 (|has| |#1| (-566)))) (-2892 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 28 (|has| |#1| (-566)))) (-1503 (((-781) $) NIL)) (-2194 (($ $ $) NIL (|has| |#1| (-372)))) (-2227 (($ $ $) NIL (|has| |#1| (-372)))) (-4177 (($ $ $) NIL (|has| |#1| (-372)))) (-4027 (($ $ $) NIL (|has| |#1| (-372)))) (-3553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2636 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2801 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 32 (|has| |#1| (-372)))) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3584 (((-781) $) NIL)) (-3631 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) NIL)) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-781)) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2911 ((|#1| $ |#1| |#1|) 15)) (-2142 (($) NIL T CONST)) (-2154 (($) 23 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) 19) (($ $ (-781)) 24)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-864 |#1| |#2| |#3|) (-13 (-862 |#1|) (-10 -8 (-15 -2152 ((-872) $ (-872))))) (-1064) (-99 |#1|) (-1 |#1| |#1|)) (T -864)) -((-2152 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-862 |#1|) (-10 -8 (-15 -2152 ((-872) $ (-872))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-3209 (($ $ $) NIL (|has| |#2| (-372)))) (-3359 (($ $ $) NIL (|has| |#2| (-372)))) (-3309 (($ $ $) NIL (|has| |#2| (-372)))) (-1904 (($ $ $) NIL (|has| |#2| (-372)))) (-3607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-4342 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#2| (-372)))) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) ((|#2| $) NIL)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#2| (-462)))) (-3372 (((-112) $) NIL)) (-4327 (($ |#2| (-781)) 17)) (-2015 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#2| (-566)))) (-2892 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#2| (-566)))) (-1503 (((-781) $) NIL)) (-2194 (($ $ $) NIL (|has| |#2| (-372)))) (-2227 (($ $ $) NIL (|has| |#2| (-372)))) (-4177 (($ $ $) NIL (|has| |#2| (-372)))) (-4027 (($ $ $) NIL (|has| |#2| (-372)))) (-3553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-2636 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-2801 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#2| (-372)))) (-1377 ((|#2| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-3584 (((-781) $) NIL)) (-3631 ((|#2| $) NIL (|has| |#2| (-462)))) (-2950 (((-872) $) 24) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1053 (-417 (-574))))) (($ |#2|) NIL) (($ (-1279 |#1|)) 19)) (-2836 (((-654 |#2|) $) NIL)) (-2930 ((|#2| $ (-781)) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2911 ((|#2| $ |#2| |#2|) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) 13 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-865 |#1| |#2| |#3| |#4|) (-13 (-862 |#2|) (-626 (-1279 |#1|))) (-1192) (-1064) (-99 |#2|) (-1 |#2| |#2|)) (T -865)) -NIL -(-13 (-862 |#2|) (-626 (-1279 |#1|))) -((-3188 ((|#1| (-781) |#1|) 45 (|has| |#1| (-38 (-417 (-574)))))) (-3288 ((|#1| (-781) (-781) |#1|) 36) ((|#1| (-781) |#1|) 24)) (-3050 ((|#1| (-781) |#1|) 40)) (-3457 ((|#1| (-781) |#1|) 38)) (-2554 ((|#1| (-781) |#1|) 37))) -(((-866 |#1|) (-10 -7 (-15 -2554 (|#1| (-781) |#1|)) (-15 -3457 (|#1| (-781) |#1|)) (-15 -3050 (|#1| (-781) |#1|)) (-15 -3288 (|#1| (-781) |#1|)) (-15 -3288 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3188 (|#1| (-781) |#1|)) |%noBranch|)) (-174)) (T -866)) -((-3188 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-3288 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-3288 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-3050 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-3457 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-2554 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -2554 (|#1| (-781) |#1|)) (-15 -3457 (|#1| (-781) |#1|)) (-15 -3050 (|#1| (-781) |#1|)) (-15 -3288 (|#1| (-781) |#1|)) (-15 -3288 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3188 (|#1| (-781) |#1|)) |%noBranch|)) -((-2863 (((-112) $ $) 7)) (-3632 (($ $ $) 14)) (-1593 (($ $ $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-3041 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (** (($ $ (-934)) 22)) (* (($ $ $) 21))) +((-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3020 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3042 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-4380 (*1 *1 *1 *1) (-4 *1 (-860))) (-3634 (*1 *1 *1 *1) (-4 *1 (-860)))) +(-13 (-1116) (-10 -8 (-15 -3009 ((-112) $ $)) (-15 -3020 ((-112) $ $)) (-15 -3042 ((-112) $ $)) (-15 -3030 ((-112) $ $)) (-15 -4380 ($ $ $)) (-15 -3634 ($ $ $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-3599 (($ $ $) 49)) (-2245 (($ $ $) 48)) (-1693 (($ $ $) 46)) (-1615 (($ $ $) 55)) (-3423 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 50)) (-1920 (((-3 $ "failed") $ $) 53)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3621 (($ $) 39)) (-4123 (($ $ $) 43)) (-3414 (($ $ $) 42)) (-2767 (($ $ $) 51)) (-3967 (($ $ $) 57)) (-2528 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 45)) (-2581 (((-3 $ "failed") $ $) 52)) (-2853 (((-3 $ "failed") $ |#2|) 32)) (-2372 ((|#2| $) 36)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#2|) 13)) (-1634 (((-654 |#2|) $) 21)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-861 |#1| |#2|) (-10 -8 (-15 -2767 (|#1| |#1| |#1|)) (-15 -3423 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1920 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3599 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -1693 (|#1| |#1| |#1|)) (-15 -2528 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -3967 (|#1| |#1| |#1|)) (-15 -2581 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4123 (|#1| |#1| |#1|)) (-15 -3414 (|#1| |#1| |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -2372 (|#2| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1634 ((-654 |#2|) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -2951 ((-872) |#1|))) (-862 |#2|) (-1065)) (T -861)) +NIL +(-10 -8 (-15 -2767 (|#1| |#1| |#1|)) (-15 -3423 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1920 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3599 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -1693 (|#1| |#1| |#1|)) (-15 -2528 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -3967 (|#1| |#1| |#1|)) (-15 -2581 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4123 (|#1| |#1| |#1|)) (-15 -3414 (|#1| |#1| |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -2372 (|#2| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1634 ((-654 |#2|) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-3599 (($ $ $) 50 (|has| |#1| (-372)))) (-2245 (($ $ $) 51 (|has| |#1| (-372)))) (-1693 (($ $ $) 53 (|has| |#1| (-372)))) (-1615 (($ $ $) 48 (|has| |#1| (-372)))) (-3423 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 47 (|has| |#1| (-372)))) (-1920 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-3375 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 52 (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2214 (((-574) $) 79 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 75)) (-1402 (($ $) 69)) (-4322 (((-3 $ "failed") $) 37)) (-3621 (($ $) 60 (|has| |#1| (-462)))) (-4226 (((-112) $) 35)) (-4328 (($ |#1| (-781)) 67)) (-1438 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 62 (|has| |#1| (-566)))) (-2634 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63 (|has| |#1| (-566)))) (-3192 (((-781) $) 71)) (-4123 (($ $ $) 57 (|has| |#1| (-372)))) (-3414 (($ $ $) 58 (|has| |#1| (-372)))) (-2767 (($ $ $) 46 (|has| |#1| (-372)))) (-3967 (($ $ $) 55 (|has| |#1| (-372)))) (-2528 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 54 (|has| |#1| (-372)))) (-2581 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-2337 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 59 (|has| |#1| (-372)))) (-1378 ((|#1| $) 70)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-3580 (((-781) $) 72)) (-2372 ((|#1| $) 61 (|has| |#1| (-462)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) 73)) (-1634 (((-654 |#1|) $) 66)) (-2706 ((|#1| $ (-781)) 68)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2912 ((|#1| $ |#1| |#1|) 65)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-862 |#1|) (-141) (-1065)) (T -862)) +((-3580 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)))) (-1402 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)))) (-2706 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1065)))) (-4328 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1065)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-654 *3)))) (-2912 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)))) (-2853 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))) (-2634 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-862 *3)))) (-1438 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-862 *3)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-462)))) (-3621 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-462)))) (-2337 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-862 *3)))) (-3414 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-4123 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-2581 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3967 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-2528 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) (-4 *1 (-862 *3)))) (-1693 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3375 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-862 *3)))) (-2245 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3599 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-1920 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-1615 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3423 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) (-4 *1 (-862 *3)))) (-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) +(-13 (-1065) (-111 |t#1| |t#1|) (-421 |t#1|) (-10 -8 (-15 -3580 ((-781) $)) (-15 -3192 ((-781) $)) (-15 -1378 (|t#1| $)) (-15 -1402 ($ $)) (-15 -2706 (|t#1| $ (-781))) (-15 -4328 ($ |t#1| (-781))) (-15 -1634 ((-654 |t#1|) $)) (-15 -2912 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -2853 ((-3 $ "failed") $ |t#1|)) (-15 -2634 ((-2 (|:| -3901 $) (|:| -1880 $)) $ $)) (-15 -1438 ((-2 (|:| -3901 $) (|:| -1880 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -2372 (|t#1| $)) (-15 -3621 ($ $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -2337 ((-2 (|:| -3901 $) (|:| -1880 $)) $ $)) (-15 -3414 ($ $ $)) (-15 -4123 ($ $ $)) (-15 -2581 ((-3 $ "failed") $ $)) (-15 -3967 ($ $ $)) (-15 -2528 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $)) (-15 -1693 ($ $ $)) (-15 -3375 ((-2 (|:| -3901 $) (|:| -1880 $)) $ $)) (-15 -2245 ($ $ $)) (-15 -3599 ($ $ $)) (-15 -1920 ((-3 $ "failed") $ $)) (-15 -1615 ($ $ $)) (-15 -3423 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $)) (-15 -2767 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1054 #0#) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-3762 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3375 (((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-372)))) (-1438 (((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-566)))) (-2634 (((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-566)))) (-2337 (((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-372)))) (-2912 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) +(((-863 |#1| |#2|) (-10 -7 (-15 -3762 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2912 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -2634 ((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1438 ((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2337 ((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3375 ((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1065) (-862 |#1|)) (T -863)) +((-3375 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1065)) (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2337 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1065)) (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-1438 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1065)) (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2634 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1065)) (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2912 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1065)) (-5 *1 (-863 *2 *3)) (-4 *3 (-862 *2)))) (-3762 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1065)) (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5))))) +(-10 -7 (-15 -3762 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2912 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -2634 ((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1438 ((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2337 ((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3375 ((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-3599 (($ $ $) NIL (|has| |#1| (-372)))) (-2245 (($ $ $) NIL (|has| |#1| (-372)))) (-1693 (($ $ $) NIL (|has| |#1| (-372)))) (-1615 (($ $ $) NIL (|has| |#1| (-372)))) (-3423 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-1920 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3375 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 34 (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#1| (-462)))) (-1678 (((-872) $ (-872)) NIL)) (-4226 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) NIL)) (-1438 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 30 (|has| |#1| (-566)))) (-2634 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 28 (|has| |#1| (-566)))) (-3192 (((-781) $) NIL)) (-4123 (($ $ $) NIL (|has| |#1| (-372)))) (-3414 (($ $ $) NIL (|has| |#1| (-372)))) (-2767 (($ $ $) NIL (|has| |#1| (-372)))) (-3967 (($ $ $) NIL (|has| |#1| (-372)))) (-2528 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2581 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2337 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 32 (|has| |#1| (-372)))) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3580 (((-781) $) NIL)) (-2372 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) NIL)) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-781)) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2912 ((|#1| $ |#1| |#1|) 15)) (-2141 (($) NIL T CONST)) (-2153 (($) 23 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) 19) (($ $ (-781)) 24)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-864 |#1| |#2| |#3|) (-13 (-862 |#1|) (-10 -8 (-15 -1678 ((-872) $ (-872))))) (-1065) (-99 |#1|) (-1 |#1| |#1|)) (T -864)) +((-1678 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-862 |#1|) (-10 -8 (-15 -1678 ((-872) $ (-872))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-3599 (($ $ $) NIL (|has| |#2| (-372)))) (-2245 (($ $ $) NIL (|has| |#2| (-372)))) (-1693 (($ $ $) NIL (|has| |#2| (-372)))) (-1615 (($ $ $) NIL (|has| |#2| (-372)))) (-3423 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-1920 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-3375 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#2| (-372)))) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) ((|#2| $) NIL)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#2| (-462)))) (-4226 (((-112) $) NIL)) (-4328 (($ |#2| (-781)) 17)) (-1438 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#2| (-566)))) (-2634 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#2| (-566)))) (-3192 (((-781) $) NIL)) (-4123 (($ $ $) NIL (|has| |#2| (-372)))) (-3414 (($ $ $) NIL (|has| |#2| (-372)))) (-2767 (($ $ $) NIL (|has| |#2| (-372)))) (-3967 (($ $ $) NIL (|has| |#2| (-372)))) (-2528 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-2581 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-2337 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#2| (-372)))) (-1378 ((|#2| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-3580 (((-781) $) NIL)) (-2372 ((|#2| $) NIL (|has| |#2| (-462)))) (-2951 (((-872) $) 24) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1054 (-417 (-574))))) (($ |#2|) NIL) (($ (-1280 |#1|)) 19)) (-1634 (((-654 |#2|) $) NIL)) (-2706 ((|#2| $ (-781)) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2912 ((|#2| $ |#2| |#2|) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) 13 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-865 |#1| |#2| |#3| |#4|) (-13 (-862 |#2|) (-626 (-1280 |#1|))) (-1193) (-1065) (-99 |#2|) (-1 |#2| |#2|)) (T -865)) +NIL +(-13 (-862 |#2|) (-626 (-1280 |#1|))) +((-3104 ((|#1| (-781) |#1|) 45 (|has| |#1| (-38 (-417 (-574)))))) (-2886 ((|#1| (-781) (-781) |#1|) 36) ((|#1| (-781) |#1|) 24)) (-2658 ((|#1| (-781) |#1|) 40)) (-1827 ((|#1| (-781) |#1|) 38)) (-3611 ((|#1| (-781) |#1|) 37))) +(((-866 |#1|) (-10 -7 (-15 -3611 (|#1| (-781) |#1|)) (-15 -1827 (|#1| (-781) |#1|)) (-15 -2658 (|#1| (-781) |#1|)) (-15 -2886 (|#1| (-781) |#1|)) (-15 -2886 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3104 (|#1| (-781) |#1|)) |%noBranch|)) (-174)) (T -866)) +((-3104 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-2886 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-2886 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-2658 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-1827 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-3611 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -3611 (|#1| (-781) |#1|)) (-15 -1827 (|#1| (-781) |#1|)) (-15 -2658 (|#1| (-781) |#1|)) (-15 -2886 (|#1| (-781) |#1|)) (-15 -2886 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3104 (|#1| (-781) |#1|)) |%noBranch|)) +((-2864 (((-112) $ $) 7)) (-3634 (($ $ $) 14)) (-4380 (($ $ $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (** (($ $ (-935)) 22)) (* (($ $ $) 21))) (((-867) (-141)) (T -867)) NIL -(-13 (-860) (-1127)) -(((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3078 (((-574) $) 14)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 20) (($ (-574)) 13)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 11))) -(((-868) (-13 (-860) (-10 -8 (-15 -2950 ($ (-574))) (-15 -3078 ((-574) $))))) (T -868)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-868))))) -(-13 (-860) (-10 -8 (-15 -2950 ($ (-574))) (-15 -3078 ((-574) $)))) -((-3828 (((-701 (-1241)) $ (-1241)) 15)) (-2902 (((-701 (-559)) $ (-559)) 12)) (-2910 (((-781) $ (-129)) 30))) -(((-869 |#1|) (-10 -8 (-15 -2910 ((-781) |#1| (-129))) (-15 -3828 ((-701 (-1241)) |#1| (-1241))) (-15 -2902 ((-701 (-559)) |#1| (-559)))) (-870)) (T -869)) -NIL -(-10 -8 (-15 -2910 ((-781) |#1| (-129))) (-15 -3828 ((-701 (-1241)) |#1| (-1241))) (-15 -2902 ((-701 (-559)) |#1| (-559)))) -((-3828 (((-701 (-1241)) $ (-1241)) 8)) (-2902 (((-701 (-559)) $ (-559)) 9)) (-2910 (((-781) $ (-129)) 7)) (-4203 (((-701 (-130)) $ (-130)) 10)) (-3894 (($ $) 6))) +(-13 (-860) (-1128)) +(((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-3079 (((-574) $) 14)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 20) (($ (-574)) 13)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 11))) +(((-868) (-13 (-860) (-10 -8 (-15 -2951 ($ (-574))) (-15 -3079 ((-574) $))))) (T -868)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-868))))) +(-13 (-860) (-10 -8 (-15 -2951 ($ (-574))) (-15 -3079 ((-574) $)))) +((-2744 (((-701 (-1242)) $ (-1242)) 15)) (-4193 (((-701 (-559)) $ (-559)) 12)) (-2208 (((-781) $ (-129)) 30))) +(((-869 |#1|) (-10 -8 (-15 -2208 ((-781) |#1| (-129))) (-15 -2744 ((-701 (-1242)) |#1| (-1242))) (-15 -4193 ((-701 (-559)) |#1| (-559)))) (-870)) (T -869)) +NIL +(-10 -8 (-15 -2208 ((-781) |#1| (-129))) (-15 -2744 ((-701 (-1242)) |#1| (-1242))) (-15 -4193 ((-701 (-559)) |#1| (-559)))) +((-2744 (((-701 (-1242)) $ (-1242)) 8)) (-4193 (((-701 (-559)) $ (-559)) 9)) (-2208 (((-781) $ (-129)) 7)) (-3848 (((-701 (-130)) $ (-130)) 10)) (-1731 (($ $) 6))) (((-870) (-141)) (T -870)) -((-4203 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130)))) (-2902 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559)))) (-3828 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1241))) (-5 *3 (-1241)))) (-2910 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781))))) -(-13 (-175) (-10 -8 (-15 -4203 ((-701 (-130)) $ (-130))) (-15 -2902 ((-701 (-559)) $ (-559))) (-15 -3828 ((-701 (-1241)) $ (-1241))) (-15 -2910 ((-781) $ (-129))))) +((-3848 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130)))) (-4193 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559)))) (-2744 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1242))) (-5 *3 (-1242)))) (-2208 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781))))) +(-13 (-175) (-10 -8 (-15 -3848 ((-701 (-130)) $ (-130))) (-15 -4193 ((-701 (-559)) $ (-559))) (-15 -2744 ((-701 (-1242)) $ (-1242))) (-15 -2208 ((-781) $ (-129))))) (((-175) . T)) -((-3828 (((-701 (-1241)) $ (-1241)) NIL)) (-2902 (((-701 (-559)) $ (-559)) NIL)) (-2910 (((-781) $ (-129)) NIL)) (-4203 (((-701 (-130)) $ (-130)) 22)) (-2321 (($ (-398)) 12) (($ (-1174)) 14)) (-3173 (((-112) $) 19)) (-2950 (((-872) $) 26)) (-3894 (($ $) 23))) -(((-871) (-13 (-870) (-623 (-872)) (-10 -8 (-15 -2321 ($ (-398))) (-15 -2321 ($ (-1174))) (-15 -3173 ((-112) $))))) (T -871)) -((-2321 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-871)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871))))) -(-13 (-870) (-623 (-872)) (-10 -8 (-15 -2321 ($ (-398))) (-15 -2321 ($ (-1174))) (-15 -3173 ((-112) $)))) -((-2863 (((-112) $ $) NIL) (($ $ $) 85)) (-2095 (($ $ $) 125)) (-3015 (((-574) $) 31) (((-574)) 36)) (-2653 (($ (-574)) 53)) (-3202 (($ $ $) 54) (($ (-654 $)) 84)) (-2449 (($ $ (-654 $)) 82)) (-3275 (((-574) $) 34)) (-3624 (($ $ $) 73)) (-3534 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-4178 (((-574) $) 33)) (-3191 (($ $ $) 72)) (-3231 (($ $) 114)) (-3194 (($ $ $) 129)) (-3781 (($ (-654 $)) 61)) (-4121 (($ $ (-654 $)) 79)) (-2957 (($ (-574) (-574)) 55)) (-1739 (($ $) 126) (($ $ $) 127)) (-3877 (($ $ (-574)) 43) (($ $) 46)) (-2799 (($ $ $) 97)) (-2915 (($ $ $) 132)) (-4071 (($ $) 115)) (-2811 (($ $ $) 98)) (-3281 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-1802 (((-1288) $) 10)) (-3509 (($ $) 118) (($ $ (-781)) 122)) (-4356 (($ $ $) 75)) (-3073 (($ $ $) 74)) (-4196 (($ $ (-654 $)) 110)) (-2762 (($ $ $) 113)) (-1929 (($ (-654 $)) 59)) (-2116 (($ $) 70) (($ (-654 $)) 71)) (-4437 (($ $ $) 123)) (-2542 (($ $) 116)) (-2825 (($ $ $) 128)) (-2152 (($ (-574)) 21) (($ (-1192)) 23) (($ (-1174)) 30) (($ (-227)) 25)) (-2107 (($ $ $) 101)) (-2085 (($ $) 102)) (-3109 (((-1288) (-1174)) 15)) (-2178 (($ (-1174)) 14)) (-2923 (($ (-654 (-654 $))) 58)) (-3864 (($ $ (-574)) 42) (($ $) 45)) (-3945 (((-1174) $) NIL)) (-1907 (($ $ $) 131)) (-3086 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3773 (((-112) $) 108)) (-3926 (($ $ (-654 $)) 111) (($ $ $ $) 112)) (-3487 (($ (-574)) 39)) (-1847 (((-574) $) 32) (((-574)) 35)) (-4164 (($ $ $) 40) (($ (-654 $)) 83)) (-3939 (((-1135) $) NIL)) (-2852 (($ $ $) 99)) (-2833 (($) 13)) (-2208 (($ $ (-654 $)) 109)) (-2856 (((-1174) (-1174)) 8)) (-3036 (($ $) 117) (($ $ (-781)) 121)) (-2839 (($ $ $) 96)) (-3878 (($ $ (-781)) 139)) (-1554 (($ (-654 $)) 60)) (-2950 (((-872) $) 19)) (-3332 (($ $ (-574)) 41) (($ $) 44)) (-2031 (($ $) 68) (($ (-654 $)) 69)) (-4268 (($ $) 66) (($ (-654 $)) 67)) (-2079 (($ $) 124)) (-2486 (($ (-654 $)) 65)) (-1832 (($ $ $) 105)) (-3838 (((-112) $ $) NIL)) (-3111 (($ $ $) 130)) (-2096 (($ $ $) 100)) (-4264 (($ $ $) 103) (($ $) 104)) (-3041 (($ $ $) 89)) (-3018 (($ $ $) 87)) (-2985 (((-112) $ $) 16) (($ $ $) 17)) (-3029 (($ $ $) 88)) (-3009 (($ $ $) 86)) (-3098 (($ $ $) 94)) (-3089 (($ $ $) 91) (($ $) 92)) (-3074 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-872) (-13 (-1115) (-10 -8 (-15 -1802 ((-1288) $)) (-15 -2178 ($ (-1174))) (-15 -3109 ((-1288) (-1174))) (-15 -2152 ($ (-574))) (-15 -2152 ($ (-1192))) (-15 -2152 ($ (-1174))) (-15 -2152 ($ (-227))) (-15 -2833 ($)) (-15 -2856 ((-1174) (-1174))) (-15 -3015 ((-574) $)) (-15 -1847 ((-574) $)) (-15 -3015 ((-574))) (-15 -1847 ((-574))) (-15 -4178 ((-574) $)) (-15 -3275 ((-574) $)) (-15 -3487 ($ (-574))) (-15 -2653 ($ (-574))) (-15 -2957 ($ (-574) (-574))) (-15 -3864 ($ $ (-574))) (-15 -3877 ($ $ (-574))) (-15 -3332 ($ $ (-574))) (-15 -3864 ($ $)) (-15 -3877 ($ $)) (-15 -3332 ($ $)) (-15 -4164 ($ $ $)) (-15 -3202 ($ $ $)) (-15 -4164 ($ (-654 $))) (-15 -3202 ($ (-654 $))) (-15 -4196 ($ $ (-654 $))) (-15 -3926 ($ $ (-654 $))) (-15 -3926 ($ $ $ $)) (-15 -2762 ($ $ $)) (-15 -3773 ((-112) $)) (-15 -2208 ($ $ (-654 $))) (-15 -3231 ($ $)) (-15 -1907 ($ $ $)) (-15 -2079 ($ $)) (-15 -2923 ($ (-654 (-654 $)))) (-15 -2095 ($ $ $)) (-15 -1739 ($ $)) (-15 -1739 ($ $ $)) (-15 -2825 ($ $ $)) (-15 -3194 ($ $ $)) (-15 -3111 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -3878 ($ $ (-781))) (-15 -1832 ($ $ $)) (-15 -3191 ($ $ $)) (-15 -3624 ($ $ $)) (-15 -3073 ($ $ $)) (-15 -4356 ($ $ $)) (-15 -4121 ($ $ (-654 $))) (-15 -2449 ($ $ (-654 $))) (-15 -4071 ($ $)) (-15 -3036 ($ $)) (-15 -3036 ($ $ (-781))) (-15 -3509 ($ $)) (-15 -3509 ($ $ (-781))) (-15 -2542 ($ $)) (-15 -4437 ($ $ $)) (-15 -3534 ($ $)) (-15 -3534 ($ $ $)) (-15 -3534 ($ $ $ $)) (-15 -3281 ($ $)) (-15 -3281 ($ $ $)) (-15 -3281 ($ $ $ $)) (-15 -3086 ($ $)) (-15 -3086 ($ $ $)) (-15 -3086 ($ $ $ $)) (-15 -4268 ($ $)) (-15 -4268 ($ (-654 $))) (-15 -2031 ($ $)) (-15 -2031 ($ (-654 $))) (-15 -2116 ($ $)) (-15 -2116 ($ (-654 $))) (-15 -1929 ($ (-654 $))) (-15 -1554 ($ (-654 $))) (-15 -3781 ($ (-654 $))) (-15 -2486 ($ (-654 $))) (-15 -2985 ($ $ $)) (-15 -2863 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3018 ($ $ $)) (-15 -3029 ($ $ $)) (-15 -3041 ($ $ $)) (-15 -3074 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $)) (-15 * ($ $ $)) (-15 -3098 ($ $ $)) (-15 ** ($ $ $)) (-15 -2839 ($ $ $)) (-15 -2799 ($ $ $)) (-15 -2811 ($ $ $)) (-15 -2852 ($ $ $)) (-15 -2096 ($ $ $)) (-15 -2107 ($ $ $)) (-15 -2085 ($ $)) (-15 -4264 ($ $ $)) (-15 -4264 ($ $))))) (T -872)) -((-1802 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-872)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-872)))) (-2152 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-2152 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-872)))) (-2152 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872)))) (-2152 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872)))) (-2833 (*1 *1) (-5 *1 (-872))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3015 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1847 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3487 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-2653 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-2957 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3864 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3877 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3332 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3864 (*1 *1 *1) (-5 *1 (-872))) (-3877 (*1 *1 *1) (-5 *1 (-872))) (-3332 (*1 *1 *1) (-5 *1 (-872))) (-4164 (*1 *1 *1 *1) (-5 *1 (-872))) (-3202 (*1 *1 *1 *1) (-5 *1 (-872))) (-4164 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3926 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3926 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-2762 (*1 *1 *1 *1) (-5 *1 (-872))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3231 (*1 *1 *1) (-5 *1 (-872))) (-1907 (*1 *1 *1 *1) (-5 *1 (-872))) (-2079 (*1 *1 *1) (-5 *1 (-872))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-872)))) (-2095 (*1 *1 *1 *1) (-5 *1 (-872))) (-1739 (*1 *1 *1) (-5 *1 (-872))) (-1739 (*1 *1 *1 *1) (-5 *1 (-872))) (-2825 (*1 *1 *1 *1) (-5 *1 (-872))) (-3194 (*1 *1 *1 *1) (-5 *1 (-872))) (-3111 (*1 *1 *1 *1) (-5 *1 (-872))) (-2915 (*1 *1 *1 *1) (-5 *1 (-872))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-1832 (*1 *1 *1 *1) (-5 *1 (-872))) (-3191 (*1 *1 *1 *1) (-5 *1 (-872))) (-3624 (*1 *1 *1 *1) (-5 *1 (-872))) (-3073 (*1 *1 *1 *1) (-5 *1 (-872))) (-4356 (*1 *1 *1 *1) (-5 *1 (-872))) (-4121 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2449 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4071 (*1 *1 *1) (-5 *1 (-872))) (-3036 (*1 *1 *1) (-5 *1 (-872))) (-3036 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-3509 (*1 *1 *1) (-5 *1 (-872))) (-3509 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-2542 (*1 *1 *1) (-5 *1 (-872))) (-4437 (*1 *1 *1 *1) (-5 *1 (-872))) (-3534 (*1 *1 *1) (-5 *1 (-872))) (-3534 (*1 *1 *1 *1) (-5 *1 (-872))) (-3534 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-3281 (*1 *1 *1) (-5 *1 (-872))) (-3281 (*1 *1 *1 *1) (-5 *1 (-872))) (-3281 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-3086 (*1 *1 *1) (-5 *1 (-872))) (-3086 (*1 *1 *1 *1) (-5 *1 (-872))) (-3086 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-4268 (*1 *1 *1) (-5 *1 (-872))) (-4268 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2031 (*1 *1 *1) (-5 *1 (-872))) (-2031 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2116 (*1 *1 *1) (-5 *1 (-872))) (-2116 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1929 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3781 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2486 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2985 (*1 *1 *1 *1) (-5 *1 (-872))) (-2863 (*1 *1 *1 *1) (-5 *1 (-872))) (-3009 (*1 *1 *1 *1) (-5 *1 (-872))) (-3018 (*1 *1 *1 *1) (-5 *1 (-872))) (-3029 (*1 *1 *1 *1) (-5 *1 (-872))) (-3041 (*1 *1 *1 *1) (-5 *1 (-872))) (-3074 (*1 *1 *1 *1) (-5 *1 (-872))) (-3089 (*1 *1 *1 *1) (-5 *1 (-872))) (-3089 (*1 *1 *1) (-5 *1 (-872))) (* (*1 *1 *1 *1) (-5 *1 (-872))) (-3098 (*1 *1 *1 *1) (-5 *1 (-872))) (** (*1 *1 *1 *1) (-5 *1 (-872))) (-2839 (*1 *1 *1 *1) (-5 *1 (-872))) (-2799 (*1 *1 *1 *1) (-5 *1 (-872))) (-2811 (*1 *1 *1 *1) (-5 *1 (-872))) (-2852 (*1 *1 *1 *1) (-5 *1 (-872))) (-2096 (*1 *1 *1 *1) (-5 *1 (-872))) (-2107 (*1 *1 *1 *1) (-5 *1 (-872))) (-2085 (*1 *1 *1) (-5 *1 (-872))) (-4264 (*1 *1 *1 *1) (-5 *1 (-872))) (-4264 (*1 *1 *1) (-5 *1 (-872)))) -(-13 (-1115) (-10 -8 (-15 -1802 ((-1288) $)) (-15 -2178 ($ (-1174))) (-15 -3109 ((-1288) (-1174))) (-15 -2152 ($ (-574))) (-15 -2152 ($ (-1192))) (-15 -2152 ($ (-1174))) (-15 -2152 ($ (-227))) (-15 -2833 ($)) (-15 -2856 ((-1174) (-1174))) (-15 -3015 ((-574) $)) (-15 -1847 ((-574) $)) (-15 -3015 ((-574))) (-15 -1847 ((-574))) (-15 -4178 ((-574) $)) (-15 -3275 ((-574) $)) (-15 -3487 ($ (-574))) (-15 -2653 ($ (-574))) (-15 -2957 ($ (-574) (-574))) (-15 -3864 ($ $ (-574))) (-15 -3877 ($ $ (-574))) (-15 -3332 ($ $ (-574))) (-15 -3864 ($ $)) (-15 -3877 ($ $)) (-15 -3332 ($ $)) (-15 -4164 ($ $ $)) (-15 -3202 ($ $ $)) (-15 -4164 ($ (-654 $))) (-15 -3202 ($ (-654 $))) (-15 -4196 ($ $ (-654 $))) (-15 -3926 ($ $ (-654 $))) (-15 -3926 ($ $ $ $)) (-15 -2762 ($ $ $)) (-15 -3773 ((-112) $)) (-15 -2208 ($ $ (-654 $))) (-15 -3231 ($ $)) (-15 -1907 ($ $ $)) (-15 -2079 ($ $)) (-15 -2923 ($ (-654 (-654 $)))) (-15 -2095 ($ $ $)) (-15 -1739 ($ $)) (-15 -1739 ($ $ $)) (-15 -2825 ($ $ $)) (-15 -3194 ($ $ $)) (-15 -3111 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -3878 ($ $ (-781))) (-15 -1832 ($ $ $)) (-15 -3191 ($ $ $)) (-15 -3624 ($ $ $)) (-15 -3073 ($ $ $)) (-15 -4356 ($ $ $)) (-15 -4121 ($ $ (-654 $))) (-15 -2449 ($ $ (-654 $))) (-15 -4071 ($ $)) (-15 -3036 ($ $)) (-15 -3036 ($ $ (-781))) (-15 -3509 ($ $)) (-15 -3509 ($ $ (-781))) (-15 -2542 ($ $)) (-15 -4437 ($ $ $)) (-15 -3534 ($ $)) (-15 -3534 ($ $ $)) (-15 -3534 ($ $ $ $)) (-15 -3281 ($ $)) (-15 -3281 ($ $ $)) (-15 -3281 ($ $ $ $)) (-15 -3086 ($ $)) (-15 -3086 ($ $ $)) (-15 -3086 ($ $ $ $)) (-15 -4268 ($ $)) (-15 -4268 ($ (-654 $))) (-15 -2031 ($ $)) (-15 -2031 ($ (-654 $))) (-15 -2116 ($ $)) (-15 -2116 ($ (-654 $))) (-15 -1929 ($ (-654 $))) (-15 -1554 ($ (-654 $))) (-15 -3781 ($ (-654 $))) (-15 -2486 ($ (-654 $))) (-15 -2985 ($ $ $)) (-15 -2863 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3018 ($ $ $)) (-15 -3029 ($ $ $)) (-15 -3041 ($ $ $)) (-15 -3074 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $)) (-15 * ($ $ $)) (-15 -3098 ($ $ $)) (-15 ** ($ $ $)) (-15 -2839 ($ $ $)) (-15 -2799 ($ $ $)) (-15 -2811 ($ $ $)) (-15 -2852 ($ $ $)) (-15 -2096 ($ $ $)) (-15 -2107 ($ $ $)) (-15 -2085 ($ $)) (-15 -4264 ($ $ $)) (-15 -4264 ($ $)))) -((-2383 (((-1288) (-654 (-52))) 23)) (-3230 (((-1288) (-1174) (-872)) 13) (((-1288) (-872)) 8) (((-1288) (-1174)) 10))) -(((-873) (-10 -7 (-15 -3230 ((-1288) (-1174))) (-15 -3230 ((-1288) (-872))) (-15 -3230 ((-1288) (-1174) (-872))) (-15 -2383 ((-1288) (-654 (-52)))))) (T -873)) -((-2383 (*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1288)) (-5 *1 (-873)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-872)) (-5 *2 (-1288)) (-5 *1 (-873)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-873)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-873))))) -(-10 -7 (-15 -3230 ((-1288) (-1174))) (-15 -3230 ((-1288) (-872))) (-15 -3230 ((-1288) (-1174) (-872))) (-15 -2383 ((-1288) (-654 (-52))))) -((-2863 (((-112) $ $) NIL)) (-1497 (((-3 $ "failed") (-1192)) 36)) (-1496 (((-781)) 32)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-1593 (($ $ $) NIL) (($) NIL T CONST)) (-3271 (((-934) $) 29)) (-3945 (((-1174) $) 43)) (-2590 (($ (-934)) 28)) (-3939 (((-1135) $) NIL)) (-1845 (((-1192) $) 13) (((-546) $) 19) (((-903 (-388)) $) 26) (((-903 (-574)) $) 22)) (-2950 (((-872) $) 16)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 40)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 38))) -(((-874 |#1|) (-13 (-854) (-624 (-1192)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1497 ((-3 $ "failed") (-1192))))) (-654 (-1192))) (T -874)) -((-1497 (*1 *1 *2) (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2))))) -(-13 (-854) (-624 (-1192)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1497 ((-3 $ "failed") (-1192))))) -((-2863 (((-112) $ $) NIL)) (-2040 (((-516) $) 9)) (-2247 (((-654 (-449)) $) 13)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 21)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 16))) -(((-875) (-13 (-1115) (-10 -8 (-15 -2040 ((-516) $)) (-15 -2247 ((-654 (-449)) $))))) (T -875)) -((-2040 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-875)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875))))) -(-13 (-1115) (-10 -8 (-15 -2040 ((-516) $)) (-15 -2247 ((-654 (-449)) $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-965 |#1|)) NIL) (((-965 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-4019 (((-781)) NIL T CONST)) (-3151 (((-1288) (-781)) NIL)) (-3838 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3098 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-876 |#1| |#2| |#3| |#4|) (-13 (-1064) (-500 (-965 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3151 ((-1288) (-781))))) (-1064) (-654 (-1192)) (-654 (-781)) (-781)) (T -876)) -((-3098 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-876 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *2 (-1064)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-781))) (-14 *5 (-781)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-876 *4 *5 *6 *7)) (-4 *4 (-1064)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 *3)) (-14 *7 *3)))) -(-13 (-1064) (-500 (-965 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3151 ((-1288) (-781))))) -((-1629 (((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|) 38)) (-2344 (((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|) 29))) -(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -2344 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -1629 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|))) (-372) (-1274 |#1|) (-1259 |#1|)) (T -877)) -((-1629 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1274 *5)) (-4 *6 (-1259 *5)))) (-2344 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1274 *5)) (-4 *6 (-1259 *5))))) -(-10 -7 (-15 -2344 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -1629 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|))) -((-2344 (((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|)) 30) (((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) 28))) -(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -2344 ((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) (-15 -2344 ((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|)))) (-372) (-1192) |#1|) (T -878)) -((-2344 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1275 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1192)) (-14 *7 *5) (-5 *2 (-417 (-1256 *6 *5))) (-5 *1 (-878 *5 *6 *7)))) (-2344 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1275 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1192)) (-14 *7 *5) (-5 *2 (-417 (-1256 *6 *5))) (-5 *1 (-878 *5 *6 *7))))) -(-10 -7 (-15 -2344 ((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) (-15 -2344 ((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-4211 (($ $ (-574)) 68)) (-3656 (((-112) $ $) 65)) (-3831 (($) 18 T CONST)) (-1739 (($ (-1188 (-574)) (-574)) 67)) (-2799 (($ $ $) 61)) (-3911 (((-3 $ "failed") $) 37)) (-1325 (($ $) 70)) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-2725 (((-781) $) 75)) (-3372 (((-112) $) 35)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2078 (((-574)) 72)) (-1978 (((-574) $) 71)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2115 (($ $ (-574)) 74)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3364 (((-781) $) 64)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-2354 (((-1172 (-574)) $) 76)) (-4209 (($ $) 73)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-3524 (((-574) $ (-574)) 69)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-2744 (((-701 (-1242)) $ (-1242)) NIL)) (-4193 (((-701 (-559)) $ (-559)) NIL)) (-2208 (((-781) $ (-129)) NIL)) (-3848 (((-701 (-130)) $ (-130)) 22)) (-4101 (($ (-398)) 12) (($ (-1175)) 14)) (-2987 (((-112) $) 19)) (-2951 (((-872) $) 26)) (-1731 (($ $) 23))) +(((-871) (-13 (-870) (-623 (-872)) (-10 -8 (-15 -4101 ($ (-398))) (-15 -4101 ($ (-1175))) (-15 -2987 ((-112) $))))) (T -871)) +((-4101 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-871)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871))))) +(-13 (-870) (-623 (-872)) (-10 -8 (-15 -4101 ($ (-398))) (-15 -4101 ($ (-1175))) (-15 -2987 ((-112) $)))) +((-2864 (((-112) $ $) NIL) (($ $ $) 85)) (-2525 (($ $ $) 125)) (-3016 (((-574) $) 31) (((-574)) 36)) (-3506 (($ (-574)) 53)) (-3063 (($ $ $) 54) (($ (-654 $)) 84)) (-1716 (($ $ (-654 $)) 82)) (-3675 (((-574) $) 34)) (-3625 (($ $ $) 73)) (-3535 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-4400 (((-574) $) 33)) (-2357 (($ $ $) 72)) (-3232 (($ $) 114)) (-3289 (($ $ $) 129)) (-3455 (($ (-654 $)) 61)) (-4122 (($ $ (-654 $)) 79)) (-3863 (($ (-574) (-574)) 55)) (-3298 (($ $) 126) (($ $ $) 127)) (-3878 (($ $ (-574)) 43) (($ $) 46)) (-2800 (($ $ $) 97)) (-1577 (($ $ $) 132)) (-1815 (($ $) 115)) (-2813 (($ $ $) 98)) (-1374 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-1803 (((-1289) $) 10)) (-2621 (($ $) 118) (($ $ (-781)) 122)) (-3049 (($ $ $) 75)) (-3677 (($ $ $) 74)) (-4197 (($ $ (-654 $)) 110)) (-2140 (($ $ $) 113)) (-2968 (($ (-654 $)) 59)) (-1391 (($ $) 70) (($ (-654 $)) 71)) (-4025 (($ $ $) 123)) (-1624 (($ $) 116)) (-1632 (($ $ $) 128)) (-1678 (($ (-574)) 21) (($ (-1193)) 23) (($ (-1175)) 30) (($ (-227)) 25)) (-2106 (($ $ $) 101)) (-2084 (($ $) 102)) (-3563 (((-1289) (-1175)) 15)) (-2177 (($ (-1175)) 14)) (-2924 (($ (-654 (-654 $))) 58)) (-3865 (($ $ (-574)) 42) (($ $) 45)) (-1489 (((-1175) $) NIL)) (-1906 (($ $ $) 131)) (-3087 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3774 (((-112) $) 108)) (-2891 (($ $ (-654 $)) 111) (($ $ $ $) 112)) (-1801 (($ (-574)) 39)) (-1847 (((-574) $) 32) (((-574)) 35)) (-1427 (($ $ $) 40) (($ (-654 $)) 83)) (-3940 (((-1136) $) NIL)) (-2853 (($ $ $) 99)) (-3336 (($) 13)) (-2207 (($ $ (-654 $)) 109)) (-2798 (((-1175) (-1175)) 8)) (-3918 (($ $) 117) (($ $ (-781)) 121)) (-2840 (($ $ $) 96)) (-3879 (($ $ (-781)) 139)) (-3199 (($ (-654 $)) 60)) (-2951 (((-872) $) 19)) (-3333 (($ $ (-574)) 41) (($ $) 44)) (-3474 (($ $) 68) (($ (-654 $)) 69)) (-4269 (($ $) 66) (($ (-654 $)) 67)) (-2078 (($ $) 124)) (-1901 (($ (-654 $)) 65)) (-3900 (($ $ $) 105)) (-4069 (((-112) $ $) NIL)) (-3391 (($ $ $) 130)) (-2095 (($ $ $) 100)) (-4266 (($ $ $) 103) (($ $) 104)) (-3042 (($ $ $) 89)) (-3020 (($ $ $) 87)) (-2986 (((-112) $ $) 16) (($ $ $) 17)) (-3030 (($ $ $) 88)) (-3009 (($ $ $) 86)) (-3103 (($ $ $) 94)) (-3090 (($ $ $) 91) (($ $) 92)) (-3074 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-872) (-13 (-1116) (-10 -8 (-15 -1803 ((-1289) $)) (-15 -2177 ($ (-1175))) (-15 -3563 ((-1289) (-1175))) (-15 -1678 ($ (-574))) (-15 -1678 ($ (-1193))) (-15 -1678 ($ (-1175))) (-15 -1678 ($ (-227))) (-15 -3336 ($)) (-15 -2798 ((-1175) (-1175))) (-15 -3016 ((-574) $)) (-15 -1847 ((-574) $)) (-15 -3016 ((-574))) (-15 -1847 ((-574))) (-15 -4400 ((-574) $)) (-15 -3675 ((-574) $)) (-15 -1801 ($ (-574))) (-15 -3506 ($ (-574))) (-15 -3863 ($ (-574) (-574))) (-15 -3865 ($ $ (-574))) (-15 -3878 ($ $ (-574))) (-15 -3333 ($ $ (-574))) (-15 -3865 ($ $)) (-15 -3878 ($ $)) (-15 -3333 ($ $)) (-15 -1427 ($ $ $)) (-15 -3063 ($ $ $)) (-15 -1427 ($ (-654 $))) (-15 -3063 ($ (-654 $))) (-15 -4197 ($ $ (-654 $))) (-15 -2891 ($ $ (-654 $))) (-15 -2891 ($ $ $ $)) (-15 -2140 ($ $ $)) (-15 -3774 ((-112) $)) (-15 -2207 ($ $ (-654 $))) (-15 -3232 ($ $)) (-15 -1906 ($ $ $)) (-15 -2078 ($ $)) (-15 -2924 ($ (-654 (-654 $)))) (-15 -2525 ($ $ $)) (-15 -3298 ($ $)) (-15 -3298 ($ $ $)) (-15 -1632 ($ $ $)) (-15 -3289 ($ $ $)) (-15 -3391 ($ $ $)) (-15 -1577 ($ $ $)) (-15 -3879 ($ $ (-781))) (-15 -3900 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3625 ($ $ $)) (-15 -3677 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -4122 ($ $ (-654 $))) (-15 -1716 ($ $ (-654 $))) (-15 -1815 ($ $)) (-15 -3918 ($ $)) (-15 -3918 ($ $ (-781))) (-15 -2621 ($ $)) (-15 -2621 ($ $ (-781))) (-15 -1624 ($ $)) (-15 -4025 ($ $ $)) (-15 -3535 ($ $)) (-15 -3535 ($ $ $)) (-15 -3535 ($ $ $ $)) (-15 -1374 ($ $)) (-15 -1374 ($ $ $)) (-15 -1374 ($ $ $ $)) (-15 -3087 ($ $)) (-15 -3087 ($ $ $)) (-15 -3087 ($ $ $ $)) (-15 -4269 ($ $)) (-15 -4269 ($ (-654 $))) (-15 -3474 ($ $)) (-15 -3474 ($ (-654 $))) (-15 -1391 ($ $)) (-15 -1391 ($ (-654 $))) (-15 -2968 ($ (-654 $))) (-15 -3199 ($ (-654 $))) (-15 -3455 ($ (-654 $))) (-15 -1901 ($ (-654 $))) (-15 -2986 ($ $ $)) (-15 -2864 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3020 ($ $ $)) (-15 -3030 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -3090 ($ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ $)) (-15 -2840 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2853 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -2106 ($ $ $)) (-15 -2084 ($ $)) (-15 -4266 ($ $ $)) (-15 -4266 ($ $))))) (T -872)) +((-1803 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-872)))) (-2177 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-872)))) (-1678 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1678 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-872)))) (-1678 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872)))) (-1678 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872)))) (-3336 (*1 *1) (-5 *1 (-872))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3016 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1847 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1801 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3506 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3863 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3865 (*1 *1 *1) (-5 *1 (-872))) (-3878 (*1 *1 *1) (-5 *1 (-872))) (-3333 (*1 *1 *1) (-5 *1 (-872))) (-1427 (*1 *1 *1 *1) (-5 *1 (-872))) (-3063 (*1 *1 *1 *1) (-5 *1 (-872))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3063 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2891 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2891 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-2140 (*1 *1 *1 *1) (-5 *1 (-872))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3232 (*1 *1 *1) (-5 *1 (-872))) (-1906 (*1 *1 *1 *1) (-5 *1 (-872))) (-2078 (*1 *1 *1) (-5 *1 (-872))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-872)))) (-2525 (*1 *1 *1 *1) (-5 *1 (-872))) (-3298 (*1 *1 *1) (-5 *1 (-872))) (-3298 (*1 *1 *1 *1) (-5 *1 (-872))) (-1632 (*1 *1 *1 *1) (-5 *1 (-872))) (-3289 (*1 *1 *1 *1) (-5 *1 (-872))) (-3391 (*1 *1 *1 *1) (-5 *1 (-872))) (-1577 (*1 *1 *1 *1) (-5 *1 (-872))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-3900 (*1 *1 *1 *1) (-5 *1 (-872))) (-2357 (*1 *1 *1 *1) (-5 *1 (-872))) (-3625 (*1 *1 *1 *1) (-5 *1 (-872))) (-3677 (*1 *1 *1 *1) (-5 *1 (-872))) (-3049 (*1 *1 *1 *1) (-5 *1 (-872))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1716 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1815 (*1 *1 *1) (-5 *1 (-872))) (-3918 (*1 *1 *1) (-5 *1 (-872))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-2621 (*1 *1 *1) (-5 *1 (-872))) (-2621 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-1624 (*1 *1 *1) (-5 *1 (-872))) (-4025 (*1 *1 *1 *1) (-5 *1 (-872))) (-3535 (*1 *1 *1) (-5 *1 (-872))) (-3535 (*1 *1 *1 *1) (-5 *1 (-872))) (-3535 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-1374 (*1 *1 *1) (-5 *1 (-872))) (-1374 (*1 *1 *1 *1) (-5 *1 (-872))) (-1374 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-3087 (*1 *1 *1) (-5 *1 (-872))) (-3087 (*1 *1 *1 *1) (-5 *1 (-872))) (-3087 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-4269 (*1 *1 *1) (-5 *1 (-872))) (-4269 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3474 (*1 *1 *1) (-5 *1 (-872))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1391 (*1 *1 *1) (-5 *1 (-872))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3199 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3455 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1901 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2986 (*1 *1 *1 *1) (-5 *1 (-872))) (-2864 (*1 *1 *1 *1) (-5 *1 (-872))) (-3009 (*1 *1 *1 *1) (-5 *1 (-872))) (-3020 (*1 *1 *1 *1) (-5 *1 (-872))) (-3030 (*1 *1 *1 *1) (-5 *1 (-872))) (-3042 (*1 *1 *1 *1) (-5 *1 (-872))) (-3074 (*1 *1 *1 *1) (-5 *1 (-872))) (-3090 (*1 *1 *1 *1) (-5 *1 (-872))) (-3090 (*1 *1 *1) (-5 *1 (-872))) (* (*1 *1 *1 *1) (-5 *1 (-872))) (-3103 (*1 *1 *1 *1) (-5 *1 (-872))) (** (*1 *1 *1 *1) (-5 *1 (-872))) (-2840 (*1 *1 *1 *1) (-5 *1 (-872))) (-2800 (*1 *1 *1 *1) (-5 *1 (-872))) (-2813 (*1 *1 *1 *1) (-5 *1 (-872))) (-2853 (*1 *1 *1 *1) (-5 *1 (-872))) (-2095 (*1 *1 *1 *1) (-5 *1 (-872))) (-2106 (*1 *1 *1 *1) (-5 *1 (-872))) (-2084 (*1 *1 *1) (-5 *1 (-872))) (-4266 (*1 *1 *1 *1) (-5 *1 (-872))) (-4266 (*1 *1 *1) (-5 *1 (-872)))) +(-13 (-1116) (-10 -8 (-15 -1803 ((-1289) $)) (-15 -2177 ($ (-1175))) (-15 -3563 ((-1289) (-1175))) (-15 -1678 ($ (-574))) (-15 -1678 ($ (-1193))) (-15 -1678 ($ (-1175))) (-15 -1678 ($ (-227))) (-15 -3336 ($)) (-15 -2798 ((-1175) (-1175))) (-15 -3016 ((-574) $)) (-15 -1847 ((-574) $)) (-15 -3016 ((-574))) (-15 -1847 ((-574))) (-15 -4400 ((-574) $)) (-15 -3675 ((-574) $)) (-15 -1801 ($ (-574))) (-15 -3506 ($ (-574))) (-15 -3863 ($ (-574) (-574))) (-15 -3865 ($ $ (-574))) (-15 -3878 ($ $ (-574))) (-15 -3333 ($ $ (-574))) (-15 -3865 ($ $)) (-15 -3878 ($ $)) (-15 -3333 ($ $)) (-15 -1427 ($ $ $)) (-15 -3063 ($ $ $)) (-15 -1427 ($ (-654 $))) (-15 -3063 ($ (-654 $))) (-15 -4197 ($ $ (-654 $))) (-15 -2891 ($ $ (-654 $))) (-15 -2891 ($ $ $ $)) (-15 -2140 ($ $ $)) (-15 -3774 ((-112) $)) (-15 -2207 ($ $ (-654 $))) (-15 -3232 ($ $)) (-15 -1906 ($ $ $)) (-15 -2078 ($ $)) (-15 -2924 ($ (-654 (-654 $)))) (-15 -2525 ($ $ $)) (-15 -3298 ($ $)) (-15 -3298 ($ $ $)) (-15 -1632 ($ $ $)) (-15 -3289 ($ $ $)) (-15 -3391 ($ $ $)) (-15 -1577 ($ $ $)) (-15 -3879 ($ $ (-781))) (-15 -3900 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3625 ($ $ $)) (-15 -3677 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -4122 ($ $ (-654 $))) (-15 -1716 ($ $ (-654 $))) (-15 -1815 ($ $)) (-15 -3918 ($ $)) (-15 -3918 ($ $ (-781))) (-15 -2621 ($ $)) (-15 -2621 ($ $ (-781))) (-15 -1624 ($ $)) (-15 -4025 ($ $ $)) (-15 -3535 ($ $)) (-15 -3535 ($ $ $)) (-15 -3535 ($ $ $ $)) (-15 -1374 ($ $)) (-15 -1374 ($ $ $)) (-15 -1374 ($ $ $ $)) (-15 -3087 ($ $)) (-15 -3087 ($ $ $)) (-15 -3087 ($ $ $ $)) (-15 -4269 ($ $)) (-15 -4269 ($ (-654 $))) (-15 -3474 ($ $)) (-15 -3474 ($ (-654 $))) (-15 -1391 ($ $)) (-15 -1391 ($ (-654 $))) (-15 -2968 ($ (-654 $))) (-15 -3199 ($ (-654 $))) (-15 -3455 ($ (-654 $))) (-15 -1901 ($ (-654 $))) (-15 -2986 ($ $ $)) (-15 -2864 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3020 ($ $ $)) (-15 -3030 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -3090 ($ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ $)) (-15 -2840 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2853 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -2106 ($ $ $)) (-15 -2084 ($ $)) (-15 -4266 ($ $ $)) (-15 -4266 ($ $)))) +((-2384 (((-1289) (-654 (-52))) 23)) (-3231 (((-1289) (-1175) (-872)) 13) (((-1289) (-872)) 8) (((-1289) (-1175)) 10))) +(((-873) (-10 -7 (-15 -3231 ((-1289) (-1175))) (-15 -3231 ((-1289) (-872))) (-15 -3231 ((-1289) (-1175) (-872))) (-15 -2384 ((-1289) (-654 (-52)))))) (T -873)) +((-2384 (*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1289)) (-5 *1 (-873)))) (-3231 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-872)) (-5 *2 (-1289)) (-5 *1 (-873)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-873)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-873))))) +(-10 -7 (-15 -3231 ((-1289) (-1175))) (-15 -3231 ((-1289) (-872))) (-15 -3231 ((-1289) (-1175) (-872))) (-15 -2384 ((-1289) (-654 (-52))))) +((-2864 (((-112) $ $) NIL)) (-1498 (((-3 $ "failed") (-1193)) 36)) (-1496 (((-781)) 32)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-4380 (($ $ $) NIL) (($) NIL T CONST)) (-3383 (((-935) $) 29)) (-1489 (((-1175) $) 43)) (-2591 (($ (-935)) 28)) (-3940 (((-1136) $) NIL)) (-1844 (((-1193) $) 13) (((-546) $) 19) (((-903 (-388)) $) 26) (((-903 (-574)) $) 22)) (-2951 (((-872) $) 16)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 40)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 38))) +(((-874 |#1|) (-13 (-854) (-624 (-1193)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1498 ((-3 $ "failed") (-1193))))) (-654 (-1193))) (T -874)) +((-1498 (*1 *1 *2) (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2))))) +(-13 (-854) (-624 (-1193)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1498 ((-3 $ "failed") (-1193))))) +((-2864 (((-112) $ $) NIL)) (-2039 (((-516) $) 9)) (-2036 (((-654 (-449)) $) 13)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 21)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 16))) +(((-875) (-13 (-1116) (-10 -8 (-15 -2039 ((-516) $)) (-15 -2036 ((-654 (-449)) $))))) (T -875)) +((-2039 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-875)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875))))) +(-13 (-1116) (-10 -8 (-15 -2039 ((-516) $)) (-15 -2036 ((-654 (-449)) $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-966 |#1|)) NIL) (((-966 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-2898 (((-781)) NIL T CONST)) (-2783 (((-1289) (-781)) NIL)) (-4069 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3103 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-876 |#1| |#2| |#3| |#4|) (-13 (-1065) (-500 (-966 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2783 ((-1289) (-781))))) (-1065) (-654 (-1193)) (-654 (-781)) (-781)) (T -876)) +((-3103 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-876 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *2 (-1065)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-781))) (-14 *5 (-781)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-876 *4 *5 *6 *7)) (-4 *4 (-1065)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 *3)) (-14 *7 *3)))) +(-13 (-1065) (-500 (-966 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2783 ((-1289) (-781))))) +((-3608 (((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|) 38)) (-4182 (((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|) 29))) +(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -4182 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -3608 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|))) (-372) (-1275 |#1|) (-1260 |#1|)) (T -877)) +((-3608 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1275 *5)) (-4 *6 (-1260 *5)))) (-4182 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1275 *5)) (-4 *6 (-1260 *5))))) +(-10 -7 (-15 -4182 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -3608 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|))) +((-4182 (((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|)) 30) (((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) 28))) +(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -4182 ((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) (-15 -4182 ((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|)))) (-372) (-1193) |#1|) (T -878)) +((-4182 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1193)) (-14 *7 *5) (-5 *2 (-417 (-1257 *6 *5))) (-5 *1 (-878 *5 *6 *7)))) (-4182 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1193)) (-14 *7 *5) (-5 *2 (-417 (-1257 *6 *5))) (-5 *1 (-878 *5 *6 *7))))) +(-10 -7 (-15 -4182 ((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) (-15 -4182 ((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-4212 (($ $ (-574)) 68)) (-3245 (((-112) $ $) 65)) (-3250 (($) 18 T CONST)) (-3298 (($ (-1189 (-574)) (-574)) 67)) (-2800 (($ $ $) 61)) (-4322 (((-3 $ "failed") $) 37)) (-4077 (($ $) 70)) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3547 (((-781) $) 75)) (-4226 (((-112) $) 35)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-1510 (((-574)) 72)) (-1712 (((-574) $) 71)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2433 (($ $ (-574)) 74)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2098 (((-781) $) 64)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-4074 (((-1173 (-574)) $) 76)) (-2916 (($ $) 73)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-3525 (((-574) $ (-574)) 69)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-879 |#1|) (-141) (-574)) (T -879)) -((-2354 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1172 (-574))))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781)))) (-2115 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-4209 (*1 *1 *1) (-4 *1 (-879 *2))) (-2078 (*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-1325 (*1 *1 *1) (-4 *1 (-879 *2))) (-3524 (*1 *2 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-1739 (*1 *1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4))))) -(-13 (-315) (-148) (-10 -8 (-15 -2354 ((-1172 (-574)) $)) (-15 -2725 ((-781) $)) (-15 -2115 ($ $ (-574))) (-15 -4209 ($ $)) (-15 -2078 ((-574))) (-15 -1978 ((-574) $)) (-15 -1325 ($ $)) (-15 -3524 ((-574) $ (-574))) (-15 -4211 ($ $ (-574))) (-15 -1739 ($ (-1188 (-574)) (-574))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ (-574)) NIL)) (-3656 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-1739 (($ (-1188 (-574)) (-574)) NIL)) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1325 (($ $) NIL)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-2725 (((-781) $) NIL)) (-3372 (((-112) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2078 (((-574)) NIL)) (-1978 (((-574) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2115 (($ $ (-574)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-2354 (((-1172 (-574)) $) NIL)) (-4209 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3524 (((-574) $ (-574)) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) +((-4074 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1173 (-574))))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781)))) (-2433 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-2916 (*1 *1 *1) (-4 *1 (-879 *2))) (-1510 (*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-4077 (*1 *1 *1) (-4 *1 (-879 *2))) (-3525 (*1 *2 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-4212 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-3298 (*1 *1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4))))) +(-13 (-315) (-148) (-10 -8 (-15 -4074 ((-1173 (-574)) $)) (-15 -3547 ((-781) $)) (-15 -2433 ($ $ (-574))) (-15 -2916 ($ $)) (-15 -1510 ((-574))) (-15 -1712 ((-574) $)) (-15 -4077 ($ $)) (-15 -3525 ((-574) $ (-574))) (-15 -4212 ($ $ (-574))) (-15 -3298 ($ (-1189 (-574)) (-574))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $ (-574)) NIL)) (-3245 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-3298 (($ (-1189 (-574)) (-574)) NIL)) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-4077 (($ $) NIL)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3547 (((-781) $) NIL)) (-4226 (((-112) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1510 (((-574)) NIL)) (-1712 (((-574) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2433 (($ $ (-574)) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-4074 (((-1173 (-574)) $) NIL)) (-2916 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3525 (((-574) $ (-574)) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) (((-880 |#1|) (-879 |#1|) (-574)) (T -880)) NIL (-879 |#1|) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4018 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-315)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-880 |#1|) (-922)))) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-880 |#1|) (-922)))) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL (|has| (-880 |#1|) (-830)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-880 |#1|) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-880 |#1|) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-880 |#1|) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-880 |#1|) (-1053 (-574))))) (-2216 (((-880 |#1|) $) NIL) (((-1192) $) NIL (|has| (-880 |#1|) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-880 |#1|) (-1053 (-574)))) (((-574) $) NIL (|has| (-880 |#1|) (-1053 (-574))))) (-3892 (($ $) NIL) (($ (-574) $) NIL)) (-2799 (($ $ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-880 |#1|))) (|:| |vec| (-1283 (-880 |#1|)))) (-699 $) (-1283 $)) NIL) (((-699 (-880 |#1|)) (-699 $)) NIL) (((-699 (-880 |#1|)) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-880 |#1|) (-555)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1913 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-880 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-880 |#1|) (-897 (-388))))) (-3372 (((-112) $) NIL)) (-3536 (($ $) NIL)) (-2970 (((-880 |#1|) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-1167)))) (-1808 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-1593 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-1786 (($ (-1 (-880 |#1|) (-880 |#1|)) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-880 |#1|) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) NIL (|has| (-880 |#1|) (-315)))) (-3471 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-880 |#1|) (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-880 |#1|) (-922)))) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-880 |#1|)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-880 |#1|) (-880 |#1|)) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-302 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-302 (-880 |#1|)))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-1192)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-524 (-1192) (-880 |#1|)))) (($ $ (-1192) (-880 |#1|)) NIL (|has| (-880 |#1|) (-524 (-1192) (-880 |#1|))))) (-3364 (((-781) $) NIL)) (-2208 (($ $ (-880 |#1|)) NIL (|has| (-880 |#1|) (-294 (-880 |#1|) (-880 |#1|))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-1192)) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-2120 (($ $) NIL)) (-2981 (((-880 |#1|) $) NIL)) (-1845 (((-903 (-574)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-880 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-880 |#1|) (-1037))) (((-227) $) NIL (|has| (-880 |#1|) (-1037)))) (-1863 (((-176 (-417 (-574))) $) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-880 |#1|)) NIL) (($ (-1192)) NIL (|has| (-880 |#1|) (-1053 (-1192))))) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-922))) (|has| (-880 |#1|) (-146))))) (-4019 (((-781)) NIL T CONST)) (-2753 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3524 (((-417 (-574)) $ (-574)) NIL)) (-3306 (($ $) NIL (|has| (-880 |#1|) (-830)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-1192)) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3098 (($ $ $) NIL) (($ (-880 |#1|) (-880 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-880 |#1|) $) NIL) (($ $ (-880 |#1|)) NIL))) -(((-881 |#1|) (-13 (-1007 (-880 |#1|)) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -1863 ((-176 (-417 (-574))) $)) (-15 -3892 ($ $)) (-15 -3892 ($ (-574) $)))) (-574)) (T -881)) -((-3524 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-881 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574)))) (-3892 (*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574)))) (-3892 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2)))) -(-13 (-1007 (-880 |#1|)) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -1863 ((-176 (-417 (-574))) $)) (-15 -3892 ($ $)) (-15 -3892 ($ (-574) $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4018 ((|#2| $) NIL (|has| |#2| (-315)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL (|has| |#2| (-830)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#2| "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| |#2| (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574))))) (-2216 ((|#2| $) NIL) (((-1192) $) NIL (|has| |#2| (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-574)))) (((-574) $) NIL (|has| |#2| (-1053 (-574))))) (-3892 (($ $) 35) (($ (-574) $) 38)) (-2799 (($ $ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) 64)) (-2834 (($) NIL (|has| |#2| (-555)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1913 (((-112) $) NIL (|has| |#2| (-830)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#2| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#2| (-897 (-388))))) (-3372 (((-112) $) NIL)) (-3536 (($ $) NIL)) (-2970 ((|#2| $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| |#2| (-1167)))) (-1808 (((-112) $) NIL (|has| |#2| (-830)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| |#2| (-860)))) (-1593 (($ $ $) NIL (|has| |#2| (-860)))) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 60)) (-3791 (($) NIL (|has| |#2| (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) NIL (|has| |#2| (-315)))) (-3471 ((|#2| $) NIL (|has| |#2| (-555)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 |#2|) (-654 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-317 |#2|))) (($ $ (-302 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-302 |#2|))) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-1192)) (-654 |#2|)) NIL (|has| |#2| (-524 (-1192) |#2|))) (($ $ (-1192) |#2|) NIL (|has| |#2| (-524 (-1192) |#2|)))) (-3364 (((-781) $) NIL)) (-2208 (($ $ |#2|) NIL (|has| |#2| (-294 |#2| |#2|)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2120 (($ $) NIL)) (-2981 ((|#2| $) NIL)) (-1845 (((-903 (-574)) $) NIL (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#2| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#2| (-624 (-546)))) (((-388) $) NIL (|has| |#2| (-1037))) (((-227) $) NIL (|has| |#2| (-1037)))) (-1863 (((-176 (-417 (-574))) $) 78)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-2950 (((-872) $) 106) (($ (-574)) 20) (($ $) NIL) (($ (-417 (-574))) 25) (($ |#2|) 19) (($ (-1192)) NIL (|has| |#2| (-1053 (-1192))))) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2753 ((|#2| $) NIL (|has| |#2| (-555)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3524 (((-417 (-574)) $ (-574)) 71)) (-3306 (($ $) NIL (|has| |#2| (-830)))) (-2142 (($) 15 T CONST)) (-2154 (($) 17 T CONST)) (-3583 (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3041 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2985 (((-112) $ $) 46)) (-3029 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3098 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3089 (($ $) 50) (($ $ $) 52)) (-3074 (($ $ $) 48)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 61)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 53) (($ $ $) 55) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-882 |#1| |#2|) (-13 (-1007 |#2|) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -1863 ((-176 (-417 (-574))) $)) (-15 -3892 ($ $)) (-15 -3892 ($ (-574) $)))) (-574) (-879 |#1|)) (T -882)) -((-3524 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-417 (-574))) (-5 *1 (-882 *4 *5)) (-5 *3 (-574)) (-4 *5 (-879 *4)))) (-1863 (*1 *2 *1) (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3)))) (-3892 (*1 *1 *1) (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2)))) (-3892 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3))))) -(-13 (-1007 |#2|) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -1863 ((-176 (-417 (-574))) $)) (-15 -3892 ($ $)) (-15 -3892 ($ (-574) $)))) -((-2863 (((-112) $ $) NIL (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))))) (-2407 ((|#2| $) 12)) (-2623 (($ |#1| |#2|) 9)) (-3945 (((-1174) $) NIL (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))))) (-3939 (((-1135) $) NIL (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#1| $) 11)) (-2962 (($ |#1| |#2|) 10)) (-2950 (((-872) $) 18 (-2832 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115)))))) (-3838 (((-112) $ $) NIL (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))))) (-2985 (((-112) $ $) 23 (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115)))))) -(((-883 |#1| |#2|) (-13 (-1233) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1115)) (IF (|has| |#2| (-1115)) (-6 (-1115)) |%noBranch|) |%noBranch|) (-15 -2623 ($ |#1| |#2|)) (-15 -2962 ($ |#1| |#2|)) (-15 -2924 (|#1| $)) (-15 -2407 (|#2| $)))) (-1233) (-1233)) (T -883)) -((-2623 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1233)) (-4 *3 (-1233)))) (-2962 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1233)) (-4 *3 (-1233)))) (-2924 (*1 *2 *1) (-12 (-4 *2 (-1233)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1233)))) (-2407 (*1 *2 *1) (-12 (-4 *2 (-1233)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1233))))) -(-13 (-1233) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1115)) (IF (|has| |#2| (-1115)) (-6 (-1115)) |%noBranch|) |%noBranch|) (-15 -2623 ($ |#1| |#2|)) (-15 -2962 ($ |#1| |#2|)) (-15 -2924 (|#1| $)) (-15 -2407 (|#2| $)))) -((-2863 (((-112) $ $) NIL)) (-2722 (((-574) $) 16)) (-2731 (($ (-158)) 13)) (-3211 (($ (-158)) 14)) (-3945 (((-1174) $) NIL)) (-1376 (((-158) $) 15)) (-3939 (((-1135) $) NIL)) (-4105 (($ (-158)) 11)) (-3898 (($ (-158)) 10)) (-2950 (((-872) $) 24) (($ (-158)) 17)) (-2633 (($ (-158)) 12)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-884) (-13 (-1115) (-10 -8 (-15 -3898 ($ (-158))) (-15 -4105 ($ (-158))) (-15 -2633 ($ (-158))) (-15 -2731 ($ (-158))) (-15 -3211 ($ (-158))) (-15 -1376 ((-158) $)) (-15 -2722 ((-574) $)) (-15 -2950 ($ (-158)))))) (T -884)) -((-3898 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2731 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-3211 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) -(-13 (-1115) (-10 -8 (-15 -3898 ($ (-158))) (-15 -4105 ($ (-158))) (-15 -2633 ($ (-158))) (-15 -2731 ($ (-158))) (-15 -3211 ($ (-158))) (-15 -1376 ((-158) $)) (-15 -2722 ((-574) $)) (-15 -2950 ($ (-158))))) -((-2950 (((-324 (-574)) (-417 (-965 (-48)))) 23) (((-324 (-574)) (-965 (-48))) 18))) -(((-885) (-10 -7 (-15 -2950 ((-324 (-574)) (-965 (-48)))) (-15 -2950 ((-324 (-574)) (-417 (-965 (-48))))))) (T -885)) -((-2950 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 (-48)))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-965 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885))))) -(-10 -7 (-15 -2950 ((-324 (-574)) (-965 (-48)))) (-15 -2950 ((-324 (-574)) (-417 (-965 (-48)))))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 18) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2131 (((-112) $ (|[\|\|]| (-516))) 9) (((-112) $ (|[\|\|]| (-1174))) 13)) (-3838 (((-112) $ $) NIL)) (-1337 (((-516) $) 10) (((-1174) $) 14)) (-2985 (((-112) $ $) 15))) -(((-886) (-13 (-1098) (-1278) (-10 -8 (-15 -2131 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1174)))) (-15 -1337 ((-1174) $))))) (T -886)) -((-2131 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-886)))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-886))))) -(-13 (-1098) (-1278) (-10 -8 (-15 -2131 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1174)))) (-15 -1337 ((-1174) $)))) -((-1786 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15))) -(((-887 |#1| |#2|) (-10 -7 (-15 -1786 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1233) (-1233)) (T -887)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))) -(-10 -7 (-15 -1786 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) -((-2862 (($ |#1| |#1|) 8)) (-2875 ((|#1| $ (-781)) 15))) -(((-888 |#1|) (-10 -8 (-15 -2862 ($ |#1| |#1|)) (-15 -2875 (|#1| $ (-781)))) (-1233)) (T -888)) -((-2875 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1233)))) (-2862 (*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1233))))) -(-10 -8 (-15 -2862 ($ |#1| |#1|)) (-15 -2875 (|#1| $ (-781)))) -((-1786 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15))) -(((-889 |#1| |#2|) (-10 -7 (-15 -1786 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1233) (-1233)) (T -889)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))) -(-10 -7 (-15 -1786 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) -((-2862 (($ |#1| |#1| |#1|) 8)) (-2875 ((|#1| $ (-781)) 15))) -(((-890 |#1|) (-10 -8 (-15 -2862 ($ |#1| |#1| |#1|)) (-15 -2875 (|#1| $ (-781)))) (-1233)) (T -890)) -((-2875 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1233)))) (-2862 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1233))))) -(-10 -8 (-15 -2862 ($ |#1| |#1| |#1|)) (-15 -2875 (|#1| $ (-781)))) -((-2992 (((-654 (-1197)) (-1174)) 9))) -(((-891) (-10 -7 (-15 -2992 ((-654 (-1197)) (-1174))))) (T -891)) -((-2992 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-1197))) (-5 *1 (-891))))) -(-10 -7 (-15 -2992 ((-654 (-1197)) (-1174)))) -((-1786 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 15))) -(((-892 |#1| |#2|) (-10 -7 (-15 -1786 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1233) (-1233)) (T -892)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))) -(-10 -7 (-15 -1786 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) -((-3210 (($ |#1| |#1| |#1|) 8)) (-2875 ((|#1| $ (-781)) 15))) -(((-893 |#1|) (-10 -8 (-15 -3210 ($ |#1| |#1| |#1|)) (-15 -2875 (|#1| $ (-781)))) (-1233)) (T -893)) -((-2875 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1233)))) (-3210 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1233))))) -(-10 -8 (-15 -3210 ($ |#1| |#1| |#1|)) (-15 -2875 (|#1| $ (-781)))) -((-2553 (((-1172 (-654 (-574))) (-654 (-574)) (-1172 (-654 (-574)))) 41)) (-4124 (((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574))) 31)) (-4285 (((-1172 (-654 (-574))) (-654 (-574))) 53) (((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574))) 50)) (-3674 (((-1172 (-654 (-574))) (-574)) 55)) (-3246 (((-1172 (-654 (-934))) (-1172 (-654 (-934)))) 22)) (-2202 (((-654 (-934)) (-654 (-934))) 18))) -(((-894) (-10 -7 (-15 -2202 ((-654 (-934)) (-654 (-934)))) (-15 -3246 ((-1172 (-654 (-934))) (-1172 (-654 (-934))))) (-15 -4124 ((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -2553 ((-1172 (-654 (-574))) (-654 (-574)) (-1172 (-654 (-574))))) (-15 -4285 ((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -4285 ((-1172 (-654 (-574))) (-654 (-574)))) (-15 -3674 ((-1172 (-654 (-574))) (-574))))) (T -894)) -((-3674 (*1 *2 *3) (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574)))) (-4285 (*1 *2 *3) (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-4285 (*1 *2 *3 *3) (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-2553 (*1 *2 *3 *2) (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *3 (-654 (-574))) (-5 *1 (-894)))) (-4124 (*1 *2 *3 *3) (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-3246 (*1 *2 *2) (-12 (-5 *2 (-1172 (-654 (-934)))) (-5 *1 (-894)))) (-2202 (*1 *2 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-894))))) -(-10 -7 (-15 -2202 ((-654 (-934)) (-654 (-934)))) (-15 -3246 ((-1172 (-654 (-934))) (-1172 (-654 (-934))))) (-15 -4124 ((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -2553 ((-1172 (-654 (-574))) (-654 (-574)) (-1172 (-654 (-574))))) (-15 -4285 ((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -4285 ((-1172 (-654 (-574))) (-654 (-574)))) (-15 -3674 ((-1172 (-654 (-574))) (-574)))) -((-1845 (((-903 (-388)) $) 9 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 8 (|has| |#1| (-624 (-903 (-574))))))) -(((-895 |#1|) (-141) (-1233)) (T -895)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4146 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-315)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-880 |#1|) (-923)))) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-880 |#1|) (-923)))) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL (|has| (-880 |#1|) (-830)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-880 |#1|) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-880 |#1|) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-880 |#1|) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-880 |#1|) (-1054 (-574))))) (-2214 (((-880 |#1|) $) NIL) (((-1193) $) NIL (|has| (-880 |#1|) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-880 |#1|) (-1054 (-574)))) (((-574) $) NIL (|has| (-880 |#1|) (-1054 (-574))))) (-3663 (($ $) NIL) (($ (-574) $) NIL)) (-2800 (($ $ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-880 |#1|))) (|:| |vec| (-1284 (-880 |#1|)))) (-699 $) (-1284 $)) NIL) (((-699 (-880 |#1|)) (-699 $)) NIL) (((-699 (-880 |#1|)) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-880 |#1|) (-555)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3408 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-880 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-880 |#1|) (-897 (-388))))) (-4226 (((-112) $) NIL)) (-2967 (($ $) NIL)) (-2971 (((-880 |#1|) $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-1168)))) (-3182 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-4380 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-1785 (($ (-1 (-880 |#1|) (-880 |#1|)) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| (-880 |#1|) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) NIL (|has| (-880 |#1|) (-315)))) (-2260 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-880 |#1|) (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-880 |#1|) (-923)))) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-880 |#1|)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-880 |#1|) (-880 |#1|)) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-302 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-302 (-880 |#1|)))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-1193)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-524 (-1193) (-880 |#1|)))) (($ $ (-1193) (-880 |#1|)) NIL (|has| (-880 |#1|) (-524 (-1193) (-880 |#1|))))) (-2098 (((-781) $) NIL)) (-2207 (($ $ (-880 |#1|)) NIL (|has| (-880 |#1|) (-294 (-880 |#1|) (-880 |#1|))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-2808 (($ $) NIL)) (-2981 (((-880 |#1|) $) NIL)) (-1844 (((-903 (-574)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-880 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-880 |#1|) (-1038))) (((-227) $) NIL (|has| (-880 |#1|) (-1038)))) (-2173 (((-176 (-417 (-574))) $) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-880 |#1|)) NIL) (($ (-1193)) NIL (|has| (-880 |#1|) (-1054 (-1193))))) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-923))) (|has| (-880 |#1|) (-146))))) (-2898 (((-781)) NIL T CONST)) (-2544 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3525 (((-417 (-574)) $ (-574)) NIL)) (-3936 (($ $) NIL (|has| (-880 |#1|) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3103 (($ $ $) NIL) (($ (-880 |#1|) (-880 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-880 |#1|) $) NIL) (($ $ (-880 |#1|)) NIL))) +(((-881 |#1|) (-13 (-1008 (-880 |#1|)) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -2173 ((-176 (-417 (-574))) $)) (-15 -3663 ($ $)) (-15 -3663 ($ (-574) $)))) (-574)) (T -881)) +((-3525 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-881 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574)))) (-3663 (*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574)))) (-3663 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2)))) +(-13 (-1008 (-880 |#1|)) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -2173 ((-176 (-417 (-574))) $)) (-15 -3663 ($ $)) (-15 -3663 ($ (-574) $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4146 ((|#2| $) NIL (|has| |#2| (-315)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL (|has| |#2| (-830)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| |#2| (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574))))) (-2214 ((|#2| $) NIL) (((-1193) $) NIL (|has| |#2| (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-574)))) (((-574) $) NIL (|has| |#2| (-1054 (-574))))) (-3663 (($ $) 35) (($ (-574) $) 38)) (-2800 (($ $ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) 64)) (-2835 (($) NIL (|has| |#2| (-555)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3408 (((-112) $) NIL (|has| |#2| (-830)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#2| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#2| (-897 (-388))))) (-4226 (((-112) $) NIL)) (-2967 (($ $) NIL)) (-2971 ((|#2| $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| |#2| (-1168)))) (-3182 (((-112) $) NIL (|has| |#2| (-830)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| |#2| (-860)))) (-4380 (($ $ $) NIL (|has| |#2| (-860)))) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 60)) (-3791 (($) NIL (|has| |#2| (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) NIL (|has| |#2| (-315)))) (-2260 ((|#2| $) NIL (|has| |#2| (-555)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 |#2|) (-654 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-317 |#2|))) (($ $ (-302 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-302 |#2|))) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-1193)) (-654 |#2|)) NIL (|has| |#2| (-524 (-1193) |#2|))) (($ $ (-1193) |#2|) NIL (|has| |#2| (-524 (-1193) |#2|)))) (-2098 (((-781) $) NIL)) (-2207 (($ $ |#2|) NIL (|has| |#2| (-294 |#2| |#2|)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2808 (($ $) NIL)) (-2981 ((|#2| $) NIL)) (-1844 (((-903 (-574)) $) NIL (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#2| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#2| (-624 (-546)))) (((-388) $) NIL (|has| |#2| (-1038))) (((-227) $) NIL (|has| |#2| (-1038)))) (-2173 (((-176 (-417 (-574))) $) 78)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-2951 (((-872) $) 106) (($ (-574)) 20) (($ $) NIL) (($ (-417 (-574))) 25) (($ |#2|) 19) (($ (-1193)) NIL (|has| |#2| (-1054 (-1193))))) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-2898 (((-781)) NIL T CONST)) (-2544 ((|#2| $) NIL (|has| |#2| (-555)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3525 (((-417 (-574)) $ (-574)) 71)) (-3936 (($ $) NIL (|has| |#2| (-830)))) (-2141 (($) 15 T CONST)) (-2153 (($) 17 T CONST)) (-3584 (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3042 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2986 (((-112) $ $) 46)) (-3030 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3103 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3090 (($ $) 50) (($ $ $) 52)) (-3074 (($ $ $) 48)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 61)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 53) (($ $ $) 55) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-882 |#1| |#2|) (-13 (-1008 |#2|) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -2173 ((-176 (-417 (-574))) $)) (-15 -3663 ($ $)) (-15 -3663 ($ (-574) $)))) (-574) (-879 |#1|)) (T -882)) +((-3525 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-417 (-574))) (-5 *1 (-882 *4 *5)) (-5 *3 (-574)) (-4 *5 (-879 *4)))) (-2173 (*1 *2 *1) (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3)))) (-3663 (*1 *1 *1) (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2)))) (-3663 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3))))) +(-13 (-1008 |#2|) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -2173 ((-176 (-417 (-574))) $)) (-15 -3663 ($ $)) (-15 -3663 ($ (-574) $)))) +((-2864 (((-112) $ $) NIL (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))))) (-2408 ((|#2| $) 12)) (-2624 (($ |#1| |#2|) 9)) (-1489 (((-1175) $) NIL (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))))) (-3940 (((-1136) $) NIL (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#1| $) 11)) (-2963 (($ |#1| |#2|) 10)) (-2951 (((-872) $) 18 (-2833 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116)))))) (-4069 (((-112) $ $) NIL (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))))) (-2986 (((-112) $ $) 23 (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116)))))) +(((-883 |#1| |#2|) (-13 (-1234) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1116)) (IF (|has| |#2| (-1116)) (-6 (-1116)) |%noBranch|) |%noBranch|) (-15 -2624 ($ |#1| |#2|)) (-15 -2963 ($ |#1| |#2|)) (-15 -2925 (|#1| $)) (-15 -2408 (|#2| $)))) (-1234) (-1234)) (T -883)) +((-2624 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1234)) (-4 *3 (-1234)))) (-2963 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1234)) (-4 *3 (-1234)))) (-2925 (*1 *2 *1) (-12 (-4 *2 (-1234)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1234)))) (-2408 (*1 *2 *1) (-12 (-4 *2 (-1234)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1234))))) +(-13 (-1234) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1116)) (IF (|has| |#2| (-1116)) (-6 (-1116)) |%noBranch|) |%noBranch|) (-15 -2624 ($ |#1| |#2|)) (-15 -2963 ($ |#1| |#2|)) (-15 -2925 (|#1| $)) (-15 -2408 (|#2| $)))) +((-2864 (((-112) $ $) NIL)) (-2990 (((-574) $) 16)) (-3636 (($ (-158)) 13)) (-2674 (($ (-158)) 14)) (-1489 (((-1175) $) NIL)) (-2502 (((-158) $) 15)) (-3940 (((-1136) $) NIL)) (-4106 (($ (-158)) 11)) (-3223 (($ (-158)) 10)) (-2951 (((-872) $) 24) (($ (-158)) 17)) (-2635 (($ (-158)) 12)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-884) (-13 (-1116) (-10 -8 (-15 -3223 ($ (-158))) (-15 -4106 ($ (-158))) (-15 -2635 ($ (-158))) (-15 -3636 ($ (-158))) (-15 -2674 ($ (-158))) (-15 -2502 ((-158) $)) (-15 -2990 ((-574) $)) (-15 -2951 ($ (-158)))))) (T -884)) +((-3223 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-4106 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2635 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-3636 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2674 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) +(-13 (-1116) (-10 -8 (-15 -3223 ($ (-158))) (-15 -4106 ($ (-158))) (-15 -2635 ($ (-158))) (-15 -3636 ($ (-158))) (-15 -2674 ($ (-158))) (-15 -2502 ((-158) $)) (-15 -2990 ((-574) $)) (-15 -2951 ($ (-158))))) +((-2951 (((-324 (-574)) (-417 (-966 (-48)))) 23) (((-324 (-574)) (-966 (-48))) 18))) +(((-885) (-10 -7 (-15 -2951 ((-324 (-574)) (-966 (-48)))) (-15 -2951 ((-324 (-574)) (-417 (-966 (-48))))))) (T -885)) +((-2951 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 (-48)))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-966 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885))))) +(-10 -7 (-15 -2951 ((-324 (-574)) (-966 (-48)))) (-15 -2951 ((-324 (-574)) (-417 (-966 (-48)))))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 18) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2130 (((-112) $ (|[\|\|]| (-516))) 9) (((-112) $ (|[\|\|]| (-1175))) 13)) (-4069 (((-112) $ $) NIL)) (-1337 (((-516) $) 10) (((-1175) $) 14)) (-2986 (((-112) $ $) 15))) +(((-886) (-13 (-1099) (-1279) (-10 -8 (-15 -2130 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1175)))) (-15 -1337 ((-1175) $))))) (T -886)) +((-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-886)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-886))))) +(-13 (-1099) (-1279) (-10 -8 (-15 -2130 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1175)))) (-15 -1337 ((-1175) $)))) +((-1785 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15))) +(((-887 |#1| |#2|) (-10 -7 (-15 -1785 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1234) (-1234)) (T -887)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))) +(-10 -7 (-15 -1785 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) +((-2686 (($ |#1| |#1|) 8)) (-3026 ((|#1| $ (-781)) 15))) +(((-888 |#1|) (-10 -8 (-15 -2686 ($ |#1| |#1|)) (-15 -3026 (|#1| $ (-781)))) (-1234)) (T -888)) +((-3026 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1234)))) (-2686 (*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1234))))) +(-10 -8 (-15 -2686 ($ |#1| |#1|)) (-15 -3026 (|#1| $ (-781)))) +((-1785 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15))) +(((-889 |#1| |#2|) (-10 -7 (-15 -1785 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1234) (-1234)) (T -889)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))) +(-10 -7 (-15 -1785 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) +((-2686 (($ |#1| |#1| |#1|) 8)) (-3026 ((|#1| $ (-781)) 15))) +(((-890 |#1|) (-10 -8 (-15 -2686 ($ |#1| |#1| |#1|)) (-15 -3026 (|#1| $ (-781)))) (-1234)) (T -890)) +((-3026 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1234)))) (-2686 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1234))))) +(-10 -8 (-15 -2686 ($ |#1| |#1| |#1|)) (-15 -3026 (|#1| $ (-781)))) +((-3763 (((-654 (-1198)) (-1175)) 9))) +(((-891) (-10 -7 (-15 -3763 ((-654 (-1198)) (-1175))))) (T -891)) +((-3763 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-1198))) (-5 *1 (-891))))) +(-10 -7 (-15 -3763 ((-654 (-1198)) (-1175)))) +((-1785 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 15))) +(((-892 |#1| |#2|) (-10 -7 (-15 -1785 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1234) (-1234)) (T -892)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))) +(-10 -7 (-15 -1785 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) +((-1987 (($ |#1| |#1| |#1|) 8)) (-3026 ((|#1| $ (-781)) 15))) +(((-893 |#1|) (-10 -8 (-15 -1987 ($ |#1| |#1| |#1|)) (-15 -3026 (|#1| $ (-781)))) (-1234)) (T -893)) +((-3026 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1234)))) (-1987 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1234))))) +(-10 -8 (-15 -1987 ($ |#1| |#1| |#1|)) (-15 -3026 (|#1| $ (-781)))) +((-1914 (((-1173 (-654 (-574))) (-654 (-574)) (-1173 (-654 (-574)))) 41)) (-2566 (((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574))) 31)) (-1521 (((-1173 (-654 (-574))) (-654 (-574))) 53) (((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574))) 50)) (-4096 (((-1173 (-654 (-574))) (-574)) 55)) (-1545 (((-1173 (-654 (-935))) (-1173 (-654 (-935)))) 22)) (-3617 (((-654 (-935)) (-654 (-935))) 18))) +(((-894) (-10 -7 (-15 -3617 ((-654 (-935)) (-654 (-935)))) (-15 -1545 ((-1173 (-654 (-935))) (-1173 (-654 (-935))))) (-15 -2566 ((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -1914 ((-1173 (-654 (-574))) (-654 (-574)) (-1173 (-654 (-574))))) (-15 -1521 ((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -1521 ((-1173 (-654 (-574))) (-654 (-574)))) (-15 -4096 ((-1173 (-654 (-574))) (-574))))) (T -894)) +((-4096 (*1 *2 *3) (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574)))) (-1521 (*1 *2 *3) (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-1521 (*1 *2 *3 *3) (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-1914 (*1 *2 *3 *2) (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *3 (-654 (-574))) (-5 *1 (-894)))) (-2566 (*1 *2 *3 *3) (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-1545 (*1 *2 *2) (-12 (-5 *2 (-1173 (-654 (-935)))) (-5 *1 (-894)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-894))))) +(-10 -7 (-15 -3617 ((-654 (-935)) (-654 (-935)))) (-15 -1545 ((-1173 (-654 (-935))) (-1173 (-654 (-935))))) (-15 -2566 ((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -1914 ((-1173 (-654 (-574))) (-654 (-574)) (-1173 (-654 (-574))))) (-15 -1521 ((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -1521 ((-1173 (-654 (-574))) (-654 (-574)))) (-15 -4096 ((-1173 (-654 (-574))) (-574)))) +((-1844 (((-903 (-388)) $) 9 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 8 (|has| |#1| (-624 (-903 (-574))))))) +(((-895 |#1|) (-141) (-1234)) (T -895)) NIL (-13 (-10 -7 (IF (|has| |t#1| (-624 (-903 (-574)))) (-6 (-624 (-903 (-574)))) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-388)))) (-6 (-624 (-903 (-388)))) |%noBranch|))) (((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574))))) -((-2863 (((-112) $ $) NIL)) (-3763 (($) 14)) (-3844 (($ (-900 |#1| |#2|) (-900 |#1| |#3|)) 28)) (-3626 (((-900 |#1| |#3|) $) 16)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4197 (((-112) $) 22)) (-3574 (($) 19)) (-2950 (((-872) $) 31)) (-3838 (((-112) $ $) NIL)) (-3413 (((-900 |#1| |#2|) $) 15)) (-2985 (((-112) $ $) 26))) -(((-896 |#1| |#2| |#3|) (-13 (-1115) (-10 -8 (-15 -4197 ((-112) $)) (-15 -3574 ($)) (-15 -3763 ($)) (-15 -3844 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -3413 ((-900 |#1| |#2|) $)) (-15 -3626 ((-900 |#1| |#3|) $)))) (-1115) (-1115) (-676 |#2|)) (T -896)) -((-4197 (*1 *2 *1) (-12 (-4 *4 (-1115)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1115)) (-4 *5 (-676 *4)))) (-3574 (*1 *1) (-12 (-4 *3 (-1115)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1115)) (-4 *4 (-676 *3)))) (-3763 (*1 *1) (-12 (-4 *3 (-1115)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1115)) (-4 *4 (-676 *3)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6)))) (-3413 (*1 *2 *1) (-12 (-4 *4 (-1115)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1115)) (-4 *5 (-676 *4)))) (-3626 (*1 *2 *1) (-12 (-4 *4 (-1115)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1115)) (-4 *5 (-676 *4))))) -(-13 (-1115) (-10 -8 (-15 -4197 ((-112) $)) (-15 -3574 ($)) (-15 -3763 ($)) (-15 -3844 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -3413 ((-900 |#1| |#2|) $)) (-15 -3626 ((-900 |#1| |#3|) $)))) -((-2863 (((-112) $ $) 7)) (-3552 (((-900 |#1| $) $ (-903 |#1|) (-900 |#1| $)) 14)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) -(((-897 |#1|) (-141) (-1115)) (T -897)) -((-3552 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4)) (-4 *4 (-1115))))) -(-13 (-1115) (-10 -8 (-15 -3552 ((-900 |t#1| $) $ (-903 |t#1|) (-900 |t#1| $))))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-3571 (((-112) (-654 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1347 (((-900 |#1| |#2|) |#2| |#3|) 45 (-12 (-2085 (|has| |#2| (-1053 (-1192)))) (-2085 (|has| |#2| (-1064))))) (((-654 (-302 (-965 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1064)) (-2085 (|has| |#2| (-1053 (-1192)))))) (((-654 (-302 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1053 (-1192)))) (((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|) 21))) -(((-898 |#1| |#2| |#3|) (-10 -7 (-15 -3571 ((-112) |#2| |#3|)) (-15 -3571 ((-112) (-654 |#2|) |#3|)) (-15 -1347 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1053 (-1192))) (-15 -1347 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1064)) (-15 -1347 ((-654 (-302 (-965 |#2|))) |#2| |#3|)) (-15 -1347 ((-900 |#1| |#2|) |#2| |#3|))))) (-1115) (-897 |#1|) (-624 (-903 |#1|))) (T -898)) -((-1347 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4)) (-2085 (-4 *3 (-1053 (-1192)))) (-2085 (-4 *3 (-1064))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-1347 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-5 *2 (-654 (-302 (-965 *3)))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1064)) (-2085 (-4 *3 (-1053 (-1192)))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-1347 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1053 (-1192))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-1347 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6))) (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1115)) (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5))))) (-3571 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))) -(-10 -7 (-15 -3571 ((-112) |#2| |#3|)) (-15 -3571 ((-112) (-654 |#2|) |#3|)) (-15 -1347 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1053 (-1192))) (-15 -1347 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1064)) (-15 -1347 ((-654 (-302 (-965 |#2|))) |#2| |#3|)) (-15 -1347 ((-900 |#1| |#2|) |#2| |#3|))))) -((-1786 (((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)) 22))) -(((-899 |#1| |#2| |#3|) (-10 -7 (-15 -1786 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)))) (-1115) (-1115) (-1115)) (T -899)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-900 *5 *7)) (-5 *1 (-899 *5 *6 *7))))) -(-10 -7 (-15 -1786 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)))) -((-2863 (((-112) $ $) NIL)) (-4352 (($ $ $) 40)) (-3254 (((-3 (-112) "failed") $ (-903 |#1|)) 37)) (-3763 (($) 12)) (-3945 (((-1174) $) NIL)) (-3717 (($ (-903 |#1|) |#2| $) 20)) (-3939 (((-1135) $) NIL)) (-1529 (((-3 |#2| "failed") (-903 |#1|) $) 51)) (-4197 (((-112) $) 15)) (-3574 (($) 13)) (-4281 (((-654 (-2 (|:| -3666 (-1192)) (|:| -1917 |#2|))) $) 25)) (-2962 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 |#2|)))) 23)) (-2950 (((-872) $) 45)) (-3838 (((-112) $ $) NIL)) (-1702 (($ (-903 |#1|) |#2| $ |#2|) 49)) (-4127 (($ (-903 |#1|) |#2| $) 48)) (-2985 (((-112) $ $) 42))) -(((-900 |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -4197 ((-112) $)) (-15 -3574 ($)) (-15 -3763 ($)) (-15 -4352 ($ $ $)) (-15 -1529 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -4127 ($ (-903 |#1|) |#2| $)) (-15 -3717 ($ (-903 |#1|) |#2| $)) (-15 -1702 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4281 ((-654 (-2 (|:| -3666 (-1192)) (|:| -1917 |#2|))) $)) (-15 -2962 ($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 |#2|))))) (-15 -3254 ((-3 (-112) "failed") $ (-903 |#1|))))) (-1115) (-1115)) (T -900)) -((-4197 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-3574 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-3763 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-4352 (*1 *1 *1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-1529 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-4 *2 (-1115)) (-5 *1 (-900 *4 *2)))) (-4127 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1115)))) (-3717 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1115)))) (-1702 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1115)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 *4)))) (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 *4)))) (-4 *4 (-1115)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)))) (-3254 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5)) (-4 *5 (-1115))))) -(-13 (-1115) (-10 -8 (-15 -4197 ((-112) $)) (-15 -3574 ($)) (-15 -3763 ($)) (-15 -4352 ($ $ $)) (-15 -1529 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -4127 ($ (-903 |#1|) |#2| $)) (-15 -3717 ($ (-903 |#1|) |#2| $)) (-15 -1702 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4281 ((-654 (-2 (|:| -3666 (-1192)) (|:| -1917 |#2|))) $)) (-15 -2962 ($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 |#2|))))) (-15 -3254 ((-3 (-112) "failed") $ (-903 |#1|))))) -((-2585 (((-903 |#1|) (-903 |#1|) (-654 (-1192)) (-1 (-112) (-654 |#2|))) 32) (((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|))) 46) (((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|)) 35)) (-3254 (((-112) (-654 |#2|) (-903 |#1|)) 42) (((-112) |#2| (-903 |#1|)) 36)) (-2529 (((-1 (-112) |#2|) (-903 |#1|)) 16)) (-2293 (((-654 |#2|) (-903 |#1|)) 24)) (-1719 (((-903 |#1|) (-903 |#1|) |#2|) 20))) -(((-901 |#1| |#2|) (-10 -7 (-15 -2585 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2585 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2585 ((-903 |#1|) (-903 |#1|) (-654 (-1192)) (-1 (-112) (-654 |#2|)))) (-15 -2529 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -3254 ((-112) |#2| (-903 |#1|))) (-15 -3254 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -1719 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -2293 ((-654 |#2|) (-903 |#1|)))) (-1115) (-1233)) (T -901)) -((-2293 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-654 *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1233)))) (-1719 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1233)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-4 *6 (-1233)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-5 *2 (-112)) (-5 *1 (-901 *5 *3)) (-4 *3 (-1233)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1233)))) (-2585 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1192))) (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1115)) (-4 *6 (-1233)) (-5 *1 (-901 *5 *6)))) (-2585 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1115)) (-4 *5 (-1233)) (-5 *1 (-901 *4 *5)))) (-2585 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1115)) (-4 *5 (-1233)) (-5 *1 (-901 *4 *5))))) -(-10 -7 (-15 -2585 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2585 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2585 ((-903 |#1|) (-903 |#1|) (-654 (-1192)) (-1 (-112) (-654 |#2|)))) (-15 -2529 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -3254 ((-112) |#2| (-903 |#1|))) (-15 -3254 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -1719 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -2293 ((-654 |#2|) (-903 |#1|)))) -((-1786 (((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)) 19))) -(((-902 |#1| |#2|) (-10 -7 (-15 -1786 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) (-1115) (-1115)) (T -902)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6))))) -(-10 -7 (-15 -1786 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) -((-2863 (((-112) $ $) NIL)) (-2400 (($ $ (-654 (-52))) 74)) (-4349 (((-654 $) $) 139)) (-3802 (((-2 (|:| |var| (-654 (-1192))) (|:| |pred| (-52))) $) 30)) (-4250 (((-112) $) 35)) (-3546 (($ $ (-654 (-1192)) (-52)) 31)) (-3966 (($ $ (-654 (-52))) 73)) (-1705 (((-3 |#1| "failed") $) 71) (((-3 (-1192) "failed") $) 164)) (-2216 ((|#1| $) 68) (((-1192) $) NIL)) (-2355 (($ $) 126)) (-3019 (((-112) $) 55)) (-3252 (((-654 (-52)) $) 50)) (-2219 (($ (-1192) (-112) (-112) (-112)) 75)) (-3800 (((-3 (-654 $) "failed") (-654 $)) 82)) (-3896 (((-112) $) 58)) (-3577 (((-112) $) 57)) (-3945 (((-1174) $) NIL)) (-1810 (((-3 (-654 $) "failed") $) 41)) (-1789 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3267 (((-3 (-2 (|:| |val| $) (|:| -2017 $)) "failed") $) 97)) (-1577 (((-3 (-654 $) "failed") $) 40)) (-3141 (((-3 (-654 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -4284 (-115)) (|:| |arg| (-654 $))) "failed") $) 107)) (-2336 (((-3 (-654 $) "failed") $) 42)) (-3404 (((-3 (-2 (|:| |val| $) (|:| -2017 (-781))) "failed") $) 45)) (-1882 (((-112) $) 34)) (-3939 (((-1135) $) NIL)) (-2808 (((-112) $) 28)) (-2150 (((-112) $) 52)) (-2685 (((-654 (-52)) $) 130)) (-3161 (((-112) $) 56)) (-2208 (($ (-115) (-654 $)) 104)) (-4292 (((-781) $) 33)) (-3156 (($ $) 72)) (-1845 (($ (-654 $)) 69)) (-2736 (((-112) $) 32)) (-2950 (((-872) $) 63) (($ |#1|) 23) (($ (-1192)) 76)) (-3838 (((-112) $ $) NIL)) (-1719 (($ $ (-52)) 129)) (-2142 (($) 103 T CONST)) (-2154 (($) 83 T CONST)) (-2985 (((-112) $ $) 93)) (-3098 (($ $ $) 117)) (-3074 (($ $ $) 121)) (** (($ $ (-781)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-903 |#1|) (-13 (-1115) (-1053 |#1|) (-1053 (-1192)) (-10 -8 (-15 0 ($) -1715) (-15 1 ($) -1715) (-15 -1577 ((-3 (-654 $) "failed") $)) (-15 -1810 ((-3 (-654 $) "failed") $)) (-15 -3141 ((-3 (-654 $) "failed") $ (-115))) (-15 -3141 ((-3 (-2 (|:| -4284 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -3404 ((-3 (-2 (|:| |val| $) (|:| -2017 (-781))) "failed") $)) (-15 -1789 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2336 ((-3 (-654 $) "failed") $)) (-15 -3267 ((-3 (-2 (|:| |val| $) (|:| -2017 $)) "failed") $)) (-15 -2208 ($ (-115) (-654 $))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3098 ($ $ $)) (-15 -4292 ((-781) $)) (-15 -1845 ($ (-654 $))) (-15 -3156 ($ $)) (-15 -1882 ((-112) $)) (-15 -3019 ((-112) $)) (-15 -4250 ((-112) $)) (-15 -2736 ((-112) $)) (-15 -3161 ((-112) $)) (-15 -3577 ((-112) $)) (-15 -3896 ((-112) $)) (-15 -2150 ((-112) $)) (-15 -3252 ((-654 (-52)) $)) (-15 -3966 ($ $ (-654 (-52)))) (-15 -2400 ($ $ (-654 (-52)))) (-15 -2219 ($ (-1192) (-112) (-112) (-112))) (-15 -3546 ($ $ (-654 (-1192)) (-52))) (-15 -3802 ((-2 (|:| |var| (-654 (-1192))) (|:| |pred| (-52))) $)) (-15 -2808 ((-112) $)) (-15 -2355 ($ $)) (-15 -1719 ($ $ (-52))) (-15 -2685 ((-654 (-52)) $)) (-15 -4349 ((-654 $) $)) (-15 -3800 ((-3 (-654 $) "failed") (-654 $))))) (-1115)) (T -903)) -((-2142 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-2154 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-1577 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-1810 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3141 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1115)))) (-3141 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4284 (-115)) (|:| |arg| (-654 (-903 *3))))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3404 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2017 (-781)))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-1789 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2336 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3267 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2017 (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2208 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1115)))) (-3074 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-3098 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3161 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3966 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2400 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2219 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-112)) (-5 *1 (-903 *4)) (-4 *4 (-1115)))) (-3546 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-52)) (-5 *1 (-903 *4)) (-4 *4 (-1115)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-654 (-1192))) (|:| |pred| (-52)))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-1719 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3800 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) -(-13 (-1115) (-1053 |#1|) (-1053 (-1192)) (-10 -8 (-15 (-2142) ($) -1715) (-15 (-2154) ($) -1715) (-15 -1577 ((-3 (-654 $) "failed") $)) (-15 -1810 ((-3 (-654 $) "failed") $)) (-15 -3141 ((-3 (-654 $) "failed") $ (-115))) (-15 -3141 ((-3 (-2 (|:| -4284 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -3404 ((-3 (-2 (|:| |val| $) (|:| -2017 (-781))) "failed") $)) (-15 -1789 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2336 ((-3 (-654 $) "failed") $)) (-15 -3267 ((-3 (-2 (|:| |val| $) (|:| -2017 $)) "failed") $)) (-15 -2208 ($ (-115) (-654 $))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3098 ($ $ $)) (-15 -4292 ((-781) $)) (-15 -1845 ($ (-654 $))) (-15 -3156 ($ $)) (-15 -1882 ((-112) $)) (-15 -3019 ((-112) $)) (-15 -4250 ((-112) $)) (-15 -2736 ((-112) $)) (-15 -3161 ((-112) $)) (-15 -3577 ((-112) $)) (-15 -3896 ((-112) $)) (-15 -2150 ((-112) $)) (-15 -3252 ((-654 (-52)) $)) (-15 -3966 ($ $ (-654 (-52)))) (-15 -2400 ($ $ (-654 (-52)))) (-15 -2219 ($ (-1192) (-112) (-112) (-112))) (-15 -3546 ($ $ (-654 (-1192)) (-52))) (-15 -3802 ((-2 (|:| |var| (-654 (-1192))) (|:| |pred| (-52))) $)) (-15 -2808 ((-112) $)) (-15 -2355 ($ $)) (-15 -1719 ($ $ (-52))) (-15 -2685 ((-654 (-52)) $)) (-15 -4349 ((-654 $) $)) (-15 -3800 ((-3 (-654 $) "failed") (-654 $))))) -((-2863 (((-112) $ $) NIL)) (-1664 (((-654 |#1|) $) 19)) (-4040 (((-112) $) 49)) (-1705 (((-3 (-682 |#1|) "failed") $) 56)) (-2216 (((-682 |#1|) $) 54)) (-2934 (($ $) 23)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-4108 (((-781) $) 61)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-682 |#1|) $) 21)) (-2950 (((-872) $) 47) (($ (-682 |#1|)) 26) (((-829 |#1|) $) 36) (($ |#1|) 25)) (-3838 (((-112) $ $) NIL)) (-2154 (($) 9 T CONST)) (-4154 (((-654 (-682 |#1|)) $) 28)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 12)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 67))) -(((-904 |#1|) (-13 (-860) (-1053 (-682 |#1|)) (-10 -8 (-15 1 ($) -1715) (-15 -2950 ((-829 |#1|) $)) (-15 -2950 ($ |#1|)) (-15 -2924 ((-682 |#1|) $)) (-15 -4108 ((-781) $)) (-15 -4154 ((-654 (-682 |#1|)) $)) (-15 -2934 ($ $)) (-15 -4040 ((-112) $)) (-15 -1664 ((-654 |#1|) $)))) (-860)) (T -904)) -((-2154 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2950 (*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2934 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860))))) -(-13 (-860) (-1053 (-682 |#1|)) (-10 -8 (-15 (-2154) ($) -1715) (-15 -2950 ((-829 |#1|) $)) (-15 -2950 ($ |#1|)) (-15 -2924 ((-682 |#1|) $)) (-15 -4108 ((-781) $)) (-15 -4154 ((-654 (-682 |#1|)) $)) (-15 -2934 ($ $)) (-15 -4040 ((-112) $)) (-15 -1664 ((-654 |#1|) $)))) -((-2258 ((|#1| |#1| |#1|) 19))) -(((-905 |#1| |#2|) (-10 -7 (-15 -2258 (|#1| |#1| |#1|))) (-1259 |#2|) (-1064)) (T -905)) -((-2258 (*1 *2 *2 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1259 *3))))) -(-10 -7 (-15 -2258 (|#1| |#1| |#1|))) -((-3583 ((|#2| $ |#3|) 10))) -(((-906 |#1| |#2| |#3|) (-10 -8 (-15 -3583 (|#2| |#1| |#3|))) (-907 |#2| |#3|) (-1233) (-1233)) (T -906)) -NIL -(-10 -8 (-15 -3583 (|#2| |#1| |#3|))) -((-3878 ((|#1| $ |#2|) 7)) (-3583 ((|#1| $ |#2|) 6))) -(((-907 |#1| |#2|) (-141) (-1233) (-1233)) (T -907)) -((-3878 (*1 *2 *1 *3) (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1233)))) (-3583 (*1 *2 *1 *3) (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1233))))) -(-13 (-1233) (-10 -8 (-15 -3878 (|t#1| $ |t#2|)) (-15 -3583 (|t#1| $ |t#2|)))) -(((-1233) . T)) -((-2863 (((-112) $ $) 7)) (-4260 (((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-1606 (((-1050) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 14)) (-2985 (((-112) $ $) 6))) +((-2864 (((-112) $ $) NIL)) (-3764 (($) 14)) (-1622 (($ (-900 |#1| |#2|) (-900 |#1| |#3|)) 28)) (-3627 (((-900 |#1| |#3|) $) 16)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3950 (((-112) $) 22)) (-3575 (($) 19)) (-2951 (((-872) $) 31)) (-4069 (((-112) $ $) NIL)) (-2128 (((-900 |#1| |#2|) $) 15)) (-2986 (((-112) $ $) 26))) +(((-896 |#1| |#2| |#3|) (-13 (-1116) (-10 -8 (-15 -3950 ((-112) $)) (-15 -3575 ($)) (-15 -3764 ($)) (-15 -1622 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -2128 ((-900 |#1| |#2|) $)) (-15 -3627 ((-900 |#1| |#3|) $)))) (-1116) (-1116) (-676 |#2|)) (T -896)) +((-3950 (*1 *2 *1) (-12 (-4 *4 (-1116)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1116)) (-4 *5 (-676 *4)))) (-3575 (*1 *1) (-12 (-4 *3 (-1116)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1116)) (-4 *4 (-676 *3)))) (-3764 (*1 *1) (-12 (-4 *3 (-1116)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1116)) (-4 *4 (-676 *3)))) (-1622 (*1 *1 *2 *3) (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6)))) (-2128 (*1 *2 *1) (-12 (-4 *4 (-1116)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1116)) (-4 *5 (-676 *4)))) (-3627 (*1 *2 *1) (-12 (-4 *4 (-1116)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1116)) (-4 *5 (-676 *4))))) +(-13 (-1116) (-10 -8 (-15 -3950 ((-112) $)) (-15 -3575 ($)) (-15 -3764 ($)) (-15 -1622 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -2128 ((-900 |#1| |#2|) $)) (-15 -3627 ((-900 |#1| |#3|) $)))) +((-2864 (((-112) $ $) 7)) (-4078 (((-900 |#1| $) $ (-903 |#1|) (-900 |#1| $)) 14)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) +(((-897 |#1|) (-141) (-1116)) (T -897)) +((-4078 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4)) (-4 *4 (-1116))))) +(-13 (-1116) (-10 -8 (-15 -4078 ((-900 |t#1| $) $ (-903 |t#1|) (-900 |t#1| $))))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2154 (((-112) (-654 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3557 (((-900 |#1| |#2|) |#2| |#3|) 45 (-12 (-2084 (|has| |#2| (-1054 (-1193)))) (-2084 (|has| |#2| (-1065))))) (((-654 (-302 (-966 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1065)) (-2084 (|has| |#2| (-1054 (-1193)))))) (((-654 (-302 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1054 (-1193)))) (((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|) 21))) +(((-898 |#1| |#2| |#3|) (-10 -7 (-15 -2154 ((-112) |#2| |#3|)) (-15 -2154 ((-112) (-654 |#2|) |#3|)) (-15 -3557 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1054 (-1193))) (-15 -3557 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1065)) (-15 -3557 ((-654 (-302 (-966 |#2|))) |#2| |#3|)) (-15 -3557 ((-900 |#1| |#2|) |#2| |#3|))))) (-1116) (-897 |#1|) (-624 (-903 |#1|))) (T -898)) +((-3557 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4)) (-2084 (-4 *3 (-1054 (-1193)))) (-2084 (-4 *3 (-1065))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-3557 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-5 *2 (-654 (-302 (-966 *3)))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1065)) (-2084 (-4 *3 (-1054 (-1193)))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-3557 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1054 (-1193))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-3557 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6))) (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5))))) (-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1116)) (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5))))) (-2154 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))) +(-10 -7 (-15 -2154 ((-112) |#2| |#3|)) (-15 -2154 ((-112) (-654 |#2|) |#3|)) (-15 -3557 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1054 (-1193))) (-15 -3557 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1065)) (-15 -3557 ((-654 (-302 (-966 |#2|))) |#2| |#3|)) (-15 -3557 ((-900 |#1| |#2|) |#2| |#3|))))) +((-1785 (((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)) 22))) +(((-899 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)))) (-1116) (-1116) (-1116)) (T -899)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-900 *5 *7)) (-5 *1 (-899 *5 *6 *7))))) +(-10 -7 (-15 -1785 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)))) +((-2864 (((-112) $ $) NIL)) (-4353 (($ $ $) 40)) (-4275 (((-3 (-112) "failed") $ (-903 |#1|)) 37)) (-3764 (($) 12)) (-1489 (((-1175) $) NIL)) (-2927 (($ (-903 |#1|) |#2| $) 20)) (-3940 (((-1136) $) NIL)) (-3165 (((-3 |#2| "failed") (-903 |#1|) $) 51)) (-3950 (((-112) $) 15)) (-3575 (($) 13)) (-4282 (((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|))) $) 25)) (-2963 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|)))) 23)) (-2951 (((-872) $) 45)) (-4069 (((-112) $ $) NIL)) (-3450 (($ (-903 |#1|) |#2| $ |#2|) 49)) (-1544 (($ (-903 |#1|) |#2| $) 48)) (-2986 (((-112) $ $) 42))) +(((-900 |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -3950 ((-112) $)) (-15 -3575 ($)) (-15 -3764 ($)) (-15 -4353 ($ $ $)) (-15 -3165 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -1544 ($ (-903 |#1|) |#2| $)) (-15 -2927 ($ (-903 |#1|) |#2| $)) (-15 -3450 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4282 ((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|))) $)) (-15 -2963 ($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|))))) (-15 -4275 ((-3 (-112) "failed") $ (-903 |#1|))))) (-1116) (-1116)) (T -900)) +((-3950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-3575 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-3764 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-4353 (*1 *1 *1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-3165 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-4 *2 (-1116)) (-5 *1 (-900 *4 *2)))) (-1544 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1116)))) (-2927 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1116)))) (-3450 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1116)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 *4)))) (-5 *1 (-900 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 *4)))) (-4 *4 (-1116)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1116)))) (-4275 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5)) (-4 *5 (-1116))))) +(-13 (-1116) (-10 -8 (-15 -3950 ((-112) $)) (-15 -3575 ($)) (-15 -3764 ($)) (-15 -4353 ($ $ $)) (-15 -3165 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -1544 ($ (-903 |#1|) |#2| $)) (-15 -2927 ($ (-903 |#1|) |#2| $)) (-15 -3450 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4282 ((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|))) $)) (-15 -2963 ($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|))))) (-15 -4275 ((-3 (-112) "failed") $ (-903 |#1|))))) +((-2586 (((-903 |#1|) (-903 |#1|) (-654 (-1193)) (-1 (-112) (-654 |#2|))) 32) (((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|))) 46) (((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|)) 35)) (-4275 (((-112) (-654 |#2|) (-903 |#1|)) 42) (((-112) |#2| (-903 |#1|)) 36)) (-2530 (((-1 (-112) |#2|) (-903 |#1|)) 16)) (-2560 (((-654 |#2|) (-903 |#1|)) 24)) (-2403 (((-903 |#1|) (-903 |#1|) |#2|) 20))) +(((-901 |#1| |#2|) (-10 -7 (-15 -2586 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2586 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2586 ((-903 |#1|) (-903 |#1|) (-654 (-1193)) (-1 (-112) (-654 |#2|)))) (-15 -2530 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -4275 ((-112) |#2| (-903 |#1|))) (-15 -4275 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -2403 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -2560 ((-654 |#2|) (-903 |#1|)))) (-1116) (-1234)) (T -901)) +((-2560 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-654 *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1234)))) (-2403 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1234)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-4 *6 (-1234)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-5 *2 (-112)) (-5 *1 (-901 *5 *3)) (-4 *3 (-1234)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1234)))) (-2586 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1193))) (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1116)) (-4 *6 (-1234)) (-5 *1 (-901 *5 *6)))) (-2586 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1116)) (-4 *5 (-1234)) (-5 *1 (-901 *4 *5)))) (-2586 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1116)) (-4 *5 (-1234)) (-5 *1 (-901 *4 *5))))) +(-10 -7 (-15 -2586 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2586 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2586 ((-903 |#1|) (-903 |#1|) (-654 (-1193)) (-1 (-112) (-654 |#2|)))) (-15 -2530 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -4275 ((-112) |#2| (-903 |#1|))) (-15 -4275 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -2403 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -2560 ((-654 |#2|) (-903 |#1|)))) +((-1785 (((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)) 19))) +(((-902 |#1| |#2|) (-10 -7 (-15 -1785 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) (-1116) (-1116)) (T -902)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6))))) +(-10 -7 (-15 -1785 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) +((-2864 (((-112) $ $) NIL)) (-2150 (($ $ (-654 (-52))) 74)) (-4350 (((-654 $) $) 139)) (-4082 (((-2 (|:| |var| (-654 (-1193))) (|:| |pred| (-52))) $) 30)) (-3065 (((-112) $) 35)) (-1646 (($ $ (-654 (-1193)) (-52)) 31)) (-4200 (($ $ (-654 (-52))) 73)) (-1704 (((-3 |#1| "failed") $) 71) (((-3 (-1193) "failed") $) 164)) (-2214 ((|#1| $) 68) (((-1193) $) NIL)) (-3974 (($ $) 126)) (-2841 (((-112) $) 55)) (-1994 (((-654 (-52)) $) 50)) (-2483 (($ (-1193) (-112) (-112) (-112)) 75)) (-1586 (((-3 (-654 $) "failed") (-654 $)) 82)) (-2923 (((-112) $) 58)) (-3657 (((-112) $) 57)) (-1489 (((-1175) $) NIL)) (-1720 (((-3 (-654 $) "failed") $) 41)) (-1787 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2542 (((-3 (-2 (|:| |val| $) (|:| -3139 $)) "failed") $) 97)) (-3825 (((-3 (-654 $) "failed") $) 40)) (-3247 (((-3 (-654 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 $))) "failed") $) 107)) (-4194 (((-3 (-654 $) "failed") $) 42)) (-2778 (((-3 (-2 (|:| |val| $) (|:| -3139 (-781))) "failed") $) 45)) (-2683 (((-112) $) 34)) (-3940 (((-1136) $) NIL)) (-2521 (((-112) $) 28)) (-1824 (((-112) $) 52)) (-3179 (((-654 (-52)) $) 130)) (-2801 (((-112) $) 56)) (-2207 (($ (-115) (-654 $)) 104)) (-4293 (((-781) $) 33)) (-3157 (($ $) 72)) (-1844 (($ (-654 $)) 69)) (-1918 (((-112) $) 32)) (-2951 (((-872) $) 63) (($ |#1|) 23) (($ (-1193)) 76)) (-4069 (((-112) $ $) NIL)) (-2403 (($ $ (-52)) 129)) (-2141 (($) 103 T CONST)) (-2153 (($) 83 T CONST)) (-2986 (((-112) $ $) 93)) (-3103 (($ $ $) 117)) (-3074 (($ $ $) 121)) (** (($ $ (-781)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-903 |#1|) (-13 (-1116) (-1054 |#1|) (-1054 (-1193)) (-10 -8 (-15 0 ($) -1714) (-15 1 ($) -1714) (-15 -3825 ((-3 (-654 $) "failed") $)) (-15 -1720 ((-3 (-654 $) "failed") $)) (-15 -3247 ((-3 (-654 $) "failed") $ (-115))) (-15 -3247 ((-3 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -2778 ((-3 (-2 (|:| |val| $) (|:| -3139 (-781))) "failed") $)) (-15 -1787 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4194 ((-3 (-654 $) "failed") $)) (-15 -2542 ((-3 (-2 (|:| |val| $) (|:| -3139 $)) "failed") $)) (-15 -2207 ($ (-115) (-654 $))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3103 ($ $ $)) (-15 -4293 ((-781) $)) (-15 -1844 ($ (-654 $))) (-15 -3157 ($ $)) (-15 -2683 ((-112) $)) (-15 -2841 ((-112) $)) (-15 -3065 ((-112) $)) (-15 -1918 ((-112) $)) (-15 -2801 ((-112) $)) (-15 -3657 ((-112) $)) (-15 -2923 ((-112) $)) (-15 -1824 ((-112) $)) (-15 -1994 ((-654 (-52)) $)) (-15 -4200 ($ $ (-654 (-52)))) (-15 -2150 ($ $ (-654 (-52)))) (-15 -2483 ($ (-1193) (-112) (-112) (-112))) (-15 -1646 ($ $ (-654 (-1193)) (-52))) (-15 -4082 ((-2 (|:| |var| (-654 (-1193))) (|:| |pred| (-52))) $)) (-15 -2521 ((-112) $)) (-15 -3974 ($ $)) (-15 -2403 ($ $ (-52))) (-15 -3179 ((-654 (-52)) $)) (-15 -4350 ((-654 $) $)) (-15 -1586 ((-3 (-654 $) "failed") (-654 $))))) (-1116)) (T -903)) +((-2141 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-2153 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-3825 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1720 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3247 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1116)))) (-3247 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 (-903 *3))))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2778 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3139 (-781)))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1787 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-4194 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2542 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3139 (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2207 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1116)))) (-3074 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-3103 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-4200 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2150 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2483 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-112)) (-5 *1 (-903 *4)) (-4 *4 (-1116)))) (-1646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-52)) (-5 *1 (-903 *4)) (-4 *4 (-1116)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-654 (-1193))) (|:| |pred| (-52)))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3974 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-2403 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-4350 (*1 *2 *1) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1586 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) +(-13 (-1116) (-1054 |#1|) (-1054 (-1193)) (-10 -8 (-15 (-2141) ($) -1714) (-15 (-2153) ($) -1714) (-15 -3825 ((-3 (-654 $) "failed") $)) (-15 -1720 ((-3 (-654 $) "failed") $)) (-15 -3247 ((-3 (-654 $) "failed") $ (-115))) (-15 -3247 ((-3 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -2778 ((-3 (-2 (|:| |val| $) (|:| -3139 (-781))) "failed") $)) (-15 -1787 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4194 ((-3 (-654 $) "failed") $)) (-15 -2542 ((-3 (-2 (|:| |val| $) (|:| -3139 $)) "failed") $)) (-15 -2207 ($ (-115) (-654 $))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3103 ($ $ $)) (-15 -4293 ((-781) $)) (-15 -1844 ($ (-654 $))) (-15 -3157 ($ $)) (-15 -2683 ((-112) $)) (-15 -2841 ((-112) $)) (-15 -3065 ((-112) $)) (-15 -1918 ((-112) $)) (-15 -2801 ((-112) $)) (-15 -3657 ((-112) $)) (-15 -2923 ((-112) $)) (-15 -1824 ((-112) $)) (-15 -1994 ((-654 (-52)) $)) (-15 -4200 ($ $ (-654 (-52)))) (-15 -2150 ($ $ (-654 (-52)))) (-15 -2483 ($ (-1193) (-112) (-112) (-112))) (-15 -1646 ($ $ (-654 (-1193)) (-52))) (-15 -4082 ((-2 (|:| |var| (-654 (-1193))) (|:| |pred| (-52))) $)) (-15 -2521 ((-112) $)) (-15 -3974 ($ $)) (-15 -2403 ($ $ (-52))) (-15 -3179 ((-654 (-52)) $)) (-15 -4350 ((-654 $) $)) (-15 -1586 ((-3 (-654 $) "failed") (-654 $))))) +((-2864 (((-112) $ $) NIL)) (-1663 (((-654 |#1|) $) 19)) (-3566 (((-112) $) 49)) (-1704 (((-3 (-682 |#1|) "failed") $) 56)) (-2214 (((-682 |#1|) $) 54)) (-2935 (($ $) 23)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-4109 (((-781) $) 61)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-682 |#1|) $) 21)) (-2951 (((-872) $) 47) (($ (-682 |#1|)) 26) (((-829 |#1|) $) 36) (($ |#1|) 25)) (-4069 (((-112) $ $) NIL)) (-2153 (($) 9 T CONST)) (-4148 (((-654 (-682 |#1|)) $) 28)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 12)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 67))) +(((-904 |#1|) (-13 (-860) (-1054 (-682 |#1|)) (-10 -8 (-15 1 ($) -1714) (-15 -2951 ((-829 |#1|) $)) (-15 -2951 ($ |#1|)) (-15 -2925 ((-682 |#1|) $)) (-15 -4109 ((-781) $)) (-15 -4148 ((-654 (-682 |#1|)) $)) (-15 -2935 ($ $)) (-15 -3566 ((-112) $)) (-15 -1663 ((-654 |#1|) $)))) (-860)) (T -904)) +((-2153 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2951 (*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2935 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860))))) +(-13 (-860) (-1054 (-682 |#1|)) (-10 -8 (-15 (-2153) ($) -1714) (-15 -2951 ((-829 |#1|) $)) (-15 -2951 ($ |#1|)) (-15 -2925 ((-682 |#1|) $)) (-15 -4109 ((-781) $)) (-15 -4148 ((-654 (-682 |#1|)) $)) (-15 -2935 ($ $)) (-15 -3566 ((-112) $)) (-15 -1663 ((-654 |#1|) $)))) +((-3907 ((|#1| |#1| |#1|) 19))) +(((-905 |#1| |#2|) (-10 -7 (-15 -3907 (|#1| |#1| |#1|))) (-1260 |#2|) (-1065)) (T -905)) +((-3907 (*1 *2 *2 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1260 *3))))) +(-10 -7 (-15 -3907 (|#1| |#1| |#1|))) +((-3584 ((|#2| $ |#3|) 10))) +(((-906 |#1| |#2| |#3|) (-10 -8 (-15 -3584 (|#2| |#1| |#3|))) (-907 |#2| |#3|) (-1234) (-1234)) (T -906)) +NIL +(-10 -8 (-15 -3584 (|#2| |#1| |#3|))) +((-3879 ((|#1| $ |#2|) 7)) (-3584 ((|#1| $ |#2|) 6))) +(((-907 |#1| |#2|) (-141) (-1234) (-1234)) (T -907)) +((-3879 (*1 *2 *1 *3) (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1234)))) (-3584 (*1 *2 *1 *3) (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1234))))) +(-13 (-1234) (-10 -8 (-15 -3879 (|t#1| $ |t#2|)) (-15 -3584 (|t#1| $ |t#2|)))) +(((-1234) . T)) +((-2864 (((-112) $ $) 7)) (-3175 (((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2387 (((-1051) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 14)) (-2986 (((-112) $ $) 6))) (((-908) (-141)) (T -908)) -((-4260 (*1 *2 *3 *4) (-12 (-4 *1 (-908)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)))))) (-1606 (*1 *2 *3) (-12 (-4 *1 (-908)) (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) (-5 *2 (-1050))))) -(-13 (-1115) (-10 -7 (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))))) (-15 -1606 ((-1050) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))))))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-1459 ((|#1| |#1| (-781)) 27)) (-4381 (((-3 |#1| "failed") |#1| |#1|) 24)) (-3930 (((-3 (-2 (|:| -3864 |#1|) (|:| -3877 |#1|)) "failed") |#1| (-781) (-781)) 30) (((-654 |#1|) |#1|) 38))) -(((-909 |#1| |#2|) (-10 -7 (-15 -3930 ((-654 |#1|) |#1|)) (-15 -3930 ((-3 (-2 (|:| -3864 |#1|) (|:| -3877 |#1|)) "failed") |#1| (-781) (-781))) (-15 -4381 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1459 (|#1| |#1| (-781)))) (-1259 |#2|) (-372)) (T -909)) -((-1459 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-909 *2 *4)) (-4 *2 (-1259 *4)))) (-4381 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1259 *3)))) (-3930 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -3864 *3) (|:| -3877 *3))) (-5 *1 (-909 *3 *5)) (-4 *3 (-1259 *5)))) (-3930 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-909 *3 *4)) (-4 *3 (-1259 *4))))) -(-10 -7 (-15 -3930 ((-654 |#1|) |#1|)) (-15 -3930 ((-3 (-2 (|:| -3864 |#1|) (|:| -3877 |#1|)) "failed") |#1| (-781) (-781))) (-15 -4381 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1459 (|#1| |#1| (-781)))) -((-2514 (((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174)) 104) (((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174) (-227)) 100) (((-1050) (-911) (-1078)) 92) (((-1050) (-911)) 93)) (-4260 (((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911) (-1078)) 62) (((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911)) 64))) -(((-910) (-10 -7 (-15 -2514 ((-1050) (-911))) (-15 -2514 ((-1050) (-911) (-1078))) (-15 -2514 ((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174) (-227))) (-15 -2514 ((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911) (-1078))))) (T -910)) -((-4260 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1078)) (-5 *2 (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-910)))) (-4260 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-910)))) (-2514 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1174)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1050)) (-5 *1 (-910)))) (-2514 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1174)) (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1050)) (-5 *1 (-910)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-910)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1050)) (-5 *1 (-910))))) -(-10 -7 (-15 -2514 ((-1050) (-911))) (-15 -2514 ((-1050) (-911) (-1078))) (-15 -2514 ((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174) (-227))) (-15 -2514 ((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911))) (-15 -4260 ((-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911) (-1078)))) -((-2863 (((-112) $ $) NIL)) (-2216 (((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))) $) 19)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 21) (($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 18)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-911) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))))) (-15 -2216 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))) $))))) (T -911)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) (-5 *1 (-911)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) (-5 *1 (-911))))) -(-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))))) (-15 -2216 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))) $)))) -((-3878 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) 10) (($ $ |#2| (-781)) 12) (($ $ (-654 |#2|) (-654 (-781))) 15)) (-3583 (($ $ |#2|) 16) (($ $ (-654 |#2|)) 18) (($ $ |#2| (-781)) 19) (($ $ (-654 |#2|) (-654 (-781))) 21))) -(((-912 |#1| |#2|) (-10 -8 (-15 -3583 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3583 (|#1| |#1| |#2| (-781))) (-15 -3583 (|#1| |#1| (-654 |#2|))) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3878 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3878 (|#1| |#1| |#2| (-781))) (-15 -3878 (|#1| |#1| (-654 |#2|))) (-15 -3878 (|#1| |#1| |#2|))) (-913 |#2|) (-1115)) (T -912)) -NIL -(-10 -8 (-15 -3583 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3583 (|#1| |#1| |#2| (-781))) (-15 -3583 (|#1| |#1| (-654 |#2|))) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3878 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3878 (|#1| |#1| |#2| (-781))) (-15 -3878 (|#1| |#1| (-654 |#2|))) (-15 -3878 (|#1| |#1| |#2|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3878 (($ $ |#1|) 46) (($ $ (-654 |#1|)) 45) (($ $ |#1| (-781)) 44) (($ $ (-654 |#1|) (-654 (-781))) 43)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ |#1|) 42) (($ $ (-654 |#1|)) 41) (($ $ |#1| (-781)) 40) (($ $ (-654 |#1|) (-654 (-781))) 39)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-913 |#1|) (-141) (-1115)) (T -913)) -((-3878 (*1 *1 *1 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1115)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-913 *3)) (-4 *3 (-1115)))) (-3878 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-913 *2)) (-4 *2 (-1115)))) (-3878 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-913 *4)) (-4 *4 (-1115)))) (-3583 (*1 *1 *1 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1115)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-913 *3)) (-4 *3 (-1115)))) (-3583 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-913 *2)) (-4 *2 (-1115)))) (-3583 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-913 *4)) (-4 *4 (-1115))))) -(-13 (-1064) (-10 -8 (-15 -3878 ($ $ |t#1|)) (-15 -3878 ($ $ (-654 |t#1|))) (-15 -3878 ($ $ |t#1| (-781))) (-15 -3878 ($ $ (-654 |t#1|) (-654 (-781)))) (-15 -3583 ($ $ |t#1|)) (-15 -3583 ($ $ (-654 |t#1|))) (-15 -3583 ($ $ |t#1| (-781))) (-15 -3583 ($ $ (-654 |t#1|) (-654 (-781)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) 26)) (-2818 (((-112) $ (-781)) NIL)) (-3906 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3299 (($ $ $) NIL (|has| $ (-6 -4459)))) (-3026 (($ $ $) NIL (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "left" $) NIL (|has| $ (-6 -4459))) (($ $ "right" $) NIL (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-3877 (($ $) 25)) (-3774 (($ |#1|) 12) (($ $ $) 17)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) NIL)) (-2661 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3864 (($ $) 23)) (-3481 (((-654 |#1|) $) NIL)) (-4069 (((-112) $) 20)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4418 (((-574) $ $) NIL)) (-1966 (((-112) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1219 |#1|) $) 9) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) NIL)) (-1870 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 21 (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-914 |#1|) (-13 (-120 |#1|) (-623 (-1219 |#1|)) (-10 -8 (-15 -3774 ($ |#1|)) (-15 -3774 ($ $ $)))) (-1115)) (T -914)) -((-3774 (*1 *1 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1115)))) (-3774 (*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1115))))) -(-13 (-120 |#1|) (-623 (-1219 |#1|)) (-10 -8 (-15 -3774 ($ |#1|)) (-15 -3774 ($ $ $)))) -((-1968 ((|#2| (-1157 |#1| |#2|)) 48))) -(((-915 |#1| |#2|) (-10 -7 (-15 -1968 (|#2| (-1157 |#1| |#2|)))) (-934) (-13 (-1064) (-10 -7 (-6 (-4460 "*"))))) (T -915)) -((-1968 (*1 *2 *3) (-12 (-5 *3 (-1157 *4 *2)) (-14 *4 (-934)) (-4 *2 (-13 (-1064) (-10 -7 (-6 (-4460 "*"))))) (-5 *1 (-915 *4 *2))))) -(-10 -7 (-15 -1968 (|#2| (-1157 |#1| |#2|)))) -((-2863 (((-112) $ $) 7)) (-1751 (((-1117 |#1|) $) 35)) (-3831 (($) 19 T CONST)) (-3911 (((-3 $ "failed") $) 16)) (-3669 (((-1117 |#1|) $ |#1|) 34)) (-3372 (((-112) $) 18)) (-3632 (($ $ $) 32 (-2832 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-1593 (($ $ $) 31 (-2832 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3945 (((-1174) $) 10)) (-1327 (($ $) 25)) (-3939 (((-1135) $) 11)) (-2208 ((|#1| $ |#1|) 38)) (-4257 (($ (-654 (-654 |#1|))) 36)) (-2413 (($ (-654 |#1|)) 37)) (-2202 (($ $ $) 22)) (-3490 (($ $ $) 21)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2154 (($) 20 T CONST)) (-3041 (((-112) $ $) 29 (-2832 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3018 (((-112) $ $) 28 (-2832 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 30 (-2832 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3009 (((-112) $ $) 33)) (-3098 (($ $ $) 24)) (** (($ $ (-934)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15))) -(((-916 |#1|) (-141) (-1115)) (T -916)) -((-2413 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-916 *3)))) (-4257 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-4 *1 (-916 *3)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-1117 *3)))) (-3669 (*1 *2 *1 *3) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-1117 *3)))) (-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) -(-13 (-483) (-294 |t#1| |t#1|) (-10 -8 (-15 -2413 ($ (-654 |t#1|))) (-15 -4257 ($ (-654 (-654 |t#1|)))) (-15 -1751 ((-1117 |t#1|) $)) (-15 -3669 ((-1117 |t#1|) $ |t#1|)) (-15 -3009 ((-112) $ $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-377)) (-6 (-860)) |%noBranch|))) -(((-102) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-483) . T) ((-736) . T) ((-860) -2832 (|has| |#1| (-860)) (|has| |#1| (-377))) ((-1127) . T) ((-1115) . T) ((-1233) . T)) -((-2863 (((-112) $ $) NIL)) (-4436 (((-654 (-654 (-781))) $) 160)) (-3613 (((-654 (-781)) (-918 |#1|) $) 188)) (-1643 (((-654 (-781)) (-918 |#1|) $) 189)) (-1751 (((-1117 |#1|) $) 152)) (-3803 (((-654 (-918 |#1|)) $) 149)) (-2834 (((-918 |#1|) $ (-574)) 154) (((-918 |#1|) $) 155)) (-1359 (($ (-654 (-918 |#1|))) 162)) (-2725 (((-781) $) 156)) (-3106 (((-1117 (-1117 |#1|)) $) 186)) (-3669 (((-1117 |#1|) $ |#1|) 177) (((-1117 (-1117 |#1|)) $ (-1117 |#1|)) 197) (((-1117 (-654 |#1|)) $ (-654 |#1|)) 200)) (-2231 (((-112) (-918 |#1|) $) 137)) (-3945 (((-1174) $) NIL)) (-1790 (((-1288) $) 142) (((-1288) $ (-574) (-574)) 201)) (-3939 (((-1135) $) NIL)) (-1940 (((-654 (-918 |#1|)) $) 143)) (-2208 (((-918 |#1|) $ (-781)) 150)) (-3584 (((-781) $) 157)) (-2950 (((-872) $) 174) (((-654 (-918 |#1|)) $) 28) (($ (-654 (-918 |#1|))) 161)) (-3838 (((-112) $ $) NIL)) (-2643 (((-654 |#1|) $) 159)) (-2985 (((-112) $ $) 194)) (-3029 (((-112) $ $) 192)) (-3009 (((-112) $ $) 191))) -(((-917 |#1|) (-13 (-1115) (-10 -8 (-15 -2950 ((-654 (-918 |#1|)) $)) (-15 -1940 ((-654 (-918 |#1|)) $)) (-15 -2208 ((-918 |#1|) $ (-781))) (-15 -2834 ((-918 |#1|) $ (-574))) (-15 -2834 ((-918 |#1|) $)) (-15 -2725 ((-781) $)) (-15 -3584 ((-781) $)) (-15 -2643 ((-654 |#1|) $)) (-15 -3803 ((-654 (-918 |#1|)) $)) (-15 -4436 ((-654 (-654 (-781))) $)) (-15 -2950 ($ (-654 (-918 |#1|)))) (-15 -1359 ($ (-654 (-918 |#1|)))) (-15 -3669 ((-1117 |#1|) $ |#1|)) (-15 -3106 ((-1117 (-1117 |#1|)) $)) (-15 -3669 ((-1117 (-1117 |#1|)) $ (-1117 |#1|))) (-15 -3669 ((-1117 (-654 |#1|)) $ (-654 |#1|))) (-15 -2231 ((-112) (-918 |#1|) $)) (-15 -3613 ((-654 (-781)) (-918 |#1|) $)) (-15 -1643 ((-654 (-781)) (-918 |#1|) $)) (-15 -1751 ((-1117 |#1|) $)) (-15 -3009 ((-112) $ $)) (-15 -3029 ((-112) $ $)) (-15 -1790 ((-1288) $)) (-15 -1790 ((-1288) $ (-574) (-574))))) (-1115)) (T -917)) -((-2950 (*1 *2 *1) (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-1940 (*1 *2 *1) (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-918 *4)) (-5 *1 (-917 *4)) (-4 *4 (-1115)))) (-2834 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-918 *4)) (-5 *1 (-917 *4)) (-4 *4 (-1115)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-918 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-4436 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-918 *3))) (-4 *3 (-1115)) (-5 *1 (-917 *3)))) (-1359 (*1 *1 *2) (-12 (-5 *2 (-654 (-918 *3))) (-4 *3 (-1115)) (-5 *1 (-917 *3)))) (-3669 (*1 *2 *1 *3) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-1117 (-1117 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3669 (*1 *2 *1 *3) (-12 (-4 *4 (-1115)) (-5 *2 (-1117 (-1117 *4))) (-5 *1 (-917 *4)) (-5 *3 (-1117 *4)))) (-3669 (*1 *2 *1 *3) (-12 (-4 *4 (-1115)) (-5 *2 (-1117 (-654 *4))) (-5 *1 (-917 *4)) (-5 *3 (-654 *4)))) (-2231 (*1 *2 *3 *1) (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-112)) (-5 *1 (-917 *4)))) (-3613 (*1 *2 *3 *1) (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-654 (-781))) (-5 *1 (-917 *4)))) (-1643 (*1 *2 *3 *1) (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-654 (-781))) (-5 *1 (-917 *4)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3009 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3029 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-1790 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-917 *4)) (-4 *4 (-1115))))) -(-13 (-1115) (-10 -8 (-15 -2950 ((-654 (-918 |#1|)) $)) (-15 -1940 ((-654 (-918 |#1|)) $)) (-15 -2208 ((-918 |#1|) $ (-781))) (-15 -2834 ((-918 |#1|) $ (-574))) (-15 -2834 ((-918 |#1|) $)) (-15 -2725 ((-781) $)) (-15 -3584 ((-781) $)) (-15 -2643 ((-654 |#1|) $)) (-15 -3803 ((-654 (-918 |#1|)) $)) (-15 -4436 ((-654 (-654 (-781))) $)) (-15 -2950 ($ (-654 (-918 |#1|)))) (-15 -1359 ($ (-654 (-918 |#1|)))) (-15 -3669 ((-1117 |#1|) $ |#1|)) (-15 -3106 ((-1117 (-1117 |#1|)) $)) (-15 -3669 ((-1117 (-1117 |#1|)) $ (-1117 |#1|))) (-15 -3669 ((-1117 (-654 |#1|)) $ (-654 |#1|))) (-15 -2231 ((-112) (-918 |#1|) $)) (-15 -3613 ((-654 (-781)) (-918 |#1|) $)) (-15 -1643 ((-654 (-781)) (-918 |#1|) $)) (-15 -1751 ((-1117 |#1|) $)) (-15 -3009 ((-112) $ $)) (-15 -3029 ((-112) $ $)) (-15 -1790 ((-1288) $)) (-15 -1790 ((-1288) $ (-574) (-574))))) -((-2863 (((-112) $ $) NIL)) (-1751 (((-1117 |#1|) $) 60)) (-2785 (((-654 $) (-654 $)) 103)) (-3011 (((-574) $) 83)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) NIL)) (-2725 (((-781) $) 80)) (-3669 (((-1117 |#1|) $ |#1|) 70)) (-3372 (((-112) $) NIL)) (-3512 (((-112) $) 88)) (-4244 (((-781) $) 84)) (-3632 (($ $ $) NIL (-2832 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-1593 (($ $ $) NIL (-2832 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3977 (((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $) 55)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 130)) (-3939 (((-1135) $) NIL)) (-1653 (((-1117 |#1|) $) 136 (|has| |#1| (-377)))) (-3694 (((-112) $) 81)) (-2208 ((|#1| $ |#1|) 68)) (-3584 (((-781) $) 62)) (-4257 (($ (-654 (-654 |#1|))) 118)) (-2828 (((-986) $) 74)) (-2413 (($ (-654 |#1|)) 32)) (-2202 (($ $ $) NIL)) (-3490 (($ $ $) NIL)) (-2929 (($ (-654 (-654 |#1|))) 57)) (-2509 (($ (-654 (-654 |#1|))) 123)) (-4307 (($ (-654 |#1|)) 132)) (-2950 (((-872) $) 117) (($ (-654 (-654 |#1|))) 91) (($ (-654 |#1|)) 92)) (-3838 (((-112) $ $) NIL)) (-2154 (($) 24 T CONST)) (-3041 (((-112) $ $) NIL (-2832 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3018 (((-112) $ $) NIL (-2832 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-2985 (((-112) $ $) 66)) (-3029 (((-112) $ $) NIL (-2832 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3009 (((-112) $ $) 90)) (-3098 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 33))) -(((-918 |#1|) (-13 (-916 |#1|) (-10 -8 (-15 -3977 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -2929 ($ (-654 (-654 |#1|)))) (-15 -2950 ($ (-654 (-654 |#1|)))) (-15 -2950 ($ (-654 |#1|))) (-15 -2509 ($ (-654 (-654 |#1|)))) (-15 -3584 ((-781) $)) (-15 -2828 ((-986) $)) (-15 -2725 ((-781) $)) (-15 -4244 ((-781) $)) (-15 -3011 ((-574) $)) (-15 -3694 ((-112) $)) (-15 -3512 ((-112) $)) (-15 -2785 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -1653 ((-1117 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -4307 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -4307 ($ (-654 |#1|))) |%noBranch|)))) (-1115)) (T -918)) -((-3977 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3)))) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) (-2509 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-986)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-4244 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-918 *3)) (-4 *3 (-377)) (-4 *3 (-1115)))) (-4307 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-918 *3))))) -(-13 (-916 |#1|) (-10 -8 (-15 -3977 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -2929 ($ (-654 (-654 |#1|)))) (-15 -2950 ($ (-654 (-654 |#1|)))) (-15 -2950 ($ (-654 |#1|))) (-15 -2509 ($ (-654 (-654 |#1|)))) (-15 -3584 ((-781) $)) (-15 -2828 ((-986) $)) (-15 -2725 ((-781) $)) (-15 -4244 ((-781) $)) (-15 -3011 ((-574) $)) (-15 -3694 ((-112) $)) (-15 -3512 ((-112) $)) (-15 -2785 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -1653 ((-1117 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -4307 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -4307 ($ (-654 |#1|))) |%noBranch|)))) -((-2996 (((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|)) 160)) (-2917 ((|#1|) 97)) (-2756 (((-428 (-1188 |#4|)) (-1188 |#4|)) 169)) (-3321 (((-428 (-1188 |#4|)) (-654 |#3|) (-1188 |#4|)) 84)) (-4076 (((-428 (-1188 |#4|)) (-1188 |#4|)) 179)) (-3118 (((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|) |#3|) 113))) -(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2996 ((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|))) (-15 -4076 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -2756 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -2917 (|#1|)) (-15 -3118 ((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|) |#3|)) (-15 -3321 ((-428 (-1188 |#4|)) (-654 |#3|) (-1188 |#4|)))) (-922) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -919)) -((-3321 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-922)) (-4 *6 (-803)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-428 (-1188 *8))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-1188 *8)))) (-3118 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-654 (-1188 *7))) (-5 *3 (-1188 *7)) (-4 *7 (-962 *5 *6 *4)) (-4 *5 (-922)) (-4 *6 (-803)) (-4 *4 (-860)) (-5 *1 (-919 *5 *6 *4 *7)))) (-2917 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-922)) (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-2756 (*1 *2 *3) (-12 (-4 *4 (-922)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-922)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-2996 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 *7))) (-5 *3 (-1188 *7)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-922)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-919 *4 *5 *6 *7))))) -(-10 -7 (-15 -2996 ((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|))) (-15 -4076 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -2756 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -2917 (|#1|)) (-15 -3118 ((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|) |#3|)) (-15 -3321 ((-428 (-1188 |#4|)) (-654 |#3|) (-1188 |#4|)))) -((-2996 (((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|)) 39)) (-2917 ((|#1|) 72)) (-2756 (((-428 (-1188 |#2|)) (-1188 |#2|)) 121)) (-3321 (((-428 (-1188 |#2|)) (-1188 |#2|)) 105)) (-4076 (((-428 (-1188 |#2|)) (-1188 |#2|)) 132))) -(((-920 |#1| |#2|) (-10 -7 (-15 -2996 ((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|))) (-15 -4076 ((-428 (-1188 |#2|)) (-1188 |#2|))) (-15 -2756 ((-428 (-1188 |#2|)) (-1188 |#2|))) (-15 -2917 (|#1|)) (-15 -3321 ((-428 (-1188 |#2|)) (-1188 |#2|)))) (-922) (-1259 |#1|)) (T -920)) -((-3321 (*1 *2 *3) (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5)))) (-2917 (*1 *2) (-12 (-4 *2 (-922)) (-5 *1 (-920 *2 *3)) (-4 *3 (-1259 *2)))) (-2756 (*1 *2 *3) (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5)))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5)))) (-2996 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 *5))) (-5 *3 (-1188 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-922)) (-5 *1 (-920 *4 *5))))) -(-10 -7 (-15 -2996 ((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|))) (-15 -4076 ((-428 (-1188 |#2|)) (-1188 |#2|))) (-15 -2756 ((-428 (-1188 |#2|)) (-1188 |#2|))) (-15 -2917 (|#1|)) (-15 -3321 ((-428 (-1188 |#2|)) (-1188 |#2|)))) -((-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 42)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 18)) (-3247 (((-3 $ "failed") $) 36))) -(((-921 |#1|) (-10 -8 (-15 -3247 ((-3 |#1| "failed") |#1|)) (-15 -2352 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -3578 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)))) (-922)) (T -921)) -NIL -(-10 -8 (-15 -3247 ((-3 |#1| "failed") |#1|)) (-15 -2352 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -3578 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-4055 (((-428 (-1188 $)) (-1188 $)) 66)) (-3296 (($ $) 57)) (-3954 (((-428 $) $) 58)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 63)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-1782 (((-112) $) 59)) (-3372 (((-112) $) 35)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2743 (((-428 (-1188 $)) (-1188 $)) 64)) (-4428 (((-428 (-1188 $)) (-1188 $)) 65)) (-4200 (((-428 $) $) 56)) (-2852 (((-3 $ "failed") $ $) 48)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 62 (|has| $ (-146)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3247 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-922) (-141)) (T -922)) -((-3578 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-922)))) (-4055 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1)))) (-4428 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1)))) (-2743 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1)))) (-2352 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 *1))) (-5 *3 (-1188 *1)) (-4 *1 (-922)))) (-1533 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-922)) (-5 *2 (-1283 *1)))) (-3247 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-922))))) -(-13 (-1237) (-10 -8 (-15 -4055 ((-428 (-1188 $)) (-1188 $))) (-15 -4428 ((-428 (-1188 $)) (-1188 $))) (-15 -2743 ((-428 (-1188 $)) (-1188 $))) (-15 -3578 ((-1188 $) (-1188 $) (-1188 $))) (-15 -2352 ((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $))) (IF (|has| $ (-146)) (PROGN (-15 -1533 ((-3 (-1283 $) "failed") (-699 $))) (-15 -3247 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1965 (((-112) $) NIL)) (-2498 (((-781)) NIL)) (-1645 (($ $ (-934)) NIL (|has| $ (-377))) (($ $) NIL)) (-2541 (((-1205 (-934) (-781)) (-574)) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 $ "failed") $) NIL)) (-2216 (($ $) NIL)) (-2919 (($ (-1283 $)) NIL)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1912 (($) NIL)) (-3873 (((-112) $) NIL)) (-4158 (($ $) NIL) (($ $ (-781)) NIL)) (-1782 (((-112) $) NIL)) (-2725 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-3372 (((-112) $) NIL)) (-3434 (($) NIL (|has| $ (-377)))) (-3743 (((-112) $) NIL (|has| $ (-377)))) (-1386 (($ $ (-934)) NIL (|has| $ (-377))) (($ $) NIL)) (-1353 (((-3 $ "failed") $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1950 (((-1188 $) $ (-934)) NIL (|has| $ (-377))) (((-1188 $) $) NIL)) (-3271 (((-934) $) NIL)) (-3363 (((-1188 $) $) NIL (|has| $ (-377)))) (-4426 (((-3 (-1188 $) "failed") $ $) NIL (|has| $ (-377))) (((-1188 $) $) NIL (|has| $ (-377)))) (-4140 (($ $ (-1188 $)) NIL (|has| $ (-377)))) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL T CONST)) (-2590 (($ (-934)) NIL)) (-3854 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2975 (($) NIL (|has| $ (-377)))) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL)) (-4200 (((-428 $) $) NIL)) (-1971 (((-934)) NIL) (((-843 (-934))) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3881 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-3480 (((-135)) NIL)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-3584 (((-934) $) NIL) (((-843 (-934)) $) NIL)) (-2290 (((-1188 $)) NIL)) (-1417 (($) NIL)) (-1549 (($) NIL (|has| $ (-377)))) (-4346 (((-699 $) (-1283 $)) NIL) (((-1283 $) $) NIL)) (-1845 (((-574) $) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL)) (-3247 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $) (-934)) NIL) (((-1283 $)) NIL)) (-1842 (((-112) $ $) NIL)) (-1469 (((-112) $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2893 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-923 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-934)) (T -923)) +((-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-908)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)))))) (-2387 (*1 *2 *3) (-12 (-4 *1 (-908)) (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *2 (-1051))))) +(-13 (-1116) (-10 -7 (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))))) (-15 -2387 ((-1051) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))))))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-3240 ((|#1| |#1| (-781)) 27)) (-3819 (((-3 |#1| "failed") |#1| |#1|) 24)) (-1377 (((-3 (-2 (|:| -3865 |#1|) (|:| -3878 |#1|)) "failed") |#1| (-781) (-781)) 30) (((-654 |#1|) |#1|) 38))) +(((-909 |#1| |#2|) (-10 -7 (-15 -1377 ((-654 |#1|) |#1|)) (-15 -1377 ((-3 (-2 (|:| -3865 |#1|) (|:| -3878 |#1|)) "failed") |#1| (-781) (-781))) (-15 -3819 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3240 (|#1| |#1| (-781)))) (-1260 |#2|) (-372)) (T -909)) +((-3240 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-909 *2 *4)) (-4 *2 (-1260 *4)))) (-3819 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1260 *3)))) (-1377 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -3865 *3) (|:| -3878 *3))) (-5 *1 (-909 *3 *5)) (-4 *3 (-1260 *5)))) (-1377 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-909 *3 *4)) (-4 *3 (-1260 *4))))) +(-10 -7 (-15 -1377 ((-654 |#1|) |#1|)) (-15 -1377 ((-3 (-2 (|:| -3865 |#1|) (|:| -3878 |#1|)) "failed") |#1| (-781) (-781))) (-15 -3819 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3240 (|#1| |#1| (-781)))) +((-3987 (((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175)) 104) (((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175) (-227)) 100) (((-1051) (-911) (-1079)) 92) (((-1051) (-911)) 93)) (-3175 (((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911) (-1079)) 62) (((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911)) 64))) +(((-910) (-10 -7 (-15 -3987 ((-1051) (-911))) (-15 -3987 ((-1051) (-911) (-1079))) (-15 -3987 ((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175) (-227))) (-15 -3987 ((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911) (-1079))))) (T -910)) +((-3175 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1079)) (-5 *2 (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-910)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-910)))) (-3987 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1175)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1051)) (-5 *1 (-910)))) (-3987 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1175)) (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1051)) (-5 *1 (-910)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-910)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1051)) (-5 *1 (-910))))) +(-10 -7 (-15 -3987 ((-1051) (-911))) (-15 -3987 ((-1051) (-911) (-1079))) (-15 -3987 ((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175) (-227))) (-15 -3987 ((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911))) (-15 -3175 ((-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911) (-1079)))) +((-2864 (((-112) $ $) NIL)) (-2214 (((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))) $) 19)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 21) (($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 18)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-911) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))))) (-15 -2214 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))) $))))) (T -911)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *1 (-911)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *1 (-911))))) +(-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))))) (-15 -2214 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))) $)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3879 (($ $ (-654 |#1|) (-654 (-781))) 44) (($ $ |#1| (-781)) 43) (($ $ (-654 |#1|)) 42) (($ $ |#1|) 40)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-654 |#1|) (-654 (-781))) 47) (($ $ |#1| (-781)) 46) (($ $ (-654 |#1|)) 45) (($ $ |#1|) 41)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-912 |#1|) (-141) (-1116)) (T -912)) +NIL +(-13 (-1065) (-914 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-907 $ |#1|) . T) ((-914 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T)) +((-3879 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) 10) (($ $ |#2| (-781)) 12) (($ $ (-654 |#2|) (-654 (-781))) 15)) (-3584 (($ $ |#2|) 16) (($ $ (-654 |#2|)) 18) (($ $ |#2| (-781)) 19) (($ $ (-654 |#2|) (-654 (-781))) 21))) +(((-913 |#1| |#2|) (-10 -8 (-15 -3584 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3584 (|#1| |#1| |#2| (-781))) (-15 -3584 (|#1| |#1| (-654 |#2|))) (-15 -3879 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3879 (|#1| |#1| |#2| (-781))) (-15 -3879 (|#1| |#1| (-654 |#2|))) (-15 -3584 (|#1| |#1| |#2|)) (-15 -3879 (|#1| |#1| |#2|))) (-914 |#2|) (-1116)) (T -913)) +NIL +(-10 -8 (-15 -3584 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3584 (|#1| |#1| |#2| (-781))) (-15 -3584 (|#1| |#1| (-654 |#2|))) (-15 -3879 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3879 (|#1| |#1| |#2| (-781))) (-15 -3879 (|#1| |#1| (-654 |#2|))) (-15 -3584 (|#1| |#1| |#2|)) (-15 -3879 (|#1| |#1| |#2|))) +((-3879 (($ $ |#1|) 7) (($ $ (-654 |#1|)) 15) (($ $ |#1| (-781)) 14) (($ $ (-654 |#1|) (-654 (-781))) 13)) (-3584 (($ $ |#1|) 6) (($ $ (-654 |#1|)) 12) (($ $ |#1| (-781)) 11) (($ $ (-654 |#1|) (-654 (-781))) 10))) +(((-914 |#1|) (-141) (-1116)) (T -914)) +((-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-914 *3)) (-4 *3 (-1116)))) (-3879 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-914 *2)) (-4 *2 (-1116)))) (-3879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-914 *4)) (-4 *4 (-1116)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-914 *3)) (-4 *3 (-1116)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-914 *2)) (-4 *2 (-1116)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-914 *4)) (-4 *4 (-1116))))) +(-13 (-907 $ |t#1|) (-10 -8 (-15 -3879 ($ $ (-654 |t#1|))) (-15 -3879 ($ $ |t#1| (-781))) (-15 -3879 ($ $ (-654 |t#1|) (-654 (-781)))) (-15 -3584 ($ $ (-654 |t#1|))) (-15 -3584 ($ $ |t#1| (-781))) (-15 -3584 ($ $ (-654 |t#1|) (-654 (-781)))))) +(((-907 $ |#1|) . T) ((-1234) . T)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) 26)) (-3146 (((-112) $ (-781)) NIL)) (-4433 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-2035 (($ $ $) NIL (|has| $ (-6 -4460)))) (-2785 (($ $ $) NIL (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "left" $) NIL (|has| $ (-6 -4460))) (($ $ "right" $) NIL (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-3878 (($ $) 25)) (-3775 (($ |#1|) 12) (($ $ $) 17)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) NIL)) (-2622 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-3865 (($ $) 23)) (-3483 (((-654 |#1|) $) NIL)) (-1580 (((-112) $) 20)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3615 (((-574) $ $) NIL)) (-3911 (((-112) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1220 |#1|) $) 9) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) NIL)) (-4208 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 21 (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-915 |#1|) (-13 (-120 |#1|) (-623 (-1220 |#1|)) (-10 -8 (-15 -3775 ($ |#1|)) (-15 -3775 ($ $ $)))) (-1116)) (T -915)) +((-3775 (*1 *1 *2) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1116)))) (-3775 (*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1116))))) +(-13 (-120 |#1|) (-623 (-1220 |#1|)) (-10 -8 (-15 -3775 ($ |#1|)) (-15 -3775 ($ $ $)))) +((-1910 ((|#2| (-1158 |#1| |#2|)) 48))) +(((-916 |#1| |#2|) (-10 -7 (-15 -1910 (|#2| (-1158 |#1| |#2|)))) (-935) (-13 (-1065) (-10 -7 (-6 (-4461 "*"))))) (T -916)) +((-1910 (*1 *2 *3) (-12 (-5 *3 (-1158 *4 *2)) (-14 *4 (-935)) (-4 *2 (-13 (-1065) (-10 -7 (-6 (-4461 "*"))))) (-5 *1 (-916 *4 *2))))) +(-10 -7 (-15 -1910 (|#2| (-1158 |#1| |#2|)))) +((-2864 (((-112) $ $) 7)) (-2749 (((-1118 |#1|) $) 35)) (-3250 (($) 19 T CONST)) (-4322 (((-3 $ "failed") $) 16)) (-2342 (((-1118 |#1|) $ |#1|) 34)) (-4226 (((-112) $) 18)) (-3634 (($ $ $) 32 (-2833 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-4380 (($ $ $) 31 (-2833 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-1489 (((-1175) $) 10)) (-1328 (($ $) 25)) (-3940 (((-1136) $) 11)) (-2207 ((|#1| $ |#1|) 38)) (-3409 (($ (-654 (-654 |#1|))) 36)) (-2568 (($ (-654 |#1|)) 37)) (-3617 (($ $ $) 22)) (-3955 (($ $ $) 21)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2153 (($) 20 T CONST)) (-3042 (((-112) $ $) 29 (-2833 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3020 (((-112) $ $) 28 (-2833 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 30 (-2833 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3009 (((-112) $ $) 33)) (-3103 (($ $ $) 24)) (** (($ $ (-935)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15))) +(((-917 |#1|) (-141) (-1116)) (T -917)) +((-2568 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-917 *3)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-4 *1 (-917 *3)))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-1118 *3)))) (-2342 (*1 *2 *1 *3) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-1118 *3)))) (-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-112))))) +(-13 (-483) (-294 |t#1| |t#1|) (-10 -8 (-15 -2568 ($ (-654 |t#1|))) (-15 -3409 ($ (-654 (-654 |t#1|)))) (-15 -2749 ((-1118 |t#1|) $)) (-15 -2342 ((-1118 |t#1|) $ |t#1|)) (-15 -3009 ((-112) $ $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-377)) (-6 (-860)) |%noBranch|))) +(((-102) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-483) . T) ((-736) . T) ((-860) -2833 (|has| |#1| (-860)) (|has| |#1| (-377))) ((-1128) . T) ((-1116) . T) ((-1234) . T)) +((-2864 (((-112) $ $) NIL)) (-4210 (((-654 (-654 (-781))) $) 160)) (-1929 (((-654 (-781)) (-919 |#1|) $) 188)) (-3969 (((-654 (-781)) (-919 |#1|) $) 189)) (-2749 (((-1118 |#1|) $) 152)) (-2617 (((-654 (-919 |#1|)) $) 149)) (-2835 (((-919 |#1|) $ (-574)) 154) (((-919 |#1|) $) 155)) (-3380 (($ (-654 (-919 |#1|))) 162)) (-3547 (((-781) $) 156)) (-3676 (((-1118 (-1118 |#1|)) $) 186)) (-2342 (((-1118 |#1|) $ |#1|) 177) (((-1118 (-1118 |#1|)) $ (-1118 |#1|)) 197) (((-1118 (-654 |#1|)) $ (-654 |#1|)) 200)) (-4134 (((-112) (-919 |#1|) $) 137)) (-1489 (((-1175) $) NIL)) (-1511 (((-1289) $) 142) (((-1289) $ (-574) (-574)) 201)) (-3940 (((-1136) $) NIL)) (-2684 (((-654 (-919 |#1|)) $) 143)) (-2207 (((-919 |#1|) $ (-781)) 150)) (-3580 (((-781) $) 157)) (-2951 (((-872) $) 174) (((-654 (-919 |#1|)) $) 28) (($ (-654 (-919 |#1|))) 161)) (-4069 (((-112) $ $) NIL)) (-2644 (((-654 |#1|) $) 159)) (-2986 (((-112) $ $) 194)) (-3030 (((-112) $ $) 192)) (-3009 (((-112) $ $) 191))) +(((-918 |#1|) (-13 (-1116) (-10 -8 (-15 -2951 ((-654 (-919 |#1|)) $)) (-15 -2684 ((-654 (-919 |#1|)) $)) (-15 -2207 ((-919 |#1|) $ (-781))) (-15 -2835 ((-919 |#1|) $ (-574))) (-15 -2835 ((-919 |#1|) $)) (-15 -3547 ((-781) $)) (-15 -3580 ((-781) $)) (-15 -2644 ((-654 |#1|) $)) (-15 -2617 ((-654 (-919 |#1|)) $)) (-15 -4210 ((-654 (-654 (-781))) $)) (-15 -2951 ($ (-654 (-919 |#1|)))) (-15 -3380 ($ (-654 (-919 |#1|)))) (-15 -2342 ((-1118 |#1|) $ |#1|)) (-15 -3676 ((-1118 (-1118 |#1|)) $)) (-15 -2342 ((-1118 (-1118 |#1|)) $ (-1118 |#1|))) (-15 -2342 ((-1118 (-654 |#1|)) $ (-654 |#1|))) (-15 -4134 ((-112) (-919 |#1|) $)) (-15 -1929 ((-654 (-781)) (-919 |#1|) $)) (-15 -3969 ((-654 (-781)) (-919 |#1|) $)) (-15 -2749 ((-1118 |#1|) $)) (-15 -3009 ((-112) $ $)) (-15 -3030 ((-112) $ $)) (-15 -1511 ((-1289) $)) (-15 -1511 ((-1289) $ (-574) (-574))))) (-1116)) (T -918)) +((-2951 (*1 *2 *1) (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-919 *4)) (-5 *1 (-918 *4)) (-4 *4 (-1116)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-919 *4)) (-5 *1 (-918 *4)) (-4 *4 (-1116)))) (-2835 (*1 *2 *1) (-12 (-5 *2 (-919 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-3547 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-919 *3))) (-4 *3 (-1116)) (-5 *1 (-918 *3)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-654 (-919 *3))) (-4 *3 (-1116)) (-5 *1 (-918 *3)))) (-2342 (*1 *2 *1 *3) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-1118 (-1118 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-2342 (*1 *2 *1 *3) (-12 (-4 *4 (-1116)) (-5 *2 (-1118 (-1118 *4))) (-5 *1 (-918 *4)) (-5 *3 (-1118 *4)))) (-2342 (*1 *2 *1 *3) (-12 (-4 *4 (-1116)) (-5 *2 (-1118 (-654 *4))) (-5 *1 (-918 *4)) (-5 *3 (-654 *4)))) (-4134 (*1 *2 *3 *1) (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-112)) (-5 *1 (-918 *4)))) (-1929 (*1 *2 *3 *1) (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-654 (-781))) (-5 *1 (-918 *4)))) (-3969 (*1 *2 *3 *1) (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-654 (-781))) (-5 *1 (-918 *4)))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-3009 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-3030 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-1511 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-918 *4)) (-4 *4 (-1116))))) +(-13 (-1116) (-10 -8 (-15 -2951 ((-654 (-919 |#1|)) $)) (-15 -2684 ((-654 (-919 |#1|)) $)) (-15 -2207 ((-919 |#1|) $ (-781))) (-15 -2835 ((-919 |#1|) $ (-574))) (-15 -2835 ((-919 |#1|) $)) (-15 -3547 ((-781) $)) (-15 -3580 ((-781) $)) (-15 -2644 ((-654 |#1|) $)) (-15 -2617 ((-654 (-919 |#1|)) $)) (-15 -4210 ((-654 (-654 (-781))) $)) (-15 -2951 ($ (-654 (-919 |#1|)))) (-15 -3380 ($ (-654 (-919 |#1|)))) (-15 -2342 ((-1118 |#1|) $ |#1|)) (-15 -3676 ((-1118 (-1118 |#1|)) $)) (-15 -2342 ((-1118 (-1118 |#1|)) $ (-1118 |#1|))) (-15 -2342 ((-1118 (-654 |#1|)) $ (-654 |#1|))) (-15 -4134 ((-112) (-919 |#1|) $)) (-15 -1929 ((-654 (-781)) (-919 |#1|) $)) (-15 -3969 ((-654 (-781)) (-919 |#1|) $)) (-15 -2749 ((-1118 |#1|) $)) (-15 -3009 ((-112) $ $)) (-15 -3030 ((-112) $ $)) (-15 -1511 ((-1289) $)) (-15 -1511 ((-1289) $ (-574) (-574))))) +((-2864 (((-112) $ $) NIL)) (-2749 (((-1118 |#1|) $) 60)) (-2786 (((-654 $) (-654 $)) 103)) (-2472 (((-574) $) 83)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) NIL)) (-3547 (((-781) $) 80)) (-2342 (((-1118 |#1|) $ |#1|) 70)) (-4226 (((-112) $) NIL)) (-1823 (((-112) $) 88)) (-3797 (((-781) $) 84)) (-3634 (($ $ $) NIL (-2833 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-4380 (($ $ $) NIL (-2833 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-2763 (((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $) 55)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 130)) (-3940 (((-1136) $) NIL)) (-2215 (((-1118 |#1|) $) 136 (|has| |#1| (-377)))) (-2120 (((-112) $) 81)) (-2207 ((|#1| $ |#1|) 68)) (-3580 (((-781) $) 62)) (-3409 (($ (-654 (-654 |#1|))) 118)) (-1569 (((-987) $) 74)) (-2568 (($ (-654 |#1|)) 32)) (-3617 (($ $ $) NIL)) (-3955 (($ $ $) NIL)) (-3906 (($ (-654 (-654 |#1|))) 57)) (-2857 (($ (-654 (-654 |#1|))) 123)) (-3880 (($ (-654 |#1|)) 132)) (-2951 (((-872) $) 117) (($ (-654 (-654 |#1|))) 91) (($ (-654 |#1|)) 92)) (-4069 (((-112) $ $) NIL)) (-2153 (($) 24 T CONST)) (-3042 (((-112) $ $) NIL (-2833 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3020 (((-112) $ $) NIL (-2833 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-2986 (((-112) $ $) 66)) (-3030 (((-112) $ $) NIL (-2833 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3009 (((-112) $ $) 90)) (-3103 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 33))) +(((-919 |#1|) (-13 (-917 |#1|) (-10 -8 (-15 -2763 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -3906 ($ (-654 (-654 |#1|)))) (-15 -2951 ($ (-654 (-654 |#1|)))) (-15 -2951 ($ (-654 |#1|))) (-15 -2857 ($ (-654 (-654 |#1|)))) (-15 -3580 ((-781) $)) (-15 -1569 ((-987) $)) (-15 -3547 ((-781) $)) (-15 -3797 ((-781) $)) (-15 -2472 ((-574) $)) (-15 -2120 ((-112) $)) (-15 -1823 ((-112) $)) (-15 -2786 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -2215 ((-1118 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -3880 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -3880 ($ (-654 |#1|))) |%noBranch|)))) (-1116)) (T -919)) +((-2763 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3)))) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-3906 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-919 *3)))) (-2857 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3)))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-987)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-3547 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-2472 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-919 *3)) (-4 *3 (-377)) (-4 *3 (-1116)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-919 *3))))) +(-13 (-917 |#1|) (-10 -8 (-15 -2763 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -3906 ($ (-654 (-654 |#1|)))) (-15 -2951 ($ (-654 (-654 |#1|)))) (-15 -2951 ($ (-654 |#1|))) (-15 -2857 ($ (-654 (-654 |#1|)))) (-15 -3580 ((-781) $)) (-15 -1569 ((-987) $)) (-15 -3547 ((-781) $)) (-15 -3797 ((-781) $)) (-15 -2472 ((-574) $)) (-15 -2120 ((-112) $)) (-15 -1823 ((-112) $)) (-15 -2786 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -2215 ((-1118 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -3880 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -3880 ($ (-654 |#1|))) |%noBranch|)))) +((-1744 (((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|)) 160)) (-4034 ((|#1|) 97)) (-2469 (((-428 (-1189 |#4|)) (-1189 |#4|)) 169)) (-3909 (((-428 (-1189 |#4|)) (-654 |#3|) (-1189 |#4|)) 84)) (-4217 (((-428 (-1189 |#4|)) (-1189 |#4|)) 179)) (-2850 (((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|) |#3|) 113))) +(((-920 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1744 ((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|))) (-15 -4217 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -2469 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -4034 (|#1|)) (-15 -2850 ((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|) |#3|)) (-15 -3909 ((-428 (-1189 |#4|)) (-654 |#3|) (-1189 |#4|)))) (-923) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -920)) +((-3909 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-923)) (-4 *6 (-803)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-428 (-1189 *8))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-1189 *8)))) (-2850 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-654 (-1189 *7))) (-5 *3 (-1189 *7)) (-4 *7 (-963 *5 *6 *4)) (-4 *5 (-923)) (-4 *6 (-803)) (-4 *4 (-860)) (-5 *1 (-920 *5 *6 *4 *7)))) (-4034 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-923)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-2469 (*1 *2 *3) (-12 (-4 *4 (-923)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-4217 (*1 *2 *3) (-12 (-4 *4 (-923)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-1744 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 *7))) (-5 *3 (-1189 *7)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-923)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-920 *4 *5 *6 *7))))) +(-10 -7 (-15 -1744 ((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|))) (-15 -4217 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -2469 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -4034 (|#1|)) (-15 -2850 ((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|) |#3|)) (-15 -3909 ((-428 (-1189 |#4|)) (-654 |#3|) (-1189 |#4|)))) +((-1744 (((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|)) 39)) (-4034 ((|#1|) 72)) (-2469 (((-428 (-1189 |#2|)) (-1189 |#2|)) 121)) (-3909 (((-428 (-1189 |#2|)) (-1189 |#2|)) 105)) (-4217 (((-428 (-1189 |#2|)) (-1189 |#2|)) 132))) +(((-921 |#1| |#2|) (-10 -7 (-15 -1744 ((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|))) (-15 -4217 ((-428 (-1189 |#2|)) (-1189 |#2|))) (-15 -2469 ((-428 (-1189 |#2|)) (-1189 |#2|))) (-15 -4034 (|#1|)) (-15 -3909 ((-428 (-1189 |#2|)) (-1189 |#2|)))) (-923) (-1260 |#1|)) (T -921)) +((-3909 (*1 *2 *3) (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5))) (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5)))) (-4034 (*1 *2) (-12 (-4 *2 (-923)) (-5 *1 (-921 *2 *3)) (-4 *3 (-1260 *2)))) (-2469 (*1 *2 *3) (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5))) (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5)))) (-4217 (*1 *2 *3) (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5))) (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5)))) (-1744 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 *5))) (-5 *3 (-1189 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-923)) (-5 *1 (-921 *4 *5))))) +(-10 -7 (-15 -1744 ((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|))) (-15 -4217 ((-428 (-1189 |#2|)) (-1189 |#2|))) (-15 -2469 ((-428 (-1189 |#2|)) (-1189 |#2|))) (-15 -4034 (|#1|)) (-15 -3909 ((-428 (-1189 |#2|)) (-1189 |#2|)))) +((-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 42)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 18)) (-3424 (((-3 $ "failed") $) 36))) +(((-922 |#1|) (-10 -8 (-15 -3424 ((-3 |#1| "failed") |#1|)) (-15 -2630 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -2069 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|)))) (-923)) (T -922)) +NIL +(-10 -8 (-15 -3424 ((-3 |#1| "failed") |#1|)) (-15 -2630 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -2069 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-2488 (((-428 (-1189 $)) (-1189 $)) 66)) (-2991 (($ $) 57)) (-1610 (((-428 $) $) 58)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 63)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-3978 (((-112) $) 59)) (-4226 (((-112) $) 35)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-3651 (((-428 (-1189 $)) (-1189 $)) 64)) (-3335 (((-428 (-1189 $)) (-1189 $)) 65)) (-4202 (((-428 $) $) 56)) (-2853 (((-3 $ "failed") $ $) 48)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 62 (|has| $ (-146)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3424 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-923) (-141)) (T -923)) +((-2069 (*1 *2 *2 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-923)))) (-2488 (*1 *2 *3) (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1)))) (-3335 (*1 *2 *3) (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1)))) (-3651 (*1 *2 *3) (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1)))) (-2630 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 *1))) (-5 *3 (-1189 *1)) (-4 *1 (-923)))) (-3089 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-923)) (-5 *2 (-1284 *1)))) (-3424 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-923))))) +(-13 (-1238) (-10 -8 (-15 -2488 ((-428 (-1189 $)) (-1189 $))) (-15 -3335 ((-428 (-1189 $)) (-1189 $))) (-15 -3651 ((-428 (-1189 $)) (-1189 $))) (-15 -2069 ((-1189 $) (-1189 $) (-1189 $))) (-15 -2630 ((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $))) (IF (|has| $ (-146)) (PROGN (-15 -3089 ((-3 (-1284 $) "failed") (-699 $))) (-15 -3424 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-1347 (((-112) $) NIL)) (-2755 (((-781)) NIL)) (-1644 (($ $ (-935)) NIL (|has| $ (-377))) (($ $) NIL)) (-1928 (((-1206 (-935) (-781)) (-574)) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 $ "failed") $) NIL)) (-2214 (($ $) NIL)) (-2580 (($ (-1284 $)) NIL)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3556 (($) NIL)) (-3084 (((-112) $) NIL)) (-1995 (($ $) NIL) (($ $ (-781)) NIL)) (-3978 (((-112) $) NIL)) (-3547 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-4226 (((-112) $) NIL)) (-3841 (($) NIL (|has| $ (-377)))) (-3272 (((-112) $) NIL (|has| $ (-377)))) (-1681 (($ $ (-935)) NIL (|has| $ (-377))) (($ $) NIL)) (-2414 (((-3 $ "failed") $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3989 (((-1189 $) $ (-935)) NIL (|has| $ (-377))) (((-1189 $) $) NIL)) (-3383 (((-935) $) NIL)) (-2346 (((-1189 $) $) NIL (|has| $ (-377)))) (-3747 (((-3 (-1189 $) "failed") $ $) NIL (|has| $ (-377))) (((-1189 $) $) NIL (|has| $ (-377)))) (-1927 (($ $ (-1189 $)) NIL (|has| $ (-377)))) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL T CONST)) (-2591 (($ (-935)) NIL)) (-2228 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL (|has| $ (-377)))) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL)) (-4202 (((-428 $) $) NIL)) (-2027 (((-935)) NIL) (((-843 (-935))) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3261 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-2995 (((-135)) NIL)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-3580 (((-935) $) NIL) (((-843 (-935)) $) NIL)) (-4379 (((-1189 $)) NIL)) (-3603 (($) NIL)) (-4219 (($) NIL (|has| $ (-377)))) (-1385 (((-699 $) (-1284 $)) NIL) (((-1284 $) $) NIL)) (-1844 (((-574) $) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL)) (-3424 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $) (-935)) NIL) (((-1284 $)) NIL)) (-2836 (((-112) $ $) NIL)) (-3504 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2656 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3584 (($ $) NIL) (($ $ (-781)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-924 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-935)) (T -924)) NIL (-13 (-358) (-337 $) (-624 (-574))) -((-2693 (((-3 (-2 (|:| -2725 (-781)) (|:| -2724 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)) 77)) (-3135 (((-112) (-345 |#2| |#3| |#4| |#5|)) 17)) (-2725 (((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|)) 15))) -(((-924 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2725 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -3135 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -2693 ((-3 (-2 (|:| -2725 (-781)) (|:| -2724 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)))) (-13 (-566) (-1053 (-574))) (-440 |#1|) (-1259 |#2|) (-1259 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -924)) -((-2693 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-2 (|:| -2725 (-781)) (|:| -2724 *8))) (-5 *1 (-924 *4 *5 *6 *7 *8)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7 *8)))) (-2725 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-781)) (-5 *1 (-924 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2725 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -3135 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -2693 ((-3 (-2 (|:| -2725 (-781)) (|:| -2724 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)))) -((-2693 (((-3 (-2 (|:| -2725 (-781)) (|:| -2724 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 64)) (-3135 (((-112) (-345 (-417 (-574)) |#1| |#2| |#3|)) 16)) (-2725 (((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 14))) -(((-925 |#1| |#2| |#3|) (-10 -7 (-15 -2725 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -3135 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -2693 ((-3 (-2 (|:| -2725 (-781)) (|:| -2724 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)))) (-1259 (-417 (-574))) (-1259 (-417 |#1|)) (-351 (-417 (-574)) |#1| |#2|)) (T -925)) -((-2693 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-2 (|:| -2725 (-781)) (|:| -2724 *6))) (-5 *1 (-925 *4 *5 *6)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-925 *4 *5 *6)))) (-2725 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781)) (-5 *1 (-925 *4 *5 *6))))) -(-10 -7 (-15 -2725 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -3135 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -2693 ((-3 (-2 (|:| -2725 (-781)) (|:| -2724 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)))) -((-2621 ((|#2| |#2|) 26)) (-3433 (((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) 15)) (-2936 (((-934) (-574)) 38)) (-1330 (((-574) |#2|) 45)) (-2112 (((-574) |#2|) 21) (((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|) 20))) -(((-926 |#1| |#2|) (-10 -7 (-15 -2936 ((-934) (-574))) (-15 -2112 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -2112 ((-574) |#2|)) (-15 -3433 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -1330 ((-574) |#2|)) (-15 -2621 (|#2| |#2|))) (-1259 (-417 (-574))) (-1259 (-417 |#1|))) (T -926)) -((-2621 (*1 *2 *2) (-12 (-4 *3 (-1259 (-417 (-574)))) (-5 *1 (-926 *3 *2)) (-4 *2 (-1259 (-417 *3))))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *3)) (-4 *3 (-1259 (-417 *4))))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *5)) (-4 *5 (-1259 (-417 *4))))) (-2112 (*1 *2 *3) (-12 (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *3)) (-4 *3 (-1259 (-417 *4))))) (-2112 (*1 *2 *3) (-12 (-4 *3 (-1259 (-417 (-574)))) (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))) (-5 *1 (-926 *3 *4)) (-4 *4 (-1259 (-417 *3))))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1259 (-417 *3))) (-5 *2 (-934)) (-5 *1 (-926 *4 *5)) (-4 *5 (-1259 (-417 *4)))))) -(-10 -7 (-15 -2936 ((-934) (-574))) (-15 -2112 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -2112 ((-574) |#2|)) (-15 -3433 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -1330 ((-574) |#2|)) (-15 -2621 (|#2| |#2|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4018 ((|#1| $) 100)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-2799 (($ $ $) NIL)) (-3911 (((-3 $ "failed") $) 94)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-3259 (($ |#1| (-428 |#1|)) 92)) (-3633 (((-1188 |#1|) |#1| |#1|) 53)) (-4016 (($ $) 61)) (-3372 (((-112) $) NIL)) (-2065 (((-574) $) 97)) (-2859 (($ $ (-574)) 99)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2840 ((|#1| $) 96)) (-4256 (((-428 |#1|) $) 95)) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) 93)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3382 (($ $) 50)) (-2950 (((-872) $) 124) (($ (-574)) 73) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 41) (((-417 |#1|) $) 78) (($ (-417 (-428 |#1|))) 86)) (-4019 (((-781)) 71 T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-2142 (($) 26 T CONST)) (-2154 (($) 15 T CONST)) (-2985 (((-112) $ $) 87)) (-3098 (($ $ $) NIL)) (-3089 (($ $) 108) (($ $ $) NIL)) (-3074 (($ $ $) 49)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 48) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-927 |#1|) (-13 (-372) (-38 |#1|) (-10 -8 (-15 -2950 ((-417 |#1|) $)) (-15 -2950 ($ (-417 (-428 |#1|)))) (-15 -3382 ($ $)) (-15 -4256 ((-428 |#1|) $)) (-15 -2840 (|#1| $)) (-15 -2859 ($ $ (-574))) (-15 -2065 ((-574) $)) (-15 -3633 ((-1188 |#1|) |#1| |#1|)) (-15 -4016 ($ $)) (-15 -3259 ($ |#1| (-428 |#1|))) (-15 -4018 (|#1| $)))) (-315)) (T -927)) -((-2950 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-927 *3)))) (-3382 (*1 *1 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315)))) (-4256 (*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) (-2840 (*1 *2 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315)))) (-2859 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) (-3633 (*1 *2 *3 *3) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) (-4016 (*1 *1 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315)))) (-3259 (*1 *1 *2 *3) (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-927 *2)))) (-4018 (*1 *2 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315))))) -(-13 (-372) (-38 |#1|) (-10 -8 (-15 -2950 ((-417 |#1|) $)) (-15 -2950 ($ (-417 (-428 |#1|)))) (-15 -3382 ($ $)) (-15 -4256 ((-428 |#1|) $)) (-15 -2840 (|#1| $)) (-15 -2859 ($ $ (-574))) (-15 -2065 ((-574) $)) (-15 -3633 ((-1188 |#1|) |#1| |#1|)) (-15 -4016 ($ $)) (-15 -3259 ($ |#1| (-428 |#1|))) (-15 -4018 (|#1| $)))) -((-3259 (((-52) (-965 |#1|) (-428 (-965 |#1|)) (-1192)) 17) (((-52) (-417 (-965 |#1|)) (-1192)) 18))) -(((-928 |#1|) (-10 -7 (-15 -3259 ((-52) (-417 (-965 |#1|)) (-1192))) (-15 -3259 ((-52) (-965 |#1|) (-428 (-965 |#1|)) (-1192)))) (-13 (-315) (-148))) (T -928)) -((-3259 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-428 (-965 *6))) (-5 *5 (-1192)) (-5 *3 (-965 *6)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-928 *6)))) (-3259 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-928 *5))))) -(-10 -7 (-15 -3259 ((-52) (-417 (-965 |#1|)) (-1192))) (-15 -3259 ((-52) (-965 |#1|) (-428 (-965 |#1|)) (-1192)))) -((-3581 ((|#4| (-654 |#4|)) 147) (((-1188 |#4|) (-1188 |#4|) (-1188 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-2886 (((-1188 |#4|) (-654 (-1188 |#4|))) 140) (((-1188 |#4|) (-1188 |#4|) (-1188 |#4|)) 61) ((|#4| (-654 |#4|)) 69) ((|#4| |#4| |#4|) 107))) -(((-929 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2886 (|#4| |#4| |#4|)) (-15 -2886 (|#4| (-654 |#4|))) (-15 -2886 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -2886 ((-1188 |#4|) (-654 (-1188 |#4|)))) (-15 -3581 (|#4| |#4| |#4|)) (-15 -3581 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -3581 (|#4| (-654 |#4|)))) (-803) (-860) (-315) (-962 |#3| |#1| |#2|)) (T -929)) -((-3581 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *6 *4 *5)) (-5 *1 (-929 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-3581 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *6)))) (-3581 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *2)) (-4 *2 (-962 *5 *3 *4)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-654 (-1188 *7))) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-1188 *7)) (-5 *1 (-929 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) (-2886 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *6)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *6 *4 *5)) (-5 *1 (-929 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-2886 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *2)) (-4 *2 (-962 *5 *3 *4))))) -(-10 -7 (-15 -2886 (|#4| |#4| |#4|)) (-15 -2886 (|#4| (-654 |#4|))) (-15 -2886 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -2886 ((-1188 |#4|) (-654 (-1188 |#4|)))) (-15 -3581 (|#4| |#4| |#4|)) (-15 -3581 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -3581 (|#4| (-654 |#4|)))) -((-4004 (((-917 (-574)) (-986)) 38) (((-917 (-574)) (-654 (-574))) 34)) (-3376 (((-917 (-574)) (-654 (-574))) 67) (((-917 (-574)) (-934)) 68)) (-1668 (((-917 (-574))) 39)) (-3348 (((-917 (-574))) 53) (((-917 (-574)) (-654 (-574))) 52)) (-3795 (((-917 (-574))) 51) (((-917 (-574)) (-654 (-574))) 50)) (-2789 (((-917 (-574))) 49) (((-917 (-574)) (-654 (-574))) 48)) (-3385 (((-917 (-574))) 47) (((-917 (-574)) (-654 (-574))) 46)) (-2026 (((-917 (-574))) 45) (((-917 (-574)) (-654 (-574))) 44)) (-3637 (((-917 (-574))) 55) (((-917 (-574)) (-654 (-574))) 54)) (-1658 (((-917 (-574)) (-654 (-574))) 72) (((-917 (-574)) (-934)) 74)) (-2582 (((-917 (-574)) (-654 (-574))) 69) (((-917 (-574)) (-934)) 70)) (-4335 (((-917 (-574)) (-654 (-574))) 65) (((-917 (-574)) (-934)) 66)) (-2814 (((-917 (-574)) (-654 (-934))) 57))) -(((-930) (-10 -7 (-15 -3376 ((-917 (-574)) (-934))) (-15 -3376 ((-917 (-574)) (-654 (-574)))) (-15 -4335 ((-917 (-574)) (-934))) (-15 -4335 ((-917 (-574)) (-654 (-574)))) (-15 -2814 ((-917 (-574)) (-654 (-934)))) (-15 -2582 ((-917 (-574)) (-934))) (-15 -2582 ((-917 (-574)) (-654 (-574)))) (-15 -1658 ((-917 (-574)) (-934))) (-15 -1658 ((-917 (-574)) (-654 (-574)))) (-15 -2026 ((-917 (-574)) (-654 (-574)))) (-15 -2026 ((-917 (-574)))) (-15 -3385 ((-917 (-574)) (-654 (-574)))) (-15 -3385 ((-917 (-574)))) (-15 -2789 ((-917 (-574)) (-654 (-574)))) (-15 -2789 ((-917 (-574)))) (-15 -3795 ((-917 (-574)) (-654 (-574)))) (-15 -3795 ((-917 (-574)))) (-15 -3348 ((-917 (-574)) (-654 (-574)))) (-15 -3348 ((-917 (-574)))) (-15 -3637 ((-917 (-574)) (-654 (-574)))) (-15 -3637 ((-917 (-574)))) (-15 -1668 ((-917 (-574)))) (-15 -4004 ((-917 (-574)) (-654 (-574)))) (-15 -4004 ((-917 (-574)) (-986))))) (T -930)) -((-4004 (*1 *2 *3) (-12 (-5 *3 (-986)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-1668 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3637 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3348 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3795 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3795 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2789 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3385 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2026 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-4335 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-4335 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(-10 -7 (-15 -3376 ((-917 (-574)) (-934))) (-15 -3376 ((-917 (-574)) (-654 (-574)))) (-15 -4335 ((-917 (-574)) (-934))) (-15 -4335 ((-917 (-574)) (-654 (-574)))) (-15 -2814 ((-917 (-574)) (-654 (-934)))) (-15 -2582 ((-917 (-574)) (-934))) (-15 -2582 ((-917 (-574)) (-654 (-574)))) (-15 -1658 ((-917 (-574)) (-934))) (-15 -1658 ((-917 (-574)) (-654 (-574)))) (-15 -2026 ((-917 (-574)) (-654 (-574)))) (-15 -2026 ((-917 (-574)))) (-15 -3385 ((-917 (-574)) (-654 (-574)))) (-15 -3385 ((-917 (-574)))) (-15 -2789 ((-917 (-574)) (-654 (-574)))) (-15 -2789 ((-917 (-574)))) (-15 -3795 ((-917 (-574)) (-654 (-574)))) (-15 -3795 ((-917 (-574)))) (-15 -3348 ((-917 (-574)) (-654 (-574)))) (-15 -3348 ((-917 (-574)))) (-15 -3637 ((-917 (-574)) (-654 (-574)))) (-15 -3637 ((-917 (-574)))) (-15 -1668 ((-917 (-574)))) (-15 -4004 ((-917 (-574)) (-654 (-574)))) (-15 -4004 ((-917 (-574)) (-986)))) -((-4088 (((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192))) 14)) (-2681 (((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192))) 13))) -(((-931 |#1|) (-10 -7 (-15 -2681 ((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -4088 ((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192))))) (-462)) (T -931)) -((-4088 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-965 *4))) (-5 *3 (-654 (-1192))) (-4 *4 (-462)) (-5 *1 (-931 *4)))) (-2681 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-965 *4))) (-5 *3 (-654 (-1192))) (-4 *4 (-462)) (-5 *1 (-931 *4))))) -(-10 -7 (-15 -2681 ((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -4088 ((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192))))) -((-2950 (((-324 |#1|) (-487)) 16))) -(((-932 |#1|) (-10 -7 (-15 -2950 ((-324 |#1|) (-487)))) (-566)) (T -932)) -((-2950 (*1 *2 *3) (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-932 *4)) (-4 *4 (-566))))) -(-10 -7 (-15 -2950 ((-324 |#1|) (-487)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3372 (((-112) $) 35)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-933) (-141)) (T -933)) -((-3063 (*1 *2 *3) (-12 (-4 *1 (-933)) (-5 *2 (-2 (|:| -1867 (-654 *1)) (|:| -2975 *1))) (-5 *3 (-654 *1)))) (-2190 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-933))))) -(-13 (-462) (-10 -8 (-15 -3063 ((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $))) (-15 -2190 ((-3 (-654 $) "failed") (-654 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2886 (($ $ $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2154 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ $ $) NIL))) -(((-934) (-13 (-804) (-736) (-10 -8 (-15 -2886 ($ $ $)) (-6 (-4460 "*"))))) (T -934)) -((-2886 (*1 *1 *1 *1) (-5 *1 (-934)))) -(-13 (-804) (-736) (-10 -8 (-15 -2886 ($ $ $)) (-6 (-4460 "*")))) +((-1878 (((-3 (-2 (|:| -3547 (-781)) (|:| -2722 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)) 77)) (-1805 (((-112) (-345 |#2| |#3| |#4| |#5|)) 17)) (-3547 (((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|)) 15))) +(((-925 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3547 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -1805 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -1878 ((-3 (-2 (|:| -3547 (-781)) (|:| -2722 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)))) (-13 (-566) (-1054 (-574))) (-440 |#1|) (-1260 |#2|) (-1260 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -925)) +((-1878 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-2 (|:| -3547 (-781)) (|:| -2722 *8))) (-5 *1 (-925 *4 *5 *6 *7 *8)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-112)) (-5 *1 (-925 *4 *5 *6 *7 *8)))) (-3547 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-781)) (-5 *1 (-925 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3547 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -1805 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -1878 ((-3 (-2 (|:| -3547 (-781)) (|:| -2722 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)))) +((-1878 (((-3 (-2 (|:| -3547 (-781)) (|:| -2722 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 64)) (-1805 (((-112) (-345 (-417 (-574)) |#1| |#2| |#3|)) 16)) (-3547 (((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 14))) +(((-926 |#1| |#2| |#3|) (-10 -7 (-15 -3547 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -1805 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -1878 ((-3 (-2 (|:| -3547 (-781)) (|:| -2722 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)))) (-1260 (-417 (-574))) (-1260 (-417 |#1|)) (-351 (-417 (-574)) |#1| |#2|)) (T -926)) +((-1878 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-2 (|:| -3547 (-781)) (|:| -2722 *6))) (-5 *1 (-926 *4 *5 *6)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6)))) (-3547 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781)) (-5 *1 (-926 *4 *5 *6))))) +(-10 -7 (-15 -3547 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -1805 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -1878 ((-3 (-2 (|:| -3547 (-781)) (|:| -2722 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)))) +((-3771 ((|#2| |#2|) 26)) (-4168 (((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) 15)) (-3390 (((-935) (-574)) 38)) (-2662 (((-574) |#2|) 45)) (-3459 (((-574) |#2|) 21) (((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|) 20))) +(((-927 |#1| |#2|) (-10 -7 (-15 -3390 ((-935) (-574))) (-15 -3459 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -3459 ((-574) |#2|)) (-15 -4168 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -2662 ((-574) |#2|)) (-15 -3771 (|#2| |#2|))) (-1260 (-417 (-574))) (-1260 (-417 |#1|))) (T -927)) +((-3771 (*1 *2 *2) (-12 (-4 *3 (-1260 (-417 (-574)))) (-5 *1 (-927 *3 *2)) (-4 *2 (-1260 (-417 *3))))) (-2662 (*1 *2 *3) (-12 (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *3)) (-4 *3 (-1260 (-417 *4))))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *5)) (-4 *5 (-1260 (-417 *4))))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *3)) (-4 *3 (-1260 (-417 *4))))) (-3459 (*1 *2 *3) (-12 (-4 *3 (-1260 (-417 (-574)))) (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))) (-5 *1 (-927 *3 *4)) (-4 *4 (-1260 (-417 *3))))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1260 (-417 *3))) (-5 *2 (-935)) (-5 *1 (-927 *4 *5)) (-4 *5 (-1260 (-417 *4)))))) +(-10 -7 (-15 -3390 ((-935) (-574))) (-15 -3459 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -3459 ((-574) |#2|)) (-15 -4168 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -2662 ((-574) |#2|)) (-15 -3771 (|#2| |#2|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4146 ((|#1| $) 100)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-4322 (((-3 $ "failed") $) 94)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3737 (($ |#1| (-428 |#1|)) 92)) (-2383 (((-1189 |#1|) |#1| |#1|) 53)) (-1362 (($ $) 61)) (-4226 (((-112) $) NIL)) (-1400 (((-574) $) 97)) (-2577 (($ $ (-574)) 99)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3733 ((|#1| $) 96)) (-2246 (((-428 |#1|) $) 95)) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) 93)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-4279 (($ $) 50)) (-2951 (((-872) $) 124) (($ (-574)) 73) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 41) (((-417 |#1|) $) 78) (($ (-417 (-428 |#1|))) 86)) (-2898 (((-781)) 71 T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-2141 (($) 26 T CONST)) (-2153 (($) 15 T CONST)) (-2986 (((-112) $ $) 87)) (-3103 (($ $ $) NIL)) (-3090 (($ $) 108) (($ $ $) NIL)) (-3074 (($ $ $) 49)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 48) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-928 |#1|) (-13 (-372) (-38 |#1|) (-10 -8 (-15 -2951 ((-417 |#1|) $)) (-15 -2951 ($ (-417 (-428 |#1|)))) (-15 -4279 ($ $)) (-15 -2246 ((-428 |#1|) $)) (-15 -3733 (|#1| $)) (-15 -2577 ($ $ (-574))) (-15 -1400 ((-574) $)) (-15 -2383 ((-1189 |#1|) |#1| |#1|)) (-15 -1362 ($ $)) (-15 -3737 ($ |#1| (-428 |#1|))) (-15 -4146 (|#1| $)))) (-315)) (T -928)) +((-2951 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-928 *3)))) (-4279 (*1 *1 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315)))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315)))) (-3733 (*1 *2 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315)))) (-2577 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-928 *3)) (-4 *3 (-315)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-928 *3)) (-4 *3 (-315)))) (-2383 (*1 *2 *3 *3) (-12 (-5 *2 (-1189 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315)))) (-1362 (*1 *1 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315)))) (-3737 (*1 *1 *2 *3) (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-928 *2)))) (-4146 (*1 *2 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315))))) +(-13 (-372) (-38 |#1|) (-10 -8 (-15 -2951 ((-417 |#1|) $)) (-15 -2951 ($ (-417 (-428 |#1|)))) (-15 -4279 ($ $)) (-15 -2246 ((-428 |#1|) $)) (-15 -3733 (|#1| $)) (-15 -2577 ($ $ (-574))) (-15 -1400 ((-574) $)) (-15 -2383 ((-1189 |#1|) |#1| |#1|)) (-15 -1362 ($ $)) (-15 -3737 ($ |#1| (-428 |#1|))) (-15 -4146 (|#1| $)))) +((-3737 (((-52) (-966 |#1|) (-428 (-966 |#1|)) (-1193)) 17) (((-52) (-417 (-966 |#1|)) (-1193)) 18))) +(((-929 |#1|) (-10 -7 (-15 -3737 ((-52) (-417 (-966 |#1|)) (-1193))) (-15 -3737 ((-52) (-966 |#1|) (-428 (-966 |#1|)) (-1193)))) (-13 (-315) (-148))) (T -929)) +((-3737 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-428 (-966 *6))) (-5 *5 (-1193)) (-5 *3 (-966 *6)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-929 *6)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-929 *5))))) +(-10 -7 (-15 -3737 ((-52) (-417 (-966 |#1|)) (-1193))) (-15 -3737 ((-52) (-966 |#1|) (-428 (-966 |#1|)) (-1193)))) +((-2076 ((|#4| (-654 |#4|)) 147) (((-1189 |#4|) (-1189 |#4|) (-1189 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-2887 (((-1189 |#4|) (-654 (-1189 |#4|))) 140) (((-1189 |#4|) (-1189 |#4|) (-1189 |#4|)) 61) ((|#4| (-654 |#4|)) 69) ((|#4| |#4| |#4|) 107))) +(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2887 (|#4| |#4| |#4|)) (-15 -2887 (|#4| (-654 |#4|))) (-15 -2887 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -2887 ((-1189 |#4|) (-654 (-1189 |#4|)))) (-15 -2076 (|#4| |#4| |#4|)) (-15 -2076 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -2076 (|#4| (-654 |#4|)))) (-803) (-860) (-315) (-963 |#3| |#1| |#2|)) (T -930)) +((-2076 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *6 *4 *5)) (-5 *1 (-930 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-2076 (*1 *2 *2 *2) (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2076 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-963 *5 *3 *4)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-654 (-1189 *7))) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-1189 *7)) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))) (-2887 (*1 *2 *2 *2) (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *6 *4 *5)) (-5 *1 (-930 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-2887 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-963 *5 *3 *4))))) +(-10 -7 (-15 -2887 (|#4| |#4| |#4|)) (-15 -2887 (|#4| (-654 |#4|))) (-15 -2887 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -2887 ((-1189 |#4|) (-654 (-1189 |#4|)))) (-15 -2076 (|#4| |#4| |#4|)) (-15 -2076 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -2076 (|#4| (-654 |#4|)))) +((-3010 (((-918 (-574)) (-987)) 38) (((-918 (-574)) (-654 (-574))) 34)) (-1788 (((-918 (-574)) (-654 (-574))) 67) (((-918 (-574)) (-935)) 68)) (-3829 (((-918 (-574))) 39)) (-2508 (((-918 (-574))) 53) (((-918 (-574)) (-654 (-574))) 52)) (-2549 (((-918 (-574))) 51) (((-918 (-574)) (-654 (-574))) 50)) (-3768 (((-918 (-574))) 49) (((-918 (-574)) (-654 (-574))) 48)) (-2679 (((-918 (-574))) 47) (((-918 (-574)) (-654 (-574))) 46)) (-1794 (((-918 (-574))) 45) (((-918 (-574)) (-654 (-574))) 44)) (-2866 (((-918 (-574))) 55) (((-918 (-574)) (-654 (-574))) 54)) (-2702 (((-918 (-574)) (-654 (-574))) 72) (((-918 (-574)) (-935)) 74)) (-1616 (((-918 (-574)) (-654 (-574))) 69) (((-918 (-574)) (-935)) 70)) (-4239 (((-918 (-574)) (-654 (-574))) 65) (((-918 (-574)) (-935)) 66)) (-2482 (((-918 (-574)) (-654 (-935))) 57))) +(((-931) (-10 -7 (-15 -1788 ((-918 (-574)) (-935))) (-15 -1788 ((-918 (-574)) (-654 (-574)))) (-15 -4239 ((-918 (-574)) (-935))) (-15 -4239 ((-918 (-574)) (-654 (-574)))) (-15 -2482 ((-918 (-574)) (-654 (-935)))) (-15 -1616 ((-918 (-574)) (-935))) (-15 -1616 ((-918 (-574)) (-654 (-574)))) (-15 -2702 ((-918 (-574)) (-935))) (-15 -2702 ((-918 (-574)) (-654 (-574)))) (-15 -1794 ((-918 (-574)) (-654 (-574)))) (-15 -1794 ((-918 (-574)))) (-15 -2679 ((-918 (-574)) (-654 (-574)))) (-15 -2679 ((-918 (-574)))) (-15 -3768 ((-918 (-574)) (-654 (-574)))) (-15 -3768 ((-918 (-574)))) (-15 -2549 ((-918 (-574)) (-654 (-574)))) (-15 -2549 ((-918 (-574)))) (-15 -2508 ((-918 (-574)) (-654 (-574)))) (-15 -2508 ((-918 (-574)))) (-15 -2866 ((-918 (-574)) (-654 (-574)))) (-15 -2866 ((-918 (-574)))) (-15 -3829 ((-918 (-574)))) (-15 -3010 ((-918 (-574)) (-654 (-574)))) (-15 -3010 ((-918 (-574)) (-987))))) (T -931)) +((-3010 (*1 *2 *3) (-12 (-5 *3 (-987)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3829 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2866 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2508 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2549 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2549 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3768 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2679 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-1794 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-4239 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-4239 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931))))) +(-10 -7 (-15 -1788 ((-918 (-574)) (-935))) (-15 -1788 ((-918 (-574)) (-654 (-574)))) (-15 -4239 ((-918 (-574)) (-935))) (-15 -4239 ((-918 (-574)) (-654 (-574)))) (-15 -2482 ((-918 (-574)) (-654 (-935)))) (-15 -1616 ((-918 (-574)) (-935))) (-15 -1616 ((-918 (-574)) (-654 (-574)))) (-15 -2702 ((-918 (-574)) (-935))) (-15 -2702 ((-918 (-574)) (-654 (-574)))) (-15 -1794 ((-918 (-574)) (-654 (-574)))) (-15 -1794 ((-918 (-574)))) (-15 -2679 ((-918 (-574)) (-654 (-574)))) (-15 -2679 ((-918 (-574)))) (-15 -3768 ((-918 (-574)) (-654 (-574)))) (-15 -3768 ((-918 (-574)))) (-15 -2549 ((-918 (-574)) (-654 (-574)))) (-15 -2549 ((-918 (-574)))) (-15 -2508 ((-918 (-574)) (-654 (-574)))) (-15 -2508 ((-918 (-574)))) (-15 -2866 ((-918 (-574)) (-654 (-574)))) (-15 -2866 ((-918 (-574)))) (-15 -3829 ((-918 (-574)))) (-15 -3010 ((-918 (-574)) (-654 (-574)))) (-15 -3010 ((-918 (-574)) (-987)))) +((-2364 (((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193))) 14)) (-4216 (((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193))) 13))) +(((-932 |#1|) (-10 -7 (-15 -4216 ((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -2364 ((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193))))) (-462)) (T -932)) +((-2364 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-966 *4))) (-5 *3 (-654 (-1193))) (-4 *4 (-462)) (-5 *1 (-932 *4)))) (-4216 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-966 *4))) (-5 *3 (-654 (-1193))) (-4 *4 (-462)) (-5 *1 (-932 *4))))) +(-10 -7 (-15 -4216 ((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -2364 ((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193))))) +((-2951 (((-324 |#1|) (-487)) 16))) +(((-933 |#1|) (-10 -7 (-15 -2951 ((-324 |#1|) (-487)))) (-566)) (T -933)) +((-2951 (*1 *2 *3) (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-933 *4)) (-4 *4 (-566))))) +(-10 -7 (-15 -2951 ((-324 |#1|) (-487)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-4226 (((-112) $) 35)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-934) (-141)) (T -934)) +((-4413 (*1 *2 *3) (-12 (-4 *1 (-934)) (-5 *2 (-2 (|:| -1866 (-654 *1)) (|:| -2975 *1))) (-5 *3 (-654 *1)))) (-4095 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-934))))) +(-13 (-462) (-10 -8 (-15 -4413 ((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $))) (-15 -4095 ((-3 (-654 $) "failed") (-654 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2887 (($ $ $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2153 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ $ $) NIL))) +(((-935) (-13 (-804) (-736) (-10 -8 (-15 -2887 ($ $ $)) (-6 (-4461 "*"))))) (T -935)) +((-2887 (*1 *1 *1 *1) (-5 *1 (-935)))) +(-13 (-804) (-736) (-10 -8 (-15 -2887 ($ $ $)) (-6 (-4461 "*")))) ((|NonNegativeInteger|) (|%igt| |#1| 0)) -((-4061 ((|#2| (-654 |#1|) (-654 |#1|)) 28))) -(((-935 |#1| |#2|) (-10 -7 (-15 -4061 (|#2| (-654 |#1|) (-654 |#1|)))) (-372) (-1259 |#1|)) (T -935)) -((-4061 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1259 *4)) (-5 *1 (-935 *4 *2))))) -(-10 -7 (-15 -4061 (|#2| (-654 |#1|) (-654 |#1|)))) -((-1660 (((-1188 |#2|) (-654 |#2|) (-654 |#2|)) 17) (((-1256 |#1| |#2|) (-1256 |#1| |#2|) (-654 |#2|) (-654 |#2|)) 13))) -(((-936 |#1| |#2|) (-10 -7 (-15 -1660 ((-1256 |#1| |#2|) (-1256 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -1660 ((-1188 |#2|) (-654 |#2|) (-654 |#2|)))) (-1192) (-372)) (T -936)) -((-1660 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1188 *5)) (-5 *1 (-936 *4 *5)) (-14 *4 (-1192)))) (-1660 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1256 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1192)) (-4 *5 (-372)) (-5 *1 (-936 *4 *5))))) -(-10 -7 (-15 -1660 ((-1256 |#1| |#2|) (-1256 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -1660 ((-1188 |#2|) (-654 |#2|) (-654 |#2|)))) -((-1536 (((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174)) 174)) (-1546 ((|#4| |#4|) 193)) (-2576 (((-654 (-417 (-965 |#1|))) (-654 (-1192))) 146)) (-1654 (((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574)) 88)) (-2784 (((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))) (-654 |#4|)) 69)) (-2181 (((-699 |#4|) (-699 |#4|) (-654 |#4|)) 65)) (-3051 (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174)) 186)) (-1696 (((-574) (-699 |#4|) (-934) (-1174)) 166) (((-574) (-699 |#4|) (-654 (-1192)) (-934) (-1174)) 165) (((-574) (-699 |#4|) (-654 |#4|) (-934) (-1174)) 164) (((-574) (-699 |#4|) (-1174)) 154) (((-574) (-699 |#4|) (-654 (-1192)) (-1174)) 153) (((-574) (-699 |#4|) (-654 |#4|) (-1174)) 152) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-934)) 151) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192)) (-934)) 150) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-934)) 149) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|)) 148) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192))) 147) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|)) 143)) (-3222 ((|#4| (-965 |#1|)) 80)) (-3834 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 190)) (-3979 (((-654 (-654 (-574))) (-574) (-574)) 159)) (-2010 (((-654 (-654 |#4|)) (-654 (-654 |#4|))) 106)) (-3837 (((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 100)) (-1805 (((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 99)) (-2356 (((-112) (-654 (-965 |#1|))) 19) (((-112) (-654 |#4|)) 15)) (-1851 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|)) 84)) (-3582 (((-654 |#4|) |#4|) 57)) (-1713 (((-654 (-417 (-965 |#1|))) (-654 |#4|)) 142) (((-699 (-417 (-965 |#1|))) (-699 |#4|)) 66) (((-417 (-965 |#1|)) |#4|) 139)) (-2032 (((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-781) (-1174) (-574)) 112)) (-1828 (((-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781)) 98)) (-4068 (((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781)) 121)) (-2187 (((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| -4047 (-699 (-417 (-965 |#1|)))) (|:| |vec| (-654 (-417 (-965 |#1|)))) (|:| -3557 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) 56))) -(((-937 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192)))) (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|))) (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-934))) (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192)) (-934))) (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-934))) (-15 -1696 ((-574) (-699 |#4|) (-654 |#4|) (-1174))) (-15 -1696 ((-574) (-699 |#4|) (-654 (-1192)) (-1174))) (-15 -1696 ((-574) (-699 |#4|) (-1174))) (-15 -1696 ((-574) (-699 |#4|) (-654 |#4|) (-934) (-1174))) (-15 -1696 ((-574) (-699 |#4|) (-654 (-1192)) (-934) (-1174))) (-15 -1696 ((-574) (-699 |#4|) (-934) (-1174))) (-15 -1536 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174))) (-15 -3051 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174))) (-15 -2032 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-781) (-1174) (-574))) (-15 -1713 ((-417 (-965 |#1|)) |#4|)) (-15 -1713 ((-699 (-417 (-965 |#1|))) (-699 |#4|))) (-15 -1713 ((-654 (-417 (-965 |#1|))) (-654 |#4|))) (-15 -2576 ((-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -3222 (|#4| (-965 |#1|))) (-15 -1851 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -1828 ((-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -2784 ((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))) (-654 |#4|))) (-15 -2187 ((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| -4047 (-699 (-417 (-965 |#1|)))) (|:| |vec| (-654 (-417 (-965 |#1|)))) (|:| -3557 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -3582 ((-654 |#4|) |#4|)) (-15 -1805 ((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -3837 ((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -2010 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -3979 ((-654 (-654 (-574))) (-574) (-574))) (-15 -3834 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -4068 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -2181 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -1654 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -1546 (|#4| |#4|)) (-15 -2356 ((-112) (-654 |#4|))) (-15 -2356 ((-112) (-654 (-965 |#1|))))) (-13 (-315) (-148)) (-13 (-860) (-624 (-1192))) (-803) (-962 |#1| |#3| |#2|)) (T -937)) -((-2356 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5)))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-937 *4 *5 *6 *7)))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1192)))) (-4 *5 (-803)) (-5 *1 (-937 *3 *4 *5 *2)) (-4 *2 (-962 *3 *5 *4)))) (-1654 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-965 *9)))) (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574)) (-4 *9 (-13 (-315) (-148))) (-4 *12 (-962 *9 *11 *10)) (-4 *10 (-13 (-860) (-624 (-1192)))) (-4 *11 (-803)) (-5 *2 (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12)) (|:| |wcond| (-654 (-965 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *9)))) (|:| -2191 (-654 (-1283 (-417 (-965 *9))))))))) (-5 *1 (-937 *9 *10 *11 *12)))) (-2181 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *1 (-937 *4 *5 *6 *7)))) (-4068 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-5 *1 (-937 *5 *6 *7 *8)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-937 *5 *6 *7 *8)))) (-3979 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574)))) (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-962 *4 *6 *5)))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-962 *3 *5 *4)) (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1192)))) (-4 *5 (-803)) (-5 *1 (-937 *3 *4 *5 *6)))) (-3837 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-937 *4 *5 *6 *7)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-937 *4 *5 *6 *7)))) (-3582 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-937 *4 *5 *6 *3)) (-4 *3 (-962 *4 *6 *5)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4047 (-699 (-417 (-965 *4)))) (|:| |vec| (-654 (-417 (-965 *4)))) (|:| -3557 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) (|:| -2191 (-654 (-1283 (-417 (-965 *4))))))) (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5)))) (-2784 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) (|:| -2191 (-654 (-1283 (-417 (-965 *4))))))) (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148))) (-4 *7 (-962 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *1 (-937 *4 *5 *6 *7)))) (-1828 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *8))))) (-5 *1 (-937 *5 *6 *7 *8)) (-5 *4 (-781)))) (-1851 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-4 *7 (-962 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7)))) (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-315) (-148))) (-4 *2 (-962 *4 *6 *5)) (-5 *1 (-937 *4 *5 *6 *2)) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-965 *4)))) (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-965 *4)))) (-5 *1 (-937 *4 *5 *6 *7)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-699 (-417 (-965 *4)))) (-5 *1 (-937 *4 *5 *6 *7)))) (-1713 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-417 (-965 *4))) (-5 *1 (-937 *4 *5 *6 *3)) (-4 *3 (-962 *4 *6 *5)))) (-2032 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-965 *8)))) (-5 *5 (-781)) (-5 *6 (-1174)) (-4 *8 (-13 (-315) (-148))) (-4 *11 (-962 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1192)))) (-4 *10 (-803)) (-5 *2 (-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11)) (|:| |wcond| (-654 (-965 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *8)))) (|:| -2191 (-654 (-1283 (-417 (-965 *8)))))))))) (|:| |rgsz| (-574)))) (-5 *1 (-937 *8 *9 *10 *11)) (-5 *7 (-574)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-965 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) (|:| -2191 (-654 (-1283 (-417 (-965 *4)))))))))) (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5)))) (-1536 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) (|:| -2191 (-654 (-1283 (-417 (-965 *5)))))))))) (-5 *4 (-1174)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-962 *5 *7 *6)) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *5 *6 *7 *8)))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-934)) (-5 *5 (-1174)) (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *6 *7 *8 *9)))) (-1696 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1192))) (-5 *5 (-934)) (-5 *6 (-1174)) (-4 *10 (-962 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1192)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *7 *8 *9 *10)))) (-1696 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-934)) (-5 *6 (-1174)) (-4 *10 (-962 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1192)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *7 *8 *9 *10)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-1174)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *5 *6 *7 *8)))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1192))) (-5 *5 (-1174)) (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *6 *7 *8 *9)))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1174)) (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *6 *7 *8 *9)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-934)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) (|:| -2191 (-654 (-1283 (-417 (-965 *5)))))))))) (-5 *1 (-937 *5 *6 *7 *8)))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1192))) (-5 *5 (-934)) (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-965 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *6)))) (|:| -2191 (-654 (-1283 (-417 (-965 *6)))))))))) (-5 *1 (-937 *6 *7 *8 *9)))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *5 (-934)) (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-965 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *6)))) (|:| -2191 (-654 (-1283 (-417 (-965 *6)))))))))) (-5 *1 (-937 *6 *7 *8 *9)) (-5 *4 (-654 *9)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-965 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) (|:| -2191 (-654 (-1283 (-417 (-965 *4)))))))))) (-5 *1 (-937 *4 *5 *6 *7)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1192))) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) (|:| -2191 (-654 (-1283 (-417 (-965 *5)))))))))) (-5 *1 (-937 *5 *6 *7 *8)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) (|:| -2191 (-654 (-1283 (-417 (-965 *5)))))))))) (-5 *1 (-937 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) -(-10 -7 (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192)))) (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|))) (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-934))) (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192)) (-934))) (-15 -1696 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-934))) (-15 -1696 ((-574) (-699 |#4|) (-654 |#4|) (-1174))) (-15 -1696 ((-574) (-699 |#4|) (-654 (-1192)) (-1174))) (-15 -1696 ((-574) (-699 |#4|) (-1174))) (-15 -1696 ((-574) (-699 |#4|) (-654 |#4|) (-934) (-1174))) (-15 -1696 ((-574) (-699 |#4|) (-654 (-1192)) (-934) (-1174))) (-15 -1696 ((-574) (-699 |#4|) (-934) (-1174))) (-15 -1536 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174))) (-15 -3051 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174))) (-15 -2032 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-781) (-1174) (-574))) (-15 -1713 ((-417 (-965 |#1|)) |#4|)) (-15 -1713 ((-699 (-417 (-965 |#1|))) (-699 |#4|))) (-15 -1713 ((-654 (-417 (-965 |#1|))) (-654 |#4|))) (-15 -2576 ((-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -3222 (|#4| (-965 |#1|))) (-15 -1851 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -1828 ((-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -2784 ((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))) (-654 |#4|))) (-15 -2187 ((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| -4047 (-699 (-417 (-965 |#1|)))) (|:| |vec| (-654 (-417 (-965 |#1|)))) (|:| -3557 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -3582 ((-654 |#4|) |#4|)) (-15 -1805 ((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -3837 ((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -2010 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -3979 ((-654 (-654 (-574))) (-574) (-574))) (-15 -3834 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -4068 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -2181 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -1654 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -2191 (-654 (-1283 (-417 (-965 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -1546 (|#4| |#4|)) (-15 -2356 ((-112) (-654 |#4|))) (-15 -2356 ((-112) (-654 (-965 |#1|))))) -((-4077 (((-940) |#1| (-1192)) 17) (((-940) |#1| (-1192) (-1109 (-227))) 21)) (-4176 (((-940) |#1| |#1| (-1192) (-1109 (-227))) 19) (((-940) |#1| (-1192) (-1109 (-227))) 15))) -(((-938 |#1|) (-10 -7 (-15 -4176 ((-940) |#1| (-1192) (-1109 (-227)))) (-15 -4176 ((-940) |#1| |#1| (-1192) (-1109 (-227)))) (-15 -4077 ((-940) |#1| (-1192) (-1109 (-227)))) (-15 -4077 ((-940) |#1| (-1192)))) (-624 (-546))) (T -938)) -((-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-5 *2 (-940)) (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) (-4077 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) (-4176 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) (-4176 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) (-5 *1 (-938 *3)) (-4 *3 (-624 (-546)))))) -(-10 -7 (-15 -4176 ((-940) |#1| (-1192) (-1109 (-227)))) (-15 -4176 ((-940) |#1| |#1| (-1192) (-1109 (-227)))) (-15 -4077 ((-940) |#1| (-1192) (-1109 (-227)))) (-15 -4077 ((-940) |#1| (-1192)))) -((-2943 (($ $ (-1109 (-227)) (-1109 (-227)) (-1109 (-227))) 121)) (-2451 (((-1109 (-227)) $) 64)) (-2438 (((-1109 (-227)) $) 63)) (-2425 (((-1109 (-227)) $) 62)) (-2616 (((-654 (-654 (-227))) $) 69)) (-2183 (((-1109 (-227)) $) 65)) (-3000 (((-574) (-574)) 57)) (-3711 (((-574) (-574)) 52)) (-3377 (((-574) (-574)) 55)) (-2229 (((-112) (-112)) 59)) (-2439 (((-574)) 56)) (-2947 (($ $ (-1109 (-227))) 124) (($ $) 125)) (-2745 (($ (-1 (-956 (-227)) (-227)) (-1109 (-227))) 131) (($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227))) 132)) (-4176 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227))) 135) (($ $ (-1109 (-227))) 127)) (-3526 (((-574)) 60)) (-3249 (((-574)) 50)) (-1364 (((-574)) 53)) (-3971 (((-654 (-654 (-956 (-227)))) $) 151)) (-4249 (((-112) (-112)) 61)) (-2950 (((-872) $) 149)) (-1380 (((-112)) 58))) -(((-939) (-13 (-989) (-10 -8 (-15 -2745 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)))) (-15 -2745 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -4176 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)))) (-15 -4176 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -4176 ($ $ (-1109 (-227)))) (-15 -2943 ($ $ (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -2947 ($ $ (-1109 (-227)))) (-15 -2947 ($ $)) (-15 -2183 ((-1109 (-227)) $)) (-15 -2616 ((-654 (-654 (-227))) $)) (-15 -3249 ((-574))) (-15 -3711 ((-574) (-574))) (-15 -1364 ((-574))) (-15 -3377 ((-574) (-574))) (-15 -2439 ((-574))) (-15 -3000 ((-574) (-574))) (-15 -1380 ((-112))) (-15 -2229 ((-112) (-112))) (-15 -3526 ((-574))) (-15 -4249 ((-112) (-112)))))) (T -939)) -((-2745 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-939)))) (-2745 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-939)))) (-4176 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-939)))) (-4176 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-939)))) (-4176 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) (-2943 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) (-2947 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) (-2947 (*1 *1 *1) (-5 *1 (-939))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-939)))) (-3249 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-1364 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-3377 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-2439 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-3000 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-1380 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939)))) (-3526 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-4249 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939))))) -(-13 (-989) (-10 -8 (-15 -2745 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)))) (-15 -2745 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -4176 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)))) (-15 -4176 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -4176 ($ $ (-1109 (-227)))) (-15 -2943 ($ $ (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -2947 ($ $ (-1109 (-227)))) (-15 -2947 ($ $)) (-15 -2183 ((-1109 (-227)) $)) (-15 -2616 ((-654 (-654 (-227))) $)) (-15 -3249 ((-574))) (-15 -3711 ((-574) (-574))) (-15 -1364 ((-574))) (-15 -3377 ((-574) (-574))) (-15 -2439 ((-574))) (-15 -3000 ((-574) (-574))) (-15 -1380 ((-112))) (-15 -2229 ((-112) (-112))) (-15 -3526 ((-574))) (-15 -4249 ((-112) (-112))))) -((-2943 (($ $ (-1109 (-227))) 122) (($ $ (-1109 (-227)) (-1109 (-227))) 123)) (-2438 (((-1109 (-227)) $) 73)) (-2425 (((-1109 (-227)) $) 72)) (-2183 (((-1109 (-227)) $) 74)) (-1781 (((-574) (-574)) 66)) (-2780 (((-574) (-574)) 61)) (-4230 (((-574) (-574)) 64)) (-1773 (((-112) (-112)) 68)) (-3395 (((-574)) 65)) (-2947 (($ $ (-1109 (-227))) 126) (($ $) 127)) (-2745 (($ (-1 (-956 (-227)) (-227)) (-1109 (-227))) 141) (($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227))) 142)) (-4077 (($ (-1 (-227) (-227)) (-1109 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-4176 (($ (-1 (-227) (-227)) (-1109 (-227))) 137) (($ (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227))) 138) (($ (-654 (-1 (-227) (-227))) (-1109 (-227))) 146) (($ (-654 (-1 (-227) (-227))) (-1109 (-227)) (-1109 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227))) 140) (($ $ (-1109 (-227))) 128)) (-4174 (((-112) $) 69)) (-4383 (((-574)) 70)) (-2883 (((-574)) 59)) (-3970 (((-574)) 62)) (-3971 (((-654 (-654 (-956 (-227)))) $) 35)) (-3572 (((-112) (-112)) 71)) (-2950 (((-872) $) 167)) (-4435 (((-112)) 67))) -(((-940) (-13 (-968) (-10 -8 (-15 -4176 ($ (-1 (-227) (-227)) (-1109 (-227)))) (-15 -4176 ($ (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -4176 ($ (-654 (-1 (-227) (-227))) (-1109 (-227)))) (-15 -4176 ($ (-654 (-1 (-227) (-227))) (-1109 (-227)) (-1109 (-227)))) (-15 -4176 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)))) (-15 -4176 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -2745 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)))) (-15 -2745 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -4077 ($ (-1 (-227) (-227)) (-1109 (-227)))) (-15 -4077 ($ (-1 (-227) (-227)))) (-15 -4176 ($ $ (-1109 (-227)))) (-15 -4174 ((-112) $)) (-15 -2943 ($ $ (-1109 (-227)))) (-15 -2943 ($ $ (-1109 (-227)) (-1109 (-227)))) (-15 -2947 ($ $ (-1109 (-227)))) (-15 -2947 ($ $)) (-15 -2183 ((-1109 (-227)) $)) (-15 -2883 ((-574))) (-15 -2780 ((-574) (-574))) (-15 -3970 ((-574))) (-15 -4230 ((-574) (-574))) (-15 -3395 ((-574))) (-15 -1781 ((-574) (-574))) (-15 -4435 ((-112))) (-15 -1773 ((-112) (-112))) (-15 -4383 ((-574))) (-15 -3572 ((-112) (-112)))))) (T -940)) -((-4176 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-4176 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-4176 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-4176 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-4176 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-4176 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-2745 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-2745 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-940)))) (-4176 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940)))) (-2943 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) (-2943 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) (-2947 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) (-2947 (*1 *1 *1) (-5 *1 (-940))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) (-2883 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-3970 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-3395 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-1781 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-4435 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))) (-4383 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) -(-13 (-968) (-10 -8 (-15 -4176 ($ (-1 (-227) (-227)) (-1109 (-227)))) (-15 -4176 ($ (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -4176 ($ (-654 (-1 (-227) (-227))) (-1109 (-227)))) (-15 -4176 ($ (-654 (-1 (-227) (-227))) (-1109 (-227)) (-1109 (-227)))) (-15 -4176 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)))) (-15 -4176 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -2745 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)))) (-15 -2745 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -4077 ($ (-1 (-227) (-227)) (-1109 (-227)))) (-15 -4077 ($ (-1 (-227) (-227)))) (-15 -4176 ($ $ (-1109 (-227)))) (-15 -4174 ((-112) $)) (-15 -2943 ($ $ (-1109 (-227)))) (-15 -2943 ($ $ (-1109 (-227)) (-1109 (-227)))) (-15 -2947 ($ $ (-1109 (-227)))) (-15 -2947 ($ $)) (-15 -2183 ((-1109 (-227)) $)) (-15 -2883 ((-574))) (-15 -2780 ((-574) (-574))) (-15 -3970 ((-574))) (-15 -4230 ((-574) (-574))) (-15 -3395 ((-574))) (-15 -1781 ((-574) (-574))) (-15 -4435 ((-112))) (-15 -1773 ((-112) (-112))) (-15 -4383 ((-574))) (-15 -3572 ((-112) (-112))))) -((-2872 (((-654 (-1109 (-227))) (-654 (-654 (-956 (-227))))) 34))) -(((-941) (-10 -7 (-15 -2872 ((-654 (-1109 (-227))) (-654 (-654 (-956 (-227)))))))) (T -941)) -((-2872 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *2 (-654 (-1109 (-227)))) (-5 *1 (-941))))) -(-10 -7 (-15 -2872 ((-654 (-1109 (-227))) (-654 (-654 (-956 (-227))))))) -((-3099 ((|#2| |#2|) 28)) (-2500 ((|#2| |#2|) 29)) (-1715 ((|#2| |#2|) 27)) (-2119 ((|#2| |#2| (-516)) 26))) -(((-942 |#1| |#2|) (-10 -7 (-15 -2119 (|#2| |#2| (-516))) (-15 -1715 (|#2| |#2|)) (-15 -3099 (|#2| |#2|)) (-15 -2500 (|#2| |#2|))) (-1115) (-440 |#1|)) (T -942)) -((-2500 (*1 *2 *2) (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) (-3099 (*1 *2 *2) (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) (-1715 (*1 *2 *2) (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) (-2119 (*1 *2 *2 *3) (-12 (-5 *3 (-516)) (-4 *4 (-1115)) (-5 *1 (-942 *4 *2)) (-4 *2 (-440 *4))))) -(-10 -7 (-15 -2119 (|#2| |#2| (-516))) (-15 -1715 (|#2| |#2|)) (-15 -3099 (|#2| |#2|)) (-15 -2500 (|#2| |#2|))) -((-3099 (((-324 (-574)) (-1192)) 16)) (-2500 (((-324 (-574)) (-1192)) 14)) (-1715 (((-324 (-574)) (-1192)) 12)) (-2119 (((-324 (-574)) (-1192) (-516)) 19))) -(((-943) (-10 -7 (-15 -2119 ((-324 (-574)) (-1192) (-516))) (-15 -1715 ((-324 (-574)) (-1192))) (-15 -3099 ((-324 (-574)) (-1192))) (-15 -2500 ((-324 (-574)) (-1192))))) (T -943)) -((-2500 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-516)) (-5 *2 (-324 (-574))) (-5 *1 (-943))))) -(-10 -7 (-15 -2119 ((-324 (-574)) (-1192) (-516))) (-15 -1715 ((-324 (-574)) (-1192))) (-15 -3099 ((-324 (-574)) (-1192))) (-15 -2500 ((-324 (-574)) (-1192)))) -((-3552 (((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)) 25)) (-1457 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-944 |#1| |#2| |#3|) (-10 -7 (-15 -1457 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3552 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)))) (-1115) (-897 |#1|) (-13 (-1115) (-1053 |#2|))) (T -944)) -((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-4 *6 (-13 (-1115) (-1053 *3))) (-4 *3 (-897 *5)) (-5 *1 (-944 *5 *3 *6)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1115) (-1053 *5))) (-4 *5 (-897 *4)) (-4 *4 (-1115)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-944 *4 *5 *6))))) -(-10 -7 (-15 -1457 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3552 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)))) -((-3552 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 30))) -(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -3552 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1115) (-13 (-566) (-897 |#1|)) (-13 (-440 |#2|) (-624 (-903 |#1|)) (-897 |#1|) (-1053 (-622 $)))) (T -945)) -((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1053 (-622 $)))) (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5))) (-5 *1 (-945 *5 *6 *3))))) -(-10 -7 (-15 -3552 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) -((-3552 (((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)) 13))) -(((-946 |#1|) (-10 -7 (-15 -3552 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)))) (-555)) (T -946)) -((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555)) (-5 *1 (-946 *3))))) -(-10 -7 (-15 -3552 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)))) -((-3552 (((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)) 57))) -(((-947 |#1| |#2|) (-10 -7 (-15 -3552 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)))) (-1115) (-13 (-1115) (-1053 (-622 $)) (-624 (-903 |#1|)) (-897 |#1|))) (T -947)) -((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1115)) (-4 *6 (-13 (-1115) (-1053 (-622 $)) (-624 *4) (-897 *5))) (-5 *4 (-903 *5)) (-5 *1 (-947 *5 *6))))) -(-10 -7 (-15 -3552 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)))) -((-3552 (((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)) 17))) -(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -3552 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)))) (-1115) (-897 |#1|) (-676 |#2|)) (T -948)) -((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-948 *5 *6 *3))))) -(-10 -7 (-15 -3552 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)))) -((-3552 (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|)) 17 (|has| |#3| (-897 |#1|))) (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|))) 16))) -(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3552 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -3552 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|)) (-1115) (-803) (-860) (-13 (-1064) (-897 |#1|)) (-13 (-962 |#4| |#2| |#3|) (-624 (-903 |#1|)))) (T -949)) -((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) (-4 *3 (-13 (-962 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5)) (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-13 (-1064) (-897 *5))) (-5 *1 (-949 *5 *6 *7 *8 *3)))) (-3552 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3))) (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6)) (-4 *6 (-1115)) (-4 *3 (-13 (-962 *9 *7 *8) (-624 *4))) (-4 *7 (-803)) (-4 *9 (-13 (-1064) (-897 *6))) (-5 *1 (-949 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3552 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -3552 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|)) -((-2585 ((|#2| |#2| (-654 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -2585 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2585 (|#2| |#2| (-654 (-1 (-112) |#3|))))) (-1115) (-440 |#1|) (-1233)) (T -950)) -((-2585 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1233)) (-4 *4 (-1115)) (-5 *1 (-950 *4 *2 *5)) (-4 *2 (-440 *4)))) (-2585 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1233)) (-4 *4 (-1115)) (-5 *1 (-950 *4 *2 *5)) (-4 *2 (-440 *4))))) -(-10 -7 (-15 -2585 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2585 (|#2| |#2| (-654 (-1 (-112) |#3|))))) -((-2585 (((-324 (-574)) (-1192) (-654 (-1 (-112) |#1|))) 18) (((-324 (-574)) (-1192) (-1 (-112) |#1|)) 15))) -(((-951 |#1|) (-10 -7 (-15 -2585 ((-324 (-574)) (-1192) (-1 (-112) |#1|))) (-15 -2585 ((-324 (-574)) (-1192) (-654 (-1 (-112) |#1|))))) (-1233)) (T -951)) -((-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1233)) (-5 *2 (-324 (-574))) (-5 *1 (-951 *5)))) (-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1233)) (-5 *2 (-324 (-574))) (-5 *1 (-951 *5))))) -(-10 -7 (-15 -2585 ((-324 (-574)) (-1192) (-1 (-112) |#1|))) (-15 -2585 ((-324 (-574)) (-1192) (-654 (-1 (-112) |#1|))))) -((-3552 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 25))) -(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -3552 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1115) (-13 (-566) (-897 |#1|) (-624 (-903 |#1|))) (-1007 |#2|)) (T -952)) -((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) (-4 *3 (-1007 *6)) (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5)) (-5 *1 (-952 *5 *6 *3))))) -(-10 -7 (-15 -3552 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) -((-3552 (((-900 |#1| (-1192)) (-1192) (-903 |#1|) (-900 |#1| (-1192))) 18))) -(((-953 |#1|) (-10 -7 (-15 -3552 ((-900 |#1| (-1192)) (-1192) (-903 |#1|) (-900 |#1| (-1192))))) (-1115)) (T -953)) -((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 (-1192))) (-5 *3 (-1192)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-5 *1 (-953 *5))))) -(-10 -7 (-15 -3552 ((-900 |#1| (-1192)) (-1192) (-903 |#1|) (-900 |#1| (-1192))))) -((-1726 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 34)) (-3552 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 33))) -(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -3552 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -1726 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))) (-1115) (-1064) (-13 (-1064) (-624 (-903 |#1|)) (-1053 |#2|))) (T -954)) -((-1726 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6))) (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1115)) (-4 *8 (-13 (-1064) (-624 (-903 *6)) (-1053 *7))) (-5 *2 (-900 *6 *8)) (-4 *7 (-1064)) (-5 *1 (-954 *6 *7 *8)))) (-3552 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9))) (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1115)) (-4 *9 (-13 (-1064) (-624 (-903 *7)) (-1053 *8))) (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1064)) (-5 *1 (-954 *7 *8 *9))))) -(-10 -7 (-15 -3552 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -1726 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))) -((-1495 (((-1188 (-417 (-574))) (-574)) 79)) (-4243 (((-1188 (-574)) (-574)) 82)) (-3146 (((-1188 (-574)) (-574)) 76)) (-3532 (((-574) (-1188 (-574))) 72)) (-1736 (((-1188 (-417 (-574))) (-574)) 65)) (-2594 (((-1188 (-574)) (-574)) 49)) (-3457 (((-1188 (-574)) (-574)) 84)) (-2554 (((-1188 (-574)) (-574)) 83)) (-4133 (((-1188 (-417 (-574))) (-574)) 67))) -(((-955) (-10 -7 (-15 -4133 ((-1188 (-417 (-574))) (-574))) (-15 -2554 ((-1188 (-574)) (-574))) (-15 -3457 ((-1188 (-574)) (-574))) (-15 -2594 ((-1188 (-574)) (-574))) (-15 -1736 ((-1188 (-417 (-574))) (-574))) (-15 -3532 ((-574) (-1188 (-574)))) (-15 -3146 ((-1188 (-574)) (-574))) (-15 -4243 ((-1188 (-574)) (-574))) (-15 -1495 ((-1188 (-417 (-574))) (-574))))) (T -955)) -((-1495 (*1 *2 *3) (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574)))) (-4243 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) (-3146 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-1188 (-574))) (-5 *2 (-574)) (-5 *1 (-955)))) (-1736 (*1 *2 *3) (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574)))) (-2594 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) (-3457 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) (-2554 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) (-4133 (*1 *2 *3) (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574))))) -(-10 -7 (-15 -4133 ((-1188 (-417 (-574))) (-574))) (-15 -2554 ((-1188 (-574)) (-574))) (-15 -3457 ((-1188 (-574)) (-574))) (-15 -2594 ((-1188 (-574)) (-574))) (-15 -1736 ((-1188 (-417 (-574))) (-574))) (-15 -3532 ((-574) (-1188 (-574)))) (-15 -3146 ((-1188 (-574)) (-574))) (-15 -4243 ((-1188 (-574)) (-574))) (-15 -1495 ((-1188 (-417 (-574))) (-574)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2226 (($ (-781)) NIL (|has| |#1| (-23)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-3564 (($ (-654 |#1|)) 9)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3872 (((-699 |#1|) $ $) NIL (|has| |#1| (-1064)))) (-3763 (($ (-781) |#1|) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4316 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-3625 (((-112) $ (-781)) NIL)) (-4108 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1603 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4276 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-2115 (($ $ (-654 |#1|)) 25)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 18) (($ $ (-1250 (-574))) NIL)) (-3036 ((|#1| $ $) NIL (|has| |#1| (-1064)))) (-3480 (((-934) $) 13)) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-4237 (($ $ $) 23)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 14)) (-2962 (($ (-654 |#1|)) NIL)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3089 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3074 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2876 (((-781) $) 11 (|has| $ (-6 -4458))))) -(((-956 |#1|) (-995 |#1|) (-1064)) (T -956)) -NIL -(-995 |#1|) -((-3615 (((-491 |#1| |#2|) (-965 |#2|)) 22)) (-4165 (((-253 |#1| |#2|) (-965 |#2|)) 35)) (-3996 (((-965 |#2|) (-491 |#1| |#2|)) 27)) (-1981 (((-253 |#1| |#2|) (-491 |#1| |#2|)) 57)) (-1737 (((-965 |#2|) (-253 |#1| |#2|)) 32)) (-1690 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 48))) -(((-957 |#1| |#2|) (-10 -7 (-15 -1690 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1981 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -3615 ((-491 |#1| |#2|) (-965 |#2|))) (-15 -3996 ((-965 |#2|) (-491 |#1| |#2|))) (-15 -1737 ((-965 |#2|) (-253 |#1| |#2|))) (-15 -4165 ((-253 |#1| |#2|) (-965 |#2|)))) (-654 (-1192)) (-1064)) (T -957)) -((-4165 (*1 *2 *3) (-12 (-5 *3 (-965 *5)) (-4 *5 (-1064)) (-5 *2 (-253 *4 *5)) (-5 *1 (-957 *4 *5)) (-14 *4 (-654 (-1192))))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) (-5 *2 (-965 *5)) (-5 *1 (-957 *4 *5)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) (-5 *2 (-965 *5)) (-5 *1 (-957 *4 *5)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-965 *5)) (-4 *5 (-1064)) (-5 *2 (-491 *4 *5)) (-5 *1 (-957 *4 *5)) (-14 *4 (-654 (-1192))))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) (-5 *2 (-253 *4 *5)) (-5 *1 (-957 *4 *5)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) (-5 *2 (-491 *4 *5)) (-5 *1 (-957 *4 *5))))) -(-10 -7 (-15 -1690 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1981 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -3615 ((-491 |#1| |#2|) (-965 |#2|))) (-15 -3996 ((-965 |#2|) (-491 |#1| |#2|))) (-15 -1737 ((-965 |#2|) (-253 |#1| |#2|))) (-15 -4165 ((-253 |#1| |#2|) (-965 |#2|)))) -((-3788 (((-654 |#2|) |#2| |#2|) 10)) (-2415 (((-781) (-654 |#1|)) 48 (|has| |#1| (-858)))) (-2644 (((-654 |#2|) |#2|) 11)) (-2338 (((-781) (-654 |#1|) (-574) (-574)) 52 (|has| |#1| (-858)))) (-2824 ((|#1| |#2|) 38 (|has| |#1| (-858))))) -(((-958 |#1| |#2|) (-10 -7 (-15 -3788 ((-654 |#2|) |#2| |#2|)) (-15 -2644 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -2824 (|#1| |#2|)) (-15 -2415 ((-781) (-654 |#1|))) (-15 -2338 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|)) (-372) (-1259 |#1|)) (T -958)) -((-2338 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-958 *5 *6)) (-4 *6 (-1259 *5)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-958 *4 *5)) (-4 *5 (-1259 *4)))) (-2824 (*1 *2 *3) (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-958 *2 *3)) (-4 *3 (-1259 *2)))) (-2644 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-958 *4 *3)) (-4 *3 (-1259 *4)))) (-3788 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-958 *4 *3)) (-4 *3 (-1259 *4))))) -(-10 -7 (-15 -3788 ((-654 |#2|) |#2| |#2|)) (-15 -2644 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -2824 (|#1| |#2|)) (-15 -2415 ((-781) (-654 |#1|))) (-15 -2338 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|)) -((-1786 (((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)) 19))) -(((-959 |#1| |#2|) (-10 -7 (-15 -1786 ((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)))) (-1064) (-1064)) (T -959)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-965 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-5 *2 (-965 *6)) (-5 *1 (-959 *5 *6))))) -(-10 -7 (-15 -1786 ((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)))) -((-4171 (((-1256 |#1| (-965 |#2|)) (-965 |#2|) (-1279 |#1|)) 18))) -(((-960 |#1| |#2|) (-10 -7 (-15 -4171 ((-1256 |#1| (-965 |#2|)) (-965 |#2|) (-1279 |#1|)))) (-1192) (-1064)) (T -960)) -((-4171 (*1 *2 *3 *4) (-12 (-5 *4 (-1279 *5)) (-14 *5 (-1192)) (-4 *6 (-1064)) (-5 *2 (-1256 *5 (-965 *6))) (-5 *1 (-960 *5 *6)) (-5 *3 (-965 *6))))) -(-10 -7 (-15 -4171 ((-1256 |#1| (-965 |#2|)) (-965 |#2|) (-1279 |#1|)))) -((-3335 (((-781) $) 88) (((-781) $ (-654 |#4|)) 93)) (-3296 (($ $) 203)) (-3954 (((-428 $) $) 195)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 141)) (-1705 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) 73)) (-3496 (($ $ $ |#4|) 95)) (-3465 (((-699 (-574)) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 131) (((-699 |#2|) (-699 $)) 121) (((-699 |#2|) (-1283 $)) NIL)) (-1509 (($ $) 210) (($ $ |#4|) 213)) (-1388 (((-654 $) $) 77)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 229) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 222)) (-1854 (((-654 $) $) 34)) (-4327 (($ |#2| |#3|) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|) (-654 (-781))) 71)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ |#4|) 192)) (-1810 (((-3 (-654 $) "failed") $) 52)) (-1577 (((-3 (-654 $) "failed") $) 39)) (-3404 (((-3 (-2 (|:| |var| |#4|) (|:| -2017 (-781))) "failed") $) 57)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 134)) (-2743 (((-428 (-1188 $)) (-1188 $)) 147)) (-4428 (((-428 (-1188 $)) (-1188 $)) 145)) (-4200 (((-428 $) $) 165)) (-2660 (($ $ (-654 (-302 $))) 24) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL)) (-1738 (($ $ |#4|) 97)) (-1845 (((-903 (-388)) $) 243) (((-903 (-574)) $) 236) (((-546) $) 251)) (-3631 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 184)) (-2930 ((|#2| $ |#3|) NIL) (($ $ |#4| (-781)) 62) (($ $ (-654 |#4|) (-654 (-781))) 69)) (-3247 (((-3 $ "failed") $) 186)) (-3838 (((-112) $ $) 216))) -(((-961 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3578 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -3954 ((-428 |#1|) |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -3247 ((-3 |#1| "failed") |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -3552 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -3552 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -4428 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2743 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2352 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -1533 ((-3 (-1283 |#1|) "failed") (-699 |#1|))) (-15 -1509 (|#1| |#1| |#4|)) (-15 -3631 (|#1| |#1| |#4|)) (-15 -1738 (|#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#1| |#4|)) (-15 -1388 ((-654 |#1|) |#1|)) (-15 -3335 ((-781) |#1| (-654 |#4|))) (-15 -3335 ((-781) |#1|)) (-15 -3404 ((-3 (-2 (|:| |var| |#4|) (|:| -2017 (-781))) "failed") |#1|)) (-15 -1810 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -1577 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4327 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4327 (|#1| |#1| |#4| (-781))) (-15 -4217 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1| |#4|)) (-15 -1854 ((-654 |#1|) |#1|)) (-15 -2930 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -2930 (|#1| |#1| |#4| (-781))) (-15 -3465 ((-699 |#2|) (-1283 |#1|))) (-15 -3465 ((-699 |#2|) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -1705 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#4| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4327 (|#1| |#2| |#3|)) (-15 -2930 (|#2| |#1| |#3|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -3631 (|#2| |#1|)) (-15 -1509 (|#1| |#1|)) (-15 -3838 ((-112) |#1| |#1|))) (-962 |#2| |#3| |#4|) (-1064) (-803) (-860)) (T -961)) -NIL -(-10 -8 (-15 -3578 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -3954 ((-428 |#1|) |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -3247 ((-3 |#1| "failed") |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -3552 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -3552 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -4428 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2743 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2352 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -1533 ((-3 (-1283 |#1|) "failed") (-699 |#1|))) (-15 -1509 (|#1| |#1| |#4|)) (-15 -3631 (|#1| |#1| |#4|)) (-15 -1738 (|#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#1| |#4|)) (-15 -1388 ((-654 |#1|) |#1|)) (-15 -3335 ((-781) |#1| (-654 |#4|))) (-15 -3335 ((-781) |#1|)) (-15 -3404 ((-3 (-2 (|:| |var| |#4|) (|:| -2017 (-781))) "failed") |#1|)) (-15 -1810 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -1577 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4327 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4327 (|#1| |#1| |#4| (-781))) (-15 -4217 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1| |#4|)) (-15 -1854 ((-654 |#1|) |#1|)) (-15 -2930 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -2930 (|#1| |#1| |#4| (-781))) (-15 -3465 ((-699 |#2|) (-1283 |#1|))) (-15 -3465 ((-699 |#2|) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -1705 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#4| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4327 (|#1| |#2| |#3|)) (-15 -2930 (|#2| |#1| |#3|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -3631 (|#2| |#1|)) (-15 -1509 (|#1| |#1|)) (-15 -3838 ((-112) |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4349 (((-654 |#3|) $) 112)) (-4171 (((-1188 $) $ |#3|) 127) (((-1188 |#1|) $) 126)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-3648 (($ $) 90 (|has| |#1| (-566)))) (-1527 (((-112) $) 92 (|has| |#1| (-566)))) (-3335 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-1597 (((-3 $ "failed") $ $) 20)) (-4055 (((-428 (-1188 $)) (-1188 $)) 102 (|has| |#1| (-922)))) (-3296 (($ $) 100 (|has| |#1| (-462)))) (-3954 (((-428 $) $) 99 (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 105 (|has| |#1| (-922)))) (-3831 (($) 18 T CONST)) (-1705 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1053 (-574)))) (((-3 |#3| "failed") $) 140)) (-2216 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1053 (-574)))) ((|#3| $) 141)) (-3496 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1401 (($ $) 158)) (-3465 (((-699 (-574)) (-1283 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1283 $)) 133)) (-3911 (((-3 $ "failed") $) 37)) (-1509 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1388 (((-654 $) $) 111)) (-1782 (((-112) $) 98 (|has| |#1| (-922)))) (-4389 (($ $ |#1| |#2| $) 176)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3372 (((-112) $) 35)) (-3241 (((-781) $) 173)) (-4338 (($ (-1188 |#1|) |#3|) 119) (($ (-1188 $) |#3|) 118)) (-1854 (((-654 $) $) 128)) (-3257 (((-112) $) 156)) (-4327 (($ |#1| |#2|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ |#3|) 122)) (-1503 ((|#2| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-3558 (($ (-1 |#2| |#2|) $) 175)) (-1786 (($ (-1 |#1| |#1|) $) 155)) (-1803 (((-3 |#3| "failed") $) 125)) (-1365 (($ $) 153)) (-1377 ((|#1| $) 152)) (-2848 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-3945 (((-1174) $) 10)) (-1810 (((-3 (-654 $) "failed") $) 116)) (-1577 (((-3 (-654 $) "failed") $) 117)) (-3404 (((-3 (-2 (|:| |var| |#3|) (|:| -2017 (-781))) "failed") $) 115)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 170)) (-1354 ((|#1| $) 171)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 97 (|has| |#1| (-462)))) (-2886 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) 104 (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) 103 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 101 (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142)) (-1738 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3878 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43)) (-3584 ((|#2| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131)) (-1845 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3631 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 106 (-2096 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ $) 87 (|has| |#1| (-566))) (($ (-417 (-574))) 80 (-2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-2836 (((-654 |#1|) $) 172)) (-2930 ((|#1| $ |#2|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-3247 (((-3 $ "failed") $) 81 (-2832 (-2096 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) 32 T CONST)) (-2037 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-962 |#1| |#2| |#3|) (-141) (-1064) (-803) (-860)) (T -962)) -((-1509 (*1 *1 *1) (-12 (-4 *1 (-962 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3584 (*1 *2 *1 *3) (-12 (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-2930 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-962 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *2 (-860)))) (-2930 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)))) (-1854 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) (-4171 (*1 *2 *1 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1188 *1)) (-4 *1 (-962 *4 *5 *3)))) (-4171 (*1 *2 *1) (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1188 *3)))) (-1803 (*1 *2 *1) (|partial| -12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1503 (*1 *2 *1 *3) (-12 (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-4217 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-962 *4 *5 *3)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-962 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *2 (-860)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)))) (-4338 (*1 *1 *2 *3) (-12 (-5 *2 (-1188 *4)) (-4 *4 (-1064)) (-4 *1 (-962 *4 *5 *3)) (-4 *5 (-803)) (-4 *3 (-860)))) (-4338 (*1 *1 *2 *3) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)))) (-1577 (*1 *2 *1) (|partial| -12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) (-1810 (*1 *2 *1) (|partial| -12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) (-3404 (*1 *2 *1) (|partial| -12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -2017 (-781)))))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-3335 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-1388 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) (-3496 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-1738 (*1 *1 *1 *2) (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-3631 (*1 *1 *1 *2) (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-1509 (*1 *1 *1 *2) (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-962 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3954 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-428 *1)) (-4 *1 (-962 *3 *4 *5))))) -(-13 (-913 |t#3|) (-334 |t#1| |t#2|) (-317 $) (-524 |t#3| |t#1|) (-524 |t#3| $) (-1053 |t#3|) (-386 |t#1|) (-10 -8 (-15 -3584 ((-781) $ |t#3|)) (-15 -3584 ((-654 (-781)) $ (-654 |t#3|))) (-15 -2930 ($ $ |t#3| (-781))) (-15 -2930 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -1854 ((-654 $) $)) (-15 -4171 ((-1188 $) $ |t#3|)) (-15 -4171 ((-1188 |t#1|) $)) (-15 -1803 ((-3 |t#3| "failed") $)) (-15 -1503 ((-781) $ |t#3|)) (-15 -1503 ((-654 (-781)) $ (-654 |t#3|))) (-15 -4217 ((-2 (|:| -4415 $) (|:| -1484 $)) $ $ |t#3|)) (-15 -4327 ($ $ |t#3| (-781))) (-15 -4327 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -4338 ($ (-1188 |t#1|) |t#3|)) (-15 -4338 ($ (-1188 $) |t#3|)) (-15 -1577 ((-3 (-654 $) "failed") $)) (-15 -1810 ((-3 (-654 $) "failed") $)) (-15 -3404 ((-3 (-2 (|:| |var| |t#3|) (|:| -2017 (-781))) "failed") $)) (-15 -3335 ((-781) $)) (-15 -3335 ((-781) $ (-654 |t#3|))) (-15 -4349 ((-654 |t#3|) $)) (-15 -1388 ((-654 $) $)) (IF (|has| |t#1| (-624 (-546))) (IF (|has| |t#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-574)))) (IF (|has| |t#3| (-624 (-903 (-574)))) (-6 (-624 (-903 (-574)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-388)))) (IF (|has| |t#3| (-624 (-903 (-388)))) (-6 (-624 (-903 (-388)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-574))) (IF (|has| |t#3| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (IF (|has| |t#3| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3496 ($ $ $ |t#3|)) (-15 -1738 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-6 (-462)) (-15 -3631 ($ $ |t#3|)) (-15 -1509 ($ $)) (-15 -1509 ($ $ |t#3|)) (-15 -3954 ((-428 $) $)) (-15 -3296 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |t#1| (-922)) (-6 (-922)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-298) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-922)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-913 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-922) |has| |#1| (-922)) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1053 |#3|) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) |has| |#1| (-922))) -((-4349 (((-654 |#2|) |#5|) 40)) (-4171 (((-1188 |#5|) |#5| |#2| (-1188 |#5|)) 23) (((-417 (-1188 |#5|)) |#5| |#2|) 16)) (-4338 ((|#5| (-417 (-1188 |#5|)) |#2|) 30)) (-1803 (((-3 |#2| "failed") |#5|) 71)) (-1810 (((-3 (-654 |#5|) "failed") |#5|) 65)) (-3267 (((-3 (-2 (|:| |val| |#5|) (|:| -2017 (-574))) "failed") |#5|) 53)) (-1577 (((-3 (-654 |#5|) "failed") |#5|) 67)) (-3404 (((-3 (-2 (|:| |var| |#2|) (|:| -2017 (-574))) "failed") |#5|) 57))) -(((-963 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4349 ((-654 |#2|) |#5|)) (-15 -1803 ((-3 |#2| "failed") |#5|)) (-15 -4171 ((-417 (-1188 |#5|)) |#5| |#2|)) (-15 -4338 (|#5| (-417 (-1188 |#5|)) |#2|)) (-15 -4171 ((-1188 |#5|) |#5| |#2| (-1188 |#5|))) (-15 -1577 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -1810 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -3404 ((-3 (-2 (|:| |var| |#2|) (|:| -2017 (-574))) "failed") |#5|)) (-15 -3267 ((-3 (-2 (|:| |val| |#5|) (|:| -2017 (-574))) "failed") |#5|))) (-803) (-860) (-1064) (-962 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2950 ($ |#4|)) (-15 -2970 (|#4| $)) (-15 -2981 (|#4| $))))) (T -963)) -((-3267 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2017 (-574)))) (-5 *1 (-963 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) (-3404 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2017 (-574)))) (-5 *1 (-963 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) (-1810 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-963 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) (-1577 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-963 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) (-4171 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))) (-4 *7 (-962 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1064)) (-5 *1 (-963 *5 *4 *6 *7 *3)))) (-4338 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1188 *2))) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1064)) (-4 *2 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))) (-5 *1 (-963 *5 *4 *6 *7 *2)) (-4 *7 (-962 *6 *5 *4)))) (-4171 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-417 (-1188 *3))) (-5 *1 (-963 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) (-1803 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1064)) (-4 *6 (-962 *5 *4 *2)) (-4 *2 (-860)) (-5 *1 (-963 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *6)) (-15 -2970 (*6 $)) (-15 -2981 (*6 $))))))) (-4349 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *5)) (-5 *1 (-963 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $)))))))) -(-10 -7 (-15 -4349 ((-654 |#2|) |#5|)) (-15 -1803 ((-3 |#2| "failed") |#5|)) (-15 -4171 ((-417 (-1188 |#5|)) |#5| |#2|)) (-15 -4338 (|#5| (-417 (-1188 |#5|)) |#2|)) (-15 -4171 ((-1188 |#5|) |#5| |#2| (-1188 |#5|))) (-15 -1577 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -1810 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -3404 ((-3 (-2 (|:| |var| |#2|) (|:| -2017 (-574))) "failed") |#5|)) (-15 -3267 ((-3 (-2 (|:| |val| |#5|) (|:| -2017 (-574))) "failed") |#5|))) -((-1786 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1786 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-803) (-860) (-1064) (-962 |#3| |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (T -964)) -((-1786 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860)) (-4 *8 (-1064)) (-4 *6 (-803)) (-4 *2 (-13 (-1115) (-10 -8 (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (-5 *1 (-964 *6 *7 *8 *5 *2)) (-4 *5 (-962 *8 *6 *7))))) -(-10 -7 (-15 -1786 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 (-1192)) $) 16)) (-4171 (((-1188 $) $ (-1192)) 21) (((-1188 |#1|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 (-1192))) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3296 (($ $) NIL (|has| |#1| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) 8) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-1192) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-1192) $) NIL)) (-3496 (($ $ $ (-1192)) NIL (|has| |#1| (-174)))) (-1401 (($ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1192)) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#1| (-922)))) (-4389 (($ $ |#1| (-541 (-1192)) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1192) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1192) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-4338 (($ (-1188 |#1|) (-1192)) NIL) (($ (-1188 $) (-1192)) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-541 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-1192)) NIL)) (-1503 (((-541 (-1192)) $) NIL) (((-781) $ (-1192)) NIL) (((-654 (-781)) $ (-654 (-1192))) NIL)) (-3558 (($ (-1 (-541 (-1192)) (-541 (-1192))) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-1803 (((-3 (-1192) "failed") $) 19)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3945 (((-1174) $) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| (-1192)) (|:| -2017 (-781))) "failed") $) NIL)) (-1578 (($ $ (-1192)) 29 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1192) |#1|) NIL) (($ $ (-654 (-1192)) (-654 |#1|)) NIL) (($ $ (-1192) $) NIL) (($ $ (-654 (-1192)) (-654 $)) NIL)) (-1738 (($ $ (-1192)) NIL (|has| |#1| (-174)))) (-3878 (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-3584 (((-541 (-1192)) $) NIL) (((-781) $ (-1192)) NIL) (((-654 (-781)) $ (-654 (-1192))) NIL)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| (-1192) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1192) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1192) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3631 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1192)) NIL (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 25) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1192)) 27) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-541 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-965 |#1|) (-13 (-962 |#1| (-541 (-1192)) (-1192)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1192))) |%noBranch|))) (-1064)) (T -965)) -((-1578 (*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-965 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064))))) -(-13 (-962 |#1| (-541 (-1192)) (-1192)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1192))) |%noBranch|))) -((-2887 (((-2 (|:| -2017 (-781)) (|:| -1867 |#5|) (|:| |radicand| |#5|)) |#3| (-781)) 49)) (-3645 (((-2 (|:| -2017 (-781)) (|:| -1867 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781)) 44)) (-4110 (((-2 (|:| -2017 (-781)) (|:| -1867 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)) 65)) (-1360 (((-2 (|:| -2017 (-781)) (|:| -1867 |#5|) (|:| |radicand| |#5|)) |#5| (-781)) 74 (|has| |#3| (-462))))) -(((-966 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2887 ((-2 (|:| -2017 (-781)) (|:| -1867 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -3645 ((-2 (|:| -2017 (-781)) (|:| -1867 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -1360 ((-2 (|:| -2017 (-781)) (|:| -1867 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -4110 ((-2 (|:| -2017 (-781)) (|:| -1867 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)))) (-803) (-860) (-566) (-962 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2950 ($ |#4|)) (-15 -2970 (|#4| $)) (-15 -2981 (|#4| $))))) (T -966)) -((-4110 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *3 (-962 *7 *5 *6)) (-5 *2 (-2 (|:| -2017 (-781)) (|:| -1867 *3) (|:| |radicand| (-654 *3)))) (-5 *1 (-966 *5 *6 *7 *3 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2950 ($ *3)) (-15 -2970 (*3 $)) (-15 -2981 (*3 $))))))) (-1360 (*1 *2 *3 *4) (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-962 *7 *5 *6)) (-5 *2 (-2 (|:| -2017 (-781)) (|:| -1867 *3) (|:| |radicand| *3))) (-5 *1 (-966 *5 *6 *7 *8 *3)) (-5 *4 (-781)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *8)) (-15 -2970 (*8 $)) (-15 -2981 (*8 $))))))) (-3645 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-962 *7 *5 *6)) (-5 *2 (-2 (|:| -2017 (-781)) (|:| -1867 *9) (|:| |radicand| *9))) (-5 *1 (-966 *5 *6 *7 *8 *9)) (-5 *4 (-781)) (-4 *9 (-13 (-372) (-10 -8 (-15 -2950 ($ *8)) (-15 -2970 (*8 $)) (-15 -2981 (*8 $))))))) (-2887 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566)) (-4 *7 (-962 *3 *5 *6)) (-5 *2 (-2 (|:| -2017 (-781)) (|:| -1867 *8) (|:| |radicand| *8))) (-5 *1 (-966 *5 *6 *3 *7 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $)))))))) -(-10 -7 (-15 -2887 ((-2 (|:| -2017 (-781)) (|:| -1867 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -3645 ((-2 (|:| -2017 (-781)) (|:| -1867 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -1360 ((-2 (|:| -2017 (-781)) (|:| -1867 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -4110 ((-2 (|:| -2017 (-781)) (|:| -1867 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)))) -((-2863 (((-112) $ $) NIL)) (-2128 (($ (-1135)) 8)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15) (((-1135) $) 12)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 11))) -(((-967) (-13 (-1115) (-623 (-1135)) (-10 -8 (-15 -2128 ($ (-1135)))))) (T -967)) -((-2128 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-967))))) -(-13 (-1115) (-623 (-1135)) (-10 -8 (-15 -2128 ($ (-1135))))) -((-2438 (((-1109 (-227)) $) 8)) (-2425 (((-1109 (-227)) $) 9)) (-3971 (((-654 (-654 (-956 (-227)))) $) 10)) (-2950 (((-872) $) 6))) -(((-968) (-141)) (T -968)) -((-3971 (*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-654 (-654 (-956 (-227))))))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-1109 (-227))))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-1109 (-227)))))) -(-13 (-623 (-872)) (-10 -8 (-15 -3971 ((-654 (-654 (-956 (-227)))) $)) (-15 -2425 ((-1109 (-227)) $)) (-15 -2438 ((-1109 (-227)) $)))) +((-2676 ((|#2| (-654 |#1|) (-654 |#1|)) 28))) +(((-936 |#1| |#2|) (-10 -7 (-15 -2676 (|#2| (-654 |#1|) (-654 |#1|)))) (-372) (-1260 |#1|)) (T -936)) +((-2676 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1260 *4)) (-5 *1 (-936 *4 *2))))) +(-10 -7 (-15 -2676 (|#2| (-654 |#1|) (-654 |#1|)))) +((-3795 (((-1189 |#2|) (-654 |#2|) (-654 |#2|)) 17) (((-1257 |#1| |#2|) (-1257 |#1| |#2|) (-654 |#2|) (-654 |#2|)) 13))) +(((-937 |#1| |#2|) (-10 -7 (-15 -3795 ((-1257 |#1| |#2|) (-1257 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -3795 ((-1189 |#2|) (-654 |#2|) (-654 |#2|)))) (-1193) (-372)) (T -937)) +((-3795 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1189 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-1193)))) (-3795 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1257 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1193)) (-4 *5 (-372)) (-5 *1 (-937 *4 *5))))) +(-10 -7 (-15 -3795 ((-1257 |#1| |#2|) (-1257 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -3795 ((-1189 |#2|) (-654 |#2|) (-654 |#2|)))) +((-3014 (((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175)) 174)) (-1495 ((|#4| |#4|) 193)) (-2118 (((-654 (-417 (-966 |#1|))) (-654 (-1193))) 146)) (-2492 (((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574)) 88)) (-4057 (((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))) (-654 |#4|)) 69)) (-3125 (((-699 |#4|) (-699 |#4|) (-654 |#4|)) 65)) (-4153 (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175)) 186)) (-3904 (((-574) (-699 |#4|) (-935) (-1175)) 166) (((-574) (-699 |#4|) (-654 (-1193)) (-935) (-1175)) 165) (((-574) (-699 |#4|) (-654 |#4|) (-935) (-1175)) 164) (((-574) (-699 |#4|) (-1175)) 154) (((-574) (-699 |#4|) (-654 (-1193)) (-1175)) 153) (((-574) (-699 |#4|) (-654 |#4|) (-1175)) 152) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-935)) 151) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193)) (-935)) 150) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-935)) 149) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|)) 148) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193))) 147) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|)) 143)) (-1648 ((|#4| (-966 |#1|)) 80)) (-1975 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 190)) (-2460 (((-654 (-654 (-574))) (-574) (-574)) 159)) (-3384 (((-654 (-654 |#4|)) (-654 (-654 |#4|))) 106)) (-2201 (((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 100)) (-1945 (((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 99)) (-2389 (((-112) (-654 (-966 |#1|))) 19) (((-112) (-654 |#4|)) 15)) (-2032 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|)) 84)) (-3855 (((-654 |#4|) |#4|) 57)) (-3893 (((-654 (-417 (-966 |#1|))) (-654 |#4|)) 142) (((-699 (-417 (-966 |#1|))) (-699 |#4|)) 66) (((-417 (-966 |#1|)) |#4|) 139)) (-1643 (((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-781) (-1175) (-574)) 112)) (-4215 (((-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781)) 98)) (-1732 (((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781)) 121)) (-3221 (((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| -3082 (-699 (-417 (-966 |#1|)))) (|:| |vec| (-654 (-417 (-966 |#1|)))) (|:| -3558 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) 56))) +(((-938 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193)))) (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|))) (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-935))) (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193)) (-935))) (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-935))) (-15 -3904 ((-574) (-699 |#4|) (-654 |#4|) (-1175))) (-15 -3904 ((-574) (-699 |#4|) (-654 (-1193)) (-1175))) (-15 -3904 ((-574) (-699 |#4|) (-1175))) (-15 -3904 ((-574) (-699 |#4|) (-654 |#4|) (-935) (-1175))) (-15 -3904 ((-574) (-699 |#4|) (-654 (-1193)) (-935) (-1175))) (-15 -3904 ((-574) (-699 |#4|) (-935) (-1175))) (-15 -3014 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175))) (-15 -4153 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175))) (-15 -1643 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-781) (-1175) (-574))) (-15 -3893 ((-417 (-966 |#1|)) |#4|)) (-15 -3893 ((-699 (-417 (-966 |#1|))) (-699 |#4|))) (-15 -3893 ((-654 (-417 (-966 |#1|))) (-654 |#4|))) (-15 -2118 ((-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -1648 (|#4| (-966 |#1|))) (-15 -2032 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -4215 ((-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -4057 ((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))) (-654 |#4|))) (-15 -3221 ((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| -3082 (-699 (-417 (-966 |#1|)))) (|:| |vec| (-654 (-417 (-966 |#1|)))) (|:| -3558 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -3855 ((-654 |#4|) |#4|)) (-15 -1945 ((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -2201 ((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -3384 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -2460 ((-654 (-654 (-574))) (-574) (-574))) (-15 -1975 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -1732 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -3125 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -2492 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -1495 (|#4| |#4|)) (-15 -2389 ((-112) (-654 |#4|))) (-15 -2389 ((-112) (-654 (-966 |#1|))))) (-13 (-315) (-148)) (-13 (-860) (-624 (-1193))) (-803) (-963 |#1| |#3| |#2|)) (T -938)) +((-2389 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-938 *4 *5 *6 *7)))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1193)))) (-4 *5 (-803)) (-5 *1 (-938 *3 *4 *5 *2)) (-4 *2 (-963 *3 *5 *4)))) (-2492 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-966 *9)))) (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574)) (-4 *9 (-13 (-315) (-148))) (-4 *12 (-963 *9 *11 *10)) (-4 *10 (-13 (-860) (-624 (-1193)))) (-4 *11 (-803)) (-5 *2 (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12)) (|:| |wcond| (-654 (-966 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *9)))) (|:| -2391 (-654 (-1284 (-417 (-966 *9))))))))) (-5 *1 (-938 *9 *10 *11 *12)))) (-3125 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *1 (-938 *4 *5 *6 *7)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-5 *1 (-938 *5 *6 *7 *8)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-938 *5 *6 *7 *8)))) (-2460 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574)))) (-5 *1 (-938 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-963 *4 *6 *5)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-963 *3 *5 *4)) (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1193)))) (-4 *5 (-803)) (-5 *1 (-938 *3 *4 *5 *6)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-938 *4 *5 *6 *7)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-938 *4 *5 *6 *7)))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-938 *4 *5 *6 *3)) (-4 *3 (-963 *4 *6 *5)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3082 (-699 (-417 (-966 *4)))) (|:| |vec| (-654 (-417 (-966 *4)))) (|:| -3558 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) (|:| -2391 (-654 (-1284 (-417 (-966 *4))))))) (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5)))) (-4057 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) (|:| -2391 (-654 (-1284 (-417 (-966 *4))))))) (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148))) (-4 *7 (-963 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *1 (-938 *4 *5 *6 *7)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *8))))) (-5 *1 (-938 *5 *6 *7 *8)) (-5 *4 (-781)))) (-2032 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-4 *7 (-963 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7)))) (-5 *1 (-938 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-966 *4)) (-4 *4 (-13 (-315) (-148))) (-4 *2 (-963 *4 *6 *5)) (-5 *1 (-938 *4 *5 *6 *2)) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-966 *4)))) (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-966 *4)))) (-5 *1 (-938 *4 *5 *6 *7)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-699 (-417 (-966 *4)))) (-5 *1 (-938 *4 *5 *6 *7)))) (-3893 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-417 (-966 *4))) (-5 *1 (-938 *4 *5 *6 *3)) (-4 *3 (-963 *4 *6 *5)))) (-1643 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-966 *8)))) (-5 *5 (-781)) (-5 *6 (-1175)) (-4 *8 (-13 (-315) (-148))) (-4 *11 (-963 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1193)))) (-4 *10 (-803)) (-5 *2 (-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11)) (|:| |wcond| (-654 (-966 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *8)))) (|:| -2391 (-654 (-1284 (-417 (-966 *8)))))))))) (|:| |rgsz| (-574)))) (-5 *1 (-938 *8 *9 *10 *11)) (-5 *7 (-574)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-966 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) (|:| -2391 (-654 (-1284 (-417 (-966 *4)))))))))) (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5)))) (-3014 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-966 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) (|:| -2391 (-654 (-1284 (-417 (-966 *5)))))))))) (-5 *4 (-1175)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-963 *5 *7 *6)) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *5 *6 *7 *8)))) (-3904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-935)) (-5 *5 (-1175)) (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *6 *7 *8 *9)))) (-3904 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1193))) (-5 *5 (-935)) (-5 *6 (-1175)) (-4 *10 (-963 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1193)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *7 *8 *9 *10)))) (-3904 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-935)) (-5 *6 (-1175)) (-4 *10 (-963 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1193)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *7 *8 *9 *10)))) (-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-1175)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *5 *6 *7 *8)))) (-3904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1193))) (-5 *5 (-1175)) (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *6 *7 *8 *9)))) (-3904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1175)) (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *6 *7 *8 *9)))) (-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-935)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-966 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) (|:| -2391 (-654 (-1284 (-417 (-966 *5)))))))))) (-5 *1 (-938 *5 *6 *7 *8)))) (-3904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1193))) (-5 *5 (-935)) (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-966 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *6)))) (|:| -2391 (-654 (-1284 (-417 (-966 *6)))))))))) (-5 *1 (-938 *6 *7 *8 *9)))) (-3904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *5 (-935)) (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-966 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *6)))) (|:| -2391 (-654 (-1284 (-417 (-966 *6)))))))))) (-5 *1 (-938 *6 *7 *8 *9)) (-5 *4 (-654 *9)))) (-3904 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-966 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) (|:| -2391 (-654 (-1284 (-417 (-966 *4)))))))))) (-5 *1 (-938 *4 *5 *6 *7)))) (-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1193))) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-966 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) (|:| -2391 (-654 (-1284 (-417 (-966 *5)))))))))) (-5 *1 (-938 *5 *6 *7 *8)))) (-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-966 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) (|:| -2391 (-654 (-1284 (-417 (-966 *5)))))))))) (-5 *1 (-938 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) +(-10 -7 (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193)))) (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|))) (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-935))) (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193)) (-935))) (-15 -3904 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-935))) (-15 -3904 ((-574) (-699 |#4|) (-654 |#4|) (-1175))) (-15 -3904 ((-574) (-699 |#4|) (-654 (-1193)) (-1175))) (-15 -3904 ((-574) (-699 |#4|) (-1175))) (-15 -3904 ((-574) (-699 |#4|) (-654 |#4|) (-935) (-1175))) (-15 -3904 ((-574) (-699 |#4|) (-654 (-1193)) (-935) (-1175))) (-15 -3904 ((-574) (-699 |#4|) (-935) (-1175))) (-15 -3014 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175))) (-15 -4153 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175))) (-15 -1643 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-781) (-1175) (-574))) (-15 -3893 ((-417 (-966 |#1|)) |#4|)) (-15 -3893 ((-699 (-417 (-966 |#1|))) (-699 |#4|))) (-15 -3893 ((-654 (-417 (-966 |#1|))) (-654 |#4|))) (-15 -2118 ((-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -1648 (|#4| (-966 |#1|))) (-15 -2032 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -4215 ((-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -4057 ((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))) (-654 |#4|))) (-15 -3221 ((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| -3082 (-699 (-417 (-966 |#1|)))) (|:| |vec| (-654 (-417 (-966 |#1|)))) (|:| -3558 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -3855 ((-654 |#4|) |#4|)) (-15 -1945 ((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -2201 ((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -3384 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -2460 ((-654 (-654 (-574))) (-574) (-574))) (-15 -1975 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -1732 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -3125 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -2492 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -2391 (-654 (-1284 (-417 (-966 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -1495 (|#4| |#4|)) (-15 -2389 ((-112) (-654 |#4|))) (-15 -2389 ((-112) (-654 (-966 |#1|))))) +((-2888 (((-941) |#1| (-1193)) 17) (((-941) |#1| (-1193) (-1110 (-227))) 21)) (-3043 (((-941) |#1| |#1| (-1193) (-1110 (-227))) 19) (((-941) |#1| (-1193) (-1110 (-227))) 15))) +(((-939 |#1|) (-10 -7 (-15 -3043 ((-941) |#1| (-1193) (-1110 (-227)))) (-15 -3043 ((-941) |#1| |#1| (-1193) (-1110 (-227)))) (-15 -2888 ((-941) |#1| (-1193) (-1110 (-227)))) (-15 -2888 ((-941) |#1| (-1193)))) (-624 (-546))) (T -939)) +((-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-5 *2 (-941)) (-5 *1 (-939 *3)) (-4 *3 (-624 (-546))))) (-2888 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941)) (-5 *1 (-939 *3)) (-4 *3 (-624 (-546))))) (-3043 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941)) (-5 *1 (-939 *3)) (-4 *3 (-624 (-546))))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941)) (-5 *1 (-939 *3)) (-4 *3 (-624 (-546)))))) +(-10 -7 (-15 -3043 ((-941) |#1| (-1193) (-1110 (-227)))) (-15 -3043 ((-941) |#1| |#1| (-1193) (-1110 (-227)))) (-15 -2888 ((-941) |#1| (-1193) (-1110 (-227)))) (-15 -2888 ((-941) |#1| (-1193)))) +((-1786 (($ $ (-1110 (-227)) (-1110 (-227)) (-1110 (-227))) 121)) (-2452 (((-1110 (-227)) $) 64)) (-2439 (((-1110 (-227)) $) 63)) (-2426 (((-1110 (-227)) $) 62)) (-4190 (((-654 (-654 (-227))) $) 69)) (-1412 (((-1110 (-227)) $) 65)) (-2976 (((-574) (-574)) 57)) (-3117 (((-574) (-574)) 52)) (-1662 (((-574) (-574)) 55)) (-4090 (((-112) (-112)) 59)) (-3326 (((-574)) 56)) (-2789 (($ $ (-1110 (-227))) 124) (($ $) 125)) (-3257 (($ (-1 (-957 (-227)) (-227)) (-1110 (-227))) 131) (($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227))) 132)) (-3043 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227))) 135) (($ $ (-1110 (-227))) 127)) (-2042 (((-574)) 60)) (-3321 (((-574)) 50)) (-2595 (((-574)) 53)) (-1395 (((-654 (-654 (-957 (-227)))) $) 151)) (-3141 (((-112) (-112)) 61)) (-2951 (((-872) $) 149)) (-3163 (((-112)) 58))) +(((-940) (-13 (-990) (-10 -8 (-15 -3257 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)))) (-15 -3257 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3043 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3043 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3043 ($ $ (-1110 (-227)))) (-15 -1786 ($ $ (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -2789 ($ $ (-1110 (-227)))) (-15 -2789 ($ $)) (-15 -1412 ((-1110 (-227)) $)) (-15 -4190 ((-654 (-654 (-227))) $)) (-15 -3321 ((-574))) (-15 -3117 ((-574) (-574))) (-15 -2595 ((-574))) (-15 -1662 ((-574) (-574))) (-15 -3326 ((-574))) (-15 -2976 ((-574) (-574))) (-15 -3163 ((-112))) (-15 -4090 ((-112) (-112))) (-15 -2042 ((-574))) (-15 -3141 ((-112) (-112)))))) (T -940)) +((-3257 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-940)))) (-3257 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-940)))) (-3043 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-940)))) (-3043 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-940)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) (-1786 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) (-2789 (*1 *1 *1) (-5 *1 (-940))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-940)))) (-3321 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-3117 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-2595 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-1662 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-3326 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-2976 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-3163 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))) (-4090 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))) (-2042 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-3141 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) +(-13 (-990) (-10 -8 (-15 -3257 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)))) (-15 -3257 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3043 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3043 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3043 ($ $ (-1110 (-227)))) (-15 -1786 ($ $ (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -2789 ($ $ (-1110 (-227)))) (-15 -2789 ($ $)) (-15 -1412 ((-1110 (-227)) $)) (-15 -4190 ((-654 (-654 (-227))) $)) (-15 -3321 ((-574))) (-15 -3117 ((-574) (-574))) (-15 -2595 ((-574))) (-15 -1662 ((-574) (-574))) (-15 -3326 ((-574))) (-15 -2976 ((-574) (-574))) (-15 -3163 ((-112))) (-15 -4090 ((-112) (-112))) (-15 -2042 ((-574))) (-15 -3141 ((-112) (-112))))) +((-1786 (($ $ (-1110 (-227))) 122) (($ $ (-1110 (-227)) (-1110 (-227))) 123)) (-2439 (((-1110 (-227)) $) 73)) (-2426 (((-1110 (-227)) $) 72)) (-1412 (((-1110 (-227)) $) 74)) (-2286 (((-574) (-574)) 66)) (-3080 (((-574) (-574)) 61)) (-3614 (((-574) (-574)) 64)) (-2445 (((-112) (-112)) 68)) (-4348 (((-574)) 65)) (-2789 (($ $ (-1110 (-227))) 126) (($ $) 127)) (-3257 (($ (-1 (-957 (-227)) (-227)) (-1110 (-227))) 141) (($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227))) 142)) (-2888 (($ (-1 (-227) (-227)) (-1110 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-3043 (($ (-1 (-227) (-227)) (-1110 (-227))) 137) (($ (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227))) 138) (($ (-654 (-1 (-227) (-227))) (-1110 (-227))) 146) (($ (-654 (-1 (-227) (-227))) (-1110 (-227)) (-1110 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227))) 140) (($ $ (-1110 (-227))) 128)) (-1409 (((-112) $) 69)) (-4268 (((-574)) 70)) (-3888 (((-574)) 59)) (-1679 (((-574)) 62)) (-1395 (((-654 (-654 (-957 (-227)))) $) 35)) (-3572 (((-112) (-112)) 71)) (-2951 (((-872) $) 167)) (-2666 (((-112)) 67))) +(((-941) (-13 (-969) (-10 -8 (-15 -3043 ($ (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3043 ($ (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3043 ($ (-654 (-1 (-227) (-227))) (-1110 (-227)))) (-15 -3043 ($ (-654 (-1 (-227) (-227))) (-1110 (-227)) (-1110 (-227)))) (-15 -3043 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3043 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3257 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)))) (-15 -3257 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -2888 ($ (-1 (-227) (-227)) (-1110 (-227)))) (-15 -2888 ($ (-1 (-227) (-227)))) (-15 -3043 ($ $ (-1110 (-227)))) (-15 -1409 ((-112) $)) (-15 -1786 ($ $ (-1110 (-227)))) (-15 -1786 ($ $ (-1110 (-227)) (-1110 (-227)))) (-15 -2789 ($ $ (-1110 (-227)))) (-15 -2789 ($ $)) (-15 -1412 ((-1110 (-227)) $)) (-15 -3888 ((-574))) (-15 -3080 ((-574) (-574))) (-15 -1679 ((-574))) (-15 -3614 ((-574) (-574))) (-15 -4348 ((-574))) (-15 -2286 ((-574) (-574))) (-15 -2666 ((-112))) (-15 -2445 ((-112) (-112))) (-15 -4268 ((-574))) (-15 -3572 ((-112) (-112)))))) (T -941)) +((-3043 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3043 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3043 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3043 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3043 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3043 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3257 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3257 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-2888 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-2888 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-941)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) (-1409 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-941)))) (-1786 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) (-1786 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) (-2789 (*1 *1 *1) (-5 *1 (-941))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) (-3888 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-3080 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-1679 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-4348 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-2666 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))) (-2445 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))) (-4268 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941))))) +(-13 (-969) (-10 -8 (-15 -3043 ($ (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3043 ($ (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3043 ($ (-654 (-1 (-227) (-227))) (-1110 (-227)))) (-15 -3043 ($ (-654 (-1 (-227) (-227))) (-1110 (-227)) (-1110 (-227)))) (-15 -3043 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3043 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3257 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)))) (-15 -3257 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -2888 ($ (-1 (-227) (-227)) (-1110 (-227)))) (-15 -2888 ($ (-1 (-227) (-227)))) (-15 -3043 ($ $ (-1110 (-227)))) (-15 -1409 ((-112) $)) (-15 -1786 ($ $ (-1110 (-227)))) (-15 -1786 ($ $ (-1110 (-227)) (-1110 (-227)))) (-15 -2789 ($ $ (-1110 (-227)))) (-15 -2789 ($ $)) (-15 -1412 ((-1110 (-227)) $)) (-15 -3888 ((-574))) (-15 -3080 ((-574) (-574))) (-15 -1679 ((-574))) (-15 -3614 ((-574) (-574))) (-15 -4348 ((-574))) (-15 -2286 ((-574) (-574))) (-15 -2666 ((-112))) (-15 -2445 ((-112) (-112))) (-15 -4268 ((-574))) (-15 -3572 ((-112) (-112))))) +((-3064 (((-654 (-1110 (-227))) (-654 (-654 (-957 (-227))))) 34))) +(((-942) (-10 -7 (-15 -3064 ((-654 (-1110 (-227))) (-654 (-654 (-957 (-227)))))))) (T -942)) +((-3064 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *2 (-654 (-1110 (-227)))) (-5 *1 (-942))))) +(-10 -7 (-15 -3064 ((-654 (-1110 (-227))) (-654 (-654 (-957 (-227))))))) +((-3100 ((|#2| |#2|) 28)) (-2501 ((|#2| |#2|) 29)) (-1714 ((|#2| |#2|) 27)) (-2121 ((|#2| |#2| (-516)) 26))) +(((-943 |#1| |#2|) (-10 -7 (-15 -2121 (|#2| |#2| (-516))) (-15 -1714 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -2501 (|#2| |#2|))) (-1116) (-440 |#1|)) (T -943)) +((-2501 (*1 *2 *2) (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3)))) (-3100 (*1 *2 *2) (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3)))) (-1714 (*1 *2 *2) (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3)))) (-2121 (*1 *2 *2 *3) (-12 (-5 *3 (-516)) (-4 *4 (-1116)) (-5 *1 (-943 *4 *2)) (-4 *2 (-440 *4))))) +(-10 -7 (-15 -2121 (|#2| |#2| (-516))) (-15 -1714 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -2501 (|#2| |#2|))) +((-3100 (((-324 (-574)) (-1193)) 16)) (-2501 (((-324 (-574)) (-1193)) 14)) (-1714 (((-324 (-574)) (-1193)) 12)) (-2121 (((-324 (-574)) (-1193) (-516)) 19))) +(((-944) (-10 -7 (-15 -2121 ((-324 (-574)) (-1193) (-516))) (-15 -1714 ((-324 (-574)) (-1193))) (-15 -3100 ((-324 (-574)) (-1193))) (-15 -2501 ((-324 (-574)) (-1193))))) (T -944)) +((-2501 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-516)) (-5 *2 (-324 (-574))) (-5 *1 (-944))))) +(-10 -7 (-15 -2121 ((-324 (-574)) (-1193) (-516))) (-15 -1714 ((-324 (-574)) (-1193))) (-15 -3100 ((-324 (-574)) (-1193))) (-15 -2501 ((-324 (-574)) (-1193)))) +((-4078 (((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)) 25)) (-1898 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -1898 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4078 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)))) (-1116) (-897 |#1|) (-13 (-1116) (-1054 |#2|))) (T -945)) +((-4078 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-4 *6 (-13 (-1116) (-1054 *3))) (-4 *3 (-897 *5)) (-5 *1 (-945 *5 *3 *6)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1116) (-1054 *5))) (-4 *5 (-897 *4)) (-4 *4 (-1116)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-945 *4 *5 *6))))) +(-10 -7 (-15 -1898 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4078 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)))) +((-4078 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 30))) +(((-946 |#1| |#2| |#3|) (-10 -7 (-15 -4078 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1116) (-13 (-566) (-897 |#1|)) (-13 (-440 |#2|) (-624 (-903 |#1|)) (-897 |#1|) (-1054 (-622 $)))) (T -946)) +((-4078 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116)) (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1054 (-622 $)))) (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5))) (-5 *1 (-946 *5 *6 *3))))) +(-10 -7 (-15 -4078 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) +((-4078 (((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)) 13))) +(((-947 |#1|) (-10 -7 (-15 -4078 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)))) (-555)) (T -947)) +((-4078 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555)) (-5 *1 (-947 *3))))) +(-10 -7 (-15 -4078 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)))) +((-4078 (((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)) 57))) +(((-948 |#1| |#2|) (-10 -7 (-15 -4078 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)))) (-1116) (-13 (-1116) (-1054 (-622 $)) (-624 (-903 |#1|)) (-897 |#1|))) (T -948)) +((-4078 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1116)) (-4 *6 (-13 (-1116) (-1054 (-622 $)) (-624 *4) (-897 *5))) (-5 *4 (-903 *5)) (-5 *1 (-948 *5 *6))))) +(-10 -7 (-15 -4078 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)))) +((-4078 (((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)) 17))) +(((-949 |#1| |#2| |#3|) (-10 -7 (-15 -4078 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)))) (-1116) (-897 |#1|) (-676 |#2|)) (T -949)) +((-4078 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-949 *5 *6 *3))))) +(-10 -7 (-15 -4078 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)))) +((-4078 (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|)) 17 (|has| |#3| (-897 |#1|))) (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|))) 16))) +(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4078 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -4078 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|)) (-1116) (-803) (-860) (-13 (-1065) (-897 |#1|)) (-13 (-963 |#4| |#2| |#3|) (-624 (-903 |#1|)))) (T -950)) +((-4078 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116)) (-4 *3 (-13 (-963 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5)) (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-13 (-1065) (-897 *5))) (-5 *1 (-950 *5 *6 *7 *8 *3)))) (-4078 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3))) (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6)) (-4 *6 (-1116)) (-4 *3 (-13 (-963 *9 *7 *8) (-624 *4))) (-4 *7 (-803)) (-4 *9 (-13 (-1065) (-897 *6))) (-5 *1 (-950 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -4078 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -4078 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|)) +((-2586 ((|#2| |#2| (-654 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -2586 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2586 (|#2| |#2| (-654 (-1 (-112) |#3|))))) (-1116) (-440 |#1|) (-1234)) (T -951)) +((-2586 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1234)) (-4 *4 (-1116)) (-5 *1 (-951 *4 *2 *5)) (-4 *2 (-440 *4)))) (-2586 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1234)) (-4 *4 (-1116)) (-5 *1 (-951 *4 *2 *5)) (-4 *2 (-440 *4))))) +(-10 -7 (-15 -2586 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2586 (|#2| |#2| (-654 (-1 (-112) |#3|))))) +((-2586 (((-324 (-574)) (-1193) (-654 (-1 (-112) |#1|))) 18) (((-324 (-574)) (-1193) (-1 (-112) |#1|)) 15))) +(((-952 |#1|) (-10 -7 (-15 -2586 ((-324 (-574)) (-1193) (-1 (-112) |#1|))) (-15 -2586 ((-324 (-574)) (-1193) (-654 (-1 (-112) |#1|))))) (-1234)) (T -952)) +((-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1234)) (-5 *2 (-324 (-574))) (-5 *1 (-952 *5)))) (-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1234)) (-5 *2 (-324 (-574))) (-5 *1 (-952 *5))))) +(-10 -7 (-15 -2586 ((-324 (-574)) (-1193) (-1 (-112) |#1|))) (-15 -2586 ((-324 (-574)) (-1193) (-654 (-1 (-112) |#1|))))) +((-4078 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 25))) +(((-953 |#1| |#2| |#3|) (-10 -7 (-15 -4078 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1116) (-13 (-566) (-897 |#1|) (-624 (-903 |#1|))) (-1008 |#2|)) (T -953)) +((-4078 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116)) (-4 *3 (-1008 *6)) (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5)) (-5 *1 (-953 *5 *6 *3))))) +(-10 -7 (-15 -4078 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) +((-4078 (((-900 |#1| (-1193)) (-1193) (-903 |#1|) (-900 |#1| (-1193))) 18))) +(((-954 |#1|) (-10 -7 (-15 -4078 ((-900 |#1| (-1193)) (-1193) (-903 |#1|) (-900 |#1| (-1193))))) (-1116)) (T -954)) +((-4078 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 (-1193))) (-5 *3 (-1193)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-5 *1 (-954 *5))))) +(-10 -7 (-15 -4078 ((-900 |#1| (-1193)) (-1193) (-903 |#1|) (-900 |#1| (-1193))))) +((-4311 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 34)) (-4078 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 33))) +(((-955 |#1| |#2| |#3|) (-10 -7 (-15 -4078 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -4311 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))) (-1116) (-1065) (-13 (-1065) (-624 (-903 |#1|)) (-1054 |#2|))) (T -955)) +((-4311 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6))) (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1116)) (-4 *8 (-13 (-1065) (-624 (-903 *6)) (-1054 *7))) (-5 *2 (-900 *6 *8)) (-4 *7 (-1065)) (-5 *1 (-955 *6 *7 *8)))) (-4078 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9))) (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1116)) (-4 *9 (-13 (-1065) (-624 (-903 *7)) (-1054 *8))) (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1065)) (-5 *1 (-955 *7 *8 *9))))) +(-10 -7 (-15 -4078 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -4311 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))) +((-3448 (((-1189 (-417 (-574))) (-574)) 79)) (-2137 (((-1189 (-574)) (-574)) 82)) (-3076 (((-1189 (-574)) (-574)) 76)) (-3624 (((-574) (-1189 (-574))) 72)) (-3241 (((-1189 (-417 (-574))) (-574)) 65)) (-1371 (((-1189 (-574)) (-574)) 49)) (-1827 (((-1189 (-574)) (-574)) 84)) (-3611 (((-1189 (-574)) (-574)) 83)) (-4237 (((-1189 (-417 (-574))) (-574)) 67))) +(((-956) (-10 -7 (-15 -4237 ((-1189 (-417 (-574))) (-574))) (-15 -3611 ((-1189 (-574)) (-574))) (-15 -1827 ((-1189 (-574)) (-574))) (-15 -1371 ((-1189 (-574)) (-574))) (-15 -3241 ((-1189 (-417 (-574))) (-574))) (-15 -3624 ((-574) (-1189 (-574)))) (-15 -3076 ((-1189 (-574)) (-574))) (-15 -2137 ((-1189 (-574)) (-574))) (-15 -3448 ((-1189 (-417 (-574))) (-574))))) (T -956)) +((-3448 (*1 *2 *3) (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574)))) (-2137 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))) (-3076 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-1189 (-574))) (-5 *2 (-574)) (-5 *1 (-956)))) (-3241 (*1 *2 *3) (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574)))) (-1371 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))) (-1827 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))) (-3611 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))) (-4237 (*1 *2 *3) (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574))))) +(-10 -7 (-15 -4237 ((-1189 (-417 (-574))) (-574))) (-15 -3611 ((-1189 (-574)) (-574))) (-15 -1827 ((-1189 (-574)) (-574))) (-15 -1371 ((-1189 (-574)) (-574))) (-15 -3241 ((-1189 (-417 (-574))) (-574))) (-15 -3624 ((-574) (-1189 (-574)))) (-15 -3076 ((-1189 (-574)) (-574))) (-15 -2137 ((-1189 (-574)) (-574))) (-15 -3448 ((-1189 (-417 (-574))) (-574)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2225 (($ (-781)) NIL (|has| |#1| (-23)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-3565 (($ (-654 |#1|)) 9)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3873 (((-699 |#1|) $ $) NIL (|has| |#1| (-1065)))) (-3764 (($ (-781) |#1|) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4397 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-1653 (((-112) $ (-781)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1822 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-2433 (($ $ (-654 |#1|)) 25)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 18) (($ $ (-1251 (-574))) NIL)) (-3918 ((|#1| $ $) NIL (|has| |#1| (-1065)))) (-2995 (((-935) $) 13)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3712 (($ $ $) 23)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 14)) (-2963 (($ (-654 |#1|)) NIL)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3090 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3074 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2877 (((-781) $) 11 (|has| $ (-6 -4459))))) +(((-957 |#1|) (-996 |#1|) (-1065)) (T -957)) +NIL +(-996 |#1|) +((-3242 (((-491 |#1| |#2|) (-966 |#2|)) 22)) (-3077 (((-253 |#1| |#2|) (-966 |#2|)) 35)) (-3047 (((-966 |#2|) (-491 |#1| |#2|)) 27)) (-1861 (((-253 |#1| |#2|) (-491 |#1| |#2|)) 57)) (-2903 (((-966 |#2|) (-253 |#1| |#2|)) 32)) (-3287 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 48))) +(((-958 |#1| |#2|) (-10 -7 (-15 -3287 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1861 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -3242 ((-491 |#1| |#2|) (-966 |#2|))) (-15 -3047 ((-966 |#2|) (-491 |#1| |#2|))) (-15 -2903 ((-966 |#2|) (-253 |#1| |#2|))) (-15 -3077 ((-253 |#1| |#2|) (-966 |#2|)))) (-654 (-1193)) (-1065)) (T -958)) +((-3077 (*1 *2 *3) (-12 (-5 *3 (-966 *5)) (-4 *5 (-1065)) (-5 *2 (-253 *4 *5)) (-5 *1 (-958 *4 *5)) (-14 *4 (-654 (-1193))))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) (-5 *2 (-966 *5)) (-5 *1 (-958 *4 *5)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) (-5 *2 (-966 *5)) (-5 *1 (-958 *4 *5)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-966 *5)) (-4 *5 (-1065)) (-5 *2 (-491 *4 *5)) (-5 *1 (-958 *4 *5)) (-14 *4 (-654 (-1193))))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) (-5 *2 (-253 *4 *5)) (-5 *1 (-958 *4 *5)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) (-5 *2 (-491 *4 *5)) (-5 *1 (-958 *4 *5))))) +(-10 -7 (-15 -3287 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1861 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -3242 ((-491 |#1| |#2|) (-966 |#2|))) (-15 -3047 ((-966 |#2|) (-491 |#1| |#2|))) (-15 -2903 ((-966 |#2|) (-253 |#1| |#2|))) (-15 -3077 ((-253 |#1| |#2|) (-966 |#2|)))) +((-3434 (((-654 |#2|) |#2| |#2|) 10)) (-3898 (((-781) (-654 |#1|)) 48 (|has| |#1| (-858)))) (-3367 (((-654 |#2|) |#2|) 11)) (-4416 (((-781) (-654 |#1|) (-574) (-574)) 52 (|has| |#1| (-858)))) (-1907 ((|#1| |#2|) 38 (|has| |#1| (-858))))) +(((-959 |#1| |#2|) (-10 -7 (-15 -3434 ((-654 |#2|) |#2| |#2|)) (-15 -3367 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -1907 (|#1| |#2|)) (-15 -3898 ((-781) (-654 |#1|))) (-15 -4416 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|)) (-372) (-1260 |#1|)) (T -959)) +((-4416 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-959 *5 *6)) (-4 *6 (-1260 *5)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-959 *4 *5)) (-4 *5 (-1260 *4)))) (-1907 (*1 *2 *3) (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1260 *2)))) (-3367 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-959 *4 *3)) (-4 *3 (-1260 *4)))) (-3434 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-959 *4 *3)) (-4 *3 (-1260 *4))))) +(-10 -7 (-15 -3434 ((-654 |#2|) |#2| |#2|)) (-15 -3367 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -1907 (|#1| |#2|)) (-15 -3898 ((-781) (-654 |#1|))) (-15 -4416 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|)) +((-1785 (((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|)) 19))) +(((-960 |#1| |#2|) (-10 -7 (-15 -1785 ((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|)))) (-1065) (-1065)) (T -960)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-966 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-5 *2 (-966 *6)) (-5 *1 (-960 *5 *6))))) +(-10 -7 (-15 -1785 ((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|)))) +((-4173 (((-1257 |#1| (-966 |#2|)) (-966 |#2|) (-1280 |#1|)) 18))) +(((-961 |#1| |#2|) (-10 -7 (-15 -4173 ((-1257 |#1| (-966 |#2|)) (-966 |#2|) (-1280 |#1|)))) (-1193) (-1065)) (T -961)) +((-4173 (*1 *2 *3 *4) (-12 (-5 *4 (-1280 *5)) (-14 *5 (-1193)) (-4 *6 (-1065)) (-5 *2 (-1257 *5 (-966 *6))) (-5 *1 (-961 *5 *6)) (-5 *3 (-966 *6))))) +(-10 -7 (-15 -4173 ((-1257 |#1| (-966 |#2|)) (-966 |#2|) (-1280 |#1|)))) +((-2824 (((-781) $) 88) (((-781) $ (-654 |#4|)) 93)) (-2991 (($ $) 203)) (-1610 (((-428 $) $) 195)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 141)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2214 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) 73)) (-3319 (($ $ $ |#4|) 95)) (-1831 (((-699 (-574)) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 131) (((-699 |#2|) (-699 $)) 121) (((-699 |#2|) (-1284 $)) NIL)) (-3621 (($ $) 210) (($ $ |#4|) 213)) (-1389 (((-654 $) $) 77)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 229) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 222)) (-1963 (((-654 $) $) 34)) (-4328 (($ |#2| |#3|) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|) (-654 (-781))) 71)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ |#4|) 192)) (-1720 (((-3 (-654 $) "failed") $) 52)) (-3825 (((-3 (-654 $) "failed") $) 39)) (-2778 (((-3 (-2 (|:| |var| |#4|) (|:| -3139 (-781))) "failed") $) 57)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 134)) (-3651 (((-428 (-1189 $)) (-1189 $)) 147)) (-3335 (((-428 (-1189 $)) (-1189 $)) 145)) (-4202 (((-428 $) $) 165)) (-2661 (($ $ (-654 (-302 $))) 24) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL)) (-2394 (($ $ |#4|) 97)) (-1844 (((-903 (-388)) $) 243) (((-903 (-574)) $) 236) (((-546) $) 251)) (-2372 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 184)) (-2706 ((|#2| $ |#3|) NIL) (($ $ |#4| (-781)) 62) (($ $ (-654 |#4|) (-654 (-781))) 69)) (-3424 (((-3 $ "failed") $) 186)) (-4069 (((-112) $ $) 216))) +(((-962 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2069 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -1610 ((-428 |#1|) |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -3424 ((-3 |#1| "failed") |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -4078 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -4078 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -3335 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3651 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -2630 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -3089 ((-3 (-1284 |#1|) "failed") (-699 |#1|))) (-15 -3621 (|#1| |#1| |#4|)) (-15 -2372 (|#1| |#1| |#4|)) (-15 -2394 (|#1| |#1| |#4|)) (-15 -3319 (|#1| |#1| |#1| |#4|)) (-15 -1389 ((-654 |#1|) |#1|)) (-15 -2824 ((-781) |#1| (-654 |#4|))) (-15 -2824 ((-781) |#1|)) (-15 -2778 ((-3 (-2 (|:| |var| |#4|) (|:| -3139 (-781))) "failed") |#1|)) (-15 -1720 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3825 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4328 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4328 (|#1| |#1| |#4| (-781))) (-15 -3320 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1| |#4|)) (-15 -1963 ((-654 |#1|) |#1|)) (-15 -2706 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -2706 (|#1| |#1| |#4| (-781))) (-15 -1831 ((-699 |#2|) (-1284 |#1|))) (-15 -1831 ((-699 |#2|) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2214 (|#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#4| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4328 (|#1| |#2| |#3|)) (-15 -2706 (|#2| |#1| |#3|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2372 (|#2| |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -4069 ((-112) |#1| |#1|))) (-963 |#2| |#3| |#4|) (-1065) (-803) (-860)) (T -962)) +NIL +(-10 -8 (-15 -2069 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -1610 ((-428 |#1|) |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -3424 ((-3 |#1| "failed") |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -4078 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -4078 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -3335 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3651 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -2630 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -3089 ((-3 (-1284 |#1|) "failed") (-699 |#1|))) (-15 -3621 (|#1| |#1| |#4|)) (-15 -2372 (|#1| |#1| |#4|)) (-15 -2394 (|#1| |#1| |#4|)) (-15 -3319 (|#1| |#1| |#1| |#4|)) (-15 -1389 ((-654 |#1|) |#1|)) (-15 -2824 ((-781) |#1| (-654 |#4|))) (-15 -2824 ((-781) |#1|)) (-15 -2778 ((-3 (-2 (|:| |var| |#4|) (|:| -3139 (-781))) "failed") |#1|)) (-15 -1720 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3825 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4328 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4328 (|#1| |#1| |#4| (-781))) (-15 -3320 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1| |#4|)) (-15 -1963 ((-654 |#1|) |#1|)) (-15 -2706 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -2706 (|#1| |#1| |#4| (-781))) (-15 -1831 ((-699 |#2|) (-1284 |#1|))) (-15 -1831 ((-699 |#2|) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2214 (|#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#4| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4328 (|#1| |#2| |#3|)) (-15 -2706 (|#2| |#1| |#3|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2372 (|#2| |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -4069 ((-112) |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4350 (((-654 |#3|) $) 113)) (-4173 (((-1189 $) $ |#3|) 128) (((-1189 |#1|) $) 127)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 90 (|has| |#1| (-566)))) (-2884 (($ $) 91 (|has| |#1| (-566)))) (-1981 (((-112) $) 93 (|has| |#1| (-566)))) (-2824 (((-781) $) 115) (((-781) $ (-654 |#3|)) 114)) (-2600 (((-3 $ "failed") $ $) 20)) (-2488 (((-428 (-1189 $)) (-1189 $)) 103 (|has| |#1| (-923)))) (-2991 (($ $) 101 (|has| |#1| (-462)))) (-1610 (((-428 $) $) 100 (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 106 (|has| |#1| (-923)))) (-3250 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 169) (((-3 (-417 (-574)) "failed") $) 166 (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) 164 (|has| |#1| (-1054 (-574)))) (((-3 |#3| "failed") $) 141)) (-2214 ((|#1| $) 168) (((-417 (-574)) $) 167 (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) 165 (|has| |#1| (-1054 (-574)))) ((|#3| $) 142)) (-3319 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-1402 (($ $) 159)) (-1831 (((-699 (-574)) (-1284 $)) 139 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 138 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 136) (((-699 |#1|) (-699 $)) 135) (((-699 |#1|) (-1284 $)) 134)) (-4322 (((-3 $ "failed") $) 37)) (-3621 (($ $) 181 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1389 (((-654 $) $) 112)) (-3978 (((-112) $) 99 (|has| |#1| (-923)))) (-1849 (($ $ |#1| |#2| $) 177)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 87 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 86 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-4226 (((-112) $) 35)) (-3023 (((-781) $) 174)) (-4339 (($ (-1189 |#1|) |#3|) 120) (($ (-1189 $) |#3|) 119)) (-1963 (((-654 $) $) 129)) (-1555 (((-112) $) 157)) (-4328 (($ |#1| |#2|) 158) (($ $ |#3| (-781)) 122) (($ $ (-654 |#3|) (-654 (-781))) 121)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ |#3|) 123)) (-3192 ((|#2| $) 175) (((-781) $ |#3|) 125) (((-654 (-781)) $ (-654 |#3|)) 124)) (-4303 (($ (-1 |#2| |#2|) $) 176)) (-1785 (($ (-1 |#1| |#1|) $) 156)) (-2284 (((-3 |#3| "failed") $) 126)) (-1366 (($ $) 154)) (-1378 ((|#1| $) 153)) (-2849 (($ (-654 $)) 97 (|has| |#1| (-462))) (($ $ $) 96 (|has| |#1| (-462)))) (-1489 (((-1175) $) 10)) (-1720 (((-3 (-654 $) "failed") $) 117)) (-3825 (((-3 (-654 $) "failed") $) 118)) (-2778 (((-3 (-2 (|:| |var| |#3|) (|:| -3139 (-781))) "failed") $) 116)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 171)) (-1355 ((|#1| $) 172)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 98 (|has| |#1| (-462)))) (-2887 (($ (-654 $)) 95 (|has| |#1| (-462))) (($ $ $) 94 (|has| |#1| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) 105 (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) 104 (|has| |#1| (-923)))) (-4202 (((-428 $) $) 102 (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) 150) (($ $ (-302 $)) 149) (($ $ $ $) 148) (($ $ (-654 $) (-654 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-654 |#3|) (-654 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-654 |#3|) (-654 $)) 143)) (-2394 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#3|) (-654 (-781))) 44) (($ $ |#3| (-781)) 43) (($ $ (-654 |#3|)) 42) (($ $ |#3|) 40)) (-3580 ((|#2| $) 155) (((-781) $ |#3|) 133) (((-654 (-781)) $ (-654 |#3|)) 132)) (-1844 (((-903 (-388)) $) 85 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 84 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 83 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-2372 ((|#1| $) 180 (|has| |#1| (-462))) (($ $ |#3|) 109 (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 107 (-2095 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ $) 88 (|has| |#1| (-566))) (($ (-417 (-574))) 81 (-2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-1634 (((-654 |#1|) $) 173)) (-2706 ((|#1| $ |#2|) 160) (($ $ |#3| (-781)) 131) (($ $ (-654 |#3|) (-654 (-781))) 130)) (-3424 (((-3 $ "failed") $) 82 (-2833 (-2095 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) 32 T CONST)) (-3652 (($ $ $ (-781)) 178 (|has| |#1| (-174)))) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 92 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-654 |#3|) (-654 (-781))) 47) (($ $ |#3| (-781)) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3|) 41)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 161 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 163 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 162 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 152) (($ $ |#1|) 151))) +(((-963 |#1| |#2| |#3|) (-141) (-1065) (-803) (-860)) (T -963)) +((-3621 (*1 *1 *1) (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3580 (*1 *2 *1 *3) (-12 (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-3580 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-2706 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-963 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *2 (-860)))) (-2706 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)))) (-1963 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5)))) (-4173 (*1 *2 *1 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1189 *1)) (-4 *1 (-963 *4 *5 *3)))) (-4173 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1189 *3)))) (-2284 (*1 *2 *1) (|partial| -12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-3192 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-3320 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-963 *4 *5 *3)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-963 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *2 (-860)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)))) (-4339 (*1 *1 *2 *3) (-12 (-5 *2 (-1189 *4)) (-4 *4 (-1065)) (-4 *1 (-963 *4 *5 *3)) (-4 *5 (-803)) (-4 *3 (-860)))) (-4339 (*1 *1 *2 *3) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)))) (-3825 (*1 *2 *1) (|partial| -12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5)))) (-1720 (*1 *2 *1) (|partial| -12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5)))) (-2778 (*1 *2 *1) (|partial| -12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -3139 (-781)))))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-2824 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)))) (-4350 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-1389 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5)))) (-3319 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2394 (*1 *1 *1 *2) (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2372 (*1 *1 *1 *2) (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-3621 (*1 *1 *1 *2) (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-2991 (*1 *1 *1) (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-1610 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-428 *1)) (-4 *1 (-963 *3 *4 *5))))) +(-13 (-912 |t#3|) (-334 |t#1| |t#2|) (-317 $) (-524 |t#3| |t#1|) (-524 |t#3| $) (-1054 |t#3|) (-386 |t#1|) (-10 -8 (-15 -3580 ((-781) $ |t#3|)) (-15 -3580 ((-654 (-781)) $ (-654 |t#3|))) (-15 -2706 ($ $ |t#3| (-781))) (-15 -2706 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -1963 ((-654 $) $)) (-15 -4173 ((-1189 $) $ |t#3|)) (-15 -4173 ((-1189 |t#1|) $)) (-15 -2284 ((-3 |t#3| "failed") $)) (-15 -3192 ((-781) $ |t#3|)) (-15 -3192 ((-654 (-781)) $ (-654 |t#3|))) (-15 -3320 ((-2 (|:| -3901 $) (|:| -1880 $)) $ $ |t#3|)) (-15 -4328 ($ $ |t#3| (-781))) (-15 -4328 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -4339 ($ (-1189 |t#1|) |t#3|)) (-15 -4339 ($ (-1189 $) |t#3|)) (-15 -3825 ((-3 (-654 $) "failed") $)) (-15 -1720 ((-3 (-654 $) "failed") $)) (-15 -2778 ((-3 (-2 (|:| |var| |t#3|) (|:| -3139 (-781))) "failed") $)) (-15 -2824 ((-781) $)) (-15 -2824 ((-781) $ (-654 |t#3|))) (-15 -4350 ((-654 |t#3|) $)) (-15 -1389 ((-654 $) $)) (IF (|has| |t#1| (-624 (-546))) (IF (|has| |t#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-574)))) (IF (|has| |t#3| (-624 (-903 (-574)))) (-6 (-624 (-903 (-574)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-388)))) (IF (|has| |t#3| (-624 (-903 (-388)))) (-6 (-624 (-903 (-388)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-574))) (IF (|has| |t#3| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (IF (|has| |t#3| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3319 ($ $ $ |t#3|)) (-15 -2394 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-6 (-462)) (-15 -2372 ($ $ |t#3|)) (-15 -3621 ($ $)) (-15 -3621 ($ $ |t#3|)) (-15 -1610 ((-428 $) $)) (-15 -2991 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |t#1| (-923)) (-6 (-923)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-298) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-923)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-907 $ |#3|) . T) ((-912 |#3|) . T) ((-914 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-923) |has| |#1| (-923)) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1054 |#3|) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T) ((-1238) |has| |#1| (-923))) +((-4350 (((-654 |#2|) |#5|) 40)) (-4173 (((-1189 |#5|) |#5| |#2| (-1189 |#5|)) 23) (((-417 (-1189 |#5|)) |#5| |#2|) 16)) (-4339 ((|#5| (-417 (-1189 |#5|)) |#2|) 30)) (-2284 (((-3 |#2| "failed") |#5|) 71)) (-1720 (((-3 (-654 |#5|) "failed") |#5|) 65)) (-2542 (((-3 (-2 (|:| |val| |#5|) (|:| -3139 (-574))) "failed") |#5|) 53)) (-3825 (((-3 (-654 |#5|) "failed") |#5|) 67)) (-2778 (((-3 (-2 (|:| |var| |#2|) (|:| -3139 (-574))) "failed") |#5|) 57))) +(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4350 ((-654 |#2|) |#5|)) (-15 -2284 ((-3 |#2| "failed") |#5|)) (-15 -4173 ((-417 (-1189 |#5|)) |#5| |#2|)) (-15 -4339 (|#5| (-417 (-1189 |#5|)) |#2|)) (-15 -4173 ((-1189 |#5|) |#5| |#2| (-1189 |#5|))) (-15 -3825 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -1720 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -2778 ((-3 (-2 (|:| |var| |#2|) (|:| -3139 (-574))) "failed") |#5|)) (-15 -2542 ((-3 (-2 (|:| |val| |#5|) (|:| -3139 (-574))) "failed") |#5|))) (-803) (-860) (-1065) (-963 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2951 ($ |#4|)) (-15 -2971 (|#4| $)) (-15 -2981 (|#4| $))))) (T -964)) +((-2542 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3139 (-574)))) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $))))))) (-2778 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3139 (-574)))) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $))))))) (-1720 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $))))))) (-3825 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $))))))) (-4173 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1189 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $))))) (-4 *7 (-963 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1065)) (-5 *1 (-964 *5 *4 *6 *7 *3)))) (-4339 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1189 *2))) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1065)) (-4 *2 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $))))) (-5 *1 (-964 *5 *4 *6 *7 *2)) (-4 *7 (-963 *6 *5 *4)))) (-4173 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-417 (-1189 *3))) (-5 *1 (-964 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $))))))) (-2284 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1065)) (-4 *6 (-963 *5 *4 *2)) (-4 *2 (-860)) (-5 *1 (-964 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *6)) (-15 -2971 (*6 $)) (-15 -2981 (*6 $))))))) (-4350 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *5)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $)))))))) +(-10 -7 (-15 -4350 ((-654 |#2|) |#5|)) (-15 -2284 ((-3 |#2| "failed") |#5|)) (-15 -4173 ((-417 (-1189 |#5|)) |#5| |#2|)) (-15 -4339 (|#5| (-417 (-1189 |#5|)) |#2|)) (-15 -4173 ((-1189 |#5|) |#5| |#2| (-1189 |#5|))) (-15 -3825 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -1720 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -2778 ((-3 (-2 (|:| |var| |#2|) (|:| -3139 (-574))) "failed") |#5|)) (-15 -2542 ((-3 (-2 (|:| |val| |#5|) (|:| -3139 (-574))) "failed") |#5|))) +((-1785 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-965 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1785 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-803) (-860) (-1065) (-963 |#3| |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (T -965)) +((-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860)) (-4 *8 (-1065)) (-4 *6 (-803)) (-4 *2 (-13 (-1116) (-10 -8 (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (-5 *1 (-965 *6 *7 *8 *5 *2)) (-4 *5 (-963 *8 *6 *7))))) +(-10 -7 (-15 -1785 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 (-1193)) $) 16)) (-4173 (((-1189 $) $ (-1193)) 21) (((-1189 |#1|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 (-1193))) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2991 (($ $) NIL (|has| |#1| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 8) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-1193) "failed") $) NIL)) (-2214 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-1193) $) NIL)) (-3319 (($ $ $ (-1193)) NIL (|has| |#1| (-174)))) (-1402 (($ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1193)) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#1| (-923)))) (-1849 (($ $ |#1| (-541 (-1193)) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1193) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1193) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-4339 (($ (-1189 |#1|) (-1193)) NIL) (($ (-1189 $) (-1193)) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-541 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-1193)) NIL)) (-3192 (((-541 (-1193)) $) NIL) (((-781) $ (-1193)) NIL) (((-654 (-781)) $ (-654 (-1193))) NIL)) (-4303 (($ (-1 (-541 (-1193)) (-541 (-1193))) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2284 (((-3 (-1193) "failed") $) 19)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1489 (((-1175) $) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| (-1193)) (|:| -3139 (-781))) "failed") $) NIL)) (-3342 (($ $ (-1193)) 29 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1193) |#1|) NIL) (($ $ (-654 (-1193)) (-654 |#1|)) NIL) (($ $ (-1193) $) NIL) (($ $ (-654 (-1193)) (-654 $)) NIL)) (-2394 (($ $ (-1193)) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL)) (-3580 (((-541 (-1193)) $) NIL) (((-781) $ (-1193)) NIL) (((-654 (-781)) $ (-654 (-1193))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1193) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1193) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1193) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-2372 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1193)) NIL (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 25) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1193)) 27) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-541 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-966 |#1|) (-13 (-963 |#1| (-541 (-1193)) (-1193)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1193))) |%noBranch|))) (-1065)) (T -966)) +((-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-966 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065))))) +(-13 (-963 |#1| (-541 (-1193)) (-1193)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1193))) |%noBranch|))) +((-1983 (((-2 (|:| -3139 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#3| (-781)) 49)) (-2759 (((-2 (|:| -3139 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781)) 44)) (-3544 (((-2 (|:| -3139 (-781)) (|:| -1866 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)) 65)) (-1869 (((-2 (|:| -3139 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#5| (-781)) 74 (|has| |#3| (-462))))) +(((-967 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1983 ((-2 (|:| -3139 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -2759 ((-2 (|:| -3139 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -1869 ((-2 (|:| -3139 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -3544 ((-2 (|:| -3139 (-781)) (|:| -1866 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)))) (-803) (-860) (-566) (-963 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2951 ($ |#4|)) (-15 -2971 (|#4| $)) (-15 -2981 (|#4| $))))) (T -967)) +((-3544 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *3 (-963 *7 *5 *6)) (-5 *2 (-2 (|:| -3139 (-781)) (|:| -1866 *3) (|:| |radicand| (-654 *3)))) (-5 *1 (-967 *5 *6 *7 *3 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2951 ($ *3)) (-15 -2971 (*3 $)) (-15 -2981 (*3 $))))))) (-1869 (*1 *2 *3 *4) (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-963 *7 *5 *6)) (-5 *2 (-2 (|:| -3139 (-781)) (|:| -1866 *3) (|:| |radicand| *3))) (-5 *1 (-967 *5 *6 *7 *8 *3)) (-5 *4 (-781)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *8)) (-15 -2971 (*8 $)) (-15 -2981 (*8 $))))))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-963 *7 *5 *6)) (-5 *2 (-2 (|:| -3139 (-781)) (|:| -1866 *9) (|:| |radicand| *9))) (-5 *1 (-967 *5 *6 *7 *8 *9)) (-5 *4 (-781)) (-4 *9 (-13 (-372) (-10 -8 (-15 -2951 ($ *8)) (-15 -2971 (*8 $)) (-15 -2981 (*8 $))))))) (-1983 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566)) (-4 *7 (-963 *3 *5 *6)) (-5 *2 (-2 (|:| -3139 (-781)) (|:| -1866 *8) (|:| |radicand| *8))) (-5 *1 (-967 *5 *6 *3 *7 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $)))))))) +(-10 -7 (-15 -1983 ((-2 (|:| -3139 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -2759 ((-2 (|:| -3139 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -1869 ((-2 (|:| -3139 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -3544 ((-2 (|:| -3139 (-781)) (|:| -1866 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)))) +((-2864 (((-112) $ $) NIL)) (-2125 (($ (-1136)) 8)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15) (((-1136) $) 12)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 11))) +(((-968) (-13 (-1116) (-623 (-1136)) (-10 -8 (-15 -2125 ($ (-1136)))))) (T -968)) +((-2125 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-968))))) +(-13 (-1116) (-623 (-1136)) (-10 -8 (-15 -2125 ($ (-1136))))) +((-2439 (((-1110 (-227)) $) 8)) (-2426 (((-1110 (-227)) $) 9)) (-1395 (((-654 (-654 (-957 (-227)))) $) 10)) (-2951 (((-872) $) 6))) +(((-969) (-141)) (T -969)) +((-1395 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-654 (-654 (-957 (-227))))))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1110 (-227))))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1110 (-227)))))) +(-13 (-623 (-872)) (-10 -8 (-15 -1395 ((-654 (-654 (-957 (-227)))) $)) (-15 -2426 ((-1110 (-227)) $)) (-15 -2439 ((-1110 (-227)) $)))) (((-623 (-872)) . T)) -((-4267 (((-3 (-699 |#1|) "failed") |#2| (-934)) 18))) -(((-969 |#1| |#2|) (-10 -7 (-15 -4267 ((-3 (-699 |#1|) "failed") |#2| (-934)))) (-566) (-666 |#1|)) (T -969)) -((-4267 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-934)) (-4 *5 (-566)) (-5 *2 (-699 *5)) (-5 *1 (-969 *5 *3)) (-4 *3 (-666 *5))))) -(-10 -7 (-15 -4267 ((-3 (-699 |#1|) "failed") |#2| (-934)))) -((-4214 (((-971 |#2|) (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|) 16)) (-2881 ((|#2| (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|) 18)) (-1786 (((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)) 13))) -(((-970 |#1| |#2|) (-10 -7 (-15 -4214 ((-971 |#2|) (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|)) (-15 -1786 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) (-1233) (-1233)) (T -970)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-971 *6)) (-5 *1 (-970 *5 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-971 *5)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-970 *5 *2)))) (-4214 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-971 *6)) (-4 *6 (-1233)) (-4 *5 (-1233)) (-5 *2 (-971 *5)) (-5 *1 (-970 *6 *5))))) -(-10 -7 (-15 -4214 ((-971 |#2|) (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|)) (-15 -1786 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) 19 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) 18 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 16)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 15)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) 11 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1603 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4276 (($ $ |#1|) 20 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) 12)) (-2208 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 17) (($ $ (-1250 (-574))) NIL)) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) 21)) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 14)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) 8 (|has| $ (-6 -4458))))) -(((-971 |#1|) (-19 |#1|) (-1233)) (T -971)) +((-3638 (((-3 (-699 |#1|) "failed") |#2| (-935)) 18))) +(((-970 |#1| |#2|) (-10 -7 (-15 -3638 ((-3 (-699 |#1|) "failed") |#2| (-935)))) (-566) (-666 |#1|)) (T -970)) +((-3638 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-935)) (-4 *5 (-566)) (-5 *2 (-699 *5)) (-5 *1 (-970 *5 *3)) (-4 *3 (-666 *5))))) +(-10 -7 (-15 -3638 ((-3 (-699 |#1|) "failed") |#2| (-935)))) +((-3465 (((-972 |#2|) (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|) 16)) (-2882 ((|#2| (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|) 18)) (-1785 (((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)) 13))) +(((-971 |#1| |#2|) (-10 -7 (-15 -3465 ((-972 |#2|) (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|)) (-15 -1785 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))) (-1234) (-1234)) (T -971)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-972 *6)) (-5 *1 (-971 *5 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-972 *5)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-971 *5 *2)))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-972 *6)) (-4 *6 (-1234)) (-4 *5 (-1234)) (-5 *2 (-972 *5)) (-5 *1 (-971 *6 *5))))) +(-10 -7 (-15 -3465 ((-972 |#2|) (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|)) (-15 -1785 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) 19 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 18 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 16)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 15)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) 11 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1822 (($ $ |#1|) 20 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 17) (($ $ (-1251 (-574))) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) 21)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 14)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) 8 (|has| $ (-6 -4459))))) +(((-972 |#1|) (-19 |#1|) (-1234)) (T -972)) NIL (-19 |#1|) -((-2028 (($ $ (-1107 $)) 7) (($ $ (-1192)) 6))) -(((-972) (-141)) (T -972)) -((-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-972)))) (-2028 (*1 *1 *1 *2) (-12 (-4 *1 (-972)) (-5 *2 (-1192))))) -(-13 (-10 -8 (-15 -2028 ($ $ (-1192))) (-15 -2028 ($ $ (-1107 $))))) -((-1912 (((-2 (|:| -1867 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192)) (-1192)) 26) (((-2 (|:| -1867 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192))) 27) (((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1188 |#1|))) (-965 |#1|) (-1192) (-965 |#1|) (-1192)) 49))) -(((-973 |#1|) (-10 -7 (-15 -1912 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1188 |#1|))) (-965 |#1|) (-1192) (-965 |#1|) (-1192))) (-15 -1912 ((-2 (|:| -1867 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -1912 ((-2 (|:| -1867 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192)) (-1192)))) (-13 (-372) (-148))) (T -973)) -((-1912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) (-5 *5 (-1192)) (-4 *6 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1867 (-654 (-574))) (|:| |poly| (-654 (-1188 *6))) (|:| |prim| (-1188 *6)))) (-5 *1 (-973 *6)))) (-1912 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1867 (-654 (-574))) (|:| |poly| (-654 (-1188 *5))) (|:| |prim| (-1188 *5)))) (-5 *1 (-973 *5)))) (-1912 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-965 *5)) (-5 *4 (-1192)) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1188 *5)))) (-5 *1 (-973 *5))))) -(-10 -7 (-15 -1912 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1188 |#1|))) (-965 |#1|) (-1192) (-965 |#1|) (-1192))) (-15 -1912 ((-2 (|:| -1867 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -1912 ((-2 (|:| -1867 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192)) (-1192)))) -((-2371 (((-654 |#1|) |#1| |#1|) 47)) (-1782 (((-112) |#1|) 44)) (-1997 ((|#1| |#1|) 79)) (-2955 ((|#1| |#1|) 78))) -(((-974 |#1|) (-10 -7 (-15 -1782 ((-112) |#1|)) (-15 -2955 (|#1| |#1|)) (-15 -1997 (|#1| |#1|)) (-15 -2371 ((-654 |#1|) |#1| |#1|))) (-555)) (T -974)) -((-2371 (*1 *2 *3 *3) (-12 (-5 *2 (-654 *3)) (-5 *1 (-974 *3)) (-4 *3 (-555)))) (-1997 (*1 *2 *2) (-12 (-5 *1 (-974 *2)) (-4 *2 (-555)))) (-2955 (*1 *2 *2) (-12 (-5 *1 (-974 *2)) (-4 *2 (-555)))) (-1782 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-974 *3)) (-4 *3 (-555))))) -(-10 -7 (-15 -1782 ((-112) |#1|)) (-15 -2955 (|#1| |#1|)) (-15 -1997 (|#1| |#1|)) (-15 -2371 ((-654 |#1|) |#1| |#1|))) -((-1802 (((-1288) (-872)) 9))) -(((-975) (-10 -7 (-15 -1802 ((-1288) (-872))))) (T -975)) -((-1802 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-975))))) -(-10 -7 (-15 -1802 ((-1288) (-872)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 78 (|has| |#1| (-566)))) (-3648 (($ $) 79 (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 34)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) 31)) (-3911 (((-3 $ "failed") $) 42)) (-1509 (($ $) NIL (|has| |#1| (-462)))) (-4389 (($ $ |#1| |#2| $) 62)) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) 17)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| |#2|) NIL)) (-1503 ((|#2| $) 24)) (-3558 (($ (-1 |#2| |#2|) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-1365 (($ $) 28)) (-1377 ((|#1| $) 26)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) 51)) (-1354 ((|#1| $) NIL)) (-1687 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-566))))) (-2852 (((-3 $ "failed") $ $) 91 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-566)))) (-3584 ((|#2| $) 22)) (-3631 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) 46) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 41) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ |#2|) 37)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) 15 T CONST)) (-2037 (($ $ $ (-781)) 74 (|has| |#1| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) 84 (|has| |#1| (-566)))) (-2142 (($) 27 T CONST)) (-2154 (($) 12 T CONST)) (-2985 (((-112) $ $) 83)) (-3098 (($ $ |#1|) 92 (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) 69) (($ $ (-781)) 67)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-976 |#1| |#2|) (-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -1687 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) (-1064) (-802)) (T -976)) -((-1687 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-976 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *2 (-802))))) -(-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -1687 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-2620 (($ $ $) 65 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (-1597 (((-3 $ "failed") $ $) 52 (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-1496 (((-781)) 36 (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-2546 ((|#2| $) 22)) (-3905 ((|#1| $) 21)) (-3831 (($) NIL (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-3911 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-2834 (($) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3372 (((-112) $) NIL (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-3632 (($ $ $) NIL (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-1593 (($ $ $) NIL (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2218 (($ |#1| |#2|) 20)) (-3271 (((-934) $) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 39 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2590 (($ (-934)) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3939 (((-1135) $) NIL)) (-2202 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-3490 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2950 (((-872) $) 14)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 42 (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-2154 (($) 25 (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) CONST)) (-3041 (((-112) $ $) NIL (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3018 (((-112) $ $) NIL (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2985 (((-112) $ $) 19)) (-3029 (((-112) $ $) NIL (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3009 (((-112) $ $) 69 (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3098 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-3089 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3074 (($ $ $) 45 (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (** (($ $ (-574)) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483)))) (($ $ (-781)) 32 (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))) (($ $ (-934)) NIL (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (* (($ (-574) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-781) $) 48 (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ (-934) $) NIL (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ $ $) 28 (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))))) -(((-977 |#1| |#2|) (-13 (-1115) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -2218 ($ |#1| |#2|)) (-15 -3905 (|#1| $)) (-15 -2546 (|#2| $)))) (-1115) (-1115)) (T -977)) -((-2218 (*1 *1 *2 *3) (-12 (-5 *1 (-977 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-3905 (*1 *2 *1) (-12 (-4 *2 (-1115)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1115)))) (-2546 (*1 *2 *1) (-12 (-4 *2 (-1115)) (-5 *1 (-977 *3 *2)) (-4 *3 (-1115))))) -(-13 (-1115) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -2218 ($ |#1| |#2|)) (-15 -3905 (|#1| $)) (-15 -2546 (|#2| $)))) -((-3078 (((-1119) $) 12)) (-2419 (($ (-516) (-1119)) 14)) (-2040 (((-516) $) 9)) (-2950 (((-872) $) 24))) -(((-978) (-13 (-623 (-872)) (-10 -8 (-15 -2040 ((-516) $)) (-15 -3078 ((-1119) $)) (-15 -2419 ($ (-516) (-1119)))))) (T -978)) -((-2040 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-978)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-978)))) (-2419 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1119)) (-5 *1 (-978))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2040 ((-516) $)) (-15 -3078 ((-1119) $)) (-15 -2419 ($ (-516) (-1119))))) -((-2863 (((-112) $ $) NIL)) (-1571 (($) NIL T CONST)) (-2107 (($ $ $) 30)) (-2085 (($ $) 24)) (-3945 (((-1174) $) NIL)) (-4403 (((-701 (-883 $ $)) $) 55)) (-2608 (((-701 $) $) 45)) (-2773 (((-701 (-883 $ $)) $) 56)) (-1416 (((-701 (-883 $ $)) $) 57)) (-4029 (((-701 |#1|) $) 36)) (-2489 (((-701 (-883 $ $)) $) 54)) (-3007 (($ $ $) 31)) (-3939 (((-1135) $) NIL)) (-2895 (($) NIL T CONST)) (-3030 (($ $ $) 32)) (-2794 (($ $ $) 29)) (-3090 (($ $ $) 27)) (-2950 (((-872) $) 59) (($ |#1|) 12)) (-3838 (((-112) $ $) NIL)) (-2096 (($ $ $) 28)) (-2985 (((-112) $ $) NIL))) -(((-979 |#1|) (-13 (-982) (-626 |#1|) (-10 -8 (-15 -4029 ((-701 |#1|) $)) (-15 -2608 ((-701 $) $)) (-15 -2489 ((-701 (-883 $ $)) $)) (-15 -4403 ((-701 (-883 $ $)) $)) (-15 -2773 ((-701 (-883 $ $)) $)) (-15 -1416 ((-701 (-883 $ $)) $)) (-15 -3090 ($ $ $)) (-15 -2794 ($ $ $)))) (-1115)) (T -979)) -((-4029 (*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-701 (-979 *3))) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-3090 (*1 *1 *1 *1) (-12 (-5 *1 (-979 *2)) (-4 *2 (-1115)))) (-2794 (*1 *1 *1 *1) (-12 (-5 *1 (-979 *2)) (-4 *2 (-1115))))) -(-13 (-982) (-626 |#1|) (-10 -8 (-15 -4029 ((-701 |#1|) $)) (-15 -2608 ((-701 $) $)) (-15 -2489 ((-701 (-883 $ $)) $)) (-15 -4403 ((-701 (-883 $ $)) $)) (-15 -2773 ((-701 (-883 $ $)) $)) (-15 -1416 ((-701 (-883 $ $)) $)) (-15 -3090 ($ $ $)) (-15 -2794 ($ $ $)))) -((-1889 (((-979 |#1|) (-979 |#1|)) 46)) (-2823 (((-979 |#1|) (-979 |#1|)) 22)) (-3413 (((-1117 |#1|) (-979 |#1|)) 41))) -(((-980 |#1|) (-13 (-1233) (-10 -7 (-15 -2823 ((-979 |#1|) (-979 |#1|))) (-15 -3413 ((-1117 |#1|) (-979 |#1|))) (-15 -1889 ((-979 |#1|) (-979 |#1|))))) (-1115)) (T -980)) -((-2823 (*1 *2 *2) (-12 (-5 *2 (-979 *3)) (-4 *3 (-1115)) (-5 *1 (-980 *3)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-979 *4)) (-4 *4 (-1115)) (-5 *2 (-1117 *4)) (-5 *1 (-980 *4)))) (-1889 (*1 *2 *2) (-12 (-5 *2 (-979 *3)) (-4 *3 (-1115)) (-5 *1 (-980 *3))))) -(-13 (-1233) (-10 -7 (-15 -2823 ((-979 |#1|) (-979 |#1|))) (-15 -3413 ((-1117 |#1|) (-979 |#1|))) (-15 -1889 ((-979 |#1|) (-979 |#1|))))) -((-1786 (((-979 |#2|) (-1 |#2| |#1|) (-979 |#1|)) 29))) -(((-981 |#1| |#2|) (-13 (-1233) (-10 -7 (-15 -1786 ((-979 |#2|) (-1 |#2| |#1|) (-979 |#1|))))) (-1115) (-1115)) (T -981)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-979 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-979 *6)) (-5 *1 (-981 *5 *6))))) -(-13 (-1233) (-10 -7 (-15 -1786 ((-979 |#2|) (-1 |#2| |#1|) (-979 |#1|))))) -((-2863 (((-112) $ $) 15)) (-1571 (($) 14 T CONST)) (-2107 (($ $ $) 6)) (-2085 (($ $) 8)) (-3945 (((-1174) $) 19)) (-3007 (($ $ $) 12)) (-3939 (((-1135) $) 18)) (-2895 (($) 13 T CONST)) (-3030 (($ $ $) 11)) (-2950 (((-872) $) 17)) (-3838 (((-112) $ $) 20)) (-2096 (($ $ $) 7)) (-2985 (((-112) $ $) 16))) -(((-982) (-141)) (T -982)) -((-1571 (*1 *1) (-4 *1 (-982))) (-2895 (*1 *1) (-4 *1 (-982))) (-3007 (*1 *1 *1 *1) (-4 *1 (-982))) (-3030 (*1 *1 *1 *1) (-4 *1 (-982)))) -(-13 (-113) (-1115) (-10 -8 (-15 -1571 ($) -1715) (-15 -2895 ($) -1715) (-15 -3007 ($ $ $)) (-15 -3030 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-1115) . T) ((-1233) . T)) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) 8)) (-3831 (($) 7 T CONST)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-2857 (($ $ $) 44)) (-4297 (($ $ $) 45)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1593 ((|#1| $) 46)) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1748 ((|#1| $) 40)) (-2609 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-3484 ((|#1| $) 42)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) 43)) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-983 |#1|) (-141) (-860)) (T -983)) -((-1593 (*1 *2 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860)))) (-4297 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4458) (-15 -1593 (|t#1| $)) (-15 -4297 ($ $ $)) (-15 -2857 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-2306 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|) 105)) (-2891 ((|#2| |#2| |#2|) 103)) (-4172 (((-2 (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|) 107)) (-2430 (((-2 (|:| |coef1| |#2|) (|:| -2886 |#2|)) |#2| |#2|) 109)) (-3162 (((-2 (|:| |coef2| |#2|) (|:| -1710 |#1|)) |#2| |#2|) 131 (|has| |#1| (-462)))) (-3703 (((-2 (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|) 56)) (-2961 (((-2 (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|) 80)) (-3147 (((-2 (|:| |coef1| |#2|) (|:| -3496 |#1|)) |#2| |#2|) 82)) (-1515 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2634 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 89)) (-2220 (((-2 (|:| |coef2| |#2|) (|:| -1738 |#1|)) |#2|) 121)) (-1717 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 92)) (-1564 (((-654 (-781)) |#2| |#2|) 102)) (-4062 ((|#1| |#2| |#2|) 50)) (-3153 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1710 |#1|)) |#2| |#2|) 129 (|has| |#1| (-462)))) (-1710 ((|#1| |#2| |#2|) 127 (|has| |#1| (-462)))) (-2264 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|) 54)) (-2708 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|) 79)) (-3496 ((|#1| |#2| |#2|) 76)) (-3960 (((-2 (|:| -1867 |#1|) (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2|) 41)) (-4087 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-1898 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-2971 ((|#2| |#2| |#2|) 93)) (-1422 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 87)) (-3302 ((|#2| |#2| |#2| (-781)) 85)) (-2886 ((|#2| |#2| |#2|) 135 (|has| |#1| (-462)))) (-2852 (((-1283 |#2|) (-1283 |#2|) |#1|) 22)) (-3444 (((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2|) 46)) (-3236 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1738 |#1|)) |#2|) 119)) (-1738 ((|#1| |#2|) 116)) (-4324 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 91)) (-3949 ((|#2| |#2| |#2| (-781)) 90)) (-4400 (((-654 |#2|) |#2| |#2|) 99)) (-2385 ((|#2| |#2| |#1| |#1| (-781)) 62)) (-1784 ((|#1| |#1| |#1| (-781)) 61)) (* (((-1283 |#2|) |#1| (-1283 |#2|)) 17))) -(((-984 |#1| |#2|) (-10 -7 (-15 -3496 (|#1| |#2| |#2|)) (-15 -2708 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|)) (-15 -2961 ((-2 (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|)) (-15 -3147 ((-2 (|:| |coef1| |#2|) (|:| -3496 |#1|)) |#2| |#2|)) (-15 -3302 (|#2| |#2| |#2| (-781))) (-15 -1422 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2634 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3949 (|#2| |#2| |#2| (-781))) (-15 -4324 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -1717 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2971 (|#2| |#2| |#2|)) (-15 -1898 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1515 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2891 (|#2| |#2| |#2|)) (-15 -2306 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -4172 ((-2 (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -2430 ((-2 (|:| |coef1| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -1738 (|#1| |#2|)) (-15 -3236 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1738 |#1|)) |#2|)) (-15 -2220 ((-2 (|:| |coef2| |#2|) (|:| -1738 |#1|)) |#2|)) (-15 -4400 ((-654 |#2|) |#2| |#2|)) (-15 -1564 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -1710 (|#1| |#2| |#2|)) (-15 -3153 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1710 |#1|)) |#2| |#2|)) (-15 -3162 ((-2 (|:| |coef2| |#2|) (|:| -1710 |#1|)) |#2| |#2|)) (-15 -2886 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1283 |#2|) |#1| (-1283 |#2|))) (-15 -2852 ((-1283 |#2|) (-1283 |#2|) |#1|)) (-15 -3960 ((-2 (|:| -1867 |#1|) (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2|)) (-15 -3444 ((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2|)) (-15 -1784 (|#1| |#1| |#1| (-781))) (-15 -2385 (|#2| |#2| |#1| |#1| (-781))) (-15 -4087 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4062 (|#1| |#2| |#2|)) (-15 -2264 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|)) (-15 -3703 ((-2 (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|))) (-566) (-1259 |#1|)) (T -984)) -((-3703 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3496 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2264 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3496 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-4062 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2)))) (-4087 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) (-2385 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) (-1784 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-984 *2 *4)) (-4 *4 (-1259 *2)))) (-3444 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-3960 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1867 *4) (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2852 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-566)) (-5 *1 (-984 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-566)) (-5 *1 (-984 *3 *4)))) (-2886 (*1 *2 *2 *2) (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) (-3162 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1710 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-3153 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1710 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-1710 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2)))) (-1564 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-4400 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2220 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1738 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-3236 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1738 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-1738 (*1 *2 *3) (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2)))) (-2430 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2886 *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-4172 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2886 *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2306 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2886 *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2891 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) (-1515 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-1898 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2971 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) (-1717 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5)))) (-4324 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5)))) (-3949 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-984 *4 *2)) (-4 *2 (-1259 *4)))) (-2634 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5)))) (-1422 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5)))) (-3302 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-984 *4 *2)) (-4 *2 (-1259 *4)))) (-3147 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3496 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2961 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3496 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2708 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3496 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-3496 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2))))) -(-10 -7 (-15 -3496 (|#1| |#2| |#2|)) (-15 -2708 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|)) (-15 -2961 ((-2 (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|)) (-15 -3147 ((-2 (|:| |coef1| |#2|) (|:| -3496 |#1|)) |#2| |#2|)) (-15 -3302 (|#2| |#2| |#2| (-781))) (-15 -1422 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2634 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3949 (|#2| |#2| |#2| (-781))) (-15 -4324 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -1717 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2971 (|#2| |#2| |#2|)) (-15 -1898 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1515 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2891 (|#2| |#2| |#2|)) (-15 -2306 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -4172 ((-2 (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -2430 ((-2 (|:| |coef1| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -1738 (|#1| |#2|)) (-15 -3236 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1738 |#1|)) |#2|)) (-15 -2220 ((-2 (|:| |coef2| |#2|) (|:| -1738 |#1|)) |#2|)) (-15 -4400 ((-654 |#2|) |#2| |#2|)) (-15 -1564 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -1710 (|#1| |#2| |#2|)) (-15 -3153 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1710 |#1|)) |#2| |#2|)) (-15 -3162 ((-2 (|:| |coef2| |#2|) (|:| -1710 |#1|)) |#2| |#2|)) (-15 -2886 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1283 |#2|) |#1| (-1283 |#2|))) (-15 -2852 ((-1283 |#2|) (-1283 |#2|) |#1|)) (-15 -3960 ((-2 (|:| -1867 |#1|) (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2|)) (-15 -3444 ((-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) |#2| |#2|)) (-15 -1784 (|#1| |#1| |#1| (-781))) (-15 -2385 (|#2| |#2| |#1| |#1| (-781))) (-15 -4087 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4062 (|#1| |#2| |#2|)) (-15 -2264 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|)) (-15 -3703 ((-2 (|:| |coef2| |#2|) (|:| -3496 |#1|)) |#2| |#2|))) -((-2863 (((-112) $ $) NIL)) (-2349 (((-1232) $) 13)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 10)) (-2950 (((-872) $) 20) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-985) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $))))) (T -985)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-985)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-985))))) -(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 40)) (-1597 (((-3 $ "failed") $ $) 54)) (-3831 (($) NIL T CONST)) (-2932 (((-654 (-883 (-934) (-934))) $) 67)) (-4273 (((-934) $) 94)) (-1873 (((-654 (-934)) $) 17)) (-1650 (((-1172 $) (-781)) 39)) (-1774 (($ (-654 (-934))) 16)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2202 (($ $) 70)) (-2950 (((-872) $) 90) (((-654 (-934)) $) 11)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 8 T CONST)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 44)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 42)) (-3074 (($ $ $) 46)) (* (($ (-934) $) NIL) (($ (-781) $) 49)) (-2876 (((-781) $) 22))) -(((-986) (-13 (-805) (-623 (-654 (-934))) (-10 -8 (-15 -1774 ($ (-654 (-934)))) (-15 -1873 ((-654 (-934)) $)) (-15 -2876 ((-781) $)) (-15 -1650 ((-1172 $) (-781))) (-15 -2932 ((-654 (-883 (-934) (-934))) $)) (-15 -4273 ((-934) $)) (-15 -2202 ($ $))))) (T -986)) -((-1774 (*1 *1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-986)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-986)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-986)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1172 (-986))) (-5 *1 (-986)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-934) (-934)))) (-5 *1 (-986)))) (-4273 (*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-986)))) (-2202 (*1 *1 *1) (-5 *1 (-986)))) -(-13 (-805) (-623 (-654 (-934))) (-10 -8 (-15 -1774 ($ (-654 (-934)))) (-15 -1873 ((-654 (-934)) $)) (-15 -2876 ((-781) $)) (-15 -1650 ((-1172 $) (-781))) (-15 -2932 ((-654 (-883 (-934) (-934))) $)) (-15 -4273 ((-934) $)) (-15 -2202 ($ $)))) -((-3098 (($ $ |#2|) 31)) (-3089 (($ $) 23) (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) 29))) -(((-987 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3098 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) (-988 |#2| |#3| |#4|) (-1064) (-802) (-860)) (T -987)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3098 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4349 (((-654 |#3|) $) 86)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-3648 (($ $) 64 (|has| |#1| (-566)))) (-1527 (((-112) $) 66 (|has| |#1| (-566)))) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-1401 (($ $) 72)) (-3911 (((-3 $ "failed") $) 37)) (-3938 (((-112) $) 85)) (-3372 (((-112) $) 35)) (-3257 (((-112) $) 74)) (-4327 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-654 |#3|) (-654 |#2|)) 87)) (-1786 (($ (-1 |#1| |#1|) $) 75)) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-3584 ((|#2| $) 76)) (-4209 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2930 ((|#1| $ |#2|) 71)) (-3247 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-988 |#1| |#2| |#3|) (-141) (-1064) (-802) (-860)) (T -988)) -((-1377 (*1 *2 *1) (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860)) (-4 *2 (-1064)))) (-1365 (*1 *1 *1) (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-802)) (-4 *4 (-860)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *2 *4)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *2 (-802)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-988 *4 *3 *2)) (-4 *4 (-1064)) (-4 *3 (-802)) (-4 *2 (-860)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-988 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-802)) (-4 *6 (-860)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-112)))) (-4209 (*1 *1 *1) (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-802)) (-4 *4 (-860))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4327 ($ $ |t#3| |t#2|)) (-15 -4327 ($ $ (-654 |t#3|) (-654 |t#2|))) (-15 -1365 ($ $)) (-15 -1377 (|t#1| $)) (-15 -3584 (|t#2| $)) (-15 -4349 ((-654 |t#3|) $)) (-15 -3938 ((-112) $)) (-15 -4209 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2451 (((-1109 (-227)) $) 8)) (-2438 (((-1109 (-227)) $) 9)) (-2425 (((-1109 (-227)) $) 10)) (-3971 (((-654 (-654 (-956 (-227)))) $) 11)) (-2950 (((-872) $) 6))) -(((-989) (-141)) (T -989)) -((-3971 (*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-654 (-654 (-956 (-227))))))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227))))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227))))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227)))))) -(-13 (-623 (-872)) (-10 -8 (-15 -3971 ((-654 (-654 (-956 (-227)))) $)) (-15 -2425 ((-1109 (-227)) $)) (-15 -2438 ((-1109 (-227)) $)) (-15 -2451 ((-1109 (-227)) $)))) +((-3031 (($ $ (-1108 $)) 7) (($ $ (-1193)) 6))) +(((-973) (-141)) (T -973)) +((-3031 (*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-973)))) (-3031 (*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-1193))))) +(-13 (-10 -8 (-15 -3031 ($ $ (-1193))) (-15 -3031 ($ $ (-1108 $))))) +((-3556 (((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193)) (-1193)) 26) (((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193))) 27) (((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1189 |#1|))) (-966 |#1|) (-1193) (-966 |#1|) (-1193)) 49))) +(((-974 |#1|) (-10 -7 (-15 -3556 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1189 |#1|))) (-966 |#1|) (-1193) (-966 |#1|) (-1193))) (-15 -3556 ((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -3556 ((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193)) (-1193)))) (-13 (-372) (-148))) (T -974)) +((-3556 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193))) (-5 *5 (-1193)) (-4 *6 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 *6))) (|:| |prim| (-1189 *6)))) (-5 *1 (-974 *6)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193))) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 *5))) (|:| |prim| (-1189 *5)))) (-5 *1 (-974 *5)))) (-3556 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-966 *5)) (-5 *4 (-1193)) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1189 *5)))) (-5 *1 (-974 *5))))) +(-10 -7 (-15 -3556 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1189 |#1|))) (-966 |#1|) (-1193) (-966 |#1|) (-1193))) (-15 -3556 ((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -3556 ((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193)) (-1193)))) +((-2597 (((-654 |#1|) |#1| |#1|) 47)) (-3978 (((-112) |#1|) 44)) (-1478 ((|#1| |#1|) 79)) (-2510 ((|#1| |#1|) 78))) +(((-975 |#1|) (-10 -7 (-15 -3978 ((-112) |#1|)) (-15 -2510 (|#1| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -2597 ((-654 |#1|) |#1| |#1|))) (-555)) (T -975)) +((-2597 (*1 *2 *3 *3) (-12 (-5 *2 (-654 *3)) (-5 *1 (-975 *3)) (-4 *3 (-555)))) (-1478 (*1 *2 *2) (-12 (-5 *1 (-975 *2)) (-4 *2 (-555)))) (-2510 (*1 *2 *2) (-12 (-5 *1 (-975 *2)) (-4 *2 (-555)))) (-3978 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-975 *3)) (-4 *3 (-555))))) +(-10 -7 (-15 -3978 ((-112) |#1|)) (-15 -2510 (|#1| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -2597 ((-654 |#1|) |#1| |#1|))) +((-1803 (((-1289) (-872)) 9))) +(((-976) (-10 -7 (-15 -1803 ((-1289) (-872))))) (T -976)) +((-1803 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-976))))) +(-10 -7 (-15 -1803 ((-1289) (-872)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 78 (|has| |#1| (-566)))) (-2884 (($ $) 79 (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 34)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) 31)) (-4322 (((-3 $ "failed") $) 42)) (-3621 (($ $) NIL (|has| |#1| (-462)))) (-1849 (($ $ |#1| |#2| $) 62)) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) 17)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| |#2|) NIL)) (-3192 ((|#2| $) 24)) (-4303 (($ (-1 |#2| |#2|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1366 (($ $) 28)) (-1378 ((|#1| $) 26)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) 51)) (-1355 ((|#1| $) NIL)) (-2997 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-566))))) (-2853 (((-3 $ "failed") $ $) 91 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-566)))) (-3580 ((|#2| $) 22)) (-2372 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) 46) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 41) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ |#2|) 37)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) 15 T CONST)) (-3652 (($ $ $ (-781)) 74 (|has| |#1| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) 84 (|has| |#1| (-566)))) (-2141 (($) 27 T CONST)) (-2153 (($) 12 T CONST)) (-2986 (((-112) $ $) 83)) (-3103 (($ $ |#1|) 92 (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) 69) (($ $ (-781)) 67)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-977 |#1| |#2|) (-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -2997 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|))) (-1065) (-802)) (T -977)) +((-2997 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-977 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *2 (-802))))) +(-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -2997 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-1968 (($ $ $) 65 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (-2600 (((-3 $ "failed") $ $) 52 (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-1496 (((-781)) 36 (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3255 ((|#2| $) 22)) (-1845 ((|#1| $) 21)) (-3250 (($) NIL (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-4322 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-2835 (($) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-4226 (((-112) $) NIL (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-3634 (($ $ $) NIL (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-4380 (($ $ $) NIL (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-4019 (($ |#1| |#2|) 20)) (-3383 (((-935) $) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 39 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2591 (($ (-935)) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3940 (((-1136) $) NIL)) (-3617 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-3955 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2951 (((-872) $) 14)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 42 (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-2153 (($) 25 (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) CONST)) (-3042 (((-112) $ $) NIL (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3020 (((-112) $ $) NIL (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2986 (((-112) $ $) 19)) (-3030 (((-112) $ $) NIL (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3009 (((-112) $ $) 69 (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3103 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-3090 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3074 (($ $ $) 45 (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (** (($ $ (-574)) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483)))) (($ $ (-781)) 32 (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))) (($ $ (-935)) NIL (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (* (($ (-574) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-781) $) 48 (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ (-935) $) NIL (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ $ $) 28 (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))))) +(((-978 |#1| |#2|) (-13 (-1116) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -4019 ($ |#1| |#2|)) (-15 -1845 (|#1| $)) (-15 -3255 (|#2| $)))) (-1116) (-1116)) (T -978)) +((-4019 (*1 *1 *2 *3) (-12 (-5 *1 (-978 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-1845 (*1 *2 *1) (-12 (-4 *2 (-1116)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1116)))) (-3255 (*1 *2 *1) (-12 (-4 *2 (-1116)) (-5 *1 (-978 *3 *2)) (-4 *3 (-1116))))) +(-13 (-1116) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -4019 ($ |#1| |#2|)) (-15 -1845 (|#1| $)) (-15 -3255 (|#2| $)))) +((-3079 (((-1120) $) 12)) (-1921 (($ (-516) (-1120)) 14)) (-2039 (((-516) $) 9)) (-2951 (((-872) $) 24))) +(((-979) (-13 (-623 (-872)) (-10 -8 (-15 -2039 ((-516) $)) (-15 -3079 ((-1120) $)) (-15 -1921 ($ (-516) (-1120)))))) (T -979)) +((-2039 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-979)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-979)))) (-1921 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1120)) (-5 *1 (-979))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2039 ((-516) $)) (-15 -3079 ((-1120) $)) (-15 -1921 ($ (-516) (-1120))))) +((-2864 (((-112) $ $) NIL)) (-1570 (($) NIL T CONST)) (-2106 (($ $ $) 30)) (-2084 (($ $) 24)) (-1489 (((-1175) $) NIL)) (-3340 (((-701 (-883 $ $)) $) 55)) (-4325 (((-701 $) $) 45)) (-3968 (((-701 (-883 $ $)) $) 56)) (-2609 (((-701 (-883 $ $)) $) 57)) (-2333 (((-701 |#1|) $) 36)) (-4417 (((-701 (-883 $ $)) $) 54)) (-2604 (($ $ $) 31)) (-3940 (((-1136) $) NIL)) (-2896 (($) NIL T CONST)) (-1692 (($ $ $) 32)) (-3092 (($ $ $) 29)) (-1846 (($ $ $) 27)) (-2951 (((-872) $) 59) (($ |#1|) 12)) (-4069 (((-112) $ $) NIL)) (-2095 (($ $ $) 28)) (-2986 (((-112) $ $) NIL))) +(((-980 |#1|) (-13 (-983) (-626 |#1|) (-10 -8 (-15 -2333 ((-701 |#1|) $)) (-15 -4325 ((-701 $) $)) (-15 -4417 ((-701 (-883 $ $)) $)) (-15 -3340 ((-701 (-883 $ $)) $)) (-15 -3968 ((-701 (-883 $ $)) $)) (-15 -2609 ((-701 (-883 $ $)) $)) (-15 -1846 ($ $ $)) (-15 -3092 ($ $ $)))) (-1116)) (T -980)) +((-2333 (*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-4325 (*1 *2 *1) (-12 (-5 *2 (-701 (-980 *3))) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-2609 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-1846 (*1 *1 *1 *1) (-12 (-5 *1 (-980 *2)) (-4 *2 (-1116)))) (-3092 (*1 *1 *1 *1) (-12 (-5 *1 (-980 *2)) (-4 *2 (-1116))))) +(-13 (-983) (-626 |#1|) (-10 -8 (-15 -2333 ((-701 |#1|) $)) (-15 -4325 ((-701 $) $)) (-15 -4417 ((-701 (-883 $ $)) $)) (-15 -3340 ((-701 (-883 $ $)) $)) (-15 -3968 ((-701 (-883 $ $)) $)) (-15 -2609 ((-701 (-883 $ $)) $)) (-15 -1846 ($ $ $)) (-15 -3092 ($ $ $)))) +((-1539 (((-980 |#1|) (-980 |#1|)) 46)) (-3427 (((-980 |#1|) (-980 |#1|)) 22)) (-2128 (((-1118 |#1|) (-980 |#1|)) 41))) +(((-981 |#1|) (-13 (-1234) (-10 -7 (-15 -3427 ((-980 |#1|) (-980 |#1|))) (-15 -2128 ((-1118 |#1|) (-980 |#1|))) (-15 -1539 ((-980 |#1|) (-980 |#1|))))) (-1116)) (T -981)) +((-3427 (*1 *2 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1116)) (-5 *1 (-981 *3)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-980 *4)) (-4 *4 (-1116)) (-5 *2 (-1118 *4)) (-5 *1 (-981 *4)))) (-1539 (*1 *2 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1116)) (-5 *1 (-981 *3))))) +(-13 (-1234) (-10 -7 (-15 -3427 ((-980 |#1|) (-980 |#1|))) (-15 -2128 ((-1118 |#1|) (-980 |#1|))) (-15 -1539 ((-980 |#1|) (-980 |#1|))))) +((-1785 (((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|)) 29))) +(((-982 |#1| |#2|) (-13 (-1234) (-10 -7 (-15 -1785 ((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|))))) (-1116) (-1116)) (T -982)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-980 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-980 *6)) (-5 *1 (-982 *5 *6))))) +(-13 (-1234) (-10 -7 (-15 -1785 ((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|))))) +((-2864 (((-112) $ $) 15)) (-1570 (($) 14 T CONST)) (-2106 (($ $ $) 6)) (-2084 (($ $) 8)) (-1489 (((-1175) $) 19)) (-2604 (($ $ $) 12)) (-3940 (((-1136) $) 18)) (-2896 (($) 13 T CONST)) (-1692 (($ $ $) 11)) (-2951 (((-872) $) 17)) (-4069 (((-112) $ $) 20)) (-2095 (($ $ $) 7)) (-2986 (((-112) $ $) 16))) +(((-983) (-141)) (T -983)) +((-1570 (*1 *1) (-4 *1 (-983))) (-2896 (*1 *1) (-4 *1 (-983))) (-2604 (*1 *1 *1 *1) (-4 *1 (-983))) (-1692 (*1 *1 *1 *1) (-4 *1 (-983)))) +(-13 (-113) (-1116) (-10 -8 (-15 -1570 ($) -1714) (-15 -2896 ($) -1714) (-15 -2604 ($ $ $)) (-15 -1692 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-1116) . T) ((-1234) . T)) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) 8)) (-3250 (($) 7 T CONST)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-4349 (($ $ $) 44)) (-3404 (($ $ $) 45)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-4380 ((|#1| $) 46)) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-2375 ((|#1| $) 40)) (-3285 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3801 ((|#1| $) 42)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) 43)) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-984 |#1|) (-141) (-860)) (T -984)) +((-4380 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860)))) (-3404 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860)))) (-4349 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4459) (-15 -4380 (|t#1| $)) (-15 -3404 ($ $ $)) (-15 -4349 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-1354 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|) 105)) (-3022 ((|#2| |#2| |#2|) 103)) (-2003 (((-2 (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|) 107)) (-3209 (((-2 (|:| |coef1| |#2|) (|:| -2887 |#2|)) |#2| |#2|) 109)) (-4318 (((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 131 (|has| |#1| (-462)))) (-3784 (((-2 (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|) 56)) (-1740 (((-2 (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|) 80)) (-2810 (((-2 (|:| |coef1| |#2|) (|:| -3319 |#1|)) |#2| |#2|) 82)) (-1737 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-1789 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 89)) (-4236 (((-2 (|:| |coef2| |#2|) (|:| -2394 |#1|)) |#2|) 121)) (-1992 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 92)) (-3502 (((-654 (-781)) |#2| |#2|) 102)) (-1324 ((|#1| |#2| |#2|) 50)) (-3486 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 129 (|has| |#1| (-462)))) (-4116 ((|#1| |#2| |#2|) 127 (|has| |#1| (-462)))) (-3860 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|) 54)) (-3473 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|) 79)) (-3319 ((|#1| |#2| |#2|) 76)) (-2861 (((-2 (|:| -1866 |#1|) (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2|) 41)) (-2731 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-1557 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-2623 ((|#2| |#2| |#2|) 93)) (-1862 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 87)) (-2977 ((|#2| |#2| |#2| (-781)) 85)) (-2887 ((|#2| |#2| |#2|) 135 (|has| |#1| (-462)))) (-2853 (((-1284 |#2|) (-1284 |#2|) |#1|) 22)) (-2969 (((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2|) 46)) (-3591 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2394 |#1|)) |#2|) 119)) (-2394 ((|#1| |#2|) 116)) (-2343 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 91)) (-2532 ((|#2| |#2| |#2| (-781)) 90)) (-1686 (((-654 |#2|) |#2| |#2|) 99)) (-3995 ((|#2| |#2| |#1| |#1| (-781)) 62)) (-2517 ((|#1| |#1| |#1| (-781)) 61)) (* (((-1284 |#2|) |#1| (-1284 |#2|)) 17))) +(((-985 |#1| |#2|) (-10 -7 (-15 -3319 (|#1| |#2| |#2|)) (-15 -3473 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|)) (-15 -1740 ((-2 (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|)) (-15 -2810 ((-2 (|:| |coef1| |#2|) (|:| -3319 |#1|)) |#2| |#2|)) (-15 -2977 (|#2| |#2| |#2| (-781))) (-15 -1862 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -1789 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2532 (|#2| |#2| |#2| (-781))) (-15 -2343 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -1992 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2623 (|#2| |#2| |#2|)) (-15 -1557 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1737 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3022 (|#2| |#2| |#2|)) (-15 -1354 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -2003 ((-2 (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -3209 ((-2 (|:| |coef1| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -2394 (|#1| |#2|)) (-15 -3591 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2394 |#1|)) |#2|)) (-15 -4236 ((-2 (|:| |coef2| |#2|) (|:| -2394 |#1|)) |#2|)) (-15 -1686 ((-654 |#2|) |#2| |#2|)) (-15 -3502 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -4116 (|#1| |#2| |#2|)) (-15 -3486 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -4318 ((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -2887 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1284 |#2|) |#1| (-1284 |#2|))) (-15 -2853 ((-1284 |#2|) (-1284 |#2|) |#1|)) (-15 -2861 ((-2 (|:| -1866 |#1|) (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2|)) (-15 -2969 ((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2|)) (-15 -2517 (|#1| |#1| |#1| (-781))) (-15 -3995 (|#2| |#2| |#1| |#1| (-781))) (-15 -2731 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1324 (|#1| |#2| |#2|)) (-15 -3860 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|)) (-15 -3784 ((-2 (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|))) (-566) (-1260 |#1|)) (T -985)) +((-3784 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3319 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-3860 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3319 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-1324 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2)))) (-2731 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) (-3995 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) (-2517 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-985 *2 *4)) (-4 *4 (-1260 *2)))) (-2969 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1866 *4) (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-2853 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-566)) (-5 *1 (-985 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-566)) (-5 *1 (-985 *3 *4)))) (-2887 (*1 *2 *2 *2) (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) (-4318 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4116 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-3486 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4116 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-4116 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2)))) (-3502 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-1686 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-4236 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2394 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-3591 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2394 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-2394 (*1 *2 *3) (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2)))) (-3209 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2887 *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-2003 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2887 *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-1354 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2887 *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-3022 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) (-1737 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-1557 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-2623 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) (-1992 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))) (-2343 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))) (-2532 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-985 *4 *2)) (-4 *2 (-1260 *4)))) (-1789 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))) (-1862 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))) (-2977 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-985 *4 *2)) (-4 *2 (-1260 *4)))) (-2810 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3319 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-1740 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3319 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-3473 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3319 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-3319 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2))))) +(-10 -7 (-15 -3319 (|#1| |#2| |#2|)) (-15 -3473 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|)) (-15 -1740 ((-2 (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|)) (-15 -2810 ((-2 (|:| |coef1| |#2|) (|:| -3319 |#1|)) |#2| |#2|)) (-15 -2977 (|#2| |#2| |#2| (-781))) (-15 -1862 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -1789 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2532 (|#2| |#2| |#2| (-781))) (-15 -2343 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -1992 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2623 (|#2| |#2| |#2|)) (-15 -1557 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1737 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3022 (|#2| |#2| |#2|)) (-15 -1354 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -2003 ((-2 (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -3209 ((-2 (|:| |coef1| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -2394 (|#1| |#2|)) (-15 -3591 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2394 |#1|)) |#2|)) (-15 -4236 ((-2 (|:| |coef2| |#2|) (|:| -2394 |#1|)) |#2|)) (-15 -1686 ((-654 |#2|) |#2| |#2|)) (-15 -3502 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -4116 (|#1| |#2| |#2|)) (-15 -3486 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -4318 ((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -2887 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1284 |#2|) |#1| (-1284 |#2|))) (-15 -2853 ((-1284 |#2|) (-1284 |#2|) |#1|)) (-15 -2861 ((-2 (|:| -1866 |#1|) (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2|)) (-15 -2969 ((-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) |#2| |#2|)) (-15 -2517 (|#1| |#1| |#1| (-781))) (-15 -3995 (|#2| |#2| |#1| |#1| (-781))) (-15 -2731 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1324 (|#1| |#2| |#2|)) (-15 -3860 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|)) (-15 -3784 ((-2 (|:| |coef2| |#2|) (|:| -3319 |#1|)) |#2| |#2|))) +((-2864 (((-112) $ $) NIL)) (-2350 (((-1233) $) 13)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 10)) (-2951 (((-872) $) 20) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-986) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $))))) (T -986)) +((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-986)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-986))))) +(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 40)) (-2600 (((-3 $ "failed") $ $) 54)) (-3250 (($) NIL T CONST)) (-1700 (((-654 (-883 (-935) (-935))) $) 67)) (-1690 (((-935) $) 94)) (-1871 (((-654 (-935)) $) 17)) (-4336 (((-1173 $) (-781)) 39)) (-3515 (($ (-654 (-935))) 16)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3617 (($ $) 70)) (-2951 (((-872) $) 90) (((-654 (-935)) $) 11)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 8 T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 44)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 42)) (-3074 (($ $ $) 46)) (* (($ (-935) $) NIL) (($ (-781) $) 49)) (-2877 (((-781) $) 22))) +(((-987) (-13 (-805) (-623 (-654 (-935))) (-10 -8 (-15 -3515 ($ (-654 (-935)))) (-15 -1871 ((-654 (-935)) $)) (-15 -2877 ((-781) $)) (-15 -4336 ((-1173 $) (-781))) (-15 -1700 ((-654 (-883 (-935) (-935))) $)) (-15 -1690 ((-935) $)) (-15 -3617 ($ $))))) (T -987)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-987)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-987)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-987)))) (-4336 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1173 (-987))) (-5 *1 (-987)))) (-1700 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-935) (-935)))) (-5 *1 (-987)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-987)))) (-3617 (*1 *1 *1) (-5 *1 (-987)))) +(-13 (-805) (-623 (-654 (-935))) (-10 -8 (-15 -3515 ($ (-654 (-935)))) (-15 -1871 ((-654 (-935)) $)) (-15 -2877 ((-781) $)) (-15 -4336 ((-1173 $) (-781))) (-15 -1700 ((-654 (-883 (-935) (-935))) $)) (-15 -1690 ((-935) $)) (-15 -3617 ($ $)))) +((-3103 (($ $ |#2|) 31)) (-3090 (($ $) 23) (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) 29))) +(((-988 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3103 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) (-989 |#2| |#3| |#4|) (-1065) (-802) (-860)) (T -988)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3103 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4350 (((-654 |#3|) $) 86)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2884 (($ $) 64 (|has| |#1| (-566)))) (-1981 (((-112) $) 66 (|has| |#1| (-566)))) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1402 (($ $) 72)) (-4322 (((-3 $ "failed") $) 37)) (-4189 (((-112) $) 85)) (-4226 (((-112) $) 35)) (-1555 (((-112) $) 74)) (-4328 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-654 |#3|) (-654 |#2|)) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-3580 ((|#2| $) 76)) (-2916 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2706 ((|#1| $ |#2|) 71)) (-3424 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-989 |#1| |#2| |#3|) (-141) (-1065) (-802) (-860)) (T -989)) +((-1378 (*1 *2 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860)) (-4 *2 (-1065)))) (-1366 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *4 (-860)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *2 *4)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *2 (-802)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-989 *4 *3 *2)) (-4 *4 (-1065)) (-4 *3 (-802)) (-4 *2 (-860)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-989 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-802)) (-4 *6 (-860)))) (-4350 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2916 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *4 (-860))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4328 ($ $ |t#3| |t#2|)) (-15 -4328 ($ $ (-654 |t#3|) (-654 |t#2|))) (-15 -1366 ($ $)) (-15 -1378 (|t#1| $)) (-15 -3580 (|t#2| $)) (-15 -4350 ((-654 |t#3|) $)) (-15 -4189 ((-112) $)) (-15 -2916 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2452 (((-1110 (-227)) $) 8)) (-2439 (((-1110 (-227)) $) 9)) (-2426 (((-1110 (-227)) $) 10)) (-1395 (((-654 (-654 (-957 (-227)))) $) 11)) (-2951 (((-872) $) 6))) +(((-990) (-141)) (T -990)) +((-1395 (*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-654 (-654 (-957 (-227))))))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227))))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227))))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227)))))) +(-13 (-623 (-872)) (-10 -8 (-15 -1395 ((-654 (-654 (-957 (-227)))) $)) (-15 -2426 ((-1110 (-227)) $)) (-15 -2439 ((-1110 (-227)) $)) (-15 -2452 ((-1110 (-227)) $)))) (((-623 (-872)) . T)) -((-4349 (((-654 |#4|) $) 23)) (-3278 (((-112) $) 55)) (-3814 (((-112) $) 54)) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#4|) 42)) (-4241 (((-112) $) 56)) (-3297 (((-112) $ $) 62)) (-2860 (((-112) $ $) 65)) (-2450 (((-112) $) 60)) (-4010 (((-654 |#5|) (-654 |#5|) $) 98)) (-1438 (((-654 |#5|) (-654 |#5|) $) 95)) (-1484 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2740 (((-654 |#4|) $) 27)) (-2080 (((-112) |#4| $) 34)) (-3081 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1689 (($ $ |#4|) 39)) (-2639 (($ $ |#4|) 38)) (-3386 (($ $ |#4|) 40)) (-2985 (((-112) $ $) 46))) -(((-990 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3814 ((-112) |#1|)) (-15 -4010 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -1438 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -1484 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3081 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4241 ((-112) |#1|)) (-15 -2860 ((-112) |#1| |#1|)) (-15 -3297 ((-112) |#1| |#1|)) (-15 -2450 ((-112) |#1|)) (-15 -3278 ((-112) |#1|)) (-15 -2785 ((-2 (|:| |under| |#1|) (|:| -3471 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1689 (|#1| |#1| |#4|)) (-15 -3386 (|#1| |#1| |#4|)) (-15 -2639 (|#1| |#1| |#4|)) (-15 -2080 ((-112) |#4| |#1|)) (-15 -2740 ((-654 |#4|) |#1|)) (-15 -4349 ((-654 |#4|) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-991 |#2| |#3| |#4| |#5|) (-1064) (-803) (-860) (-1080 |#2| |#3| |#4|)) (T -990)) -NIL -(-10 -8 (-15 -3814 ((-112) |#1|)) (-15 -4010 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -1438 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -1484 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3081 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4241 ((-112) |#1|)) (-15 -2860 ((-112) |#1| |#1|)) (-15 -3297 ((-112) |#1| |#1|)) (-15 -2450 ((-112) |#1|)) (-15 -3278 ((-112) |#1|)) (-15 -2785 ((-2 (|:| |under| |#1|) (|:| -3471 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1689 (|#1| |#1| |#4|)) (-15 -3386 (|#1| |#1| |#4|)) (-15 -2639 (|#1| |#1| |#4|)) (-15 -2080 ((-112) |#4| |#1|)) (-15 -2740 ((-654 |#4|) |#1|)) (-15 -4349 ((-654 |#4|) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-4349 (((-654 |#3|) $) 34)) (-3278 (((-112) $) 27)) (-3814 (((-112) $) 18 (|has| |#1| (-566)))) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#3|) 28)) (-2818 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458)))) (-3831 (($) 46 T CONST)) (-4241 (((-112) $) 23 (|has| |#1| (-566)))) (-3297 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2860 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2450 (((-112) $) 26 (|has| |#1| (-566)))) (-4010 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1438 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2560 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458)))) (-1873 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-2968 ((|#3| $) 35)) (-2224 (((-112) $ (-781)) 44)) (-2247 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) 48)) (-2740 (((-654 |#3|) $) 33)) (-2080 (((-112) |#3| $) 32)) (-3625 (((-112) $ (-781)) 43)) (-3945 (((-1174) $) 10)) (-3081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-3939 (((-1135) $) 11)) (-2294 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2000 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) 39)) (-2880 (((-112) $) 42)) (-2833 (($) 41)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1845 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-1689 (($ $ |#3|) 29)) (-2639 (($ $ |#3|) 31)) (-3386 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3838 (((-112) $ $) 9)) (-2980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) -(((-991 |#1| |#2| |#3| |#4|) (-141) (-1064) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -991)) -((-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-991 *3 *4 *5 *6)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-991 *3 *4 *5 *6)))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-1080 *3 *4 *2)) (-4 *2 (-860)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5)))) (-2740 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5)))) (-2080 (*1 *2 *3 *1) (-12 (-4 *1 (-991 *4 *5 *3 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1080 *4 *5 *3)) (-5 *2 (-112)))) (-2639 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2)))) (-3386 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2)))) (-1689 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2)))) (-2785 (*1 *2 *1 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1080 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3471 *1) (|:| |upper| *1))) (-4 *1 (-991 *4 *5 *3 *6)))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-2450 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3297 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-2860 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3081 (*1 *2 *3 *1) (-12 (-4 *1 (-991 *4 *5 *6 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1484 (*1 *2 *3 *1) (-12 (-4 *1 (-991 *4 *5 *6 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1438 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)))) (-4010 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112))))) -(-13 (-1115) (-152 |t#4|) (-623 (-654 |t#4|)) (-10 -8 (-6 -4458) (-15 -1705 ((-3 $ "failed") (-654 |t#4|))) (-15 -2216 ($ (-654 |t#4|))) (-15 -2968 (|t#3| $)) (-15 -4349 ((-654 |t#3|) $)) (-15 -2740 ((-654 |t#3|) $)) (-15 -2080 ((-112) |t#3| $)) (-15 -2639 ($ $ |t#3|)) (-15 -3386 ($ $ |t#3|)) (-15 -1689 ($ $ |t#3|)) (-15 -2785 ((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |t#3|)) (-15 -3278 ((-112) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -2450 ((-112) $)) (-15 -3297 ((-112) $ $)) (-15 -2860 ((-112) $ $)) (-15 -4241 ((-112) $)) (-15 -3081 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1484 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1438 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -4010 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -3814 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-1115) . T) ((-1233) . T)) -((-1517 (((-654 |#4|) |#4| |#4|) 136)) (-1372 (((-654 |#4|) (-654 |#4|) (-112)) 125 (|has| |#1| (-462))) (((-654 |#4|) (-654 |#4|)) 126 (|has| |#1| (-462)))) (-2521 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 44)) (-3279 (((-112) |#4|) 43)) (-3389 (((-654 |#4|) |#4|) 121 (|has| |#1| (-462)))) (-2457 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|)) 24)) (-3849 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 30)) (-3863 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 31)) (-4363 (((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|)) 90)) (-3155 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3102 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3443 (((-654 |#4|) (-654 |#4|)) 128)) (-3446 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112)) 59) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 61)) (-3399 ((|#4| |#4| (-654 |#4|)) 60)) (-2236 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 132 (|has| |#1| (-462)))) (-1557 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 135 (|has| |#1| (-462)))) (-3848 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 134 (|has| |#1| (-462)))) (-2474 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|))) 105) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 107) (((-654 |#4|) (-654 |#4|) |#4|) 140) (((-654 |#4|) |#4| |#4|) 137) (((-654 |#4|) (-654 |#4|)) 106)) (-3617 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-3967 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 52)) (-1318 (((-112) (-654 |#4|)) 79)) (-4005 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 67)) (-3425 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 37)) (-2959 (((-112) |#4|) 36)) (-2359 (((-654 |#4|) (-654 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-2941 (((-654 |#4|) (-654 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-2050 (((-654 |#4|) (-654 |#4|)) 83)) (-3405 (((-654 |#4|) (-654 |#4|)) 97)) (-2121 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-4420 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 50)) (-1382 (((-112) |#4|) 45))) -(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2474 ((-654 |#4|) (-654 |#4|))) (-15 -2474 ((-654 |#4|) |#4| |#4|)) (-15 -3443 ((-654 |#4|) (-654 |#4|))) (-15 -1517 ((-654 |#4|) |#4| |#4|)) (-15 -2474 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -2474 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2474 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -2121 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4005 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -1318 ((-112) (-654 |#4|))) (-15 -2457 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -3849 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -3863 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -3967 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -3279 ((-112) |#4|)) (-15 -2521 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2959 ((-112) |#4|)) (-15 -3425 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1382 ((-112) |#4|)) (-15 -4420 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -3446 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -3446 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -3399 (|#4| |#4| (-654 |#4|))) (-15 -2050 ((-654 |#4|) (-654 |#4|))) (-15 -4363 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -3405 ((-654 |#4|) (-654 |#4|))) (-15 -3155 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3102 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -3389 ((-654 |#4|) |#4|)) (-15 -1372 ((-654 |#4|) (-654 |#4|))) (-15 -1372 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -2236 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -3848 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -1557 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -2941 ((-654 |#4|) (-654 |#4|))) (-15 -2359 ((-654 |#4|) (-654 |#4|))) (-15 -3617 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|)) (-566) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -992)) -((-3617 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-2359 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-2941 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-1557 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-3848 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-2236 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *7)))) (-1372 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-3389 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-3102 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-992 *5 *6 *7 *8)))) (-3155 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *1 (-992 *6 *7 *8 *9)))) (-3405 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-4363 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2011 (-654 *7)))) (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-3399 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *2)))) (-3446 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *7)))) (-3446 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-4420 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-1382 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-3425 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2959 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3279 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3863 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7)))) (-4005 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *5 *6 *7 *8)))) (-2121 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7)))) (-2474 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *7)))) (-2474 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-2474 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *3)))) (-1517 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-3443 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-2474 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-2474 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6))))) -(-10 -7 (-15 -2474 ((-654 |#4|) (-654 |#4|))) (-15 -2474 ((-654 |#4|) |#4| |#4|)) (-15 -3443 ((-654 |#4|) (-654 |#4|))) (-15 -1517 ((-654 |#4|) |#4| |#4|)) (-15 -2474 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -2474 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2474 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -2121 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4005 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -1318 ((-112) (-654 |#4|))) (-15 -2457 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -3849 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -3863 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -3967 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -3279 ((-112) |#4|)) (-15 -2521 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2959 ((-112) |#4|)) (-15 -3425 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1382 ((-112) |#4|)) (-15 -4420 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -3446 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -3446 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -3399 (|#4| |#4| (-654 |#4|))) (-15 -2050 ((-654 |#4|) (-654 |#4|))) (-15 -4363 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -3405 ((-654 |#4|) (-654 |#4|))) (-15 -3155 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3102 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -3389 ((-654 |#4|) |#4|)) (-15 -1372 ((-654 |#4|) (-654 |#4|))) (-15 -1372 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -2236 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -3848 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -1557 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -2941 ((-654 |#4|) (-654 |#4|))) (-15 -2359 ((-654 |#4|) (-654 |#4|))) (-15 -3617 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|)) -((-3190 (((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-1864 (((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|)) 46)) (-2308 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-993 |#1|) (-10 -7 (-15 -3190 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2308 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1864 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|)))) (-372)) (T -993)) -((-1864 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1283 *5))))) (-5 *1 (-993 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)))) (-2308 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-993 *5)))) (-3190 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372)) (-5 *2 (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6)))) (-5 *1 (-993 *6)) (-5 *3 (-699 *6))))) -(-10 -7 (-15 -3190 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2308 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1864 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|)))) -((-3954 (((-428 |#4|) |#4|) 56))) -(((-994 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 ((-428 |#4|) |#4|))) (-860) (-803) (-462) (-962 |#3| |#2| |#1|)) (T -994)) -((-3954 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-962 *6 *5 *4))))) -(-10 -7 (-15 -3954 ((-428 |#4|) |#4|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2226 (($ (-781)) 115 (|has| |#1| (-23)))) (-3287 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2163 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2560 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1451 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1115)))) (-3564 (($ (-654 |#1|)) 121)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3872 (((-699 |#1|) $ $) 108 (|has| |#1| (-1064)))) (-3763 (($ (-781) |#1|) 70)) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| |#1| (-860)))) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 45 (|has| (-574) (-860)))) (-1593 (($ $ $) 89 (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4316 ((|#1| $) 105 (-12 (|has| |#1| (-1064)) (|has| |#1| (-1017))))) (-3625 (((-112) $ (-781)) 10)) (-4108 ((|#1| $) 106 (-12 (|has| |#1| (-1064)) (|has| |#1| (-1017))))) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1603 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-3228 (((-654 (-574)) $) 47)) (-3071 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4276 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-2115 (($ $ (-654 |#1|)) 119)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) 49)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-3036 ((|#1| $ $) 109 (|has| |#1| (-1064)))) (-3480 (((-934) $) 120)) (-2853 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-4237 (($ $ $) 107)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2315 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1845 (((-546) $) 81 (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 122)) (-2962 (($ (-654 |#1|)) 72)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3089 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3074 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-995 |#1|) (-141) (-1064)) (T -995)) -((-3564 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1064)) (-4 *1 (-995 *3)))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1064)) (-5 *2 (-934)))) (-4237 (*1 *1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1064)))) (-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-995 *3)) (-4 *3 (-1064))))) -(-13 (-1281 |t#1|) (-628 (-654 |t#1|)) (-10 -8 (-15 -3564 ($ (-654 |t#1|))) (-15 -3480 ((-934) $)) (-15 -4237 ($ $ $)) (-15 -2115 ($ $ (-654 |t#1|))))) -(((-34) . T) ((-102) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-628 (-654 |#1|)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1115) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-1233) . T) ((-1281 |#1|) . T)) -((-1786 (((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|)) 17))) -(((-996 |#1| |#2|) (-10 -7 (-15 -1786 ((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|)))) (-1064) (-1064)) (T -996)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-956 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-5 *2 (-956 *6)) (-5 *1 (-996 *5 *6))))) -(-10 -7 (-15 -1786 ((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|)))) -((-4051 ((|#1| (-956 |#1|)) 14)) (-1588 ((|#1| (-956 |#1|)) 13)) (-3327 ((|#1| (-956 |#1|)) 12)) (-1682 ((|#1| (-956 |#1|)) 16)) (-2722 ((|#1| (-956 |#1|)) 24)) (-2858 ((|#1| (-956 |#1|)) 15)) (-3975 ((|#1| (-956 |#1|)) 17)) (-1376 ((|#1| (-956 |#1|)) 23)) (-1756 ((|#1| (-956 |#1|)) 22))) -(((-997 |#1|) (-10 -7 (-15 -3327 (|#1| (-956 |#1|))) (-15 -1588 (|#1| (-956 |#1|))) (-15 -4051 (|#1| (-956 |#1|))) (-15 -2858 (|#1| (-956 |#1|))) (-15 -1682 (|#1| (-956 |#1|))) (-15 -3975 (|#1| (-956 |#1|))) (-15 -1756 (|#1| (-956 |#1|))) (-15 -1376 (|#1| (-956 |#1|))) (-15 -2722 (|#1| (-956 |#1|)))) (-1064)) (T -997)) -((-2722 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) -(-10 -7 (-15 -3327 (|#1| (-956 |#1|))) (-15 -1588 (|#1| (-956 |#1|))) (-15 -4051 (|#1| (-956 |#1|))) (-15 -2858 (|#1| (-956 |#1|))) (-15 -1682 (|#1| (-956 |#1|))) (-15 -3975 (|#1| (-956 |#1|))) (-15 -1756 (|#1| (-956 |#1|))) (-15 -1376 (|#1| (-956 |#1|))) (-15 -2722 (|#1| (-956 |#1|)))) -((-2049 (((-3 |#1| "failed") |#1|) 18)) (-3497 (((-3 |#1| "failed") |#1|) 6)) (-1814 (((-3 |#1| "failed") |#1|) 16)) (-1744 (((-3 |#1| "failed") |#1|) 4)) (-1856 (((-3 |#1| "failed") |#1|) 20)) (-3013 (((-3 |#1| "failed") |#1|) 8)) (-2611 (((-3 |#1| "failed") |#1| (-781)) 1)) (-3407 (((-3 |#1| "failed") |#1|) 3)) (-2516 (((-3 |#1| "failed") |#1|) 2)) (-3055 (((-3 |#1| "failed") |#1|) 21)) (-2517 (((-3 |#1| "failed") |#1|) 9)) (-4079 (((-3 |#1| "failed") |#1|) 19)) (-2885 (((-3 |#1| "failed") |#1|) 7)) (-3170 (((-3 |#1| "failed") |#1|) 17)) (-2067 (((-3 |#1| "failed") |#1|) 5)) (-2210 (((-3 |#1| "failed") |#1|) 24)) (-2406 (((-3 |#1| "failed") |#1|) 12)) (-3778 (((-3 |#1| "failed") |#1|) 22)) (-3124 (((-3 |#1| "failed") |#1|) 10)) (-2656 (((-3 |#1| "failed") |#1|) 26)) (-1922 (((-3 |#1| "failed") |#1|) 14)) (-3133 (((-3 |#1| "failed") |#1|) 27)) (-1502 (((-3 |#1| "failed") |#1|) 15)) (-2055 (((-3 |#1| "failed") |#1|) 25)) (-3370 (((-3 |#1| "failed") |#1|) 13)) (-1623 (((-3 |#1| "failed") |#1|) 23)) (-2192 (((-3 |#1| "failed") |#1|) 11))) -(((-998 |#1|) (-141) (-1218)) (T -998)) -((-3133 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2656 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2055 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2210 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1623 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3778 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3055 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1856 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-4079 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2049 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3170 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1814 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1502 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1922 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3370 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2406 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2192 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3124 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2517 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3013 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2885 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3497 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2067 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1744 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3407 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2516 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2611 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(-13 (-10 -7 (-15 -2611 ((-3 |t#1| "failed") |t#1| (-781))) (-15 -2516 ((-3 |t#1| "failed") |t#1|)) (-15 -3407 ((-3 |t#1| "failed") |t#1|)) (-15 -1744 ((-3 |t#1| "failed") |t#1|)) (-15 -2067 ((-3 |t#1| "failed") |t#1|)) (-15 -3497 ((-3 |t#1| "failed") |t#1|)) (-15 -2885 ((-3 |t#1| "failed") |t#1|)) (-15 -3013 ((-3 |t#1| "failed") |t#1|)) (-15 -2517 ((-3 |t#1| "failed") |t#1|)) (-15 -3124 ((-3 |t#1| "failed") |t#1|)) (-15 -2192 ((-3 |t#1| "failed") |t#1|)) (-15 -2406 ((-3 |t#1| "failed") |t#1|)) (-15 -3370 ((-3 |t#1| "failed") |t#1|)) (-15 -1922 ((-3 |t#1| "failed") |t#1|)) (-15 -1502 ((-3 |t#1| "failed") |t#1|)) (-15 -1814 ((-3 |t#1| "failed") |t#1|)) (-15 -3170 ((-3 |t#1| "failed") |t#1|)) (-15 -2049 ((-3 |t#1| "failed") |t#1|)) (-15 -4079 ((-3 |t#1| "failed") |t#1|)) (-15 -1856 ((-3 |t#1| "failed") |t#1|)) (-15 -3055 ((-3 |t#1| "failed") |t#1|)) (-15 -3778 ((-3 |t#1| "failed") |t#1|)) (-15 -1623 ((-3 |t#1| "failed") |t#1|)) (-15 -2210 ((-3 |t#1| "failed") |t#1|)) (-15 -2055 ((-3 |t#1| "failed") |t#1|)) (-15 -2656 ((-3 |t#1| "failed") |t#1|)) (-15 -3133 ((-3 |t#1| "failed") |t#1|)))) -((-1850 ((|#4| |#4| (-654 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2563 ((|#4| |#4| (-654 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1786 ((|#4| (-1 |#4| (-965 |#1|)) |#4|) 31))) -(((-999 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2563 (|#4| |#4| |#3|)) (-15 -2563 (|#4| |#4| (-654 |#3|))) (-15 -1850 (|#4| |#4| |#3|)) (-15 -1850 (|#4| |#4| (-654 |#3|))) (-15 -1786 (|#4| (-1 |#4| (-965 |#1|)) |#4|))) (-1064) (-803) (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)) (-15 -1497 ((-3 $ "failed") (-1192))))) (-962 (-965 |#1|) |#2| |#3|)) (T -999)) -((-1786 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-965 *4))) (-4 *4 (-1064)) (-4 *2 (-962 (-965 *4) *5 *6)) (-4 *5 (-803)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)) (-15 -1497 ((-3 $ "failed") (-1192)))))) (-5 *1 (-999 *4 *5 *6 *2)))) (-1850 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)) (-15 -1497 ((-3 $ "failed") (-1192)))))) (-4 *4 (-1064)) (-4 *5 (-803)) (-5 *1 (-999 *4 *5 *6 *2)) (-4 *2 (-962 (-965 *4) *5 *6)))) (-1850 (*1 *2 *2 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)) (-15 -1497 ((-3 $ "failed") (-1192)))))) (-5 *1 (-999 *4 *5 *3 *2)) (-4 *2 (-962 (-965 *4) *5 *3)))) (-2563 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)) (-15 -1497 ((-3 $ "failed") (-1192)))))) (-4 *4 (-1064)) (-4 *5 (-803)) (-5 *1 (-999 *4 *5 *6 *2)) (-4 *2 (-962 (-965 *4) *5 *6)))) (-2563 (*1 *2 *2 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)) (-15 -1497 ((-3 $ "failed") (-1192)))))) (-5 *1 (-999 *4 *5 *3 *2)) (-4 *2 (-962 (-965 *4) *5 *3))))) -(-10 -7 (-15 -2563 (|#4| |#4| |#3|)) (-15 -2563 (|#4| |#4| (-654 |#3|))) (-15 -1850 (|#4| |#4| |#3|)) (-15 -1850 (|#4| |#4| (-654 |#3|))) (-15 -1786 (|#4| (-1 |#4| (-965 |#1|)) |#4|))) -((-2772 ((|#2| |#3|) 35)) (-1949 (((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 79)) (-1555 (((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 100))) -(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1555 ((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -1949 ((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -2772 (|#2| |#3|))) (-358) (-1259 |#1|) (-1259 |#2|) (-734 |#2| |#3|)) (T -1000)) -((-2772 (*1 *2 *3) (-12 (-4 *3 (-1259 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-1000 *4 *2 *3 *5)) (-4 *4 (-358)) (-4 *5 (-734 *2 *3)))) (-1949 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 *3)) (-5 *2 (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-1000 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5)))) (-1555 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| -2191 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5))))) -(-10 -7 (-15 -1555 ((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -1949 ((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -2772 (|#2| |#3|))) -((-2285 (((-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))) 82))) -(((-1001 |#1| |#2|) (-10 -7 (-15 -2285 ((-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))))) (-654 (-1192)) (-781)) (T -1001)) -((-2285 (*1 *2 *2) (-12 (-5 *2 (-1002 (-417 (-574)) (-874 *3) (-246 *4 (-781)) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1192))) (-14 *4 (-781)) (-5 *1 (-1001 *3 *4))))) -(-10 -7 (-15 -2285 ((-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))))) -((-2863 (((-112) $ $) NIL)) (-2035 (((-3 (-112) "failed") $) 71)) (-1889 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-4112 (($ $ (-3 (-112) "failed")) 72)) (-2126 (($ (-654 |#4|) |#4|) 25)) (-3945 (((-1174) $) NIL)) (-2786 (($ $) 69)) (-3939 (((-1135) $) NIL)) (-2880 (((-112) $) 70)) (-2833 (($) 30)) (-1776 ((|#4| $) 74)) (-2375 (((-654 |#4|) $) 73)) (-2950 (((-872) $) 68)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1002 |#1| |#2| |#3| |#4|) (-13 (-1115) (-623 (-872)) (-10 -8 (-15 -2833 ($)) (-15 -2126 ($ (-654 |#4|) |#4|)) (-15 -2035 ((-3 (-112) "failed") $)) (-15 -4112 ($ $ (-3 (-112) "failed"))) (-15 -2880 ((-112) $)) (-15 -2375 ((-654 |#4|) $)) (-15 -1776 (|#4| $)) (-15 -2786 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -1889 ($ $)) |%noBranch|) |%noBranch|))) (-462) (-860) (-803) (-962 |#1| |#3| |#2|)) (T -1002)) -((-2833 (*1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3)))) (-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-962 *4 *6 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1002 *4 *5 *6 *3)))) (-2035 (*1 *2 *1) (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4)))) (-4112 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4)))) (-2880 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4)))) (-2375 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6)) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4)))) (-1776 (*1 *2 *1) (-12 (-4 *2 (-962 *3 *5 *4)) (-5 *1 (-1002 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)))) (-2786 (*1 *1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3)))) (-1889 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3))))) -(-13 (-1115) (-623 (-872)) (-10 -8 (-15 -2833 ($)) (-15 -2126 ($ (-654 |#4|) |#4|)) (-15 -2035 ((-3 (-112) "failed") $)) (-15 -4112 ($ $ (-3 (-112) "failed"))) (-15 -2880 ((-112) $)) (-15 -2375 ((-654 |#4|) $)) (-15 -1776 (|#4| $)) (-15 -2786 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -1889 ($ $)) |%noBranch|) |%noBranch|))) -((-3935 (((-112) |#5| |#5|) 44)) (-1990 (((-112) |#5| |#5|) 59)) (-3052 (((-112) |#5| (-654 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-2380 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-3035 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) 70)) (-3897 (((-1288)) 32)) (-4093 (((-1288) (-1174) (-1174) (-1174)) 28)) (-2036 (((-654 |#5|) (-654 |#5|)) 100)) (-3464 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)))) 92)) (-1880 (((-654 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 122)) (-4388 (((-112) |#5| |#5|) 53)) (-3082 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2699 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-4321 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-2326 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-2927 (((-3 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-2161 (((-654 |#5|) (-654 |#5|)) 49))) -(((-1003 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4093 ((-1288) (-1174) (-1174) (-1174))) (-15 -3897 ((-1288))) (-15 -3935 ((-112) |#5| |#5|)) (-15 -2161 ((-654 |#5|) (-654 |#5|))) (-15 -4388 ((-112) |#5| |#5|)) (-15 -1990 ((-112) |#5| |#5|)) (-15 -2380 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2699 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4321 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2326 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3082 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3052 ((-112) |#5| |#5|)) (-15 -3052 ((-112) |#5| (-654 |#5|))) (-15 -2036 ((-654 |#5|) (-654 |#5|))) (-15 -3035 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)))) (-15 -3464 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) (-15 -1880 ((-654 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2927 ((-3 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -1003)) -((-2927 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| -4095 (-654 *9)) (|:| -4064 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1003 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1086 *6 *7 *8 *9)))) (-1880 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1086 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4095 (-654 *9)) (|:| -4064 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1003 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4064 *7)))) (-4 *6 (-1080 *3 *4 *5)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1003 *3 *4 *5 *6 *7)))) (-3035 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4064 *8))) (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *8)))) (-2036 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *6 *7)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1003 *5 *6 *7 *8 *3)))) (-3052 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-3082 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-2326 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-4321 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-2699 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-2380 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-1990 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-4388 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-2161 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *6 *7)))) (-3935 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-3897 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1003 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-4093 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) -(-10 -7 (-15 -4093 ((-1288) (-1174) (-1174) (-1174))) (-15 -3897 ((-1288))) (-15 -3935 ((-112) |#5| |#5|)) (-15 -2161 ((-654 |#5|) (-654 |#5|))) (-15 -4388 ((-112) |#5| |#5|)) (-15 -1990 ((-112) |#5| |#5|)) (-15 -2380 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2699 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4321 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2326 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3082 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3052 ((-112) |#5| |#5|)) (-15 -3052 ((-112) |#5| (-654 |#5|))) (-15 -2036 ((-654 |#5|) (-654 |#5|))) (-15 -3035 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)))) (-15 -3464 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) (-15 -1880 ((-654 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2927 ((-3 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1497 (((-1192) $) 15)) (-3078 (((-1174) $) 16)) (-2704 (($ (-1192) (-1174)) 14)) (-2950 (((-872) $) 13))) -(((-1004) (-13 (-623 (-872)) (-10 -8 (-15 -2704 ($ (-1192) (-1174))) (-15 -1497 ((-1192) $)) (-15 -3078 ((-1174) $))))) (T -1004)) -((-2704 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1174)) (-5 *1 (-1004)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1004)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1004))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2704 ($ (-1192) (-1174))) (-15 -1497 ((-1192) $)) (-15 -3078 ((-1174) $)))) -((-1786 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-1005 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1786 (|#4| (-1 |#2| |#1|) |#3|))) (-566) (-566) (-1007 |#1|) (-1007 |#2|)) (T -1005)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-4 *2 (-1007 *6)) (-5 *1 (-1005 *5 *6 *4 *2)) (-4 *4 (-1007 *5))))) -(-10 -7 (-15 -1786 (|#4| (-1 |#2| |#1|) |#3|))) -((-1705 (((-3 |#2| "failed") $) NIL) (((-3 (-1192) "failed") $) 66) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) 96)) (-2216 ((|#2| $) NIL) (((-1192) $) 61) (((-417 (-574)) $) NIL) (((-574) $) 93)) (-3465 (((-699 (-574)) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 115) (((-699 |#2|) (-699 $)) 28) (((-699 |#2|) (-1283 $)) NIL)) (-2834 (($) 99)) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 76) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 85)) (-3536 (($ $) 10)) (-1353 (((-3 $ "failed") $) 20)) (-1786 (($ (-1 |#2| |#2|) $) 22)) (-3791 (($) 16)) (-2244 (($ $) 55)) (-3878 (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2120 (($ $) 12)) (-1845 (((-903 (-574)) $) 71) (((-903 (-388)) $) 80) (((-546) $) 40) (((-388) $) 44) (((-227) $) 48)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 91) (($ |#2|) NIL) (($ (-1192)) 58)) (-4019 (((-781)) 31)) (-3009 (((-112) $ $) 51))) -(((-1006 |#1| |#2|) (-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -3791 (|#1|)) (-15 -1353 ((-3 |#1| "failed") |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1845 ((-227) |#1|)) (-15 -1845 ((-388) |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -2950 (|#1| (-1192))) (-15 -1705 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -2834 (|#1|)) (-15 -2244 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -3536 (|#1| |#1|)) (-15 -3552 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -3552 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -3465 ((-699 |#2|) (-1283 |#1|))) (-15 -3465 ((-699 |#2|) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| |#1|)) (-15 -4019 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-1007 |#2|) (-566)) (T -1006)) -((-4019 (*1 *2) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1006 *3 *4)) (-4 *3 (-1007 *4))))) -(-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -3791 (|#1|)) (-15 -1353 ((-3 |#1| "failed") |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1845 ((-227) |#1|)) (-15 -1845 ((-388) |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -2950 (|#1| (-1192))) (-15 -1705 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -2834 (|#1|)) (-15 -2244 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -3536 (|#1| |#1|)) (-15 -3552 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -3552 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -3465 ((-699 |#2|) (-1283 |#1|))) (-15 -3465 ((-699 |#2|) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| |#1|)) (-15 -4019 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4018 ((|#1| $) 148 (|has| |#1| (-315)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-4055 (((-428 (-1188 $)) (-1188 $)) 139 (|has| |#1| (-922)))) (-3296 (($ $) 81)) (-3954 (((-428 $) $) 80)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 142 (|has| |#1| (-922)))) (-3656 (((-112) $ $) 65)) (-3011 (((-574) $) 129 (|has| |#1| (-830)))) (-3831 (($) 18 T CONST)) (-1705 (((-3 |#1| "failed") $) 188) (((-3 (-1192) "failed") $) 137 (|has| |#1| (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) 120 (|has| |#1| (-1053 (-574)))) (((-3 (-574) "failed") $) 118 (|has| |#1| (-1053 (-574))))) (-2216 ((|#1| $) 189) (((-1192) $) 138 (|has| |#1| (-1053 (-1192)))) (((-417 (-574)) $) 121 (|has| |#1| (-1053 (-574)))) (((-574) $) 119 (|has| |#1| (-1053 (-574))))) (-2799 (($ $ $) 61)) (-3465 (((-699 (-574)) (-1283 $)) 163 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 162 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 161 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 160) (((-699 |#1|) (-699 $)) 159) (((-699 |#1|) (-1283 $)) 158)) (-3911 (((-3 $ "failed") $) 37)) (-2834 (($) 146 (|has| |#1| (-555)))) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1782 (((-112) $) 79)) (-1913 (((-112) $) 131 (|has| |#1| (-830)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 155 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 154 (|has| |#1| (-897 (-388))))) (-3372 (((-112) $) 35)) (-3536 (($ $) 150)) (-2970 ((|#1| $) 152)) (-1353 (((-3 $ "failed") $) 117 (|has| |#1| (-1167)))) (-1808 (((-112) $) 130 (|has| |#1| (-830)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3632 (($ $ $) 127 (|has| |#1| (-860)))) (-1593 (($ $ $) 126 (|has| |#1| (-860)))) (-1786 (($ (-1 |#1| |#1|) $) 180)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3791 (($) 116 (|has| |#1| (-1167)) CONST)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2244 (($ $) 147 (|has| |#1| (-315)))) (-3471 ((|#1| $) 144 (|has| |#1| (-555)))) (-2743 (((-428 (-1188 $)) (-1188 $)) 141 (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) 140 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 82)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) 186 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 185 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 184 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 183 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 182 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) 181 (|has| |#1| (-524 (-1192) |#1|)))) (-3364 (((-781) $) 64)) (-2208 (($ $ |#1|) 187 (|has| |#1| (-294 |#1| |#1|)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-3878 (($ $ (-781)) 178 (|has| |#1| (-239))) (($ $) 176 (|has| |#1| (-239))) (($ $ (-1192)) 175 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 174 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 173 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 172 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 165) (($ $ (-1 |#1| |#1|)) 164)) (-2120 (($ $) 149)) (-2981 ((|#1| $) 151)) (-1845 (((-903 (-574)) $) 157 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 156 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 134 (|has| |#1| (-624 (-546)))) (((-388) $) 133 (|has| |#1| (-1037))) (((-227) $) 132 (|has| |#1| (-1037)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 143 (-2096 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 192) (($ (-1192)) 136 (|has| |#1| (-1053 (-1192))))) (-3247 (((-3 $ "failed") $) 135 (-2832 (|has| |#1| (-146)) (-2096 (|has| $ (-146)) (|has| |#1| (-922)))))) (-4019 (((-781)) 32 T CONST)) (-2753 ((|#1| $) 145 (|has| |#1| (-555)))) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-3306 (($ $) 128 (|has| |#1| (-830)))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-781)) 179 (|has| |#1| (-239))) (($ $) 177 (|has| |#1| (-239))) (($ $ (-1192)) 171 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 170 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 169 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 168 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 167) (($ $ (-1 |#1| |#1|)) 166)) (-3041 (((-112) $ $) 124 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 123 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 125 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 122 (|has| |#1| (-860)))) (-3098 (($ $ $) 73) (($ |#1| |#1|) 153)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ |#1| $) 191) (($ $ |#1|) 190))) -(((-1007 |#1|) (-141) (-566)) (T -1007)) -((-3098 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) (-3536 (*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) (-2120 (*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-2244 (*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-2834 (*1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-555)) (-4 *2 (-566)))) (-2753 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-555))))) -(-13 (-372) (-38 |t#1|) (-1053 |t#1|) (-347 |t#1|) (-233 |t#1|) (-386 |t#1|) (-895 |t#1|) (-410 |t#1|) (-10 -8 (-15 -3098 ($ |t#1| |t#1|)) (-15 -2970 (|t#1| $)) (-15 -2981 (|t#1| $)) (-15 -3536 ($ $)) (-15 -2120 ($ $)) (IF (|has| |t#1| (-1167)) (-6 (-1167)) |%noBranch|) (IF (|has| |t#1| (-1053 (-574))) (PROGN (-6 (-1053 (-574))) (-6 (-1053 (-417 (-574))))) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-1037)) (-6 (-1037)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1053 (-1192))) (-6 (-1053 (-1192))) |%noBranch|) (IF (|has| |t#1| (-315)) (PROGN (-15 -4018 (|t#1| $)) (-15 -2244 ($ $))) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -2834 ($)) (-15 -2753 (|t#1| $)) (-15 -3471 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-922)) (-6 (-922)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 #1=(-1192)) |has| |#1| (-1053 (-1192))) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) |has| |#1| (-1037)) ((-624 (-388)) |has| |#1| (-1037)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) . T) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) . T) ((-315) . T) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-462) . T) ((-524 (-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-801) |has| |#1| (-830)) ((-802) |has| |#1| (-830)) ((-804) |has| |#1| (-830)) ((-805) |has| |#1| (-830)) ((-830) |has| |#1| (-830)) ((-858) |has| |#1| (-830)) ((-860) -2832 (|has| |#1| (-860)) (|has| |#1| (-830))) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-922) |has| |#1| (-922)) ((-933) . T) ((-1037) |has| |#1| (-1037)) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-574))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 #1#) |has| |#1| (-1053 (-1192))) ((-1053 |#1|) . T) ((-1066 #0#) . T) ((-1066 |#1|) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| |#1| (-1167)) ((-1233) . T) ((-1237) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-3793 (($ (-1157 |#1| |#2|)) 11)) (-2923 (((-1157 |#1| |#2|) $) 12)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2208 ((|#2| $ (-246 |#1| |#2|)) 16)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL))) -(((-1008 |#1| |#2|) (-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3793 ($ (-1157 |#1| |#2|))) (-15 -2923 ((-1157 |#1| |#2|) $)))) (-934) (-372)) (T -1008)) -((-3793 (*1 *1 *2) (-12 (-5 *2 (-1157 *3 *4)) (-14 *3 (-934)) (-4 *4 (-372)) (-5 *1 (-1008 *3 *4)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-1157 *3 *4)) (-5 *1 (-1008 *3 *4)) (-14 *3 (-934)) (-4 *4 (-372))))) -(-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3793 ($ (-1157 |#1| |#2|))) (-15 -2923 ((-1157 |#1| |#2|) $)))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 9)) (-2950 (((-872) $) 15) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1009) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $))))) (T -1009)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1009))))) -(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) 8)) (-3831 (($) 7 T CONST)) (-3908 (($ $) 47)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-4108 (((-781) $) 46)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1748 ((|#1| $) 40)) (-2609 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-3540 ((|#1| $) 45)) (-3484 ((|#1| $) 42)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2654 ((|#1| |#1| $) 49)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-4432 ((|#1| $) 48)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) 43)) (-2748 ((|#1| $) 44)) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-1010 |#1|) (-141) (-1233)) (T -1010)) -((-2654 (*1 *2 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233)))) (-4432 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233)))) (-3908 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233)))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4458) (-15 -2654 (|t#1| |t#1| $)) (-15 -4432 (|t#1| $)) (-15 -3908 ($ $)) (-15 -4108 ((-781) $)) (-15 -3540 (|t#1| $)) (-15 -2748 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-3520 (((-112) $) 43)) (-1705 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 44)) (-1955 (((-3 (-417 (-574)) "failed") $) 78)) (-1519 (((-112) $) 72)) (-4188 (((-417 (-574)) $) 76)) (-3372 (((-112) $) 42)) (-1386 ((|#2| $) 22)) (-1786 (($ (-1 |#2| |#2|) $) 19)) (-1327 (($ $) 58)) (-3878 (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1845 (((-546) $) 67)) (-2202 (($ $) 17)) (-2950 (((-872) $) 53) (($ (-574)) 39) (($ |#2|) 37) (($ (-417 (-574))) NIL)) (-4019 (((-781)) 10)) (-3306 ((|#2| $) 71)) (-2985 (((-112) $ $) 26)) (-3009 (((-112) $ $) 69)) (-3089 (($ $) 30) (($ $ $) 29)) (-3074 (($ $ $) 27)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-1011 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| (-417 (-574)))) (-15 -3009 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1327 (|#1| |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -1955 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4188 ((-417 (-574)) |#1|)) (-15 -1519 ((-112) |#1|)) (-15 -3306 (|#2| |#1|)) (-15 -1386 (|#2| |#1|)) (-15 -2202 (|#1| |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4019 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -3372 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -3520 ((-112) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-1012 |#2|) (-174)) (T -1011)) -((-4019 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1011 *3 *4)) (-4 *3 (-1012 *4))))) -(-10 -8 (-15 -2950 (|#1| (-417 (-574)))) (-15 -3009 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1327 (|#1| |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -1955 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4188 ((-417 (-574)) |#1|)) (-15 -1519 ((-112) |#1|)) (-15 -3306 (|#2| |#1|)) (-15 -1386 (|#2| |#1|)) (-15 -2202 (|#1| |#1|)) (-15 -1786 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4019 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -3372 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -3520 ((-112) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-1705 (((-3 (-574) "failed") $) 130 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 128 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 125)) (-2216 (((-574) $) 129 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 127 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 126)) (-3465 (((-699 (-574)) (-1283 $)) 100 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 99 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 98 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 97) (((-699 |#1|) (-699 $)) 96) (((-699 |#1|) (-1283 $)) 95)) (-3911 (((-3 $ "failed") $) 37)) (-4222 ((|#1| $) 88)) (-1955 (((-3 (-417 (-574)) "failed") $) 84 (|has| |#1| (-555)))) (-1519 (((-112) $) 86 (|has| |#1| (-555)))) (-4188 (((-417 (-574)) $) 85 (|has| |#1| (-555)))) (-1956 (($ |#1| |#1| |#1| |#1|) 89)) (-3372 (((-112) $) 35)) (-1386 ((|#1| $) 90)) (-3632 (($ $ $) 77 (|has| |#1| (-860)))) (-1593 (($ $ $) 76 (|has| |#1| (-860)))) (-1786 (($ (-1 |#1| |#1|) $) 101)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 81 (|has| |#1| (-372)))) (-1807 ((|#1| $) 91)) (-1865 ((|#1| $) 92)) (-2446 ((|#1| $) 93)) (-3939 (((-1135) $) 11)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) 107 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 106 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 105 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 104 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 103 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) 102 (|has| |#1| (-524 (-1192) |#1|)))) (-2208 (($ $ |#1|) 108 (|has| |#1| (-294 |#1| |#1|)))) (-3878 (($ $ (-781)) 123 (|has| |#1| (-239))) (($ $) 121 (|has| |#1| (-239))) (($ $ (-1192)) 120 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 119 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 118 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 117 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 110) (($ $ (-1 |#1| |#1|)) 109)) (-1845 (((-546) $) 82 (|has| |#1| (-624 (-546))))) (-2202 (($ $) 94)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 71 (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574))))))) (-3247 (((-3 $ "failed") $) 83 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-3306 ((|#1| $) 87 (|has| |#1| (-1075)))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-781)) 124 (|has| |#1| (-239))) (($ $) 122 (|has| |#1| (-239))) (($ $ (-1192)) 116 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 115 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 114 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 113 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 112) (($ $ (-1 |#1| |#1|)) 111)) (-3041 (((-112) $ $) 74 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 73 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 75 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 72 (|has| |#1| (-860)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 80 (|has| |#1| (-372)))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-417 (-574))) 79 (|has| |#1| (-372))) (($ (-417 (-574)) $) 78 (|has| |#1| (-372))))) -(((-1012 |#1|) (-141) (-174)) (T -1012)) -((-2202 (*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-1956 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1955 (*1 *2 *1) (|partial| -12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574)))))) -(-13 (-38 |t#1|) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-386 |t#1|) (-10 -8 (-15 -2202 ($ $)) (-15 -2446 (|t#1| $)) (-15 -1865 (|t#1| $)) (-15 -1807 (|t#1| $)) (-15 -1386 (|t#1| $)) (-15 -1956 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4222 (|t#1| $)) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1075)) (-15 -3306 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -1519 ((-112) $)) (-15 -4188 ((-417 (-574)) $)) (-15 -1955 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-372)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-372)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) |has| |#1| (-372)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2832 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 #0#) |has| |#1| (-372)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-372)) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-372)) ((-650 |#1|) . T) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-372)) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 #0#) |has| |#1| (-372)) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1071 #0#) |has| |#1| (-372)) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) -2832 (|has| |#1| (-294 |#1| |#1|)) (|has| |#1| (-239)))) -((-1786 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1013 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1786 (|#3| (-1 |#4| |#2|) |#1|))) (-1012 |#2|) (-174) (-1012 |#4|) (-174)) (T -1013)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1012 *6)) (-5 *1 (-1013 *4 *5 *2 *6)) (-4 *4 (-1012 *5))))) -(-10 -7 (-15 -1786 (|#3| (-1 |#4| |#2|) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-4222 ((|#1| $) 12)) (-1955 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-1519 (((-112) $) NIL (|has| |#1| (-555)))) (-4188 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-1956 (($ |#1| |#1| |#1| |#1|) 16)) (-3372 (((-112) $) NIL)) (-1386 ((|#1| $) NIL)) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-1807 ((|#1| $) 15)) (-1865 ((|#1| $) 14)) (-2446 ((|#1| $) 13)) (-3939 (((-1135) $) NIL)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-524 (-1192) |#1|)))) (-2208 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-3878 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2202 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574))))))) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-3306 ((|#1| $) NIL (|has| |#1| (-1075)))) (-2142 (($) 8 T CONST)) (-2154 (($) 10 T CONST)) (-3583 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))))) -(((-1014 |#1|) (-1012 |#1|) (-174)) (T -1014)) -NIL -(-1012 |#1|) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2818 (((-112) $ (-781)) NIL)) (-3831 (($) NIL T CONST)) (-3908 (($ $) 23)) (-2443 (($ (-654 |#1|)) 33)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-4108 (((-781) $) 26)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1748 ((|#1| $) 28)) (-2609 (($ |#1| $) 17)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-3540 ((|#1| $) 27)) (-3484 ((|#1| $) 22)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2654 ((|#1| |#1| $) 16)) (-2880 (((-112) $) 18)) (-2833 (($) NIL)) (-4432 ((|#1| $) 21)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) NIL)) (-2748 ((|#1| $) 30)) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1015 |#1|) (-13 (-1010 |#1|) (-10 -8 (-15 -2443 ($ (-654 |#1|))))) (-1115)) (T -1015)) -((-2443 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-1015 *3))))) -(-13 (-1010 |#1|) (-10 -8 (-15 -2443 ($ (-654 |#1|))))) -((-4211 (($ $) 12)) (-2132 (($ $ (-574)) 13))) -(((-1016 |#1|) (-10 -8 (-15 -4211 (|#1| |#1|)) (-15 -2132 (|#1| |#1| (-574)))) (-1017)) (T -1016)) -NIL -(-10 -8 (-15 -4211 (|#1| |#1|)) (-15 -2132 (|#1| |#1| (-574)))) -((-4211 (($ $) 6)) (-2132 (($ $ (-574)) 7)) (** (($ $ (-417 (-574))) 8))) -(((-1017) (-141)) (T -1017)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-417 (-574))))) (-2132 (*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-574)))) (-4211 (*1 *1 *1) (-4 *1 (-1017)))) -(-13 (-10 -8 (-15 -4211 ($ $)) (-15 -2132 ($ $ (-574))) (-15 ** ($ $ (-417 (-574)))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4402 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-3648 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1527 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3644 (((-699 (-417 |#2|)) (-1283 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1645 (((-417 |#2|) $) NIL)) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3954 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3656 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1496 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-3489 (((-112)) NIL)) (-2511 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| (-417 |#2|) (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-2919 (($ (-1283 (-417 |#2|)) (-1283 $)) NIL) (($ (-1283 (-417 |#2|))) 79) (($ (-1283 |#2|) |#2|) NIL)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2799 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3556 (((-699 (-417 |#2|)) $ (-1283 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-417 |#2|))) (|:| |vec| (-1283 (-417 |#2|)))) (-699 $) (-1283 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1283 $)) NIL)) (-2989 (((-1283 $) (-1283 $)) NIL)) (-2881 (($ |#3|) 73) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-3911 (((-3 $ "failed") $) NIL)) (-2844 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-2345 (((-112) |#1| |#1|) NIL)) (-3557 (((-934)) NIL)) (-2834 (($) NIL (|has| (-417 |#2|) (-377)))) (-4023 (((-112)) NIL)) (-2068 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2811 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-1509 (($ $) NIL)) (-1912 (($) NIL (|has| (-417 |#2|) (-358)))) (-3873 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-4158 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-1782 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-2725 (((-934) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-934)) $) NIL (|has| (-417 |#2|) (-358)))) (-3372 (((-112) $) NIL)) (-2703 (((-781)) NIL)) (-3846 (((-1283 $) (-1283 $)) NIL)) (-1386 (((-417 |#2|) $) NIL)) (-1697 (((-654 (-965 |#1|)) (-1192)) NIL (|has| |#1| (-372)))) (-1353 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1950 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-3271 (((-934) $) NIL (|has| (-417 |#2|) (-377)))) (-2868 ((|#3| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3945 (((-1174) $) NIL)) (-2967 (((-699 (-417 |#2|))) 57)) (-1407 (((-699 (-417 |#2|))) 56)) (-1327 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1333 (($ (-1283 |#2|) |#2|) 80)) (-4107 (((-699 (-417 |#2|))) 55)) (-4113 (((-699 (-417 |#2|))) 54)) (-3311 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-3303 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) 86)) (-2448 (((-1283 $)) 51)) (-1555 (((-1283 $)) 50)) (-3621 (((-112) $) NIL)) (-4162 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3791 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2590 (($ (-934)) NIL (|has| (-417 |#2|) (-377)))) (-3627 (((-3 |#2| "failed")) 70)) (-3939 (((-1135) $) NIL)) (-2458 (((-781)) NIL)) (-2975 (($) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| (-417 |#2|) (-372)))) (-2886 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4200 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3364 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2208 ((|#1| $ |#1| |#1|) NIL)) (-1775 (((-3 |#2| "failed")) 68)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1738 (((-417 |#2|) (-1283 $)) NIL) (((-417 |#2|)) 47)) (-3881 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3878 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-1840 (((-699 (-417 |#2|)) (-1283 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-2290 ((|#3|) 58)) (-1417 (($) NIL (|has| (-417 |#2|) (-358)))) (-4346 (((-1283 (-417 |#2|)) $ (-1283 $)) NIL) (((-699 (-417 |#2|)) (-1283 $) (-1283 $)) NIL) (((-1283 (-417 |#2|)) $) 81) (((-699 (-417 |#2|)) (-1283 $)) NIL)) (-1845 (((-1283 (-417 |#2|)) $) NIL) (($ (-1283 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-2496 (((-1283 $) (-1283 $)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2832 (|has| (-417 |#2|) (-1053 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3247 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-1539 ((|#3| $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3777 (((-112)) 65)) (-3555 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) NIL)) (-1842 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2124 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4231 (((-112)) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372))))) -(((-1018 |#1| |#2| |#3| |#4| |#5|) (-351 |#1| |#2| |#3|) (-1237) (-1259 |#1|) (-1259 (-417 |#2|)) (-417 |#2|) (-781)) (T -1018)) +((-4350 (((-654 |#4|) $) 23)) (-1437 (((-112) $) 55)) (-2176 (((-112) $) 54)) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#4|) 42)) (-3721 (((-112) $) 56)) (-3913 (((-112) $ $) 62)) (-2196 (((-112) $ $) 65)) (-3564 (((-112) $) 60)) (-1855 (((-654 |#5|) (-654 |#5|) $) 98)) (-3406 (((-654 |#5|) (-654 |#5|) $) 95)) (-1880 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2737 (((-654 |#4|) $) 27)) (-3161 (((-112) |#4| $) 34)) (-3581 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1423 (($ $ |#4|) 39)) (-1671 (($ $ |#4|) 38)) (-2287 (($ $ |#4|) 40)) (-2986 (((-112) $ $) 46))) +(((-991 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2176 ((-112) |#1|)) (-15 -1855 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -3406 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -1880 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3581 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3721 ((-112) |#1|)) (-15 -2196 ((-112) |#1| |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -3564 ((-112) |#1|)) (-15 -1437 ((-112) |#1|)) (-15 -2786 ((-2 (|:| |under| |#1|) (|:| -2260 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1423 (|#1| |#1| |#4|)) (-15 -2287 (|#1| |#1| |#4|)) (-15 -1671 (|#1| |#1| |#4|)) (-15 -3161 ((-112) |#4| |#1|)) (-15 -2737 ((-654 |#4|) |#1|)) (-15 -4350 ((-654 |#4|) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-992 |#2| |#3| |#4| |#5|) (-1065) (-803) (-860) (-1081 |#2| |#3| |#4|)) (T -991)) +NIL +(-10 -8 (-15 -2176 ((-112) |#1|)) (-15 -1855 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -3406 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -1880 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3581 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3721 ((-112) |#1|)) (-15 -2196 ((-112) |#1| |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -3564 ((-112) |#1|)) (-15 -1437 ((-112) |#1|)) (-15 -2786 ((-2 (|:| |under| |#1|) (|:| -2260 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1423 (|#1| |#1| |#4|)) (-15 -2287 (|#1| |#1| |#4|)) (-15 -1671 (|#1| |#1| |#4|)) (-15 -3161 ((-112) |#4| |#1|)) (-15 -2737 ((-654 |#4|) |#1|)) (-15 -4350 ((-654 |#4|) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-4350 (((-654 |#3|) $) 34)) (-1437 (((-112) $) 27)) (-2176 (((-112) $) 18 (|has| |#1| (-566)))) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#3|) 28)) (-3146 (((-112) $ (-781)) 45)) (-2172 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459)))) (-3250 (($) 46 T CONST)) (-3721 (((-112) $) 23 (|has| |#1| (-566)))) (-3913 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2196 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3564 (((-112) $) 26 (|has| |#1| (-566)))) (-1855 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3406 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2214 (($ (-654 |#4|)) 36)) (-2804 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459)))) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-4241 ((|#3| $) 35)) (-2189 (((-112) $ (-781)) 44)) (-2036 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2737 (((-654 |#3|) $) 33)) (-3161 (((-112) |#3| $) 32)) (-1653 (((-112) $ (-781)) 43)) (-1489 (((-1175) $) 10)) (-3581 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-3940 (((-1136) $) 11)) (-2183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3449 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) 39)) (-2754 (((-112) $) 42)) (-3336 (($) 41)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-1423 (($ $ |#3|) 29)) (-1671 (($ $ |#3|) 31)) (-2287 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4069 (((-112) $ $) 9)) (-2020 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459))))) +(((-992 |#1| |#2| |#3| |#4|) (-141) (-1065) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -992)) +((-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-992 *3 *4 *5 *6)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-992 *3 *4 *5 *6)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-1081 *3 *4 *2)) (-4 *2 (-860)))) (-4350 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5)))) (-3161 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *3 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1081 *4 *5 *3)) (-5 *2 (-112)))) (-1671 (*1 *1 *1 *2) (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2)))) (-2287 (*1 *1 *1 *2) (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2)))) (-1423 (*1 *1 *1 *2) (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2)))) (-2786 (*1 *2 *1 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1081 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2260 *1) (|:| |upper| *1))) (-4 *1 (-992 *4 *5 *3 *6)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3913 (*1 *2 *1 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-2196 (*1 *2 *1 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3581 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1880 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3406 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)))) (-1855 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112))))) +(-13 (-1116) (-152 |t#4|) (-623 (-654 |t#4|)) (-10 -8 (-6 -4459) (-15 -1704 ((-3 $ "failed") (-654 |t#4|))) (-15 -2214 ($ (-654 |t#4|))) (-15 -4241 (|t#3| $)) (-15 -4350 ((-654 |t#3|) $)) (-15 -2737 ((-654 |t#3|) $)) (-15 -3161 ((-112) |t#3| $)) (-15 -1671 ($ $ |t#3|)) (-15 -2287 ($ $ |t#3|)) (-15 -1423 ($ $ |t#3|)) (-15 -2786 ((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |t#3|)) (-15 -1437 ((-112) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -3564 ((-112) $)) (-15 -3913 ((-112) $ $)) (-15 -2196 ((-112) $ $)) (-15 -3721 ((-112) $)) (-15 -3581 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1880 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3406 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -1855 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -2176 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-1116) . T) ((-1234) . T)) +((-1483 (((-654 |#4|) |#4| |#4|) 136)) (-2828 (((-654 |#4|) (-654 |#4|) (-112)) 125 (|has| |#1| (-462))) (((-654 |#4|) (-654 |#4|)) 126 (|has| |#1| (-462)))) (-2191 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 44)) (-3211 (((-112) |#4|) 43)) (-4238 (((-654 |#4|) |#4|) 121 (|has| |#1| (-462)))) (-2194 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|)) 24)) (-3708 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 30)) (-1372 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 31)) (-3650 (((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|)) 90)) (-1436 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2013 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2209 (((-654 |#4|) (-654 |#4|)) 128)) (-2099 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112)) 59) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 61)) (-2962 ((|#4| |#4| (-654 |#4|)) 60)) (-2816 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 132 (|has| |#1| (-462)))) (-2585 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 135 (|has| |#1| (-462)))) (-1415 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 134 (|has| |#1| (-462)))) (-3514 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|))) 105) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 107) (((-654 |#4|) (-654 |#4|) |#4|) 140) (((-654 |#4|) |#4| |#4|) 137) (((-654 |#4|) (-654 |#4|)) 106)) (-3688 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-4075 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 52)) (-2203 (((-112) (-654 |#4|)) 79)) (-2643 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 67)) (-4271 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 37)) (-1944 (((-112) |#4|) 36)) (-2033 (((-654 |#4|) (-654 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-1331 (((-654 |#4|) (-654 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-3948 (((-654 |#4|) (-654 |#4|)) 83)) (-1729 (((-654 |#4|) (-654 |#4|)) 97)) (-1429 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-3116 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 50)) (-2745 (((-112) |#4|) 45))) +(((-993 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3514 ((-654 |#4|) (-654 |#4|))) (-15 -3514 ((-654 |#4|) |#4| |#4|)) (-15 -2209 ((-654 |#4|) (-654 |#4|))) (-15 -1483 ((-654 |#4|) |#4| |#4|)) (-15 -3514 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -3514 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -3514 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -1429 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2643 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -2203 ((-112) (-654 |#4|))) (-15 -2194 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -3708 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -1372 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -4075 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -3211 ((-112) |#4|)) (-15 -2191 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1944 ((-112) |#4|)) (-15 -4271 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2745 ((-112) |#4|)) (-15 -3116 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2099 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2099 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -2962 (|#4| |#4| (-654 |#4|))) (-15 -3948 ((-654 |#4|) (-654 |#4|))) (-15 -3650 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -1729 ((-654 |#4|) (-654 |#4|))) (-15 -1436 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2013 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -4238 ((-654 |#4|) |#4|)) (-15 -2828 ((-654 |#4|) (-654 |#4|))) (-15 -2828 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -2816 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -1415 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2585 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -1331 ((-654 |#4|) (-654 |#4|))) (-15 -2033 ((-654 |#4|) (-654 |#4|))) (-15 -3688 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|)) (-566) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -993)) +((-3688 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-2033 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-1331 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-2585 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-1415 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-2816 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-2828 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *7)))) (-2828 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-2013 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-993 *5 *6 *7 *8)))) (-1436 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *1 (-993 *6 *7 *8 *9)))) (-1729 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-3650 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2010 (-654 *7)))) (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3948 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-2962 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *2)))) (-2099 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *7)))) (-2099 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-3116 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-4271 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-1944 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-2191 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3211 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-2194 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *4 *5 *6 *7)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *5 *6 *7 *8)))) (-1429 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *4 *5 *6 *7)))) (-3514 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *7)))) (-3514 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-3514 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *3)))) (-1483 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-2209 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-3514 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-3514 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6))))) +(-10 -7 (-15 -3514 ((-654 |#4|) (-654 |#4|))) (-15 -3514 ((-654 |#4|) |#4| |#4|)) (-15 -2209 ((-654 |#4|) (-654 |#4|))) (-15 -1483 ((-654 |#4|) |#4| |#4|)) (-15 -3514 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -3514 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -3514 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -1429 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2643 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -2203 ((-112) (-654 |#4|))) (-15 -2194 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -3708 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -1372 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -4075 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -3211 ((-112) |#4|)) (-15 -2191 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1944 ((-112) |#4|)) (-15 -4271 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2745 ((-112) |#4|)) (-15 -3116 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2099 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2099 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -2962 (|#4| |#4| (-654 |#4|))) (-15 -3948 ((-654 |#4|) (-654 |#4|))) (-15 -3650 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -1729 ((-654 |#4|) (-654 |#4|))) (-15 -1436 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2013 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -4238 ((-654 |#4|) |#4|)) (-15 -2828 ((-654 |#4|) (-654 |#4|))) (-15 -2828 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -2816 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -1415 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2585 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -1331 ((-654 |#4|) (-654 |#4|))) (-15 -2033 ((-654 |#4|) (-654 |#4|))) (-15 -3688 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|)) +((-1493 (((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3836 (((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|)) 46)) (-1654 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-994 |#1|) (-10 -7 (-15 -1493 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1654 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3836 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|)))) (-372)) (T -994)) +((-3836 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1284 *5))))) (-5 *1 (-994 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)))) (-1654 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-994 *5)))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372)) (-5 *2 (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6)))) (-5 *1 (-994 *6)) (-5 *3 (-699 *6))))) +(-10 -7 (-15 -1493 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1654 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3836 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|)))) +((-1610 (((-428 |#4|) |#4|) 56))) +(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1610 ((-428 |#4|) |#4|))) (-860) (-803) (-462) (-963 |#3| |#2| |#1|)) (T -995)) +((-1610 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-963 *6 *5 *4))))) +(-10 -7 (-15 -1610 ((-428 |#4|) |#4|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2225 (($ (-781)) 115 (|has| |#1| (-23)))) (-2985 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2412 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-2804 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1452 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1116)))) (-3565 (($ (-654 |#1|)) 121)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3873 (((-699 |#1|) $ $) 108 (|has| |#1| (-1065)))) (-3764 (($ (-781) |#1|) 70)) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| |#1| (-860)))) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 45 (|has| (-574) (-860)))) (-4380 (($ $ $) 89 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4397 ((|#1| $) 105 (-12 (|has| |#1| (-1065)) (|has| |#1| (-1018))))) (-1653 (((-112) $ (-781)) 10)) (-4109 ((|#1| $) 106 (-12 (|has| |#1| (-1065)) (|has| |#1| (-1018))))) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1393 (((-654 (-574)) $) 47)) (-1506 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1822 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-2433 (($ $ (-654 |#1|)) 119)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) 49)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-3918 ((|#1| $ $) 109 (|has| |#1| (-1065)))) (-2995 (((-935) $) 120)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3712 (($ $ $) 107)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-4036 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 122)) (-2963 (($ (-654 |#1|)) 72)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3030 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3090 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3074 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-996 |#1|) (-141) (-1065)) (T -996)) +((-3565 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1065)) (-4 *1 (-996 *3)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-996 *3)) (-4 *3 (-1065)) (-5 *2 (-935)))) (-3712 (*1 *1 *1 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1065)))) (-2433 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-996 *3)) (-4 *3 (-1065))))) +(-13 (-1282 |t#1|) (-628 (-654 |t#1|)) (-10 -8 (-15 -3565 ($ (-654 |t#1|))) (-15 -2995 ((-935) $)) (-15 -3712 ($ $ $)) (-15 -2433 ($ $ (-654 |t#1|))))) +(((-34) . T) ((-102) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-628 (-654 |#1|)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1116) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-1234) . T) ((-1282 |#1|) . T)) +((-1785 (((-957 |#2|) (-1 |#2| |#1|) (-957 |#1|)) 17))) +(((-997 |#1| |#2|) (-10 -7 (-15 -1785 ((-957 |#2|) (-1 |#2| |#1|) (-957 |#1|)))) (-1065) (-1065)) (T -997)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-957 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-5 *2 (-957 *6)) (-5 *1 (-997 *5 *6))))) +(-10 -7 (-15 -1785 ((-957 |#2|) (-1 |#2| |#1|) (-957 |#1|)))) +((-4357 ((|#1| (-957 |#1|)) 14)) (-4250 ((|#1| (-957 |#1|)) 13)) (-3794 ((|#1| (-957 |#1|)) 12)) (-3350 ((|#1| (-957 |#1|)) 16)) (-2990 ((|#1| (-957 |#1|)) 24)) (-4029 ((|#1| (-957 |#1|)) 15)) (-4327 ((|#1| (-957 |#1|)) 17)) (-2502 ((|#1| (-957 |#1|)) 23)) (-2463 ((|#1| (-957 |#1|)) 22))) +(((-998 |#1|) (-10 -7 (-15 -3794 (|#1| (-957 |#1|))) (-15 -4250 (|#1| (-957 |#1|))) (-15 -4357 (|#1| (-957 |#1|))) (-15 -4029 (|#1| (-957 |#1|))) (-15 -3350 (|#1| (-957 |#1|))) (-15 -4327 (|#1| (-957 |#1|))) (-15 -2463 (|#1| (-957 |#1|))) (-15 -2502 (|#1| (-957 |#1|))) (-15 -2990 (|#1| (-957 |#1|)))) (-1065)) (T -998)) +((-2990 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065))))) +(-10 -7 (-15 -3794 (|#1| (-957 |#1|))) (-15 -4250 (|#1| (-957 |#1|))) (-15 -4357 (|#1| (-957 |#1|))) (-15 -4029 (|#1| (-957 |#1|))) (-15 -3350 (|#1| (-957 |#1|))) (-15 -4327 (|#1| (-957 |#1|))) (-15 -2463 (|#1| (-957 |#1|))) (-15 -2502 (|#1| (-957 |#1|))) (-15 -2990 (|#1| (-957 |#1|)))) +((-4360 (((-3 |#1| "failed") |#1|) 18)) (-2948 (((-3 |#1| "failed") |#1|) 6)) (-1459 (((-3 |#1| "failed") |#1|) 16)) (-2070 (((-3 |#1| "failed") |#1|) 4)) (-1637 (((-3 |#1| "failed") |#1|) 20)) (-3018 (((-3 |#1| "failed") |#1|) 8)) (-2418 (((-3 |#1| "failed") |#1| (-781)) 1)) (-3914 (((-3 |#1| "failed") |#1|) 3)) (-2061 (((-3 |#1| "failed") |#1|) 2)) (-4386 (((-3 |#1| "failed") |#1|) 21)) (-3766 (((-3 |#1| "failed") |#1|) 9)) (-4277 (((-3 |#1| "failed") |#1|) 19)) (-3401 (((-3 |#1| "failed") |#1|) 7)) (-4133 (((-3 |#1| "failed") |#1|) 17)) (-1873 (((-3 |#1| "failed") |#1|) 5)) (-2610 (((-3 |#1| "failed") |#1|) 24)) (-4295 (((-3 |#1| "failed") |#1|) 12)) (-3036 (((-3 |#1| "failed") |#1|) 22)) (-4160 (((-3 |#1| "failed") |#1|) 10)) (-2954 (((-3 |#1| "failed") |#1|) 26)) (-1848 (((-3 |#1| "failed") |#1|) 14)) (-3864 (((-3 |#1| "failed") |#1|) 27)) (-1529 (((-3 |#1| "failed") |#1|) 15)) (-2474 (((-3 |#1| "failed") |#1|) 25)) (-3596 (((-3 |#1| "failed") |#1|) 13)) (-3661 (((-3 |#1| "failed") |#1|) 23)) (-3561 (((-3 |#1| "failed") |#1|) 11))) +(((-999 |#1|) (-141) (-1219)) (T -999)) +((-3864 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2954 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2474 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2610 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3661 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3036 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-4386 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-1637 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-4277 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-4360 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-4133 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-1459 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-1529 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-1848 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3596 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-4295 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3561 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-4160 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3766 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3018 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3401 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2948 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-1873 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2070 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3914 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2061 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2418 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(-13 (-10 -7 (-15 -2418 ((-3 |t#1| "failed") |t#1| (-781))) (-15 -2061 ((-3 |t#1| "failed") |t#1|)) (-15 -3914 ((-3 |t#1| "failed") |t#1|)) (-15 -2070 ((-3 |t#1| "failed") |t#1|)) (-15 -1873 ((-3 |t#1| "failed") |t#1|)) (-15 -2948 ((-3 |t#1| "failed") |t#1|)) (-15 -3401 ((-3 |t#1| "failed") |t#1|)) (-15 -3018 ((-3 |t#1| "failed") |t#1|)) (-15 -3766 ((-3 |t#1| "failed") |t#1|)) (-15 -4160 ((-3 |t#1| "failed") |t#1|)) (-15 -3561 ((-3 |t#1| "failed") |t#1|)) (-15 -4295 ((-3 |t#1| "failed") |t#1|)) (-15 -3596 ((-3 |t#1| "failed") |t#1|)) (-15 -1848 ((-3 |t#1| "failed") |t#1|)) (-15 -1529 ((-3 |t#1| "failed") |t#1|)) (-15 -1459 ((-3 |t#1| "failed") |t#1|)) (-15 -4133 ((-3 |t#1| "failed") |t#1|)) (-15 -4360 ((-3 |t#1| "failed") |t#1|)) (-15 -4277 ((-3 |t#1| "failed") |t#1|)) (-15 -1637 ((-3 |t#1| "failed") |t#1|)) (-15 -4386 ((-3 |t#1| "failed") |t#1|)) (-15 -3036 ((-3 |t#1| "failed") |t#1|)) (-15 -3661 ((-3 |t#1| "failed") |t#1|)) (-15 -2610 ((-3 |t#1| "failed") |t#1|)) (-15 -2474 ((-3 |t#1| "failed") |t#1|)) (-15 -2954 ((-3 |t#1| "failed") |t#1|)) (-15 -3864 ((-3 |t#1| "failed") |t#1|)))) +((-2273 ((|#4| |#4| (-654 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1705 ((|#4| |#4| (-654 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1785 ((|#4| (-1 |#4| (-966 |#1|)) |#4|) 31))) +(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1705 (|#4| |#4| |#3|)) (-15 -1705 (|#4| |#4| (-654 |#3|))) (-15 -2273 (|#4| |#4| |#3|)) (-15 -2273 (|#4| |#4| (-654 |#3|))) (-15 -1785 (|#4| (-1 |#4| (-966 |#1|)) |#4|))) (-1065) (-803) (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193))))) (-963 (-966 |#1|) |#2| |#3|)) (T -1000)) +((-1785 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-966 *4))) (-4 *4 (-1065)) (-4 *2 (-963 (-966 *4) *5 *6)) (-4 *5 (-803)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-5 *1 (-1000 *4 *5 *6 *2)))) (-2273 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-4 *4 (-1065)) (-4 *5 (-803)) (-5 *1 (-1000 *4 *5 *6 *2)) (-4 *2 (-963 (-966 *4) *5 *6)))) (-2273 (*1 *2 *2 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-5 *1 (-1000 *4 *5 *3 *2)) (-4 *2 (-963 (-966 *4) *5 *3)))) (-1705 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-4 *4 (-1065)) (-4 *5 (-803)) (-5 *1 (-1000 *4 *5 *6 *2)) (-4 *2 (-963 (-966 *4) *5 *6)))) (-1705 (*1 *2 *2 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-5 *1 (-1000 *4 *5 *3 *2)) (-4 *2 (-963 (-966 *4) *5 *3))))) +(-10 -7 (-15 -1705 (|#4| |#4| |#3|)) (-15 -1705 (|#4| |#4| (-654 |#3|))) (-15 -2273 (|#4| |#4| |#3|)) (-15 -2273 (|#4| |#4| (-654 |#3|))) (-15 -1785 (|#4| (-1 |#4| (-966 |#1|)) |#4|))) +((-2309 ((|#2| |#3|) 35)) (-2232 (((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 79)) (-4367 (((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 100))) +(((-1001 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4367 ((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2232 ((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -2309 (|#2| |#3|))) (-358) (-1260 |#1|) (-1260 |#2|) (-734 |#2| |#3|)) (T -1001)) +((-2309 (*1 *2 *3) (-12 (-4 *3 (-1260 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-1001 *4 *2 *3 *5)) (-4 *4 (-358)) (-4 *5 (-734 *2 *3)))) (-2232 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 *3)) (-5 *2 (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-1001 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5)))) (-4367 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| -2391 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-1001 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5))))) +(-10 -7 (-15 -4367 ((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2232 ((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -2309 (|#2| |#3|))) +((-2608 (((-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))) 82))) +(((-1002 |#1| |#2|) (-10 -7 (-15 -2608 ((-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))))) (-654 (-1193)) (-781)) (T -1002)) +((-2608 (*1 *2 *2) (-12 (-5 *2 (-1003 (-417 (-574)) (-874 *3) (-246 *4 (-781)) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1193))) (-14 *4 (-781)) (-5 *1 (-1002 *3 *4))))) +(-10 -7 (-15 -2608 ((-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))))) +((-2864 (((-112) $ $) NIL)) (-2398 (((-3 (-112) "failed") $) 71)) (-1539 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-3461 (($ $ (-3 (-112) "failed")) 72)) (-4307 (($ (-654 |#4|) |#4|) 25)) (-1489 (((-1175) $) NIL)) (-1990 (($ $) 69)) (-3940 (((-1136) $) NIL)) (-2754 (((-112) $) 70)) (-3336 (($) 30)) (-4165 ((|#4| $) 74)) (-1879 (((-654 |#4|) $) 73)) (-2951 (((-872) $) 68)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1003 |#1| |#2| |#3| |#4|) (-13 (-1116) (-623 (-872)) (-10 -8 (-15 -3336 ($)) (-15 -4307 ($ (-654 |#4|) |#4|)) (-15 -2398 ((-3 (-112) "failed") $)) (-15 -3461 ($ $ (-3 (-112) "failed"))) (-15 -2754 ((-112) $)) (-15 -1879 ((-654 |#4|) $)) (-15 -4165 (|#4| $)) (-15 -1990 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -1539 ($ $)) |%noBranch|) |%noBranch|))) (-462) (-860) (-803) (-963 |#1| |#3| |#2|)) (T -1003)) +((-3336 (*1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3)))) (-4307 (*1 *1 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-963 *4 *6 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1003 *4 *5 *6 *3)))) (-2398 (*1 *2 *1) (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4)))) (-3461 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4)))) (-2754 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4)))) (-1879 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6)) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4)))) (-4165 (*1 *2 *1) (-12 (-4 *2 (-963 *3 *5 *4)) (-5 *1 (-1003 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)))) (-1990 (*1 *1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3)))) (-1539 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3))))) +(-13 (-1116) (-623 (-872)) (-10 -8 (-15 -3336 ($)) (-15 -4307 ($ (-654 |#4|) |#4|)) (-15 -2398 ((-3 (-112) "failed") $)) (-15 -3461 ($ $ (-3 (-112) "failed"))) (-15 -2754 ((-112) $)) (-15 -1879 ((-654 |#4|) $)) (-15 -4165 (|#4| $)) (-15 -1990 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -1539 ($ $)) |%noBranch|) |%noBranch|))) +((-3071 (((-112) |#5| |#5|) 44)) (-2805 (((-112) |#5| |#5|) 59)) (-4088 (((-112) |#5| (-654 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-4023 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-2034 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) 70)) (-1518 (((-1289)) 32)) (-2729 (((-1289) (-1175) (-1175) (-1175)) 28)) (-2155 (((-654 |#5|) (-654 |#5|)) 100)) (-3456 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) 92)) (-1432 (((-654 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 122)) (-3573 (((-112) |#5| |#5|) 53)) (-3378 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2114 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-1451 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-3877 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-3480 (((-3 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3497 (((-654 |#5|) (-654 |#5|)) 49))) +(((-1004 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2729 ((-1289) (-1175) (-1175) (-1175))) (-15 -1518 ((-1289))) (-15 -3071 ((-112) |#5| |#5|)) (-15 -3497 ((-654 |#5|) (-654 |#5|))) (-15 -3573 ((-112) |#5| |#5|)) (-15 -2805 ((-112) |#5| |#5|)) (-15 -4023 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2114 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1451 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3877 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3378 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4088 ((-112) |#5| |#5|)) (-15 -4088 ((-112) |#5| (-654 |#5|))) (-15 -2155 ((-654 |#5|) (-654 |#5|))) (-15 -2034 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3456 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-15 -1432 ((-654 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3480 ((-3 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -1004)) +((-3480 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| -4094 (-654 *9)) (|:| -4068 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1004 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1087 *6 *7 *8 *9)))) (-1432 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1087 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4094 (-654 *9)) (|:| -4068 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1004 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4068 *7)))) (-4 *6 (-1081 *3 *4 *5)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1004 *3 *4 *5 *6 *7)))) (-2034 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *8)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-1004 *3 *4 *5 *6 *7)))) (-4088 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1004 *5 *6 *7 *8 *3)))) (-4088 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3378 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3877 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-1451 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-2114 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-4023 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-2805 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3573 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-1004 *3 *4 *5 *6 *7)))) (-3071 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-1518 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-2729 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))) +(-10 -7 (-15 -2729 ((-1289) (-1175) (-1175) (-1175))) (-15 -1518 ((-1289))) (-15 -3071 ((-112) |#5| |#5|)) (-15 -3497 ((-654 |#5|) (-654 |#5|))) (-15 -3573 ((-112) |#5| |#5|)) (-15 -2805 ((-112) |#5| |#5|)) (-15 -4023 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2114 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1451 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3877 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3378 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4088 ((-112) |#5| |#5|)) (-15 -4088 ((-112) |#5| (-654 |#5|))) (-15 -2155 ((-654 |#5|) (-654 |#5|))) (-15 -2034 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3456 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-15 -1432 ((-654 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3480 ((-3 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1498 (((-1193) $) 15)) (-3079 (((-1175) $) 16)) (-2707 (($ (-1193) (-1175)) 14)) (-2951 (((-872) $) 13))) +(((-1005) (-13 (-623 (-872)) (-10 -8 (-15 -2707 ($ (-1193) (-1175))) (-15 -1498 ((-1193) $)) (-15 -3079 ((-1175) $))))) (T -1005)) +((-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1175)) (-5 *1 (-1005)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1005)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1005))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2707 ($ (-1193) (-1175))) (-15 -1498 ((-1193) $)) (-15 -3079 ((-1175) $)))) +((-1785 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-1006 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#2| |#1|) |#3|))) (-566) (-566) (-1008 |#1|) (-1008 |#2|)) (T -1006)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-4 *2 (-1008 *6)) (-5 *1 (-1006 *5 *6 *4 *2)) (-4 *4 (-1008 *5))))) +(-10 -7 (-15 -1785 (|#4| (-1 |#2| |#1|) |#3|))) +((-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-1193) "failed") $) 66) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) 96)) (-2214 ((|#2| $) NIL) (((-1193) $) 61) (((-417 (-574)) $) NIL) (((-574) $) 93)) (-1831 (((-699 (-574)) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 115) (((-699 |#2|) (-699 $)) 28) (((-699 |#2|) (-1284 $)) NIL)) (-2835 (($) 99)) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 76) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 85)) (-2967 (($ $) 10)) (-2414 (((-3 $ "failed") $) 20)) (-1785 (($ (-1 |#2| |#2|) $) 22)) (-3791 (($) 16)) (-2162 (($ $) 55)) (-3879 (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2808 (($ $) 12)) (-1844 (((-903 (-574)) $) 71) (((-903 (-388)) $) 80) (((-546) $) 40) (((-388) $) 44) (((-227) $) 48)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 91) (($ |#2|) NIL) (($ (-1193)) 58)) (-2898 (((-781)) 31)) (-3009 (((-112) $ $) 51))) +(((-1007 |#1| |#2|) (-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -3791 (|#1|)) (-15 -2414 ((-3 |#1| "failed") |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -2951 (|#1| (-1193))) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2214 ((-1193) |#1|)) (-15 -2835 (|#1|)) (-15 -2162 (|#1| |#1|)) (-15 -2808 (|#1| |#1|)) (-15 -2967 (|#1| |#1|)) (-15 -4078 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4078 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1831 ((-699 |#2|) (-1284 |#1|))) (-15 -1831 ((-699 |#2|) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| |#1|)) (-15 -2898 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-1008 |#2|) (-566)) (T -1007)) +((-2898 (*1 *2) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1007 *3 *4)) (-4 *3 (-1008 *4))))) +(-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -3791 (|#1|)) (-15 -2414 ((-3 |#1| "failed") |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -2951 (|#1| (-1193))) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2214 ((-1193) |#1|)) (-15 -2835 (|#1|)) (-15 -2162 (|#1| |#1|)) (-15 -2808 (|#1| |#1|)) (-15 -2967 (|#1| |#1|)) (-15 -4078 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4078 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1831 ((-699 |#2|) (-1284 |#1|))) (-15 -1831 ((-699 |#2|) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| |#1|)) (-15 -2898 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4146 ((|#1| $) 149 (|has| |#1| (-315)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-2488 (((-428 (-1189 $)) (-1189 $)) 140 (|has| |#1| (-923)))) (-2991 (($ $) 81)) (-1610 (((-428 $) $) 80)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 143 (|has| |#1| (-923)))) (-3245 (((-112) $ $) 65)) (-2472 (((-574) $) 130 (|has| |#1| (-830)))) (-3250 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 189) (((-3 (-1193) "failed") $) 138 (|has| |#1| (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) 121 (|has| |#1| (-1054 (-574)))) (((-3 (-574) "failed") $) 119 (|has| |#1| (-1054 (-574))))) (-2214 ((|#1| $) 190) (((-1193) $) 139 (|has| |#1| (-1054 (-1193)))) (((-417 (-574)) $) 122 (|has| |#1| (-1054 (-574)))) (((-574) $) 120 (|has| |#1| (-1054 (-574))))) (-2800 (($ $ $) 61)) (-1831 (((-699 (-574)) (-1284 $)) 164 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 163 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 162 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 161) (((-699 |#1|) (-699 $)) 160) (((-699 |#1|) (-1284 $)) 159)) (-4322 (((-3 $ "failed") $) 37)) (-2835 (($) 147 (|has| |#1| (-555)))) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3978 (((-112) $) 79)) (-3408 (((-112) $) 132 (|has| |#1| (-830)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 156 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 155 (|has| |#1| (-897 (-388))))) (-4226 (((-112) $) 35)) (-2967 (($ $) 151)) (-2971 ((|#1| $) 153)) (-2414 (((-3 $ "failed") $) 118 (|has| |#1| (-1168)))) (-3182 (((-112) $) 131 (|has| |#1| (-830)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3634 (($ $ $) 128 (|has| |#1| (-860)))) (-4380 (($ $ $) 127 (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) 181)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3791 (($) 117 (|has| |#1| (-1168)) CONST)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-2162 (($ $) 148 (|has| |#1| (-315)))) (-2260 ((|#1| $) 145 (|has| |#1| (-555)))) (-3651 (((-428 (-1189 $)) (-1189 $)) 142 (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) 141 (|has| |#1| (-923)))) (-4202 (((-428 $) $) 82)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) 187 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 186 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 185 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 184 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 183 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) 182 (|has| |#1| (-524 (-1193) |#1|)))) (-2098 (((-781) $) 64)) (-2207 (($ $ |#1|) 188 (|has| |#1| (-294 |#1| |#1|)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-3879 (($ $ (-781)) 179 (|has| |#1| (-239))) (($ $) 177 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 173 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 172 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 171 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 169 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 166) (($ $ (-1 |#1| |#1|)) 165)) (-2808 (($ $) 150)) (-2981 ((|#1| $) 152)) (-1844 (((-903 (-574)) $) 158 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 157 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 135 (|has| |#1| (-624 (-546)))) (((-388) $) 134 (|has| |#1| (-1038))) (((-227) $) 133 (|has| |#1| (-1038)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 144 (-2095 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 193) (($ (-1193)) 137 (|has| |#1| (-1054 (-1193))))) (-3424 (((-3 $ "failed") $) 136 (-2833 (|has| |#1| (-146)) (-2095 (|has| $ (-146)) (|has| |#1| (-923)))))) (-2898 (((-781)) 32 T CONST)) (-2544 ((|#1| $) 146 (|has| |#1| (-555)))) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-3936 (($ $) 129 (|has| |#1| (-830)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-781)) 180 (|has| |#1| (-239))) (($ $) 178 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 176 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 175 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 174 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 170 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 168) (($ $ (-1 |#1| |#1|)) 167)) (-3042 (((-112) $ $) 125 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 124 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 126 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 123 (|has| |#1| (-860)))) (-3103 (($ $ $) 73) (($ |#1| |#1|) 154)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ |#1| $) 192) (($ $ |#1|) 191))) +(((-1008 |#1|) (-141) (-566)) (T -1008)) +((-3103 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))) (-2971 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))) (-2967 (*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))) (-2808 (*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))) (-4146 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-2162 (*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-2835 (*1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-555)) (-4 *2 (-566)))) (-2544 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) (-2260 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-555))))) +(-13 (-372) (-38 |t#1|) (-1054 |t#1|) (-347 |t#1|) (-233 |t#1|) (-386 |t#1|) (-895 |t#1|) (-410 |t#1|) (-10 -8 (-15 -3103 ($ |t#1| |t#1|)) (-15 -2971 (|t#1| $)) (-15 -2981 (|t#1| $)) (-15 -2967 ($ $)) (-15 -2808 ($ $)) (IF (|has| |t#1| (-1168)) (-6 (-1168)) |%noBranch|) (IF (|has| |t#1| (-1054 (-574))) (PROGN (-6 (-1054 (-574))) (-6 (-1054 (-417 (-574))))) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-1038)) (-6 (-1038)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1054 (-1193))) (-6 (-1054 (-1193))) |%noBranch|) (IF (|has| |t#1| (-315)) (PROGN (-15 -4146 (|t#1| $)) (-15 -2162 ($ $))) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -2835 ($)) (-15 -2544 (|t#1| $)) (-15 -2260 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-923)) (-6 (-923)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 #1=(-1193)) |has| |#1| (-1054 (-1193))) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) |has| |#1| (-1038)) ((-624 (-388)) |has| |#1| (-1038)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) . T) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) . T) ((-315) . T) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-462) . T) ((-524 (-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-801) |has| |#1| (-830)) ((-802) |has| |#1| (-830)) ((-804) |has| |#1| (-830)) ((-805) |has| |#1| (-830)) ((-830) |has| |#1| (-830)) ((-858) |has| |#1| (-830)) ((-860) -2833 (|has| |#1| (-860)) (|has| |#1| (-830))) ((-907 $ #3=(-1193)) |has| |#1| (-912 (-1193))) ((-912 #3#) |has| |#1| (-912 (-1193))) ((-914 #3#) |has| |#1| (-912 (-1193))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-923) |has| |#1| (-923)) ((-934) . T) ((-1038) |has| |#1| (-1038)) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-574))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 #1#) |has| |#1| (-1054 (-1193))) ((-1054 |#1|) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| |#1| (-1168)) ((-1234) . T) ((-1238) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1938 (($ (-1158 |#1| |#2|)) 11)) (-2924 (((-1158 |#1| |#2|) $) 12)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2207 ((|#2| $ (-246 |#1| |#2|)) 16)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL))) +(((-1009 |#1| |#2|) (-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -1938 ($ (-1158 |#1| |#2|))) (-15 -2924 ((-1158 |#1| |#2|) $)))) (-935) (-372)) (T -1009)) +((-1938 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4)) (-14 *3 (-935)) (-4 *4 (-372)) (-5 *1 (-1009 *3 *4)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-1158 *3 *4)) (-5 *1 (-1009 *3 *4)) (-14 *3 (-935)) (-4 *4 (-372))))) +(-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -1938 ($ (-1158 |#1| |#2|))) (-15 -2924 ((-1158 |#1| |#2|) $)))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 9)) (-2951 (((-872) $) 15) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1010) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $))))) (T -1010)) +((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1010))))) +(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) 8)) (-3250 (($) 7 T CONST)) (-4100 (($ $) 47)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-4109 (((-781) $) 46)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-2375 ((|#1| $) 40)) (-3285 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2703 ((|#1| $) 45)) (-3801 ((|#1| $) 42)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-3315 ((|#1| |#1| $) 49)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2663 ((|#1| $) 48)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) 43)) (-4423 ((|#1| $) 44)) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-1011 |#1|) (-141) (-1234)) (T -1011)) +((-3315 (*1 *2 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))) (-2663 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))) (-4100 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))) (-4423 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4459) (-15 -3315 (|t#1| |t#1| $)) (-15 -2663 (|t#1| $)) (-15 -4100 ($ $)) (-15 -4109 ((-781) $)) (-15 -2703 (|t#1| $)) (-15 -4423 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-1431 (((-112) $) 43)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2214 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 44)) (-3577 (((-3 (-417 (-574)) "failed") $) 78)) (-3839 (((-112) $) 72)) (-2842 (((-417 (-574)) $) 76)) (-4226 (((-112) $) 42)) (-1681 ((|#2| $) 22)) (-1785 (($ (-1 |#2| |#2|) $) 19)) (-1328 (($ $) 58)) (-3879 (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1844 (((-546) $) 67)) (-3617 (($ $) 17)) (-2951 (((-872) $) 53) (($ (-574)) 39) (($ |#2|) 37) (($ (-417 (-574))) NIL)) (-2898 (((-781)) 10)) (-3936 ((|#2| $) 71)) (-2986 (((-112) $ $) 26)) (-3009 (((-112) $ $) 69)) (-3090 (($ $) 30) (($ $ $) 29)) (-3074 (($ $ $) 27)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-1012 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| (-417 (-574)))) (-15 -3009 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1328 (|#1| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -3577 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2842 ((-417 (-574)) |#1|)) (-15 -3839 ((-112) |#1|)) (-15 -3936 (|#2| |#1|)) (-15 -1681 (|#2| |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2898 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -4226 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -1431 ((-112) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-1013 |#2|) (-174)) (T -1012)) +((-2898 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1012 *3 *4)) (-4 *3 (-1013 *4))))) +(-10 -8 (-15 -2951 (|#1| (-417 (-574)))) (-15 -3009 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1328 (|#1| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -3577 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2842 ((-417 (-574)) |#1|)) (-15 -3839 ((-112) |#1|)) (-15 -3936 (|#2| |#1|)) (-15 -1681 (|#2| |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2898 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -4226 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -1431 ((-112) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 131 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 129 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 126)) (-2214 (((-574) $) 130 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 128 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 127)) (-1831 (((-699 (-574)) (-1284 $)) 101 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 100 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 99 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 98) (((-699 |#1|) (-699 $)) 97) (((-699 |#1|) (-1284 $)) 96)) (-4322 (((-3 $ "failed") $) 37)) (-4223 ((|#1| $) 89)) (-3577 (((-3 (-417 (-574)) "failed") $) 85 (|has| |#1| (-555)))) (-3839 (((-112) $) 87 (|has| |#1| (-555)))) (-2842 (((-417 (-574)) $) 86 (|has| |#1| (-555)))) (-3328 (($ |#1| |#1| |#1| |#1|) 90)) (-4226 (((-112) $) 35)) (-1681 ((|#1| $) 91)) (-3634 (($ $ $) 78 (|has| |#1| (-860)))) (-4380 (($ $ $) 77 (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) 102)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 82 (|has| |#1| (-372)))) (-3394 ((|#1| $) 92)) (-2263 ((|#1| $) 93)) (-2732 ((|#1| $) 94)) (-3940 (((-1136) $) 11)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) 108 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 107 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 106 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 105 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 104 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) 103 (|has| |#1| (-524 (-1193) |#1|)))) (-2207 (($ $ |#1|) 109 (|has| |#1| (-294 |#1| |#1|)))) (-3879 (($ $ (-781)) 124 (|has| |#1| (-239))) (($ $) 122 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 118 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 117 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 116 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 114 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 111) (($ $ (-1 |#1| |#1|)) 110)) (-1844 (((-546) $) 83 (|has| |#1| (-624 (-546))))) (-3617 (($ $) 95)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 72 (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574))))))) (-3424 (((-3 $ "failed") $) 84 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-3936 ((|#1| $) 88 (|has| |#1| (-1076)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-781)) 125 (|has| |#1| (-239))) (($ $) 123 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 121 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 120 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 119 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 115 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 113) (($ $ (-1 |#1| |#1|)) 112)) (-3042 (((-112) $ $) 75 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 74 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 76 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 73 (|has| |#1| (-860)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 81 (|has| |#1| (-372)))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-417 (-574))) 80 (|has| |#1| (-372))) (($ (-417 (-574)) $) 79 (|has| |#1| (-372))))) +(((-1013 |#1|) (-141) (-174)) (T -1013)) +((-3617 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-2263 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-3328 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)) (-4 *2 (-1076)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-3577 (*1 *2 *1) (|partial| -12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574)))))) +(-13 (-38 |t#1|) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-386 |t#1|) (-10 -8 (-15 -3617 ($ $)) (-15 -2732 (|t#1| $)) (-15 -2263 (|t#1| $)) (-15 -3394 (|t#1| $)) (-15 -1681 (|t#1| $)) (-15 -3328 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4223 (|t#1| $)) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1076)) (-15 -3936 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -3839 ((-112) $)) (-15 -2842 ((-417 (-574)) $)) (-15 -3577 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-372)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-372)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) |has| |#1| (-372)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2833 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 #0#) |has| |#1| (-372)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-372)) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-372)) ((-650 |#1|) . T) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-372)) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-907 $ #2=(-1193)) |has| |#1| (-912 (-1193))) ((-912 #2#) |has| |#1| (-912 (-1193))) ((-914 #2#) |has| |#1| (-912 (-1193))) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 #0#) |has| |#1| (-372)) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1072 #0#) |has| |#1| (-372)) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) -2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-294 |#1| |#1|)) (|has| |#1| (-239)))) +((-1785 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1014 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|))) (-1013 |#2|) (-174) (-1013 |#4|) (-174)) (T -1014)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1013 *6)) (-5 *1 (-1014 *4 *5 *2 *6)) (-4 *4 (-1013 *5))))) +(-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-4223 ((|#1| $) 12)) (-3577 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-3839 (((-112) $) NIL (|has| |#1| (-555)))) (-2842 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-3328 (($ |#1| |#1| |#1| |#1|) 16)) (-4226 (((-112) $) NIL)) (-1681 ((|#1| $) NIL)) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3394 ((|#1| $) 15)) (-2263 ((|#1| $) 14)) (-2732 ((|#1| $) 13)) (-3940 (((-1136) $) NIL)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-524 (-1193) |#1|)))) (-2207 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-3879 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-3617 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574))))))) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-3936 ((|#1| $) NIL (|has| |#1| (-1076)))) (-2141 (($) 8 T CONST)) (-2153 (($) 10 T CONST)) (-3584 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))))) +(((-1015 |#1|) (-1013 |#1|) (-174)) (T -1015)) +NIL +(-1013 |#1|) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3146 (((-112) $ (-781)) NIL)) (-3250 (($) NIL T CONST)) (-4100 (($ $) 23)) (-2965 (($ (-654 |#1|)) 33)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-4109 (((-781) $) 26)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-2375 ((|#1| $) 28)) (-3285 (($ |#1| $) 17)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2703 ((|#1| $) 27)) (-3801 ((|#1| $) 22)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-3315 ((|#1| |#1| $) 16)) (-2754 (((-112) $) 18)) (-3336 (($) NIL)) (-2663 ((|#1| $) 21)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) NIL)) (-4423 ((|#1| $) 30)) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1016 |#1|) (-13 (-1011 |#1|) (-10 -8 (-15 -2965 ($ (-654 |#1|))))) (-1116)) (T -1016)) +((-2965 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-1016 *3))))) +(-13 (-1011 |#1|) (-10 -8 (-15 -2965 ($ (-654 |#1|))))) +((-4212 (($ $) 12)) (-3527 (($ $ (-574)) 13))) +(((-1017 |#1|) (-10 -8 (-15 -4212 (|#1| |#1|)) (-15 -3527 (|#1| |#1| (-574)))) (-1018)) (T -1017)) +NIL +(-10 -8 (-15 -4212 (|#1| |#1|)) (-15 -3527 (|#1| |#1| (-574)))) +((-4212 (($ $) 6)) (-3527 (($ $ (-574)) 7)) (** (($ $ (-417 (-574))) 8))) +(((-1018) (-141)) (T -1018)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-417 (-574))))) (-3527 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-574)))) (-4212 (*1 *1 *1) (-4 *1 (-1018)))) +(-13 (-10 -8 (-15 -4212 ($ $)) (-15 -3527 ($ $ (-574))) (-15 ** ($ $ (-417 (-574)))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-1471 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-2884 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1981 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3835 (((-699 (-417 |#2|)) (-1284 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1644 (((-417 |#2|) $) NIL)) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1610 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3245 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1496 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-4242 (((-112)) NIL)) (-2344 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| (-417 |#2|) (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-2580 (($ (-1284 (-417 |#2|)) (-1284 $)) NIL) (($ (-1284 (-417 |#2|))) 79) (($ (-1284 |#2|) |#2|) NIL)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2800 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2640 (((-699 (-417 |#2|)) $ (-1284 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-417 |#2|))) (|:| |vec| (-1284 (-417 |#2|)))) (-699 $) (-1284 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1284 $)) NIL)) (-1406 (((-1284 $) (-1284 $)) NIL)) (-2882 (($ |#3|) 73) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-4322 (((-3 $ "failed") $) NIL)) (-3925 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-2904 (((-112) |#1| |#1|) NIL)) (-3558 (((-935)) NIL)) (-2835 (($) NIL (|has| (-417 |#2|) (-377)))) (-3929 (((-112)) NIL)) (-1568 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2813 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-3621 (($ $) NIL)) (-3556 (($) NIL (|has| (-417 |#2|) (-358)))) (-3084 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-1995 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-3978 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3547 (((-935) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-935)) $) NIL (|has| (-417 |#2|) (-358)))) (-4226 (((-112) $) NIL)) (-2723 (((-781)) NIL)) (-2921 (((-1284 $) (-1284 $)) NIL)) (-1681 (((-417 |#2|) $) NIL)) (-2512 (((-654 (-966 |#1|)) (-1193)) NIL (|has| |#1| (-372)))) (-2414 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3989 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-3383 (((-935) $) NIL (|has| (-417 |#2|) (-377)))) (-2869 ((|#3| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1489 (((-1175) $) NIL)) (-3034 (((-699 (-417 |#2|))) 57)) (-1485 (((-699 (-417 |#2|))) 56)) (-1328 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3793 (($ (-1284 |#2|) |#2|) 80)) (-3984 (((-699 (-417 |#2|))) 55)) (-4432 (((-699 (-417 |#2|))) 54)) (-2294 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-2670 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) 86)) (-3963 (((-1284 $)) 51)) (-4367 (((-1284 $)) 50)) (-3965 (((-112) $) NIL)) (-3033 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3791 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2591 (($ (-935)) NIL (|has| (-417 |#2|) (-377)))) (-4375 (((-3 |#2| "failed")) 70)) (-3940 (((-1136) $) NIL)) (-3981 (((-781)) NIL)) (-2975 (($) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| (-417 |#2|) (-372)))) (-2887 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4202 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2853 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-2098 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2207 ((|#1| $ |#1| |#1|) NIL)) (-2090 (((-3 |#2| "failed")) 68)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2394 (((-417 |#2|) (-1284 $)) NIL) (((-417 |#2|)) 47)) (-3261 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3879 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1193)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3303 (((-699 (-417 |#2|)) (-1284 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-4379 ((|#3|) 58)) (-3603 (($) NIL (|has| (-417 |#2|) (-358)))) (-1385 (((-1284 (-417 |#2|)) $ (-1284 $)) NIL) (((-699 (-417 |#2|)) (-1284 $) (-1284 $)) NIL) (((-1284 (-417 |#2|)) $) 81) (((-699 (-417 |#2|)) (-1284 $)) NIL)) (-1844 (((-1284 (-417 |#2|)) $) NIL) (($ (-1284 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-2980 (((-1284 $) (-1284 $)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2833 (|has| (-417 |#2|) (-1054 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3424 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-2648 ((|#3| $) NIL)) (-2898 (((-781)) NIL T CONST)) (-1441 (((-112)) 65)) (-2983 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) NIL)) (-2836 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2561 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3526 (((-112)) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1193)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372))))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-351 |#1| |#2| |#3|) (-1238) (-1260 |#1|) (-1260 (-417 |#2|)) (-417 |#2|) (-781)) (T -1019)) NIL (-351 |#1| |#2| |#3|) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-2625 (((-654 (-574)) $) 73)) (-3736 (($ (-654 (-574))) 81)) (-4018 (((-574) $) 48 (|has| (-574) (-315)))) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL (|has| (-574) (-830)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) 60) (((-3 (-1192) "failed") $) NIL (|has| (-574) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) 57 (|has| (-574) (-1053 (-574)))) (((-3 (-574) "failed") $) 60 (|has| (-574) (-1053 (-574))))) (-2216 (((-574) $) NIL) (((-1192) $) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-574) (-1053 (-574)))) (((-574) $) NIL (|has| (-574) (-1053 (-574))))) (-2799 (($ $ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-574) (-555)))) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-2635 (((-654 (-574)) $) 79)) (-1913 (((-112) $) NIL (|has| (-574) (-830)))) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3372 (((-112) $) NIL)) (-3536 (($ $) NIL)) (-2970 (((-574) $) 45)) (-1353 (((-3 $ "failed") $) NIL (|has| (-574) (-1167)))) (-1808 (((-112) $) NIL (|has| (-574) (-830)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| (-574) (-860)))) (-1786 (($ (-1 (-574) (-574)) $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2244 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) 50)) (-2613 (((-1172 (-574)) $) 78)) (-2034 (($ (-654 (-574)) (-654 (-574))) 82)) (-3471 (((-574) $) 64 (|has| (-574) (-555)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4200 (((-428 $) $) NIL)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1192)) (-654 (-574))) NIL (|has| (-574) (-524 (-1192) (-574)))) (($ $ (-1192) (-574)) NIL (|has| (-574) (-524 (-1192) (-574))))) (-3364 (((-781) $) NIL)) (-2208 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) 15 (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2120 (($ $) NIL)) (-2981 (((-574) $) 47)) (-1535 (((-654 (-574)) $) 80)) (-1845 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1037))) (((-227) $) NIL (|has| (-574) (-1037)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-922))))) (-2950 (((-872) $) 107) (($ (-574)) 51) (($ $) NIL) (($ (-417 (-574))) 27) (($ (-574)) 51) (($ (-1192)) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) 25)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-574) (-922))) (|has| (-574) (-146))))) (-4019 (((-781)) 13 T CONST)) (-2753 (((-574) $) 62 (|has| (-574) (-555)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3306 (($ $) NIL (|has| (-574) (-830)))) (-2142 (($) 14 T CONST)) (-2154 (($) 17 T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2985 (((-112) $ $) 21)) (-3029 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) 40 (|has| (-574) (-860)))) (-3098 (($ $ $) 36) (($ (-574) (-574)) 38)) (-3089 (($ $) 23) (($ $ $) 30)) (-3074 (($ $ $) 28)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ $ $) 34) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) 32) (($ $ (-574)) NIL))) -(((-1019 |#1|) (-13 (-1007 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -2244 ((-417 (-574)) $)) (-15 -2625 ((-654 (-574)) $)) (-15 -2613 ((-1172 (-574)) $)) (-15 -2635 ((-654 (-574)) $)) (-15 -1535 ((-654 (-574)) $)) (-15 -3736 ($ (-654 (-574)))) (-15 -2034 ($ (-654 (-574)) (-654 (-574)))))) (-574)) (T -1019)) -((-2244 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-2635 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-2034 (*1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) -(-13 (-1007 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -2244 ((-417 (-574)) $)) (-15 -2625 ((-654 (-574)) $)) (-15 -2613 ((-1172 (-574)) $)) (-15 -2635 ((-654 (-574)) $)) (-15 -1535 ((-654 (-574)) $)) (-15 -3736 ($ (-654 (-574)))) (-15 -2034 ($ (-654 (-574)) (-654 (-574)))))) -((-1612 (((-52) (-417 (-574)) (-574)) 9))) -(((-1020) (-10 -7 (-15 -1612 ((-52) (-417 (-574)) (-574))))) (T -1020)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52)) (-5 *1 (-1020))))) -(-10 -7 (-15 -1612 ((-52) (-417 (-574)) (-574)))) -((-1496 (((-574)) 23)) (-2105 (((-574)) 28)) (-4225 (((-1288) (-574)) 26)) (-2396 (((-574) (-574)) 29) (((-574)) 22))) -(((-1021) (-10 -7 (-15 -2396 ((-574))) (-15 -1496 ((-574))) (-15 -2396 ((-574) (-574))) (-15 -4225 ((-1288) (-574))) (-15 -2105 ((-574))))) (T -1021)) -((-2105 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021)))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1021)))) (-2396 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021)))) (-1496 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021)))) (-2396 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021))))) -(-10 -7 (-15 -2396 ((-574))) (-15 -1496 ((-574))) (-15 -2396 ((-574) (-574))) (-15 -4225 ((-1288) (-574))) (-15 -2105 ((-574)))) -((-3748 (((-428 |#1|) |#1|) 43)) (-4200 (((-428 |#1|) |#1|) 41))) -(((-1022 |#1|) (-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3748 ((-428 |#1|) |#1|))) (-1259 (-417 (-574)))) (T -1022)) -((-3748 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1022 *3)) (-4 *3 (-1259 (-417 (-574)))))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1022 *3)) (-4 *3 (-1259 (-417 (-574))))))) -(-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3748 ((-428 |#1|) |#1|))) -((-1955 (((-3 (-417 (-574)) "failed") |#1|) 15)) (-1519 (((-112) |#1|) 14)) (-4188 (((-417 (-574)) |#1|) 10))) -(((-1023 |#1|) (-10 -7 (-15 -4188 ((-417 (-574)) |#1|)) (-15 -1519 ((-112) |#1|)) (-15 -1955 ((-3 (-417 (-574)) "failed") |#1|))) (-1053 (-417 (-574)))) (T -1023)) -((-1955 (*1 *2 *3) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1023 *3)) (-4 *3 (-1053 *2)))) (-1519 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1053 (-417 (-574)))))) (-4188 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1023 *3)) (-4 *3 (-1053 *2))))) -(-10 -7 (-15 -4188 ((-417 (-574)) |#1|)) (-15 -1519 ((-112) |#1|)) (-15 -1955 ((-3 (-417 (-574)) "failed") |#1|))) -((-3134 ((|#2| $ "value" |#2|) 12)) (-2208 ((|#2| $ "value") 10)) (-1870 (((-112) $ $) 18))) -(((-1024 |#1| |#2|) (-10 -8 (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -2208 (|#2| |#1| "value"))) (-1025 |#2|) (-1233)) (T -1024)) -NIL -(-10 -8 (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -2208 (|#2| |#1| "value"))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-2818 (((-112) $ (-781)) 8)) (-3906 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-3831 (($) 7 T CONST)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) 51)) (-2661 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3481 (((-654 |#1|) $) 46)) (-4069 (((-112) $) 50)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ "value") 48)) (-4418 (((-574) $ $) 45)) (-1966 (((-112) $) 47)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) 52)) (-1870 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-1025 |#1|) (-141) (-1233)) (T -1025)) -((-4414 (*1 *2 *1) (-12 (-4 *3 (-1233)) (-5 *2 (-654 *1)) (-4 *1 (-1025 *3)))) (-2898 (*1 *2 *1) (-12 (-4 *3 (-1233)) (-5 *2 (-654 *1)) (-4 *1 (-1025 *3)))) (-4069 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1233)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1025 *2)) (-4 *2 (-1233)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-654 *3)))) (-4418 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-574)))) (-1870 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-2661 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-2566 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4459)) (-4 *1 (-1025 *3)) (-4 *3 (-1233)))) (-3134 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4459)) (-4 *1 (-1025 *2)) (-4 *2 (-1233)))) (-3906 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1025 *2)) (-4 *2 (-1233))))) -(-13 (-499 |t#1|) (-10 -8 (-15 -4414 ((-654 $) $)) (-15 -2898 ((-654 $) $)) (-15 -4069 ((-112) $)) (-15 -3078 (|t#1| $)) (-15 -2208 (|t#1| $ "value")) (-15 -1966 ((-112) $)) (-15 -3481 ((-654 |t#1|) $)) (-15 -4418 ((-574) $ $)) (IF (|has| |t#1| (-1115)) (PROGN (-15 -1870 ((-112) $ $)) (-15 -2661 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4459)) (PROGN (-15 -2566 ($ $ (-654 $))) (-15 -3134 (|t#1| $ "value" |t#1|)) (-15 -3906 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-4211 (($ $) 9) (($ $ (-934)) 49) (($ (-417 (-574))) 13) (($ (-574)) 15)) (-3356 (((-3 $ "failed") (-1188 $) (-934) (-872)) 24) (((-3 $ "failed") (-1188 $) (-934)) 32)) (-2132 (($ $ (-574)) 58)) (-4019 (((-781)) 18)) (-2272 (((-654 $) (-1188 $)) NIL) (((-654 $) (-1188 (-417 (-574)))) 63) (((-654 $) (-1188 (-574))) 68) (((-654 $) (-965 $)) 72) (((-654 $) (-965 (-417 (-574)))) 76) (((-654 $) (-965 (-574))) 80)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 53))) -(((-1026 |#1|) (-10 -8 (-15 -4211 (|#1| (-574))) (-15 -4211 (|#1| (-417 (-574)))) (-15 -4211 (|#1| |#1| (-934))) (-15 -2272 ((-654 |#1|) (-965 (-574)))) (-15 -2272 ((-654 |#1|) (-965 (-417 (-574))))) (-15 -2272 ((-654 |#1|) (-965 |#1|))) (-15 -2272 ((-654 |#1|) (-1188 (-574)))) (-15 -2272 ((-654 |#1|) (-1188 (-417 (-574))))) (-15 -2272 ((-654 |#1|) (-1188 |#1|))) (-15 -3356 ((-3 |#1| "failed") (-1188 |#1|) (-934))) (-15 -3356 ((-3 |#1| "failed") (-1188 |#1|) (-934) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2132 (|#1| |#1| (-574))) (-15 -4211 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -4019 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934)))) (-1027)) (T -1026)) -((-4019 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1026 *3)) (-4 *3 (-1027))))) -(-10 -8 (-15 -4211 (|#1| (-574))) (-15 -4211 (|#1| (-417 (-574)))) (-15 -4211 (|#1| |#1| (-934))) (-15 -2272 ((-654 |#1|) (-965 (-574)))) (-15 -2272 ((-654 |#1|) (-965 (-417 (-574))))) (-15 -2272 ((-654 |#1|) (-965 |#1|))) (-15 -2272 ((-654 |#1|) (-1188 (-574)))) (-15 -2272 ((-654 |#1|) (-1188 (-417 (-574))))) (-15 -2272 ((-654 |#1|) (-1188 |#1|))) (-15 -3356 ((-3 |#1| "failed") (-1188 |#1|) (-934))) (-15 -3356 ((-3 |#1| "failed") (-1188 |#1|) (-934) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2132 (|#1| |#1| (-574))) (-15 -4211 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -4019 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 102)) (-3648 (($ $) 103)) (-1527 (((-112) $) 105)) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 122)) (-3954 (((-428 $) $) 123)) (-4211 (($ $) 86) (($ $ (-934)) 72) (($ (-417 (-574))) 71) (($ (-574)) 70)) (-3656 (((-112) $ $) 113)) (-3011 (((-574) $) 139)) (-3831 (($) 18 T CONST)) (-3356 (((-3 $ "failed") (-1188 $) (-934) (-872)) 80) (((-3 $ "failed") (-1188 $) (-934)) 79)) (-1705 (((-3 (-574) "failed") $) 99 (|has| (-417 (-574)) (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| (-417 (-574)) (-1053 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) 94)) (-2216 (((-574) $) 98 (|has| (-417 (-574)) (-1053 (-574)))) (((-417 (-574)) $) 96 (|has| (-417 (-574)) (-1053 (-417 (-574))))) (((-417 (-574)) $) 95)) (-2776 (($ $ (-872)) 69)) (-3628 (($ $ (-872)) 68)) (-2799 (($ $ $) 117)) (-3911 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 116)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 111)) (-1782 (((-112) $) 124)) (-1913 (((-112) $) 137)) (-3372 (((-112) $) 35)) (-2132 (($ $ (-574)) 85)) (-1808 (((-112) $) 138)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 120)) (-3632 (($ $ $) 136)) (-1593 (($ $ $) 135)) (-1729 (((-3 (-1188 $) "failed") $) 81)) (-2422 (((-3 (-872) "failed") $) 83)) (-2213 (((-3 (-1188 $) "failed") $) 82)) (-2848 (($ (-654 $)) 109) (($ $ $) 108)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 125)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 110)) (-2886 (($ (-654 $)) 107) (($ $ $) 106)) (-4200 (((-428 $) $) 121)) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 118)) (-2852 (((-3 $ "failed") $ $) 101)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 112)) (-3364 (((-781) $) 114)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 115)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 129) (($ $) 100) (($ (-417 (-574))) 93) (($ (-574)) 92) (($ (-417 (-574))) 89)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 104)) (-3524 (((-417 (-574)) $ $) 67)) (-2272 (((-654 $) (-1188 $)) 78) (((-654 $) (-1188 (-417 (-574)))) 77) (((-654 $) (-1188 (-574))) 76) (((-654 $) (-965 $)) 75) (((-654 $) (-965 (-417 (-574)))) 74) (((-654 $) (-965 (-574))) 73)) (-3306 (($ $) 140)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3041 (((-112) $ $) 133)) (-3018 (((-112) $ $) 132)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 134)) (-3009 (((-112) $ $) 131)) (-3098 (($ $ $) 130)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 126) (($ $ (-417 (-574))) 84)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 128) (($ $ (-417 (-574))) 127) (($ (-574) $) 91) (($ $ (-574)) 90) (($ (-417 (-574)) $) 88) (($ $ (-417 (-574))) 87))) -(((-1027) (-141)) (T -1027)) -((-4211 (*1 *1 *1) (-4 *1 (-1027))) (-2422 (*1 *2 *1) (|partial| -12 (-4 *1 (-1027)) (-5 *2 (-872)))) (-2213 (*1 *2 *1) (|partial| -12 (-5 *2 (-1188 *1)) (-4 *1 (-1027)))) (-1729 (*1 *2 *1) (|partial| -12 (-5 *2 (-1188 *1)) (-4 *1 (-1027)))) (-3356 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1188 *1)) (-5 *3 (-934)) (-5 *4 (-872)) (-4 *1 (-1027)))) (-3356 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1188 *1)) (-5 *3 (-934)) (-4 *1 (-1027)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-1188 *1)) (-4 *1 (-1027)) (-5 *2 (-654 *1)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-1188 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-1188 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-1027)) (-5 *2 (-654 *1)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-965 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-934)))) (-4211 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1027)))) (-4211 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1027)))) (-2776 (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-872)))) (-3628 (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-872)))) (-3524 (*1 *2 *1 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-417 (-574)))))) -(-13 (-148) (-858) (-174) (-372) (-421 (-417 (-574))) (-38 (-574)) (-38 (-417 (-574))) (-1017) (-10 -8 (-15 -2422 ((-3 (-872) "failed") $)) (-15 -2213 ((-3 (-1188 $) "failed") $)) (-15 -1729 ((-3 (-1188 $) "failed") $)) (-15 -3356 ((-3 $ "failed") (-1188 $) (-934) (-872))) (-15 -3356 ((-3 $ "failed") (-1188 $) (-934))) (-15 -2272 ((-654 $) (-1188 $))) (-15 -2272 ((-654 $) (-1188 (-417 (-574))))) (-15 -2272 ((-654 $) (-1188 (-574)))) (-15 -2272 ((-654 $) (-965 $))) (-15 -2272 ((-654 $) (-965 (-417 (-574))))) (-15 -2272 ((-654 $) (-965 (-574)))) (-15 -4211 ($ $ (-934))) (-15 -4211 ($ $)) (-15 -4211 ($ (-417 (-574)))) (-15 -4211 ($ (-574))) (-15 -2776 ($ $ (-872))) (-15 -3628 ($ $ (-872))) (-15 -3524 ((-417 (-574)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 #1=(-574)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-421 (-417 (-574))) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #1#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 #1#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 #1#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-933) . T) ((-1017) . T) ((-1053 (-417 (-574))) . T) ((-1053 (-574)) |has| (-417 (-574)) (-1053 (-574))) ((-1066 #0#) . T) ((-1066 #1#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 #1#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) -((-3882 (((-2 (|:| |ans| |#2|) (|:| -3877 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1028 |#1| |#2|) (-10 -7 (-15 -3882 ((-2 (|:| |ans| |#2|) (|:| -3877 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-27) (-440 |#1|))) (T -1028)) -((-3882 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1192)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3766 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1218) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1053 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3877 *4) (|:| |sol?| (-112)))) (-5 *1 (-1028 *8 *4))))) -(-10 -7 (-15 -3882 ((-2 (|:| |ans| |#2|) (|:| -3877 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-4299 (((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1029 |#1| |#2|) (-10 -7 (-15 -4299 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-27) (-440 |#1|))) (T -1029)) -((-4299 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1192)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3766 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1218) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1053 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-654 *4)) (-5 *1 (-1029 *8 *4))))) -(-10 -7 (-15 -4299 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3766 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1969 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4095 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)) 38)) (-3924 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 69)) (-3516 (((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|)) 74))) -(((-1030 |#1| |#2|) (-10 -7 (-15 -3924 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3516 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -1969 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4095 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)))) (-13 (-372) (-148) (-1053 (-574))) (-1259 |#1|)) (T -1030)) -((-1969 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1259 *6)) (-4 *6 (-13 (-372) (-148) (-1053 *4))) (-5 *4 (-574)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4095 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1030 *6 *3)))) (-3516 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1030 *4 *5)) (-5 *3 (-417 *5)))) (-3924 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6)) (|:| -2151 *6))) (-5 *1 (-1030 *5 *6)) (-5 *3 (-417 *6))))) -(-10 -7 (-15 -3924 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3516 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -1969 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4095 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)))) -((-3855 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 22)) (-3498 (((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 34))) -(((-1031 |#1| |#2|) (-10 -7 (-15 -3855 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3498 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)))) (-13 (-372) (-148) (-1053 (-574))) (-1259 |#1|)) (T -1031)) -((-3498 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1031 *4 *5)) (-5 *3 (-417 *5)))) (-3855 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |h| *6) (|:| |c1| (-417 *6)) (|:| |c2| (-417 *6)) (|:| -2151 *6))) (-5 *1 (-1031 *5 *6)) (-5 *3 (-417 *6))))) -(-10 -7 (-15 -3855 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3498 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)))) -((-3690 (((-1 |#1|) (-654 (-2 (|:| -3078 |#1|) (|:| -2102 (-574))))) 34)) (-1561 (((-1 |#1|) (-1117 |#1|)) 42)) (-2471 (((-1 |#1|) (-1283 |#1|) (-1283 (-574)) (-574)) 31))) -(((-1032 |#1|) (-10 -7 (-15 -1561 ((-1 |#1|) (-1117 |#1|))) (-15 -3690 ((-1 |#1|) (-654 (-2 (|:| -3078 |#1|) (|:| -2102 (-574)))))) (-15 -2471 ((-1 |#1|) (-1283 |#1|) (-1283 (-574)) (-574)))) (-1115)) (T -1032)) -((-2471 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1283 *6)) (-5 *4 (-1283 (-574))) (-5 *5 (-574)) (-4 *6 (-1115)) (-5 *2 (-1 *6)) (-5 *1 (-1032 *6)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3078 *4) (|:| -2102 (-574))))) (-4 *4 (-1115)) (-5 *2 (-1 *4)) (-5 *1 (-1032 *4)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-1115)) (-5 *2 (-1 *4)) (-5 *1 (-1032 *4))))) -(-10 -7 (-15 -1561 ((-1 |#1|) (-1117 |#1|))) (-15 -3690 ((-1 |#1|) (-654 (-2 (|:| -3078 |#1|) (|:| -2102 (-574)))))) (-15 -2471 ((-1 |#1|) (-1283 |#1|) (-1283 (-574)) (-574)))) -((-2725 (((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1033 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2725 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-13 (-377) (-372))) (T -1033)) -((-2725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-4 *4 (-1259 (-417 *7))) (-4 *8 (-351 *6 *7 *4)) (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781)) (-5 *1 (-1033 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2725 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2863 (((-112) $ $) NIL)) (-4150 (((-1150) $) 9)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2051 (((-1150) $) 11)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1034) (-13 (-1098) (-10 -8 (-15 -4150 ((-1150) $)) (-15 -2051 ((-1150) $))))) (T -1034)) -((-4150 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1034)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1034))))) -(-13 (-1098) (-10 -8 (-15 -4150 ((-1150) $)) (-15 -2051 ((-1150) $)))) -((-2947 (((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) 32) (((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574))) 29)) (-1858 (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574))) 34) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574))) 30) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) 33) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|) 28)) (-1479 (((-654 (-417 (-574))) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) 20)) (-3301 (((-417 (-574)) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) 17))) -(((-1035 |#1|) (-10 -7 (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|)) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -2947 ((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -2947 ((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -3301 ((-417 (-574)) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -1479 ((-654 (-417 (-574))) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))))) (-1259 (-574))) (T -1035)) -((-1479 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1035 *4)) (-4 *4 (-1259 (-574))))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) (-5 *2 (-417 (-574))) (-5 *1 (-1035 *4)) (-4 *4 (-1259 (-574))))) (-2947 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))))) (-2947 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))))) (-1858 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3864 *5) (|:| -3877 *5)))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))) (-5 *4 (-2 (|:| -3864 *5) (|:| -3877 *5))))) (-1858 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))) (-5 *4 (-417 (-574))))) (-1858 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))) (-5 *4 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) (-1858 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574)))))) -(-10 -7 (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|)) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -2947 ((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -2947 ((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -3301 ((-417 (-574)) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -1479 ((-654 (-417 (-574))) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))))) -((-2947 (((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) 35) (((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574))) 32)) (-1858 (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574))) 30) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574))) 26) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) 28) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|) 24))) -(((-1036 |#1|) (-10 -7 (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|)) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -2947 ((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -2947 ((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) (-1259 (-417 (-574)))) (T -1036)) -((-2947 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574)))))) (-2947 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 *4)))) (-1858 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3864 *5) (|:| -3877 *5)))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 *5)) (-5 *4 (-2 (|:| -3864 *5) (|:| -3877 *5))))) (-1858 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3864 *4) (|:| -3877 *4)))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 *4)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574)))) (-5 *4 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) (-1858 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574))))))) -(-10 -7 (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|)) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1858 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -2947 ((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -2947 ((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) -((-1845 (((-227) $) 6) (((-388) $) 9))) -(((-1037) (-141)) (T -1037)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-3021 (((-654 (-574)) $) 73)) (-3739 (($ (-654 (-574))) 81)) (-4146 (((-574) $) 48 (|has| (-574) (-315)))) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL (|has| (-574) (-830)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) 60) (((-3 (-1193) "failed") $) NIL (|has| (-574) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) 57 (|has| (-574) (-1054 (-574)))) (((-3 (-574) "failed") $) 60 (|has| (-574) (-1054 (-574))))) (-2214 (((-574) $) NIL) (((-1193) $) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-574) (-1054 (-574)))) (((-574) $) NIL (|has| (-574) (-1054 (-574))))) (-2800 (($ $ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-574) (-555)))) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-4124 (((-654 (-574)) $) 79)) (-3408 (((-112) $) NIL (|has| (-574) (-830)))) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-4226 (((-112) $) NIL)) (-2967 (($ $) NIL)) (-2971 (((-574) $) 45)) (-2414 (((-3 $ "failed") $) NIL (|has| (-574) (-1168)))) (-3182 (((-112) $) NIL (|has| (-574) (-830)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| (-574) (-860)))) (-1785 (($ (-1 (-574) (-574)) $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2162 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) 50)) (-3902 (((-1173 (-574)) $) 78)) (-4039 (($ (-654 (-574)) (-654 (-574))) 82)) (-2260 (((-574) $) 64 (|has| (-574) (-555)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-4202 (((-428 $) $) NIL)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1193)) (-654 (-574))) NIL (|has| (-574) (-524 (-1193) (-574)))) (($ $ (-1193) (-574)) NIL (|has| (-574) (-524 (-1193) (-574))))) (-2098 (((-781) $) NIL)) (-2207 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) 15 (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2808 (($ $) NIL)) (-2981 (((-574) $) 47)) (-4389 (((-654 (-574)) $) 80)) (-1844 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1038))) (((-227) $) NIL (|has| (-574) (-1038)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-923))))) (-2951 (((-872) $) 107) (($ (-574)) 51) (($ $) NIL) (($ (-417 (-574))) 27) (($ (-574)) 51) (($ (-1193)) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) 25)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-574) (-923))) (|has| (-574) (-146))))) (-2898 (((-781)) 13 T CONST)) (-2544 (((-574) $) 62 (|has| (-574) (-555)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3936 (($ $) NIL (|has| (-574) (-830)))) (-2141 (($) 14 T CONST)) (-2153 (($) 17 T CONST)) (-3584 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2986 (((-112) $ $) 21)) (-3030 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) 40 (|has| (-574) (-860)))) (-3103 (($ $ $) 36) (($ (-574) (-574)) 38)) (-3090 (($ $) 23) (($ $ $) 30)) (-3074 (($ $ $) 28)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ $ $) 34) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) 32) (($ $ (-574)) NIL))) +(((-1020 |#1|) (-13 (-1008 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -2162 ((-417 (-574)) $)) (-15 -3021 ((-654 (-574)) $)) (-15 -3902 ((-1173 (-574)) $)) (-15 -4124 ((-654 (-574)) $)) (-15 -4389 ((-654 (-574)) $)) (-15 -3739 ($ (-654 (-574)))) (-15 -4039 ($ (-654 (-574)) (-654 (-574)))))) (-574)) (T -1020)) +((-2162 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-4124 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-4389 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-4039 (*1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574))))) +(-13 (-1008 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -2162 ((-417 (-574)) $)) (-15 -3021 ((-654 (-574)) $)) (-15 -3902 ((-1173 (-574)) $)) (-15 -4124 ((-654 (-574)) $)) (-15 -4389 ((-654 (-574)) $)) (-15 -3739 ($ (-654 (-574)))) (-15 -4039 ($ (-654 (-574)) (-654 (-574)))))) +((-1578 (((-52) (-417 (-574)) (-574)) 9))) +(((-1021) (-10 -7 (-15 -1578 ((-52) (-417 (-574)) (-574))))) (T -1021)) +((-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52)) (-5 *1 (-1021))))) +(-10 -7 (-15 -1578 ((-52) (-417 (-574)) (-574)))) +((-1496 (((-574)) 23)) (-4399 (((-574)) 28)) (-3329 (((-1289) (-574)) 26)) (-2012 (((-574) (-574)) 29) (((-574)) 22))) +(((-1022) (-10 -7 (-15 -2012 ((-574))) (-15 -1496 ((-574))) (-15 -2012 ((-574) (-574))) (-15 -3329 ((-1289) (-574))) (-15 -4399 ((-574))))) (T -1022)) +((-4399 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1022)))) (-2012 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022)))) (-1496 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022)))) (-2012 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022))))) +(-10 -7 (-15 -2012 ((-574))) (-15 -1496 ((-574))) (-15 -2012 ((-574) (-574))) (-15 -3329 ((-1289) (-574))) (-15 -4399 ((-574)))) +((-2894 (((-428 |#1|) |#1|) 43)) (-4202 (((-428 |#1|) |#1|) 41))) +(((-1023 |#1|) (-10 -7 (-15 -4202 ((-428 |#1|) |#1|)) (-15 -2894 ((-428 |#1|) |#1|))) (-1260 (-417 (-574)))) (T -1023)) +((-2894 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1023 *3)) (-4 *3 (-1260 (-417 (-574)))))) (-4202 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1023 *3)) (-4 *3 (-1260 (-417 (-574))))))) +(-10 -7 (-15 -4202 ((-428 |#1|) |#1|)) (-15 -2894 ((-428 |#1|) |#1|))) +((-3577 (((-3 (-417 (-574)) "failed") |#1|) 15)) (-3839 (((-112) |#1|) 14)) (-2842 (((-417 (-574)) |#1|) 10))) +(((-1024 |#1|) (-10 -7 (-15 -2842 ((-417 (-574)) |#1|)) (-15 -3839 ((-112) |#1|)) (-15 -3577 ((-3 (-417 (-574)) "failed") |#1|))) (-1054 (-417 (-574)))) (T -1024)) +((-3577 (*1 *2 *3) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1024 *3)) (-4 *3 (-1054 *2)))) (-3839 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1024 *3)) (-4 *3 (-1054 (-417 (-574)))))) (-2842 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1024 *3)) (-4 *3 (-1054 *2))))) +(-10 -7 (-15 -2842 ((-417 (-574)) |#1|)) (-15 -3839 ((-112) |#1|)) (-15 -3577 ((-3 (-417 (-574)) "failed") |#1|))) +((-3135 ((|#2| $ "value" |#2|) 12)) (-2207 ((|#2| $ "value") 10)) (-4208 (((-112) $ $) 18))) +(((-1025 |#1| |#2|) (-10 -8 (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -4208 ((-112) |#1| |#1|)) (-15 -2207 (|#2| |#1| "value"))) (-1026 |#2|) (-1234)) (T -1025)) +NIL +(-10 -8 (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -4208 ((-112) |#1| |#1|)) (-15 -2207 (|#2| |#1| "value"))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-3146 (((-112) $ (-781)) 8)) (-4433 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-3250 (($) 7 T CONST)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) 51)) (-2622 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-3483 (((-654 |#1|) $) 46)) (-1580 (((-112) $) 50)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ "value") 48)) (-3615 (((-574) $ $) 45)) (-3911 (((-112) $) 47)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) 52)) (-4208 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-1026 |#1|) (-141) (-1234)) (T -1026)) +((-4163 (*1 *2 *1) (-12 (-4 *3 (-1234)) (-5 *2 (-654 *1)) (-4 *1 (-1026 *3)))) (-1482 (*1 *2 *1) (-12 (-4 *3 (-1234)) (-5 *2 (-654 *1)) (-4 *1 (-1026 *3)))) (-1580 (*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1234)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1026 *2)) (-4 *2 (-1234)))) (-3911 (*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-654 *3)))) (-3615 (*1 *2 *1 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-574)))) (-4208 (*1 *2 *1 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-2622 (*1 *2 *1 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-2705 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4460)) (-4 *1 (-1026 *3)) (-4 *3 (-1234)))) (-3135 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4460)) (-4 *1 (-1026 *2)) (-4 *2 (-1234)))) (-4433 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1026 *2)) (-4 *2 (-1234))))) +(-13 (-499 |t#1|) (-10 -8 (-15 -4163 ((-654 $) $)) (-15 -1482 ((-654 $) $)) (-15 -1580 ((-112) $)) (-15 -3079 (|t#1| $)) (-15 -2207 (|t#1| $ "value")) (-15 -3911 ((-112) $)) (-15 -3483 ((-654 |t#1|) $)) (-15 -3615 ((-574) $ $)) (IF (|has| |t#1| (-1116)) (PROGN (-15 -4208 ((-112) $ $)) (-15 -2622 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4460)) (PROGN (-15 -2705 ($ $ (-654 $))) (-15 -3135 (|t#1| $ "value" |t#1|)) (-15 -4433 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-4212 (($ $) 9) (($ $ (-935)) 49) (($ (-417 (-574))) 13) (($ (-574)) 15)) (-3814 (((-3 $ "failed") (-1189 $) (-935) (-872)) 24) (((-3 $ "failed") (-1189 $) (-935)) 32)) (-3527 (($ $ (-574)) 58)) (-2898 (((-781)) 18)) (-3510 (((-654 $) (-1189 $)) NIL) (((-654 $) (-1189 (-417 (-574)))) 63) (((-654 $) (-1189 (-574))) 68) (((-654 $) (-966 $)) 72) (((-654 $) (-966 (-417 (-574)))) 76) (((-654 $) (-966 (-574))) 80)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 53))) +(((-1027 |#1|) (-10 -8 (-15 -4212 (|#1| (-574))) (-15 -4212 (|#1| (-417 (-574)))) (-15 -4212 (|#1| |#1| (-935))) (-15 -3510 ((-654 |#1|) (-966 (-574)))) (-15 -3510 ((-654 |#1|) (-966 (-417 (-574))))) (-15 -3510 ((-654 |#1|) (-966 |#1|))) (-15 -3510 ((-654 |#1|) (-1189 (-574)))) (-15 -3510 ((-654 |#1|) (-1189 (-417 (-574))))) (-15 -3510 ((-654 |#1|) (-1189 |#1|))) (-15 -3814 ((-3 |#1| "failed") (-1189 |#1|) (-935))) (-15 -3814 ((-3 |#1| "failed") (-1189 |#1|) (-935) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3527 (|#1| |#1| (-574))) (-15 -4212 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -2898 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935)))) (-1028)) (T -1027)) +((-2898 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1027 *3)) (-4 *3 (-1028))))) +(-10 -8 (-15 -4212 (|#1| (-574))) (-15 -4212 (|#1| (-417 (-574)))) (-15 -4212 (|#1| |#1| (-935))) (-15 -3510 ((-654 |#1|) (-966 (-574)))) (-15 -3510 ((-654 |#1|) (-966 (-417 (-574))))) (-15 -3510 ((-654 |#1|) (-966 |#1|))) (-15 -3510 ((-654 |#1|) (-1189 (-574)))) (-15 -3510 ((-654 |#1|) (-1189 (-417 (-574))))) (-15 -3510 ((-654 |#1|) (-1189 |#1|))) (-15 -3814 ((-3 |#1| "failed") (-1189 |#1|) (-935))) (-15 -3814 ((-3 |#1| "failed") (-1189 |#1|) (-935) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3527 (|#1| |#1| (-574))) (-15 -4212 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -2898 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 102)) (-2884 (($ $) 103)) (-1981 (((-112) $) 105)) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 122)) (-1610 (((-428 $) $) 123)) (-4212 (($ $) 86) (($ $ (-935)) 72) (($ (-417 (-574))) 71) (($ (-574)) 70)) (-3245 (((-112) $ $) 113)) (-2472 (((-574) $) 139)) (-3250 (($) 18 T CONST)) (-3814 (((-3 $ "failed") (-1189 $) (-935) (-872)) 80) (((-3 $ "failed") (-1189 $) (-935)) 79)) (-1704 (((-3 (-574) "failed") $) 99 (|has| (-417 (-574)) (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| (-417 (-574)) (-1054 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) 94)) (-2214 (((-574) $) 98 (|has| (-417 (-574)) (-1054 (-574)))) (((-417 (-574)) $) 96 (|has| (-417 (-574)) (-1054 (-417 (-574))))) (((-417 (-574)) $) 95)) (-3234 (($ $ (-872)) 69)) (-3522 (($ $ (-872)) 68)) (-2800 (($ $ $) 117)) (-4322 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 116)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 111)) (-3978 (((-112) $) 124)) (-3408 (((-112) $) 137)) (-4226 (((-112) $) 35)) (-3527 (($ $ (-574)) 85)) (-3182 (((-112) $) 138)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 120)) (-3634 (($ $ $) 136)) (-4380 (($ $ $) 135)) (-1611 (((-3 (-1189 $) "failed") $) 81)) (-4334 (((-3 (-872) "failed") $) 83)) (-4260 (((-3 (-1189 $) "failed") $) 82)) (-2849 (($ (-654 $)) 109) (($ $ $) 108)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 125)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 110)) (-2887 (($ (-654 $)) 107) (($ $ $) 106)) (-4202 (((-428 $) $) 121)) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 118)) (-2853 (((-3 $ "failed") $ $) 101)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 112)) (-2098 (((-781) $) 114)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 115)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 129) (($ $) 100) (($ (-417 (-574))) 93) (($ (-574)) 92) (($ (-417 (-574))) 89)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 104)) (-3525 (((-417 (-574)) $ $) 67)) (-3510 (((-654 $) (-1189 $)) 78) (((-654 $) (-1189 (-417 (-574)))) 77) (((-654 $) (-1189 (-574))) 76) (((-654 $) (-966 $)) 75) (((-654 $) (-966 (-417 (-574)))) 74) (((-654 $) (-966 (-574))) 73)) (-3936 (($ $) 140)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 133)) (-3020 (((-112) $ $) 132)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 134)) (-3009 (((-112) $ $) 131)) (-3103 (($ $ $) 130)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 126) (($ $ (-417 (-574))) 84)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 128) (($ $ (-417 (-574))) 127) (($ (-574) $) 91) (($ $ (-574)) 90) (($ (-417 (-574)) $) 88) (($ $ (-417 (-574))) 87))) +(((-1028) (-141)) (T -1028)) +((-4212 (*1 *1 *1) (-4 *1 (-1028))) (-4334 (*1 *2 *1) (|partial| -12 (-4 *1 (-1028)) (-5 *2 (-872)))) (-4260 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189 *1)) (-4 *1 (-1028)))) (-1611 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189 *1)) (-4 *1 (-1028)))) (-3814 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1189 *1)) (-5 *3 (-935)) (-5 *4 (-872)) (-4 *1 (-1028)))) (-3814 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1189 *1)) (-5 *3 (-935)) (-4 *1 (-1028)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-1189 *1)) (-4 *1 (-1028)) (-5 *2 (-654 *1)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-1189 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-1189 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-1028)) (-5 *2 (-654 *1)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-966 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) (-4212 (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-935)))) (-4212 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1028)))) (-4212 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1028)))) (-3234 (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-872)))) (-3522 (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-872)))) (-3525 (*1 *2 *1 *1) (-12 (-4 *1 (-1028)) (-5 *2 (-417 (-574)))))) +(-13 (-148) (-858) (-174) (-372) (-421 (-417 (-574))) (-38 (-574)) (-38 (-417 (-574))) (-1018) (-10 -8 (-15 -4334 ((-3 (-872) "failed") $)) (-15 -4260 ((-3 (-1189 $) "failed") $)) (-15 -1611 ((-3 (-1189 $) "failed") $)) (-15 -3814 ((-3 $ "failed") (-1189 $) (-935) (-872))) (-15 -3814 ((-3 $ "failed") (-1189 $) (-935))) (-15 -3510 ((-654 $) (-1189 $))) (-15 -3510 ((-654 $) (-1189 (-417 (-574))))) (-15 -3510 ((-654 $) (-1189 (-574)))) (-15 -3510 ((-654 $) (-966 $))) (-15 -3510 ((-654 $) (-966 (-417 (-574))))) (-15 -3510 ((-654 $) (-966 (-574)))) (-15 -4212 ($ $ (-935))) (-15 -4212 ($ $)) (-15 -4212 ($ (-417 (-574)))) (-15 -4212 ($ (-574))) (-15 -3234 ($ $ (-872))) (-15 -3522 ($ $ (-872))) (-15 -3525 ((-417 (-574)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 #1=(-574)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-421 (-417 (-574))) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #1#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 #1#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 #1#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-934) . T) ((-1018) . T) ((-1054 (-417 (-574))) . T) ((-1054 (-574)) |has| (-417 (-574)) (-1054 (-574))) ((-1067 #0#) . T) ((-1067 #1#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 #1#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T)) +((-4026 (((-2 (|:| |ans| |#2|) (|:| -3878 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1029 |#1| |#2|) (-10 -7 (-15 -4026 ((-2 (|:| |ans| |#2|) (|:| -3878 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-27) (-440 |#1|))) (T -1029)) +((-4026 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1193)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3852 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1219) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1054 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3878 *4) (|:| |sol?| (-112)))) (-5 *1 (-1029 *8 *4))))) +(-10 -7 (-15 -4026 ((-2 (|:| |ans| |#2|) (|:| -3878 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2504 (((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1030 |#1| |#2|) (-10 -7 (-15 -2504 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-27) (-440 |#1|))) (T -1030)) +((-2504 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1193)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3852 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1219) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1054 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-654 *4)) (-5 *1 (-1030 *8 *4))))) +(-10 -7 (-15 -2504 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -3852 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1461 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4094 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)) 38)) (-1701 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 69)) (-3858 (((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|)) 74))) +(((-1031 |#1| |#2|) (-10 -7 (-15 -1701 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3858 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -1461 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4094 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)))) (-13 (-372) (-148) (-1054 (-574))) (-1260 |#1|)) (T -1031)) +((-1461 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1260 *6)) (-4 *6 (-13 (-372) (-148) (-1054 *4))) (-5 *4 (-574)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4094 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1031 *6 *3)))) (-3858 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1031 *4 *5)) (-5 *3 (-417 *5)))) (-1701 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6)) (|:| -2151 *6))) (-5 *1 (-1031 *5 *6)) (-5 *3 (-417 *6))))) +(-10 -7 (-15 -1701 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3858 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -1461 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4094 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)))) +((-3849 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 22)) (-2471 (((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 34))) +(((-1032 |#1| |#2|) (-10 -7 (-15 -3849 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -2471 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)))) (-13 (-372) (-148) (-1054 (-574))) (-1260 |#1|)) (T -1032)) +((-2471 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1032 *4 *5)) (-5 *3 (-417 *5)))) (-3849 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |h| *6) (|:| |c1| (-417 *6)) (|:| |c2| (-417 *6)) (|:| -2151 *6))) (-5 *1 (-1032 *5 *6)) (-5 *3 (-417 *6))))) +(-10 -7 (-15 -3849 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2151 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -2471 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)))) +((-3313 (((-1 |#1|) (-654 (-2 (|:| -3079 |#1|) (|:| -1540 (-574))))) 34)) (-3446 (((-1 |#1|) (-1118 |#1|)) 42)) (-1912 (((-1 |#1|) (-1284 |#1|) (-1284 (-574)) (-574)) 31))) +(((-1033 |#1|) (-10 -7 (-15 -3446 ((-1 |#1|) (-1118 |#1|))) (-15 -3313 ((-1 |#1|) (-654 (-2 (|:| -3079 |#1|) (|:| -1540 (-574)))))) (-15 -1912 ((-1 |#1|) (-1284 |#1|) (-1284 (-574)) (-574)))) (-1116)) (T -1033)) +((-1912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1284 *6)) (-5 *4 (-1284 (-574))) (-5 *5 (-574)) (-4 *6 (-1116)) (-5 *2 (-1 *6)) (-5 *1 (-1033 *6)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3079 *4) (|:| -1540 (-574))))) (-4 *4 (-1116)) (-5 *2 (-1 *4)) (-5 *1 (-1033 *4)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-1118 *4)) (-4 *4 (-1116)) (-5 *2 (-1 *4)) (-5 *1 (-1033 *4))))) +(-10 -7 (-15 -3446 ((-1 |#1|) (-1118 |#1|))) (-15 -3313 ((-1 |#1|) (-654 (-2 (|:| -3079 |#1|) (|:| -1540 (-574)))))) (-15 -1912 ((-1 |#1|) (-1284 |#1|) (-1284 (-574)) (-574)))) +((-3547 (((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3547 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-13 (-377) (-372))) (T -1034)) +((-3547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-4 *4 (-1260 (-417 *7))) (-4 *8 (-351 *6 *7 *4)) (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781)) (-5 *1 (-1034 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3547 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2864 (((-112) $ $) NIL)) (-4150 (((-1151) $) 9)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2050 (((-1151) $) 11)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1035) (-13 (-1099) (-10 -8 (-15 -4150 ((-1151) $)) (-15 -2050 ((-1151) $))))) (T -1035)) +((-4150 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1035)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1035))))) +(-13 (-1099) (-10 -8 (-15 -4150 ((-1151) $)) (-15 -2050 ((-1151) $)))) +((-2789 (((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) 32) (((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574))) 29)) (-1628 (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574))) 34) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574))) 30) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) 33) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|) 28)) (-2672 (((-654 (-417 (-574))) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) 20)) (-1447 (((-417 (-574)) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) 17))) +(((-1036 |#1|) (-10 -7 (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|)) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -2789 ((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -2789 ((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -1447 ((-417 (-574)) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -2672 ((-654 (-417 (-574))) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))))) (-1260 (-574))) (T -1036)) +((-2672 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1036 *4)) (-4 *4 (-1260 (-574))))) (-1447 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) (-5 *2 (-417 (-574))) (-5 *1 (-1036 *4)) (-4 *4 (-1260 (-574))))) (-2789 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))))) (-2789 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))))) (-1628 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3865 *5) (|:| -3878 *5)))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))) (-5 *4 (-2 (|:| -3865 *5) (|:| -3878 *5))))) (-1628 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))) (-5 *4 (-417 (-574))))) (-1628 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))) (-5 *4 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) (-1628 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574)))))) +(-10 -7 (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|)) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -2789 ((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -2789 ((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -1447 ((-417 (-574)) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -2672 ((-654 (-417 (-574))) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))))) +((-2789 (((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) 35) (((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574))) 32)) (-1628 (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574))) 30) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574))) 26) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) 28) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|) 24))) +(((-1037 |#1|) (-10 -7 (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|)) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -2789 ((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -2789 ((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) (-1260 (-417 (-574)))) (T -1037)) +((-2789 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574)))))) (-2789 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 *4)))) (-1628 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3865 *5) (|:| -3878 *5)))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 *5)) (-5 *4 (-2 (|:| -3865 *5) (|:| -3878 *5))))) (-1628 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3865 *4) (|:| -3878 *4)))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 *4)))) (-1628 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574)))) (-5 *4 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) (-1628 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574))))))) +(-10 -7 (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|)) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1628 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -2789 ((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -2789 ((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) +((-1844 (((-227) $) 6) (((-388) $) 9))) +(((-1038) (-141)) (T -1038)) NIL (-13 (-624 (-227)) (-624 (-388))) (((-624 (-227)) . T) ((-624 (-388)) . T)) -((-2514 (((-654 (-388)) (-965 (-574)) (-388)) 28) (((-654 (-388)) (-965 (-417 (-574))) (-388)) 27)) (-1937 (((-654 (-654 (-388))) (-654 (-965 (-574))) (-654 (-1192)) (-388)) 37))) -(((-1038) (-10 -7 (-15 -2514 ((-654 (-388)) (-965 (-417 (-574))) (-388))) (-15 -2514 ((-654 (-388)) (-965 (-574)) (-388))) (-15 -1937 ((-654 (-654 (-388))) (-654 (-965 (-574))) (-654 (-1192)) (-388))))) (T -1038)) -((-1937 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-654 (-1192))) (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1038)) (-5 *5 (-388)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-965 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1038)) (-5 *4 (-388)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *2 (-654 (-388))) (-5 *1 (-1038)) (-5 *4 (-388))))) -(-10 -7 (-15 -2514 ((-654 (-388)) (-965 (-417 (-574))) (-388))) (-15 -2514 ((-654 (-388)) (-965 (-574)) (-388))) (-15 -1937 ((-654 (-654 (-388))) (-654 (-965 (-574))) (-654 (-1192)) (-388)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 75)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-4211 (($ $) NIL) (($ $ (-934)) NIL) (($ (-417 (-574))) NIL) (($ (-574)) NIL)) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) 70)) (-3831 (($) NIL T CONST)) (-3356 (((-3 $ "failed") (-1188 $) (-934) (-872)) NIL) (((-3 $ "failed") (-1188 $) (-934)) 55)) (-1705 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 (-574)) (-1053 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-574) "failed") $) NIL (-2832 (|has| (-417 (-574)) (-1053 (-574))) (|has| |#1| (-1053 (-574)))))) (-2216 (((-417 (-574)) $) 17 (|has| (-417 (-574)) (-1053 (-417 (-574))))) (((-417 (-574)) $) 17) ((|#1| $) 117) (((-574) $) NIL (-2832 (|has| (-417 (-574)) (-1053 (-574))) (|has| |#1| (-1053 (-574)))))) (-2776 (($ $ (-872)) 47)) (-3628 (($ $ (-872)) 48)) (-2799 (($ $ $) NIL)) (-2111 (((-417 (-574)) $ $) 21)) (-3911 (((-3 $ "failed") $) 88)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1913 (((-112) $) 66)) (-3372 (((-112) $) NIL)) (-2132 (($ $ (-574)) NIL)) (-1808 (((-112) $) 69)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-1729 (((-3 (-1188 $) "failed") $) 83)) (-2422 (((-3 (-872) "failed") $) 82)) (-2213 (((-3 (-1188 $) "failed") $) 80)) (-3079 (((-3 (-1076 $ (-1188 $)) "failed") $) 78)) (-2848 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 89)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4200 (((-428 $) $) NIL)) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-2950 (((-872) $) 87) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) 63) (($ (-417 (-574))) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 119)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-3524 (((-417 (-574)) $ $) 27)) (-2272 (((-654 $) (-1188 $)) 61) (((-654 $) (-1188 (-417 (-574)))) NIL) (((-654 $) (-1188 (-574))) NIL) (((-654 $) (-965 $)) NIL) (((-654 $) (-965 (-417 (-574)))) NIL) (((-654 $) (-965 (-574))) NIL)) (-3243 (($ (-1076 $ (-1188 $)) (-872)) 46)) (-3306 (($ $) 22)) (-2142 (($) 32 T CONST)) (-2154 (($) 39 T CONST)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 76)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 24)) (-3098 (($ $ $) 37)) (-3089 (($ $) 38) (($ $ $) 74)) (-3074 (($ $ $) 112)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 98) (($ $ $) 104) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ (-574) $) 98) (($ $ (-574)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1039 |#1|) (-13 (-1027) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -3243 ($ (-1076 $ (-1188 $)) (-872))) (-15 -3079 ((-3 (-1076 $ (-1188 $)) "failed") $)) (-15 -2111 ((-417 (-574)) $ $)))) (-13 (-858) (-372) (-1037))) (T -1039)) -((-3243 (*1 *1 *2 *3) (-12 (-5 *2 (-1076 (-1039 *4) (-1188 (-1039 *4)))) (-5 *3 (-872)) (-5 *1 (-1039 *4)) (-4 *4 (-13 (-858) (-372) (-1037))))) (-3079 (*1 *2 *1) (|partial| -12 (-5 *2 (-1076 (-1039 *3) (-1188 (-1039 *3)))) (-5 *1 (-1039 *3)) (-4 *3 (-13 (-858) (-372) (-1037))))) (-2111 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1039 *3)) (-4 *3 (-13 (-858) (-372) (-1037)))))) -(-13 (-1027) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -3243 ($ (-1076 $ (-1188 $)) (-872))) (-15 -3079 ((-3 (-1076 $ (-1188 $)) "failed") $)) (-15 -2111 ((-417 (-574)) $ $)))) -((-3416 (((-2 (|:| -4095 |#2|) (|:| -4284 (-654 |#1|))) |#2| (-654 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1040 |#1| |#2|) (-10 -7 (-15 -3416 (|#2| |#2| |#1|)) (-15 -3416 ((-2 (|:| -4095 |#2|) (|:| -4284 (-654 |#1|))) |#2| (-654 |#1|)))) (-372) (-666 |#1|)) (T -1040)) -((-3416 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4095 *3) (|:| -4284 (-654 *5)))) (-5 *1 (-1040 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5)))) (-3416 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-1040 *3 *2)) (-4 *2 (-666 *3))))) -(-10 -7 (-15 -3416 (|#2| |#2| |#1|)) (-15 -3416 ((-2 (|:| -4095 |#2|) (|:| -4284 (-654 |#1|))) |#2| (-654 |#1|)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3101 ((|#1| $ |#1|) 14)) (-3134 ((|#1| $ |#1|) 12)) (-2879 (($ |#1|) 10)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2208 ((|#1| $) 11)) (-2369 ((|#1| $) 13)) (-2950 (((-872) $) 21 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2985 (((-112) $ $) 9))) -(((-1041 |#1|) (-13 (-1233) (-10 -8 (-15 -2879 ($ |#1|)) (-15 -2208 (|#1| $)) (-15 -3134 (|#1| $ |#1|)) (-15 -2369 (|#1| $)) (-15 -3101 (|#1| $ |#1|)) (-15 -2985 ((-112) $ $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) (-1233)) (T -1041)) -((-2879 (*1 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) (-2208 (*1 *2 *1) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) (-3134 (*1 *2 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) (-2369 (*1 *2 *1) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) (-3101 (*1 *2 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) (-2985 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1041 *3)) (-4 *3 (-1233))))) -(-13 (-1233) (-10 -8 (-15 -2879 ($ |#1|)) (-15 -2208 (|#1| $)) (-15 -3134 (|#1| $ |#1|)) (-15 -2369 (|#1| $)) (-15 -3101 (|#1| $ |#1|)) (-15 -2985 ((-112) $ $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) -((-2863 (((-112) $ $) NIL)) (-4205 (((-654 (-2 (|:| -1389 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1721 (((-654 $) (-654 |#4|)) 118) (((-654 $) (-654 |#4|) (-112)) 119) (((-654 $) (-654 |#4|) (-112) (-112)) 117) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 120)) (-4349 (((-654 |#3|) $) NIL)) (-3278 (((-112) $) NIL)) (-3814 (((-112) $) NIL (|has| |#1| (-566)))) (-3522 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3885 ((|#4| |#4| $) NIL)) (-3296 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| $) 112)) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#3|) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 66)) (-3831 (($) NIL T CONST)) (-4241 (((-112) $) 29 (|has| |#1| (-566)))) (-3297 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2860 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2450 (((-112) $) NIL (|has| |#1| (-566)))) (-3665 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4010 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1438 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2934 (((-3 $ "failed") $) 45)) (-1685 ((|#4| |#4| $) 69)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-566)))) (-3369 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4037 ((|#4| |#4| $) NIL)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1426 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) NIL)) (-2667 (((-112) |#4| $) NIL)) (-2797 (((-112) |#4| $) NIL)) (-1566 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1579 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 133)) (-1873 (((-654 |#4|) $) 18 (|has| $ (-6 -4458)))) (-3762 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2968 ((|#3| $) 38)) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#4|) $) 19 (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-2461 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) 23)) (-2740 (((-654 |#3|) $) NIL)) (-2080 (((-112) |#3| $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-4258 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-2971 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| |#4| $) 110)) (-3333 (((-3 |#4| "failed") $) 42)) (-2133 (((-654 $) |#4| $) 93)) (-1537 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-1884 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-1454 (((-654 $) |#4| $) 115) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 116) (((-654 $) |#4| (-654 $)) NIL)) (-2640 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 128)) (-3750 (($ |#4| $) 82) (($ (-654 |#4|) $) 83) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-3981 (((-654 |#4|) $) NIL)) (-2397 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1576 ((|#4| |#4| $) NIL)) (-2326 (((-112) $ $) NIL)) (-3081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1548 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3503 ((|#4| |#4| $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-3 |#4| "failed") $) 40)) (-2294 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2200 (((-3 $ "failed") $ |#4|) 59)) (-2115 (($ $ |#4|) NIL) (((-654 $) |#4| $) 95) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 89)) (-2000 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 17)) (-2833 (($) 14)) (-3584 (((-781) $) NIL)) (-3948 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) 13)) (-1845 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 22)) (-1689 (($ $ |#3|) 52)) (-2639 (($ $ |#3|) 54)) (-4330 (($ $) NIL)) (-3386 (($ $ |#3|) NIL)) (-2950 (((-872) $) 35) (((-654 |#4|) $) 46)) (-2706 (((-781) $) NIL (|has| |#3| (-377)))) (-3838 (((-112) $ $) NIL)) (-2270 (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1587 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2536 (((-654 $) |#4| $) 92) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-2980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-1437 (((-654 |#3|) $) NIL)) (-1651 (((-112) |#4| $) NIL)) (-1469 (((-112) |#3| $) 65)) (-2985 (((-112) $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1042 |#1| |#2| |#3| |#4|) (-13 (-1086 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3750 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1721 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1721 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2640 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1579 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -1042)) -((-3750 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1042 *5 *6 *7 *3))) (-5 *1 (-1042 *5 *6 *7 *3)) (-4 *3 (-1080 *5 *6 *7)))) (-1721 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) (-1721 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) (-2640 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) (-1579 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1042 *5 *6 *7 *8))))) (-5 *1 (-1042 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) -(-13 (-1086 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3750 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1721 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1721 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2640 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1579 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) -((-2986 (((-654 (-699 |#1|)) (-654 (-699 |#1|))) 70) (((-699 |#1|) (-699 |#1|)) 69) (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 68) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 65)) (-2584 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934)) 63) (((-699 |#1|) (-699 |#1|) (-934)) 62)) (-2587 (((-654 (-699 (-574))) (-654 (-654 (-574)))) 81) (((-654 (-699 (-574))) (-654 (-918 (-574))) (-574)) 80) (((-699 (-574)) (-654 (-574))) 77) (((-699 (-574)) (-918 (-574)) (-574)) 75)) (-3435 (((-699 (-965 |#1|)) (-781)) 95)) (-2468 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934)) 49 (|has| |#1| (-6 (-4460 "*")))) (((-699 |#1|) (-699 |#1|) (-934)) 47 (|has| |#1| (-6 (-4460 "*")))))) -(((-1043 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4460 "*"))) (-15 -2468 ((-699 |#1|) (-699 |#1|) (-934))) |%noBranch|) (IF (|has| |#1| (-6 (-4460 "*"))) (-15 -2468 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934))) |%noBranch|) (-15 -3435 ((-699 (-965 |#1|)) (-781))) (-15 -2584 ((-699 |#1|) (-699 |#1|) (-934))) (-15 -2584 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934))) (-15 -2986 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2986 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2986 ((-699 |#1|) (-699 |#1|))) (-15 -2986 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2587 ((-699 (-574)) (-918 (-574)) (-574))) (-15 -2587 ((-699 (-574)) (-654 (-574)))) (-15 -2587 ((-654 (-699 (-574))) (-654 (-918 (-574))) (-574))) (-15 -2587 ((-654 (-699 (-574))) (-654 (-654 (-574)))))) (-1064)) (T -1043)) -((-2587 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1043 *4)) (-4 *4 (-1064)))) (-2587 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-918 (-574)))) (-5 *4 (-574)) (-5 *2 (-654 (-699 *4))) (-5 *1 (-1043 *5)) (-4 *5 (-1064)))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1043 *4)) (-4 *4 (-1064)))) (-2587 (*1 *2 *3 *4) (-12 (-5 *3 (-918 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4)) (-5 *1 (-1043 *5)) (-4 *5 (-1064)))) (-2986 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) (-2986 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) (-2986 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) (-2986 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) (-2584 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-934)) (-4 *4 (-1064)) (-5 *1 (-1043 *4)))) (-2584 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-934)) (-4 *4 (-1064)) (-5 *1 (-1043 *4)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-699 (-965 *4))) (-5 *1 (-1043 *4)) (-4 *4 (-1064)))) (-2468 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-934)) (|has| *4 (-6 (-4460 "*"))) (-4 *4 (-1064)) (-5 *1 (-1043 *4)))) (-2468 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-934)) (|has| *4 (-6 (-4460 "*"))) (-4 *4 (-1064)) (-5 *1 (-1043 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4460 "*"))) (-15 -2468 ((-699 |#1|) (-699 |#1|) (-934))) |%noBranch|) (IF (|has| |#1| (-6 (-4460 "*"))) (-15 -2468 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934))) |%noBranch|) (-15 -3435 ((-699 (-965 |#1|)) (-781))) (-15 -2584 ((-699 |#1|) (-699 |#1|) (-934))) (-15 -2584 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934))) (-15 -2986 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2986 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2986 ((-699 |#1|) (-699 |#1|))) (-15 -2986 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2587 ((-699 (-574)) (-918 (-574)) (-574))) (-15 -2587 ((-699 (-574)) (-654 (-574)))) (-15 -2587 ((-654 (-699 (-574))) (-654 (-918 (-574))) (-574))) (-15 -2587 ((-654 (-699 (-574))) (-654 (-654 (-574)))))) -((-2758 (((-699 |#1|) (-654 (-699 |#1|)) (-1283 |#1|)) 70 (|has| |#1| (-315)))) (-3749 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 (-1283 |#1|))) 110 (|has| |#1| (-372))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 |#1|)) 117 (|has| |#1| (-372)))) (-4134 (((-1283 |#1|) (-654 (-1283 |#1|)) (-574)) 135 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-3650 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-934)) 123 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112)) 122 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|))) 121 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574)) 120 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-4212 (((-112) (-654 (-699 |#1|))) 103 (|has| |#1| (-372))) (((-112) (-654 (-699 |#1|)) (-574)) 106 (|has| |#1| (-372)))) (-3469 (((-1283 (-1283 |#1|)) (-654 (-699 |#1|)) (-1283 |#1|)) 67 (|has| |#1| (-315)))) (-3042 (((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|)) 47)) (-1921 (((-699 |#1|) (-1283 (-1283 |#1|))) 40)) (-4180 (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574)) 94 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 93 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574)) 101 (|has| |#1| (-372))))) -(((-1044 |#1|) (-10 -7 (-15 -1921 ((-699 |#1|) (-1283 (-1283 |#1|)))) (-15 -3042 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -3469 ((-1283 (-1283 |#1|)) (-654 (-699 |#1|)) (-1283 |#1|))) (-15 -2758 ((-699 |#1|) (-654 (-699 |#1|)) (-1283 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -4180 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -4180 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -4180 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -4212 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -4212 ((-112) (-654 (-699 |#1|)))) (-15 -3749 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 |#1|))) (-15 -3749 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 (-1283 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -3650 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -3650 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -3650 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -3650 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-934))) (-15 -4134 ((-1283 |#1|) (-654 (-1283 |#1|)) (-574)))) |%noBranch|) |%noBranch|)) (-1064)) (T -1044)) -((-4134 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1283 *5))) (-5 *4 (-574)) (-5 *2 (-1283 *5)) (-5 *1 (-1044 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064)))) (-3650 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-654 (-699 *5))))) (-3650 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-654 (-699 *5))))) (-3650 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1064)) (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-654 (-699 *4))))) (-3650 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377)) (-4 *6 (-1064)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1044 *6)) (-5 *3 (-654 (-699 *6))))) (-3749 (*1 *2 *3 *4) (-12 (-5 *4 (-1283 (-1283 *5))) (-4 *5 (-372)) (-4 *5 (-1064)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-654 (-699 *5))))) (-3749 (*1 *2 *3 *4) (-12 (-5 *4 (-1283 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-654 (-699 *5))))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1064)) (-5 *2 (-112)) (-5 *1 (-1044 *4)))) (-4212 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372)) (-4 *5 (-1064)) (-5 *2 (-112)) (-5 *1 (-1044 *5)))) (-4180 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5)) (-5 *1 (-1044 *5)) (-4 *5 (-372)) (-4 *5 (-1064)))) (-4180 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1044 *4)) (-4 *4 (-372)) (-4 *4 (-1064)))) (-4180 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574)) (-5 *2 (-699 *6)) (-5 *1 (-1044 *6)) (-4 *6 (-372)) (-4 *6 (-1064)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1283 *5)) (-4 *5 (-315)) (-4 *5 (-1064)) (-5 *2 (-699 *5)) (-5 *1 (-1044 *5)))) (-3469 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1064)) (-5 *2 (-1283 (-1283 *5))) (-5 *1 (-1044 *5)) (-5 *4 (-1283 *5)))) (-3042 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1064)) (-5 *1 (-1044 *4)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-1283 (-1283 *4))) (-4 *4 (-1064)) (-5 *2 (-699 *4)) (-5 *1 (-1044 *4))))) -(-10 -7 (-15 -1921 ((-699 |#1|) (-1283 (-1283 |#1|)))) (-15 -3042 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -3469 ((-1283 (-1283 |#1|)) (-654 (-699 |#1|)) (-1283 |#1|))) (-15 -2758 ((-699 |#1|) (-654 (-699 |#1|)) (-1283 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -4180 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -4180 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -4180 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -4212 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -4212 ((-112) (-654 (-699 |#1|)))) (-15 -3749 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 |#1|))) (-15 -3749 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 (-1283 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -3650 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -3650 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -3650 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -3650 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-934))) (-15 -4134 ((-1283 |#1|) (-654 (-1283 |#1|)) (-574)))) |%noBranch|) |%noBranch|)) -((-1709 ((|#1| (-934) |#1|) 18))) -(((-1045 |#1|) (-10 -7 (-15 -1709 (|#1| (-934) |#1|))) (-13 (-1115) (-10 -8 (-15 -3074 ($ $ $))))) (T -1045)) -((-1709 (*1 *2 *3 *2) (-12 (-5 *3 (-934)) (-5 *1 (-1045 *2)) (-4 *2 (-13 (-1115) (-10 -8 (-15 -3074 ($ $ $)))))))) -(-10 -7 (-15 -1709 (|#1| (-934) |#1|))) -((-2873 (((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-965 (-574))))) 67)) (-3825 (((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-965 (-574))))) 52)) (-3313 (((-654 (-324 (-574))) (-699 (-417 (-965 (-574))))) 45)) (-4089 (((-654 (-699 (-324 (-574)))) (-699 (-417 (-965 (-574))))) 85)) (-1513 (((-699 (-324 (-574))) (-699 (-324 (-574)))) 38)) (-2739 (((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574))))) 74)) (-2544 (((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-965 (-574))))) 82))) -(((-1046) (-10 -7 (-15 -2873 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-965 (-574)))))) (-15 -3825 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-965 (-574)))))) (-15 -3313 ((-654 (-324 (-574))) (-699 (-417 (-965 (-574)))))) (-15 -2544 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-965 (-574)))))) (-15 -1513 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -2739 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -4089 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-965 (-574)))))))) (T -1046)) -((-4089 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-965 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1046)))) (-2544 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 (-417 (-965 (-574))))) (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1046)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-965 (-574))))) (-5 *2 (-654 (-324 (-574)))) (-5 *1 (-1046)))) (-3825 (*1 *2 *3 *4) (-12 (-5 *4 (-699 (-417 (-965 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046)) (-5 *3 (-324 (-574))))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-965 (-574))))) (-5 *2 (-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574)))))))) (-5 *1 (-1046))))) -(-10 -7 (-15 -2873 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-965 (-574)))))) (-15 -3825 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-965 (-574)))))) (-15 -3313 ((-654 (-324 (-574))) (-699 (-417 (-965 (-574)))))) (-15 -2544 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-965 (-574)))))) (-15 -1513 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -2739 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -4089 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-965 (-574))))))) -((-2735 ((|#1| |#1| (-934)) 18))) -(((-1047 |#1|) (-10 -7 (-15 -2735 (|#1| |#1| (-934)))) (-13 (-1115) (-10 -8 (-15 * ($ $ $))))) (T -1047)) -((-2735 (*1 *2 *2 *3) (-12 (-5 *3 (-934)) (-5 *1 (-1047 *2)) (-4 *2 (-13 (-1115) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2735 (|#1| |#1| (-934)))) -((-2950 ((|#1| (-320)) 11) (((-1288) |#1|) 9))) -(((-1048 |#1|) (-10 -7 (-15 -2950 ((-1288) |#1|)) (-15 -2950 (|#1| (-320)))) (-1233)) (T -1048)) -((-2950 (*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1048 *2)) (-4 *2 (-1233)))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-1288)) (-5 *1 (-1048 *3)) (-4 *3 (-1233))))) -(-10 -7 (-15 -2950 ((-1288) |#1|)) (-15 -2950 (|#1| (-320)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-2881 (($ |#4|) 25)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) NIL)) (-2868 ((|#4| $) 27)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 46) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4019 (((-781)) 43 T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 21 T CONST)) (-2154 (($) 23 T CONST)) (-2985 (((-112) $ $) 40)) (-3089 (($ $) 31) (($ $ $) NIL)) (-3074 (($ $ $) 29)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1049 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2881 ($ |#4|)) (-15 -2950 ($ |#4|)) (-15 -2868 (|#4| $)))) (-372) (-803) (-860) (-962 |#1| |#2| |#3|) (-654 |#4|)) (T -1049)) -((-2881 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1049 *3 *4 *5 *2 *6)) (-4 *2 (-962 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2950 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1049 *3 *4 *5 *2 *6)) (-4 *2 (-962 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2868 (*1 *2 *1) (-12 (-4 *2 (-962 *3 *4 *5)) (-5 *1 (-1049 *3 *4 *5 *2 *6)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-14 *6 (-654 *2))))) -(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2881 ($ |#4|)) (-15 -2950 ($ |#4|)) (-15 -2868 (|#4| $)))) -((-2863 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) NIL)) (-3287 (((-1288) $ (-1192) (-1192)) NIL (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-1613 (((-112) (-112)) 43)) (-2658 (((-112) (-112)) 42)) (-3134 (((-52) $ (-1192) (-52)) NIL)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2171 (((-3 (-52) "failed") (-1192) $) NIL)) (-3831 (($) NIL T CONST)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-1941 (($ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-3 (-52) "failed") (-1192) $) NIL)) (-3310 (($ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (((-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2472 (((-52) $ (-1192) (-52)) NIL (|has| $ (-6 -4459)))) (-2399 (((-52) $ (-1192)) NIL)) (-1873 (((-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-1192) $) NIL (|has| (-1192) (-860)))) (-2247 (((-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-2429 (((-1192) $) NIL (|has| (-1192) (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-1772 (((-654 (-1192)) $) 37)) (-2056 (((-112) (-1192) $) NIL)) (-1748 (((-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL)) (-2609 (($ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL)) (-3228 (((-654 (-1192)) $) NIL)) (-3071 (((-112) (-1192) $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-2924 (((-52) $) NIL (|has| (-1192) (-860)))) (-2294 (((-3 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) "failed") (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL)) (-4276 (($ $ (-52)) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (($ $ (-302 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (($ $ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (($ $ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-2379 (((-654 (-52)) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 (((-52) $ (-1192)) 39) (((-52) $ (-1192) (-52)) NIL)) (-3667 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) NIL)) (-2950 (((-872) $) 41 (-2832 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-623 (-872)))))) (-3838 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) NIL)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1050) (-13 (-1209 (-1192) (-52)) (-10 -7 (-15 -1613 ((-112) (-112))) (-15 -2658 ((-112) (-112))) (-6 -4458)))) (T -1050)) -((-1613 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1050)))) (-2658 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1050))))) -(-13 (-1209 (-1192) (-52)) (-10 -7 (-15 -1613 ((-112) (-112))) (-15 -2658 ((-112) (-112))) (-6 -4458))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 9)) (-2950 (((-872) $) 15) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1051) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $))))) (T -1051)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1051))))) -(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)))) -((-2216 ((|#2| $) 10))) -(((-1052 |#1| |#2|) (-10 -8 (-15 -2216 (|#2| |#1|))) (-1053 |#2|) (-1233)) (T -1052)) -NIL -(-10 -8 (-15 -2216 (|#2| |#1|))) -((-1705 (((-3 |#1| "failed") $) 9)) (-2216 ((|#1| $) 8)) (-2950 (($ |#1|) 6))) -(((-1053 |#1|) (-141) (-1233)) (T -1053)) -((-1705 (*1 *2 *1) (|partial| -12 (-4 *1 (-1053 *2)) (-4 *2 (-1233)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1233))))) -(-13 (-626 |t#1|) (-10 -8 (-15 -1705 ((-3 |t#1| "failed") $)) (-15 -2216 (|t#1| $)))) +((-3987 (((-654 (-388)) (-966 (-574)) (-388)) 28) (((-654 (-388)) (-966 (-417 (-574))) (-388)) 27)) (-1413 (((-654 (-654 (-388))) (-654 (-966 (-574))) (-654 (-1193)) (-388)) 37))) +(((-1039) (-10 -7 (-15 -3987 ((-654 (-388)) (-966 (-417 (-574))) (-388))) (-15 -3987 ((-654 (-388)) (-966 (-574)) (-388))) (-15 -1413 ((-654 (-654 (-388))) (-654 (-966 (-574))) (-654 (-1193)) (-388))))) (T -1039)) +((-1413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-654 (-1193))) (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1039)) (-5 *5 (-388)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-966 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1039)) (-5 *4 (-388)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *2 (-654 (-388))) (-5 *1 (-1039)) (-5 *4 (-388))))) +(-10 -7 (-15 -3987 ((-654 (-388)) (-966 (-417 (-574))) (-388))) (-15 -3987 ((-654 (-388)) (-966 (-574)) (-388))) (-15 -1413 ((-654 (-654 (-388))) (-654 (-966 (-574))) (-654 (-1193)) (-388)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 75)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-4212 (($ $) NIL) (($ $ (-935)) NIL) (($ (-417 (-574))) NIL) (($ (-574)) NIL)) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) 70)) (-3250 (($) NIL T CONST)) (-3814 (((-3 $ "failed") (-1189 $) (-935) (-872)) NIL) (((-3 $ "failed") (-1189 $) (-935)) 55)) (-1704 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 (-574)) (-1054 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-574) "failed") $) NIL (-2833 (|has| (-417 (-574)) (-1054 (-574))) (|has| |#1| (-1054 (-574)))))) (-2214 (((-417 (-574)) $) 17 (|has| (-417 (-574)) (-1054 (-417 (-574))))) (((-417 (-574)) $) 17) ((|#1| $) 117) (((-574) $) NIL (-2833 (|has| (-417 (-574)) (-1054 (-574))) (|has| |#1| (-1054 (-574)))))) (-3234 (($ $ (-872)) 47)) (-3522 (($ $ (-872)) 48)) (-2800 (($ $ $) NIL)) (-1638 (((-417 (-574)) $ $) 21)) (-4322 (((-3 $ "failed") $) 88)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-3408 (((-112) $) 66)) (-4226 (((-112) $) NIL)) (-3527 (($ $ (-574)) NIL)) (-3182 (((-112) $) 69)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1611 (((-3 (-1189 $) "failed") $) 83)) (-4334 (((-3 (-872) "failed") $) 82)) (-4260 (((-3 (-1189 $) "failed") $) 80)) (-1664 (((-3 (-1077 $ (-1189 $)) "failed") $) 78)) (-2849 (($ (-654 $)) NIL) (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 89)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4202 (((-428 $) $) NIL)) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-2951 (((-872) $) 87) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) 63) (($ (-417 (-574))) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 119)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-3525 (((-417 (-574)) $ $) 27)) (-3510 (((-654 $) (-1189 $)) 61) (((-654 $) (-1189 (-417 (-574)))) NIL) (((-654 $) (-1189 (-574))) NIL) (((-654 $) (-966 $)) NIL) (((-654 $) (-966 (-417 (-574)))) NIL) (((-654 $) (-966 (-574))) NIL)) (-2692 (($ (-1077 $ (-1189 $)) (-872)) 46)) (-3936 (($ $) 22)) (-2141 (($) 32 T CONST)) (-2153 (($) 39 T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 76)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 24)) (-3103 (($ $ $) 37)) (-3090 (($ $) 38) (($ $ $) 74)) (-3074 (($ $ $) 112)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 98) (($ $ $) 104) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ (-574) $) 98) (($ $ (-574)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1040 |#1|) (-13 (-1028) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -2692 ($ (-1077 $ (-1189 $)) (-872))) (-15 -1664 ((-3 (-1077 $ (-1189 $)) "failed") $)) (-15 -1638 ((-417 (-574)) $ $)))) (-13 (-858) (-372) (-1038))) (T -1040)) +((-2692 (*1 *1 *2 *3) (-12 (-5 *2 (-1077 (-1040 *4) (-1189 (-1040 *4)))) (-5 *3 (-872)) (-5 *1 (-1040 *4)) (-4 *4 (-13 (-858) (-372) (-1038))))) (-1664 (*1 *2 *1) (|partial| -12 (-5 *2 (-1077 (-1040 *3) (-1189 (-1040 *3)))) (-5 *1 (-1040 *3)) (-4 *3 (-13 (-858) (-372) (-1038))))) (-1638 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1040 *3)) (-4 *3 (-13 (-858) (-372) (-1038)))))) +(-13 (-1028) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -2692 ($ (-1077 $ (-1189 $)) (-872))) (-15 -1664 ((-3 (-1077 $ (-1189 $)) "failed") $)) (-15 -1638 ((-417 (-574)) $ $)))) +((-3653 (((-2 (|:| -4094 |#2|) (|:| -4285 (-654 |#1|))) |#2| (-654 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1041 |#1| |#2|) (-10 -7 (-15 -3653 (|#2| |#2| |#1|)) (-15 -3653 ((-2 (|:| -4094 |#2|) (|:| -4285 (-654 |#1|))) |#2| (-654 |#1|)))) (-372) (-666 |#1|)) (T -1041)) +((-3653 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4094 *3) (|:| -4285 (-654 *5)))) (-5 *1 (-1041 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5)))) (-3653 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-1041 *3 *2)) (-4 *2 (-666 *3))))) +(-10 -7 (-15 -3653 (|#2| |#2| |#1|)) (-15 -3653 ((-2 (|:| -4094 |#2|) (|:| -4285 (-654 |#1|))) |#2| (-654 |#1|)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2338 ((|#1| $ |#1|) 14)) (-3135 ((|#1| $ |#1|) 12)) (-2973 (($ |#1|) 10)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2207 ((|#1| $) 11)) (-2210 ((|#1| $) 13)) (-2951 (((-872) $) 21 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2986 (((-112) $ $) 9))) +(((-1042 |#1|) (-13 (-1234) (-10 -8 (-15 -2973 ($ |#1|)) (-15 -2207 (|#1| $)) (-15 -3135 (|#1| $ |#1|)) (-15 -2210 (|#1| $)) (-15 -2338 (|#1| $ |#1|)) (-15 -2986 ((-112) $ $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|))) (-1234)) (T -1042)) +((-2973 (*1 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) (-2207 (*1 *2 *1) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) (-3135 (*1 *2 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) (-2210 (*1 *2 *1) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) (-2338 (*1 *2 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) (-2986 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1042 *3)) (-4 *3 (-1234))))) +(-13 (-1234) (-10 -8 (-15 -2973 ($ |#1|)) (-15 -2207 (|#1| $)) (-15 -3135 (|#1| $ |#1|)) (-15 -2210 (|#1| $)) (-15 -2338 (|#1| $ |#1|)) (-15 -2986 ((-112) $ $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|))) +((-2864 (((-112) $ $) NIL)) (-2298 (((-654 (-2 (|:| -1390 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3656 (((-654 $) (-654 |#4|)) 118) (((-654 $) (-654 |#4|) (-112)) 119) (((-654 $) (-654 |#4|) (-112) (-112)) 117) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 120)) (-4350 (((-654 |#3|) $) NIL)) (-1437 (((-112) $) NIL)) (-2176 (((-112) $) NIL (|has| |#1| (-566)))) (-2972 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2104 ((|#4| |#4| $) NIL)) (-2991 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 112)) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#3|) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-2172 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 66)) (-3250 (($) NIL T CONST)) (-3721 (((-112) $) 29 (|has| |#1| (-566)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2196 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3564 (((-112) $) NIL (|has| |#1| (-566)))) (-4434 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1855 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-3406 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2214 (($ (-654 |#4|)) NIL)) (-2935 (((-3 $ "failed") $) 45)) (-2660 ((|#4| |#4| $) 69)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3311 (($ |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-566)))) (-1857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3347 ((|#4| |#4| $) NIL)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2830 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) NIL)) (-1647 (((-112) |#4| $) NIL)) (-4126 (((-112) |#4| $) NIL)) (-3832 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1821 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 133)) (-1871 (((-654 |#4|) $) 18 (|has| $ (-6 -4459)))) (-3145 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4241 ((|#3| $) 38)) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#4|) $) 19 (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2462 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 23)) (-2737 (((-654 |#3|) $) NIL)) (-3161 (((-112) |#3| $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-1900 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-2623 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 110)) (-3334 (((-3 |#4| "failed") $) 42)) (-1976 (((-654 $) |#4| $) 93)) (-2659 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-3029 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3891 (((-654 $) |#4| $) 115) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 116) (((-654 $) |#4| (-654 $)) NIL)) (-2619 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 128)) (-3268 (($ |#4| $) 82) (($ (-654 |#4|) $) 83) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-1957 (((-654 |#4|) $) NIL)) (-3749 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2254 ((|#4| |#4| $) NIL)) (-3877 (((-112) $ $) NIL)) (-3581 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2712 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3173 ((|#4| |#4| $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-3 |#4| "failed") $) 40)) (-2183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4233 (((-3 $ "failed") $ |#4|) 59)) (-2433 (($ $ |#4|) NIL) (((-654 $) |#4| $) 95) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 89)) (-3449 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 17)) (-3336 (($) 14)) (-3580 (((-781) $) NIL)) (-3949 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) 13)) (-1844 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 22)) (-1423 (($ $ |#3|) 52)) (-1671 (($ $ |#3|) 54)) (-2167 (($ $) NIL)) (-2287 (($ $ |#3|) NIL)) (-2951 (((-872) $) 35) (((-654 |#4|) $) 46)) (-2105 (((-781) $) NIL (|has| |#3| (-377)))) (-4069 (((-112) $ $) NIL)) (-3917 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3912 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-3896 (((-654 $) |#4| $) 92) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-2020 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-1642 (((-654 |#3|) $) NIL)) (-2945 (((-112) |#4| $) NIL)) (-3504 (((-112) |#3| $) 65)) (-2986 (((-112) $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1043 |#1| |#2| |#3| |#4|) (-13 (-1087 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3268 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3656 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3656 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2619 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1821 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -1043)) +((-3268 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1043 *5 *6 *7 *3))) (-5 *1 (-1043 *5 *6 *7 *3)) (-4 *3 (-1081 *5 *6 *7)))) (-3656 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8)))) (-3656 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8)))) (-2619 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8)))) (-1821 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1043 *5 *6 *7 *8))))) (-5 *1 (-1043 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) +(-13 (-1087 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3268 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3656 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3656 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2619 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1821 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) +((-2540 (((-654 (-699 |#1|)) (-654 (-699 |#1|))) 70) (((-699 |#1|) (-699 |#1|)) 69) (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 68) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 65)) (-1948 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935)) 63) (((-699 |#1|) (-699 |#1|) (-935)) 62)) (-1625 (((-654 (-699 (-574))) (-654 (-654 (-574)))) 81) (((-654 (-699 (-574))) (-654 (-919 (-574))) (-574)) 80) (((-699 (-574)) (-654 (-574))) 77) (((-699 (-574)) (-919 (-574)) (-574)) 75)) (-2490 (((-699 (-966 |#1|)) (-781)) 95)) (-3842 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935)) 49 (|has| |#1| (-6 (-4461 "*")))) (((-699 |#1|) (-699 |#1|) (-935)) 47 (|has| |#1| (-6 (-4461 "*")))))) +(((-1044 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4461 "*"))) (-15 -3842 ((-699 |#1|) (-699 |#1|) (-935))) |%noBranch|) (IF (|has| |#1| (-6 (-4461 "*"))) (-15 -3842 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935))) |%noBranch|) (-15 -2490 ((-699 (-966 |#1|)) (-781))) (-15 -1948 ((-699 |#1|) (-699 |#1|) (-935))) (-15 -1948 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935))) (-15 -2540 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2540 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2540 ((-699 |#1|) (-699 |#1|))) (-15 -2540 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -1625 ((-699 (-574)) (-919 (-574)) (-574))) (-15 -1625 ((-699 (-574)) (-654 (-574)))) (-15 -1625 ((-654 (-699 (-574))) (-654 (-919 (-574))) (-574))) (-15 -1625 ((-654 (-699 (-574))) (-654 (-654 (-574)))))) (-1065)) (T -1044)) +((-1625 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1044 *4)) (-4 *4 (-1065)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-919 (-574)))) (-5 *4 (-574)) (-5 *2 (-654 (-699 *4))) (-5 *1 (-1044 *5)) (-4 *5 (-1065)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1044 *4)) (-4 *4 (-1065)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-919 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4)) (-5 *1 (-1044 *5)) (-4 *5 (-1065)))) (-2540 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))) (-2540 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))) (-2540 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))) (-2540 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))) (-1948 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-935)) (-4 *4 (-1065)) (-5 *1 (-1044 *4)))) (-1948 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-935)) (-4 *4 (-1065)) (-5 *1 (-1044 *4)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-699 (-966 *4))) (-5 *1 (-1044 *4)) (-4 *4 (-1065)))) (-3842 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-935)) (|has| *4 (-6 (-4461 "*"))) (-4 *4 (-1065)) (-5 *1 (-1044 *4)))) (-3842 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-935)) (|has| *4 (-6 (-4461 "*"))) (-4 *4 (-1065)) (-5 *1 (-1044 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4461 "*"))) (-15 -3842 ((-699 |#1|) (-699 |#1|) (-935))) |%noBranch|) (IF (|has| |#1| (-6 (-4461 "*"))) (-15 -3842 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935))) |%noBranch|) (-15 -2490 ((-699 (-966 |#1|)) (-781))) (-15 -1948 ((-699 |#1|) (-699 |#1|) (-935))) (-15 -1948 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935))) (-15 -2540 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2540 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2540 ((-699 |#1|) (-699 |#1|))) (-15 -2540 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -1625 ((-699 (-574)) (-919 (-574)) (-574))) (-15 -1625 ((-699 (-574)) (-654 (-574)))) (-15 -1625 ((-654 (-699 (-574))) (-654 (-919 (-574))) (-574))) (-15 -1625 ((-654 (-699 (-574))) (-654 (-654 (-574)))))) +((-2431 (((-699 |#1|) (-654 (-699 |#1|)) (-1284 |#1|)) 70 (|has| |#1| (-315)))) (-1408 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 (-1284 |#1|))) 110 (|has| |#1| (-372))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 |#1|)) 117 (|has| |#1| (-372)))) (-3690 (((-1284 |#1|) (-654 (-1284 |#1|)) (-574)) 135 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-1488 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-935)) 123 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112)) 122 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|))) 121 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574)) 120 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-2218 (((-112) (-654 (-699 |#1|))) 103 (|has| |#1| (-372))) (((-112) (-654 (-699 |#1|)) (-574)) 106 (|has| |#1| (-372)))) (-3643 (((-1284 (-1284 |#1|)) (-654 (-699 |#1|)) (-1284 |#1|)) 67 (|has| |#1| (-315)))) (-3843 (((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|)) 47)) (-3203 (((-699 |#1|) (-1284 (-1284 |#1|))) 40)) (-2637 (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574)) 94 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 93 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574)) 101 (|has| |#1| (-372))))) +(((-1045 |#1|) (-10 -7 (-15 -3203 ((-699 |#1|) (-1284 (-1284 |#1|)))) (-15 -3843 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -3643 ((-1284 (-1284 |#1|)) (-654 (-699 |#1|)) (-1284 |#1|))) (-15 -2431 ((-699 |#1|) (-654 (-699 |#1|)) (-1284 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2637 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -2637 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2637 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -2218 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -2218 ((-112) (-654 (-699 |#1|)))) (-15 -1408 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 |#1|))) (-15 -1408 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 (-1284 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -1488 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -1488 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -1488 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -1488 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-935))) (-15 -3690 ((-1284 |#1|) (-654 (-1284 |#1|)) (-574)))) |%noBranch|) |%noBranch|)) (-1065)) (T -1045)) +((-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1284 *5))) (-5 *4 (-574)) (-5 *2 (-1284 *5)) (-5 *1 (-1045 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065)))) (-1488 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-654 (-699 *5))))) (-1488 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-654 (-699 *5))))) (-1488 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1065)) (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-654 (-699 *4))))) (-1488 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377)) (-4 *6 (-1065)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1045 *6)) (-5 *3 (-654 (-699 *6))))) (-1408 (*1 *2 *3 *4) (-12 (-5 *4 (-1284 (-1284 *5))) (-4 *5 (-372)) (-4 *5 (-1065)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-654 (-699 *5))))) (-1408 (*1 *2 *3 *4) (-12 (-5 *4 (-1284 *5)) (-4 *5 (-372)) (-4 *5 (-1065)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-654 (-699 *5))))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1065)) (-5 *2 (-112)) (-5 *1 (-1045 *4)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372)) (-4 *5 (-1065)) (-5 *2 (-112)) (-5 *1 (-1045 *5)))) (-2637 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5)) (-5 *1 (-1045 *5)) (-4 *5 (-372)) (-4 *5 (-1065)))) (-2637 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1045 *4)) (-4 *4 (-372)) (-4 *4 (-1065)))) (-2637 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574)) (-5 *2 (-699 *6)) (-5 *1 (-1045 *6)) (-4 *6 (-372)) (-4 *6 (-1065)))) (-2431 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1284 *5)) (-4 *5 (-315)) (-4 *5 (-1065)) (-5 *2 (-699 *5)) (-5 *1 (-1045 *5)))) (-3643 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1065)) (-5 *2 (-1284 (-1284 *5))) (-5 *1 (-1045 *5)) (-5 *4 (-1284 *5)))) (-3843 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1065)) (-5 *1 (-1045 *4)))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-1284 (-1284 *4))) (-4 *4 (-1065)) (-5 *2 (-699 *4)) (-5 *1 (-1045 *4))))) +(-10 -7 (-15 -3203 ((-699 |#1|) (-1284 (-1284 |#1|)))) (-15 -3843 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -3643 ((-1284 (-1284 |#1|)) (-654 (-699 |#1|)) (-1284 |#1|))) (-15 -2431 ((-699 |#1|) (-654 (-699 |#1|)) (-1284 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2637 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -2637 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2637 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -2218 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -2218 ((-112) (-654 (-699 |#1|)))) (-15 -1408 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 |#1|))) (-15 -1408 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 (-1284 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -1488 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -1488 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -1488 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -1488 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-935))) (-15 -3690 ((-1284 |#1|) (-654 (-1284 |#1|)) (-574)))) |%noBranch|) |%noBranch|)) +((-1708 ((|#1| (-935) |#1|) 18))) +(((-1046 |#1|) (-10 -7 (-15 -1708 (|#1| (-935) |#1|))) (-13 (-1116) (-10 -8 (-15 -3074 ($ $ $))))) (T -1046)) +((-1708 (*1 *2 *3 *2) (-12 (-5 *3 (-935)) (-5 *1 (-1046 *2)) (-4 *2 (-13 (-1116) (-10 -8 (-15 -3074 ($ $ $)))))))) +(-10 -7 (-15 -1708 (|#1| (-935) |#1|))) +((-2724 (((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-966 (-574))))) 67)) (-2407 (((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-966 (-574))))) 52)) (-4046 (((-654 (-324 (-574))) (-699 (-417 (-966 (-574))))) 45)) (-2131 (((-654 (-699 (-324 (-574)))) (-699 (-417 (-966 (-574))))) 85)) (-1593 (((-699 (-324 (-574))) (-699 (-324 (-574)))) 38)) (-4176 (((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574))))) 74)) (-2772 (((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-966 (-574))))) 82))) +(((-1047) (-10 -7 (-15 -2724 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-966 (-574)))))) (-15 -2407 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-966 (-574)))))) (-15 -4046 ((-654 (-324 (-574))) (-699 (-417 (-966 (-574)))))) (-15 -2772 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-966 (-574)))))) (-15 -1593 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -4176 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -2131 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-966 (-574)))))))) (T -1047)) +((-2131 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-966 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1047)))) (-2772 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 (-417 (-966 (-574))))) (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1047)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-966 (-574))))) (-5 *2 (-654 (-324 (-574)))) (-5 *1 (-1047)))) (-2407 (*1 *2 *3 *4) (-12 (-5 *4 (-699 (-417 (-966 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047)) (-5 *3 (-324 (-574))))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-966 (-574))))) (-5 *2 (-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574)))))))) (-5 *1 (-1047))))) +(-10 -7 (-15 -2724 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-966 (-574)))))) (-15 -2407 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-966 (-574)))))) (-15 -4046 ((-654 (-324 (-574))) (-699 (-417 (-966 (-574)))))) (-15 -2772 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-966 (-574)))))) (-15 -1593 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -4176 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -2131 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-966 (-574))))))) +((-3407 ((|#1| |#1| (-935)) 18))) +(((-1048 |#1|) (-10 -7 (-15 -3407 (|#1| |#1| (-935)))) (-13 (-1116) (-10 -8 (-15 * ($ $ $))))) (T -1048)) +((-3407 (*1 *2 *2 *3) (-12 (-5 *3 (-935)) (-5 *1 (-1048 *2)) (-4 *2 (-13 (-1116) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3407 (|#1| |#1| (-935)))) +((-2951 ((|#1| (-320)) 11) (((-1289) |#1|) 9))) +(((-1049 |#1|) (-10 -7 (-15 -2951 ((-1289) |#1|)) (-15 -2951 (|#1| (-320)))) (-1234)) (T -1049)) +((-2951 (*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1049 *2)) (-4 *2 (-1234)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-1289)) (-5 *1 (-1049 *3)) (-4 *3 (-1234))))) +(-10 -7 (-15 -2951 ((-1289) |#1|)) (-15 -2951 (|#1| (-320)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-2882 (($ |#4|) 25)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) NIL)) (-2869 ((|#4| $) 27)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 46) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2898 (((-781)) 43 T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 21 T CONST)) (-2153 (($) 23 T CONST)) (-2986 (((-112) $ $) 40)) (-3090 (($ $) 31) (($ $ $) NIL)) (-3074 (($ $ $) 29)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1050 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2882 ($ |#4|)) (-15 -2951 ($ |#4|)) (-15 -2869 (|#4| $)))) (-372) (-803) (-860) (-963 |#1| |#2| |#3|) (-654 |#4|)) (T -1050)) +((-2882 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1050 *3 *4 *5 *2 *6)) (-4 *2 (-963 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2951 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1050 *3 *4 *5 *2 *6)) (-4 *2 (-963 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-963 *3 *4 *5)) (-5 *1 (-1050 *3 *4 *5 *2 *6)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-14 *6 (-654 *2))))) +(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2882 ($ |#4|)) (-15 -2951 ($ |#4|)) (-15 -2869 (|#4| $)))) +((-2864 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-2985 (((-1289) $ (-1193) (-1193)) NIL (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3299 (((-112) (-112)) 43)) (-3263 (((-112) (-112)) 42)) (-3135 (((-52) $ (-1193) (-52)) NIL)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2171 (((-3 (-52) "failed") (-1193) $) NIL)) (-3250 (($) NIL T CONST)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2424 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-3 (-52) "failed") (-1193) $) NIL)) (-3311 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2473 (((-52) $ (-1193) (-52)) NIL (|has| $ (-6 -4460)))) (-2400 (((-52) $ (-1193)) NIL)) (-1871 (((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-1193) $) NIL (|has| (-1193) (-860)))) (-2036 (((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-1698 (((-1193) $) NIL (|has| (-1193) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-1771 (((-654 (-1193)) $) 37)) (-2229 (((-112) (-1193) $) NIL)) (-2375 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL)) (-3285 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL)) (-1393 (((-654 (-1193)) $) NIL)) (-1506 (((-112) (-1193) $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2925 (((-52) $) NIL (|has| (-1193) (-860)))) (-2183 (((-3 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) "failed") (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL)) (-1822 (($ $ (-52)) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-302 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-2315 (((-654 (-52)) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 (((-52) $ (-1193)) 39) (((-52) $ (-1193) (-52)) NIL)) (-3162 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-2951 (((-872) $) 41 (-2833 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-623 (-872)))))) (-4069 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1051) (-13 (-1210 (-1193) (-52)) (-10 -7 (-15 -3299 ((-112) (-112))) (-15 -3263 ((-112) (-112))) (-6 -4459)))) (T -1051)) +((-3299 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1051)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1051))))) +(-13 (-1210 (-1193) (-52)) (-10 -7 (-15 -3299 ((-112) (-112))) (-15 -3263 ((-112) (-112))) (-6 -4459))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 9)) (-2951 (((-872) $) 15) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1052) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $))))) (T -1052)) +((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1052))))) +(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)))) +((-2214 ((|#2| $) 10))) +(((-1053 |#1| |#2|) (-10 -8 (-15 -2214 (|#2| |#1|))) (-1054 |#2|) (-1234)) (T -1053)) +NIL +(-10 -8 (-15 -2214 (|#2| |#1|))) +((-1704 (((-3 |#1| "failed") $) 9)) (-2214 ((|#1| $) 8)) (-2951 (($ |#1|) 6))) +(((-1054 |#1|) (-141) (-1234)) (T -1054)) +((-1704 (*1 *2 *1) (|partial| -12 (-4 *1 (-1054 *2)) (-4 *2 (-1234)))) (-2214 (*1 *2 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1234))))) +(-13 (-626 |t#1|) (-10 -8 (-15 -1704 ((-3 |t#1| "failed") $)) (-15 -2214 (|t#1| $)))) (((-626 |#1|) . T)) -((-1824 (((-654 (-654 (-302 (-417 (-965 |#2|))))) (-654 (-965 |#2|)) (-654 (-1192))) 38))) -(((-1054 |#1| |#2|) (-10 -7 (-15 -1824 ((-654 (-654 (-302 (-417 (-965 |#2|))))) (-654 (-965 |#2|)) (-654 (-1192))))) (-566) (-13 (-566) (-1053 |#1|))) (T -1054)) -((-1824 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) (-4 *6 (-13 (-566) (-1053 *5))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *6)))))) (-5 *1 (-1054 *5 *6))))) -(-10 -7 (-15 -1824 ((-654 (-654 (-302 (-417 (-965 |#2|))))) (-654 (-965 |#2|)) (-654 (-1192))))) -((-1723 (((-388)) 17)) (-1561 (((-1 (-388)) (-388) (-388)) 22)) (-2151 (((-1 (-388)) (-781)) 48)) (-2965 (((-388)) 37)) (-1366 (((-1 (-388)) (-388) (-388)) 38)) (-1826 (((-388)) 29)) (-2266 (((-1 (-388)) (-388)) 30)) (-4216 (((-388) (-781)) 43)) (-3986 (((-1 (-388)) (-781)) 44)) (-1395 (((-1 (-388)) (-781) (-781)) 47)) (-2788 (((-1 (-388)) (-781) (-781)) 45))) -(((-1055) (-10 -7 (-15 -1723 ((-388))) (-15 -2965 ((-388))) (-15 -1826 ((-388))) (-15 -4216 ((-388) (-781))) (-15 -1561 ((-1 (-388)) (-388) (-388))) (-15 -1366 ((-1 (-388)) (-388) (-388))) (-15 -2266 ((-1 (-388)) (-388))) (-15 -3986 ((-1 (-388)) (-781))) (-15 -2788 ((-1 (-388)) (-781) (-781))) (-15 -1395 ((-1 (-388)) (-781) (-781))) (-15 -2151 ((-1 (-388)) (-781))))) (T -1055)) -((-2151 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055)))) (-1395 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055)))) (-2788 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055)))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055)))) (-2266 (*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388)))) (-1366 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388)))) (-1561 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1055)))) (-1826 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055)))) (-2965 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055)))) (-1723 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055))))) -(-10 -7 (-15 -1723 ((-388))) (-15 -2965 ((-388))) (-15 -1826 ((-388))) (-15 -4216 ((-388) (-781))) (-15 -1561 ((-1 (-388)) (-388) (-388))) (-15 -1366 ((-1 (-388)) (-388) (-388))) (-15 -2266 ((-1 (-388)) (-388))) (-15 -3986 ((-1 (-388)) (-781))) (-15 -2788 ((-1 (-388)) (-781) (-781))) (-15 -1395 ((-1 (-388)) (-781) (-781))) (-15 -2151 ((-1 (-388)) (-781)))) -((-4200 (((-428 |#1|) |#1|) 33))) -(((-1056 |#1|) (-10 -7 (-15 -4200 ((-428 |#1|) |#1|))) (-1259 (-417 (-965 (-574))))) (T -1056)) -((-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1056 *3)) (-4 *3 (-1259 (-417 (-965 (-574)))))))) -(-10 -7 (-15 -4200 ((-428 |#1|) |#1|))) -((-3251 (((-417 (-428 (-965 |#1|))) (-417 (-965 |#1|))) 14))) -(((-1057 |#1|) (-10 -7 (-15 -3251 ((-417 (-428 (-965 |#1|))) (-417 (-965 |#1|))))) (-315)) (T -1057)) -((-3251 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-315)) (-5 *2 (-417 (-428 (-965 *4)))) (-5 *1 (-1057 *4))))) -(-10 -7 (-15 -3251 ((-417 (-428 (-965 |#1|))) (-417 (-965 |#1|))))) -((-4349 (((-654 (-1192)) (-417 (-965 |#1|))) 17)) (-4171 (((-417 (-1188 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192)) 24)) (-4338 (((-417 (-965 |#1|)) (-417 (-1188 (-417 (-965 |#1|)))) (-1192)) 26)) (-1803 (((-3 (-1192) "failed") (-417 (-965 |#1|))) 20)) (-2660 (((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-302 (-417 (-965 |#1|))))) 32) (((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|)))) 33) (((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-1192)) (-654 (-417 (-965 |#1|)))) 28) (((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|))) 29)) (-2950 (((-417 (-965 |#1|)) |#1|) 11))) -(((-1058 |#1|) (-10 -7 (-15 -4349 ((-654 (-1192)) (-417 (-965 |#1|)))) (-15 -1803 ((-3 (-1192) "failed") (-417 (-965 |#1|)))) (-15 -4171 ((-417 (-1188 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192))) (-15 -4338 ((-417 (-965 |#1|)) (-417 (-1188 (-417 (-965 |#1|)))) (-1192))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|)))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-1192)) (-654 (-417 (-965 |#1|))))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -2950 ((-417 (-965 |#1|)) |#1|))) (-566)) (T -1058)) -((-2950 (*1 *2 *3) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-1058 *3)) (-4 *3 (-566)))) (-2660 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-965 *4))))) (-5 *2 (-417 (-965 *4))) (-4 *4 (-566)) (-5 *1 (-1058 *4)))) (-2660 (*1 *2 *2 *3) (-12 (-5 *3 (-302 (-417 (-965 *4)))) (-5 *2 (-417 (-965 *4))) (-4 *4 (-566)) (-5 *1 (-1058 *4)))) (-2660 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-1192))) (-5 *4 (-654 (-417 (-965 *5)))) (-5 *2 (-417 (-965 *5))) (-4 *5 (-566)) (-5 *1 (-1058 *5)))) (-2660 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-417 (-965 *4))) (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-1058 *4)))) (-4338 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1188 (-417 (-965 *5))))) (-5 *4 (-1192)) (-5 *2 (-417 (-965 *5))) (-5 *1 (-1058 *5)) (-4 *5 (-566)))) (-4171 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-566)) (-5 *2 (-417 (-1188 (-417 (-965 *5))))) (-5 *1 (-1058 *5)) (-5 *3 (-417 (-965 *5))))) (-1803 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-5 *2 (-1192)) (-5 *1 (-1058 *4)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1192))) (-5 *1 (-1058 *4))))) -(-10 -7 (-15 -4349 ((-654 (-1192)) (-417 (-965 |#1|)))) (-15 -1803 ((-3 (-1192) "failed") (-417 (-965 |#1|)))) (-15 -4171 ((-417 (-1188 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192))) (-15 -4338 ((-417 (-965 |#1|)) (-417 (-1188 (-417 (-965 |#1|)))) (-1192))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|)))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-1192)) (-654 (-417 (-965 |#1|))))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -2950 ((-417 (-965 |#1|)) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3831 (($) 18 T CONST)) (-1334 ((|#1| $) 23)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4341 ((|#1| $) 22)) (-2896 ((|#1|) 20 T CONST)) (-2950 (((-872) $) 12)) (-3283 ((|#1| $) 21)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16))) -(((-1059 |#1|) (-141) (-23)) (T -1059)) -((-1334 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23)))) (-2896 (*1 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -1334 (|t#1| $)) (-15 -4341 (|t#1| $)) (-15 -3283 (|t#1| $)) (-15 -2896 (|t#1|) -1715))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1487 (($) 25 T CONST)) (-3831 (($) 18 T CONST)) (-1334 ((|#1| $) 23)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4341 ((|#1| $) 22)) (-2896 ((|#1|) 20 T CONST)) (-2950 (((-872) $) 12)) (-3283 ((|#1| $) 21)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16))) +((-3214 (((-654 (-654 (-302 (-417 (-966 |#2|))))) (-654 (-966 |#2|)) (-654 (-1193))) 38))) +(((-1055 |#1| |#2|) (-10 -7 (-15 -3214 ((-654 (-654 (-302 (-417 (-966 |#2|))))) (-654 (-966 |#2|)) (-654 (-1193))))) (-566) (-13 (-566) (-1054 |#1|))) (T -1055)) +((-3214 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193))) (-4 *6 (-13 (-566) (-1054 *5))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *6)))))) (-5 *1 (-1055 *5 *6))))) +(-10 -7 (-15 -3214 ((-654 (-654 (-302 (-417 (-966 |#2|))))) (-654 (-966 |#2|)) (-654 (-1193))))) +((-1775 (((-388)) 17)) (-3446 (((-1 (-388)) (-388) (-388)) 22)) (-2151 (((-1 (-388)) (-781)) 48)) (-1694 (((-388)) 37)) (-1367 (((-1 (-388)) (-388) (-388)) 38)) (-1950 (((-388)) 29)) (-2477 (((-1 (-388)) (-388)) 30)) (-1826 (((-388) (-781)) 43)) (-1559 (((-1 (-388)) (-781)) 44)) (-1396 (((-1 (-388)) (-781) (-781)) 47)) (-3418 (((-1 (-388)) (-781) (-781)) 45))) +(((-1056) (-10 -7 (-15 -1775 ((-388))) (-15 -1694 ((-388))) (-15 -1950 ((-388))) (-15 -1826 ((-388) (-781))) (-15 -3446 ((-1 (-388)) (-388) (-388))) (-15 -1367 ((-1 (-388)) (-388) (-388))) (-15 -2477 ((-1 (-388)) (-388))) (-15 -1559 ((-1 (-388)) (-781))) (-15 -3418 ((-1 (-388)) (-781) (-781))) (-15 -1396 ((-1 (-388)) (-781) (-781))) (-15 -2151 ((-1 (-388)) (-781))))) (T -1056)) +((-2151 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))) (-1396 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))) (-3418 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))) (-2477 (*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388)))) (-1367 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388)))) (-3446 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1056)))) (-1950 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056)))) (-1694 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056)))) (-1775 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056))))) +(-10 -7 (-15 -1775 ((-388))) (-15 -1694 ((-388))) (-15 -1950 ((-388))) (-15 -1826 ((-388) (-781))) (-15 -3446 ((-1 (-388)) (-388) (-388))) (-15 -1367 ((-1 (-388)) (-388) (-388))) (-15 -2477 ((-1 (-388)) (-388))) (-15 -1559 ((-1 (-388)) (-781))) (-15 -3418 ((-1 (-388)) (-781) (-781))) (-15 -1396 ((-1 (-388)) (-781) (-781))) (-15 -2151 ((-1 (-388)) (-781)))) +((-4202 (((-428 |#1|) |#1|) 33))) +(((-1057 |#1|) (-10 -7 (-15 -4202 ((-428 |#1|) |#1|))) (-1260 (-417 (-966 (-574))))) (T -1057)) +((-4202 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1057 *3)) (-4 *3 (-1260 (-417 (-966 (-574)))))))) +(-10 -7 (-15 -4202 ((-428 |#1|) |#1|))) +((-3302 (((-417 (-428 (-966 |#1|))) (-417 (-966 |#1|))) 14))) +(((-1058 |#1|) (-10 -7 (-15 -3302 ((-417 (-428 (-966 |#1|))) (-417 (-966 |#1|))))) (-315)) (T -1058)) +((-3302 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-315)) (-5 *2 (-417 (-428 (-966 *4)))) (-5 *1 (-1058 *4))))) +(-10 -7 (-15 -3302 ((-417 (-428 (-966 |#1|))) (-417 (-966 |#1|))))) +((-4350 (((-654 (-1193)) (-417 (-966 |#1|))) 17)) (-4173 (((-417 (-1189 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193)) 24)) (-4339 (((-417 (-966 |#1|)) (-417 (-1189 (-417 (-966 |#1|)))) (-1193)) 26)) (-2284 (((-3 (-1193) "failed") (-417 (-966 |#1|))) 20)) (-2661 (((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-302 (-417 (-966 |#1|))))) 32) (((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|)))) 33) (((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-1193)) (-654 (-417 (-966 |#1|)))) 28) (((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|))) 29)) (-2951 (((-417 (-966 |#1|)) |#1|) 11))) +(((-1059 |#1|) (-10 -7 (-15 -4350 ((-654 (-1193)) (-417 (-966 |#1|)))) (-15 -2284 ((-3 (-1193) "failed") (-417 (-966 |#1|)))) (-15 -4173 ((-417 (-1189 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193))) (-15 -4339 ((-417 (-966 |#1|)) (-417 (-1189 (-417 (-966 |#1|)))) (-1193))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|)))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-1193)) (-654 (-417 (-966 |#1|))))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -2951 ((-417 (-966 |#1|)) |#1|))) (-566)) (T -1059)) +((-2951 (*1 *2 *3) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-1059 *3)) (-4 *3 (-566)))) (-2661 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-966 *4))))) (-5 *2 (-417 (-966 *4))) (-4 *4 (-566)) (-5 *1 (-1059 *4)))) (-2661 (*1 *2 *2 *3) (-12 (-5 *3 (-302 (-417 (-966 *4)))) (-5 *2 (-417 (-966 *4))) (-4 *4 (-566)) (-5 *1 (-1059 *4)))) (-2661 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-1193))) (-5 *4 (-654 (-417 (-966 *5)))) (-5 *2 (-417 (-966 *5))) (-4 *5 (-566)) (-5 *1 (-1059 *5)))) (-2661 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-417 (-966 *4))) (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-1059 *4)))) (-4339 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1189 (-417 (-966 *5))))) (-5 *4 (-1193)) (-5 *2 (-417 (-966 *5))) (-5 *1 (-1059 *5)) (-4 *5 (-566)))) (-4173 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-566)) (-5 *2 (-417 (-1189 (-417 (-966 *5))))) (-5 *1 (-1059 *5)) (-5 *3 (-417 (-966 *5))))) (-2284 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-5 *2 (-1193)) (-5 *1 (-1059 *4)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1193))) (-5 *1 (-1059 *4))))) +(-10 -7 (-15 -4350 ((-654 (-1193)) (-417 (-966 |#1|)))) (-15 -2284 ((-3 (-1193) "failed") (-417 (-966 |#1|)))) (-15 -4173 ((-417 (-1189 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193))) (-15 -4339 ((-417 (-966 |#1|)) (-417 (-1189 (-417 (-966 |#1|)))) (-1193))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|)))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-1193)) (-654 (-417 (-966 |#1|))))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -2951 ((-417 (-966 |#1|)) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-3250 (($) 18 T CONST)) (-2332 ((|#1| $) 23)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-1556 ((|#1| $) 22)) (-2950 ((|#1|) 20 T CONST)) (-2951 (((-872) $) 12)) (-2761 ((|#1| $) 21)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16))) (((-1060 |#1|) (-141) (-23)) (T -1060)) -((-1487 (*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23))))) -(-13 (-1059 |t#1|) (-10 -8 (-15 -1487 ($) -1715))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1059 |#1|) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-4205 (((-654 (-2 (|:| -1389 $) (|:| -1684 (-654 (-790 |#1| (-874 |#2|)))))) (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-1721 (((-654 $) (-654 (-790 |#1| (-874 |#2|)))) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112)) NIL)) (-4349 (((-654 (-874 |#2|)) $) NIL)) (-3278 (((-112) $) NIL)) (-3814 (((-112) $) NIL (|has| |#1| (-566)))) (-3522 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-3885 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3296 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4064 $))) (-790 |#1| (-874 |#2|)) $) NIL)) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ (-874 |#2|)) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 (-790 |#1| (-874 |#2|)) "failed") $ (-874 |#2|)) NIL)) (-3831 (($) NIL T CONST)) (-4241 (((-112) $) NIL (|has| |#1| (-566)))) (-3297 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2860 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2450 (((-112) $) NIL (|has| |#1| (-566)))) (-3665 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-4010 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-1438 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2216 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2934 (((-3 $ "failed") $) NIL)) (-1685 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-790 |#1| (-874 |#2|)) (-1115))))) (-3310 (($ (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-3369 (((-112) (-790 |#1| (-874 |#2|)) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-4037 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2881 (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|))) NIL (|has| $ (-6 -4458))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-1426 (((-2 (|:| -1389 (-654 (-790 |#1| (-874 |#2|)))) (|:| -1684 (-654 (-790 |#1| (-874 |#2|))))) $) NIL)) (-2667 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-2797 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-1566 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-1873 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-3762 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-2968 (((-874 |#2|) $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-790 |#1| (-874 |#2|)) (-1115))))) (-2461 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL)) (-2740 (((-654 (-874 |#2|)) $) NIL)) (-2080 (((-112) (-874 |#2|) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-4258 (((-3 (-790 |#1| (-874 |#2|)) (-654 $)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2971 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4064 $))) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3333 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-2133 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL)) (-1537 (((-3 (-112) (-654 $)) (-790 |#1| (-874 |#2|)) $) NIL)) (-1884 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 $))) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-1454 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL)) (-3750 (($ (-790 |#1| (-874 |#2|)) $) NIL) (($ (-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-3981 (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-2397 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-1576 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2326 (((-112) $ $) NIL)) (-3081 (((-2 (|:| |num| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-1548 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-3503 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-2294 (((-3 (-790 |#1| (-874 |#2|)) "failed") (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL)) (-2200 (((-3 $ "failed") $ (-790 |#1| (-874 |#2|))) NIL)) (-2115 (($ $ (-790 |#1| (-874 |#2|))) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-2000 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (($ $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (($ $ (-302 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (($ $ (-654 (-302 (-790 |#1| (-874 |#2|))))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-3584 (((-781) $) NIL)) (-3948 (((-781) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (((-781) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-790 |#1| (-874 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-1689 (($ $ (-874 |#2|)) NIL)) (-2639 (($ $ (-874 |#2|)) NIL)) (-4330 (($ $) NIL)) (-3386 (($ $ (-874 |#2|)) NIL)) (-2950 (((-872) $) NIL) (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-2706 (((-781) $) NIL (|has| (-874 |#2|) (-377)))) (-3838 (((-112) $ $) NIL)) (-2270 (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-1587 (((-112) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-654 (-790 |#1| (-874 |#2|))))) NIL)) (-2536 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-2980 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-1437 (((-654 (-874 |#2|)) $) NIL)) (-1651 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-1469 (((-112) (-874 |#2|) $) NIL)) (-2985 (((-112) $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1061 |#1| |#2|) (-13 (-1086 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -1721 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112))))) (-462) (-654 (-1192))) (T -1061)) -((-1721 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-1061 *5 *6))))) -(-13 (-1086 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -1721 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112))))) -((-1561 (((-1 (-574)) (-1109 (-574))) 32)) (-3483 (((-574) (-574) (-574) (-574) (-574)) 29)) (-2676 (((-1 (-574)) |RationalNumber|) NIL)) (-4355 (((-1 (-574)) |RationalNumber|) NIL)) (-1832 (((-1 (-574)) (-574) |RationalNumber|) NIL))) -(((-1062) (-10 -7 (-15 -1561 ((-1 (-574)) (-1109 (-574)))) (-15 -1832 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -2676 ((-1 (-574)) |RationalNumber|)) (-15 -4355 ((-1 (-574)) |RationalNumber|)) (-15 -3483 ((-574) (-574) (-574) (-574) (-574))))) (T -1062)) -((-3483 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1062)))) (-4355 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062)))) (-2676 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062)))) (-1832 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062)) (-5 *3 (-574)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-1109 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1062))))) -(-10 -7 (-15 -1561 ((-1 (-574)) (-1109 (-574)))) (-15 -1832 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -2676 ((-1 (-574)) |RationalNumber|)) (-15 -4355 ((-1 (-574)) |RationalNumber|)) (-15 -3483 ((-574) (-574) (-574) (-574) (-574)))) -((-2950 (((-872) $) NIL) (($ (-574)) 10))) -(((-1063 |#1|) (-10 -8 (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-1064)) (T -1063)) -NIL -(-10 -8 (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-1064) (-141)) (T -1064)) -((-4019 (*1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-781))))) -(-13 (-1073) (-736) (-658 $) (-626 (-574)) (-10 -7 (-15 -4019 ((-781)) -1715) (-6 -4455))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-1660 (((-417 (-965 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)) 54))) -(((-1065 |#1| |#2|) (-10 -7 (-15 -1660 ((-417 (-965 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)))) (-1192) (-372)) (T -1065)) -((-1660 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372)) (-5 *2 (-417 (-965 *6))) (-5 *1 (-1065 *5 *6)) (-14 *5 (-1192))))) -(-10 -7 (-15 -1660 ((-417 (-965 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 15)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 16 T CONST)) (-2985 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) -(((-1066 |#1|) (-141) (-1127)) (T -1066)) -((-2142 (*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1127)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1127)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1127))))) -(-13 (-1115) (-10 -8 (-15 (-2142) ($) -1715) (-15 -3520 ((-112) $)) (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-4319 (((-112) $) 38)) (-2240 (((-112) $) 17)) (-2198 (((-781) $) 13)) (-2207 (((-781) $) 14)) (-1609 (((-112) $) 30)) (-1996 (((-112) $) 40))) -(((-1067 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2207 ((-781) |#1|)) (-15 -2198 ((-781) |#1|)) (-15 -1996 ((-112) |#1|)) (-15 -4319 ((-112) |#1|)) (-15 -1609 ((-112) |#1|)) (-15 -2240 ((-112) |#1|))) (-1068 |#2| |#3| |#4| |#5| |#6|) (-781) (-781) (-1064) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1067)) -NIL -(-10 -8 (-15 -2207 ((-781) |#1|)) (-15 -2198 ((-781) |#1|)) (-15 -1996 ((-112) |#1|)) (-15 -4319 ((-112) |#1|)) (-15 -1609 ((-112) |#1|)) (-15 -2240 ((-112) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4319 (((-112) $) 56)) (-1597 (((-3 $ "failed") $ $) 20)) (-2240 (((-112) $) 58)) (-2818 (((-112) $ (-781)) 66)) (-3831 (($) 18 T CONST)) (-3502 (($ $) 39 (|has| |#3| (-315)))) (-1860 ((|#4| $ (-574)) 44)) (-3557 (((-781) $) 38 (|has| |#3| (-566)))) (-2399 ((|#3| $ (-574) (-574)) 46)) (-1873 (((-654 |#3|) $) 73 (|has| $ (-6 -4458)))) (-1835 (((-781) $) 37 (|has| |#3| (-566)))) (-3284 (((-654 |#5|) $) 36 (|has| |#3| (-566)))) (-2198 (((-781) $) 50)) (-2207 (((-781) $) 49)) (-2224 (((-112) $ (-781)) 65)) (-3312 (((-574) $) 54)) (-4378 (((-574) $) 52)) (-2247 (((-654 |#3|) $) 74 (|has| $ (-6 -4458)))) (-2231 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1115)) (|has| $ (-6 -4458))))) (-2391 (((-574) $) 53)) (-3280 (((-574) $) 51)) (-2923 (($ (-654 (-654 |#3|))) 59)) (-2461 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1626 (((-654 (-654 |#3|)) $) 48)) (-3625 (((-112) $ (-781)) 64)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-566)))) (-2000 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#3|) (-654 |#3|)) 80 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-302 |#3|)) 78 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-654 (-302 |#3|))) 77 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))))) (-4198 (((-112) $ $) 60)) (-2880 (((-112) $) 63)) (-2833 (($) 62)) (-2208 ((|#3| $ (-574) (-574)) 47) ((|#3| $ (-574) (-574) |#3|) 45)) (-1609 (((-112) $) 57)) (-3948 (((-781) |#3| $) 75 (-12 (|has| |#3| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4458)))) (-3156 (($ $) 61)) (-1482 ((|#5| $ (-574)) 43)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2980 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4458)))) (-1996 (((-112) $) 55)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#3|) 40 (|has| |#3| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2876 (((-781) $) 67 (|has| $ (-6 -4458))))) -(((-1068 |#1| |#2| |#3| |#4| |#5|) (-141) (-781) (-781) (-1064) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1068)) -((-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1064)) (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2240 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4319 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5))))) (-2208 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1064)))) (-2399 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1064)))) (-2208 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) (-4 *2 (-1064)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-1860 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *6 *2 *7)) (-4 *6 (-1064)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-1482 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *6 *7 *2)) (-4 *6 (-1064)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-1786 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1068 *3 *4 *2 *5 *6)) (-4 *2 (-1064)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-566)))) (-3098 (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2 *5 *6)) (-4 *2 (-1064)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-372)))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-3284 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-654 *7))))) -(-13 (-111 |t#3| |t#3|) (-499 |t#3|) (-10 -8 (-6 -4458) (IF (|has| |t#3| (-174)) (-6 (-727 |t#3|)) |%noBranch|) (-15 -2923 ($ (-654 (-654 |t#3|)))) (-15 -2240 ((-112) $)) (-15 -1609 ((-112) $)) (-15 -4319 ((-112) $)) (-15 -1996 ((-112) $)) (-15 -3312 ((-574) $)) (-15 -2391 ((-574) $)) (-15 -4378 ((-574) $)) (-15 -3280 ((-574) $)) (-15 -2198 ((-781) $)) (-15 -2207 ((-781) $)) (-15 -1626 ((-654 (-654 |t#3|)) $)) (-15 -2208 (|t#3| $ (-574) (-574))) (-15 -2399 (|t#3| $ (-574) (-574))) (-15 -2208 (|t#3| $ (-574) (-574) |t#3|)) (-15 -1860 (|t#4| $ (-574))) (-15 -1482 (|t#5| $ (-574))) (-15 -1786 ($ (-1 |t#3| |t#3|) $)) (-15 -1786 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-566)) (-15 -2852 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-372)) (-15 -3098 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-315)) (-15 -3502 ($ $)) |%noBranch|) (IF (|has| |t#3| (-566)) (PROGN (-15 -3557 ((-781) $)) (-15 -1835 ((-781) $)) (-15 -3284 ((-654 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-623 (-872)) . T) ((-317 |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))) ((-499 |#3|) . T) ((-524 |#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))) ((-656 (-574)) . T) ((-656 |#3|) . T) ((-658 |#3|) . T) ((-650 |#3|) |has| |#3| (-174)) ((-727 |#3|) |has| |#3| (-174)) ((-1066 |#3|) . T) ((-1071 |#3|) . T) ((-1115) . T) ((-1233) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4319 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-2240 (((-112) $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-3831 (($) NIL T CONST)) (-3502 (($ $) 47 (|has| |#3| (-315)))) (-1860 (((-246 |#2| |#3|) $ (-574)) 36)) (-4159 (($ (-699 |#3|)) 45)) (-3557 (((-781) $) 49 (|has| |#3| (-566)))) (-2399 ((|#3| $ (-574) (-574)) NIL)) (-1873 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-1835 (((-781) $) 51 (|has| |#3| (-566)))) (-3284 (((-654 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-566)))) (-2198 (((-781) $) NIL)) (-2207 (((-781) $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-3312 (((-574) $) NIL)) (-4378 (((-574) $) NIL)) (-2247 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-2391 (((-574) $) NIL)) (-3280 (((-574) $) NIL)) (-2923 (($ (-654 (-654 |#3|))) 31)) (-2461 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1626 (((-654 (-654 |#3|)) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-566)))) (-2000 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#3| $ (-574) (-574)) NIL) ((|#3| $ (-574) (-574) |#3|) NIL)) (-3480 (((-135)) 59 (|has| |#3| (-372)))) (-1609 (((-112) $) NIL)) (-3948 (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115)))) (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) 65 (|has| |#3| (-624 (-546))))) (-1482 (((-246 |#1| |#3|) $ (-574)) 40)) (-2950 (((-872) $) 19) (((-699 |#3|) $) 42)) (-3838 (((-112) $ $) NIL)) (-2980 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-1996 (((-112) $) NIL)) (-2142 (($) 16 T CONST)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1069 |#1| |#2| |#3|) (-13 (-1068 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1290 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -4159 ($ (-699 |#3|))))) (-781) (-781) (-1064)) (T -1069)) -((-4159 (*1 *1 *2) (-12 (-5 *2 (-699 *5)) (-4 *5 (-1064)) (-5 *1 (-1069 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781))))) -(-13 (-1068 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1290 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -4159 ($ (-699 |#3|))))) -((-2881 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1786 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1070 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1786 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2881 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-781) (-781) (-1064) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1068 |#1| |#2| |#3| |#4| |#5|) (-1064) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1068 |#1| |#2| |#7| |#8| |#9|)) (T -1070)) -((-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1064)) (-4 *2 (-1064)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1070 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1068 *5 *6 *7 *8 *9)) (-4 *12 (-1068 *5 *6 *2 *10 *11)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1064)) (-4 *10 (-1064)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1068 *5 *6 *10 *11 *12)) (-5 *1 (-1070 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1068 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10))))) -(-10 -7 (-15 -1786 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2881 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ |#1|) 27))) -(((-1071 |#1|) (-141) (-1073)) (T -1071)) -NIL -(-13 (-21) (-1066 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1066 |#1|) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1497 (((-1192) $) 11)) (-3224 ((|#1| $) 12)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2704 (($ (-1192) |#1|) 10)) (-2950 (((-872) $) 22 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2985 (((-112) $ $) 17 (|has| |#1| (-1115))))) -(((-1072 |#1| |#2|) (-13 (-1233) (-10 -8 (-15 -2704 ($ (-1192) |#1|)) (-15 -1497 ((-1192) $)) (-15 -3224 (|#1| $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) (-1108 |#2|) (-1233)) (T -1072)) -((-2704 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-4 *4 (-1233)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1108 *4)))) (-1497 (*1 *2 *1) (-12 (-4 *4 (-1233)) (-5 *2 (-1192)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1108 *4)))) (-3224 (*1 *2 *1) (-12 (-4 *2 (-1108 *3)) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1233))))) -(-13 (-1233) (-10 -8 (-15 -2704 ($ (-1192) |#1|)) (-15 -1497 ((-1192) $)) (-15 -3224 (|#1| $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-1073) (-141)) (T -1073)) -NIL -(-13 (-21) (-1127)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1127) . T) ((-1115) . T)) -((-3842 (($ $) 17)) (-3893 (($ $) 25)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 55)) (-1386 (($ $) 27)) (-2244 (($ $) 12)) (-3471 (($ $) 43)) (-1845 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) 36)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 31) (($ (-574)) NIL) (($ (-417 (-574))) 31)) (-4019 (((-781)) 9)) (-2753 (($ $) 45))) -(((-1074 |#1|) (-10 -8 (-15 -3893 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -2244 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -1386 (|#1| |#1|)) (-15 -3552 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 -1845 ((-227) |#1|)) (-15 -1845 ((-388) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| |#1|)) (-15 -4019 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-1075)) (T -1074)) -((-4019 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1074 *3)) (-4 *3 (-1075))))) -(-10 -8 (-15 -3893 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -2244 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -1386 (|#1| |#1|)) (-15 -3552 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 -1845 ((-227) |#1|)) (-15 -1845 ((-388) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| |#1|)) (-15 -4019 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4018 (((-574) $) 97)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-3842 (($ $) 95)) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 81)) (-3954 (((-428 $) $) 80)) (-4211 (($ $) 105)) (-3656 (((-112) $ $) 65)) (-3011 (((-574) $) 122)) (-3831 (($) 18 T CONST)) (-3893 (($ $) 94)) (-1705 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2216 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2799 (($ $ $) 61)) (-3911 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1782 (((-112) $) 79)) (-1913 (((-112) $) 120)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-3372 (((-112) $) 35)) (-2132 (($ $ (-574)) 104)) (-1386 (($ $) 100)) (-1808 (((-112) $) 121)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3632 (($ $ $) 119)) (-1593 (($ $ $) 118)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2244 (($ $) 96)) (-3471 (($ $) 98)) (-4200 (((-428 $) $) 82)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3364 (((-781) $) 64)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-1845 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-4019 (((-781)) 32 T CONST)) (-2753 (($ $) 99)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-3306 (($ $) 123)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3041 (((-112) $ $) 116)) (-3018 (((-112) $ $) 115)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 117)) (-3009 (((-112) $ $) 114)) (-3098 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) -(((-1075) (-141)) (T -1075)) -((-3306 (*1 *1 *1) (-4 *1 (-1075))) (-1386 (*1 *1 *1) (-4 *1 (-1075))) (-2753 (*1 *1 *1) (-4 *1 (-1075))) (-3471 (*1 *1 *1) (-4 *1 (-1075))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-1075)) (-5 *2 (-574)))) (-2244 (*1 *1 *1) (-4 *1 (-1075))) (-3842 (*1 *1 *1) (-4 *1 (-1075))) (-3893 (*1 *1 *1) (-4 *1 (-1075)))) -(-13 (-372) (-858) (-1037) (-1053 (-574)) (-1053 (-417 (-574))) (-1017) (-624 (-903 (-388))) (-897 (-388)) (-148) (-10 -8 (-15 -1386 ($ $)) (-15 -2753 ($ $)) (-15 -3471 ($ $)) (-15 -4018 ((-574) $)) (-15 -2244 ($ $)) (-15 -3842 ($ $)) (-15 -3893 ($ $)) (-15 -3306 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-933) . T) ((-1017) . T) ((-1037) . T) ((-1053 (-417 (-574))) . T) ((-1053 (-574)) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) |#2| $) 26)) (-1496 ((|#1| $) 10)) (-3011 (((-574) |#2| $) 116)) (-3356 (((-3 $ "failed") |#2| (-934)) 75)) (-3877 ((|#1| $) 31)) (-2111 ((|#1| |#2| $ |#1|) 40)) (-2947 (($ $) 28)) (-3911 (((-3 |#2| "failed") |#2| $) 111)) (-1913 (((-112) |#2| $) NIL)) (-1808 (((-112) |#2| $) NIL)) (-4075 (((-112) |#2| $) 27)) (-1404 ((|#1| $) 117)) (-3864 ((|#1| $) 30)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2290 ((|#2| $) 102)) (-2950 (((-872) $) 92)) (-3838 (((-112) $ $) NIL)) (-3524 ((|#1| |#2| $ |#1|) 41)) (-2272 (((-654 $) |#2|) 77)) (-2985 (((-112) $ $) 97))) -(((-1076 |#1| |#2|) (-13 (-1083 |#1| |#2|) (-10 -8 (-15 -3864 (|#1| $)) (-15 -3877 (|#1| $)) (-15 -1496 (|#1| $)) (-15 -1404 (|#1| $)) (-15 -2947 ($ $)) (-15 -4075 ((-112) |#2| $)) (-15 -2111 (|#1| |#2| $ |#1|)))) (-13 (-858) (-372)) (-1259 |#1|)) (T -1076)) -((-2111 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-3864 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-3877 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-1496 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-1404 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-2947 (*1 *1 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-4075 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1076 *4 *3)) (-4 *3 (-1259 *4))))) -(-13 (-1083 |#1| |#2|) (-10 -8 (-15 -3864 (|#1| $)) (-15 -3877 (|#1| $)) (-15 -1496 (|#1| $)) (-15 -1404 (|#1| $)) (-15 -2947 ($ $)) (-15 -4075 ((-112) |#2| $)) (-15 -2111 (|#1| |#2| $ |#1|)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-3770 (($ $ $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3646 (($ $ $ $) NIL)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-3011 (((-574) $) NIL)) (-3932 (($ $ $) NIL)) (-3831 (($) NIL T CONST)) (-3827 (($ (-1192)) 10) (($ (-574)) 7)) (-1705 (((-3 (-574) "failed") $) NIL)) (-2216 (((-574) $) NIL)) (-2799 (($ $ $) NIL)) (-3465 (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1955 (((-3 (-417 (-574)) "failed") $) NIL)) (-1519 (((-112) $) NIL)) (-4188 (((-417 (-574)) $) NIL)) (-2834 (($) NIL) (($ $) NIL)) (-2811 (($ $ $) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1398 (($ $ $ $) NIL)) (-1674 (($ $ $) NIL)) (-1913 (((-112) $) NIL)) (-3765 (($ $ $) NIL)) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3372 (((-112) $) NIL)) (-3512 (((-112) $) NIL)) (-1353 (((-3 $ "failed") $) NIL)) (-1808 (((-112) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2394 (($ $ $ $) NIL)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-3784 (($ $) NIL)) (-4108 (($ $) NIL)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-2953 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-1614 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3289 (($ $) NIL)) (-4200 (((-428 $) $) NIL)) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3694 (((-112) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-2310 (($ $) NIL)) (-3156 (($ $) NIL)) (-1845 (((-574) $) 16) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL) (($ (-1192)) 9)) (-2950 (((-872) $) 23) (($ (-574)) 6) (($ $) NIL) (($ (-574)) 6)) (-4019 (((-781)) NIL T CONST)) (-3067 (((-112) $ $) NIL)) (-1832 (($ $ $) NIL)) (-3838 (((-112) $ $) NIL)) (-2643 (($) NIL)) (-1842 (((-112) $ $) NIL)) (-1936 (($ $ $ $) NIL)) (-3306 (($ $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3089 (($ $) 22) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-574) $) NIL))) -(((-1077) (-13 (-555) (-628 (-1192)) (-10 -8 (-6 -4445) (-6 -4450) (-6 -4446) (-15 -3827 ($ (-1192))) (-15 -3827 ($ (-574)))))) (T -1077)) -((-3827 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1077)))) (-3827 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1077))))) -(-13 (-555) (-628 (-1192)) (-10 -8 (-6 -4445) (-6 -4450) (-6 -4446) (-15 -3827 ($ (-1192))) (-15 -3827 ($ (-574))))) -((-2863 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) NIL)) (-3287 (((-1288) $ (-1192) (-1192)) NIL (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-1733 (($) 9)) (-3134 (((-52) $ (-1192) (-52)) NIL)) (-1617 (($ $) 32)) (-4038 (($ $) 30)) (-4351 (($ $) 29)) (-2196 (($ $) 31)) (-2675 (($ $) 35)) (-3075 (($ $) 36)) (-4028 (($ $) 28)) (-2129 (($ $) 33)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) 27 (|has| $ (-6 -4458)))) (-2171 (((-3 (-52) "failed") (-1192) $) 43)) (-3831 (($) NIL T CONST)) (-4144 (($) 7)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-1941 (($ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) 53 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-3 (-52) "failed") (-1192) $) NIL)) (-3310 (($ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (((-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2454 (((-3 (-1174) "failed") $ (-1174) (-574)) 72)) (-2472 (((-52) $ (-1192) (-52)) NIL (|has| $ (-6 -4459)))) (-2399 (((-52) $ (-1192)) NIL)) (-1873 (((-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-1192) $) NIL (|has| (-1192) (-860)))) (-2247 (((-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) 38 (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-2429 (((-1192) $) NIL (|has| (-1192) (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-1772 (((-654 (-1192)) $) NIL)) (-2056 (((-112) (-1192) $) NIL)) (-1748 (((-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL)) (-2609 (($ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) 46)) (-3228 (((-654 (-1192)) $) NIL)) (-3071 (((-112) (-1192) $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-4410 (((-388) $ (-1192)) 52)) (-1543 (((-654 (-1174)) $ (-1174)) 74)) (-2924 (((-52) $) NIL (|has| (-1192) (-860)))) (-2294 (((-3 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) "failed") (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL)) (-4276 (($ $ (-52)) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (($ $ (-302 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (($ $ (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (($ $ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-2379 (((-654 (-52)) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 (((-52) $ (-1192)) NIL) (((-52) $ (-1192) (-52)) NIL)) (-3667 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) NIL)) (-1693 (($ $ (-1192)) 54)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) 40)) (-4131 (($ $ $) 41)) (-2950 (((-872) $) NIL (-2832 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-623 (-872)))))) (-2547 (($ $ (-1192) (-388)) 50)) (-3616 (($ $ (-1192) (-388)) 51)) (-3838 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))))) NIL)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1917 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1078) (-13 (-1209 (-1192) (-52)) (-10 -8 (-15 -4131 ($ $ $)) (-15 -4144 ($)) (-15 -4028 ($ $)) (-15 -4351 ($ $)) (-15 -4038 ($ $)) (-15 -2196 ($ $)) (-15 -2129 ($ $)) (-15 -1617 ($ $)) (-15 -2675 ($ $)) (-15 -3075 ($ $)) (-15 -2547 ($ $ (-1192) (-388))) (-15 -3616 ($ $ (-1192) (-388))) (-15 -4410 ((-388) $ (-1192))) (-15 -1543 ((-654 (-1174)) $ (-1174))) (-15 -1693 ($ $ (-1192))) (-15 -1733 ($)) (-15 -2454 ((-3 (-1174) "failed") $ (-1174) (-574))) (-6 -4458)))) (T -1078)) -((-4131 (*1 *1 *1 *1) (-5 *1 (-1078))) (-4144 (*1 *1) (-5 *1 (-1078))) (-4028 (*1 *1 *1) (-5 *1 (-1078))) (-4351 (*1 *1 *1) (-5 *1 (-1078))) (-4038 (*1 *1 *1) (-5 *1 (-1078))) (-2196 (*1 *1 *1) (-5 *1 (-1078))) (-2129 (*1 *1 *1) (-5 *1 (-1078))) (-1617 (*1 *1 *1) (-5 *1 (-1078))) (-2675 (*1 *1 *1) (-5 *1 (-1078))) (-3075 (*1 *1 *1) (-5 *1 (-1078))) (-2547 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-388)) (-5 *1 (-1078)))) (-3616 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-388)) (-5 *1 (-1078)))) (-4410 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-388)) (-5 *1 (-1078)))) (-1543 (*1 *2 *1 *3) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1078)) (-5 *3 (-1174)))) (-1693 (*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1078)))) (-1733 (*1 *1) (-5 *1 (-1078))) (-2454 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-1078))))) -(-13 (-1209 (-1192) (-52)) (-10 -8 (-15 -4131 ($ $ $)) (-15 -4144 ($)) (-15 -4028 ($ $)) (-15 -4351 ($ $)) (-15 -4038 ($ $)) (-15 -2196 ($ $)) (-15 -2129 ($ $)) (-15 -1617 ($ $)) (-15 -2675 ($ $)) (-15 -3075 ($ $)) (-15 -2547 ($ $ (-1192) (-388))) (-15 -3616 ($ $ (-1192) (-388))) (-15 -4410 ((-388) $ (-1192))) (-15 -1543 ((-654 (-1174)) $ (-1174))) (-15 -1693 ($ $ (-1192))) (-15 -1733 ($)) (-15 -2454 ((-3 (-1174) "failed") $ (-1174) (-574))) (-6 -4458))) -((-1979 (($ $) 46)) (-3801 (((-112) $ $) 82)) (-1705 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-965 (-417 (-574)))) 251) (((-3 $ "failed") (-965 (-574))) 250) (((-3 $ "failed") (-965 |#2|)) 253)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) NIL) (($ (-965 (-417 (-574)))) 239) (($ (-965 (-574))) 235) (($ (-965 |#2|)) 255)) (-1401 (($ $) NIL) (($ $ |#4|) 44)) (-3369 (((-112) $ $) 131) (((-112) $ (-654 $)) 135)) (-4385 (((-112) $) 60)) (-3960 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 125)) (-3323 (($ $) 160)) (-3724 (($ $) 156)) (-1565 (($ $) 155)) (-3755 (($ $ $) 87) (($ $ $ |#4|) 92)) (-4058 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3762 (((-112) $ $) 143) (((-112) $ (-654 $)) 144)) (-2968 ((|#4| $) 32)) (-2579 (($ $ $) 128)) (-4186 (((-112) $) 59)) (-3417 (((-781) $) 35)) (-3072 (($ $) 174)) (-1750 (($ $) 171)) (-2671 (((-654 $) $) 72)) (-4130 (($ $) 62)) (-3466 (($ $) 167)) (-4306 (((-654 $) $) 69)) (-2528 (($ $) 64)) (-1377 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3541 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4301 (-781))) $ $) 130)) (-3887 (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -4415 $) (|:| -1484 $)) $ $) 126) (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -4415 $) (|:| -1484 $)) $ $ |#4|) 127)) (-2821 (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -1484 $)) $ $) 121) (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -1484 $)) $ $ |#4|) 123)) (-3214 (($ $ $) 97) (($ $ $ |#4|) 106)) (-4097 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2253 (((-654 $) $) 54)) (-2397 (((-112) $ $) 140) (((-112) $ (-654 $)) 141)) (-1576 (($ $ $) 116)) (-3791 (($ $) 37)) (-2326 (((-112) $ $) 80)) (-1548 (((-112) $ $) 136) (((-112) $ (-654 $)) 138)) (-3503 (($ $ $) 112)) (-3391 (($ $) 41)) (-2886 ((|#2| |#2| $) 164) (($ (-654 $)) NIL) (($ $ $) NIL)) (-2564 (($ $ |#2|) NIL) (($ $ $) 153)) (-3431 (($ $ |#2|) 148) (($ $ $) 151)) (-1538 (($ $) 49)) (-1691 (($ $) 55)) (-1845 (((-903 (-388)) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (($ (-965 (-417 (-574)))) 241) (($ (-965 (-574))) 237) (($ (-965 |#2|)) 252) (((-1174) $) 279) (((-965 |#2|) $) 184)) (-2950 (((-872) $) 29) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-965 |#2|) $) 185) (($ (-417 (-574))) NIL) (($ $) NIL)) (-2622 (((-3 (-112) "failed") $ $) 79))) -(((-1079 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -2886 (|#1| |#1| |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 ((-965 |#2|) |#1|)) (-15 -1845 ((-965 |#2|) |#1|)) (-15 -1845 ((-1174) |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -1750 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -2886 (|#2| |#2| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -3431 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| |#2|)) (-15 -3431 (|#1| |#1| |#2|)) (-15 -3724 (|#1| |#1|)) (-15 -1565 (|#1| |#1|)) (-15 -1845 (|#1| (-965 |#2|))) (-15 -2216 (|#1| (-965 |#2|))) (-15 -1705 ((-3 |#1| "failed") (-965 |#2|))) (-15 -1845 (|#1| (-965 (-574)))) (-15 -2216 (|#1| (-965 (-574)))) (-15 -1705 ((-3 |#1| "failed") (-965 (-574)))) (-15 -1845 (|#1| (-965 (-417 (-574))))) (-15 -2216 (|#1| (-965 (-417 (-574))))) (-15 -1705 ((-3 |#1| "failed") (-965 (-417 (-574))))) (-15 -1576 (|#1| |#1| |#1|)) (-15 -3503 (|#1| |#1| |#1|)) (-15 -3541 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4301 (-781))) |#1| |#1|)) (-15 -2579 (|#1| |#1| |#1|)) (-15 -3960 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -3887 ((-2 (|:| -1867 |#1|) (|:| |gap| (-781)) (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1| |#4|)) (-15 -3887 ((-2 (|:| -1867 |#1|) (|:| |gap| (-781)) (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -2821 ((-2 (|:| -1867 |#1|) (|:| |gap| (-781)) (|:| -1484 |#1|)) |#1| |#1| |#4|)) (-15 -2821 ((-2 (|:| -1867 |#1|) (|:| |gap| (-781)) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -4097 (|#1| |#1| |#1| |#4|)) (-15 -3214 (|#1| |#1| |#1| |#4|)) (-15 -4097 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -4058 (|#1| |#1| |#1| |#4|)) (-15 -3755 (|#1| |#1| |#1| |#4|)) (-15 -4058 (|#1| |#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -3762 ((-112) |#1| (-654 |#1|))) (-15 -3762 ((-112) |#1| |#1|)) (-15 -2397 ((-112) |#1| (-654 |#1|))) (-15 -2397 ((-112) |#1| |#1|)) (-15 -1548 ((-112) |#1| (-654 |#1|))) (-15 -1548 ((-112) |#1| |#1|)) (-15 -3369 ((-112) |#1| (-654 |#1|))) (-15 -3369 ((-112) |#1| |#1|)) (-15 -3801 ((-112) |#1| |#1|)) (-15 -2326 ((-112) |#1| |#1|)) (-15 -2622 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2671 ((-654 |#1|) |#1|)) (-15 -4306 ((-654 |#1|) |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4385 ((-112) |#1|)) (-15 -4186 ((-112) |#1|)) (-15 -1401 (|#1| |#1| |#4|)) (-15 -1377 (|#1| |#1| |#4|)) (-15 -1691 (|#1| |#1|)) (-15 -2253 ((-654 |#1|) |#1|)) (-15 -1538 (|#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -3391 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3417 ((-781) |#1|)) (-15 -2968 (|#4| |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -2950 (|#1| |#4|)) (-15 -1705 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -1377 (|#2| |#1|)) (-15 -1401 (|#1| |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-1080 |#2| |#3| |#4|) (-1064) (-803) (-860)) (T -1079)) -NIL -(-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -2886 (|#1| |#1| |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 ((-965 |#2|) |#1|)) (-15 -1845 ((-965 |#2|) |#1|)) (-15 -1845 ((-1174) |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -1750 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -2886 (|#2| |#2| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -3431 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| |#2|)) (-15 -3431 (|#1| |#1| |#2|)) (-15 -3724 (|#1| |#1|)) (-15 -1565 (|#1| |#1|)) (-15 -1845 (|#1| (-965 |#2|))) (-15 -2216 (|#1| (-965 |#2|))) (-15 -1705 ((-3 |#1| "failed") (-965 |#2|))) (-15 -1845 (|#1| (-965 (-574)))) (-15 -2216 (|#1| (-965 (-574)))) (-15 -1705 ((-3 |#1| "failed") (-965 (-574)))) (-15 -1845 (|#1| (-965 (-417 (-574))))) (-15 -2216 (|#1| (-965 (-417 (-574))))) (-15 -1705 ((-3 |#1| "failed") (-965 (-417 (-574))))) (-15 -1576 (|#1| |#1| |#1|)) (-15 -3503 (|#1| |#1| |#1|)) (-15 -3541 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4301 (-781))) |#1| |#1|)) (-15 -2579 (|#1| |#1| |#1|)) (-15 -3960 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -3887 ((-2 (|:| -1867 |#1|) (|:| |gap| (-781)) (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1| |#4|)) (-15 -3887 ((-2 (|:| -1867 |#1|) (|:| |gap| (-781)) (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -2821 ((-2 (|:| -1867 |#1|) (|:| |gap| (-781)) (|:| -1484 |#1|)) |#1| |#1| |#4|)) (-15 -2821 ((-2 (|:| -1867 |#1|) (|:| |gap| (-781)) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -4097 (|#1| |#1| |#1| |#4|)) (-15 -3214 (|#1| |#1| |#1| |#4|)) (-15 -4097 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -4058 (|#1| |#1| |#1| |#4|)) (-15 -3755 (|#1| |#1| |#1| |#4|)) (-15 -4058 (|#1| |#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -3762 ((-112) |#1| (-654 |#1|))) (-15 -3762 ((-112) |#1| |#1|)) (-15 -2397 ((-112) |#1| (-654 |#1|))) (-15 -2397 ((-112) |#1| |#1|)) (-15 -1548 ((-112) |#1| (-654 |#1|))) (-15 -1548 ((-112) |#1| |#1|)) (-15 -3369 ((-112) |#1| (-654 |#1|))) (-15 -3369 ((-112) |#1| |#1|)) (-15 -3801 ((-112) |#1| |#1|)) (-15 -2326 ((-112) |#1| |#1|)) (-15 -2622 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2671 ((-654 |#1|) |#1|)) (-15 -4306 ((-654 |#1|) |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4385 ((-112) |#1|)) (-15 -4186 ((-112) |#1|)) (-15 -1401 (|#1| |#1| |#4|)) (-15 -1377 (|#1| |#1| |#4|)) (-15 -1691 (|#1| |#1|)) (-15 -2253 ((-654 |#1|) |#1|)) (-15 -1538 (|#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -3391 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3417 ((-781) |#1|)) (-15 -2968 (|#4| |#1|)) (-15 -1845 ((-546) |#1|)) (-15 -1845 ((-903 (-574)) |#1|)) (-15 -1845 ((-903 (-388)) |#1|)) (-15 -2950 (|#1| |#4|)) (-15 -1705 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -1377 (|#2| |#1|)) (-15 -1401 (|#1| |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4349 (((-654 |#3|) $) 112)) (-4171 (((-1188 $) $ |#3|) 127) (((-1188 |#1|) $) 126)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-3648 (($ $) 90 (|has| |#1| (-566)))) (-1527 (((-112) $) 92 (|has| |#1| (-566)))) (-3335 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-1979 (($ $) 275)) (-3801 (((-112) $ $) 261)) (-1597 (((-3 $ "failed") $ $) 20)) (-2891 (($ $ $) 220 (|has| |#1| (-566)))) (-1896 (((-654 $) $ $) 215 (|has| |#1| (-566)))) (-4055 (((-428 (-1188 $)) (-1188 $)) 102 (|has| |#1| (-922)))) (-3296 (($ $) 100 (|has| |#1| (-462)))) (-3954 (((-428 $) $) 99 (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 105 (|has| |#1| (-922)))) (-3831 (($) 18 T CONST)) (-1705 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1053 (-574)))) (((-3 |#3| "failed") $) 140) (((-3 $ "failed") (-965 (-417 (-574)))) 235 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192))))) (((-3 $ "failed") (-965 (-574))) 232 (-2832 (-12 (-2085 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1192)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192)))))) (((-3 $ "failed") (-965 |#1|)) 229 (-2832 (-12 (-2085 (|has| |#1| (-38 (-417 (-574))))) (-2085 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1192)))) (-12 (-2085 (|has| |#1| (-555))) (-2085 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1192)))) (-12 (-2085 (|has| |#1| (-1007 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192))))))) (-2216 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1053 (-574)))) ((|#3| $) 141) (($ (-965 (-417 (-574)))) 234 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192))))) (($ (-965 (-574))) 231 (-2832 (-12 (-2085 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1192)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192)))))) (($ (-965 |#1|)) 228 (-2832 (-12 (-2085 (|has| |#1| (-38 (-417 (-574))))) (-2085 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1192)))) (-12 (-2085 (|has| |#1| (-555))) (-2085 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1192)))) (-12 (-2085 (|has| |#1| (-1007 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192))))))) (-3496 (($ $ $ |#3|) 110 (|has| |#1| (-174))) (($ $ $) 216 (|has| |#1| (-566)))) (-1401 (($ $) 158) (($ $ |#3|) 270)) (-3465 (((-699 (-574)) (-1283 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1283 $)) 133)) (-3369 (((-112) $ $) 260) (((-112) $ (-654 $)) 259)) (-3911 (((-3 $ "failed") $) 37)) (-4385 (((-112) $) 268)) (-3960 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 240)) (-3323 (($ $) 209 (|has| |#1| (-462)))) (-1509 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1388 (((-654 $) $) 111)) (-1782 (((-112) $) 98 (|has| |#1| (-922)))) (-3724 (($ $) 225 (|has| |#1| (-566)))) (-1565 (($ $) 226 (|has| |#1| (-566)))) (-3755 (($ $ $) 252) (($ $ $ |#3|) 250)) (-4058 (($ $ $) 251) (($ $ $ |#3|) 249)) (-4389 (($ $ |#1| |#2| $) 176)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3372 (((-112) $) 35)) (-3241 (((-781) $) 173)) (-3762 (((-112) $ $) 254) (((-112) $ (-654 $)) 253)) (-4193 (($ $ $ $ $) 211 (|has| |#1| (-566)))) (-2968 ((|#3| $) 279)) (-4338 (($ (-1188 |#1|) |#3|) 119) (($ (-1188 $) |#3|) 118)) (-1854 (((-654 $) $) 128)) (-3257 (((-112) $) 156)) (-4327 (($ |#1| |#2|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-2579 (($ $ $) 239)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ |#3|) 122)) (-4186 (((-112) $) 269)) (-1503 ((|#2| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-3417 (((-781) $) 278)) (-3558 (($ (-1 |#2| |#2|) $) 175)) (-1786 (($ (-1 |#1| |#1|) $) 155)) (-1803 (((-3 |#3| "failed") $) 125)) (-3072 (($ $) 206 (|has| |#1| (-462)))) (-1750 (($ $) 207 (|has| |#1| (-462)))) (-2671 (((-654 $) $) 264)) (-4130 (($ $) 267)) (-3466 (($ $) 208 (|has| |#1| (-462)))) (-4306 (((-654 $) $) 265)) (-2528 (($ $) 266)) (-1365 (($ $) 153)) (-1377 ((|#1| $) 152) (($ $ |#3|) 271)) (-2848 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-3541 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4301 (-781))) $ $) 238)) (-3887 (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -4415 $) (|:| -1484 $)) $ $) 242) (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -4415 $) (|:| -1484 $)) $ $ |#3|) 241)) (-2821 (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -1484 $)) $ $) 244) (((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -1484 $)) $ $ |#3|) 243)) (-3214 (($ $ $) 248) (($ $ $ |#3|) 246)) (-4097 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3945 (((-1174) $) 10)) (-2971 (($ $ $) 214 (|has| |#1| (-566)))) (-2253 (((-654 $) $) 273)) (-1810 (((-3 (-654 $) "failed") $) 116)) (-1577 (((-3 (-654 $) "failed") $) 117)) (-3404 (((-3 (-2 (|:| |var| |#3|) (|:| -2017 (-781))) "failed") $) 115)) (-2397 (((-112) $ $) 256) (((-112) $ (-654 $)) 255)) (-1576 (($ $ $) 236)) (-3791 (($ $) 277)) (-2326 (((-112) $ $) 262)) (-1548 (((-112) $ $) 258) (((-112) $ (-654 $)) 257)) (-3503 (($ $ $) 237)) (-3391 (($ $) 276)) (-3939 (((-1135) $) 11)) (-4194 (((-2 (|:| -2886 $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-566)))) (-3286 (((-2 (|:| -2886 $) (|:| |coef1| $)) $ $) 218 (|has| |#1| (-566)))) (-1342 (((-112) $) 170)) (-1354 ((|#1| $) 171)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 97 (|has| |#1| (-462)))) (-2886 ((|#1| |#1| $) 210 (|has| |#1| (-462))) (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) 104 (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) 103 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 101 (|has| |#1| (-922)))) (-1545 (((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 219 (|has| |#1| (-566)))) (-2852 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2564 (($ $ |#1|) 223 (|has| |#1| (-566))) (($ $ $) 221 (|has| |#1| (-566)))) (-3431 (($ $ |#1|) 224 (|has| |#1| (-566))) (($ $ $) 222 (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142)) (-1738 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3878 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43)) (-3584 ((|#2| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131)) (-1538 (($ $) 274)) (-1691 (($ $) 272)) (-1845 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546))))) (($ (-965 (-417 (-574)))) 233 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192))))) (($ (-965 (-574))) 230 (-2832 (-12 (-2085 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1192)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192)))))) (($ (-965 |#1|)) 227 (|has| |#3| (-624 (-1192)))) (((-1174) $) 205 (-12 (|has| |#1| (-1053 (-574))) (|has| |#3| (-624 (-1192))))) (((-965 |#1|) $) 204 (|has| |#3| (-624 (-1192))))) (-3631 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 106 (-2096 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (((-965 |#1|) $) 203 (|has| |#3| (-624 (-1192)))) (($ (-417 (-574))) 80 (-2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-2836 (((-654 |#1|) $) 172)) (-2930 ((|#1| $ |#2|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-3247 (((-3 $ "failed") $) 81 (-2832 (-2096 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) 32 T CONST)) (-2037 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2142 (($) 19 T CONST)) (-2622 (((-3 (-112) "failed") $ $) 263)) (-2154 (($) 34 T CONST)) (-3449 (($ $ $ $ (-781)) 212 (|has| |#1| (-566)))) (-1796 (($ $ $ (-781)) 213 (|has| |#1| (-566)))) (-3583 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-1080 |#1| |#2| |#3|) (-141) (-1064) (-803) (-860)) (T -1080)) -((-2968 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3391 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1979 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1538 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2253 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1080 *3 *4 *5)))) (-1691 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1377 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1401 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-4130 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2528 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4306 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1080 *3 *4 *5)))) (-2671 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1080 *3 *4 *5)))) (-2622 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2326 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3801 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3369 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3369 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-1548 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1548 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-2397 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2397 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-3762 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3762 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4058 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3755 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-4058 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-3214 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4097 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3214 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-4097 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2821 (*1 *2 *1 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1867 *1) (|:| |gap| (-781)) (|:| -1484 *1))) (-4 *1 (-1080 *3 *4 *5)))) (-2821 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1867 *1) (|:| |gap| (-781)) (|:| -1484 *1))) (-4 *1 (-1080 *4 *5 *3)))) (-3887 (*1 *2 *1 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1867 *1) (|:| |gap| (-781)) (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-1080 *3 *4 *5)))) (-3887 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1867 *1) (|:| |gap| (-781)) (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-1080 *4 *5 *3)))) (-3960 (*1 *2 *1 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-1080 *3 *4 *5)))) (-2579 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3541 (*1 *2 *1 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4301 (-781)))) (-4 *1 (-1080 *3 *4 *5)))) (-3503 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1576 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1705 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1705 (*1 *1 *2) (|partial| -2832 (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-2085 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2216 (*1 *1 *2) (-2832 (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-2085 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1845 (*1 *1 *2) (-2832 (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-2085 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1705 (*1 *1 *2) (|partial| -2832 (-12 (-5 *2 (-965 *3)) (-12 (-2085 (-4 *3 (-38 (-417 (-574))))) (-2085 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 *3)) (-12 (-2085 (-4 *3 (-555))) (-2085 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 *3)) (-12 (-2085 (-4 *3 (-1007 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2216 (*1 *1 *2) (-2832 (-12 (-5 *2 (-965 *3)) (-12 (-2085 (-4 *3 (-38 (-417 (-574))))) (-2085 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 *3)) (-12 (-2085 (-4 *3 (-555))) (-2085 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 *3)) (-12 (-2085 (-4 *3 (-1007 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-965 *3)) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *5 (-624 (-1192))) (-4 *4 (-803)) (-4 *5 (-860)))) (-1565 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3724 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3431 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2564 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3431 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2564 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2891 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1545 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2886 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1080 *3 *4 *5)))) (-3286 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2886 *1) (|:| |coef1| *1))) (-4 *1 (-1080 *3 *4 *5)))) (-4194 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2886 *1) (|:| |coef2| *1))) (-4 *1 (-1080 *3 *4 *5)))) (-3496 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1896 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1080 *3 *4 *5)))) (-2971 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1796 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-3449 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-4193 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2886 (*1 *2 *2 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3466 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-1750 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3072 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462))))) -(-13 (-962 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2968 (|t#3| $)) (-15 -3417 ((-781) $)) (-15 -3791 ($ $)) (-15 -3391 ($ $)) (-15 -1979 ($ $)) (-15 -1538 ($ $)) (-15 -2253 ((-654 $) $)) (-15 -1691 ($ $)) (-15 -1377 ($ $ |t#3|)) (-15 -1401 ($ $ |t#3|)) (-15 -4186 ((-112) $)) (-15 -4385 ((-112) $)) (-15 -4130 ($ $)) (-15 -2528 ($ $)) (-15 -4306 ((-654 $) $)) (-15 -2671 ((-654 $) $)) (-15 -2622 ((-3 (-112) "failed") $ $)) (-15 -2326 ((-112) $ $)) (-15 -3801 ((-112) $ $)) (-15 -3369 ((-112) $ $)) (-15 -3369 ((-112) $ (-654 $))) (-15 -1548 ((-112) $ $)) (-15 -1548 ((-112) $ (-654 $))) (-15 -2397 ((-112) $ $)) (-15 -2397 ((-112) $ (-654 $))) (-15 -3762 ((-112) $ $)) (-15 -3762 ((-112) $ (-654 $))) (-15 -3755 ($ $ $)) (-15 -4058 ($ $ $)) (-15 -3755 ($ $ $ |t#3|)) (-15 -4058 ($ $ $ |t#3|)) (-15 -3214 ($ $ $)) (-15 -4097 ($ $ $)) (-15 -3214 ($ $ $ |t#3|)) (-15 -4097 ($ $ $ |t#3|)) (-15 -2821 ((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -1484 $)) $ $)) (-15 -2821 ((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -1484 $)) $ $ |t#3|)) (-15 -3887 ((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -4415 $) (|:| -1484 $)) $ $)) (-15 -3887 ((-2 (|:| -1867 $) (|:| |gap| (-781)) (|:| -4415 $) (|:| -1484 $)) $ $ |t#3|)) (-15 -3960 ((-2 (|:| -4415 $) (|:| -1484 $)) $ $)) (-15 -2579 ($ $ $)) (-15 -3541 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4301 (-781))) $ $)) (-15 -3503 ($ $ $)) (-15 -1576 ($ $ $)) (IF (|has| |t#3| (-624 (-1192))) (PROGN (-6 (-623 (-965 |t#1|))) (-6 (-624 (-965 |t#1|))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -1705 ((-3 $ "failed") (-965 (-417 (-574))))) (-15 -2216 ($ (-965 (-417 (-574))))) (-15 -1845 ($ (-965 (-417 (-574))))) (-15 -1705 ((-3 $ "failed") (-965 (-574)))) (-15 -2216 ($ (-965 (-574)))) (-15 -1845 ($ (-965 (-574)))) (IF (|has| |t#1| (-1007 (-574))) |%noBranch| (PROGN (-15 -1705 ((-3 $ "failed") (-965 |t#1|))) (-15 -2216 ($ (-965 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1705 ((-3 $ "failed") (-965 (-574)))) (-15 -2216 ($ (-965 (-574)))) (-15 -1845 ($ (-965 (-574)))) (IF (|has| |t#1| (-555)) |%noBranch| (PROGN (-15 -1705 ((-3 $ "failed") (-965 |t#1|))) (-15 -2216 ($ (-965 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) |%noBranch| (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1705 ((-3 $ "failed") (-965 |t#1|))) (-15 -2216 ($ (-965 |t#1|)))))) (-15 -1845 ($ (-965 |t#1|))) (IF (|has| |t#1| (-1053 (-574))) (-6 (-624 (-1174))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -1565 ($ $)) (-15 -3724 ($ $)) (-15 -3431 ($ $ |t#1|)) (-15 -2564 ($ $ |t#1|)) (-15 -3431 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2891 ($ $ $)) (-15 -1545 ((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3286 ((-2 (|:| -2886 $) (|:| |coef1| $)) $ $)) (-15 -4194 ((-2 (|:| -2886 $) (|:| |coef2| $)) $ $)) (-15 -3496 ($ $ $)) (-15 -1896 ((-654 $) $ $)) (-15 -2971 ($ $ $)) (-15 -1796 ($ $ $ (-781))) (-15 -3449 ($ $ $ $ (-781))) (-15 -4193 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -2886 (|t#1| |t#1| $)) (-15 -3323 ($ $)) (-15 -3466 ($ $)) (-15 -1750 ($ $)) (-15 -3072 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-623 (-965 |#1|)) |has| |#3| (-624 (-1192))) ((-174) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-624 (-965 |#1|)) |has| |#3| (-624 (-1192))) ((-624 (-1174)) -12 (|has| |#1| (-1053 (-574))) (|has| |#3| (-624 (-1192)))) ((-298) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-922)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-913 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-962 |#1| |#2| |#3|) . T) ((-922) |has| |#1| (-922)) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1053 |#3|) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) |has| |#1| (-922))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-1508 (((-654 (-1150)) $) 18)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 27) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2051 (((-1150) $) 20)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1081) (-13 (-1098) (-10 -8 (-15 -1508 ((-654 (-1150)) $)) (-15 -2051 ((-1150) $))))) (T -1081)) -((-1508 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1081)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1081))))) -(-13 (-1098) (-10 -8 (-15 -1508 ((-654 (-1150)) $)) (-15 -2051 ((-1150) $)))) -((-3520 (((-112) |#3| $) 15)) (-3356 (((-3 $ "failed") |#3| (-934)) 29)) (-3911 (((-3 |#3| "failed") |#3| $) 45)) (-1913 (((-112) |#3| $) 19)) (-1808 (((-112) |#3| $) 17))) -(((-1082 |#1| |#2| |#3|) (-10 -8 (-15 -3356 ((-3 |#1| "failed") |#3| (-934))) (-15 -3911 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1913 ((-112) |#3| |#1|)) (-15 -1808 ((-112) |#3| |#1|)) (-15 -3520 ((-112) |#3| |#1|))) (-1083 |#2| |#3|) (-13 (-858) (-372)) (-1259 |#2|)) (T -1082)) -NIL -(-10 -8 (-15 -3356 ((-3 |#1| "failed") |#3| (-934))) (-15 -3911 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1913 ((-112) |#3| |#1|)) (-15 -1808 ((-112) |#3| |#1|)) (-15 -3520 ((-112) |#3| |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) |#2| $) 22)) (-3011 (((-574) |#2| $) 23)) (-3356 (((-3 $ "failed") |#2| (-934)) 16)) (-2111 ((|#1| |#2| $ |#1|) 14)) (-3911 (((-3 |#2| "failed") |#2| $) 19)) (-1913 (((-112) |#2| $) 20)) (-1808 (((-112) |#2| $) 21)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2290 ((|#2| $) 18)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-3524 ((|#1| |#2| $ |#1|) 15)) (-2272 (((-654 $) |#2|) 17)) (-2985 (((-112) $ $) 6))) -(((-1083 |#1| |#2|) (-141) (-13 (-858) (-372)) (-1259 |t#1|)) (T -1083)) -((-3011 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-574)))) (-3520 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-112)))) (-1808 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-112)))) (-1913 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-112)))) (-3911 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1083 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1259 *3)))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1259 *3)))) (-2272 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-654 *1)) (-4 *1 (-1083 *4 *3)))) (-3356 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-934)) (-4 *4 (-13 (-858) (-372))) (-4 *1 (-1083 *4 *2)) (-4 *2 (-1259 *4)))) (-3524 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1083 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1259 *2)))) (-2111 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1083 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1259 *2))))) -(-13 (-1115) (-10 -8 (-15 -3011 ((-574) |t#2| $)) (-15 -3520 ((-112) |t#2| $)) (-15 -1808 ((-112) |t#2| $)) (-15 -1913 ((-112) |t#2| $)) (-15 -3911 ((-3 |t#2| "failed") |t#2| $)) (-15 -2290 (|t#2| $)) (-15 -2272 ((-654 $) |t#2|)) (-15 -3356 ((-3 $ "failed") |t#2| (-934))) (-15 -3524 (|t#1| |t#2| $ |t#1|)) (-15 -2111 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2618 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) (-781)) 114)) (-4166 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781)) 63)) (-3642 (((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-781)) 99)) (-1837 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-2059 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781)) 65) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781) (-112)) 67)) (-3930 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 87)) (-1845 (((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) 92)) (-2580 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-112)) 62)) (-3946 (((-781) (-654 |#4|) (-654 |#5|)) 21))) -(((-1084 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3946 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1837 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2580 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-112))) (-15 -4166 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781))) (-15 -4166 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|)) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781))) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|)) (-15 -3930 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3930 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2618 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) (-781))) (-15 -1845 ((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)))) (-15 -3642 ((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-781)))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -1084)) -((-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4064 *9)))) (-5 *4 (-781)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1288)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4064 *8))) (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1174)) (-5 *1 (-1084 *4 *5 *6 *7 *8)))) (-2618 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4064 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4064 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1080 *7 *8 *9)) (-4 *11 (-1086 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1084 *7 *8 *9 *10 *11)))) (-3930 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) (-3930 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) (-2059 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-2059 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) (-2059 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1080 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1084 *7 *8 *9 *3 *4)) (-4 *4 (-1086 *7 *8 *9 *3)))) (-4166 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-4166 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) (-2580 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) (-1837 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) (-3946 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1084 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3946 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1837 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2580 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-112))) (-15 -4166 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781))) (-15 -4166 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|)) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781))) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|)) (-15 -3930 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3930 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2618 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) (-781))) (-15 -1845 ((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)))) (-15 -3642 ((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-781)))) -((-2667 (((-112) |#5| $) 26)) (-2797 (((-112) |#5| $) 29)) (-1566 (((-112) |#5| $) 18) (((-112) $) 52)) (-1454 (((-654 $) |#5| $) NIL) (((-654 $) (-654 |#5|) $) 94) (((-654 $) (-654 |#5|) (-654 $)) 92) (((-654 $) |#5| (-654 $)) 95)) (-2115 (($ $ |#5|) NIL) (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 73) (((-654 $) (-654 |#5|) $) 75) (((-654 $) (-654 |#5|) (-654 $)) 77)) (-2536 (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 64) (((-654 $) (-654 |#5|) $) 69) (((-654 $) (-654 |#5|) (-654 $)) 71)) (-1651 (((-112) |#5| $) 32))) -(((-1085 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2115 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2115 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2115 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2115 ((-654 |#1|) |#5| |#1|)) (-15 -2536 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2536 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2536 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2536 ((-654 |#1|) |#5| |#1|)) (-15 -1454 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -1454 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -1454 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -1454 ((-654 |#1|) |#5| |#1|)) (-15 -2797 ((-112) |#5| |#1|)) (-15 -1566 ((-112) |#1|)) (-15 -1651 ((-112) |#5| |#1|)) (-15 -2667 ((-112) |#5| |#1|)) (-15 -1566 ((-112) |#5| |#1|)) (-15 -2115 (|#1| |#1| |#5|))) (-1086 |#2| |#3| |#4| |#5|) (-462) (-803) (-860) (-1080 |#2| |#3| |#4|)) (T -1085)) -NIL -(-10 -8 (-15 -2115 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2115 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2115 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2115 ((-654 |#1|) |#5| |#1|)) (-15 -2536 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2536 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2536 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2536 ((-654 |#1|) |#5| |#1|)) (-15 -1454 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -1454 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -1454 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -1454 ((-654 |#1|) |#5| |#1|)) (-15 -2797 ((-112) |#5| |#1|)) (-15 -1566 ((-112) |#1|)) (-15 -1651 ((-112) |#5| |#1|)) (-15 -2667 ((-112) |#5| |#1|)) (-15 -1566 ((-112) |#5| |#1|)) (-15 -2115 (|#1| |#1| |#5|))) -((-2863 (((-112) $ $) 7)) (-4205 (((-654 (-2 (|:| -1389 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) 86)) (-1721 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4349 (((-654 |#3|) $) 34)) (-3278 (((-112) $) 27)) (-3814 (((-112) $) 18 (|has| |#1| (-566)))) (-3522 (((-112) |#4| $) 102) (((-112) $) 98)) (-3885 ((|#4| |#4| $) 93)) (-3296 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| $) 127)) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#3|) 28)) (-2818 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 80)) (-3831 (($) 46 T CONST)) (-4241 (((-112) $) 23 (|has| |#1| (-566)))) (-3297 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2860 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2450 (((-112) $) 26 (|has| |#1| (-566)))) (-3665 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4010 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1438 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2934 (((-3 $ "failed") $) 83)) (-1685 ((|#4| |#4| $) 90)) (-2560 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3369 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4037 ((|#4| |#4| $) 88)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1426 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) 106)) (-2667 (((-112) |#4| $) 137)) (-2797 (((-112) |#4| $) 134)) (-1566 (((-112) |#4| $) 138) (((-112) $) 135)) (-1873 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-3762 (((-112) |#4| $) 105) (((-112) $) 104)) (-2968 ((|#3| $) 35)) (-2224 (((-112) $ (-781)) 44)) (-2247 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) 48)) (-2740 (((-654 |#3|) $) 33)) (-2080 (((-112) |#3| $) 32)) (-3625 (((-112) $ (-781)) 43)) (-3945 (((-1174) $) 10)) (-4258 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2971 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| |#4| $) 128)) (-3333 (((-3 |#4| "failed") $) 84)) (-2133 (((-654 $) |#4| $) 130)) (-1537 (((-3 (-112) (-654 $)) |#4| $) 133)) (-1884 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1454 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3750 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-3981 (((-654 |#4|) $) 108)) (-2397 (((-112) |#4| $) 100) (((-112) $) 96)) (-1576 ((|#4| |#4| $) 91)) (-2326 (((-112) $ $) 111)) (-3081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1548 (((-112) |#4| $) 101) (((-112) $) 97)) (-3503 ((|#4| |#4| $) 92)) (-3939 (((-1135) $) 11)) (-2924 (((-3 |#4| "failed") $) 85)) (-2294 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2200 (((-3 $ "failed") $ |#4|) 79)) (-2115 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-2000 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) 39)) (-2880 (((-112) $) 42)) (-2833 (($) 41)) (-3584 (((-781) $) 107)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1845 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-1689 (($ $ |#3|) 29)) (-2639 (($ $ |#3|) 31)) (-4330 (($ $) 89)) (-3386 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2706 (((-781) $) 77 (|has| |#3| (-377)))) (-3838 (((-112) $ $) 9)) (-2270 (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1587 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2536 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-1437 (((-654 |#3|) $) 82)) (-1651 (((-112) |#4| $) 136)) (-1469 (((-112) |#3| $) 81)) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) -(((-1086 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -1086)) -((-1566 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-2667 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-1651 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-2797 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-1537 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1))) (-4 *1 (-1086 *4 *5 *6 *3)))) (-1884 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *1)))) (-4 *1 (-1086 *4 *5 *6 *3)))) (-1884 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-2133 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)))) (-4258 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1))) (-4 *1 (-1086 *4 *5 *6 *3)))) (-2971 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *1)))) (-4 *1 (-1086 *4 *5 *6 *3)))) (-3296 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *1)))) (-4 *1 (-1086 *4 *5 *6 *3)))) (-1454 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)))) (-1454 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *7)))) (-1454 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)))) (-1454 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) (-2536 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)))) (-2536 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) (-2536 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *7)))) (-2536 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)))) (-3750 (*1 *1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-3750 (*1 *1 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)))) (-2115 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)))) (-2115 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) (-2115 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *7)))) (-2115 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)))) (-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *5 *6 *7 *8))))) -(-13 (-1226 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1566 ((-112) |t#4| $)) (-15 -2667 ((-112) |t#4| $)) (-15 -1651 ((-112) |t#4| $)) (-15 -1566 ((-112) $)) (-15 -2797 ((-112) |t#4| $)) (-15 -1537 ((-3 (-112) (-654 $)) |t#4| $)) (-15 -1884 ((-654 (-2 (|:| |val| (-112)) (|:| -4064 $))) |t#4| $)) (-15 -1884 ((-112) |t#4| $)) (-15 -2133 ((-654 $) |t#4| $)) (-15 -4258 ((-3 |t#4| (-654 $)) |t#4| |t#4| $)) (-15 -2971 ((-654 (-2 (|:| |val| |t#4|) (|:| -4064 $))) |t#4| |t#4| $)) (-15 -3296 ((-654 (-2 (|:| |val| |t#4|) (|:| -4064 $))) |t#4| $)) (-15 -1454 ((-654 $) |t#4| $)) (-15 -1454 ((-654 $) (-654 |t#4|) $)) (-15 -1454 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -1454 ((-654 $) |t#4| (-654 $))) (-15 -2536 ((-654 $) |t#4| $)) (-15 -2536 ((-654 $) |t#4| (-654 $))) (-15 -2536 ((-654 $) (-654 |t#4|) $)) (-15 -2536 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -3750 ($ |t#4| $)) (-15 -3750 ($ (-654 |t#4|) $)) (-15 -2115 ((-654 $) |t#4| $)) (-15 -2115 ((-654 $) |t#4| (-654 $))) (-15 -2115 ((-654 $) (-654 |t#4|) $)) (-15 -2115 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -1721 ((-654 $) (-654 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-991 |#1| |#2| |#3| |#4|) . T) ((-1115) . T) ((-1226 |#1| |#2| |#3| |#4|) . T) ((-1233) . T)) -((-2328 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#5|) 86)) (-3889 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|) 127)) (-1745 (((-654 |#5|) |#4| |#5|) 74)) (-2741 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3142 (((-1288)) 36)) (-3698 (((-1288)) 25)) (-3427 (((-1288) (-1174) (-1174) (-1174)) 32)) (-4006 (((-1288) (-1174) (-1174) (-1174)) 21)) (-4080 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#4| |#4| |#5|) 107)) (-2659 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#3| (-112)) 118) (((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-1400 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|) 113))) -(((-1087 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4006 ((-1288) (-1174) (-1174) (-1174))) (-15 -3698 ((-1288))) (-15 -3427 ((-1288) (-1174) (-1174) (-1174))) (-15 -3142 ((-1288))) (-15 -4080 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -2659 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2659 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#3| (-112))) (-15 -1400 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -3889 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -2741 ((-112) |#4| |#5|)) (-15 -2741 ((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|)) (-15 -1745 ((-654 |#5|) |#4| |#5|)) (-15 -2328 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -1087)) -((-2328 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-1745 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-2741 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-2741 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3889 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-1400 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4064 *9)))) (-5 *5 (-112)) (-4 *8 (-1080 *6 *7 *4)) (-4 *9 (-1086 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4064 *9)))) (-5 *1 (-1087 *6 *7 *4 *8 *9)))) (-2659 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) (-4080 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3142 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-3427 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-3698 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-4006 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) -(-10 -7 (-15 -4006 ((-1288) (-1174) (-1174) (-1174))) (-15 -3698 ((-1288))) (-15 -3427 ((-1288) (-1174) (-1174) (-1174))) (-15 -3142 ((-1288))) (-15 -4080 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -2659 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2659 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#3| (-112))) (-15 -1400 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -3889 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -2741 ((-112) |#4| |#5|)) (-15 -2741 ((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|)) (-15 -1745 ((-654 |#5|) |#4| |#5|)) (-15 -2328 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#5|))) -((-2863 (((-112) $ $) NIL)) (-2349 (((-1232) $) 13)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 10)) (-2950 (((-872) $) 20) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1088) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $))))) (T -1088)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1088)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1088))))) -(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $)))) -((-4095 (((-112) $ $) 7))) -(((-1089) (-13 (-1233) (-10 -8 (-15 -4095 ((-112) $ $))))) (T -1089)) -((-4095 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1089))))) -(-13 (-1233) (-10 -8 (-15 -4095 ((-112) $ $)))) -((-2863 (((-112) $ $) NIL)) (-2040 (((-1192) $) 8)) (-3945 (((-1174) $) 17)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 11)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 14))) -(((-1090 |#1|) (-13 (-1115) (-10 -8 (-15 -2040 ((-1192) $)))) (-1192)) (T -1090)) -((-2040 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1090 *3)) (-14 *3 *2)))) -(-13 (-1115) (-10 -8 (-15 -2040 ((-1192) $)))) -((-2863 (((-112) $ $) NIL)) (-2585 (($ $ (-654 (-1192)) (-1 (-112) (-654 |#3|))) 34)) (-3815 (($ |#3| |#3|) 23) (($ |#3| |#3| (-654 (-1192))) 21)) (-1818 ((|#3| $) 13)) (-1705 (((-3 (-302 |#3|) "failed") $) 60)) (-2216 (((-302 |#3|) $) NIL)) (-3126 (((-654 (-1192)) $) 16)) (-2130 (((-903 |#1|) $) 11)) (-1804 ((|#3| $) 12)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2208 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-934)) 41)) (-2950 (((-872) $) 89) (($ (-302 |#3|)) 22)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 38))) -(((-1091 |#1| |#2| |#3|) (-13 (-1115) (-294 |#3| |#3|) (-1053 (-302 |#3|)) (-10 -8 (-15 -3815 ($ |#3| |#3|)) (-15 -3815 ($ |#3| |#3| (-654 (-1192)))) (-15 -2585 ($ $ (-654 (-1192)) (-1 (-112) (-654 |#3|)))) (-15 -2130 ((-903 |#1|) $)) (-15 -1804 (|#3| $)) (-15 -1818 (|#3| $)) (-15 -2208 (|#3| $ |#3| (-934))) (-15 -3126 ((-654 (-1192)) $)))) (-1115) (-13 (-1064) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1091)) -((-3815 (*1 *1 *2 *2) (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1091 *3 *4 *2)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-3815 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1091 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2585 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-1 (-112) (-654 *6))) (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1091 *4 *5 *6)))) (-2130 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 *2))) (-5 *2 (-903 *3)) (-5 *1 (-1091 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2))))) (-1804 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1091 *3 *4 *2)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))))) (-1818 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1091 *3 *4 *2)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))))) (-2208 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-934)) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1091 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-3126 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1192))) (-5 *1 (-1091 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) -(-13 (-1115) (-294 |#3| |#3|) (-1053 (-302 |#3|)) (-10 -8 (-15 -3815 ($ |#3| |#3|)) (-15 -3815 ($ |#3| |#3| (-654 (-1192)))) (-15 -2585 ($ $ (-654 (-1192)) (-1 (-112) (-654 |#3|)))) (-15 -2130 ((-903 |#1|) $)) (-15 -1804 (|#3| $)) (-15 -1818 (|#3| $)) (-15 -2208 (|#3| $ |#3| (-934))) (-15 -3126 ((-654 (-1192)) $)))) -((-2863 (((-112) $ $) NIL)) (-2549 (($ (-654 (-1091 |#1| |#2| |#3|))) 14)) (-2005 (((-654 (-1091 |#1| |#2| |#3|)) $) 21)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2208 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-934)) 27)) (-2950 (((-872) $) 17)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 20))) -(((-1092 |#1| |#2| |#3|) (-13 (-1115) (-294 |#3| |#3|) (-10 -8 (-15 -2549 ($ (-654 (-1091 |#1| |#2| |#3|)))) (-15 -2005 ((-654 (-1091 |#1| |#2| |#3|)) $)) (-15 -2208 (|#3| $ |#3| (-934))))) (-1115) (-13 (-1064) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1092)) -((-2549 (*1 *1 *2) (-12 (-5 *2 (-654 (-1091 *3 *4 *5))) (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1092 *3 *4 *5)))) (-2005 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1091 *3 *4 *5))) (-5 *1 (-1092 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-2208 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-934)) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1092 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))) -(-13 (-1115) (-294 |#3| |#3|) (-10 -8 (-15 -2549 ($ (-654 (-1091 |#1| |#2| |#3|)))) (-15 -2005 ((-654 (-1091 |#1| |#2| |#3|)) $)) (-15 -2208 (|#3| $ |#3| (-934))))) -((-2464 (((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112)) 88) (((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|))) 92) (((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112)) 90))) -(((-1093 |#1| |#2|) (-10 -7 (-15 -2464 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112))) (-15 -2464 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -2464 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112)))) (-13 (-315) (-148)) (-654 (-1192))) (T -1093)) -((-2464 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -3048 (-1188 *5)) (|:| -4346 (-654 (-965 *5)))))) (-5 *1 (-1093 *5 *6)) (-5 *3 (-654 (-965 *5))) (-14 *6 (-654 (-1192))))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -3048 (-1188 *4)) (|:| -4346 (-654 (-965 *4)))))) (-5 *1 (-1093 *4 *5)) (-5 *3 (-654 (-965 *4))) (-14 *5 (-654 (-1192))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -3048 (-1188 *5)) (|:| -4346 (-654 (-965 *5)))))) (-5 *1 (-1093 *5 *6)) (-5 *3 (-654 (-965 *5))) (-14 *6 (-654 (-1192)))))) -(-10 -7 (-15 -2464 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112))) (-15 -2464 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -2464 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112)))) -((-4200 (((-428 |#3|) |#3|) 18))) -(((-1094 |#1| |#2| |#3|) (-10 -7 (-15 -4200 ((-428 |#3|) |#3|))) (-1259 (-417 (-574))) (-13 (-372) (-148) (-734 (-417 (-574)) |#1|)) (-1259 |#2|)) (T -1094)) -((-4200 (*1 *2 *3) (-12 (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-574)) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1094 *4 *5 *3)) (-4 *3 (-1259 *5))))) -(-10 -7 (-15 -4200 ((-428 |#3|) |#3|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 136)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-372)))) (-3648 (($ $) NIL (|has| |#1| (-372)))) (-1527 (((-112) $) NIL (|has| |#1| (-372)))) (-3644 (((-699 |#1|) (-1283 $)) NIL) (((-699 |#1|)) 121)) (-1645 ((|#1| $) 125)) (-2541 (((-1205 (-934) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-372)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1496 (((-781)) 43 (|has| |#1| (-377)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-2919 (($ (-1283 |#1|) (-1283 $)) NIL) (($ (-1283 |#1|)) 46)) (-3392 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-3556 (((-699 |#1|) $ (-1283 $)) NIL) (((-699 |#1|) $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 113) (((-699 |#1|) (-699 $)) 108) (((-699 |#1|) (-1283 $)) NIL)) (-2881 (($ |#2|) 65) (((-3 $ "failed") (-417 |#2|)) NIL (|has| |#1| (-372)))) (-3911 (((-3 $ "failed") $) NIL)) (-3557 (((-934)) 84)) (-2834 (($) 47 (|has| |#1| (-377)))) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1912 (($) NIL (|has| |#1| (-358)))) (-3873 (((-112) $) NIL (|has| |#1| (-358)))) (-4158 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-1782 (((-112) $) NIL (|has| |#1| (-372)))) (-2725 (((-934) $) NIL (|has| |#1| (-358))) (((-843 (-934)) $) NIL (|has| |#1| (-358)))) (-3372 (((-112) $) NIL)) (-1386 ((|#1| $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1950 ((|#2| $) 91 (|has| |#1| (-372)))) (-3271 (((-934) $) 145 (|has| |#1| (-377)))) (-2868 ((|#2| $) 62)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-3791 (($) NIL (|has| |#1| (-358)) CONST)) (-2590 (($ (-934)) 135 (|has| |#1| (-377)))) (-3939 (((-1135) $) NIL)) (-2975 (($) 127)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3600 (((-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574))))) NIL (|has| |#1| (-358)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-1738 ((|#1| (-1283 $)) NIL) ((|#1|) 117)) (-3881 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3878 (($ $ (-781)) NIL (-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) NIL (-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-1840 (((-699 |#1|) (-1283 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2290 ((|#2|) 81)) (-1417 (($) NIL (|has| |#1| (-358)))) (-4346 (((-1283 |#1|) $ (-1283 $)) 96) (((-699 |#1|) (-1283 $) (-1283 $)) NIL) (((-1283 |#1|) $) 75) (((-699 |#1|) (-1283 $)) 92)) (-1845 (((-1283 |#1|) $) NIL) (($ (-1283 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-358)))) (-2950 (((-872) $) 61) (($ (-574)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-372))) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574))))))) (-3247 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1539 ((|#2| $) 89)) (-4019 (((-781)) 83 T CONST)) (-3838 (((-112) $ $) NIL)) (-2191 (((-1283 $)) 88)) (-1842 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2142 (($) 32 T CONST)) (-2154 (($) 19 T CONST)) (-3583 (($ $ (-781)) NIL (-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) NIL (-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2985 (((-112) $ $) 67)) (-3098 (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) 71) (($ $ $) NIL)) (-3074 (($ $ $) 69)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))))) -(((-1095 |#1| |#2| |#3|) (-734 |#1| |#2|) (-174) (-1259 |#1|) |#2|) (T -1095)) +((-2332 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23)))) (-2950 (*1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -2332 (|t#1| $)) (-15 -1556 (|t#1| $)) (-15 -2761 (|t#1| $)) (-15 -2950 (|t#1|) -1714))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4296 (($) 25 T CONST)) (-3250 (($) 18 T CONST)) (-2332 ((|#1| $) 23)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-1556 ((|#1| $) 22)) (-2950 ((|#1|) 20 T CONST)) (-2951 (((-872) $) 12)) (-2761 ((|#1| $) 21)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16))) +(((-1061 |#1|) (-141) (-23)) (T -1061)) +((-4296 (*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23))))) +(-13 (-1060 |t#1|) (-10 -8 (-15 -4296 ($) -1714))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1060 |#1|) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-2298 (((-654 (-2 (|:| -1390 $) (|:| -1684 (-654 (-790 |#1| (-874 |#2|)))))) (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-3656 (((-654 $) (-654 (-790 |#1| (-874 |#2|)))) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112)) NIL)) (-4350 (((-654 (-874 |#2|)) $) NIL)) (-1437 (((-112) $) NIL)) (-2176 (((-112) $) NIL (|has| |#1| (-566)))) (-2972 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-2104 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2991 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4068 $))) (-790 |#1| (-874 |#2|)) $) NIL)) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ (-874 |#2|)) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-2172 (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 (-790 |#1| (-874 |#2|)) "failed") $ (-874 |#2|)) NIL)) (-3250 (($) NIL T CONST)) (-3721 (((-112) $) NIL (|has| |#1| (-566)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2196 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3564 (((-112) $) NIL (|has| |#1| (-566)))) (-4434 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-1855 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-3406 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2214 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2935 (((-3 $ "failed") $) NIL)) (-2660 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-790 |#1| (-874 |#2|)) (-1116))))) (-3311 (($ (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-1857 (((-112) (-790 |#1| (-874 |#2|)) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-3347 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2882 (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|))) NIL (|has| $ (-6 -4459))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-2830 (((-2 (|:| -1390 (-654 (-790 |#1| (-874 |#2|)))) (|:| -1684 (-654 (-790 |#1| (-874 |#2|))))) $) NIL)) (-1647 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-4126 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-3832 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-1871 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-3145 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-4241 (((-874 |#2|) $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-790 |#1| (-874 |#2|)) (-1116))))) (-2462 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL)) (-2737 (((-654 (-874 |#2|)) $) NIL)) (-3161 (((-112) (-874 |#2|) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-1900 (((-3 (-790 |#1| (-874 |#2|)) (-654 $)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2623 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4068 $))) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3334 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-1976 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL)) (-2659 (((-3 (-112) (-654 $)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3029 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-3891 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL)) (-3268 (($ (-790 |#1| (-874 |#2|)) $) NIL) (($ (-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-1957 (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-3749 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-2254 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3877 (((-112) $ $) NIL)) (-3581 (((-2 (|:| |num| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-2712 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-3173 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-2183 (((-3 (-790 |#1| (-874 |#2|)) "failed") (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL)) (-4233 (((-3 $ "failed") $ (-790 |#1| (-874 |#2|))) NIL)) (-2433 (($ $ (-790 |#1| (-874 |#2|))) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-3449 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (($ $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (($ $ (-302 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (($ $ (-654 (-302 (-790 |#1| (-874 |#2|))))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-3580 (((-781) $) NIL)) (-3949 (((-781) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (((-781) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-790 |#1| (-874 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-1423 (($ $ (-874 |#2|)) NIL)) (-1671 (($ $ (-874 |#2|)) NIL)) (-2167 (($ $) NIL)) (-2287 (($ $ (-874 |#2|)) NIL)) (-2951 (((-872) $) NIL) (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-2105 (((-781) $) NIL (|has| (-874 |#2|) (-377)))) (-4069 (((-112) $ $) NIL)) (-3917 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-3912 (((-112) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-654 (-790 |#1| (-874 |#2|))))) NIL)) (-3896 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-2020 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-1642 (((-654 (-874 |#2|)) $) NIL)) (-2945 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-3504 (((-112) (-874 |#2|) $) NIL)) (-2986 (((-112) $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1062 |#1| |#2|) (-13 (-1087 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -3656 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112))))) (-462) (-654 (-1193))) (T -1062)) +((-3656 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-1062 *5 *6))))) +(-13 (-1087 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -3656 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112))))) +((-3446 (((-1 (-574)) (-1110 (-574))) 32)) (-4211 (((-574) (-574) (-574) (-574) (-574)) 29)) (-2119 (((-1 (-574)) |RationalNumber|) NIL)) (-4424 (((-1 (-574)) |RationalNumber|) NIL)) (-3900 (((-1 (-574)) (-574) |RationalNumber|) NIL))) +(((-1063) (-10 -7 (-15 -3446 ((-1 (-574)) (-1110 (-574)))) (-15 -3900 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -2119 ((-1 (-574)) |RationalNumber|)) (-15 -4424 ((-1 (-574)) |RationalNumber|)) (-15 -4211 ((-574) (-574) (-574) (-574) (-574))))) (T -1063)) +((-4211 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1063)))) (-4424 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063)))) (-2119 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063)))) (-3900 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063)) (-5 *3 (-574)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-1110 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1063))))) +(-10 -7 (-15 -3446 ((-1 (-574)) (-1110 (-574)))) (-15 -3900 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -2119 ((-1 (-574)) |RationalNumber|)) (-15 -4424 ((-1 (-574)) |RationalNumber|)) (-15 -4211 ((-574) (-574) (-574) (-574) (-574)))) +((-2951 (((-872) $) NIL) (($ (-574)) 10))) +(((-1064 |#1|) (-10 -8 (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-1065)) (T -1064)) +NIL +(-10 -8 (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-1065) (-141)) (T -1065)) +((-2898 (*1 *2) (-12 (-4 *1 (-1065)) (-5 *2 (-781))))) +(-13 (-1074) (-736) (-658 $) (-626 (-574)) (-10 -7 (-15 -2898 ((-781)) -1714) (-6 -4456))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-3795 (((-417 (-966 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)) 54))) +(((-1066 |#1| |#2|) (-10 -7 (-15 -3795 ((-417 (-966 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)))) (-1193) (-372)) (T -1066)) +((-3795 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372)) (-5 *2 (-417 (-966 *6))) (-5 *1 (-1066 *5 *6)) (-14 *5 (-1193))))) +(-10 -7 (-15 -3795 ((-417 (-966 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 15)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 16 T CONST)) (-2986 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) +(((-1067 |#1|) (-141) (-1128)) (T -1067)) +((-2141 (*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1128)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1128)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1128))))) +(-13 (-1116) (-10 -8 (-15 (-2141) ($) -1714) (-15 -1431 ((-112) $)) (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-3399 (((-112) $) 38)) (-2711 (((-112) $) 17)) (-2197 (((-781) $) 13)) (-2206 (((-781) $) 14)) (-4049 (((-112) $) 30)) (-2649 (((-112) $) 40))) +(((-1068 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2206 ((-781) |#1|)) (-15 -2197 ((-781) |#1|)) (-15 -2649 ((-112) |#1|)) (-15 -3399 ((-112) |#1|)) (-15 -4049 ((-112) |#1|)) (-15 -2711 ((-112) |#1|))) (-1069 |#2| |#3| |#4| |#5| |#6|) (-781) (-781) (-1065) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1068)) +NIL +(-10 -8 (-15 -2206 ((-781) |#1|)) (-15 -2197 ((-781) |#1|)) (-15 -2649 ((-112) |#1|)) (-15 -3399 ((-112) |#1|)) (-15 -4049 ((-112) |#1|)) (-15 -2711 ((-112) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-3399 (((-112) $) 56)) (-2600 (((-3 $ "failed") $ $) 20)) (-2711 (((-112) $) 58)) (-3146 (((-112) $ (-781)) 66)) (-3250 (($) 18 T CONST)) (-1430 (($ $) 39 (|has| |#3| (-315)))) (-1959 ((|#4| $ (-574)) 44)) (-3558 (((-781) $) 38 (|has| |#3| (-566)))) (-2400 ((|#3| $ (-574) (-574)) 46)) (-1871 (((-654 |#3|) $) 73 (|has| $ (-6 -4459)))) (-2893 (((-781) $) 37 (|has| |#3| (-566)))) (-1381 (((-654 |#5|) $) 36 (|has| |#3| (-566)))) (-2197 (((-781) $) 50)) (-2206 (((-781) $) 49)) (-2189 (((-112) $ (-781)) 65)) (-2219 (((-574) $) 54)) (-2126 (((-574) $) 52)) (-2036 (((-654 |#3|) $) 74 (|has| $ (-6 -4459)))) (-4134 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1116)) (|has| $ (-6 -4459))))) (-3352 (((-574) $) 53)) (-1695 (((-574) $) 51)) (-2924 (($ (-654 (-654 |#3|))) 59)) (-2462 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2014 (((-654 (-654 |#3|)) $) 48)) (-1653 (((-112) $ (-781)) 64)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-566)))) (-3449 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#3|) (-654 |#3|)) 80 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-302 |#3|)) 78 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-654 (-302 |#3|))) 77 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))) (-2526 (((-112) $ $) 60)) (-2754 (((-112) $) 63)) (-3336 (($) 62)) (-2207 ((|#3| $ (-574) (-574)) 47) ((|#3| $ (-574) (-574) |#3|) 45)) (-4049 (((-112) $) 57)) (-3949 (((-781) |#3| $) 75 (-12 (|has| |#3| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4459)))) (-3157 (($ $) 61)) (-1425 ((|#5| $ (-574)) 43)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2020 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4459)))) (-2649 (((-112) $) 55)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#3|) 40 (|has| |#3| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2877 (((-781) $) 67 (|has| $ (-6 -4459))))) +(((-1069 |#1| |#2| |#3| |#4| |#5|) (-141) (-781) (-781) (-1065) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1069)) +((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1065)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2711 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5))))) (-2207 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1065)))) (-2400 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1065)))) (-2207 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7)) (-4 *2 (-1065)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-1959 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *6 *2 *7)) (-4 *6 (-1065)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-1425 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *6 *7 *2)) (-4 *6 (-1065)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2853 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *2 (-1065)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-566)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *2 (-1065)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-372)))) (-1430 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-654 *7))))) +(-13 (-111 |t#3| |t#3|) (-499 |t#3|) (-10 -8 (-6 -4459) (IF (|has| |t#3| (-174)) (-6 (-727 |t#3|)) |%noBranch|) (-15 -2924 ($ (-654 (-654 |t#3|)))) (-15 -2711 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -3399 ((-112) $)) (-15 -2649 ((-112) $)) (-15 -2219 ((-574) $)) (-15 -3352 ((-574) $)) (-15 -2126 ((-574) $)) (-15 -1695 ((-574) $)) (-15 -2197 ((-781) $)) (-15 -2206 ((-781) $)) (-15 -2014 ((-654 (-654 |t#3|)) $)) (-15 -2207 (|t#3| $ (-574) (-574))) (-15 -2400 (|t#3| $ (-574) (-574))) (-15 -2207 (|t#3| $ (-574) (-574) |t#3|)) (-15 -1959 (|t#4| $ (-574))) (-15 -1425 (|t#5| $ (-574))) (-15 -1785 ($ (-1 |t#3| |t#3|) $)) (-15 -1785 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-566)) (-15 -2853 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-372)) (-15 -3103 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-315)) (-15 -1430 ($ $)) |%noBranch|) (IF (|has| |t#3| (-566)) (PROGN (-15 -3558 ((-781) $)) (-15 -2893 ((-781) $)) (-15 -1381 ((-654 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-623 (-872)) . T) ((-317 |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))) ((-499 |#3|) . T) ((-524 |#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))) ((-656 (-574)) . T) ((-656 |#3|) . T) ((-658 |#3|) . T) ((-650 |#3|) |has| |#3| (-174)) ((-727 |#3|) |has| |#3| (-174)) ((-1067 |#3|) . T) ((-1072 |#3|) . T) ((-1116) . T) ((-1234) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-3399 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2711 (((-112) $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-3250 (($) NIL T CONST)) (-1430 (($ $) 47 (|has| |#3| (-315)))) (-1959 (((-246 |#2| |#3|) $ (-574)) 36)) (-3345 (($ (-699 |#3|)) 45)) (-3558 (((-781) $) 49 (|has| |#3| (-566)))) (-2400 ((|#3| $ (-574) (-574)) NIL)) (-1871 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-2893 (((-781) $) 51 (|has| |#3| (-566)))) (-1381 (((-654 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-566)))) (-2197 (((-781) $) NIL)) (-2206 (((-781) $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-2219 (((-574) $) NIL)) (-2126 (((-574) $) NIL)) (-2036 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-3352 (((-574) $) NIL)) (-1695 (((-574) $) NIL)) (-2924 (($ (-654 (-654 |#3|))) 31)) (-2462 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2014 (((-654 (-654 |#3|)) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-566)))) (-3449 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#3| $ (-574) (-574)) NIL) ((|#3| $ (-574) (-574) |#3|) NIL)) (-2995 (((-135)) 59 (|has| |#3| (-372)))) (-4049 (((-112) $) NIL)) (-3949 (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116)))) (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) 65 (|has| |#3| (-624 (-546))))) (-1425 (((-246 |#1| |#3|) $ (-574)) 40)) (-2951 (((-872) $) 19) (((-699 |#3|) $) 42)) (-4069 (((-112) $ $) NIL)) (-2020 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2649 (((-112) $) NIL)) (-2141 (($) 16 T CONST)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1070 |#1| |#2| |#3|) (-13 (-1069 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1291 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -3345 ($ (-699 |#3|))))) (-781) (-781) (-1065)) (T -1070)) +((-3345 (*1 *1 *2) (-12 (-5 *2 (-699 *5)) (-4 *5 (-1065)) (-5 *1 (-1070 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781))))) +(-13 (-1069 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1291 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -3345 ($ (-699 |#3|))))) +((-2882 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1785 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1071 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1785 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2882 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-781) (-781) (-1065) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1069 |#1| |#2| |#3| |#4| |#5|) (-1065) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1069 |#1| |#2| |#7| |#8| |#9|)) (T -1071)) +((-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1065)) (-4 *2 (-1065)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1071 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1069 *5 *6 *7 *8 *9)) (-4 *12 (-1069 *5 *6 *2 *10 *11)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1065)) (-4 *10 (-1065)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1069 *5 *6 *10 *11 *12)) (-5 *1 (-1071 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1069 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10))))) +(-10 -7 (-15 -1785 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2882 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ |#1|) 27))) +(((-1072 |#1|) (-141) (-1074)) (T -1072)) +NIL +(-13 (-21) (-1067 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1067 |#1|) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1498 (((-1193) $) 11)) (-3225 ((|#1| $) 12)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2707 (($ (-1193) |#1|) 10)) (-2951 (((-872) $) 22 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2986 (((-112) $ $) 17 (|has| |#1| (-1116))))) +(((-1073 |#1| |#2|) (-13 (-1234) (-10 -8 (-15 -2707 ($ (-1193) |#1|)) (-15 -1498 ((-1193) $)) (-15 -3225 (|#1| $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|))) (-1109 |#2|) (-1234)) (T -1073)) +((-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-4 *4 (-1234)) (-5 *1 (-1073 *3 *4)) (-4 *3 (-1109 *4)))) (-1498 (*1 *2 *1) (-12 (-4 *4 (-1234)) (-5 *2 (-1193)) (-5 *1 (-1073 *3 *4)) (-4 *3 (-1109 *4)))) (-3225 (*1 *2 *1) (-12 (-4 *2 (-1109 *3)) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1234))))) +(-13 (-1234) (-10 -8 (-15 -2707 ($ (-1193) |#1|)) (-15 -1498 ((-1193) $)) (-15 -3225 (|#1| $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-1074) (-141)) (T -1074)) +NIL +(-13 (-21) (-1128)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1128) . T) ((-1116) . T)) +((-3332 (($ $) 17)) (-3361 (($ $) 25)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 55)) (-1681 (($ $) 27)) (-2162 (($ $) 12)) (-2260 (($ $) 43)) (-1844 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) 36)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 31) (($ (-574)) NIL) (($ (-417 (-574))) 31)) (-2898 (((-781)) 9)) (-2544 (($ $) 45))) +(((-1075 |#1|) (-10 -8 (-15 -3361 (|#1| |#1|)) (-15 -3332 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -2260 (|#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -4078 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| |#1|)) (-15 -2898 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-1076)) (T -1075)) +((-2898 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1075 *3)) (-4 *3 (-1076))))) +(-10 -8 (-15 -3361 (|#1| |#1|)) (-15 -3332 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -2260 (|#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -4078 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| |#1|)) (-15 -2898 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4146 (((-574) $) 97)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-3332 (($ $) 95)) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 81)) (-1610 (((-428 $) $) 80)) (-4212 (($ $) 105)) (-3245 (((-112) $ $) 65)) (-2472 (((-574) $) 122)) (-3250 (($) 18 T CONST)) (-3361 (($ $) 94)) (-1704 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2214 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2800 (($ $ $) 61)) (-4322 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3978 (((-112) $) 79)) (-3408 (((-112) $) 120)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-4226 (((-112) $) 35)) (-3527 (($ $ (-574)) 104)) (-1681 (($ $) 100)) (-3182 (((-112) $) 121)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3634 (($ $ $) 119)) (-4380 (($ $ $) 118)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-2162 (($ $) 96)) (-2260 (($ $) 98)) (-4202 (((-428 $) $) 82)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2098 (((-781) $) 64)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-1844 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-2898 (((-781)) 32 T CONST)) (-2544 (($ $) 99)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-3936 (($ $) 123)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 116)) (-3020 (((-112) $ $) 115)) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 117)) (-3009 (((-112) $ $) 114)) (-3103 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +(((-1076) (-141)) (T -1076)) +((-3936 (*1 *1 *1) (-4 *1 (-1076))) (-1681 (*1 *1 *1) (-4 *1 (-1076))) (-2544 (*1 *1 *1) (-4 *1 (-1076))) (-2260 (*1 *1 *1) (-4 *1 (-1076))) (-4146 (*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-574)))) (-2162 (*1 *1 *1) (-4 *1 (-1076))) (-3332 (*1 *1 *1) (-4 *1 (-1076))) (-3361 (*1 *1 *1) (-4 *1 (-1076)))) +(-13 (-372) (-858) (-1038) (-1054 (-574)) (-1054 (-417 (-574))) (-1018) (-624 (-903 (-388))) (-897 (-388)) (-148) (-10 -8 (-15 -1681 ($ $)) (-15 -2544 ($ $)) (-15 -2260 ($ $)) (-15 -4146 ((-574) $)) (-15 -2162 ($ $)) (-15 -3332 ($ $)) (-15 -3361 ($ $)) (-15 -3936 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-934) . T) ((-1018) . T) ((-1038) . T) ((-1054 (-417 (-574))) . T) ((-1054 (-574)) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) |#2| $) 26)) (-1496 ((|#1| $) 10)) (-2472 (((-574) |#2| $) 116)) (-3814 (((-3 $ "failed") |#2| (-935)) 75)) (-3878 ((|#1| $) 31)) (-1638 ((|#1| |#2| $ |#1|) 40)) (-2789 (($ $) 28)) (-4322 (((-3 |#2| "failed") |#2| $) 111)) (-3408 (((-112) |#2| $) NIL)) (-3182 (((-112) |#2| $) NIL)) (-1418 (((-112) |#2| $) 27)) (-4344 ((|#1| $) 117)) (-3865 ((|#1| $) 30)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4379 ((|#2| $) 102)) (-2951 (((-872) $) 92)) (-4069 (((-112) $ $) NIL)) (-3525 ((|#1| |#2| $ |#1|) 41)) (-3510 (((-654 $) |#2|) 77)) (-2986 (((-112) $ $) 97))) +(((-1077 |#1| |#2|) (-13 (-1084 |#1| |#2|) (-10 -8 (-15 -3865 (|#1| $)) (-15 -3878 (|#1| $)) (-15 -1496 (|#1| $)) (-15 -4344 (|#1| $)) (-15 -2789 ($ $)) (-15 -1418 ((-112) |#2| $)) (-15 -1638 (|#1| |#2| $ |#1|)))) (-13 (-858) (-372)) (-1260 |#1|)) (T -1077)) +((-1638 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-3865 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-3878 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-1496 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-4344 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-2789 (*1 *1 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-1418 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1077 *4 *3)) (-4 *3 (-1260 *4))))) +(-13 (-1084 |#1| |#2|) (-10 -8 (-15 -3865 (|#1| $)) (-15 -3878 (|#1| $)) (-15 -1496 (|#1| $)) (-15 -4344 (|#1| $)) (-15 -2789 ($ $)) (-15 -1418 ((-112) |#2| $)) (-15 -1638 (|#1| |#2| $ |#1|)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-4227 (($ $ $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-4382 (($ $ $ $) NIL)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-2472 (((-574) $) NIL)) (-3933 (($ $ $) NIL)) (-3250 (($) NIL T CONST)) (-3779 (($ (-1193)) 10) (($ (-574)) 7)) (-1704 (((-3 (-574) "failed") $) NIL)) (-2214 (((-574) $) NIL)) (-2800 (($ $ $) NIL)) (-1831 (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3577 (((-3 (-417 (-574)) "failed") $) NIL)) (-3839 (((-112) $) NIL)) (-2842 (((-417 (-574)) $) NIL)) (-2835 (($) NIL) (($ $) NIL)) (-2813 (($ $ $) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-1894 (($ $ $ $) NIL)) (-3389 (($ $ $) NIL)) (-3408 (((-112) $) NIL)) (-4159 (($ $ $) NIL)) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-4226 (((-112) $) NIL)) (-1823 (((-112) $) NIL)) (-2414 (((-3 $ "failed") $) NIL)) (-3182 (((-112) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3398 (($ $ $ $) NIL)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-3785 (($ $) NIL)) (-4109 (($ $) NIL)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-3106 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-1613 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4412 (($ $) NIL)) (-4202 (((-428 $) $) NIL)) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2120 (((-112) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-2311 (($ $) NIL)) (-3157 (($ $) NIL)) (-1844 (((-574) $) 16) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL) (($ (-1193)) 9)) (-2951 (((-872) $) 23) (($ (-574)) 6) (($ $) NIL) (($ (-574)) 6)) (-2898 (((-781)) NIL T CONST)) (-2325 (((-112) $ $) NIL)) (-3900 (($ $ $) NIL)) (-4069 (((-112) $ $) NIL)) (-2644 (($) NIL)) (-2836 (((-112) $ $) NIL)) (-2776 (($ $ $ $) NIL)) (-3936 (($ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $) NIL) (($ $ (-781)) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3090 (($ $) 22) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-574) $) NIL))) +(((-1078) (-13 (-555) (-628 (-1193)) (-10 -8 (-6 -4446) (-6 -4451) (-6 -4447) (-15 -3779 ($ (-1193))) (-15 -3779 ($ (-574)))))) (T -1078)) +((-3779 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1078)))) (-3779 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1078))))) +(-13 (-555) (-628 (-1193)) (-10 -8 (-6 -4446) (-6 -4451) (-6 -4447) (-15 -3779 ($ (-1193))) (-15 -3779 ($ (-574))))) +((-2864 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-2985 (((-1289) $ (-1193) (-1193)) NIL (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3471 (($) 9)) (-3135 (((-52) $ (-1193) (-52)) NIL)) (-1674 (($ $) 32)) (-1970 (($ $) 30)) (-2185 (($ $) 29)) (-3094 (($ $) 31)) (-2274 (($ $) 35)) (-2347 (($ $) 36)) (-2611 (($ $) 28)) (-1672 (($ $) 33)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) 27 (|has| $ (-6 -4459)))) (-2171 (((-3 (-52) "failed") (-1193) $) 43)) (-3250 (($) NIL T CONST)) (-4041 (($) 7)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2424 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) 53 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-3 (-52) "failed") (-1193) $) NIL)) (-3311 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2195 (((-3 (-1175) "failed") $ (-1175) (-574)) 72)) (-2473 (((-52) $ (-1193) (-52)) NIL (|has| $ (-6 -4460)))) (-2400 (((-52) $ (-1193)) NIL)) (-1871 (((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-1193) $) NIL (|has| (-1193) (-860)))) (-2036 (((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) 38 (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-1698 (((-1193) $) NIL (|has| (-1193) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-1771 (((-654 (-1193)) $) NIL)) (-2229 (((-112) (-1193) $) NIL)) (-2375 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL)) (-3285 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) 46)) (-1393 (((-654 (-1193)) $) NIL)) (-1506 (((-112) (-1193) $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2044 (((-388) $ (-1193)) 52)) (-4306 (((-654 (-1175)) $ (-1175)) 74)) (-2925 (((-52) $) NIL (|has| (-1193) (-860)))) (-2183 (((-3 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) "failed") (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL)) (-1822 (($ $ (-52)) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-302 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-2315 (((-654 (-52)) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 (((-52) $ (-1193)) NIL) (((-52) $ (-1193) (-52)) NIL)) (-3162 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-2579 (($ $ (-1193)) 54)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) 40)) (-4132 (($ $ $) 41)) (-2951 (((-872) $) NIL (-2833 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-623 (-872)))))) (-1765 (($ $ (-1193) (-388)) 50)) (-2037 (($ $ (-1193) (-388)) 51)) (-4069 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1079) (-13 (-1210 (-1193) (-52)) (-10 -8 (-15 -4132 ($ $ $)) (-15 -4041 ($)) (-15 -2611 ($ $)) (-15 -2185 ($ $)) (-15 -1970 ($ $)) (-15 -3094 ($ $)) (-15 -1672 ($ $)) (-15 -1674 ($ $)) (-15 -2274 ($ $)) (-15 -2347 ($ $)) (-15 -1765 ($ $ (-1193) (-388))) (-15 -2037 ($ $ (-1193) (-388))) (-15 -2044 ((-388) $ (-1193))) (-15 -4306 ((-654 (-1175)) $ (-1175))) (-15 -2579 ($ $ (-1193))) (-15 -3471 ($)) (-15 -2195 ((-3 (-1175) "failed") $ (-1175) (-574))) (-6 -4459)))) (T -1079)) +((-4132 (*1 *1 *1 *1) (-5 *1 (-1079))) (-4041 (*1 *1) (-5 *1 (-1079))) (-2611 (*1 *1 *1) (-5 *1 (-1079))) (-2185 (*1 *1 *1) (-5 *1 (-1079))) (-1970 (*1 *1 *1) (-5 *1 (-1079))) (-3094 (*1 *1 *1) (-5 *1 (-1079))) (-1672 (*1 *1 *1) (-5 *1 (-1079))) (-1674 (*1 *1 *1) (-5 *1 (-1079))) (-2274 (*1 *1 *1) (-5 *1 (-1079))) (-2347 (*1 *1 *1) (-5 *1 (-1079))) (-1765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-388)) (-5 *1 (-1079)))) (-2037 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-388)) (-5 *1 (-1079)))) (-2044 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-388)) (-5 *1 (-1079)))) (-4306 (*1 *2 *1 *3) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1079)) (-5 *3 (-1175)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1079)))) (-3471 (*1 *1) (-5 *1 (-1079))) (-2195 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-1079))))) +(-13 (-1210 (-1193) (-52)) (-10 -8 (-15 -4132 ($ $ $)) (-15 -4041 ($)) (-15 -2611 ($ $)) (-15 -2185 ($ $)) (-15 -1970 ($ $)) (-15 -3094 ($ $)) (-15 -1672 ($ $)) (-15 -1674 ($ $)) (-15 -2274 ($ $)) (-15 -2347 ($ $)) (-15 -1765 ($ $ (-1193) (-388))) (-15 -2037 ($ $ (-1193) (-388))) (-15 -2044 ((-388) $ (-1193))) (-15 -4306 ((-654 (-1175)) $ (-1175))) (-15 -2579 ($ $ (-1193))) (-15 -3471 ($)) (-15 -2195 ((-3 (-1175) "failed") $ (-1175) (-574))) (-6 -4459))) +((-1978 (($ $) 46)) (-1382 (((-112) $ $) 82)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-966 (-417 (-574)))) 251) (((-3 $ "failed") (-966 (-574))) 250) (((-3 $ "failed") (-966 |#2|)) 253)) (-2214 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) NIL) (($ (-966 (-417 (-574)))) 239) (($ (-966 (-574))) 235) (($ (-966 |#2|)) 255)) (-1402 (($ $) NIL) (($ $ |#4|) 44)) (-1857 (((-112) $ $) 131) (((-112) $ (-654 $)) 135)) (-2494 (((-112) $) 60)) (-2861 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 125)) (-4352 (($ $) 160)) (-1741 (($ $) 156)) (-1979 (($ $) 155)) (-2038 (($ $ $) 87) (($ $ $ |#4|) 92)) (-2362 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3145 (((-112) $ $) 143) (((-112) $ (-654 $)) 144)) (-4241 ((|#4| $) 32)) (-3249 (($ $ $) 128)) (-1759 (((-112) $) 59)) (-3476 (((-781) $) 35)) (-1903 (($ $) 174)) (-3845 (($ $) 171)) (-4317 (((-654 $) $) 72)) (-4439 (($ $) 62)) (-2518 (($ $) 167)) (-2006 (((-654 $) $) 69)) (-2132 (($ $) 64)) (-1378 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1758 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2226 (-781))) $ $) 130)) (-3368 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3901 $) (|:| -1880 $)) $ $) 126) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3901 $) (|:| -1880 $)) $ $ |#4|) 127)) (-1442 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -1880 $)) $ $) 121) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -1880 $)) $ $ |#4|) 123)) (-4409 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2746 (($ $ $) 98) (($ $ $ |#4|) 107)) (-1883 (((-654 $) $) 54)) (-3749 (((-112) $ $) 140) (((-112) $ (-654 $)) 141)) (-2254 (($ $ $) 116)) (-3791 (($ $) 37)) (-3877 (((-112) $ $) 80)) (-2712 (((-112) $ $) 136) (((-112) $ (-654 $)) 138)) (-3173 (($ $ $) 112)) (-2216 (($ $) 41)) (-2887 ((|#2| |#2| $) 164) (($ (-654 $)) NIL) (($ $ $) NIL)) (-1375 (($ $ |#2|) NIL) (($ $ $) 153)) (-2747 (($ $ |#2|) 148) (($ $ $) 151)) (-4384 (($ $) 49)) (-2184 (($ $) 55)) (-1844 (((-903 (-388)) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (($ (-966 (-417 (-574)))) 241) (($ (-966 (-574))) 237) (($ (-966 |#2|)) 252) (((-1175) $) 279) (((-966 |#2|) $) 184)) (-2951 (((-872) $) 29) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-966 |#2|) $) 185) (($ (-417 (-574))) NIL) (($ $) NIL)) (-1724 (((-3 (-112) "failed") $ $) 79))) +(((-1080 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 ((-966 |#2|) |#1|)) (-15 -1844 ((-966 |#2|) |#1|)) (-15 -1844 ((-1175) |#1|)) (-15 -1903 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -4352 (|#1| |#1|)) (-15 -2887 (|#2| |#2| |#1|)) (-15 -1375 (|#1| |#1| |#1|)) (-15 -2747 (|#1| |#1| |#1|)) (-15 -1375 (|#1| |#1| |#2|)) (-15 -2747 (|#1| |#1| |#2|)) (-15 -1741 (|#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1844 (|#1| (-966 |#2|))) (-15 -2214 (|#1| (-966 |#2|))) (-15 -1704 ((-3 |#1| "failed") (-966 |#2|))) (-15 -1844 (|#1| (-966 (-574)))) (-15 -2214 (|#1| (-966 (-574)))) (-15 -1704 ((-3 |#1| "failed") (-966 (-574)))) (-15 -1844 (|#1| (-966 (-417 (-574))))) (-15 -2214 (|#1| (-966 (-417 (-574))))) (-15 -1704 ((-3 |#1| "failed") (-966 (-417 (-574))))) (-15 -2254 (|#1| |#1| |#1|)) (-15 -3173 (|#1| |#1| |#1|)) (-15 -1758 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2226 (-781))) |#1| |#1|)) (-15 -3249 (|#1| |#1| |#1|)) (-15 -2861 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -3368 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1| |#4|)) (-15 -3368 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -1442 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -1880 |#1|)) |#1| |#1| |#4|)) (-15 -1442 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -2746 (|#1| |#1| |#1| |#4|)) (-15 -4409 (|#1| |#1| |#1| |#4|)) (-15 -2746 (|#1| |#1| |#1|)) (-15 -4409 (|#1| |#1| |#1|)) (-15 -2362 (|#1| |#1| |#1| |#4|)) (-15 -2038 (|#1| |#1| |#1| |#4|)) (-15 -2362 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1| |#1|)) (-15 -3145 ((-112) |#1| (-654 |#1|))) (-15 -3145 ((-112) |#1| |#1|)) (-15 -3749 ((-112) |#1| (-654 |#1|))) (-15 -3749 ((-112) |#1| |#1|)) (-15 -2712 ((-112) |#1| (-654 |#1|))) (-15 -2712 ((-112) |#1| |#1|)) (-15 -1857 ((-112) |#1| (-654 |#1|))) (-15 -1857 ((-112) |#1| |#1|)) (-15 -1382 ((-112) |#1| |#1|)) (-15 -3877 ((-112) |#1| |#1|)) (-15 -1724 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4317 ((-654 |#1|) |#1|)) (-15 -2006 ((-654 |#1|) |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -4439 (|#1| |#1|)) (-15 -2494 ((-112) |#1|)) (-15 -1759 ((-112) |#1|)) (-15 -1402 (|#1| |#1| |#4|)) (-15 -1378 (|#1| |#1| |#4|)) (-15 -2184 (|#1| |#1|)) (-15 -1883 ((-654 |#1|) |#1|)) (-15 -4384 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -2216 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3476 ((-781) |#1|)) (-15 -4241 (|#4| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -2951 (|#1| |#4|)) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2214 (|#4| |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -1402 (|#1| |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-1081 |#2| |#3| |#4|) (-1065) (-803) (-860)) (T -1080)) +NIL +(-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 ((-966 |#2|) |#1|)) (-15 -1844 ((-966 |#2|) |#1|)) (-15 -1844 ((-1175) |#1|)) (-15 -1903 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -4352 (|#1| |#1|)) (-15 -2887 (|#2| |#2| |#1|)) (-15 -1375 (|#1| |#1| |#1|)) (-15 -2747 (|#1| |#1| |#1|)) (-15 -1375 (|#1| |#1| |#2|)) (-15 -2747 (|#1| |#1| |#2|)) (-15 -1741 (|#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1844 (|#1| (-966 |#2|))) (-15 -2214 (|#1| (-966 |#2|))) (-15 -1704 ((-3 |#1| "failed") (-966 |#2|))) (-15 -1844 (|#1| (-966 (-574)))) (-15 -2214 (|#1| (-966 (-574)))) (-15 -1704 ((-3 |#1| "failed") (-966 (-574)))) (-15 -1844 (|#1| (-966 (-417 (-574))))) (-15 -2214 (|#1| (-966 (-417 (-574))))) (-15 -1704 ((-3 |#1| "failed") (-966 (-417 (-574))))) (-15 -2254 (|#1| |#1| |#1|)) (-15 -3173 (|#1| |#1| |#1|)) (-15 -1758 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2226 (-781))) |#1| |#1|)) (-15 -3249 (|#1| |#1| |#1|)) (-15 -2861 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -3368 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1| |#4|)) (-15 -3368 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -1442 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -1880 |#1|)) |#1| |#1| |#4|)) (-15 -1442 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -2746 (|#1| |#1| |#1| |#4|)) (-15 -4409 (|#1| |#1| |#1| |#4|)) (-15 -2746 (|#1| |#1| |#1|)) (-15 -4409 (|#1| |#1| |#1|)) (-15 -2362 (|#1| |#1| |#1| |#4|)) (-15 -2038 (|#1| |#1| |#1| |#4|)) (-15 -2362 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1| |#1|)) (-15 -3145 ((-112) |#1| (-654 |#1|))) (-15 -3145 ((-112) |#1| |#1|)) (-15 -3749 ((-112) |#1| (-654 |#1|))) (-15 -3749 ((-112) |#1| |#1|)) (-15 -2712 ((-112) |#1| (-654 |#1|))) (-15 -2712 ((-112) |#1| |#1|)) (-15 -1857 ((-112) |#1| (-654 |#1|))) (-15 -1857 ((-112) |#1| |#1|)) (-15 -1382 ((-112) |#1| |#1|)) (-15 -3877 ((-112) |#1| |#1|)) (-15 -1724 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4317 ((-654 |#1|) |#1|)) (-15 -2006 ((-654 |#1|) |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -4439 (|#1| |#1|)) (-15 -2494 ((-112) |#1|)) (-15 -1759 ((-112) |#1|)) (-15 -1402 (|#1| |#1| |#4|)) (-15 -1378 (|#1| |#1| |#4|)) (-15 -2184 (|#1| |#1|)) (-15 -1883 ((-654 |#1|) |#1|)) (-15 -4384 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -2216 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3476 ((-781) |#1|)) (-15 -4241 (|#4| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -2951 (|#1| |#4|)) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2214 (|#4| |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -1402 (|#1| |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4350 (((-654 |#3|) $) 113)) (-4173 (((-1189 $) $ |#3|) 128) (((-1189 |#1|) $) 127)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 90 (|has| |#1| (-566)))) (-2884 (($ $) 91 (|has| |#1| (-566)))) (-1981 (((-112) $) 93 (|has| |#1| (-566)))) (-2824 (((-781) $) 115) (((-781) $ (-654 |#3|)) 114)) (-1978 (($ $) 276)) (-1382 (((-112) $ $) 262)) (-2600 (((-3 $ "failed") $ $) 20)) (-3022 (($ $ $) 221 (|has| |#1| (-566)))) (-3130 (((-654 $) $ $) 216 (|has| |#1| (-566)))) (-2488 (((-428 (-1189 $)) (-1189 $)) 103 (|has| |#1| (-923)))) (-2991 (($ $) 101 (|has| |#1| (-462)))) (-1610 (((-428 $) $) 100 (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 106 (|has| |#1| (-923)))) (-3250 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 169) (((-3 (-417 (-574)) "failed") $) 166 (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) 164 (|has| |#1| (-1054 (-574)))) (((-3 |#3| "failed") $) 141) (((-3 $ "failed") (-966 (-417 (-574)))) 236 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193))))) (((-3 $ "failed") (-966 (-574))) 233 (-2833 (-12 (-2084 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1193)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193)))))) (((-3 $ "failed") (-966 |#1|)) 230 (-2833 (-12 (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1193)))) (-12 (-2084 (|has| |#1| (-555))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1193)))) (-12 (-2084 (|has| |#1| (-1008 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193))))))) (-2214 ((|#1| $) 168) (((-417 (-574)) $) 167 (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) 165 (|has| |#1| (-1054 (-574)))) ((|#3| $) 142) (($ (-966 (-417 (-574)))) 235 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193))))) (($ (-966 (-574))) 232 (-2833 (-12 (-2084 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1193)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193)))))) (($ (-966 |#1|)) 229 (-2833 (-12 (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1193)))) (-12 (-2084 (|has| |#1| (-555))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1193)))) (-12 (-2084 (|has| |#1| (-1008 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193))))))) (-3319 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 217 (|has| |#1| (-566)))) (-1402 (($ $) 159) (($ $ |#3|) 271)) (-1831 (((-699 (-574)) (-1284 $)) 139 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 138 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 136) (((-699 |#1|) (-699 $)) 135) (((-699 |#1|) (-1284 $)) 134)) (-1857 (((-112) $ $) 261) (((-112) $ (-654 $)) 260)) (-4322 (((-3 $ "failed") $) 37)) (-2494 (((-112) $) 269)) (-2861 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 241)) (-4352 (($ $) 210 (|has| |#1| (-462)))) (-3621 (($ $) 181 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1389 (((-654 $) $) 112)) (-3978 (((-112) $) 99 (|has| |#1| (-923)))) (-1741 (($ $) 226 (|has| |#1| (-566)))) (-1979 (($ $) 227 (|has| |#1| (-566)))) (-2038 (($ $ $) 253) (($ $ $ |#3|) 251)) (-2362 (($ $ $) 252) (($ $ $ |#3|) 250)) (-1849 (($ $ |#1| |#2| $) 177)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 87 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 86 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-4226 (((-112) $) 35)) (-3023 (((-781) $) 174)) (-3145 (((-112) $ $) 255) (((-112) $ (-654 $)) 254)) (-3293 (($ $ $ $ $) 212 (|has| |#1| (-566)))) (-4241 ((|#3| $) 280)) (-4339 (($ (-1189 |#1|) |#3|) 120) (($ (-1189 $) |#3|) 119)) (-1963 (((-654 $) $) 129)) (-1555 (((-112) $) 157)) (-4328 (($ |#1| |#2|) 158) (($ $ |#3| (-781)) 122) (($ $ (-654 |#3|) (-654 (-781))) 121)) (-3249 (($ $ $) 240)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ |#3|) 123)) (-1759 (((-112) $) 270)) (-3192 ((|#2| $) 175) (((-781) $ |#3|) 125) (((-654 (-781)) $ (-654 |#3|)) 124)) (-3476 (((-781) $) 279)) (-4303 (($ (-1 |#2| |#2|) $) 176)) (-1785 (($ (-1 |#1| |#1|) $) 156)) (-2284 (((-3 |#3| "failed") $) 126)) (-1903 (($ $) 207 (|has| |#1| (-462)))) (-3845 (($ $) 208 (|has| |#1| (-462)))) (-4317 (((-654 $) $) 265)) (-4439 (($ $) 268)) (-2518 (($ $) 209 (|has| |#1| (-462)))) (-2006 (((-654 $) $) 266)) (-2132 (($ $) 267)) (-1366 (($ $) 154)) (-1378 ((|#1| $) 153) (($ $ |#3|) 272)) (-2849 (($ (-654 $)) 97 (|has| |#1| (-462))) (($ $ $) 96 (|has| |#1| (-462)))) (-1758 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2226 (-781))) $ $) 239)) (-3368 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3901 $) (|:| -1880 $)) $ $) 243) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3901 $) (|:| -1880 $)) $ $ |#3|) 242)) (-1442 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -1880 $)) $ $) 245) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -1880 $)) $ $ |#3|) 244)) (-4409 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2746 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1489 (((-1175) $) 10)) (-2623 (($ $ $) 215 (|has| |#1| (-566)))) (-1883 (((-654 $) $) 274)) (-1720 (((-3 (-654 $) "failed") $) 117)) (-3825 (((-3 (-654 $) "failed") $) 118)) (-2778 (((-3 (-2 (|:| |var| |#3|) (|:| -3139 (-781))) "failed") $) 116)) (-3749 (((-112) $ $) 257) (((-112) $ (-654 $)) 256)) (-2254 (($ $ $) 237)) (-3791 (($ $) 278)) (-3877 (((-112) $ $) 263)) (-2712 (((-112) $ $) 259) (((-112) $ (-654 $)) 258)) (-3173 (($ $ $) 238)) (-2216 (($ $) 277)) (-3940 (((-1136) $) 11)) (-2704 (((-2 (|:| -2887 $) (|:| |coef2| $)) $ $) 218 (|has| |#1| (-566)))) (-1417 (((-2 (|:| -2887 $) (|:| |coef1| $)) $ $) 219 (|has| |#1| (-566)))) (-1343 (((-112) $) 171)) (-1355 ((|#1| $) 172)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 98 (|has| |#1| (-462)))) (-2887 ((|#1| |#1| $) 211 (|has| |#1| (-462))) (($ (-654 $)) 95 (|has| |#1| (-462))) (($ $ $) 94 (|has| |#1| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) 105 (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) 104 (|has| |#1| (-923)))) (-4202 (((-428 $) $) 102 (|has| |#1| (-923)))) (-1902 (((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-566)))) (-2853 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-566)))) (-1375 (($ $ |#1|) 224 (|has| |#1| (-566))) (($ $ $) 222 (|has| |#1| (-566)))) (-2747 (($ $ |#1|) 225 (|has| |#1| (-566))) (($ $ $) 223 (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) 150) (($ $ (-302 $)) 149) (($ $ $ $) 148) (($ $ (-654 $) (-654 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-654 |#3|) (-654 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-654 |#3|) (-654 $)) 143)) (-2394 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#3|) (-654 (-781))) 44) (($ $ |#3| (-781)) 43) (($ $ (-654 |#3|)) 42) (($ $ |#3|) 40)) (-3580 ((|#2| $) 155) (((-781) $ |#3|) 133) (((-654 (-781)) $ (-654 |#3|)) 132)) (-4384 (($ $) 275)) (-2184 (($ $) 273)) (-1844 (((-903 (-388)) $) 85 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 84 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 83 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546))))) (($ (-966 (-417 (-574)))) 234 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193))))) (($ (-966 (-574))) 231 (-2833 (-12 (-2084 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1193)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193)))))) (($ (-966 |#1|)) 228 (|has| |#3| (-624 (-1193)))) (((-1175) $) 206 (-12 (|has| |#1| (-1054 (-574))) (|has| |#3| (-624 (-1193))))) (((-966 |#1|) $) 205 (|has| |#3| (-624 (-1193))))) (-2372 ((|#1| $) 180 (|has| |#1| (-462))) (($ $ |#3|) 109 (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 107 (-2095 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 170) (($ |#3|) 140) (((-966 |#1|) $) 204 (|has| |#3| (-624 (-1193)))) (($ (-417 (-574))) 81 (-2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 88 (|has| |#1| (-566)))) (-1634 (((-654 |#1|) $) 173)) (-2706 ((|#1| $ |#2|) 160) (($ $ |#3| (-781)) 131) (($ $ (-654 |#3|) (-654 (-781))) 130)) (-3424 (((-3 $ "failed") $) 82 (-2833 (-2095 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) 32 T CONST)) (-3652 (($ $ $ (-781)) 178 (|has| |#1| (-174)))) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 92 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-1724 (((-3 (-112) "failed") $ $) 264)) (-2153 (($) 34 T CONST)) (-4120 (($ $ $ $ (-781)) 213 (|has| |#1| (-566)))) (-2547 (($ $ $ (-781)) 214 (|has| |#1| (-566)))) (-3584 (($ $ (-654 |#3|) (-654 (-781))) 47) (($ $ |#3| (-781)) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3|) 41)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 161 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 163 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 162 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 152) (($ $ |#1|) 151))) +(((-1081 |#1| |#2| |#3|) (-141) (-1065) (-803) (-860)) (T -1081)) +((-4241 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2216 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4384 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1883 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1081 *3 *4 *5)))) (-2184 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1378 (*1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1402 (*1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2494 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-4439 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2132 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2006 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1081 *3 *4 *5)))) (-4317 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1081 *3 *4 *5)))) (-1724 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3877 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1382 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1857 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1857 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-2712 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2712 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-3749 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3749 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-3145 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3145 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-2038 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2362 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2038 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2362 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-4409 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2746 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4409 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2746 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1442 (*1 *2 *1 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -1880 *1))) (-4 *1 (-1081 *3 *4 *5)))) (-1442 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -1880 *1))) (-4 *1 (-1081 *4 *5 *3)))) (-3368 (*1 *2 *1 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-1081 *3 *4 *5)))) (-3368 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-1081 *4 *5 *3)))) (-2861 (*1 *2 *1 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-1081 *3 *4 *5)))) (-3249 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1758 (*1 *2 *1 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2226 (-781)))) (-4 *1 (-1081 *3 *4 *5)))) (-3173 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2254 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1704 (*1 *1 *2) (|partial| -2833 (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2214 (*1 *1 *2) (-2833 (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1844 (*1 *1 *2) (-2833 (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1704 (*1 *1 *2) (|partial| -2833 (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-2084 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-555))) (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-1008 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2214 (*1 *1 *2) (-2833 (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-2084 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-555))) (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-1008 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *5 (-624 (-1193))) (-4 *4 (-803)) (-4 *5 (-860)))) (-1979 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1741 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2747 (*1 *1 *1 *2) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1375 (*1 *1 *1 *2) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2747 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1375 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3022 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1902 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2887 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1081 *3 *4 *5)))) (-1417 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2887 *1) (|:| |coef1| *1))) (-4 *1 (-1081 *3 *4 *5)))) (-2704 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2887 *1) (|:| |coef2| *1))) (-4 *1 (-1081 *3 *4 *5)))) (-3319 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3130 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1081 *3 *4 *5)))) (-2623 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2547 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-4120 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-3293 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2887 (*1 *2 *2 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-4352 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-2518 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3845 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-1903 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462))))) +(-13 (-963 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4241 (|t#3| $)) (-15 -3476 ((-781) $)) (-15 -3791 ($ $)) (-15 -2216 ($ $)) (-15 -1978 ($ $)) (-15 -4384 ($ $)) (-15 -1883 ((-654 $) $)) (-15 -2184 ($ $)) (-15 -1378 ($ $ |t#3|)) (-15 -1402 ($ $ |t#3|)) (-15 -1759 ((-112) $)) (-15 -2494 ((-112) $)) (-15 -4439 ($ $)) (-15 -2132 ($ $)) (-15 -2006 ((-654 $) $)) (-15 -4317 ((-654 $) $)) (-15 -1724 ((-3 (-112) "failed") $ $)) (-15 -3877 ((-112) $ $)) (-15 -1382 ((-112) $ $)) (-15 -1857 ((-112) $ $)) (-15 -1857 ((-112) $ (-654 $))) (-15 -2712 ((-112) $ $)) (-15 -2712 ((-112) $ (-654 $))) (-15 -3749 ((-112) $ $)) (-15 -3749 ((-112) $ (-654 $))) (-15 -3145 ((-112) $ $)) (-15 -3145 ((-112) $ (-654 $))) (-15 -2038 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -2038 ($ $ $ |t#3|)) (-15 -2362 ($ $ $ |t#3|)) (-15 -4409 ($ $ $)) (-15 -2746 ($ $ $)) (-15 -4409 ($ $ $ |t#3|)) (-15 -2746 ($ $ $ |t#3|)) (-15 -1442 ((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -1880 $)) $ $)) (-15 -1442 ((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -1880 $)) $ $ |t#3|)) (-15 -3368 ((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3901 $) (|:| -1880 $)) $ $)) (-15 -3368 ((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3901 $) (|:| -1880 $)) $ $ |t#3|)) (-15 -2861 ((-2 (|:| -3901 $) (|:| -1880 $)) $ $)) (-15 -3249 ($ $ $)) (-15 -1758 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2226 (-781))) $ $)) (-15 -3173 ($ $ $)) (-15 -2254 ($ $ $)) (IF (|has| |t#3| (-624 (-1193))) (PROGN (-6 (-623 (-966 |t#1|))) (-6 (-624 (-966 |t#1|))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -1704 ((-3 $ "failed") (-966 (-417 (-574))))) (-15 -2214 ($ (-966 (-417 (-574))))) (-15 -1844 ($ (-966 (-417 (-574))))) (-15 -1704 ((-3 $ "failed") (-966 (-574)))) (-15 -2214 ($ (-966 (-574)))) (-15 -1844 ($ (-966 (-574)))) (IF (|has| |t#1| (-1008 (-574))) |%noBranch| (PROGN (-15 -1704 ((-3 $ "failed") (-966 |t#1|))) (-15 -2214 ($ (-966 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1704 ((-3 $ "failed") (-966 (-574)))) (-15 -2214 ($ (-966 (-574)))) (-15 -1844 ($ (-966 (-574)))) (IF (|has| |t#1| (-555)) |%noBranch| (PROGN (-15 -1704 ((-3 $ "failed") (-966 |t#1|))) (-15 -2214 ($ (-966 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) |%noBranch| (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1704 ((-3 $ "failed") (-966 |t#1|))) (-15 -2214 ($ (-966 |t#1|)))))) (-15 -1844 ($ (-966 |t#1|))) (IF (|has| |t#1| (-1054 (-574))) (-6 (-624 (-1175))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -1979 ($ $)) (-15 -1741 ($ $)) (-15 -2747 ($ $ |t#1|)) (-15 -1375 ($ $ |t#1|)) (-15 -2747 ($ $ $)) (-15 -1375 ($ $ $)) (-15 -3022 ($ $ $)) (-15 -1902 ((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1417 ((-2 (|:| -2887 $) (|:| |coef1| $)) $ $)) (-15 -2704 ((-2 (|:| -2887 $) (|:| |coef2| $)) $ $)) (-15 -3319 ($ $ $)) (-15 -3130 ((-654 $) $ $)) (-15 -2623 ($ $ $)) (-15 -2547 ($ $ $ (-781))) (-15 -4120 ($ $ $ $ (-781))) (-15 -3293 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -2887 (|t#1| |t#1| $)) (-15 -4352 ($ $)) (-15 -2518 ($ $)) (-15 -3845 ($ $)) (-15 -1903 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-623 (-966 |#1|)) |has| |#3| (-624 (-1193))) ((-174) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-624 (-966 |#1|)) |has| |#3| (-624 (-1193))) ((-624 (-1175)) -12 (|has| |#1| (-1054 (-574))) (|has| |#3| (-624 (-1193)))) ((-298) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-923)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-907 $ |#3|) . T) ((-912 |#3|) . T) ((-914 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-963 |#1| |#2| |#3|) . T) ((-923) |has| |#1| (-923)) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1054 |#3|) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T) ((-1238) |has| |#1| (-923))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-1508 (((-654 (-1151)) $) 18)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 27) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2050 (((-1151) $) 20)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1082) (-13 (-1099) (-10 -8 (-15 -1508 ((-654 (-1151)) $)) (-15 -2050 ((-1151) $))))) (T -1082)) +((-1508 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1082)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1082))))) +(-13 (-1099) (-10 -8 (-15 -1508 ((-654 (-1151)) $)) (-15 -2050 ((-1151) $)))) +((-1431 (((-112) |#3| $) 15)) (-3814 (((-3 $ "failed") |#3| (-935)) 29)) (-4322 (((-3 |#3| "failed") |#3| $) 45)) (-3408 (((-112) |#3| $) 19)) (-3182 (((-112) |#3| $) 17))) +(((-1083 |#1| |#2| |#3|) (-10 -8 (-15 -3814 ((-3 |#1| "failed") |#3| (-935))) (-15 -4322 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3408 ((-112) |#3| |#1|)) (-15 -3182 ((-112) |#3| |#1|)) (-15 -1431 ((-112) |#3| |#1|))) (-1084 |#2| |#3|) (-13 (-858) (-372)) (-1260 |#2|)) (T -1083)) +NIL +(-10 -8 (-15 -3814 ((-3 |#1| "failed") |#3| (-935))) (-15 -4322 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3408 ((-112) |#3| |#1|)) (-15 -3182 ((-112) |#3| |#1|)) (-15 -1431 ((-112) |#3| |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) |#2| $) 22)) (-2472 (((-574) |#2| $) 23)) (-3814 (((-3 $ "failed") |#2| (-935)) 16)) (-1638 ((|#1| |#2| $ |#1|) 14)) (-4322 (((-3 |#2| "failed") |#2| $) 19)) (-3408 (((-112) |#2| $) 20)) (-3182 (((-112) |#2| $) 21)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-4379 ((|#2| $) 18)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-3525 ((|#1| |#2| $ |#1|) 15)) (-3510 (((-654 $) |#2|) 17)) (-2986 (((-112) $ $) 6))) +(((-1084 |#1| |#2|) (-141) (-13 (-858) (-372)) (-1260 |t#1|)) (T -1084)) +((-2472 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-574)))) (-1431 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-112)))) (-3182 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-112)))) (-3408 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-112)))) (-4322 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1084 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1260 *3)))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1260 *3)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *3)))) (-3814 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-935)) (-4 *4 (-13 (-858) (-372))) (-4 *1 (-1084 *4 *2)) (-4 *2 (-1260 *4)))) (-3525 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1084 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1260 *2)))) (-1638 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1084 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1260 *2))))) +(-13 (-1116) (-10 -8 (-15 -2472 ((-574) |t#2| $)) (-15 -1431 ((-112) |t#2| $)) (-15 -3182 ((-112) |t#2| $)) (-15 -3408 ((-112) |t#2| $)) (-15 -4322 ((-3 |t#2| "failed") |t#2| $)) (-15 -4379 (|t#2| $)) (-15 -3510 ((-654 $) |t#2|)) (-15 -3814 ((-3 $ "failed") |t#2| (-935))) (-15 -3525 (|t#1| |t#2| $ |t#1|)) (-15 -1638 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-3787 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781)) 114)) (-2932 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781)) 63)) (-3644 (((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781)) 99)) (-1850 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-2750 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781)) 65) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112)) 67)) (-1377 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 87)) (-1844 (((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) 92)) (-1742 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-112)) 62)) (-2909 (((-781) (-654 |#4|) (-654 |#5|)) 21))) +(((-1085 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2909 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1850 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1742 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-112))) (-15 -2932 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2932 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -1377 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1377 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3787 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781))) (-15 -1844 ((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3644 ((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781)))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -1085)) +((-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) (-5 *4 (-781)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1289)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1175)) (-5 *1 (-1085 *4 *5 *6 *7 *8)))) (-3787 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4068 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4068 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1081 *7 *8 *9)) (-4 *11 (-1087 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1085 *7 *8 *9 *10 *11)))) (-1377 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-1377 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-2750 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2750 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-2750 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1081 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *7 *8 *9 *3 *4)) (-4 *4 (-1087 *7 *8 *9 *3)))) (-2932 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2932 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-1742 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2909 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1850 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1742 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-112))) (-15 -2932 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2932 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -1377 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1377 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3787 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781))) (-15 -1844 ((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3644 ((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781)))) +((-1647 (((-112) |#5| $) 26)) (-4126 (((-112) |#5| $) 29)) (-3832 (((-112) |#5| $) 18) (((-112) $) 52)) (-3891 (((-654 $) |#5| $) NIL) (((-654 $) (-654 |#5|) $) 94) (((-654 $) (-654 |#5|) (-654 $)) 92) (((-654 $) |#5| (-654 $)) 95)) (-2433 (($ $ |#5|) NIL) (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 73) (((-654 $) (-654 |#5|) $) 75) (((-654 $) (-654 |#5|) (-654 $)) 77)) (-3896 (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 64) (((-654 $) (-654 |#5|) $) 69) (((-654 $) (-654 |#5|) (-654 $)) 71)) (-2945 (((-112) |#5| $) 32))) +(((-1086 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2433 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2433 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2433 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2433 ((-654 |#1|) |#5| |#1|)) (-15 -3896 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -3896 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -3896 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -3896 ((-654 |#1|) |#5| |#1|)) (-15 -3891 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -3891 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -3891 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -3891 ((-654 |#1|) |#5| |#1|)) (-15 -4126 ((-112) |#5| |#1|)) (-15 -3832 ((-112) |#1|)) (-15 -2945 ((-112) |#5| |#1|)) (-15 -1647 ((-112) |#5| |#1|)) (-15 -3832 ((-112) |#5| |#1|)) (-15 -2433 (|#1| |#1| |#5|))) (-1087 |#2| |#3| |#4| |#5|) (-462) (-803) (-860) (-1081 |#2| |#3| |#4|)) (T -1086)) +NIL +(-10 -8 (-15 -2433 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2433 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2433 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2433 ((-654 |#1|) |#5| |#1|)) (-15 -3896 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -3896 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -3896 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -3896 ((-654 |#1|) |#5| |#1|)) (-15 -3891 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -3891 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -3891 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -3891 ((-654 |#1|) |#5| |#1|)) (-15 -4126 ((-112) |#5| |#1|)) (-15 -3832 ((-112) |#1|)) (-15 -2945 ((-112) |#5| |#1|)) (-15 -1647 ((-112) |#5| |#1|)) (-15 -3832 ((-112) |#5| |#1|)) (-15 -2433 (|#1| |#1| |#5|))) +((-2864 (((-112) $ $) 7)) (-2298 (((-654 (-2 (|:| -1390 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) 86)) (-3656 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4350 (((-654 |#3|) $) 34)) (-1437 (((-112) $) 27)) (-2176 (((-112) $) 18 (|has| |#1| (-566)))) (-2972 (((-112) |#4| $) 102) (((-112) $) 98)) (-2104 ((|#4| |#4| $) 93)) (-2991 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 127)) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#3|) 28)) (-3146 (((-112) $ (-781)) 45)) (-2172 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 80)) (-3250 (($) 46 T CONST)) (-3721 (((-112) $) 23 (|has| |#1| (-566)))) (-3913 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2196 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3564 (((-112) $) 26 (|has| |#1| (-566)))) (-4434 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1855 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3406 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2214 (($ (-654 |#4|)) 36)) (-2935 (((-3 $ "failed") $) 83)) (-2660 ((|#4| |#4| $) 90)) (-2804 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-1857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3347 ((|#4| |#4| $) 88)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2830 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) 106)) (-1647 (((-112) |#4| $) 137)) (-4126 (((-112) |#4| $) 134)) (-3832 (((-112) |#4| $) 138) (((-112) $) 135)) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-3145 (((-112) |#4| $) 105) (((-112) $) 104)) (-4241 ((|#3| $) 35)) (-2189 (((-112) $ (-781)) 44)) (-2036 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2737 (((-654 |#3|) $) 33)) (-3161 (((-112) |#3| $) 32)) (-1653 (((-112) $ (-781)) 43)) (-1489 (((-1175) $) 10)) (-1900 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2623 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 128)) (-3334 (((-3 |#4| "failed") $) 84)) (-1976 (((-654 $) |#4| $) 130)) (-2659 (((-3 (-112) (-654 $)) |#4| $) 133)) (-3029 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3891 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3268 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-1957 (((-654 |#4|) $) 108)) (-3749 (((-112) |#4| $) 100) (((-112) $) 96)) (-2254 ((|#4| |#4| $) 91)) (-3877 (((-112) $ $) 111)) (-3581 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2712 (((-112) |#4| $) 101) (((-112) $) 97)) (-3173 ((|#4| |#4| $) 92)) (-3940 (((-1136) $) 11)) (-2925 (((-3 |#4| "failed") $) 85)) (-2183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4233 (((-3 $ "failed") $ |#4|) 79)) (-2433 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-3449 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) 39)) (-2754 (((-112) $) 42)) (-3336 (($) 41)) (-3580 (((-781) $) 107)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-1423 (($ $ |#3|) 29)) (-1671 (($ $ |#3|) 31)) (-2167 (($ $) 89)) (-2287 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2105 (((-781) $) 77 (|has| |#3| (-377)))) (-4069 (((-112) $ $) 9)) (-3917 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3912 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-3896 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2020 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-1642 (((-654 |#3|) $) 82)) (-2945 (((-112) |#4| $) 136)) (-3504 (((-112) |#3| $) 81)) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459))))) +(((-1087 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -1087)) +((-3832 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-1647 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-2945 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-4126 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-2659 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1))) (-4 *1 (-1087 *4 *5 *6 *3)))) (-3029 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *1)))) (-4 *1 (-1087 *4 *5 *6 *3)))) (-3029 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-1976 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)))) (-1900 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1))) (-4 *1 (-1087 *4 *5 *6 *3)))) (-2623 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *1)))) (-4 *1 (-1087 *4 *5 *6 *3)))) (-2991 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *1)))) (-4 *1 (-1087 *4 *5 *6 *3)))) (-3891 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)))) (-3891 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *7)))) (-3891 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)))) (-3891 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)))) (-3896 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)))) (-3896 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)))) (-3896 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *7)))) (-3896 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)))) (-3268 (*1 *1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-3268 (*1 *1 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)))) (-2433 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)))) (-2433 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)))) (-2433 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *7)))) (-2433 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)))) (-3656 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *5 *6 *7 *8))))) +(-13 (-1227 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3832 ((-112) |t#4| $)) (-15 -1647 ((-112) |t#4| $)) (-15 -2945 ((-112) |t#4| $)) (-15 -3832 ((-112) $)) (-15 -4126 ((-112) |t#4| $)) (-15 -2659 ((-3 (-112) (-654 $)) |t#4| $)) (-15 -3029 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |t#4| $)) (-15 -3029 ((-112) |t#4| $)) (-15 -1976 ((-654 $) |t#4| $)) (-15 -1900 ((-3 |t#4| (-654 $)) |t#4| |t#4| $)) (-15 -2623 ((-654 (-2 (|:| |val| |t#4|) (|:| -4068 $))) |t#4| |t#4| $)) (-15 -2991 ((-654 (-2 (|:| |val| |t#4|) (|:| -4068 $))) |t#4| $)) (-15 -3891 ((-654 $) |t#4| $)) (-15 -3891 ((-654 $) (-654 |t#4|) $)) (-15 -3891 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -3891 ((-654 $) |t#4| (-654 $))) (-15 -3896 ((-654 $) |t#4| $)) (-15 -3896 ((-654 $) |t#4| (-654 $))) (-15 -3896 ((-654 $) (-654 |t#4|) $)) (-15 -3896 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -3268 ($ |t#4| $)) (-15 -3268 ($ (-654 |t#4|) $)) (-15 -2433 ((-654 $) |t#4| $)) (-15 -2433 ((-654 $) |t#4| (-654 $))) (-15 -2433 ((-654 $) (-654 |t#4|) $)) (-15 -2433 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -3656 ((-654 $) (-654 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1116) . T) ((-1227 |#1| |#2| |#3| |#4|) . T) ((-1234) . T)) +((-2240 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|) 86)) (-1546 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|) 127)) (-2470 (((-654 |#5|) |#4| |#5|) 74)) (-1564 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1838 (((-1289)) 36)) (-3330 (((-1289)) 25)) (-2700 (((-1289) (-1175) (-1175) (-1175)) 32)) (-4381 (((-1289) (-1175) (-1175) (-1175)) 21)) (-2876 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|) 107)) (-1753 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112)) 118) (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2423 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|) 113))) +(((-1088 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4381 ((-1289) (-1175) (-1175) (-1175))) (-15 -3330 ((-1289))) (-15 -2700 ((-1289) (-1175) (-1175) (-1175))) (-15 -1838 ((-1289))) (-15 -2876 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -1753 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1753 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112))) (-15 -2423 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -1546 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -1564 ((-112) |#4| |#5|)) (-15 -1564 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -2470 ((-654 |#5|) |#4| |#5|)) (-15 -2240 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -1088)) +((-2240 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2470 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1564 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1564 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1546 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2423 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) (-5 *5 (-112)) (-4 *8 (-1081 *6 *7 *4)) (-4 *9 (-1087 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4068 *9)))) (-5 *1 (-1088 *6 *7 *4 *8 *9)))) (-1753 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-2876 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1838 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1088 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-2700 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1088 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-3330 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1088 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-4381 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1088 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))) +(-10 -7 (-15 -4381 ((-1289) (-1175) (-1175) (-1175))) (-15 -3330 ((-1289))) (-15 -2700 ((-1289) (-1175) (-1175) (-1175))) (-15 -1838 ((-1289))) (-15 -2876 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -1753 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1753 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112))) (-15 -2423 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -1546 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -1564 ((-112) |#4| |#5|)) (-15 -1564 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -2470 ((-654 |#5|) |#4| |#5|)) (-15 -2240 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|))) +((-2864 (((-112) $ $) NIL)) (-2350 (((-1233) $) 13)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 10)) (-2951 (((-872) $) 20) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1089) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $))))) (T -1089)) +((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1089)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1089))))) +(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $)))) +((-4094 (((-112) $ $) 7))) +(((-1090) (-13 (-1234) (-10 -8 (-15 -4094 ((-112) $ $))))) (T -1090)) +((-4094 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1090))))) +(-13 (-1234) (-10 -8 (-15 -4094 ((-112) $ $)))) +((-2864 (((-112) $ $) NIL)) (-2039 (((-1193) $) 8)) (-1489 (((-1175) $) 17)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 11)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 14))) +(((-1091 |#1|) (-13 (-1116) (-10 -8 (-15 -2039 ((-1193) $)))) (-1193)) (T -1091)) +((-2039 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1091 *3)) (-14 *3 *2)))) +(-13 (-1116) (-10 -8 (-15 -2039 ((-1193) $)))) +((-2864 (((-112) $ $) NIL)) (-2586 (($ $ (-654 (-1193)) (-1 (-112) (-654 |#3|))) 34)) (-3816 (($ |#3| |#3|) 23) (($ |#3| |#3| (-654 (-1193))) 21)) (-1814 ((|#3| $) 13)) (-1704 (((-3 (-302 |#3|) "failed") $) 60)) (-2214 (((-302 |#3|) $) NIL)) (-2771 (((-654 (-1193)) $) 16)) (-2129 (((-903 |#1|) $) 11)) (-1804 ((|#3| $) 12)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2207 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-935)) 41)) (-2951 (((-872) $) 89) (($ (-302 |#3|)) 22)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 38))) +(((-1092 |#1| |#2| |#3|) (-13 (-1116) (-294 |#3| |#3|) (-1054 (-302 |#3|)) (-10 -8 (-15 -3816 ($ |#3| |#3|)) (-15 -3816 ($ |#3| |#3| (-654 (-1193)))) (-15 -2586 ($ $ (-654 (-1193)) (-1 (-112) (-654 |#3|)))) (-15 -2129 ((-903 |#1|) $)) (-15 -1804 (|#3| $)) (-15 -1814 (|#3| $)) (-15 -2207 (|#3| $ |#3| (-935))) (-15 -2771 ((-654 (-1193)) $)))) (-1116) (-13 (-1065) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1092)) +((-3816 (*1 *1 *2 *2) (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1092 *3 *4 *2)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-3816 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1092 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2586 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-1 (-112) (-654 *6))) (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1092 *4 *5 *6)))) (-2129 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 *2))) (-5 *2 (-903 *3)) (-5 *1 (-1092 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2))))) (-1804 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1092 *3 *4 *2)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))))) (-1814 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1092 *3 *4 *2)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))))) (-2207 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-935)) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1092 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2771 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1193))) (-5 *1 (-1092 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) +(-13 (-1116) (-294 |#3| |#3|) (-1054 (-302 |#3|)) (-10 -8 (-15 -3816 ($ |#3| |#3|)) (-15 -3816 ($ |#3| |#3| (-654 (-1193)))) (-15 -2586 ($ $ (-654 (-1193)) (-1 (-112) (-654 |#3|)))) (-15 -2129 ((-903 |#1|) $)) (-15 -1804 (|#3| $)) (-15 -1814 (|#3| $)) (-15 -2207 (|#3| $ |#3| (-935))) (-15 -2771 ((-654 (-1193)) $)))) +((-2864 (((-112) $ $) NIL)) (-2550 (($ (-654 (-1092 |#1| |#2| |#3|))) 14)) (-2004 (((-654 (-1092 |#1| |#2| |#3|)) $) 21)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2207 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-935)) 27)) (-2951 (((-872) $) 17)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 20))) +(((-1093 |#1| |#2| |#3|) (-13 (-1116) (-294 |#3| |#3|) (-10 -8 (-15 -2550 ($ (-654 (-1092 |#1| |#2| |#3|)))) (-15 -2004 ((-654 (-1092 |#1| |#2| |#3|)) $)) (-15 -2207 (|#3| $ |#3| (-935))))) (-1116) (-13 (-1065) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1093)) +((-2550 (*1 *1 *2) (-12 (-5 *2 (-654 (-1092 *3 *4 *5))) (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1093 *3 *4 *5)))) (-2004 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1092 *3 *4 *5))) (-5 *1 (-1093 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-2207 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-935)) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1093 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))) +(-13 (-1116) (-294 |#3| |#3|) (-10 -8 (-15 -2550 ($ (-654 (-1092 |#1| |#2| |#3|)))) (-15 -2004 ((-654 (-1092 |#1| |#2| |#3|)) $)) (-15 -2207 (|#3| $ |#3| (-935))))) +((-3846 (((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112)) 88) (((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|))) 92) (((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112)) 90))) +(((-1094 |#1| |#2|) (-10 -7 (-15 -3846 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112))) (-15 -3846 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -3846 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112)))) (-13 (-315) (-148)) (-654 (-1193))) (T -1094)) +((-3846 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1718 (-1189 *5)) (|:| -1385 (-654 (-966 *5)))))) (-5 *1 (-1094 *5 *6)) (-5 *3 (-654 (-966 *5))) (-14 *6 (-654 (-1193))))) (-3846 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1718 (-1189 *4)) (|:| -1385 (-654 (-966 *4)))))) (-5 *1 (-1094 *4 *5)) (-5 *3 (-654 (-966 *4))) (-14 *5 (-654 (-1193))))) (-3846 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1718 (-1189 *5)) (|:| -1385 (-654 (-966 *5)))))) (-5 *1 (-1094 *5 *6)) (-5 *3 (-654 (-966 *5))) (-14 *6 (-654 (-1193)))))) +(-10 -7 (-15 -3846 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112))) (-15 -3846 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -3846 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112)))) +((-4202 (((-428 |#3|) |#3|) 18))) +(((-1095 |#1| |#2| |#3|) (-10 -7 (-15 -4202 ((-428 |#3|) |#3|))) (-1260 (-417 (-574))) (-13 (-372) (-148) (-734 (-417 (-574)) |#1|)) (-1260 |#2|)) (T -1095)) +((-4202 (*1 *2 *3) (-12 (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-574)) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1095 *4 *5 *3)) (-4 *3 (-1260 *5))))) +(-10 -7 (-15 -4202 ((-428 |#3|) |#3|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 136)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-372)))) (-2884 (($ $) NIL (|has| |#1| (-372)))) (-1981 (((-112) $) NIL (|has| |#1| (-372)))) (-3835 (((-699 |#1|) (-1284 $)) NIL) (((-699 |#1|)) 121)) (-1644 ((|#1| $) 125)) (-1928 (((-1206 (-935) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL (|has| |#1| (-372)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1496 (((-781)) 43 (|has| |#1| (-377)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-2580 (($ (-1284 |#1|) (-1284 $)) NIL) (($ (-1284 |#1|)) 46)) (-1444 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-2640 (((-699 |#1|) $ (-1284 $)) NIL) (((-699 |#1|) $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 113) (((-699 |#1|) (-699 $)) 108) (((-699 |#1|) (-1284 $)) NIL)) (-2882 (($ |#2|) 65) (((-3 $ "failed") (-417 |#2|)) NIL (|has| |#1| (-372)))) (-4322 (((-3 $ "failed") $) NIL)) (-3558 (((-935)) 84)) (-2835 (($) 47 (|has| |#1| (-377)))) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3556 (($) NIL (|has| |#1| (-358)))) (-3084 (((-112) $) NIL (|has| |#1| (-358)))) (-1995 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-3978 (((-112) $) NIL (|has| |#1| (-372)))) (-3547 (((-935) $) NIL (|has| |#1| (-358))) (((-843 (-935)) $) NIL (|has| |#1| (-358)))) (-4226 (((-112) $) NIL)) (-1681 ((|#1| $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3989 ((|#2| $) 91 (|has| |#1| (-372)))) (-3383 (((-935) $) 145 (|has| |#1| (-377)))) (-2869 ((|#2| $) 62)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3791 (($) NIL (|has| |#1| (-358)) CONST)) (-2591 (($ (-935)) 135 (|has| |#1| (-377)))) (-3940 (((-1136) $) NIL)) (-2975 (($) 127)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1514 (((-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574))))) NIL (|has| |#1| (-358)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-2394 ((|#1| (-1284 $)) NIL) ((|#1|) 117)) (-3261 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3879 (($ $ (-781)) NIL (-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) NIL (-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1193)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-3303 (((-699 |#1|) (-1284 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-4379 ((|#2|) 81)) (-3603 (($) NIL (|has| |#1| (-358)))) (-1385 (((-1284 |#1|) $ (-1284 $)) 96) (((-699 |#1|) (-1284 $) (-1284 $)) NIL) (((-1284 |#1|) $) 75) (((-699 |#1|) (-1284 $)) 92)) (-1844 (((-1284 |#1|) $) NIL) (($ (-1284 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-358)))) (-2951 (((-872) $) 61) (($ (-574)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-372))) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574))))))) (-3424 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2648 ((|#2| $) 89)) (-2898 (((-781)) 83 T CONST)) (-4069 (((-112) $ $) NIL)) (-2391 (((-1284 $)) 88)) (-2836 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2141 (($) 32 T CONST)) (-2153 (($) 19 T CONST)) (-3584 (($ $ (-781)) NIL (-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) NIL (-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1193)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2986 (((-112) $ $) 67)) (-3103 (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) 71) (($ $ $) NIL)) (-3074 (($ $ $) 69)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))))) +(((-1096 |#1| |#2| |#3|) (-734 |#1| |#2|) (-174) (-1260 |#1|) |#2|) (T -1096)) NIL (-734 |#1| |#2|) -((-4200 (((-428 |#3|) |#3|) 19))) -(((-1096 |#1| |#2| |#3|) (-10 -7 (-15 -4200 ((-428 |#3|) |#3|))) (-1259 (-417 (-965 (-574)))) (-13 (-372) (-148) (-734 (-417 (-965 (-574))) |#1|)) (-1259 |#2|)) (T -1096)) -((-4200 (*1 *2 *3) (-12 (-4 *4 (-1259 (-417 (-965 (-574))))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-965 (-574))) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1096 *4 *5 *3)) (-4 *3 (-1259 *5))))) -(-10 -7 (-15 -4200 ((-428 |#3|) |#3|))) -((-2863 (((-112) $ $) NIL)) (-3632 (($ $ $) 16)) (-1593 (($ $ $) 17)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4082 (($) 6)) (-1845 (((-1192) $) 20)) (-2950 (((-872) $) 13)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 15)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 9))) -(((-1097) (-13 (-860) (-624 (-1192)) (-10 -8 (-15 -4082 ($))))) (T -1097)) -((-4082 (*1 *1) (-5 *1 (-1097)))) -(-13 (-860) (-624 (-1192)) (-10 -8 (-15 -4082 ($)))) -((-2863 (((-112) $ $) 7)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-1197)) 17) (((-1197) $) 16)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) -(((-1098) (-141)) (T -1098)) +((-4202 (((-428 |#3|) |#3|) 19))) +(((-1097 |#1| |#2| |#3|) (-10 -7 (-15 -4202 ((-428 |#3|) |#3|))) (-1260 (-417 (-966 (-574)))) (-13 (-372) (-148) (-734 (-417 (-966 (-574))) |#1|)) (-1260 |#2|)) (T -1097)) +((-4202 (*1 *2 *3) (-12 (-4 *4 (-1260 (-417 (-966 (-574))))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-966 (-574))) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1097 *4 *5 *3)) (-4 *3 (-1260 *5))))) +(-10 -7 (-15 -4202 ((-428 |#3|) |#3|))) +((-2864 (((-112) $ $) NIL)) (-3634 (($ $ $) 16)) (-4380 (($ $ $) 17)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2498 (($) 6)) (-1844 (((-1193) $) 20)) (-2951 (((-872) $) 13)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 15)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 9))) +(((-1098) (-13 (-860) (-624 (-1193)) (-10 -8 (-15 -2498 ($))))) (T -1098)) +((-2498 (*1 *1) (-5 *1 (-1098)))) +(-13 (-860) (-624 (-1193)) (-10 -8 (-15 -2498 ($)))) +((-2864 (((-112) $ $) 7)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-1198)) 17) (((-1198) $) 16)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) +(((-1099) (-141)) (T -1099)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-626 #0=(-1197)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1115) . T)) -((-1899 ((|#1| |#1| (-1 (-574) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3080 (((-1288)) 21)) (-1714 (((-654 |#1|)) 13))) -(((-1099 |#1|) (-10 -7 (-15 -3080 ((-1288))) (-15 -1714 ((-654 |#1|))) (-15 -1899 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1899 (|#1| |#1| (-1 (-574) |#1| |#1|)))) (-133)) (T -1099)) -((-1899 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1099 *2)))) (-1899 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1099 *2)))) (-1714 (*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1099 *3)) (-4 *3 (-133)))) (-3080 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1099 *3)) (-4 *3 (-133))))) -(-10 -7 (-15 -3080 ((-1288))) (-15 -1714 ((-654 |#1|))) (-15 -1899 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1899 (|#1| |#1| (-1 (-574) |#1| |#1|)))) -((-4259 (($ (-109) $) 20)) (-2335 (((-701 (-109)) (-516) $) 19)) (-2833 (($) 7)) (-1816 (($) 21)) (-4309 (($) 22)) (-3290 (((-654 (-177)) $) 10)) (-2950 (((-872) $) 25))) -(((-1100) (-13 (-623 (-872)) (-10 -8 (-15 -2833 ($)) (-15 -3290 ((-654 (-177)) $)) (-15 -2335 ((-701 (-109)) (-516) $)) (-15 -4259 ($ (-109) $)) (-15 -1816 ($)) (-15 -4309 ($))))) (T -1100)) -((-2833 (*1 *1) (-5 *1 (-1100))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1100)))) (-2335 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1100)))) (-4259 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1100)))) (-1816 (*1 *1) (-5 *1 (-1100))) (-4309 (*1 *1) (-5 *1 (-1100)))) -(-13 (-623 (-872)) (-10 -8 (-15 -2833 ($)) (-15 -3290 ((-654 (-177)) $)) (-15 -2335 ((-701 (-109)) (-516) $)) (-15 -4259 ($ (-109) $)) (-15 -1816 ($)) (-15 -4309 ($)))) -((-2588 (((-1283 (-699 |#1|)) (-654 (-699 |#1|))) 45) (((-1283 (-699 (-965 |#1|))) (-654 (-1192)) (-699 (-965 |#1|))) 75) (((-1283 (-699 (-417 (-965 |#1|)))) (-654 (-1192)) (-699 (-417 (-965 |#1|)))) 92)) (-4346 (((-1283 |#1|) (-699 |#1|) (-654 (-699 |#1|))) 39))) -(((-1101 |#1|) (-10 -7 (-15 -2588 ((-1283 (-699 (-417 (-965 |#1|)))) (-654 (-1192)) (-699 (-417 (-965 |#1|))))) (-15 -2588 ((-1283 (-699 (-965 |#1|))) (-654 (-1192)) (-699 (-965 |#1|)))) (-15 -2588 ((-1283 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -4346 ((-1283 |#1|) (-699 |#1|) (-654 (-699 |#1|))))) (-372)) (T -1101)) -((-4346 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-1283 *5)) (-5 *1 (-1101 *5)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-5 *2 (-1283 (-699 *4))) (-5 *1 (-1101 *4)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1192))) (-4 *5 (-372)) (-5 *2 (-1283 (-699 (-965 *5)))) (-5 *1 (-1101 *5)) (-5 *4 (-699 (-965 *5))))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1192))) (-4 *5 (-372)) (-5 *2 (-1283 (-699 (-417 (-965 *5))))) (-5 *1 (-1101 *5)) (-5 *4 (-699 (-417 (-965 *5))))))) -(-10 -7 (-15 -2588 ((-1283 (-699 (-417 (-965 |#1|)))) (-654 (-1192)) (-699 (-417 (-965 |#1|))))) (-15 -2588 ((-1283 (-699 (-965 |#1|))) (-654 (-1192)) (-699 (-965 |#1|)))) (-15 -2588 ((-1283 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -4346 ((-1283 |#1|) (-699 |#1|) (-654 (-699 |#1|))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4302 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1192)) NIL)) (-2102 (((-781) $) NIL) (((-781) $ (-1192)) NIL)) (-4349 (((-654 (-1103 (-1192))) $) NIL)) (-4171 (((-1188 $) $ (-1103 (-1192))) NIL) (((-1188 |#1|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 (-1103 (-1192)))) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3296 (($ $) NIL (|has| |#1| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3618 (($ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-1103 (-1192)) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL) (((-3 (-1140 |#1| (-1192)) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-1103 (-1192)) $) NIL) (((-1192) $) NIL) (((-1140 |#1| (-1192)) $) NIL)) (-3496 (($ $ $ (-1103 (-1192))) NIL (|has| |#1| (-174)))) (-1401 (($ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1103 (-1192))) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#1| (-922)))) (-4389 (($ $ |#1| (-541 (-1103 (-1192))) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1103 (-1192)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1103 (-1192)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2725 (((-781) $ (-1192)) NIL) (((-781) $) NIL)) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-4338 (($ (-1188 |#1|) (-1103 (-1192))) NIL) (($ (-1188 $) (-1103 (-1192))) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-541 (-1103 (-1192)))) NIL) (($ $ (-1103 (-1192)) (-781)) NIL) (($ $ (-654 (-1103 (-1192))) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-1103 (-1192))) NIL)) (-1503 (((-541 (-1103 (-1192))) $) NIL) (((-781) $ (-1103 (-1192))) NIL) (((-654 (-781)) $ (-654 (-1103 (-1192)))) NIL)) (-3558 (($ (-1 (-541 (-1103 (-1192))) (-541 (-1103 (-1192)))) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-4191 (((-1 $ (-781)) (-1192)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-1803 (((-3 (-1103 (-1192)) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3679 (((-1103 (-1192)) $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3945 (((-1174) $) NIL)) (-3187 (((-112) $) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| (-1103 (-1192))) (|:| -2017 (-781))) "failed") $) NIL)) (-2605 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1103 (-1192)) |#1|) NIL) (($ $ (-654 (-1103 (-1192))) (-654 |#1|)) NIL) (($ $ (-1103 (-1192)) $) NIL) (($ $ (-654 (-1103 (-1192))) (-654 $)) NIL) (($ $ (-1192) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1192)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-1738 (($ $ (-1103 (-1192))) NIL (|has| |#1| (-174)))) (-3878 (($ $ (-1103 (-1192))) NIL) (($ $ (-654 (-1103 (-1192)))) NIL) (($ $ (-1103 (-1192)) (-781)) NIL) (($ $ (-654 (-1103 (-1192))) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3475 (((-654 (-1192)) $) NIL)) (-3584 (((-541 (-1103 (-1192))) $) NIL) (((-781) $ (-1103 (-1192))) NIL) (((-654 (-781)) $ (-654 (-1103 (-1192)))) NIL) (((-781) $ (-1192)) NIL)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| (-1103 (-1192)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1103 (-1192)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1103 (-1192)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3631 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1103 (-1192))) NIL (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1103 (-1192))) NIL) (($ (-1192)) NIL) (($ (-1140 |#1| (-1192))) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-541 (-1103 (-1192)))) NIL) (($ $ (-1103 (-1192)) (-781)) NIL) (($ $ (-654 (-1103 (-1192))) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-1103 (-1192))) NIL) (($ $ (-654 (-1103 (-1192)))) NIL) (($ $ (-1103 (-1192)) (-781)) NIL) (($ $ (-654 (-1103 (-1192))) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1102 |#1|) (-13 (-260 |#1| (-1192) (-1103 (-1192)) (-541 (-1103 (-1192)))) (-1053 (-1140 |#1| (-1192)))) (-1064)) (T -1102)) -NIL -(-13 (-260 |#1| (-1192) (-1103 (-1192)) (-541 (-1103 (-1192)))) (-1053 (-1140 |#1| (-1192)))) -((-2863 (((-112) $ $) NIL)) (-2102 (((-781) $) NIL)) (-1497 ((|#1| $) 10)) (-1705 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2725 (((-781) $) 11)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-4191 (($ |#1| (-781)) 9)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3878 (($ $ (-781)) NIL) (($ $) NIL)) (-2950 (((-872) $) NIL) (($ |#1|) NIL)) (-3838 (((-112) $ $) NIL)) (-3583 (($ $ (-781)) NIL) (($ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 16))) -(((-1103 |#1|) (-273 |#1|) (-860)) (T -1103)) +(((-93) . T) ((-102) . T) ((-626 #0=(-1198)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1116) . T)) +((-3178 ((|#1| |#1| (-1 (-574) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3081 (((-1289)) 21)) (-1713 (((-654 |#1|)) 13))) +(((-1100 |#1|) (-10 -7 (-15 -3081 ((-1289))) (-15 -1713 ((-654 |#1|))) (-15 -3178 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3178 (|#1| |#1| (-1 (-574) |#1| |#1|)))) (-133)) (T -1100)) +((-3178 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1100 *2)))) (-3178 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1100 *2)))) (-1713 (*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-133)))) (-3081 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1100 *3)) (-4 *3 (-133))))) +(-10 -7 (-15 -3081 ((-1289))) (-15 -1713 ((-654 |#1|))) (-15 -3178 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3178 (|#1| |#1| (-1 (-574) |#1| |#1|)))) +((-1474 (($ (-109) $) 20)) (-2304 (((-701 (-109)) (-516) $) 19)) (-3336 (($) 7)) (-3075 (($) 21)) (-4178 (($) 22)) (-3058 (((-654 (-177)) $) 10)) (-2951 (((-872) $) 25))) +(((-1101) (-13 (-623 (-872)) (-10 -8 (-15 -3336 ($)) (-15 -3058 ((-654 (-177)) $)) (-15 -2304 ((-701 (-109)) (-516) $)) (-15 -1474 ($ (-109) $)) (-15 -3075 ($)) (-15 -4178 ($))))) (T -1101)) +((-3336 (*1 *1) (-5 *1 (-1101))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1101)))) (-2304 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1101)))) (-1474 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1101)))) (-3075 (*1 *1) (-5 *1 (-1101))) (-4178 (*1 *1) (-5 *1 (-1101)))) +(-13 (-623 (-872)) (-10 -8 (-15 -3336 ($)) (-15 -3058 ((-654 (-177)) $)) (-15 -2304 ((-701 (-109)) (-516) $)) (-15 -1474 ($ (-109) $)) (-15 -3075 ($)) (-15 -4178 ($)))) +((-1379 (((-1284 (-699 |#1|)) (-654 (-699 |#1|))) 45) (((-1284 (-699 (-966 |#1|))) (-654 (-1193)) (-699 (-966 |#1|))) 75) (((-1284 (-699 (-417 (-966 |#1|)))) (-654 (-1193)) (-699 (-417 (-966 |#1|)))) 92)) (-1385 (((-1284 |#1|) (-699 |#1|) (-654 (-699 |#1|))) 39))) +(((-1102 |#1|) (-10 -7 (-15 -1379 ((-1284 (-699 (-417 (-966 |#1|)))) (-654 (-1193)) (-699 (-417 (-966 |#1|))))) (-15 -1379 ((-1284 (-699 (-966 |#1|))) (-654 (-1193)) (-699 (-966 |#1|)))) (-15 -1379 ((-1284 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -1385 ((-1284 |#1|) (-699 |#1|) (-654 (-699 |#1|))))) (-372)) (T -1102)) +((-1385 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-1284 *5)) (-5 *1 (-1102 *5)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-5 *2 (-1284 (-699 *4))) (-5 *1 (-1102 *4)))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1193))) (-4 *5 (-372)) (-5 *2 (-1284 (-699 (-966 *5)))) (-5 *1 (-1102 *5)) (-5 *4 (-699 (-966 *5))))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1193))) (-4 *5 (-372)) (-5 *2 (-1284 (-699 (-417 (-966 *5))))) (-5 *1 (-1102 *5)) (-5 *4 (-699 (-417 (-966 *5))))))) +(-10 -7 (-15 -1379 ((-1284 (-699 (-417 (-966 |#1|)))) (-654 (-1193)) (-699 (-417 (-966 |#1|))))) (-15 -1379 ((-1284 (-699 (-966 |#1|))) (-654 (-1193)) (-699 (-966 |#1|)))) (-15 -1379 ((-1284 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -1385 ((-1284 |#1|) (-699 |#1|) (-654 (-699 |#1|))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4002 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1193)) NIL)) (-1540 (((-781) $) NIL) (((-781) $ (-1193)) NIL)) (-4350 (((-654 (-1104 (-1193))) $) NIL)) (-4173 (((-1189 $) $ (-1104 (-1193))) NIL) (((-1189 |#1|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 (-1104 (-1193)))) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2991 (($ $) NIL (|has| |#1| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3278 (($ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-1104 (-1193)) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL) (((-3 (-1141 |#1| (-1193)) "failed") $) NIL)) (-2214 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-1104 (-1193)) $) NIL) (((-1193) $) NIL) (((-1141 |#1| (-1193)) $) NIL)) (-3319 (($ $ $ (-1104 (-1193))) NIL (|has| |#1| (-174)))) (-1402 (($ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1104 (-1193))) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#1| (-923)))) (-1849 (($ $ |#1| (-541 (-1104 (-1193))) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1104 (-1193)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1104 (-1193)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3547 (((-781) $ (-1193)) NIL) (((-781) $) NIL)) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-4339 (($ (-1189 |#1|) (-1104 (-1193))) NIL) (($ (-1189 $) (-1104 (-1193))) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-541 (-1104 (-1193)))) NIL) (($ $ (-1104 (-1193)) (-781)) NIL) (($ $ (-654 (-1104 (-1193))) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-1104 (-1193))) NIL)) (-3192 (((-541 (-1104 (-1193))) $) NIL) (((-781) $ (-1104 (-1193))) NIL) (((-654 (-781)) $ (-654 (-1104 (-1193)))) NIL)) (-4303 (($ (-1 (-541 (-1104 (-1193))) (-541 (-1104 (-1193)))) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2558 (((-1 $ (-781)) (-1193)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-2284 (((-3 (-1104 (-1193)) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-3680 (((-1104 (-1193)) $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1489 (((-1175) $) NIL)) (-1380 (((-112) $) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| (-1104 (-1193))) (|:| -3139 (-781))) "failed") $) NIL)) (-2606 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1104 (-1193)) |#1|) NIL) (($ $ (-654 (-1104 (-1193))) (-654 |#1|)) NIL) (($ $ (-1104 (-1193)) $) NIL) (($ $ (-654 (-1104 (-1193))) (-654 $)) NIL) (($ $ (-1193) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-2394 (($ $ (-1104 (-1193))) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1104 (-1193))) (-654 (-781))) NIL) (($ $ (-1104 (-1193)) (-781)) NIL) (($ $ (-654 (-1104 (-1193)))) NIL) (($ $ (-1104 (-1193))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2495 (((-654 (-1193)) $) NIL)) (-3580 (((-541 (-1104 (-1193))) $) NIL) (((-781) $ (-1104 (-1193))) NIL) (((-654 (-781)) $ (-654 (-1104 (-1193)))) NIL) (((-781) $ (-1193)) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1104 (-1193)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1104 (-1193)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1104 (-1193)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-2372 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1104 (-1193))) NIL (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1104 (-1193))) NIL) (($ (-1193)) NIL) (($ (-1141 |#1| (-1193))) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-541 (-1104 (-1193)))) NIL) (($ $ (-1104 (-1193)) (-781)) NIL) (($ $ (-654 (-1104 (-1193))) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-654 (-1104 (-1193))) (-654 (-781))) NIL) (($ $ (-1104 (-1193)) (-781)) NIL) (($ $ (-654 (-1104 (-1193)))) NIL) (($ $ (-1104 (-1193))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1103 |#1|) (-13 (-260 |#1| (-1193) (-1104 (-1193)) (-541 (-1104 (-1193)))) (-1054 (-1141 |#1| (-1193)))) (-1065)) (T -1103)) +NIL +(-13 (-260 |#1| (-1193) (-1104 (-1193)) (-541 (-1104 (-1193)))) (-1054 (-1141 |#1| (-1193)))) +((-2864 (((-112) $ $) NIL)) (-1540 (((-781) $) NIL)) (-1498 ((|#1| $) 10)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2214 ((|#1| $) NIL)) (-3547 (((-781) $) 11)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2558 (($ |#1| (-781)) 9)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3879 (($ $ (-781)) NIL) (($ $) NIL)) (-2951 (((-872) $) NIL) (($ |#1|) NIL)) (-4069 (((-112) $ $) NIL)) (-3584 (($ $ (-781)) NIL) (($ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 16))) +(((-1104 |#1|) (-273 |#1|) (-860)) (T -1104)) NIL (-273 |#1|) -((-1786 (((-654 |#2|) (-1 |#2| |#1|) (-1109 |#1|)) 29 (|has| |#1| (-858))) (((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|)) 14))) -(((-1104 |#1| |#2|) (-10 -7 (-15 -1786 ((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|))) (IF (|has| |#1| (-858)) (-15 -1786 ((-654 |#2|) (-1 |#2| |#1|) (-1109 |#1|))) |%noBranch|)) (-1233) (-1233)) (T -1104)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-858)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-654 *6)) (-5 *1 (-1104 *5 *6)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1109 *6)) (-5 *1 (-1104 *5 *6))))) -(-10 -7 (-15 -1786 ((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|))) (IF (|has| |#1| (-858)) (-15 -1786 ((-654 |#2|) (-1 |#2| |#1|) (-1109 |#1|))) |%noBranch|)) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 16) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3260 (((-654 (-1150)) $) 10)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1105) (-13 (-1098) (-10 -8 (-15 -3260 ((-654 (-1150)) $))))) (T -1105)) -((-3260 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1105))))) -(-13 (-1098) (-10 -8 (-15 -3260 ((-654 (-1150)) $)))) -((-1786 (((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|)) 19))) -(((-1106 |#1| |#2|) (-10 -7 (-15 -1786 ((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|)))) (-1233) (-1233)) (T -1106)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1107 *6)) (-5 *1 (-1106 *5 *6))))) -(-10 -7 (-15 -1786 ((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|)))) -((-2863 (((-112) $ $) NIL (|has| (-1109 |#1|) (-1115)))) (-1497 (((-1192) $) NIL)) (-3224 (((-1109 |#1|) $) NIL)) (-3945 (((-1174) $) NIL (|has| (-1109 |#1|) (-1115)))) (-3939 (((-1135) $) NIL (|has| (-1109 |#1|) (-1115)))) (-2704 (($ (-1192) (-1109 |#1|)) NIL)) (-2950 (((-872) $) NIL (|has| (-1109 |#1|) (-1115)))) (-3838 (((-112) $ $) NIL (|has| (-1109 |#1|) (-1115)))) (-2985 (((-112) $ $) NIL (|has| (-1109 |#1|) (-1115))))) -(((-1107 |#1|) (-13 (-1233) (-10 -8 (-15 -2704 ($ (-1192) (-1109 |#1|))) (-15 -1497 ((-1192) $)) (-15 -3224 ((-1109 |#1|) $)) (IF (|has| (-1109 |#1|) (-1115)) (-6 (-1115)) |%noBranch|))) (-1233)) (T -1107)) -((-2704 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1109 *4)) (-4 *4 (-1233)) (-5 *1 (-1107 *4)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1107 *3)) (-4 *3 (-1233)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-1109 *3)) (-5 *1 (-1107 *3)) (-4 *3 (-1233))))) -(-13 (-1233) (-10 -8 (-15 -2704 ($ (-1192) (-1109 |#1|))) (-15 -1497 ((-1192) $)) (-15 -3224 ((-1109 |#1|) $)) (IF (|has| (-1109 |#1|) (-1115)) (-6 (-1115)) |%noBranch|))) -((-3224 (($ |#1| |#1|) 8)) (-3163 ((|#1| $) 11)) (-2830 ((|#1| $) 13)) (-1963 (((-574) $) 9)) (-3701 ((|#1| $) 10)) (-1975 ((|#1| $) 12)) (-1845 (($ |#1|) 6)) (-4264 (($ |#1| |#1|) 15)) (-2747 (($ $ (-574)) 14))) -(((-1108 |#1|) (-141) (-1233)) (T -1108)) -((-4264 (*1 *1 *2 *2) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1108 *3)) (-4 *3 (-1233)))) (-2830 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) (-1963 (*1 *2 *1) (-12 (-4 *1 (-1108 *3)) (-4 *3 (-1233)) (-5 *2 (-574)))) (-3224 (*1 *1 *2 *2) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233))))) -(-13 (-628 |t#1|) (-10 -8 (-15 -4264 ($ |t#1| |t#1|)) (-15 -2747 ($ $ (-574))) (-15 -2830 (|t#1| $)) (-15 -1975 (|t#1| $)) (-15 -3163 (|t#1| $)) (-15 -3701 (|t#1| $)) (-15 -1963 ((-574) $)) (-15 -3224 ($ |t#1| |t#1|)))) +((-1785 (((-654 |#2|) (-1 |#2| |#1|) (-1110 |#1|)) 29 (|has| |#1| (-858))) (((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|)) 14))) +(((-1105 |#1| |#2|) (-10 -7 (-15 -1785 ((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|))) (IF (|has| |#1| (-858)) (-15 -1785 ((-654 |#2|) (-1 |#2| |#1|) (-1110 |#1|))) |%noBranch|)) (-1234) (-1234)) (T -1105)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-858)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-654 *6)) (-5 *1 (-1105 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1110 *6)) (-5 *1 (-1105 *5 *6))))) +(-10 -7 (-15 -1785 ((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|))) (IF (|has| |#1| (-858)) (-15 -1785 ((-654 |#2|) (-1 |#2| |#1|) (-1110 |#1|))) |%noBranch|)) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 16) (($ (-1198)) NIL) (((-1198) $) NIL)) (-3602 (((-654 (-1151)) $) 10)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1106) (-13 (-1099) (-10 -8 (-15 -3602 ((-654 (-1151)) $))))) (T -1106)) +((-3602 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1106))))) +(-13 (-1099) (-10 -8 (-15 -3602 ((-654 (-1151)) $)))) +((-1785 (((-1108 |#2|) (-1 |#2| |#1|) (-1108 |#1|)) 19))) +(((-1107 |#1| |#2|) (-10 -7 (-15 -1785 ((-1108 |#2|) (-1 |#2| |#1|) (-1108 |#1|)))) (-1234) (-1234)) (T -1107)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1108 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1108 *6)) (-5 *1 (-1107 *5 *6))))) +(-10 -7 (-15 -1785 ((-1108 |#2|) (-1 |#2| |#1|) (-1108 |#1|)))) +((-2864 (((-112) $ $) NIL (|has| (-1110 |#1|) (-1116)))) (-1498 (((-1193) $) NIL)) (-3225 (((-1110 |#1|) $) NIL)) (-1489 (((-1175) $) NIL (|has| (-1110 |#1|) (-1116)))) (-3940 (((-1136) $) NIL (|has| (-1110 |#1|) (-1116)))) (-2707 (($ (-1193) (-1110 |#1|)) NIL)) (-2951 (((-872) $) NIL (|has| (-1110 |#1|) (-1116)))) (-4069 (((-112) $ $) NIL (|has| (-1110 |#1|) (-1116)))) (-2986 (((-112) $ $) NIL (|has| (-1110 |#1|) (-1116))))) +(((-1108 |#1|) (-13 (-1234) (-10 -8 (-15 -2707 ($ (-1193) (-1110 |#1|))) (-15 -1498 ((-1193) $)) (-15 -3225 ((-1110 |#1|) $)) (IF (|has| (-1110 |#1|) (-1116)) (-6 (-1116)) |%noBranch|))) (-1234)) (T -1108)) +((-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1110 *4)) (-4 *4 (-1234)) (-5 *1 (-1108 *4)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1108 *3)) (-4 *3 (-1234)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1234))))) +(-13 (-1234) (-10 -8 (-15 -2707 ($ (-1193) (-1110 |#1|))) (-15 -1498 ((-1193) $)) (-15 -3225 ((-1110 |#1|) $)) (IF (|has| (-1110 |#1|) (-1116)) (-6 (-1116)) |%noBranch|))) +((-3225 (($ |#1| |#1|) 8)) (-2939 ((|#1| $) 11)) (-2831 ((|#1| $) 13)) (-1961 (((-574) $) 9)) (-3470 ((|#1| $) 10)) (-1974 ((|#1| $) 12)) (-1844 (($ |#1|) 6)) (-4266 (($ |#1| |#1|) 15)) (-2748 (($ $ (-574)) 14))) +(((-1109 |#1|) (-141) (-1234)) (T -1109)) +((-4266 (*1 *1 *2 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) (-2748 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1109 *3)) (-4 *3 (-1234)))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) (-2939 (*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1234)) (-5 *2 (-574)))) (-3225 (*1 *1 *2 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234))))) +(-13 (-628 |t#1|) (-10 -8 (-15 -4266 ($ |t#1| |t#1|)) (-15 -2748 ($ $ (-574))) (-15 -2831 (|t#1| $)) (-15 -1974 (|t#1| $)) (-15 -2939 (|t#1| $)) (-15 -3470 (|t#1| $)) (-15 -1961 ((-574) $)) (-15 -3225 ($ |t#1| |t#1|)))) (((-628 |#1|) . T)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3224 (($ |#1| |#1|) 16)) (-1786 (((-654 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-858)))) (-3163 ((|#1| $) 12)) (-2830 ((|#1| $) 11)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1963 (((-574) $) 15)) (-3701 ((|#1| $) 14)) (-1975 ((|#1| $) 13)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2138 (((-654 |#1|) $) 44 (|has| |#1| (-858))) (((-654 |#1|) (-654 $)) 43 (|has| |#1| (-858)))) (-1845 (($ |#1|) 29)) (-2950 (((-872) $) 28 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4264 (($ |#1| |#1|) 10)) (-2747 (($ $ (-574)) 17)) (-2985 (((-112) $ $) 22 (|has| |#1| (-1115))))) -(((-1109 |#1|) (-13 (-1108 |#1|) (-10 -7 (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1110 |#1| (-654 |#1|))) |%noBranch|))) (-1233)) (T -1109)) -NIL -(-13 (-1108 |#1|) (-10 -7 (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1110 |#1| (-654 |#1|))) |%noBranch|))) -((-3224 (($ |#1| |#1|) 8)) (-1786 ((|#2| (-1 |#1| |#1|) $) 16)) (-3163 ((|#1| $) 11)) (-2830 ((|#1| $) 13)) (-1963 (((-574) $) 9)) (-3701 ((|#1| $) 10)) (-1975 ((|#1| $) 12)) (-2138 ((|#2| (-654 $)) 18) ((|#2| $) 17)) (-1845 (($ |#1|) 6)) (-4264 (($ |#1| |#1|) 15)) (-2747 (($ $ (-574)) 14))) -(((-1110 |#1| |#2|) (-141) (-858) (-1164 |t#1|)) (T -1110)) -((-2138 (*1 *2 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1110 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1164 *4)))) (-2138 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1164 *3)))) (-1786 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1110 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1164 *4))))) -(-13 (-1108 |t#1|) (-10 -8 (-15 -2138 (|t#2| (-654 $))) (-15 -2138 (|t#2| $)) (-15 -1786 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-628 |#1|) . T) ((-1108 |#1|) . T)) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3333 (((-1150) $) 12)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 18) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2051 (((-654 (-1150)) $) 10)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1111) (-13 (-1098) (-10 -8 (-15 -2051 ((-654 (-1150)) $)) (-15 -3333 ((-1150) $))))) (T -1111)) -((-2051 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1111)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1111))))) -(-13 (-1098) (-10 -8 (-15 -2051 ((-654 (-1150)) $)) (-15 -3333 ((-1150) $)))) -((-4352 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2627 (($ $ $) 10)) (-3728 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1112 |#1| |#2|) (-10 -8 (-15 -4352 (|#1| |#2| |#1|)) (-15 -4352 (|#1| |#1| |#2|)) (-15 -4352 (|#1| |#1| |#1|)) (-15 -2627 (|#1| |#1| |#1|)) (-15 -3728 (|#1| |#1| |#2|)) (-15 -3728 (|#1| |#1| |#1|))) (-1113 |#2|) (-1115)) (T -1112)) -NIL -(-10 -8 (-15 -4352 (|#1| |#2| |#1|)) (-15 -4352 (|#1| |#1| |#2|)) (-15 -4352 (|#1| |#1| |#1|)) (-15 -2627 (|#1| |#1| |#1|)) (-15 -3728 (|#1| |#1| |#2|)) (-15 -3728 (|#1| |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-4352 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2627 (($ $ $) 21)) (-3415 (((-112) $ $) 20)) (-2818 (((-112) $ (-781)) 36)) (-1516 (($) 26) (($ (-654 |#1|)) 25)) (-2173 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4458)))) (-3831 (($) 37 T CONST)) (-2560 (($ $) 60 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4458)))) (-1873 (((-654 |#1|) $) 44 (|has| $ (-6 -4458)))) (-3304 (((-112) $ $) 29)) (-2224 (((-112) $ (-781)) 35)) (-2247 (((-654 |#1|) $) 45 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 39)) (-3625 (((-112) $ (-781)) 34)) (-3945 (((-1174) $) 10)) (-1454 (($ $ $) 24)) (-3939 (((-1135) $) 11)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2000 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) 51 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 49 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 (-302 |#1|))) 48 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 30)) (-2880 (((-112) $) 33)) (-2833 (($) 32)) (-3728 (($ $ $) 23) (($ $ |#1|) 22)) (-3948 (((-781) |#1| $) 46 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4458)))) (-3156 (($ $) 31)) (-1845 (((-546) $) 61 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 52)) (-2950 (((-872) $) 12)) (-4268 (($) 28) (($ (-654 |#1|)) 27)) (-3838 (((-112) $ $) 9)) (-2980 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 38 (|has| $ (-6 -4458))))) -(((-1113 |#1|) (-141) (-1115)) (T -1113)) -((-3304 (*1 *2 *1 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-4268 (*1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-4268 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-1113 *3)))) (-1516 (*1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-1113 *3)))) (-1454 (*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-3728 (*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-3728 (*1 *1 *1 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-2627 (*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-3415 (*1 *2 *1 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-4352 (*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-4352 (*1 *1 *1 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-4352 (*1 *1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) -(-13 (-1115) (-152 |t#1|) (-10 -8 (-6 -4448) (-15 -3304 ((-112) $ $)) (-15 -4268 ($)) (-15 -4268 ($ (-654 |t#1|))) (-15 -1516 ($)) (-15 -1516 ($ (-654 |t#1|))) (-15 -1454 ($ $ $)) (-15 -3728 ($ $ $)) (-15 -3728 ($ $ |t#1|)) (-15 -2627 ($ $ $)) (-15 -3415 ((-112) $ $)) (-15 -4352 ($ $ $)) (-15 -4352 ($ $ |t#1|)) (-15 -4352 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) . T) ((-1233) . T)) -((-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 8)) (-3838 (((-112) $ $) 12))) -(((-1114 |#1|) (-10 -8 (-15 -3838 ((-112) |#1| |#1|)) (-15 -3945 ((-1174) |#1|)) (-15 -3939 ((-1135) |#1|))) (-1115)) (T -1114)) -NIL -(-10 -8 (-15 -3838 ((-112) |#1| |#1|)) (-15 -3945 ((-1174) |#1|)) (-15 -3939 ((-1135) |#1|))) -((-2863 (((-112) $ $) 7)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) -(((-1115) (-141)) (T -1115)) -((-3939 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1135)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1174)))) (-3838 (*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112))))) -(-13 (-102) (-623 (-872)) (-10 -8 (-15 -3939 ((-1135) $)) (-15 -3945 ((-1174) $)) (-15 -3838 ((-112) $ $)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3225 (($ |#1| |#1|) 16)) (-1785 (((-654 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-858)))) (-2939 ((|#1| $) 12)) (-2831 ((|#1| $) 11)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1961 (((-574) $) 15)) (-3470 ((|#1| $) 14)) (-1974 ((|#1| $) 13)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2136 (((-654 |#1|) $) 44 (|has| |#1| (-858))) (((-654 |#1|) (-654 $)) 43 (|has| |#1| (-858)))) (-1844 (($ |#1|) 29)) (-2951 (((-872) $) 28 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4266 (($ |#1| |#1|) 10)) (-2748 (($ $ (-574)) 17)) (-2986 (((-112) $ $) 22 (|has| |#1| (-1116))))) +(((-1110 |#1|) (-13 (-1109 |#1|) (-10 -7 (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1111 |#1| (-654 |#1|))) |%noBranch|))) (-1234)) (T -1110)) +NIL +(-13 (-1109 |#1|) (-10 -7 (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1111 |#1| (-654 |#1|))) |%noBranch|))) +((-3225 (($ |#1| |#1|) 8)) (-1785 ((|#2| (-1 |#1| |#1|) $) 16)) (-2939 ((|#1| $) 11)) (-2831 ((|#1| $) 13)) (-1961 (((-574) $) 9)) (-3470 ((|#1| $) 10)) (-1974 ((|#1| $) 12)) (-2136 ((|#2| (-654 $)) 18) ((|#2| $) 17)) (-1844 (($ |#1|) 6)) (-4266 (($ |#1| |#1|) 15)) (-2748 (($ $ (-574)) 14))) +(((-1111 |#1| |#2|) (-141) (-858) (-1165 |t#1|)) (T -1111)) +((-2136 (*1 *2 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1111 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1165 *4)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1165 *3)))) (-1785 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1111 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1165 *4))))) +(-13 (-1109 |t#1|) (-10 -8 (-15 -2136 (|t#2| (-654 $))) (-15 -2136 (|t#2| $)) (-15 -1785 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-628 |#1|) . T) ((-1109 |#1|) . T)) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3334 (((-1151) $) 12)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 18) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2050 (((-654 (-1151)) $) 10)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1112) (-13 (-1099) (-10 -8 (-15 -2050 ((-654 (-1151)) $)) (-15 -3334 ((-1151) $))))) (T -1112)) +((-2050 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1112)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1112))))) +(-13 (-1099) (-10 -8 (-15 -2050 ((-654 (-1151)) $)) (-15 -3334 ((-1151) $)))) +((-4353 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4302 (($ $ $) 10)) (-2533 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1113 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| |#2| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4302 (|#1| |#1| |#1|)) (-15 -2533 (|#1| |#1| |#2|)) (-15 -2533 (|#1| |#1| |#1|))) (-1114 |#2|) (-1116)) (T -1113)) +NIL +(-10 -8 (-15 -4353 (|#1| |#2| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4302 (|#1| |#1| |#1|)) (-15 -2533 (|#1| |#1| |#2|)) (-15 -2533 (|#1| |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-4353 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-4302 (($ $ $) 21)) (-1917 (((-112) $ $) 20)) (-3146 (((-112) $ (-781)) 36)) (-1515 (($) 26) (($ (-654 |#1|)) 25)) (-2172 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4459)))) (-3250 (($) 37 T CONST)) (-2804 (($ $) 60 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 44 (|has| $ (-6 -4459)))) (-2714 (((-112) $ $) 29)) (-2189 (((-112) $ (-781)) 35)) (-2036 (((-654 |#1|) $) 45 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 39)) (-1653 (((-112) $ (-781)) 34)) (-1489 (((-1175) $) 10)) (-3891 (($ $ $) 24)) (-3940 (((-1136) $) 11)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3449 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) 51 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 49 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 (-302 |#1|))) 48 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 30)) (-2754 (((-112) $) 33)) (-3336 (($) 32)) (-2533 (($ $ $) 23) (($ $ |#1|) 22)) (-3949 (((-781) |#1| $) 46 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4459)))) (-3157 (($ $) 31)) (-1844 (((-546) $) 61 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 52)) (-2951 (((-872) $) 12)) (-4269 (($) 28) (($ (-654 |#1|)) 27)) (-4069 (((-112) $ $) 9)) (-2020 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 38 (|has| $ (-6 -4459))))) +(((-1114 |#1|) (-141) (-1116)) (T -1114)) +((-2714 (*1 *2 *1 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-4269 (*1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-4269 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-1114 *3)))) (-1515 (*1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-1114 *3)))) (-3891 (*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-2533 (*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-2533 (*1 *1 *1 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-4302 (*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-1917 (*1 *2 *1 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-4353 (*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-4353 (*1 *1 *1 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-4353 (*1 *1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116))))) +(-13 (-1116) (-152 |t#1|) (-10 -8 (-6 -4449) (-15 -2714 ((-112) $ $)) (-15 -4269 ($)) (-15 -4269 ($ (-654 |t#1|))) (-15 -1515 ($)) (-15 -1515 ($ (-654 |t#1|))) (-15 -3891 ($ $ $)) (-15 -2533 ($ $ $)) (-15 -2533 ($ $ |t#1|)) (-15 -4302 ($ $ $)) (-15 -1917 ((-112) $ $)) (-15 -4353 ($ $ $)) (-15 -4353 ($ $ |t#1|)) (-15 -4353 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) . T) ((-1234) . T)) +((-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 8)) (-4069 (((-112) $ $) 12))) +(((-1115 |#1|) (-10 -8 (-15 -4069 ((-112) |#1| |#1|)) (-15 -1489 ((-1175) |#1|)) (-15 -3940 ((-1136) |#1|))) (-1116)) (T -1115)) +NIL +(-10 -8 (-15 -4069 ((-112) |#1| |#1|)) (-15 -1489 ((-1175) |#1|)) (-15 -3940 ((-1136) |#1|))) +((-2864 (((-112) $ $) 7)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) +(((-1116) (-141)) (T -1116)) +((-3940 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1136)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1175)))) (-4069 (*1 *2 *1 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-112))))) +(-13 (-102) (-623 (-872)) (-10 -8 (-15 -3940 ((-1136) $)) (-15 -1489 ((-1175) $)) (-15 -4069 ((-112) $ $)))) (((-102) . T) ((-623 (-872)) . T)) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) 36)) (-3116 (($ (-654 (-934))) 70)) (-3835 (((-3 $ "failed") $ (-934) (-934)) 81)) (-2834 (($) 40)) (-2231 (((-112) (-934) $) 42)) (-3271 (((-934) $) 64)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) 39)) (-2994 (((-3 $ "failed") $ (-934)) 77)) (-3939 (((-1135) $) NIL)) (-3819 (((-1283 $)) 47)) (-1547 (((-654 (-934)) $) 27)) (-2084 (((-781) $ (-934) (-934)) 78)) (-2950 (((-872) $) 32)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 24))) -(((-1116 |#1| |#2|) (-13 (-377) (-10 -8 (-15 -2994 ((-3 $ "failed") $ (-934))) (-15 -3835 ((-3 $ "failed") $ (-934) (-934))) (-15 -1547 ((-654 (-934)) $)) (-15 -3116 ($ (-654 (-934)))) (-15 -3819 ((-1283 $))) (-15 -2231 ((-112) (-934) $)) (-15 -2084 ((-781) $ (-934) (-934))))) (-934) (-934)) (T -1116)) -((-2994 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-934)) (-5 *1 (-1116 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3835 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-934)) (-5 *1 (-1116 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1116 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) (-3116 (*1 *1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1116 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) (-3819 (*1 *2) (-12 (-5 *2 (-1283 (-1116 *3 *4))) (-5 *1 (-1116 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) (-2231 (*1 *2 *3 *1) (-12 (-5 *3 (-934)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2084 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-781)) (-5 *1 (-1116 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-377) (-10 -8 (-15 -2994 ((-3 $ "failed") $ (-934))) (-15 -3835 ((-3 $ "failed") $ (-934) (-934))) (-15 -1547 ((-654 (-934)) $)) (-15 -3116 ($ (-654 (-934)))) (-15 -3819 ((-1283 $))) (-15 -2231 ((-112) (-934) $)) (-15 -2084 ((-781) $ (-934) (-934))))) -((-2863 (((-112) $ $) NIL)) (-1421 (($) NIL (|has| |#1| (-377)))) (-4352 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2627 (($ $ $) 81)) (-3415 (((-112) $ $) 82)) (-2818 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-1516 (($ (-654 |#1|)) NIL) (($) 13)) (-2551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1941 (($ |#1| $) 74 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4458)))) (-2834 (($) NIL (|has| |#1| (-377)))) (-1873 (((-654 |#1|) $) 19 (|has| $ (-6 -4458)))) (-3304 (((-112) $ $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-3632 ((|#1| $) 55 (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1593 ((|#1| $) 53 (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 34)) (-3271 (((-934) $) NIL (|has| |#1| (-377)))) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-1454 (($ $ $) 79)) (-1748 ((|#1| $) 25)) (-2609 (($ |#1| $) 69)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-3939 (((-1135) $) NIL)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3484 ((|#1| $) 27)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 21)) (-2833 (($) 11)) (-3728 (($ $ |#1|) NIL) (($ $ $) 80)) (-3667 (($) NIL) (($ (-654 |#1|)) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 16)) (-1845 (((-546) $) 50 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 62)) (-1883 (($ $) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) NIL)) (-4168 (((-781) $) NIL)) (-4268 (($ (-654 |#1|)) NIL) (($) 12)) (-3838 (((-112) $ $) NIL)) (-3180 (($ (-654 |#1|)) NIL)) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 52)) (-2876 (((-781) $) 10 (|has| $ (-6 -4458))))) -(((-1117 |#1|) (-435 |#1|) (-1115)) (T -1117)) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) 36)) (-3205 (($ (-654 (-935))) 70)) (-3658 (((-3 $ "failed") $ (-935) (-935)) 81)) (-2835 (($) 40)) (-4134 (((-112) (-935) $) 42)) (-3383 (((-935) $) 64)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) 39)) (-1404 (((-3 $ "failed") $ (-935)) 77)) (-3940 (((-1136) $) NIL)) (-3916 (((-1284 $)) 47)) (-3123 (((-654 (-935)) $) 27)) (-2083 (((-781) $ (-935) (-935)) 78)) (-2951 (((-872) $) 32)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 24))) +(((-1117 |#1| |#2|) (-13 (-377) (-10 -8 (-15 -1404 ((-3 $ "failed") $ (-935))) (-15 -3658 ((-3 $ "failed") $ (-935) (-935))) (-15 -3123 ((-654 (-935)) $)) (-15 -3205 ($ (-654 (-935)))) (-15 -3916 ((-1284 $))) (-15 -4134 ((-112) (-935) $)) (-15 -2083 ((-781) $ (-935) (-935))))) (-935) (-935)) (T -1117)) +((-1404 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-935)) (-5 *1 (-1117 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3658 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-935)) (-5 *1 (-1117 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1117 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))) (-3205 (*1 *1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1117 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))) (-3916 (*1 *2) (-12 (-5 *2 (-1284 (-1117 *3 *4))) (-5 *1 (-1117 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))) (-4134 (*1 *2 *3 *1) (-12 (-5 *3 (-935)) (-5 *2 (-112)) (-5 *1 (-1117 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2083 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-781)) (-5 *1 (-1117 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-377) (-10 -8 (-15 -1404 ((-3 $ "failed") $ (-935))) (-15 -3658 ((-3 $ "failed") $ (-935) (-935))) (-15 -3123 ((-654 (-935)) $)) (-15 -3205 ($ (-654 (-935)))) (-15 -3916 ((-1284 $))) (-15 -4134 ((-112) (-935) $)) (-15 -2083 ((-781) $ (-935) (-935))))) +((-2864 (((-112) $ $) NIL)) (-3432 (($) NIL (|has| |#1| (-377)))) (-4353 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-4302 (($ $ $) 81)) (-1917 (((-112) $ $) 82)) (-3146 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-1515 (($ (-654 |#1|)) NIL) (($) 13)) (-1923 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2424 (($ |#1| $) 74 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4459)))) (-2835 (($) NIL (|has| |#1| (-377)))) (-1871 (((-654 |#1|) $) 19 (|has| $ (-6 -4459)))) (-2714 (((-112) $ $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3634 ((|#1| $) 55 (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4380 ((|#1| $) 53 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 34)) (-3383 (((-935) $) NIL (|has| |#1| (-377)))) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-3891 (($ $ $) 79)) (-2375 ((|#1| $) 25)) (-3285 (($ |#1| $) 69)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-3940 (((-1136) $) NIL)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3801 ((|#1| $) 27)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 21)) (-3336 (($) 11)) (-2533 (($ $ |#1|) NIL) (($ $ $) 80)) (-3162 (($) NIL) (($ (-654 |#1|)) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 16)) (-1844 (((-546) $) 50 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 62)) (-2305 (($ $) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) NIL)) (-2152 (((-781) $) NIL)) (-4269 (($ (-654 |#1|)) NIL) (($) 12)) (-4069 (((-112) $ $) NIL)) (-2829 (($ (-654 |#1|)) NIL)) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 52)) (-2877 (((-781) $) 10 (|has| $ (-6 -4459))))) +(((-1118 |#1|) (-435 |#1|) (-1116)) (T -1118)) NIL (-435 |#1|) -((-2863 (((-112) $ $) 7)) (-4250 (((-112) $) 33)) (-3978 ((|#2| $) 28)) (-3454 (((-112) $) 34)) (-3231 ((|#1| $) 29)) (-1615 (((-112) $) 36)) (-1634 (((-112) $) 38)) (-1925 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-4317 (((-112) $) 32)) (-3999 ((|#3| $) 27)) (-3939 (((-1135) $) 11)) (-4185 (((-112) $) 31)) (-2395 ((|#4| $) 26)) (-1455 ((|#5| $) 25)) (-4095 (((-112) $ $) 39)) (-2208 (($ $ (-574)) 41) (($ $ (-654 (-574))) 40)) (-4281 (((-654 $) $) 30)) (-1845 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-654 $)) 42)) (-2950 (((-872) $) 12)) (-1550 (($ $) 23)) (-3730 (($ $) 24)) (-3838 (((-112) $ $) 9)) (-3677 (((-112) $) 37)) (-2985 (((-112) $ $) 6)) (-2876 (((-574) $) 22))) -(((-1118 |#1| |#2| |#3| |#4| |#5|) (-141) (-1115) (-1115) (-1115) (-1115) (-1115)) (T -1118)) -((-4095 (*1 *2 *1 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-4281 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-654 *1)) (-4 *1 (-1118 *3 *4 *5 *6 *7)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *2 *4 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *2 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *2 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *2)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) (-3730 (*1 *1 *1) (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *2 (-1115)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)))) (-1550 (*1 *1 *1) (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *2 (-1115)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-574))))) -(-13 (-1115) (-628 |t#1|) (-628 |t#2|) (-628 |t#3|) (-628 |t#4|) (-628 |t#4|) (-628 |t#5|) (-628 (-654 $)) (-294 (-574) $) (-294 (-654 (-574)) $) (-10 -8 (-15 -4095 ((-112) $ $)) (-15 -1634 ((-112) $)) (-15 -3677 ((-112) $)) (-15 -1615 ((-112) $)) (-15 -1925 ((-112) $)) (-15 -3454 ((-112) $)) (-15 -4250 ((-112) $)) (-15 -4317 ((-112) $)) (-15 -4185 ((-112) $)) (-15 -4281 ((-654 $) $)) (-15 -3231 (|t#1| $)) (-15 -3978 (|t#2| $)) (-15 -3999 (|t#3| $)) (-15 -2395 (|t#4| $)) (-15 -1455 (|t#5| $)) (-15 -3730 ($ $)) (-15 -1550 ($ $)) (-15 -2876 ((-574) $)))) -(((-102) . T) ((-623 (-872)) . T) ((-628 (-654 $)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 |#4|) . T) ((-628 |#5|) . T) ((-294 (-574) $) . T) ((-294 (-654 (-574)) $) . T) ((-1115) . T) ((-1233) . T)) -((-2863 (((-112) $ $) NIL)) (-4250 (((-112) $) NIL)) (-3978 (((-1192) $) NIL)) (-3454 (((-112) $) NIL)) (-3231 (((-1174) $) NIL)) (-1615 (((-112) $) NIL)) (-1634 (((-112) $) NIL)) (-1925 (((-112) $) NIL)) (-3945 (((-1174) $) NIL)) (-4317 (((-112) $) NIL)) (-3999 (((-574) $) NIL)) (-3939 (((-1135) $) NIL)) (-4185 (((-112) $) NIL)) (-2395 (((-227) $) NIL)) (-1455 (((-872) $) NIL)) (-4095 (((-112) $ $) NIL)) (-2208 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4281 (((-654 $) $) NIL)) (-1845 (($ (-1174)) NIL) (($ (-1192)) NIL) (($ (-574)) NIL) (($ (-227)) NIL) (($ (-872)) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL)) (-1550 (($ $) NIL)) (-3730 (($ $) NIL)) (-3838 (((-112) $ $) NIL)) (-3677 (((-112) $) NIL)) (-2985 (((-112) $ $) NIL)) (-2876 (((-574) $) NIL))) -(((-1119) (-1118 (-1174) (-1192) (-574) (-227) (-872))) (T -1119)) -NIL -(-1118 (-1174) (-1192) (-574) (-227) (-872)) -((-2863 (((-112) $ $) NIL)) (-4250 (((-112) $) 45)) (-3978 ((|#2| $) 48)) (-3454 (((-112) $) 20)) (-3231 ((|#1| $) 21)) (-1615 (((-112) $) 42)) (-1634 (((-112) $) 14)) (-1925 (((-112) $) 44)) (-3945 (((-1174) $) NIL)) (-4317 (((-112) $) 46)) (-3999 ((|#3| $) 50)) (-3939 (((-1135) $) NIL)) (-4185 (((-112) $) 47)) (-2395 ((|#4| $) 49)) (-1455 ((|#5| $) 51)) (-4095 (((-112) $ $) 41)) (-2208 (($ $ (-574)) 62) (($ $ (-654 (-574))) 64)) (-4281 (((-654 $) $) 27)) (-1845 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-654 $)) 52)) (-2950 (((-872) $) 28)) (-1550 (($ $) 26)) (-3730 (($ $) 58)) (-3838 (((-112) $ $) NIL)) (-3677 (((-112) $) 23)) (-2985 (((-112) $ $) 40)) (-2876 (((-574) $) 60))) -(((-1120 |#1| |#2| |#3| |#4| |#5|) (-1118 |#1| |#2| |#3| |#4| |#5|) (-1115) (-1115) (-1115) (-1115) (-1115)) (T -1120)) -NIL -(-1118 |#1| |#2| |#3| |#4| |#5|) -((-3741 (((-1288) $) 22)) (-3714 (($ (-1192) (-444) |#2|) 11)) (-2950 (((-872) $) 16))) -(((-1121 |#1| |#2|) (-13 (-405) (-10 -8 (-15 -3714 ($ (-1192) (-444) |#2|)))) (-1115) (-440 |#1|)) (T -1121)) -((-3714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-444)) (-4 *5 (-1115)) (-5 *1 (-1121 *5 *4)) (-4 *4 (-440 *5))))) -(-13 (-405) (-10 -8 (-15 -3714 ($ (-1192) (-444) |#2|)))) -((-3935 (((-112) |#5| |#5|) 44)) (-1990 (((-112) |#5| |#5|) 59)) (-3052 (((-112) |#5| (-654 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-2380 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-3035 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) 70)) (-3897 (((-1288)) 32)) (-4093 (((-1288) (-1174) (-1174) (-1174)) 28)) (-2036 (((-654 |#5|) (-654 |#5|)) 101)) (-3464 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)))) 93)) (-1880 (((-654 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 123)) (-4388 (((-112) |#5| |#5|) 53)) (-3082 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2699 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-4321 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-2326 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-2927 (((-3 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-2161 (((-654 |#5|) (-654 |#5|)) 49))) -(((-1122 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4093 ((-1288) (-1174) (-1174) (-1174))) (-15 -3897 ((-1288))) (-15 -3935 ((-112) |#5| |#5|)) (-15 -2161 ((-654 |#5|) (-654 |#5|))) (-15 -4388 ((-112) |#5| |#5|)) (-15 -1990 ((-112) |#5| |#5|)) (-15 -2380 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2699 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4321 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2326 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3082 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3052 ((-112) |#5| |#5|)) (-15 -3052 ((-112) |#5| (-654 |#5|))) (-15 -2036 ((-654 |#5|) (-654 |#5|))) (-15 -3035 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)))) (-15 -3464 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) (-15 -1880 ((-654 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2927 ((-3 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -1122)) -((-2927 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| -4095 (-654 *9)) (|:| -4064 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1122 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1086 *6 *7 *8 *9)))) (-1880 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1086 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4095 (-654 *9)) (|:| -4064 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1122 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4064 *7)))) (-4 *6 (-1080 *3 *4 *5)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1122 *3 *4 *5 *6 *7)))) (-3035 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4064 *8))) (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *8)))) (-2036 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-1122 *3 *4 *5 *6 *7)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1122 *5 *6 *7 *8 *3)))) (-3052 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-3082 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-2326 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-4321 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-2699 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-2380 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-1990 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-4388 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-2161 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-1122 *3 *4 *5 *6 *7)))) (-3935 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-3897 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-4093 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) -(-10 -7 (-15 -4093 ((-1288) (-1174) (-1174) (-1174))) (-15 -3897 ((-1288))) (-15 -3935 ((-112) |#5| |#5|)) (-15 -2161 ((-654 |#5|) (-654 |#5|))) (-15 -4388 ((-112) |#5| |#5|)) (-15 -1990 ((-112) |#5| |#5|)) (-15 -2380 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2699 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4321 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2326 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3082 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3052 ((-112) |#5| |#5|)) (-15 -3052 ((-112) |#5| (-654 |#5|))) (-15 -2036 ((-654 |#5|) (-654 |#5|))) (-15 -3035 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)))) (-15 -3464 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) (-15 -1880 ((-654 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2927 ((-3 (-2 (|:| -4095 (-654 |#4|)) (|:| -4064 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-2481 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#5|) 108)) (-2002 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#4| |#4| |#5|) 80)) (-2193 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|) 102)) (-3904 (((-654 |#5|) |#4| |#5|) 124)) (-3670 (((-654 |#5|) |#4| |#5|) 131)) (-1991 (((-654 |#5|) |#4| |#5|) 132)) (-2106 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|) 109)) (-2462 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|) 130)) (-3579 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3771 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#3| (-112)) 92) (((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3638 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|) 87)) (-3142 (((-1288)) 36)) (-3698 (((-1288)) 25)) (-3427 (((-1288) (-1174) (-1174) (-1174)) 32)) (-4006 (((-1288) (-1174) (-1174) (-1174)) 21))) -(((-1123 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4006 ((-1288) (-1174) (-1174) (-1174))) (-15 -3698 ((-1288))) (-15 -3427 ((-1288) (-1174) (-1174) (-1174))) (-15 -3142 ((-1288))) (-15 -2002 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -3771 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3771 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#3| (-112))) (-15 -3638 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -2193 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -3579 ((-112) |#4| |#5|)) (-15 -2106 ((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|)) (-15 -3904 ((-654 |#5|) |#4| |#5|)) (-15 -2462 ((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|)) (-15 -3670 ((-654 |#5|) |#4| |#5|)) (-15 -3579 ((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|)) (-15 -1991 ((-654 |#5|) |#4| |#5|)) (-15 -2481 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -1123)) -((-2481 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-1991 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3579 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3670 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-2462 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3904 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-2106 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3579 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-2193 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3638 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4064 *9)))) (-5 *5 (-112)) (-4 *8 (-1080 *6 *7 *4)) (-4 *9 (-1086 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4064 *9)))) (-5 *1 (-1123 *6 *7 *4 *8 *9)))) (-3771 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) (-5 *1 (-1123 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) (-2002 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3142 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-3427 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-3698 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-4006 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) -(-10 -7 (-15 -4006 ((-1288) (-1174) (-1174) (-1174))) (-15 -3698 ((-1288))) (-15 -3427 ((-1288) (-1174) (-1174) (-1174))) (-15 -3142 ((-1288))) (-15 -2002 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -3771 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3771 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) |#3| (-112))) (-15 -3638 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -2193 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#4| |#5|)) (-15 -3579 ((-112) |#4| |#5|)) (-15 -2106 ((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|)) (-15 -3904 ((-654 |#5|) |#4| |#5|)) (-15 -2462 ((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|)) (-15 -3670 ((-654 |#5|) |#4| |#5|)) (-15 -3579 ((-654 (-2 (|:| |val| (-112)) (|:| -4064 |#5|))) |#4| |#5|)) (-15 -1991 ((-654 |#5|) |#4| |#5|)) (-15 -2481 ((-654 (-2 (|:| |val| |#4|) (|:| -4064 |#5|))) |#4| |#5|))) -((-2863 (((-112) $ $) 7)) (-4205 (((-654 (-2 (|:| -1389 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) 86)) (-1721 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4349 (((-654 |#3|) $) 34)) (-3278 (((-112) $) 27)) (-3814 (((-112) $) 18 (|has| |#1| (-566)))) (-3522 (((-112) |#4| $) 102) (((-112) $) 98)) (-3885 ((|#4| |#4| $) 93)) (-3296 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| $) 127)) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#3|) 28)) (-2818 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 80)) (-3831 (($) 46 T CONST)) (-4241 (((-112) $) 23 (|has| |#1| (-566)))) (-3297 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2860 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2450 (((-112) $) 26 (|has| |#1| (-566)))) (-3665 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4010 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1438 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2934 (((-3 $ "failed") $) 83)) (-1685 ((|#4| |#4| $) 90)) (-2560 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3369 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4037 ((|#4| |#4| $) 88)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1426 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) 106)) (-2667 (((-112) |#4| $) 137)) (-2797 (((-112) |#4| $) 134)) (-1566 (((-112) |#4| $) 138) (((-112) $) 135)) (-1873 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-3762 (((-112) |#4| $) 105) (((-112) $) 104)) (-2968 ((|#3| $) 35)) (-2224 (((-112) $ (-781)) 44)) (-2247 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) 48)) (-2740 (((-654 |#3|) $) 33)) (-2080 (((-112) |#3| $) 32)) (-3625 (((-112) $ (-781)) 43)) (-3945 (((-1174) $) 10)) (-4258 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2971 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| |#4| $) 128)) (-3333 (((-3 |#4| "failed") $) 84)) (-2133 (((-654 $) |#4| $) 130)) (-1537 (((-3 (-112) (-654 $)) |#4| $) 133)) (-1884 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1454 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3750 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-3981 (((-654 |#4|) $) 108)) (-2397 (((-112) |#4| $) 100) (((-112) $) 96)) (-1576 ((|#4| |#4| $) 91)) (-2326 (((-112) $ $) 111)) (-3081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1548 (((-112) |#4| $) 101) (((-112) $) 97)) (-3503 ((|#4| |#4| $) 92)) (-3939 (((-1135) $) 11)) (-2924 (((-3 |#4| "failed") $) 85)) (-2294 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2200 (((-3 $ "failed") $ |#4|) 79)) (-2115 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-2000 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) 39)) (-2880 (((-112) $) 42)) (-2833 (($) 41)) (-3584 (((-781) $) 107)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1845 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-1689 (($ $ |#3|) 29)) (-2639 (($ $ |#3|) 31)) (-4330 (($ $) 89)) (-3386 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2706 (((-781) $) 77 (|has| |#3| (-377)))) (-3838 (((-112) $ $) 9)) (-2270 (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1587 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2536 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-1437 (((-654 |#3|) $) 82)) (-1651 (((-112) |#4| $) 136)) (-1469 (((-112) |#3| $) 81)) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) -(((-1124 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -1124)) -NIL -(-13 (-1086 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-991 |#1| |#2| |#3| |#4|) . T) ((-1086 |#1| |#2| |#3| |#4|) . T) ((-1115) . T) ((-1226 |#1| |#2| |#3| |#4|) . T) ((-1233) . T)) -((-1761 (((-654 (-574)) (-574) (-574) (-574)) 38)) (-3495 (((-654 (-574)) (-574) (-574) (-574)) 28)) (-2646 (((-654 (-574)) (-574) (-574) (-574)) 33)) (-1357 (((-574) (-574) (-574)) 21)) (-3804 (((-1283 (-574)) (-654 (-574)) (-1283 (-574)) (-574)) 76) (((-1283 (-574)) (-1283 (-574)) (-1283 (-574)) (-574)) 71)) (-3445 (((-654 (-574)) (-654 (-934)) (-654 (-574)) (-112)) 54)) (-3065 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 75)) (-3174 (((-699 (-574)) (-654 (-934)) (-654 (-574))) 59)) (-1394 (((-654 (-699 (-574))) (-654 (-934))) 64)) (-3093 (((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 79)) (-1939 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574))) 89))) -(((-1125) (-10 -7 (-15 -1939 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -3093 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -1394 ((-654 (-699 (-574))) (-654 (-934)))) (-15 -3174 ((-699 (-574)) (-654 (-934)) (-654 (-574)))) (-15 -3065 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3445 ((-654 (-574)) (-654 (-934)) (-654 (-574)) (-112))) (-15 -3804 ((-1283 (-574)) (-1283 (-574)) (-1283 (-574)) (-574))) (-15 -3804 ((-1283 (-574)) (-654 (-574)) (-1283 (-574)) (-574))) (-15 -1357 ((-574) (-574) (-574))) (-15 -2646 ((-654 (-574)) (-574) (-574) (-574))) (-15 -3495 ((-654 (-574)) (-574) (-574) (-574))) (-15 -1761 ((-654 (-574)) (-574) (-574) (-574))))) (T -1125)) -((-1761 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574)))) (-3495 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574)))) (-2646 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574)))) (-1357 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1125)))) (-3804 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1283 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574)) (-5 *1 (-1125)))) (-3804 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1283 (-574))) (-5 *3 (-574)) (-5 *1 (-1125)))) (-3445 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-934))) (-5 *4 (-112)) (-5 *1 (-1125)))) (-3065 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1125)))) (-3174 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-934))) (-5 *4 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1125)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1125)))) (-3093 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1125)))) (-1939 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1125))))) -(-10 -7 (-15 -1939 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -3093 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -1394 ((-654 (-699 (-574))) (-654 (-934)))) (-15 -3174 ((-699 (-574)) (-654 (-934)) (-654 (-574)))) (-15 -3065 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3445 ((-654 (-574)) (-654 (-934)) (-654 (-574)) (-112))) (-15 -3804 ((-1283 (-574)) (-1283 (-574)) (-1283 (-574)) (-574))) (-15 -3804 ((-1283 (-574)) (-654 (-574)) (-1283 (-574)) (-574))) (-15 -1357 ((-574) (-574) (-574))) (-15 -2646 ((-654 (-574)) (-574) (-574) (-574))) (-15 -3495 ((-654 (-574)) (-574) (-574) (-574))) (-15 -1761 ((-654 (-574)) (-574) (-574) (-574)))) -((** (($ $ (-934)) 10))) -(((-1126 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-934)))) (-1127)) (T -1126)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-934)))) -((-2863 (((-112) $ $) 7)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6)) (** (($ $ (-934)) 14)) (* (($ $ $) 15))) -(((-1127) (-141)) (T -1127)) -((* (*1 *1 *1 *1) (-4 *1 (-1127))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1127)) (-5 *2 (-934))))) -(-13 (-1115) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-934))))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL (|has| |#3| (-1115)))) (-3520 (((-112) $) NIL (-2832 (|has| |#3| (-132)) (|has| |#3| (-736))))) (-3196 (($ (-934)) NIL (|has| |#3| (-1064)))) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-2620 (($ $ $) NIL (|has| |#3| (-803)))) (-1597 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-2818 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#3| (-377)))) (-3134 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1115)))) (-2216 (((-574) $) NIL (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) ((|#3| $) NIL (|has| |#3| (-1115)))) (-3465 (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (((-2 (|:| -4047 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 $) (-1283 $)) NIL (|has| |#3| (-1064))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1064))) (((-699 |#3|) (-1283 $)) NIL (|has| |#3| (-1064)))) (-3911 (((-3 $ "failed") $) NIL (|has| |#3| (-1064)))) (-2834 (($) NIL (|has| |#3| (-377)))) (-2472 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#3| $ (-574)) 12)) (-1873 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-3372 (((-112) $) NIL (|has| |#3| (-1064)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#3| (-860)))) (-2247 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#3| (-860)))) (-2461 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#3| |#3|) $) NIL)) (-3271 (((-934) $) NIL (|has| |#3| (-377)))) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#3| (-1115)))) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#3| (-377)))) (-3939 (((-1135) $) NIL (|has| |#3| (-1115)))) (-2924 ((|#3| $) NIL (|has| (-574) (-860)))) (-4276 (($ $ |#3|) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-2379 (((-654 |#3|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) NIL)) (-3036 ((|#3| $ $) NIL (|has| |#3| (-1064)))) (-4246 (($ (-1283 |#3|)) NIL)) (-3480 (((-135)) NIL (|has| |#3| (-372)))) (-3878 (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1064))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1064)))) (-3948 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#3|) $) NIL) (($ (-574)) NIL (-2832 (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (|has| |#3| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) (($ |#3|) NIL (|has| |#3| (-1115))) (((-872) $) NIL (|has| |#3| (-623 (-872))))) (-4019 (((-781)) NIL (|has| |#3| (-1064)) CONST)) (-3838 (((-112) $ $) NIL (|has| |#3| (-1115)))) (-2980 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-2142 (($) NIL (-2832 (|has| |#3| (-132)) (|has| |#3| (-736))) CONST)) (-2154 (($) NIL (|has| |#3| (-1064)) CONST)) (-3583 (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1064))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1064)))) (-3041 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#3| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#3| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3009 (((-112) $ $) 24 (|has| |#3| (-860)))) (-3098 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3089 (($ $ $) NIL (|has| |#3| (-1064))) (($ $) NIL (|has| |#3| (-1064)))) (-3074 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-781)) NIL (|has| |#3| (-1064))) (($ $ (-934)) NIL (|has| |#3| (-1064)))) (* (($ (-574) $) NIL (|has| |#3| (-1064))) (($ $ $) NIL (|has| |#3| (-1064))) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ (-781) $) NIL (|has| |#3| (-132))) (($ (-934) $) NIL (|has| |#3| (-25)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1128 |#1| |#2| |#3|) (-244 |#1| |#3|) (-781) (-781) (-803)) (T -1128)) +((-2864 (((-112) $ $) 7)) (-3065 (((-112) $) 33)) (-3979 ((|#2| $) 28)) (-4419 (((-112) $) 34)) (-3232 ((|#1| $) 29)) (-1908 (((-112) $) 36)) (-3518 (((-112) $) 38)) (-4258 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-2899 (((-112) $) 32)) (-4000 ((|#3| $) 27)) (-3940 (((-1136) $) 11)) (-3152 (((-112) $) 31)) (-2399 ((|#4| $) 26)) (-1455 ((|#5| $) 25)) (-4094 (((-112) $ $) 39)) (-2207 (($ $ (-574)) 41) (($ $ (-654 (-574))) 40)) (-4282 (((-654 $) $) 30)) (-1844 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-654 $)) 42)) (-2951 (((-872) $) 12)) (-4007 (($ $) 23)) (-4162 (($ $) 24)) (-4069 (((-112) $ $) 9)) (-2307 (((-112) $) 37)) (-2986 (((-112) $ $) 6)) (-2877 (((-574) $) 22))) +(((-1119 |#1| |#2| |#3| |#4| |#5|) (-141) (-1116) (-1116) (-1116) (-1116) (-1116)) (T -1119)) +((-4094 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-1908 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-4258 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-4419 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-4282 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-654 *1)) (-4 *1 (-1119 *3 *4 *5 *6 *7)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *2 *4 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *2 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *2 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *2)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))) (-4162 (*1 *1 *1) (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *2 (-1116)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)))) (-4007 (*1 *1 *1) (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *2 (-1116)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-574))))) +(-13 (-1116) (-628 |t#1|) (-628 |t#2|) (-628 |t#3|) (-628 |t#4|) (-628 |t#4|) (-628 |t#5|) (-628 (-654 $)) (-294 (-574) $) (-294 (-654 (-574)) $) (-10 -8 (-15 -4094 ((-112) $ $)) (-15 -3518 ((-112) $)) (-15 -2307 ((-112) $)) (-15 -1908 ((-112) $)) (-15 -4258 ((-112) $)) (-15 -4419 ((-112) $)) (-15 -3065 ((-112) $)) (-15 -2899 ((-112) $)) (-15 -3152 ((-112) $)) (-15 -4282 ((-654 $) $)) (-15 -3232 (|t#1| $)) (-15 -3979 (|t#2| $)) (-15 -4000 (|t#3| $)) (-15 -2399 (|t#4| $)) (-15 -1455 (|t#5| $)) (-15 -4162 ($ $)) (-15 -4007 ($ $)) (-15 -2877 ((-574) $)))) +(((-102) . T) ((-623 (-872)) . T) ((-628 (-654 $)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 |#4|) . T) ((-628 |#5|) . T) ((-294 (-574) $) . T) ((-294 (-654 (-574)) $) . T) ((-1116) . T) ((-1234) . T)) +((-2864 (((-112) $ $) NIL)) (-3065 (((-112) $) NIL)) (-3979 (((-1193) $) NIL)) (-4419 (((-112) $) NIL)) (-3232 (((-1175) $) NIL)) (-1908 (((-112) $) NIL)) (-3518 (((-112) $) NIL)) (-4258 (((-112) $) NIL)) (-1489 (((-1175) $) NIL)) (-2899 (((-112) $) NIL)) (-4000 (((-574) $) NIL)) (-3940 (((-1136) $) NIL)) (-3152 (((-112) $) NIL)) (-2399 (((-227) $) NIL)) (-1455 (((-872) $) NIL)) (-4094 (((-112) $ $) NIL)) (-2207 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4282 (((-654 $) $) NIL)) (-1844 (($ (-1175)) NIL) (($ (-1193)) NIL) (($ (-574)) NIL) (($ (-227)) NIL) (($ (-872)) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL)) (-4007 (($ $) NIL)) (-4162 (($ $) NIL)) (-4069 (((-112) $ $) NIL)) (-2307 (((-112) $) NIL)) (-2986 (((-112) $ $) NIL)) (-2877 (((-574) $) NIL))) +(((-1120) (-1119 (-1175) (-1193) (-574) (-227) (-872))) (T -1120)) +NIL +(-1119 (-1175) (-1193) (-574) (-227) (-872)) +((-2864 (((-112) $ $) NIL)) (-3065 (((-112) $) 45)) (-3979 ((|#2| $) 48)) (-4419 (((-112) $) 20)) (-3232 ((|#1| $) 21)) (-1908 (((-112) $) 42)) (-3518 (((-112) $) 14)) (-4258 (((-112) $) 44)) (-1489 (((-1175) $) NIL)) (-2899 (((-112) $) 46)) (-4000 ((|#3| $) 50)) (-3940 (((-1136) $) NIL)) (-3152 (((-112) $) 47)) (-2399 ((|#4| $) 49)) (-1455 ((|#5| $) 51)) (-4094 (((-112) $ $) 41)) (-2207 (($ $ (-574)) 62) (($ $ (-654 (-574))) 64)) (-4282 (((-654 $) $) 27)) (-1844 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-654 $)) 52)) (-2951 (((-872) $) 28)) (-4007 (($ $) 26)) (-4162 (($ $) 58)) (-4069 (((-112) $ $) NIL)) (-2307 (((-112) $) 23)) (-2986 (((-112) $ $) 40)) (-2877 (((-574) $) 60))) +(((-1121 |#1| |#2| |#3| |#4| |#5|) (-1119 |#1| |#2| |#3| |#4| |#5|) (-1116) (-1116) (-1116) (-1116) (-1116)) (T -1121)) +NIL +(-1119 |#1| |#2| |#3| |#4| |#5|) +((-3742 (((-1289) $) 22)) (-3715 (($ (-1193) (-444) |#2|) 11)) (-2951 (((-872) $) 16))) +(((-1122 |#1| |#2|) (-13 (-405) (-10 -8 (-15 -3715 ($ (-1193) (-444) |#2|)))) (-1116) (-440 |#1|)) (T -1122)) +((-3715 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-444)) (-4 *5 (-1116)) (-5 *1 (-1122 *5 *4)) (-4 *4 (-440 *5))))) +(-13 (-405) (-10 -8 (-15 -3715 ($ (-1193) (-444) |#2|)))) +((-3071 (((-112) |#5| |#5|) 44)) (-2805 (((-112) |#5| |#5|) 59)) (-4088 (((-112) |#5| (-654 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-4023 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-2034 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) 70)) (-1518 (((-1289)) 32)) (-2729 (((-1289) (-1175) (-1175) (-1175)) 28)) (-2155 (((-654 |#5|) (-654 |#5|)) 101)) (-3456 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) 93)) (-1432 (((-654 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 123)) (-3573 (((-112) |#5| |#5|) 53)) (-3378 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2114 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-1451 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-3877 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-3480 (((-3 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3497 (((-654 |#5|) (-654 |#5|)) 49))) +(((-1123 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2729 ((-1289) (-1175) (-1175) (-1175))) (-15 -1518 ((-1289))) (-15 -3071 ((-112) |#5| |#5|)) (-15 -3497 ((-654 |#5|) (-654 |#5|))) (-15 -3573 ((-112) |#5| |#5|)) (-15 -2805 ((-112) |#5| |#5|)) (-15 -4023 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2114 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1451 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3877 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3378 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4088 ((-112) |#5| |#5|)) (-15 -4088 ((-112) |#5| (-654 |#5|))) (-15 -2155 ((-654 |#5|) (-654 |#5|))) (-15 -2034 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3456 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-15 -1432 ((-654 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3480 ((-3 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -1123)) +((-3480 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| -4094 (-654 *9)) (|:| -4068 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1123 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1087 *6 *7 *8 *9)))) (-1432 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1087 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4094 (-654 *9)) (|:| -4068 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1123 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4068 *7)))) (-4 *6 (-1081 *3 *4 *5)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1123 *3 *4 *5 *6 *7)))) (-2034 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *8)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-1123 *3 *4 *5 *6 *7)))) (-4088 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1123 *5 *6 *7 *8 *3)))) (-4088 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3378 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3877 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-1451 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-2114 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-4023 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-2805 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3573 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-1123 *3 *4 *5 *6 *7)))) (-3071 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-1518 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-2729 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))) +(-10 -7 (-15 -2729 ((-1289) (-1175) (-1175) (-1175))) (-15 -1518 ((-1289))) (-15 -3071 ((-112) |#5| |#5|)) (-15 -3497 ((-654 |#5|) (-654 |#5|))) (-15 -3573 ((-112) |#5| |#5|)) (-15 -2805 ((-112) |#5| |#5|)) (-15 -4023 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2114 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1451 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3877 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3378 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4088 ((-112) |#5| |#5|)) (-15 -4088 ((-112) |#5| (-654 |#5|))) (-15 -2155 ((-654 |#5|) (-654 |#5|))) (-15 -2034 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3456 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-15 -1432 ((-654 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3480 ((-3 (-2 (|:| -4094 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2811 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|) 108)) (-3959 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|) 80)) (-2158 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|) 102)) (-3322 (((-654 |#5|) |#4| |#5|) 124)) (-2127 (((-654 |#5|) |#4| |#5|) 131)) (-1446 (((-654 |#5|) |#4| |#5|) 132)) (-3024 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|) 109)) (-3069 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|) 130)) (-3755 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1470 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112)) 92) (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3351 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|) 87)) (-1838 (((-1289)) 36)) (-3330 (((-1289)) 25)) (-2700 (((-1289) (-1175) (-1175) (-1175)) 32)) (-4381 (((-1289) (-1175) (-1175) (-1175)) 21))) +(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4381 ((-1289) (-1175) (-1175) (-1175))) (-15 -3330 ((-1289))) (-15 -2700 ((-1289) (-1175) (-1175) (-1175))) (-15 -1838 ((-1289))) (-15 -3959 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -1470 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1470 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112))) (-15 -3351 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -2158 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -3755 ((-112) |#4| |#5|)) (-15 -3024 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -3322 ((-654 |#5|) |#4| |#5|)) (-15 -3069 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -2127 ((-654 |#5|) |#4| |#5|)) (-15 -3755 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -1446 ((-654 |#5|) |#4| |#5|)) (-15 -2811 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -1124)) +((-2811 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1446 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3755 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2127 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3069 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3322 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3024 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3755 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2158 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3351 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1470 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) (-5 *5 (-112)) (-4 *8 (-1081 *6 *7 *4)) (-4 *9 (-1087 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4068 *9)))) (-5 *1 (-1124 *6 *7 *4 *8 *9)))) (-1470 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1124 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-3959 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1838 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-2700 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-3330 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-4381 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))) +(-10 -7 (-15 -4381 ((-1289) (-1175) (-1175) (-1175))) (-15 -3330 ((-1289))) (-15 -2700 ((-1289) (-1175) (-1175) (-1175))) (-15 -1838 ((-1289))) (-15 -3959 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -1470 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1470 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112))) (-15 -3351 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -2158 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -3755 ((-112) |#4| |#5|)) (-15 -3024 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -3322 ((-654 |#5|) |#4| |#5|)) (-15 -3069 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -2127 ((-654 |#5|) |#4| |#5|)) (-15 -3755 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -1446 ((-654 |#5|) |#4| |#5|)) (-15 -2811 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|))) +((-2864 (((-112) $ $) 7)) (-2298 (((-654 (-2 (|:| -1390 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) 86)) (-3656 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4350 (((-654 |#3|) $) 34)) (-1437 (((-112) $) 27)) (-2176 (((-112) $) 18 (|has| |#1| (-566)))) (-2972 (((-112) |#4| $) 102) (((-112) $) 98)) (-2104 ((|#4| |#4| $) 93)) (-2991 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 127)) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#3|) 28)) (-3146 (((-112) $ (-781)) 45)) (-2172 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 80)) (-3250 (($) 46 T CONST)) (-3721 (((-112) $) 23 (|has| |#1| (-566)))) (-3913 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2196 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3564 (((-112) $) 26 (|has| |#1| (-566)))) (-4434 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1855 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3406 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2214 (($ (-654 |#4|)) 36)) (-2935 (((-3 $ "failed") $) 83)) (-2660 ((|#4| |#4| $) 90)) (-2804 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-1857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3347 ((|#4| |#4| $) 88)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2830 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) 106)) (-1647 (((-112) |#4| $) 137)) (-4126 (((-112) |#4| $) 134)) (-3832 (((-112) |#4| $) 138) (((-112) $) 135)) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-3145 (((-112) |#4| $) 105) (((-112) $) 104)) (-4241 ((|#3| $) 35)) (-2189 (((-112) $ (-781)) 44)) (-2036 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2737 (((-654 |#3|) $) 33)) (-3161 (((-112) |#3| $) 32)) (-1653 (((-112) $ (-781)) 43)) (-1489 (((-1175) $) 10)) (-1900 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2623 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 128)) (-3334 (((-3 |#4| "failed") $) 84)) (-1976 (((-654 $) |#4| $) 130)) (-2659 (((-3 (-112) (-654 $)) |#4| $) 133)) (-3029 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3891 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3268 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-1957 (((-654 |#4|) $) 108)) (-3749 (((-112) |#4| $) 100) (((-112) $) 96)) (-2254 ((|#4| |#4| $) 91)) (-3877 (((-112) $ $) 111)) (-3581 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2712 (((-112) |#4| $) 101) (((-112) $) 97)) (-3173 ((|#4| |#4| $) 92)) (-3940 (((-1136) $) 11)) (-2925 (((-3 |#4| "failed") $) 85)) (-2183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4233 (((-3 $ "failed") $ |#4|) 79)) (-2433 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-3449 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) 39)) (-2754 (((-112) $) 42)) (-3336 (($) 41)) (-3580 (((-781) $) 107)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-1423 (($ $ |#3|) 29)) (-1671 (($ $ |#3|) 31)) (-2167 (($ $) 89)) (-2287 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2105 (((-781) $) 77 (|has| |#3| (-377)))) (-4069 (((-112) $ $) 9)) (-3917 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3912 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-3896 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2020 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-1642 (((-654 |#3|) $) 82)) (-2945 (((-112) |#4| $) 136)) (-3504 (((-112) |#3| $) 81)) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459))))) +(((-1125 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -1125)) +NIL +(-13 (-1087 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1087 |#1| |#2| |#3| |#4|) . T) ((-1116) . T) ((-1227 |#1| |#2| |#3| |#4|) . T) ((-1234) . T)) +((-2966 (((-654 (-574)) (-574) (-574) (-574)) 38)) (-3731 (((-654 (-574)) (-574) (-574) (-574)) 28)) (-2064 (((-654 (-574)) (-574) (-574) (-574)) 33)) (-3682 (((-574) (-574) (-574)) 21)) (-1689 (((-1284 (-574)) (-654 (-574)) (-1284 (-574)) (-574)) 76) (((-1284 (-574)) (-1284 (-574)) (-1284 (-574)) (-574)) 71)) (-2438 (((-654 (-574)) (-654 (-935)) (-654 (-574)) (-112)) 54)) (-1783 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 75)) (-2725 (((-699 (-574)) (-654 (-935)) (-654 (-574))) 59)) (-2773 (((-654 (-699 (-574))) (-654 (-935))) 64)) (-1904 (((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 79)) (-2960 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574))) 89))) +(((-1126) (-10 -7 (-15 -2960 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -1904 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -2773 ((-654 (-699 (-574))) (-654 (-935)))) (-15 -2725 ((-699 (-574)) (-654 (-935)) (-654 (-574)))) (-15 -1783 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -2438 ((-654 (-574)) (-654 (-935)) (-654 (-574)) (-112))) (-15 -1689 ((-1284 (-574)) (-1284 (-574)) (-1284 (-574)) (-574))) (-15 -1689 ((-1284 (-574)) (-654 (-574)) (-1284 (-574)) (-574))) (-15 -3682 ((-574) (-574) (-574))) (-15 -2064 ((-654 (-574)) (-574) (-574) (-574))) (-15 -3731 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2966 ((-654 (-574)) (-574) (-574) (-574))))) (T -1126)) +((-2966 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574)))) (-3731 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574)))) (-2064 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574)))) (-3682 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1126)))) (-1689 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1284 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574)) (-5 *1 (-1126)))) (-1689 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1284 (-574))) (-5 *3 (-574)) (-5 *1 (-1126)))) (-2438 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-935))) (-5 *4 (-112)) (-5 *1 (-1126)))) (-1783 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1126)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-935))) (-5 *4 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1126)))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1126)))) (-1904 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1126)))) (-2960 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1126))))) +(-10 -7 (-15 -2960 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -1904 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -2773 ((-654 (-699 (-574))) (-654 (-935)))) (-15 -2725 ((-699 (-574)) (-654 (-935)) (-654 (-574)))) (-15 -1783 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -2438 ((-654 (-574)) (-654 (-935)) (-654 (-574)) (-112))) (-15 -1689 ((-1284 (-574)) (-1284 (-574)) (-1284 (-574)) (-574))) (-15 -1689 ((-1284 (-574)) (-654 (-574)) (-1284 (-574)) (-574))) (-15 -3682 ((-574) (-574) (-574))) (-15 -2064 ((-654 (-574)) (-574) (-574) (-574))) (-15 -3731 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2966 ((-654 (-574)) (-574) (-574) (-574)))) +((** (($ $ (-935)) 10))) +(((-1127 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-935)))) (-1128)) (T -1127)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-935)))) +((-2864 (((-112) $ $) 7)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)) (** (($ $ (-935)) 14)) (* (($ $ $) 15))) +(((-1128) (-141)) (T -1128)) +((* (*1 *1 *1 *1) (-4 *1 (-1128))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1128)) (-5 *2 (-935))))) +(-13 (-1116) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-935))))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL (|has| |#3| (-1116)))) (-1431 (((-112) $) NIL (-2833 (|has| |#3| (-132)) (|has| |#3| (-736))))) (-1399 (($ (-935)) NIL (|has| |#3| (-1065)))) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1968 (($ $ $) NIL (|has| |#3| (-803)))) (-2600 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-3146 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#3| (-377)))) (-3135 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1116)))) (-2214 (((-574) $) NIL (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116)))) ((|#3| $) NIL (|has| |#3| (-1116)))) (-1831 (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (((-2 (|:| -3082 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 $) (-1284 $)) NIL (|has| |#3| (-1065))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1065))) (((-699 |#3|) (-1284 $)) NIL (|has| |#3| (-1065)))) (-4322 (((-3 $ "failed") $) NIL (|has| |#3| (-1065)))) (-2835 (($) NIL (|has| |#3| (-377)))) (-2473 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#3| $ (-574)) 12)) (-1871 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-4226 (((-112) $) NIL (|has| |#3| (-1065)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#3| (-860)))) (-2036 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#3| (-860)))) (-2462 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#3| |#3|) $) NIL)) (-3383 (((-935) $) NIL (|has| |#3| (-377)))) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#3| (-1116)))) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#3| (-377)))) (-3940 (((-1136) $) NIL (|has| |#3| (-1116)))) (-2925 ((|#3| $) NIL (|has| (-574) (-860)))) (-1822 (($ $ |#3|) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-2315 (((-654 |#3|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) NIL)) (-3918 ((|#3| $ $) NIL (|has| |#3| (-1065)))) (-4247 (($ (-1284 |#3|)) NIL)) (-2995 (((-135)) NIL (|has| |#3| (-372)))) (-3879 (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1065))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1065)))) (-3949 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#3|) $) NIL) (($ (-574)) NIL (-2833 (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (|has| |#3| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116)))) (($ |#3|) NIL (|has| |#3| (-1116))) (((-872) $) NIL (|has| |#3| (-623 (-872))))) (-2898 (((-781)) NIL (|has| |#3| (-1065)) CONST)) (-4069 (((-112) $ $) NIL (|has| |#3| (-1116)))) (-2020 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) NIL (-2833 (|has| |#3| (-132)) (|has| |#3| (-736))) CONST)) (-2153 (($) NIL (|has| |#3| (-1065)) CONST)) (-3584 (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1065))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1065)))) (-3042 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#3| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#3| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3009 (((-112) $ $) 24 (|has| |#3| (-860)))) (-3103 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3090 (($ $ $) NIL (|has| |#3| (-1065))) (($ $) NIL (|has| |#3| (-1065)))) (-3074 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-781)) NIL (|has| |#3| (-1065))) (($ $ (-935)) NIL (|has| |#3| (-1065)))) (* (($ (-574) $) NIL (|has| |#3| (-1065))) (($ $ $) NIL (|has| |#3| (-1065))) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ (-781) $) NIL (|has| |#3| (-132))) (($ (-935) $) NIL (|has| |#3| (-25)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1129 |#1| |#2| |#3|) (-244 |#1| |#3|) (-781) (-781) (-803)) (T -1129)) NIL (-244 |#1| |#3|) -((-2469 (((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 50)) (-1442 (((-574) (-1256 |#2| |#1|)) 94 (|has| |#1| (-462)))) (-2705 (((-574) (-1256 |#2| |#1|)) 76)) (-4391 (((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 58)) (-1346 (((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 93 (|has| |#1| (-462)))) (-1602 (((-654 |#1|) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 61)) (-2662 (((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 75))) -(((-1129 |#1| |#2|) (-10 -7 (-15 -2469 ((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -4391 ((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -1602 ((-654 |#1|) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -2662 ((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -2705 ((-574) (-1256 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -1346 ((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -1442 ((-574) (-1256 |#2| |#1|)))) |%noBranch|)) (-830) (-1192)) (T -1129)) -((-1442 (*1 *2 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5)))) (-1346 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5)))) (-2662 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5)))) (-1602 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-654 *4)) (-5 *1 (-1129 *4 *5)))) (-4391 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-654 (-1256 *5 *4))) (-5 *1 (-1129 *4 *5)) (-5 *3 (-1256 *5 *4)))) (-2469 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-654 (-1256 *5 *4))) (-5 *1 (-1129 *4 *5)) (-5 *3 (-1256 *5 *4))))) -(-10 -7 (-15 -2469 ((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -4391 ((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -1602 ((-654 |#1|) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -2662 ((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -2705 ((-574) (-1256 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -1346 ((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -1442 ((-574) (-1256 |#2| |#1|)))) |%noBranch|)) -((-2863 (((-112) $ $) NIL)) (-2053 (($ (-516) (-1133)) 13)) (-3131 (((-1133) $) 19)) (-2040 (((-516) $) 16)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 26) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1130) (-13 (-1098) (-10 -8 (-15 -2053 ($ (-516) (-1133))) (-15 -2040 ((-516) $)) (-15 -3131 ((-1133) $))))) (T -1130)) -((-2053 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1133)) (-5 *1 (-1130)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1130)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-1130))))) -(-13 (-1098) (-10 -8 (-15 -2053 ($ (-516) (-1133))) (-15 -2040 ((-516) $)) (-15 -3131 ((-1133) $)))) -((-3011 (((-3 (-574) "failed") |#2| (-1192) |#2| (-1174)) 19) (((-3 (-574) "failed") |#2| (-1192) (-853 |#2|)) 17) (((-3 (-574) "failed") |#2|) 60))) -(((-1131 |#1| |#2|) (-10 -7 (-15 -3011 ((-3 (-574) "failed") |#2|)) (-15 -3011 ((-3 (-574) "failed") |#2| (-1192) (-853 |#2|))) (-15 -3011 ((-3 (-574) "failed") |#2| (-1192) |#2| (-1174)))) (-13 (-566) (-1053 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1218) (-440 |#1|))) (T -1131)) -((-3011 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-1174)) (-4 *6 (-13 (-566) (-1053 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1131 *6 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))))) (-3011 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-853 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1131 *6 *3)))) (-3011 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1053 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1131 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4)))))) -(-10 -7 (-15 -3011 ((-3 (-574) "failed") |#2|)) (-15 -3011 ((-3 (-574) "failed") |#2| (-1192) (-853 |#2|))) (-15 -3011 ((-3 (-574) "failed") |#2| (-1192) |#2| (-1174)))) -((-3011 (((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|)) (-1174)) 38) (((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-853 (-417 (-965 |#1|)))) 33) (((-3 (-574) "failed") (-417 (-965 |#1|))) 14))) -(((-1132 |#1|) (-10 -7 (-15 -3011 ((-3 (-574) "failed") (-417 (-965 |#1|)))) (-15 -3011 ((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-853 (-417 (-965 |#1|))))) (-15 -3011 ((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|)) (-1174)))) (-462)) (T -1132)) -((-3011 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-417 (-965 *6))) (-5 *4 (-1192)) (-5 *5 (-1174)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1132 *6)))) (-3011 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-853 (-417 (-965 *6)))) (-5 *3 (-417 (-965 *6))) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1132 *6)))) (-3011 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-462)) (-5 *2 (-574)) (-5 *1 (-1132 *4))))) -(-10 -7 (-15 -3011 ((-3 (-574) "failed") (-417 (-965 |#1|)))) (-15 -3011 ((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-853 (-417 (-965 |#1|))))) (-15 -3011 ((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|)) (-1174)))) -((-2863 (((-112) $ $) NIL)) (-2349 (((-1197) $) 12)) (-2299 (((-654 (-1197)) $) 14)) (-3131 (($ (-654 (-1197)) (-1197)) 10)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 29)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 17))) -(((-1133) (-13 (-1115) (-10 -8 (-15 -3131 ($ (-654 (-1197)) (-1197))) (-15 -2349 ((-1197) $)) (-15 -2299 ((-654 (-1197)) $))))) (T -1133)) -((-3131 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1197))) (-5 *3 (-1197)) (-5 *1 (-1133)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1133)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1133))))) -(-13 (-1115) (-10 -8 (-15 -3131 ($ (-654 (-1197)) (-1197))) (-15 -2349 ((-1197) $)) (-15 -2299 ((-654 (-1197)) $)))) -((-1889 (((-324 (-574)) (-48)) 12))) -(((-1134) (-10 -7 (-15 -1889 ((-324 (-574)) (-48))))) (T -1134)) -((-1889 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1134))))) -(-10 -7 (-15 -1889 ((-324 (-574)) (-48)))) -((-2863 (((-112) $ $) NIL)) (-2889 (($ $) 44)) (-3520 (((-112) $) 70)) (-2118 (($ $ $) 53)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 98)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-3770 (($ $ $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3646 (($ $ $ $) 81)) (-3296 (($ $) NIL)) (-3954 (((-428 $) $) NIL)) (-3656 (((-112) $ $) NIL)) (-1496 (((-781)) 83)) (-3011 (((-574) $) NIL)) (-3932 (($ $ $) 78)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL)) (-2216 (((-574) $) NIL)) (-2799 (($ $ $) 64)) (-3465 (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 92) (((-699 (-574)) (-699 $)) 32) (((-699 (-574)) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1955 (((-3 (-417 (-574)) "failed") $) NIL)) (-1519 (((-112) $) NIL)) (-4188 (((-417 (-574)) $) NIL)) (-2834 (($) 95) (($ $) 96)) (-2811 (($ $ $) 63)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1782 (((-112) $) NIL)) (-1398 (($ $ $ $) NIL)) (-1674 (($ $ $) 93)) (-1913 (((-112) $) NIL)) (-3765 (($ $ $) NIL)) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-2107 (($ $ $) 52)) (-3372 (((-112) $) 72)) (-3512 (((-112) $) 69)) (-2085 (($ $) 45)) (-1353 (((-3 $ "failed") $) NIL)) (-1808 (((-112) $) 82)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2394 (($ $ $ $) 79)) (-3632 (($ $ $) 74) (($) 42 T CONST)) (-1593 (($ $ $) 73) (($) 41 T CONST)) (-3784 (($ $) NIL)) (-3271 (((-934) $) 88)) (-4108 (($ $) 77)) (-2848 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3945 (((-1174) $) NIL)) (-2953 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-2590 (($ (-934)) 87)) (-1614 (($ $) 57)) (-3939 (((-1135) $) 76)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) 67) (($ (-654 $)) NIL)) (-3289 (($ $) NIL)) (-4200 (((-428 $) $) NIL)) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3694 (((-112) $) NIL)) (-3364 (((-781) $) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 66)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-2310 (($ $) 58)) (-3156 (($ $) NIL)) (-1845 (((-574) $) 17) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL)) (-2950 (((-872) $) 35) (($ (-574)) 94) (($ $) NIL) (($ (-574)) 94)) (-4019 (((-781)) NIL T CONST)) (-3067 (((-112) $ $) NIL)) (-1832 (($ $ $) NIL)) (-3838 (((-112) $ $) NIL)) (-2643 (($) 40)) (-1842 (((-112) $ $) NIL)) (-2096 (($ $ $) 50)) (-1936 (($ $ $ $) 80)) (-3306 (($ $) 68)) (-2933 (($ $ $) 47)) (-2142 (($) 7 T CONST)) (-2257 (($ $ $) 51)) (-2154 (($) 39 T CONST)) (-4057 (((-1174) $) 26) (((-1174) $ (-112)) 27) (((-1288) (-832) $) 28) (((-1288) (-832) $ (-112)) 29)) (-2267 (($ $) 48)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2245 (($ $ $) 49)) (-3041 (((-112) $ $) 56)) (-3018 (((-112) $ $) 54)) (-2985 (((-112) $ $) 43)) (-3029 (((-112) $ $) 55)) (-3009 (((-112) $ $) 10)) (-2922 (($ $ $) 46)) (-3089 (($ $) 16) (($ $ $) 60)) (-3074 (($ $ $) 59)) (** (($ $ (-934)) NIL) (($ $ (-781)) 62)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 38) (($ $ $) 37) (($ (-574) $) 38))) -(((-1135) (-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4445) (-6 -4450) (-6 -4446) (-15 -2118 ($ $ $)) (-15 -2267 ($ $)) (-15 -2245 ($ $ $)) (-15 -2257 ($ $ $))))) (T -1135)) -((-2118 (*1 *1 *1 *1) (-5 *1 (-1135))) (-2267 (*1 *1 *1) (-5 *1 (-1135))) (-2245 (*1 *1 *1 *1) (-5 *1 (-1135))) (-2257 (*1 *1 *1 *1) (-5 *1 (-1135)))) -(-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4445) (-6 -4450) (-6 -4446) (-15 -2118 ($ $ $)) (-15 -2267 ($ $)) (-15 -2245 ($ $ $)) (-15 -2257 ($ $ $)))) +((-2322 (((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 50)) (-4244 (((-574) (-1257 |#2| |#1|)) 94 (|has| |#1| (-462)))) (-4255 (((-574) (-1257 |#2| |#1|)) 76)) (-3586 (((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 58)) (-1922 (((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 93 (|has| |#1| (-462)))) (-2369 (((-654 |#1|) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 61)) (-2614 (((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 75))) +(((-1130 |#1| |#2|) (-10 -7 (-15 -2322 ((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -3586 ((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -2369 ((-654 |#1|) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -2614 ((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -4255 ((-574) (-1257 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -1922 ((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -4244 ((-574) (-1257 |#2| |#1|)))) |%noBranch|)) (-830) (-1193)) (T -1130)) +((-4244 (*1 *2 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))) (-1922 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))) (-2614 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))) (-2369 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-654 *4)) (-5 *1 (-1130 *4 *5)))) (-3586 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-654 (-1257 *5 *4))) (-5 *1 (-1130 *4 *5)) (-5 *3 (-1257 *5 *4)))) (-2322 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-654 (-1257 *5 *4))) (-5 *1 (-1130 *4 *5)) (-5 *3 (-1257 *5 *4))))) +(-10 -7 (-15 -2322 ((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -3586 ((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -2369 ((-654 |#1|) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -2614 ((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -4255 ((-574) (-1257 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -1922 ((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -4244 ((-574) (-1257 |#2| |#1|)))) |%noBranch|)) +((-2864 (((-112) $ $) NIL)) (-3264 (($ (-516) (-1134)) 13)) (-3132 (((-1134) $) 19)) (-2039 (((-516) $) 16)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 26) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1131) (-13 (-1099) (-10 -8 (-15 -3264 ($ (-516) (-1134))) (-15 -2039 ((-516) $)) (-15 -3132 ((-1134) $))))) (T -1131)) +((-3264 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1134)) (-5 *1 (-1131)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1131)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1131))))) +(-13 (-1099) (-10 -8 (-15 -3264 ($ (-516) (-1134))) (-15 -2039 ((-516) $)) (-15 -3132 ((-1134) $)))) +((-2472 (((-3 (-574) "failed") |#2| (-1193) |#2| (-1175)) 19) (((-3 (-574) "failed") |#2| (-1193) (-853 |#2|)) 17) (((-3 (-574) "failed") |#2|) 60))) +(((-1132 |#1| |#2|) (-10 -7 (-15 -2472 ((-3 (-574) "failed") |#2|)) (-15 -2472 ((-3 (-574) "failed") |#2| (-1193) (-853 |#2|))) (-15 -2472 ((-3 (-574) "failed") |#2| (-1193) |#2| (-1175)))) (-13 (-566) (-1054 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1219) (-440 |#1|))) (T -1132)) +((-2472 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-1175)) (-4 *6 (-13 (-566) (-1054 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1132 *6 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))))) (-2472 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-853 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1132 *6 *3)))) (-2472 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1054 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1132 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4)))))) +(-10 -7 (-15 -2472 ((-3 (-574) "failed") |#2|)) (-15 -2472 ((-3 (-574) "failed") |#2| (-1193) (-853 |#2|))) (-15 -2472 ((-3 (-574) "failed") |#2| (-1193) |#2| (-1175)))) +((-2472 (((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|)) (-1175)) 38) (((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-853 (-417 (-966 |#1|)))) 33) (((-3 (-574) "failed") (-417 (-966 |#1|))) 14))) +(((-1133 |#1|) (-10 -7 (-15 -2472 ((-3 (-574) "failed") (-417 (-966 |#1|)))) (-15 -2472 ((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-853 (-417 (-966 |#1|))))) (-15 -2472 ((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|)) (-1175)))) (-462)) (T -1133)) +((-2472 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-417 (-966 *6))) (-5 *4 (-1193)) (-5 *5 (-1175)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1133 *6)))) (-2472 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-853 (-417 (-966 *6)))) (-5 *3 (-417 (-966 *6))) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1133 *6)))) (-2472 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-462)) (-5 *2 (-574)) (-5 *1 (-1133 *4))))) +(-10 -7 (-15 -2472 ((-3 (-574) "failed") (-417 (-966 |#1|)))) (-15 -2472 ((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-853 (-417 (-966 |#1|))))) (-15 -2472 ((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|)) (-1175)))) +((-2864 (((-112) $ $) NIL)) (-2350 (((-1198) $) 12)) (-2299 (((-654 (-1198)) $) 14)) (-3132 (($ (-654 (-1198)) (-1198)) 10)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 29)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 17))) +(((-1134) (-13 (-1116) (-10 -8 (-15 -3132 ($ (-654 (-1198)) (-1198))) (-15 -2350 ((-1198) $)) (-15 -2299 ((-654 (-1198)) $))))) (T -1134)) +((-3132 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1198))) (-5 *3 (-1198)) (-5 *1 (-1134)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1134)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1134))))) +(-13 (-1116) (-10 -8 (-15 -3132 ($ (-654 (-1198)) (-1198))) (-15 -2350 ((-1198) $)) (-15 -2299 ((-654 (-1198)) $)))) +((-1539 (((-324 (-574)) (-48)) 12))) +(((-1135) (-10 -7 (-15 -1539 ((-324 (-574)) (-48))))) (T -1135)) +((-1539 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1135))))) +(-10 -7 (-15 -1539 ((-324 (-574)) (-48)))) +((-2864 (((-112) $ $) NIL)) (-2890 (($ $) 44)) (-1431 (((-112) $) 70)) (-2117 (($ $ $) 53)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 98)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-4227 (($ $ $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-4382 (($ $ $ $) 81)) (-2991 (($ $) NIL)) (-1610 (((-428 $) $) NIL)) (-3245 (((-112) $ $) NIL)) (-1496 (((-781)) 83)) (-2472 (((-574) $) NIL)) (-3933 (($ $ $) 78)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL)) (-2214 (((-574) $) NIL)) (-2800 (($ $ $) 64)) (-1831 (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 92) (((-699 (-574)) (-699 $)) 32) (((-699 (-574)) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3577 (((-3 (-417 (-574)) "failed") $) NIL)) (-3839 (((-112) $) NIL)) (-2842 (((-417 (-574)) $) NIL)) (-2835 (($) 95) (($ $) 96)) (-2813 (($ $ $) 63)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3978 (((-112) $) NIL)) (-1894 (($ $ $ $) NIL)) (-3389 (($ $ $) 93)) (-3408 (((-112) $) NIL)) (-4159 (($ $ $) NIL)) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-2106 (($ $ $) 52)) (-4226 (((-112) $) 72)) (-1823 (((-112) $) 69)) (-2084 (($ $) 45)) (-2414 (((-3 $ "failed") $) NIL)) (-3182 (((-112) $) 82)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3398 (($ $ $ $) 79)) (-3634 (($ $ $) 74) (($) 42 T CONST)) (-4380 (($ $ $) 73) (($) 41 T CONST)) (-3785 (($ $) NIL)) (-3383 (((-935) $) 88)) (-4109 (($ $) 77)) (-2849 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1489 (((-1175) $) NIL)) (-3106 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-2591 (($ (-935)) 87)) (-1613 (($ $) 57)) (-3940 (((-1136) $) 76)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) 67) (($ (-654 $)) NIL)) (-4412 (($ $) NIL)) (-4202 (((-428 $) $) NIL)) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2120 (((-112) $) NIL)) (-2098 (((-781) $) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 66)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-2311 (($ $) 58)) (-3157 (($ $) NIL)) (-1844 (((-574) $) 17) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL)) (-2951 (((-872) $) 35) (($ (-574)) 94) (($ $) NIL) (($ (-574)) 94)) (-2898 (((-781)) NIL T CONST)) (-2325 (((-112) $ $) NIL)) (-3900 (($ $ $) NIL)) (-4069 (((-112) $ $) NIL)) (-2644 (($) 40)) (-2836 (((-112) $ $) NIL)) (-2095 (($ $ $) 50)) (-2776 (($ $ $ $) 80)) (-3936 (($ $) 68)) (-2934 (($ $ $) 47)) (-2141 (($) 7 T CONST)) (-2257 (($ $ $) 51)) (-2153 (($) 39 T CONST)) (-3927 (((-1175) $) 26) (((-1175) $ (-112)) 27) (((-1289) (-832) $) 28) (((-1289) (-832) $ (-112)) 29)) (-2267 (($ $) 48)) (-3584 (($ $) NIL) (($ $ (-781)) NIL)) (-2244 (($ $ $) 49)) (-3042 (((-112) $ $) 56)) (-3020 (((-112) $ $) 54)) (-2986 (((-112) $ $) 43)) (-3030 (((-112) $ $) 55)) (-3009 (((-112) $ $) 10)) (-2922 (($ $ $) 46)) (-3090 (($ $) 16) (($ $ $) 60)) (-3074 (($ $ $) 59)) (** (($ $ (-935)) NIL) (($ $ (-781)) 62)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 38) (($ $ $) 37) (($ (-574) $) 38))) +(((-1136) (-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4446) (-6 -4451) (-6 -4447) (-15 -2117 ($ $ $)) (-15 -2267 ($ $)) (-15 -2244 ($ $ $)) (-15 -2257 ($ $ $))))) (T -1136)) +((-2117 (*1 *1 *1 *1) (-5 *1 (-1136))) (-2267 (*1 *1 *1) (-5 *1 (-1136))) (-2244 (*1 *1 *1 *1) (-5 *1 (-1136))) (-2257 (*1 *1 *1 *1) (-5 *1 (-1136)))) +(-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4446) (-6 -4451) (-6 -4447) (-15 -2117 ($ $ $)) (-15 -2267 ($ $)) (-15 -2244 ($ $ $)) (-15 -2257 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2011 ((|#1| $) 45)) (-2818 (((-112) $ (-781)) 8)) (-3831 (($) 7 T CONST)) (-2268 ((|#1| |#1| $) 47)) (-3255 ((|#1| $) 46)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1748 ((|#1| $) 40)) (-2609 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-3484 ((|#1| $) 42)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-4292 (((-781) $) 44)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) 43)) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-1136 |#1|) (-141) (-1233)) (T -1136)) -((-2268 (*1 *2 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1233)) (-5 *2 (-781))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4458) (-15 -2268 (|t#1| |t#1| $)) (-15 -3255 (|t#1| $)) (-15 -2011 (|t#1| $)) (-15 -4292 ((-781) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-1645 ((|#3| $) 87)) (-1705 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#3| $) 47)) (-3465 (((-699 (-574)) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4047 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 $) (-1283 $)) 84) (((-699 |#3|) (-699 $)) 76) (((-699 |#3|) (-1283 $)) NIL)) (-3878 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2570 ((|#3| $) 89)) (-4098 ((|#4| $) 43)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#3|) 25)) (** (($ $ (-934)) NIL) (($ $ (-781)) 24) (($ $ (-574)) 95))) -(((-1137 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -2570 (|#3| |#1|)) (-15 -1645 (|#3| |#1|)) (-15 -4098 (|#4| |#1|)) (-15 -3465 ((-699 |#3|) (-1283 |#1|))) (-15 -3465 ((-699 |#3|) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -2950 (|#1| |#3|)) (-15 -1705 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934))) (-15 -2950 ((-872) |#1|))) (-1138 |#2| |#3| |#4| |#5|) (-781) (-1064) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1137)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -2570 (|#3| |#1|)) (-15 -1645 (|#3| |#1|)) (-15 -4098 (|#4| |#1|)) (-15 -3465 ((-699 |#3|) (-1283 |#1|))) (-15 -3465 ((-699 |#3|) (-699 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -3465 ((-699 (-574)) (-699 |#1|))) (-15 -3465 ((-699 (-574)) (-1283 |#1|))) (-15 -2950 (|#1| |#3|)) (-15 -1705 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934))) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1645 ((|#2| $) 78)) (-4319 (((-112) $) 120)) (-1597 (((-3 $ "failed") $ $) 20)) (-2240 (((-112) $) 118)) (-2818 (((-112) $ (-781)) 110)) (-3107 (($ |#2|) 81)) (-3831 (($) 18 T CONST)) (-3502 (($ $) 137 (|has| |#2| (-315)))) (-1860 ((|#3| $ (-574)) 132)) (-1705 (((-3 (-574) "failed") $) 95 (|has| |#2| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 92 (|has| |#2| (-1053 (-417 (-574))))) (((-3 |#2| "failed") $) 89)) (-2216 (((-574) $) 94 (|has| |#2| (-1053 (-574)))) (((-417 (-574)) $) 91 (|has| |#2| (-1053 (-417 (-574))))) ((|#2| $) 90)) (-3465 (((-699 (-574)) (-1283 $)) 87 (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) 86 (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 85 (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 84) (((-699 |#2|) (-699 $)) 83) (((-699 |#2|) (-1283 $)) 82)) (-3911 (((-3 $ "failed") $) 37)) (-3557 (((-781) $) 138 (|has| |#2| (-566)))) (-2399 ((|#2| $ (-574) (-574)) 130)) (-1873 (((-654 |#2|) $) 103 (|has| $ (-6 -4458)))) (-3372 (((-112) $) 35)) (-1835 (((-781) $) 139 (|has| |#2| (-566)))) (-3284 (((-654 |#4|) $) 140 (|has| |#2| (-566)))) (-2198 (((-781) $) 126)) (-2207 (((-781) $) 127)) (-2224 (((-112) $ (-781)) 111)) (-1680 ((|#2| $) 73 (|has| |#2| (-6 (-4460 "*"))))) (-3312 (((-574) $) 122)) (-4378 (((-574) $) 124)) (-2247 (((-654 |#2|) $) 102 (|has| $ (-6 -4458)))) (-2231 (((-112) |#2| $) 100 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-2391 (((-574) $) 123)) (-3280 (((-574) $) 125)) (-2923 (($ (-654 (-654 |#2|))) 117)) (-2461 (($ (-1 |#2| |#2|) $) 107 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#2| |#2| |#2|) $ $) 134) (($ (-1 |#2| |#2|) $) 108)) (-1626 (((-654 (-654 |#2|)) $) 128)) (-3625 (((-112) $ (-781)) 112)) (-3945 (((-1174) $) 10)) (-4333 (((-3 $ "failed") $) 72 (|has| |#2| (-372)))) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ |#2|) 135 (|has| |#2| (-566)))) (-2000 (((-112) (-1 (-112) |#2|) $) 105 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) 99 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) 98 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) 97 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) 96 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) 116)) (-2880 (((-112) $) 113)) (-2833 (($) 114)) (-2208 ((|#2| $ (-574) (-574) |#2|) 131) ((|#2| $ (-574) (-574)) 129)) (-3878 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-781)) 56) (($ $ (-654 (-1192)) (-654 (-781))) 49 (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) 48 (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) 47 (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) 46 (|has| |#2| (-913 (-1192)))) (($ $) 45 (|has| |#2| (-239))) (($ $ (-781)) 43 (|has| |#2| (-239)))) (-2570 ((|#2| $) 77)) (-1998 (($ (-654 |#2|)) 80)) (-1609 (((-112) $) 119)) (-4098 ((|#3| $) 79)) (-1928 ((|#2| $) 74 (|has| |#2| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#2|) $) 104 (|has| $ (-6 -4458))) (((-781) |#2| $) 101 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 115)) (-1482 ((|#4| $ (-574)) 133)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 93 (|has| |#2| (-1053 (-417 (-574))))) (($ |#2|) 88)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2980 (((-112) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4458)))) (-1996 (((-112) $) 121)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) 55) (($ $ (-1 |#2| |#2|) (-781)) 54) (($ $ (-654 (-1192)) (-654 (-781))) 53 (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) 52 (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) 51 (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) 50 (|has| |#2| (-913 (-1192)))) (($ $) 44 (|has| |#2| (-239))) (($ $ (-781)) 42 (|has| |#2| (-239)))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#2|) 136 (|has| |#2| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 71 (|has| |#2| (-372)))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#2|) 142) (($ |#2| $) 141) ((|#4| $ |#4|) 76) ((|#3| |#3| $) 75)) (-2876 (((-781) $) 109 (|has| $ (-6 -4458))))) -(((-1138 |#1| |#2| |#3| |#4|) (-141) (-781) (-1064) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1138)) -((-3107 (*1 *1 *2) (-12 (-4 *2 (-1064)) (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-1998 (*1 *1 *2) (-12 (-5 *2 (-654 *4)) (-4 *4 (-1064)) (-4 *1 (-1138 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *4 *2 *5)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1064)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1064)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1138 *3 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1138 *3 *4 *2 *5)) (-4 *4 (-1064)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) (-4333 (*1 *1 *1) (|partial| -12 (-4 *1 (-1138 *2 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1138 *3 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-372))))) -(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1068 |t#1| |t#1| |t#2| |t#3| |t#4|) (-421 |t#2|) (-386 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-727 |t#2|)) |%noBranch|) (-15 -3107 ($ |t#2|)) (-15 -1998 ($ (-654 |t#2|))) (-15 -4098 (|t#3| $)) (-15 -1645 (|t#2| $)) (-15 -2570 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4460 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1928 (|t#2| $)) (-15 -1680 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-372)) (PROGN (-15 -4333 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4460 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#2| (-1053 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-235 $) |has| |#2| (-239)) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-238) |has| |#2| (-239)) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-386 |#2|) . T) ((-421 |#2|) . T) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 #1=(-574)) |has| |#2| (-649 (-574))) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-6 (-4460 "*")))) ((-649 #1#) |has| |#2| (-649 (-574))) ((-649 |#2|) . T) ((-727 |#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-6 (-4460 "*")))) ((-736) . T) ((-913 (-1192)) |has| |#2| (-913 (-1192))) ((-1068 |#1| |#1| |#2| |#3| |#4|) . T) ((-1053 #0#) |has| |#2| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#2| (-1053 (-574))) ((-1053 |#2|) . T) ((-1066 |#2|) . T) ((-1071 |#2|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) . T)) -((-1958 ((|#4| |#4|) 81)) (-3146 ((|#4| |#4|) 76)) (-3181 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2191 (-654 |#3|))) |#4| |#3|) 91)) (-2024 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2687 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1139 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3146 (|#4| |#4|)) (-15 -2687 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1958 (|#4| |#4|)) (-15 -2024 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3181 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2191 (-654 |#3|))) |#4| |#3|))) (-315) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1139)) -((-3181 (*1 *2 *3 *4) (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) (-5 *1 (-1139 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-2024 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1139 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1958 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1139 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2687 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1139 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1139 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(-10 -7 (-15 -3146 (|#4| |#4|)) (-15 -2687 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1958 (|#4| |#4|)) (-15 -2024 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3181 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2191 (-654 |#3|))) |#4| |#3|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 18)) (-4349 (((-654 |#2|) $) 174)) (-4171 (((-1188 $) $ |#2|) 60) (((-1188 |#1|) $) 49)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 116 (|has| |#1| (-566)))) (-3648 (($ $) 118 (|has| |#1| (-566)))) (-1527 (((-112) $) 120 (|has| |#1| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 |#2|)) 213)) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3296 (($ $) NIL (|has| |#1| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) 167) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 |#2| "failed") $) NIL)) (-2216 ((|#1| $) 165) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) ((|#2| $) NIL)) (-3496 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1401 (($ $) 217)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) 90)) (-1509 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#1| (-922)))) (-4389 (($ $ |#1| (-541 |#2|) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3372 (((-112) $) 20)) (-3241 (((-781) $) 30)) (-4338 (($ (-1188 |#1|) |#2|) 54) (($ (-1188 $) |#2|) 71)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) 38)) (-4327 (($ |#1| (-541 |#2|)) 78) (($ $ |#2| (-781)) 58) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ |#2|) NIL)) (-1503 (((-541 |#2|) $) 205) (((-781) $ |#2|) 206) (((-654 (-781)) $ (-654 |#2|)) 207)) (-3558 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) 128)) (-1803 (((-3 |#2| "failed") $) 177)) (-1365 (($ $) 216)) (-1377 ((|#1| $) 43)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3945 (((-1174) $) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| |#2|) (|:| -2017 (-781))) "failed") $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) 39)) (-1354 ((|#1| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 148 (|has| |#1| (-462)))) (-2886 (($ (-654 $)) 153 (|has| |#1| (-462))) (($ $ $) 138 (|has| |#1| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-654 |#2|) (-654 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-654 |#2|) (-654 $)) 194)) (-1738 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3878 (($ $ |#2|) 215) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3584 (((-541 |#2|) $) 201) (((-781) $ |#2|) 196) (((-654 (-781)) $ (-654 |#2|)) 199)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3631 ((|#1| $) 134 (|has| |#1| (-462))) (($ $ |#2|) 137 (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 159) (($ (-574)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-2836 (((-654 |#1|) $) 162)) (-2930 ((|#1| $ (-541 |#2|)) 80) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) 87 T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) 123 (|has| |#1| (-566)))) (-2142 (($) 12 T CONST)) (-2154 (($) 14 T CONST)) (-3583 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2985 (((-112) $ $) 106)) (-3098 (($ $ |#1|) 132 (|has| |#1| (-372)))) (-3089 (($ $) 93) (($ $ $) 104)) (-3074 (($ $ $) 55)) (** (($ $ (-934)) 110) (($ $ (-781)) 109)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 96) (($ $ $) 72) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) -(((-1140 |#1| |#2|) (-962 |#1| (-541 |#2|) |#2|) (-1064) (-860)) (T -1140)) -NIL -(-962 |#1| (-541 |#2|) |#2|) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 |#2|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-2378 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2403 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-4025 (((-965 |#1|) $ (-781)) NIL) (((-965 |#1|) $ (-781) (-781)) NIL)) (-3938 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-781) $ |#2|) NIL) (((-781) $ |#2| (-781)) NIL)) (-3372 (((-112) $) NIL)) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3257 (((-112) $) NIL)) (-4327 (($ $ (-654 |#2|) (-654 (-541 |#2|))) NIL) (($ $ |#2| (-541 |#2|)) NIL) (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 63) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3112 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-1578 (($ $ |#2|) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-2393 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2115 (($ $ (-781)) 16)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1618 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (($ $ |#2| $) 106) (($ $ (-654 |#2|) (-654 $)) 99) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3878 (($ $ |#2|) 109) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3584 (((-541 |#2|) $) NIL)) (-2353 (((-1 (-1172 |#3|) |#3|) (-654 |#2|) (-654 (-1172 |#3|))) 87)) (-2416 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) 18)) (-2950 (((-872) $) 198) (($ (-574)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#2|) 70) (($ |#3|) 68)) (-2930 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL) ((|#3| $ (-781)) 43)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2427 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2535 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) 52 T CONST)) (-2154 (($) 62 T CONST)) (-3583 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) 200 (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 66)) (** (($ $ (-934)) NIL) (($ $ (-781)) 77) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 112 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ $ (-417 (-574))) 117 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 115 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1141 |#1| |#2| |#3|) (-13 (-750 |#1| |#2|) (-10 -8 (-15 -2930 (|#3| $ (-781))) (-15 -2950 ($ |#2|)) (-15 -2950 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2353 ((-1 (-1172 |#3|) |#3|) (-654 |#2|) (-654 (-1172 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ($ $ |#2| |#1|)) (-15 -2393 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1064) (-860) (-962 |#1| (-541 |#2|) |#2|)) (T -1141)) -((-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-962 *4 (-541 *5) *5)) (-5 *1 (-1141 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-860)))) (-2950 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-4 *2 (-860)) (-5 *1 (-1141 *3 *2 *4)) (-4 *4 (-962 *3 (-541 *2) *2)))) (-2950 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-4 *4 (-860)) (-5 *1 (-1141 *3 *4 *2)) (-4 *2 (-962 *3 (-541 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-860)) (-5 *1 (-1141 *3 *4 *2)) (-4 *2 (-962 *3 (-541 *4) *4)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1172 *7))) (-4 *6 (-860)) (-4 *7 (-962 *5 (-541 *6) *6)) (-4 *5 (-1064)) (-5 *2 (-1 (-1172 *7) *7)) (-5 *1 (-1141 *5 *6 *7)))) (-1578 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-4 *2 (-860)) (-5 *1 (-1141 *3 *2 *4)) (-4 *4 (-962 *3 (-541 *2) *2)))) (-2393 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1141 *4 *3 *5))) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1064)) (-4 *3 (-860)) (-5 *1 (-1141 *4 *3 *5)) (-4 *5 (-962 *4 (-541 *3) *3))))) -(-13 (-750 |#1| |#2|) (-10 -8 (-15 -2930 (|#3| $ (-781))) (-15 -2950 ($ |#2|)) (-15 -2950 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2353 ((-1 (-1172 |#3|) |#3|) (-654 |#2|) (-654 (-1172 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ($ $ |#2| |#1|)) (-15 -2393 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2863 (((-112) $ $) 7)) (-4205 (((-654 (-2 (|:| -1389 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) 86)) (-1721 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4349 (((-654 |#3|) $) 34)) (-3278 (((-112) $) 27)) (-3814 (((-112) $) 18 (|has| |#1| (-566)))) (-3522 (((-112) |#4| $) 102) (((-112) $) 98)) (-3885 ((|#4| |#4| $) 93)) (-3296 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| $) 127)) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#3|) 28)) (-2818 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 80)) (-3831 (($) 46 T CONST)) (-4241 (((-112) $) 23 (|has| |#1| (-566)))) (-3297 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2860 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2450 (((-112) $) 26 (|has| |#1| (-566)))) (-3665 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4010 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1438 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2934 (((-3 $ "failed") $) 83)) (-1685 ((|#4| |#4| $) 90)) (-2560 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3369 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4037 ((|#4| |#4| $) 88)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1426 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) 106)) (-2667 (((-112) |#4| $) 137)) (-2797 (((-112) |#4| $) 134)) (-1566 (((-112) |#4| $) 138) (((-112) $) 135)) (-1873 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-3762 (((-112) |#4| $) 105) (((-112) $) 104)) (-2968 ((|#3| $) 35)) (-2224 (((-112) $ (-781)) 44)) (-2247 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) 48)) (-2740 (((-654 |#3|) $) 33)) (-2080 (((-112) |#3| $) 32)) (-3625 (((-112) $ (-781)) 43)) (-3945 (((-1174) $) 10)) (-4258 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2971 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| |#4| $) 128)) (-3333 (((-3 |#4| "failed") $) 84)) (-2133 (((-654 $) |#4| $) 130)) (-1537 (((-3 (-112) (-654 $)) |#4| $) 133)) (-1884 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1454 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3750 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-3981 (((-654 |#4|) $) 108)) (-2397 (((-112) |#4| $) 100) (((-112) $) 96)) (-1576 ((|#4| |#4| $) 91)) (-2326 (((-112) $ $) 111)) (-3081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1548 (((-112) |#4| $) 101) (((-112) $) 97)) (-3503 ((|#4| |#4| $) 92)) (-3939 (((-1135) $) 11)) (-2924 (((-3 |#4| "failed") $) 85)) (-2294 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2200 (((-3 $ "failed") $ |#4|) 79)) (-2115 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-2000 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) 39)) (-2880 (((-112) $) 42)) (-2833 (($) 41)) (-3584 (((-781) $) 107)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1845 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-1689 (($ $ |#3|) 29)) (-2639 (($ $ |#3|) 31)) (-4330 (($ $) 89)) (-3386 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2706 (((-781) $) 77 (|has| |#3| (-377)))) (-3838 (((-112) $ $) 9)) (-2270 (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1587 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2536 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-1437 (((-654 |#3|) $) 82)) (-1651 (((-112) |#4| $) 136)) (-1469 (((-112) |#3| $) 81)) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) -(((-1142 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -1142)) -NIL -(-13 (-1124 |t#1| |t#2| |t#3| |t#4|) (-794 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-794 |#1| |#2| |#3| |#4|) . T) ((-991 |#1| |#2| |#3| |#4|) . T) ((-1086 |#1| |#2| |#3| |#4|) . T) ((-1115) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1226 |#1| |#2| |#3| |#4|) . T) ((-1233) . T)) -((-2514 (((-654 |#2|) |#1|) 15)) (-4000 (((-654 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-654 |#2|) |#1|) 61)) (-3053 (((-654 |#2|) |#2| |#2| |#2|) 45) (((-654 |#2|) |#1|) 59)) (-3056 ((|#2| |#1|) 54)) (-2282 (((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4007 (((-654 |#2|) |#2| |#2|) 42) (((-654 |#2|) |#1|) 58)) (-2241 (((-654 |#2|) |#2| |#2| |#2| |#2|) 46) (((-654 |#2|) |#1|) 60)) (-3812 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-4395 ((|#2| |#2| |#2| |#2|) 51)) (-3402 ((|#2| |#2| |#2|) 50)) (-4392 ((|#2| |#2| |#2| |#2| |#2|) 52))) -(((-1143 |#1| |#2|) (-10 -7 (-15 -2514 ((-654 |#2|) |#1|)) (-15 -3056 (|#2| |#1|)) (-15 -2282 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4007 ((-654 |#2|) |#1|)) (-15 -3053 ((-654 |#2|) |#1|)) (-15 -2241 ((-654 |#2|) |#1|)) (-15 -4000 ((-654 |#2|) |#1|)) (-15 -4007 ((-654 |#2|) |#2| |#2|)) (-15 -3053 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -2241 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4000 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3402 (|#2| |#2| |#2|)) (-15 -4395 (|#2| |#2| |#2| |#2|)) (-15 -4392 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3812 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1259 |#2|) (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (T -1143)) -((-3812 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2)))) (-4392 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2)))) (-4395 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2)))) (-3402 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2)))) (-4000 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3)))) (-2241 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3)))) (-3053 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3)))) (-4007 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3)))) (-4000 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) (-2241 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) (-3053 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) (-4007 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-2 (|:| |solns| (-654 *5)) (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1143 *3 *5)) (-4 *3 (-1259 *5)))) (-3056 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2)))) (-2514 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4))))) -(-10 -7 (-15 -2514 ((-654 |#2|) |#1|)) (-15 -3056 (|#2| |#1|)) (-15 -2282 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4007 ((-654 |#2|) |#1|)) (-15 -3053 ((-654 |#2|) |#1|)) (-15 -2241 ((-654 |#2|) |#1|)) (-15 -4000 ((-654 |#2|) |#1|)) (-15 -4007 ((-654 |#2|) |#2| |#2|)) (-15 -3053 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -2241 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4000 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3402 (|#2| |#2| |#2|)) (-15 -4395 (|#2| |#2| |#2| |#2|)) (-15 -4392 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3812 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3902 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|))))) 118) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192))) 117) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|)))) 115) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|))) (-654 (-1192))) 113) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|)))) 97) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|))) (-1192)) 98) (((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|))) 92) (((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|)) (-1192)) 82)) (-1780 (((-654 (-654 (-324 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192))) 111) (((-654 (-324 |#1|)) (-417 (-965 |#1|)) (-1192)) 54)) (-2046 (((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-965 |#1|)) (-1192)) 122) (((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192)) 121))) -(((-1144 |#1|) (-10 -7 (-15 -3902 ((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -3902 ((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|)))) (-15 -3902 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -3902 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|))))) (-15 -3902 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -3902 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|))))) (-15 -3902 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192)))) (-15 -3902 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -1780 ((-654 (-324 |#1|)) (-417 (-965 |#1|)) (-1192))) (-15 -1780 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -2046 ((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -2046 ((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-965 |#1|)) (-1192)))) (-13 (-315) (-148))) (T -1144)) -((-2046 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1181 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5)))) (-2046 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-965 *5)))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1181 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5)))) (-1780 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5)))) (-5 *1 (-1144 *5)))) (-1780 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5))) (-5 *1 (-1144 *5)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-965 *4))))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1144 *4)))) (-3902 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-965 *5))))) (-5 *4 (-654 (-1192))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-965 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1144 *4)))) (-3902 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-302 (-417 (-965 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)))) (-3902 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-965 *5)))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)))) (-3902 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5))))) -(-10 -7 (-15 -3902 ((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -3902 ((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|)))) (-15 -3902 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -3902 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|))))) (-15 -3902 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -3902 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|))))) (-15 -3902 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192)))) (-15 -3902 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -1780 ((-654 (-324 |#1|)) (-417 (-965 |#1|)) (-1192))) (-15 -1780 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -2046 ((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -2046 ((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-965 |#1|)) (-1192)))) -((-3682 (((-417 (-1188 (-324 |#1|))) (-1283 (-324 |#1|)) (-417 (-1188 (-324 |#1|))) (-574)) 36)) (-1945 (((-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|)))) 48))) -(((-1145 |#1|) (-10 -7 (-15 -1945 ((-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))))) (-15 -3682 ((-417 (-1188 (-324 |#1|))) (-1283 (-324 |#1|)) (-417 (-1188 (-324 |#1|))) (-574)))) (-566)) (T -1145)) -((-3682 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-417 (-1188 (-324 *5)))) (-5 *3 (-1283 (-324 *5))) (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1145 *5)))) (-1945 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-417 (-1188 (-324 *3)))) (-4 *3 (-566)) (-5 *1 (-1145 *3))))) -(-10 -7 (-15 -1945 ((-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))))) (-15 -3682 ((-417 (-1188 (-324 |#1|))) (-1283 (-324 |#1|)) (-417 (-1188 (-324 |#1|))) (-574)))) -((-2514 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1192))) 244) (((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1192)) 23) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1192)) 29) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|))) 28) (((-654 (-302 (-324 |#1|))) (-324 |#1|)) 24))) -(((-1146 |#1|) (-10 -7 (-15 -2514 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -2514 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -2514 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1192))) (-15 -2514 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1192))) (-15 -2514 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1192))))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (T -1146)) -((-2514 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1192))) (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1146 *5)) (-5 *3 (-654 (-302 (-324 *5)))))) (-2514 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1146 *5)) (-5 *3 (-324 *5)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1146 *5)) (-5 *3 (-302 (-324 *5))))) (-2514 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1146 *4)) (-5 *3 (-302 (-324 *4))))) (-2514 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1146 *4)) (-5 *3 (-324 *4))))) -(-10 -7 (-15 -2514 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -2514 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -2514 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1192))) (-15 -2514 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1192))) (-15 -2514 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1192))))) -((-2174 ((|#2| |#2|) 28 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-4265 ((|#2| |#2|) 27 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1147 |#1| |#2|) (-10 -7 (-15 -4265 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2174 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -4265 (|#2| |#2|)) (-15 -2174 (|#2| |#2|))) |%noBranch|)) (-1233) (-13 (-614 (-574) |#1|) (-10 -7 (-6 -4458) (-6 -4459)))) (T -1147)) -((-2174 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1233)) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4458) (-6 -4459)))))) (-4265 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1233)) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4458) (-6 -4459)))))) (-2174 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4458) (-6 -4459)))))) (-4265 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4458) (-6 -4459))))))) -(-10 -7 (-15 -4265 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2174 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -4265 (|#2| |#2|)) (-15 -2174 (|#2| |#2|))) |%noBranch|)) -((-2863 (((-112) $ $) NIL)) (-2686 (((-1180 3 |#1|) $) 141)) (-3513 (((-112) $) 101)) (-3537 (($ $ (-654 (-956 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 104) (($ (-654 (-956 |#1|))) 103) (((-654 (-956 |#1|)) $) 102)) (-4433 (((-112) $) 72)) (-3564 (($ $ (-956 |#1|)) 76) (($ $ (-654 |#1|)) 81) (($ $ (-781)) 83) (($ (-956 |#1|)) 77) (((-956 |#1|) $) 75)) (-2629 (((-2 (|:| -4012 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 139)) (-3575 (((-781) $) 53)) (-2703 (((-781) $) 52)) (-2843 (($ $ (-781) (-956 |#1|)) 67)) (-1504 (((-112) $) 111)) (-2052 (($ $ (-654 (-654 (-956 |#1|))) (-654 (-173)) (-173)) 118) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 120) (($ $ (-654 (-654 (-956 |#1|))) (-112) (-112)) 115) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 127) (($ (-654 (-654 (-956 |#1|)))) 116) (($ (-654 (-654 (-956 |#1|))) (-112) (-112)) 117) (((-654 (-654 (-956 |#1|))) $) 114)) (-4297 (($ (-654 $)) 56) (($ $ $) 57)) (-4236 (((-654 (-173)) $) 133)) (-2938 (((-654 (-956 |#1|)) $) 130)) (-2437 (((-654 (-654 (-173))) $) 132)) (-2944 (((-654 (-654 (-654 (-956 |#1|)))) $) NIL)) (-1590 (((-654 (-654 (-654 (-781)))) $) 131)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4009 (((-781) $ (-654 (-956 |#1|))) 65)) (-2222 (((-112) $) 84)) (-2862 (($ $ (-654 (-956 |#1|))) 86) (($ $ (-654 (-654 |#1|))) 92) (($ (-654 (-956 |#1|))) 87) (((-654 (-956 |#1|)) $) 85)) (-2555 (($) 48) (($ (-1180 3 |#1|)) 49)) (-3156 (($ $) 63)) (-2027 (((-654 $) $) 62)) (-2228 (($ (-654 $)) 59)) (-3614 (((-654 $) $) 61)) (-2950 (((-872) $) 146)) (-1727 (((-112) $) 94)) (-2077 (($ $ (-654 (-956 |#1|))) 96) (($ $ (-654 (-654 |#1|))) 99) (($ (-654 (-956 |#1|))) 97) (((-654 (-956 |#1|)) $) 95)) (-2275 (($ $) 140)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1148 |#1|) (-1149 |#1|) (-1064)) (T -1148)) -NIL -(-1149 |#1|) -((-2863 (((-112) $ $) 7)) (-2686 (((-1180 3 |#1|) $) 14)) (-3513 (((-112) $) 30)) (-3537 (($ $ (-654 (-956 |#1|))) 34) (($ $ (-654 (-654 |#1|))) 33) (($ (-654 (-956 |#1|))) 32) (((-654 (-956 |#1|)) $) 31)) (-4433 (((-112) $) 45)) (-3564 (($ $ (-956 |#1|)) 50) (($ $ (-654 |#1|)) 49) (($ $ (-781)) 48) (($ (-956 |#1|)) 47) (((-956 |#1|) $) 46)) (-2629 (((-2 (|:| -4012 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 16)) (-3575 (((-781) $) 59)) (-2703 (((-781) $) 60)) (-2843 (($ $ (-781) (-956 |#1|)) 51)) (-1504 (((-112) $) 22)) (-2052 (($ $ (-654 (-654 (-956 |#1|))) (-654 (-173)) (-173)) 29) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 28) (($ $ (-654 (-654 (-956 |#1|))) (-112) (-112)) 27) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 26) (($ (-654 (-654 (-956 |#1|)))) 25) (($ (-654 (-654 (-956 |#1|))) (-112) (-112)) 24) (((-654 (-654 (-956 |#1|))) $) 23)) (-4297 (($ (-654 $)) 58) (($ $ $) 57)) (-4236 (((-654 (-173)) $) 17)) (-2938 (((-654 (-956 |#1|)) $) 21)) (-2437 (((-654 (-654 (-173))) $) 18)) (-2944 (((-654 (-654 (-654 (-956 |#1|)))) $) 19)) (-1590 (((-654 (-654 (-654 (-781)))) $) 20)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4009 (((-781) $ (-654 (-956 |#1|))) 52)) (-2222 (((-112) $) 40)) (-2862 (($ $ (-654 (-956 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 43) (($ (-654 (-956 |#1|))) 42) (((-654 (-956 |#1|)) $) 41)) (-2555 (($) 62) (($ (-1180 3 |#1|)) 61)) (-3156 (($ $) 53)) (-2027 (((-654 $) $) 54)) (-2228 (($ (-654 $)) 56)) (-3614 (((-654 $) $) 55)) (-2950 (((-872) $) 12)) (-1727 (((-112) $) 35)) (-2077 (($ $ (-654 (-956 |#1|))) 39) (($ $ (-654 (-654 |#1|))) 38) (($ (-654 (-956 |#1|))) 37) (((-654 (-956 |#1|)) $) 36)) (-2275 (($ $) 15)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) -(((-1149 |#1|) (-141) (-1064)) (T -1149)) -((-2950 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-872)))) (-2555 (*1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-1180 3 *3)) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-4297 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-4297 (*1 *1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3614 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)))) (-2027 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) (-4009 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-956 *4))) (-4 *1 (-1149 *4)) (-4 *4 (-1064)) (-5 *2 (-781)))) (-2843 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-956 *4)) (-4 *1 (-1149 *4)) (-4 *4 (-1064)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-956 *3)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-956 *3)))) (-4433 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (-2862 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-2862 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-2862 (*1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (-2077 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-2077 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-2077 (*1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3537 (*1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (-2052 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-956 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1149 *5)) (-4 *5 (-1064)))) (-2052 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1149 *5)) (-4 *5 (-1064)))) (-2052 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-956 *4)))) (-5 *3 (-112)) (-4 *1 (-1149 *4)) (-4 *4 (-1064)))) (-2052 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112)) (-4 *1 (-1149 *4)) (-4 *4 (-1064)))) (-2052 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-956 *3)))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-2052 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-956 *4)))) (-5 *3 (-112)) (-4 *4 (-1064)) (-4 *1 (-1149 *4)))) (-2052 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-654 (-956 *3)))))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-654 (-654 (-781))))))) (-2944 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-654 (-654 (-956 *3))))))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-654 (-173)))))) (-4236 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-173))))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -4012 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781)))))) (-2275 (*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-1180 3 *3))))) -(-13 (-1115) (-10 -8 (-15 -2555 ($)) (-15 -2555 ($ (-1180 3 |t#1|))) (-15 -2703 ((-781) $)) (-15 -3575 ((-781) $)) (-15 -4297 ($ (-654 $))) (-15 -4297 ($ $ $)) (-15 -2228 ($ (-654 $))) (-15 -3614 ((-654 $) $)) (-15 -2027 ((-654 $) $)) (-15 -3156 ($ $)) (-15 -4009 ((-781) $ (-654 (-956 |t#1|)))) (-15 -2843 ($ $ (-781) (-956 |t#1|))) (-15 -3564 ($ $ (-956 |t#1|))) (-15 -3564 ($ $ (-654 |t#1|))) (-15 -3564 ($ $ (-781))) (-15 -3564 ($ (-956 |t#1|))) (-15 -3564 ((-956 |t#1|) $)) (-15 -4433 ((-112) $)) (-15 -2862 ($ $ (-654 (-956 |t#1|)))) (-15 -2862 ($ $ (-654 (-654 |t#1|)))) (-15 -2862 ($ (-654 (-956 |t#1|)))) (-15 -2862 ((-654 (-956 |t#1|)) $)) (-15 -2222 ((-112) $)) (-15 -2077 ($ $ (-654 (-956 |t#1|)))) (-15 -2077 ($ $ (-654 (-654 |t#1|)))) (-15 -2077 ($ (-654 (-956 |t#1|)))) (-15 -2077 ((-654 (-956 |t#1|)) $)) (-15 -1727 ((-112) $)) (-15 -3537 ($ $ (-654 (-956 |t#1|)))) (-15 -3537 ($ $ (-654 (-654 |t#1|)))) (-15 -3537 ($ (-654 (-956 |t#1|)))) (-15 -3537 ((-654 (-956 |t#1|)) $)) (-15 -3513 ((-112) $)) (-15 -2052 ($ $ (-654 (-654 (-956 |t#1|))) (-654 (-173)) (-173))) (-15 -2052 ($ $ (-654 (-654 (-654 |t#1|))) (-654 (-173)) (-173))) (-15 -2052 ($ $ (-654 (-654 (-956 |t#1|))) (-112) (-112))) (-15 -2052 ($ $ (-654 (-654 (-654 |t#1|))) (-112) (-112))) (-15 -2052 ($ (-654 (-654 (-956 |t#1|))))) (-15 -2052 ($ (-654 (-654 (-956 |t#1|))) (-112) (-112))) (-15 -2052 ((-654 (-654 (-956 |t#1|))) $)) (-15 -1504 ((-112) $)) (-15 -2938 ((-654 (-956 |t#1|)) $)) (-15 -1590 ((-654 (-654 (-654 (-781)))) $)) (-15 -2944 ((-654 (-654 (-654 (-956 |t#1|)))) $)) (-15 -2437 ((-654 (-654 (-173))) $)) (-15 -4236 ((-654 (-173)) $)) (-15 -2629 ((-2 (|:| -4012 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $)) (-15 -2275 ($ $)) (-15 -2686 ((-1180 3 |t#1|) $)) (-15 -2950 ((-872) $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 184) (($ (-1197)) NIL) (((-1197) $) 7)) (-2131 (((-112) $ (|[\|\|]| (-534))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-686))) 27) (((-112) $ (|[\|\|]| (-1293))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-616))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1130))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-691))) 55) (((-112) $ (|[\|\|]| (-527))) 59) (((-112) $ (|[\|\|]| (-1081))) 63) (((-112) $ (|[\|\|]| (-1294))) 67) (((-112) $ (|[\|\|]| (-535))) 71) (((-112) $ (|[\|\|]| (-1166))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-681))) 83) (((-112) $ (|[\|\|]| (-319))) 87) (((-112) $ (|[\|\|]| (-1051))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-985))) 99) (((-112) $ (|[\|\|]| (-1088))) 103) (((-112) $ (|[\|\|]| (-1105))) 107) (((-112) $ (|[\|\|]| (-1111))) 111) (((-112) $ (|[\|\|]| (-636))) 115) (((-112) $ (|[\|\|]| (-1182))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-488))) 131) (((-112) $ (|[\|\|]| (-602))) 135) (((-112) $ (|[\|\|]| (-516))) 139) (((-112) $ (|[\|\|]| (-1174))) 143) (((-112) $ (|[\|\|]| (-574))) 147)) (-3838 (((-112) $ $) NIL)) (-1337 (((-534) $) 20) (((-220) $) 24) (((-686) $) 28) (((-1293) $) 32) (((-139) $) 36) (((-616) $) 40) (((-134) $) 44) (((-1130) $) 48) (((-96) $) 52) (((-691) $) 56) (((-527) $) 60) (((-1081) $) 64) (((-1294) $) 68) (((-535) $) 72) (((-1166) $) 76) (((-155) $) 80) (((-681) $) 84) (((-319) $) 88) (((-1051) $) 92) (((-182) $) 96) (((-985) $) 100) (((-1088) $) 104) (((-1105) $) 108) (((-1111) $) 112) (((-636) $) 116) (((-1182) $) 120) (((-157) $) 124) (((-138) $) 128) (((-488) $) 132) (((-602) $) 136) (((-516) $) 140) (((-1174) $) 144) (((-574) $) 148)) (-2985 (((-112) $ $) NIL))) -(((-1150) (-1152)) (T -1150)) -NIL -(-1152) -((-3709 (((-654 (-1197)) (-1174)) 9))) -(((-1151) (-10 -7 (-15 -3709 ((-654 (-1197)) (-1174))))) (T -1151)) -((-3709 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-1197))) (-5 *1 (-1151))))) -(-10 -7 (-15 -3709 ((-654 (-1197)) (-1174)))) -((-2863 (((-112) $ $) 7)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-1197)) 17) (((-1197) $) 16)) (-2131 (((-112) $ (|[\|\|]| (-534))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-686))) 81) (((-112) $ (|[\|\|]| (-1293))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-616))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1130))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-691))) 67) (((-112) $ (|[\|\|]| (-527))) 65) (((-112) $ (|[\|\|]| (-1081))) 63) (((-112) $ (|[\|\|]| (-1294))) 61) (((-112) $ (|[\|\|]| (-535))) 59) (((-112) $ (|[\|\|]| (-1166))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-681))) 53) (((-112) $ (|[\|\|]| (-319))) 51) (((-112) $ (|[\|\|]| (-1051))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-985))) 45) (((-112) $ (|[\|\|]| (-1088))) 43) (((-112) $ (|[\|\|]| (-1105))) 41) (((-112) $ (|[\|\|]| (-1111))) 39) (((-112) $ (|[\|\|]| (-636))) 37) (((-112) $ (|[\|\|]| (-1182))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-488))) 29) (((-112) $ (|[\|\|]| (-602))) 27) (((-112) $ (|[\|\|]| (-516))) 25) (((-112) $ (|[\|\|]| (-1174))) 23) (((-112) $ (|[\|\|]| (-574))) 21)) (-3838 (((-112) $ $) 9)) (-1337 (((-534) $) 84) (((-220) $) 82) (((-686) $) 80) (((-1293) $) 78) (((-139) $) 76) (((-616) $) 74) (((-134) $) 72) (((-1130) $) 70) (((-96) $) 68) (((-691) $) 66) (((-527) $) 64) (((-1081) $) 62) (((-1294) $) 60) (((-535) $) 58) (((-1166) $) 56) (((-155) $) 54) (((-681) $) 52) (((-319) $) 50) (((-1051) $) 48) (((-182) $) 46) (((-985) $) 44) (((-1088) $) 42) (((-1105) $) 40) (((-1111) $) 38) (((-636) $) 36) (((-1182) $) 34) (((-157) $) 32) (((-138) $) 30) (((-488) $) 28) (((-602) $) 26) (((-516) $) 24) (((-1174) $) 22) (((-574) $) 20)) (-2985 (((-112) $ $) 6))) -(((-1152) (-141)) (T -1152)) -((-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-534)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-220)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-686)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1293))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1293)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-139)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-616)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-134)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1130))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1130)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-96)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-691)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-527)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1081)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1294))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1294)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-535)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1166)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-155)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-681)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-319)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1051))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1051)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-182)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-985)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1088)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1105)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1111)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-636)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1182))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1182)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-157)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-138)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-488)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-602)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-516)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1174)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-574))))) -(-13 (-1098) (-1278) (-10 -8 (-15 -2131 ((-112) $ (|[\|\|]| (-534)))) (-15 -1337 ((-534) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-220)))) (-15 -1337 ((-220) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-686)))) (-15 -1337 ((-686) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1293)))) (-15 -1337 ((-1293) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-139)))) (-15 -1337 ((-139) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-616)))) (-15 -1337 ((-616) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-134)))) (-15 -1337 ((-134) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1130)))) (-15 -1337 ((-1130) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-96)))) (-15 -1337 ((-96) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-691)))) (-15 -1337 ((-691) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-527)))) (-15 -1337 ((-527) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1081)))) (-15 -1337 ((-1081) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1294)))) (-15 -1337 ((-1294) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-535)))) (-15 -1337 ((-535) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1166)))) (-15 -1337 ((-1166) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-155)))) (-15 -1337 ((-155) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-681)))) (-15 -1337 ((-681) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-319)))) (-15 -1337 ((-319) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1051)))) (-15 -1337 ((-1051) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-182)))) (-15 -1337 ((-182) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-985)))) (-15 -1337 ((-985) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1088)))) (-15 -1337 ((-1088) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1105)))) (-15 -1337 ((-1105) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1111)))) (-15 -1337 ((-1111) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-636)))) (-15 -1337 ((-636) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1182)))) (-15 -1337 ((-1182) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-157)))) (-15 -1337 ((-157) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-138)))) (-15 -1337 ((-138) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-488)))) (-15 -1337 ((-488) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-602)))) (-15 -1337 ((-602) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-1174)))) (-15 -1337 ((-1174) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-574)))) (-15 -1337 ((-574) $)))) -(((-93) . T) ((-102) . T) ((-626 #0=(-1197)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1115) . T) ((-1098) . T) ((-1278) . T)) -((-3177 (((-1288) (-654 (-872))) 22) (((-1288) (-872)) 21)) (-4014 (((-1288) (-654 (-872))) 20) (((-1288) (-872)) 19)) (-3741 (((-1288) (-654 (-872))) 18) (((-1288) (-872)) 10) (((-1288) (-1174) (-872)) 16))) -(((-1153) (-10 -7 (-15 -3741 ((-1288) (-1174) (-872))) (-15 -3741 ((-1288) (-872))) (-15 -4014 ((-1288) (-872))) (-15 -3177 ((-1288) (-872))) (-15 -3741 ((-1288) (-654 (-872)))) (-15 -4014 ((-1288) (-654 (-872)))) (-15 -3177 ((-1288) (-654 (-872)))))) (T -1153)) -((-3177 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153))))) -(-10 -7 (-15 -3741 ((-1288) (-1174) (-872))) (-15 -3741 ((-1288) (-872))) (-15 -4014 ((-1288) (-872))) (-15 -3177 ((-1288) (-872))) (-15 -3741 ((-1288) (-654 (-872)))) (-15 -4014 ((-1288) (-654 (-872)))) (-15 -3177 ((-1288) (-654 (-872))))) -((-2867 (($ $ $) 10)) (-3239 (($ $) 9)) (-2600 (($ $ $) 13)) (-2793 (($ $ $) 15)) (-4373 (($ $ $) 12)) (-3852 (($ $ $) 14)) (-1423 (($ $) 17)) (-2966 (($ $) 16)) (-3306 (($ $) 6)) (-3592 (($ $ $) 11) (($ $) 7)) (-2788 (($ $ $) 8))) -(((-1154) (-141)) (T -1154)) -((-1423 (*1 *1 *1) (-4 *1 (-1154))) (-2966 (*1 *1 *1) (-4 *1 (-1154))) (-2793 (*1 *1 *1 *1) (-4 *1 (-1154))) (-3852 (*1 *1 *1 *1) (-4 *1 (-1154))) (-2600 (*1 *1 *1 *1) (-4 *1 (-1154))) (-4373 (*1 *1 *1 *1) (-4 *1 (-1154))) (-3592 (*1 *1 *1 *1) (-4 *1 (-1154))) (-2867 (*1 *1 *1 *1) (-4 *1 (-1154))) (-3239 (*1 *1 *1) (-4 *1 (-1154))) (-2788 (*1 *1 *1 *1) (-4 *1 (-1154))) (-3592 (*1 *1 *1) (-4 *1 (-1154))) (-3306 (*1 *1 *1) (-4 *1 (-1154)))) -(-13 (-10 -8 (-15 -3306 ($ $)) (-15 -3592 ($ $)) (-15 -2788 ($ $ $)) (-15 -3239 ($ $)) (-15 -2867 ($ $ $)) (-15 -3592 ($ $ $)) (-15 -4373 ($ $ $)) (-15 -2600 ($ $ $)) (-15 -3852 ($ $ $)) (-15 -2793 ($ $ $)) (-15 -2966 ($ $)) (-15 -1423 ($ $)))) -((-2863 (((-112) $ $) 44)) (-3078 ((|#1| $) 17)) (-3936 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2035 (((-112) $) 19)) (-4221 (($ $ |#1|) 30)) (-2721 (($ $ (-112)) 32)) (-3916 (($ $) 33)) (-3521 (($ $ |#2|) 31)) (-3945 (((-1174) $) NIL)) (-2908 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3939 (((-1135) $) NIL)) (-2880 (((-112) $) 16)) (-2833 (($) 13)) (-3156 (($ $) 29)) (-2962 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4064 |#2|))) 23) (((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4064 |#2|)))) 26) (((-654 $) |#1| (-654 |#2|)) 28)) (-2278 ((|#2| $) 18)) (-2950 (((-872) $) 53)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 42))) -(((-1155 |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -2833 ($)) (-15 -2880 ((-112) $)) (-15 -3078 (|#1| $)) (-15 -2278 (|#2| $)) (-15 -2035 ((-112) $)) (-15 -2962 ($ |#1| |#2| (-112))) (-15 -2962 ($ |#1| |#2|)) (-15 -2962 ($ (-2 (|:| |val| |#1|) (|:| -4064 |#2|)))) (-15 -2962 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4064 |#2|))))) (-15 -2962 ((-654 $) |#1| (-654 |#2|))) (-15 -3156 ($ $)) (-15 -4221 ($ $ |#1|)) (-15 -3521 ($ $ |#2|)) (-15 -2721 ($ $ (-112))) (-15 -3916 ($ $)) (-15 -2908 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3936 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1115) (-34)) (-13 (-1115) (-34))) (T -1155)) -((-2833 (*1 *1) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))))) (-3078 (*1 *2 *1) (-12 (-4 *2 (-13 (-1115) (-34))) (-5 *1 (-1155 *2 *3)) (-4 *3 (-13 (-1115) (-34))))) (-2278 (*1 *2 *1) (-12 (-4 *2 (-13 (-1115) (-34))) (-5 *1 (-1155 *3 *2)) (-4 *3 (-13 (-1115) (-34))))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))))) (-2962 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2962 (*1 *1 *2 *3) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4064 *4))) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1155 *3 *4)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4064 *5)))) (-4 *4 (-13 (-1115) (-34))) (-4 *5 (-13 (-1115) (-34))) (-5 *2 (-654 (-1155 *4 *5))) (-5 *1 (-1155 *4 *5)))) (-2962 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1115) (-34))) (-5 *2 (-654 (-1155 *3 *5))) (-5 *1 (-1155 *3 *5)) (-4 *3 (-13 (-1115) (-34))))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-4221 (*1 *1 *1 *2) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-3521 (*1 *1 *1 *2) (-12 (-5 *1 (-1155 *3 *2)) (-4 *3 (-13 (-1115) (-34))) (-4 *2 (-13 (-1115) (-34))))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))))) (-3916 (*1 *1 *1) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2908 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1115) (-34))) (-4 *6 (-13 (-1115) (-34))) (-5 *2 (-112)) (-5 *1 (-1155 *5 *6)))) (-3936 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1115) (-34))) (-5 *2 (-112)) (-5 *1 (-1155 *4 *5)) (-4 *4 (-13 (-1115) (-34)))))) -(-13 (-1115) (-10 -8 (-15 -2833 ($)) (-15 -2880 ((-112) $)) (-15 -3078 (|#1| $)) (-15 -2278 (|#2| $)) (-15 -2035 ((-112) $)) (-15 -2962 ($ |#1| |#2| (-112))) (-15 -2962 ($ |#1| |#2|)) (-15 -2962 ($ (-2 (|:| |val| |#1|) (|:| -4064 |#2|)))) (-15 -2962 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4064 |#2|))))) (-15 -2962 ((-654 $) |#1| (-654 |#2|))) (-15 -3156 ($ $)) (-15 -4221 ($ $ |#1|)) (-15 -3521 ($ $ |#2|)) (-15 -2721 ($ $ (-112))) (-15 -3916 ($ $)) (-15 -2908 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3936 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2863 (((-112) $ $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-3078 (((-1155 |#1| |#2|) $) 27)) (-3570 (($ $) 91)) (-1481 (((-112) (-1155 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2849 (($ $ $ (-654 (-1155 |#1| |#2|))) 108) (($ $ $ (-654 (-1155 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2818 (((-112) $ (-781)) NIL)) (-3906 (((-1155 |#1| |#2|) $ (-1155 |#1| |#2|)) 46 (|has| $ (-6 -4459)))) (-3134 (((-1155 |#1| |#2|) $ "value" (-1155 |#1| |#2|)) NIL (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) 44 (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-4046 (((-654 (-2 (|:| |val| |#1|) (|:| -4064 |#2|))) $) 95)) (-1941 (($ (-1155 |#1| |#2|) $) 42)) (-3310 (($ (-1155 |#1| |#2|) $) 34)) (-1873 (((-654 (-1155 |#1| |#2|)) $) NIL (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) 54)) (-3869 (((-112) (-1155 |#1| |#2|) $) 97)) (-2661 (((-112) $ $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 (-1155 |#1| |#2|)) $) 58 (|has| $ (-6 -4458)))) (-2231 (((-112) (-1155 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-1155 |#1| |#2|) (-1115))))) (-2461 (($ (-1 (-1155 |#1| |#2|) (-1155 |#1| |#2|)) $) 50 (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-1155 |#1| |#2|) (-1155 |#1| |#2|)) $) 49)) (-3625 (((-112) $ (-781)) NIL)) (-3481 (((-654 (-1155 |#1| |#2|)) $) 56)) (-4069 (((-112) $) 45)) (-3945 (((-1174) $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-3939 (((-1135) $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-2487 (((-3 $ "failed") $) 89)) (-2000 (((-112) (-1 (-112) (-1155 |#1| |#2|)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-1155 |#1| |#2|)))) NIL (-12 (|has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|))) (|has| (-1155 |#1| |#2|) (-1115)))) (($ $ (-302 (-1155 |#1| |#2|))) NIL (-12 (|has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|))) (|has| (-1155 |#1| |#2|) (-1115)))) (($ $ (-1155 |#1| |#2|) (-1155 |#1| |#2|)) NIL (-12 (|has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|))) (|has| (-1155 |#1| |#2|) (-1115)))) (($ $ (-654 (-1155 |#1| |#2|)) (-654 (-1155 |#1| |#2|))) NIL (-12 (|has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|))) (|has| (-1155 |#1| |#2|) (-1115))))) (-4198 (((-112) $ $) 53)) (-2880 (((-112) $) 24)) (-2833 (($) 26)) (-2208 (((-1155 |#1| |#2|) $ "value") NIL)) (-4418 (((-574) $ $) NIL)) (-1966 (((-112) $) 47)) (-3948 (((-781) (-1 (-112) (-1155 |#1| |#2|)) $) NIL (|has| $ (-6 -4458))) (((-781) (-1155 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-1155 |#1| |#2|) (-1115))))) (-3156 (($ $) 52)) (-2962 (($ (-1155 |#1| |#2|)) 10) (($ |#1| |#2| (-654 $)) 13) (($ |#1| |#2| (-654 (-1155 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-654 |#2|)) 18)) (-2684 (((-654 |#2|) $) 96)) (-2950 (((-872) $) 87 (|has| (-1155 |#1| |#2|) (-623 (-872))))) (-4414 (((-654 $) $) 31)) (-1870 (((-112) $ $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-3838 (((-112) $ $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-2980 (((-112) (-1 (-112) (-1155 |#1| |#2|)) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 70 (|has| (-1155 |#1| |#2|) (-1115)))) (-2876 (((-781) $) 64 (|has| $ (-6 -4458))))) -(((-1156 |#1| |#2|) (-13 (-1025 (-1155 |#1| |#2|)) (-10 -8 (-6 -4459) (-6 -4458) (-15 -2487 ((-3 $ "failed") $)) (-15 -3570 ($ $)) (-15 -2962 ($ (-1155 |#1| |#2|))) (-15 -2962 ($ |#1| |#2| (-654 $))) (-15 -2962 ($ |#1| |#2| (-654 (-1155 |#1| |#2|)))) (-15 -2962 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2684 ((-654 |#2|) $)) (-15 -4046 ((-654 (-2 (|:| |val| |#1|) (|:| -4064 |#2|))) $)) (-15 -3869 ((-112) (-1155 |#1| |#2|) $)) (-15 -1481 ((-112) (-1155 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3310 ($ (-1155 |#1| |#2|) $)) (-15 -1941 ($ (-1155 |#1| |#2|) $)) (-15 -2849 ($ $ $ (-654 (-1155 |#1| |#2|)))) (-15 -2849 ($ $ $ (-654 (-1155 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1115) (-34)) (-13 (-1115) (-34))) (T -1156)) -((-2487 (*1 *1 *1) (|partial| -12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-3570 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4)))) (-2962 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1156 *2 *3))) (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2962 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1155 *2 *3))) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))) (-5 *1 (-1156 *2 *3)))) (-2962 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1115) (-34))) (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-654 *4)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))))) (-3869 (*1 *2 *3 *1) (-12 (-5 *3 (-1155 *4 *5)) (-4 *4 (-13 (-1115) (-34))) (-4 *5 (-13 (-1115) (-34))) (-5 *2 (-112)) (-5 *1 (-1156 *4 *5)))) (-1481 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1155 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1115) (-34))) (-4 *6 (-13 (-1115) (-34))) (-5 *2 (-112)) (-5 *1 (-1156 *5 *6)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4)))) (-1941 (*1 *1 *2 *1) (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4)))) (-2849 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-654 (-1155 *3 *4))) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4)))) (-2849 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1155 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1115) (-34))) (-4 *5 (-13 (-1115) (-34))) (-5 *1 (-1156 *4 *5))))) -(-13 (-1025 (-1155 |#1| |#2|)) (-10 -8 (-6 -4459) (-6 -4458) (-15 -2487 ((-3 $ "failed") $)) (-15 -3570 ($ $)) (-15 -2962 ($ (-1155 |#1| |#2|))) (-15 -2962 ($ |#1| |#2| (-654 $))) (-15 -2962 ($ |#1| |#2| (-654 (-1155 |#1| |#2|)))) (-15 -2962 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2684 ((-654 |#2|) $)) (-15 -4046 ((-654 (-2 (|:| |val| |#1|) (|:| -4064 |#2|))) $)) (-15 -3869 ((-112) (-1155 |#1| |#2|) $)) (-15 -1481 ((-112) (-1155 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3310 ($ (-1155 |#1| |#2|) $)) (-15 -1941 ($ (-1155 |#1| |#2|) $)) (-15 -2849 ($ $ $ (-654 (-1155 |#1| |#2|)))) (-15 -2849 ($ $ $ (-654 (-1155 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-2292 (($ $) NIL)) (-1645 ((|#2| $) NIL)) (-4319 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3261 (($ (-699 |#2|)) 56)) (-2240 (((-112) $) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-3107 (($ |#2|) 14)) (-3831 (($) NIL T CONST)) (-3502 (($ $) 69 (|has| |#2| (-315)))) (-1860 (((-246 |#1| |#2|) $ (-574)) 42)) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) ((|#2| $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) 83)) (-3557 (((-781) $) 71 (|has| |#2| (-566)))) (-2399 ((|#2| $ (-574) (-574)) NIL)) (-1873 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3372 (((-112) $) NIL)) (-1835 (((-781) $) 73 (|has| |#2| (-566)))) (-3284 (((-654 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-566)))) (-2198 (((-781) $) NIL)) (-3763 (($ |#2|) 25)) (-2207 (((-781) $) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1680 ((|#2| $) 67 (|has| |#2| (-6 (-4460 "*"))))) (-3312 (((-574) $) NIL)) (-4378 (((-574) $) NIL)) (-2247 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2391 (((-574) $) NIL)) (-3280 (((-574) $) NIL)) (-2923 (($ (-654 (-654 |#2|))) 37)) (-2461 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1626 (((-654 (-654 |#2|)) $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-4333 (((-3 $ "failed") $) 80 (|has| |#2| (-372)))) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-2000 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) NIL)) (-3878 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2570 ((|#2| $) NIL)) (-1998 (($ (-654 |#2|)) 50)) (-1609 (((-112) $) NIL)) (-4098 (((-246 |#1| |#2|) $) NIL)) (-1928 ((|#2| $) 65 (|has| |#2| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3156 (($ $) NIL)) (-1845 (((-546) $) 89 (|has| |#2| (-624 (-546))))) (-1482 (((-246 |#1| |#2|) $ (-574)) 44)) (-2950 (((-872) $) 47) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1053 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) 52)) (-4019 (((-781)) 23 T CONST)) (-3838 (((-112) $ $) NIL)) (-2980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-1996 (((-112) $) NIL)) (-2142 (($) 16 T CONST)) (-2154 (($) 21 T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) 63) (($ $ (-574)) 82 (|has| |#2| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1157 |#1| |#2|) (-13 (-1138 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3763 ($ |#2|)) (-15 -2292 ($ $)) (-15 -3261 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4460 "*"))) (-6 -4447) |%noBranch|) (IF (|has| |#2| (-6 (-4460 "*"))) (IF (|has| |#2| (-6 -4455)) (-6 -4455) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-781) (-1064)) (T -1157)) -((-3763 (*1 *1 *2) (-12 (-5 *1 (-1157 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1064)))) (-2292 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1064)))) (-3261 (*1 *1 *2) (-12 (-5 *2 (-699 *4)) (-4 *4 (-1064)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-781))))) -(-13 (-1138 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3763 ($ |#2|)) (-15 -2292 ($ $)) (-15 -3261 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4460 "*"))) (-6 -4447) |%noBranch|) (IF (|has| |#2| (-6 (-4460 "*"))) (IF (|has| |#2| (-6 -4455)) (-6 -4455) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) -((-3635 (($ $) 19)) (-3929 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3706 (((-112) $ $) 24)) (-3234 (($ $) 17)) (-2208 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1250 (-574))) NIL) (($ $ $) 31)) (-2950 (($ (-145)) 29) (((-872) $) NIL))) -(((-1158 |#1|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -2208 (|#1| |#1| |#1|)) (-15 -3929 (|#1| |#1| (-142))) (-15 -3929 (|#1| |#1| (-145))) (-15 -2950 (|#1| (-145))) (-15 -3706 ((-112) |#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3234 (|#1| |#1|)) (-15 -2208 (|#1| |#1| (-1250 (-574)))) (-15 -2208 ((-145) |#1| (-574))) (-15 -2208 ((-145) |#1| (-574) (-145)))) (-1159)) (T -1158)) -NIL -(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -2208 (|#1| |#1| |#1|)) (-15 -3929 (|#1| |#1| (-142))) (-15 -3929 (|#1| |#1| (-145))) (-15 -2950 (|#1| (-145))) (-15 -3706 ((-112) |#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3234 (|#1| |#1|)) (-15 -2208 (|#1| |#1| (-1250 (-574)))) (-15 -2208 ((-145) |#1| (-574))) (-15 -2208 ((-145) |#1| (-574) (-145)))) -((-2863 (((-112) $ $) 19 (|has| (-145) (-1115)))) (-3798 (($ $) 123)) (-3635 (($ $) 124)) (-3929 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3287 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-3684 (((-112) $ $) 121)) (-3664 (((-112) $ $ (-574)) 120)) (-3749 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-4331 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-3565 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-2818 (((-112) $ (-781)) 8)) (-3134 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4459))) (((-145) $ (-1250 (-574)) (-145)) 60 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2631 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2163 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2279 (($ $ (-1250 (-574)) $) 117)) (-2560 (($ $) 80 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ (-145) $) 79 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4458)))) (-2881 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4458)))) (-2472 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4459)))) (-2399 (((-145) $ (-574)) 52)) (-3706 (((-112) $ $) 122)) (-1451 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1115))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1115))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1873 (((-654 (-145)) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) (-145)) 70)) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| (-145) (-860)))) (-4297 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-2247 (((-654 (-145)) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 45 (|has| (-574) (-860)))) (-1593 (($ $ $) 89 (|has| (-145) (-860)))) (-1329 (((-112) $ $ (-145)) 118)) (-2697 (((-781) $ $ (-145)) 119)) (-2461 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1951 (($ $) 125)) (-3234 (($ $) 126)) (-3625 (((-112) $ (-781)) 10)) (-2645 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3945 (((-1174) $) 22 (|has| (-145) (-1115)))) (-1603 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-3228 (((-654 (-574)) $) 47)) (-3071 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| (-145) (-1115)))) (-2924 (((-145) $) 43 (|has| (-574) (-860)))) (-2294 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-4276 (($ $ (-145)) 42 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2379 (((-654 (-145)) $) 49)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1250 (-574))) 71) (($ $ $) 105)) (-2853 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4458))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-2315 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1845 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2962 (($ (-654 (-145))) 72)) (-4131 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (($ (-145)) 114) (((-872) $) 18 (|has| (-145) (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| (-145) (-1115)))) (-2980 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3018 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2985 (((-112) $ $) 20 (|has| (-145) (-1115)))) (-3029 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3009 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-1159) (-141)) (T -1159)) -((-3234 (*1 *1 *1) (-4 *1 (-1159))) (-1951 (*1 *1 *1) (-4 *1 (-1159))) (-3635 (*1 *1 *1) (-4 *1 (-1159))) (-3798 (*1 *1 *1) (-4 *1 (-1159))) (-3706 (*1 *2 *1 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-112)))) (-3684 (*1 *2 *1 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-112)))) (-3664 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-574)) (-5 *2 (-112)))) (-2697 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-145)) (-5 *2 (-781)))) (-1329 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-145)) (-5 *2 (-112)))) (-2279 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1250 (-574))))) (-1451 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-574)))) (-1451 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-574)) (-5 *3 (-142)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1159)))) (-3749 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1159)))) (-3749 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1159)))) (-3929 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145)))) (-3929 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) (-2645 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145)))) (-2645 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) (-2631 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145)))) (-2631 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) (-2208 (*1 *1 *1 *1) (-4 *1 (-1159)))) -(-13 (-19 (-145)) (-10 -8 (-15 -3234 ($ $)) (-15 -1951 ($ $)) (-15 -3635 ($ $)) (-15 -3798 ($ $)) (-15 -3706 ((-112) $ $)) (-15 -3684 ((-112) $ $)) (-15 -3664 ((-112) $ $ (-574))) (-15 -2697 ((-781) $ $ (-145))) (-15 -1329 ((-112) $ $ (-145))) (-15 -2279 ($ $ (-1250 (-574)) $)) (-15 -1451 ((-574) $ $ (-574))) (-15 -1451 ((-574) (-142) $ (-574))) (-15 -2950 ($ (-145))) (-15 -3749 ((-654 $) $ (-145))) (-15 -3749 ((-654 $) $ (-142))) (-15 -3929 ($ $ (-145))) (-15 -3929 ($ $ (-142))) (-15 -2645 ($ $ (-145))) (-15 -2645 ($ $ (-142))) (-15 -2631 ($ $ (-145))) (-15 -2631 ($ $ (-142))) (-15 -2208 ($ $ $)))) -(((-34) . T) ((-102) -2832 (|has| (-145) (-1115)) (|has| (-145) (-860))) ((-623 (-872)) -2832 (|has| (-145) (-1115)) (|has| (-145) (-860)) (|has| (-145) (-623 (-872)))) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))) ((-661 #0#) . T) ((-19 #0#) . T) ((-860) |has| (-145) (-860)) ((-1115) -2832 (|has| (-145) (-1115)) (|has| (-145) (-860))) ((-1233) . T)) -((-2618 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) (-781)) 112)) (-4166 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781)) 61)) (-3642 (((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-781)) 97)) (-1837 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-2059 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781)) 63) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781) (-112)) 65)) (-3930 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 85)) (-1845 (((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) 90)) (-2580 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|) 60)) (-3946 (((-781) (-654 |#4|) (-654 |#5|)) 21))) -(((-1160 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3946 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1837 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2580 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|)) (-15 -4166 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781))) (-15 -4166 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|)) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781))) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|)) (-15 -3930 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3930 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2618 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) (-781))) (-15 -1845 ((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)))) (-15 -3642 ((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-781)))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1124 |#1| |#2| |#3| |#4|)) (T -1160)) -((-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4064 *9)))) (-5 *4 (-781)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1288)) (-5 *1 (-1160 *5 *6 *7 *8 *9)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4064 *8))) (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1124 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1174)) (-5 *1 (-1160 *4 *5 *6 *7 *8)))) (-2618 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4064 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4064 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1080 *7 *8 *9)) (-4 *11 (-1124 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1160 *7 *8 *9 *10 *11)))) (-3930 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1160 *5 *6 *7 *8 *9)))) (-3930 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1160 *5 *6 *7 *8 *9)))) (-2059 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3)))) (-2059 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1160 *6 *7 *8 *3 *4)) (-4 *4 (-1124 *6 *7 *8 *3)))) (-2059 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1080 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1160 *7 *8 *9 *3 *4)) (-4 *4 (-1124 *7 *8 *9 *3)))) (-4166 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3)))) (-4166 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1160 *6 *7 *8 *3 *4)) (-4 *4 (-1124 *6 *7 *8 *3)))) (-2580 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3)))) (-1837 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1160 *5 *6 *7 *8 *9)))) (-3946 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1160 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3946 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1837 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2580 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|)) (-15 -4166 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781))) (-15 -4166 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|)) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5| (-781))) (-15 -2059 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) |#4| |#5|)) (-15 -3930 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3930 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2618 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))))) (-781))) (-15 -1845 ((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|)))) (-15 -3642 ((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4064 |#5|))) (-781)))) -((-2863 (((-112) $ $) NIL)) (-4205 (((-654 (-2 (|:| -1389 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1721 (((-654 $) (-654 |#4|)) 124) (((-654 $) (-654 |#4|) (-112)) 125) (((-654 $) (-654 |#4|) (-112) (-112)) 123) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 126)) (-4349 (((-654 |#3|) $) NIL)) (-3278 (((-112) $) NIL)) (-3814 (((-112) $) NIL (|has| |#1| (-566)))) (-3522 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3885 ((|#4| |#4| $) NIL)) (-3296 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| $) 97)) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#3|) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 75)) (-3831 (($) NIL T CONST)) (-4241 (((-112) $) 29 (|has| |#1| (-566)))) (-3297 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2860 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2450 (((-112) $) NIL (|has| |#1| (-566)))) (-3665 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4010 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1438 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2934 (((-3 $ "failed") $) 45)) (-1685 ((|#4| |#4| $) 78)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-566)))) (-3369 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4037 ((|#4| |#4| $) NIL)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1426 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) NIL)) (-2667 (((-112) |#4| $) NIL)) (-2797 (((-112) |#4| $) NIL)) (-1566 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1579 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 139)) (-1873 (((-654 |#4|) $) 18 (|has| $ (-6 -4458)))) (-3762 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2968 ((|#3| $) 38)) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#4|) $) 19 (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-2461 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) 23)) (-2740 (((-654 |#3|) $) NIL)) (-2080 (((-112) |#3| $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-4258 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-2971 (((-654 (-2 (|:| |val| |#4|) (|:| -4064 $))) |#4| |#4| $) 117)) (-3333 (((-3 |#4| "failed") $) 42)) (-2133 (((-654 $) |#4| $) 102)) (-1537 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-1884 (((-654 (-2 (|:| |val| (-112)) (|:| -4064 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-1454 (((-654 $) |#4| $) 121) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 122) (((-654 $) |#4| (-654 $)) NIL)) (-2640 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 134)) (-3750 (($ |#4| $) 88) (($ (-654 |#4|) $) 89) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-3981 (((-654 |#4|) $) NIL)) (-2397 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1576 ((|#4| |#4| $) NIL)) (-2326 (((-112) $ $) NIL)) (-3081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1548 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3503 ((|#4| |#4| $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-3 |#4| "failed") $) 40)) (-2294 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2200 (((-3 $ "failed") $ |#4|) 59)) (-2115 (($ $ |#4|) NIL) (((-654 $) |#4| $) 104) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 99)) (-2000 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 17)) (-2833 (($) 14)) (-3584 (((-781) $) NIL)) (-3948 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) 13)) (-1845 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 22)) (-1689 (($ $ |#3|) 52)) (-2639 (($ $ |#3|) 54)) (-4330 (($ $) NIL)) (-3386 (($ $ |#3|) NIL)) (-2950 (((-872) $) 35) (((-654 |#4|) $) 46)) (-2706 (((-781) $) NIL (|has| |#3| (-377)))) (-3838 (((-112) $ $) NIL)) (-2270 (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1587 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2536 (((-654 $) |#4| $) 66) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-2980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-1437 (((-654 |#3|) $) NIL)) (-1651 (((-112) |#4| $) NIL)) (-1469 (((-112) |#3| $) 74)) (-2985 (((-112) $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1161 |#1| |#2| |#3| |#4|) (-13 (-1124 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3750 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1721 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1721 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2640 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1579 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -1161)) -((-3750 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1161 *5 *6 *7 *3))) (-5 *1 (-1161 *5 *6 *7 *3)) (-4 *3 (-1080 *5 *6 *7)))) (-1721 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8)))) (-1721 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8)))) (-2640 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8)))) (-1579 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1161 *5 *6 *7 *8))))) (-5 *1 (-1161 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) -(-13 (-1124 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3750 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1721 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1721 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2640 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1579 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2011 ((|#1| $) 37)) (-4063 (($ (-654 |#1|)) 45)) (-2818 (((-112) $ (-781)) NIL)) (-3831 (($) NIL T CONST)) (-2268 ((|#1| |#1| $) 40)) (-3255 ((|#1| $) 35)) (-1873 (((-654 |#1|) $) 18 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2461 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 22)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1748 ((|#1| $) 38)) (-2609 (($ |#1| $) 41)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-3484 ((|#1| $) 36)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 32)) (-2833 (($) 43)) (-4292 (((-781) $) 30)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 27)) (-2950 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3180 (($ (-654 |#1|)) NIL)) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 17 (|has| |#1| (-1115)))) (-2876 (((-781) $) 31 (|has| $ (-6 -4458))))) -(((-1162 |#1|) (-13 (-1136 |#1|) (-10 -8 (-15 -4063 ($ (-654 |#1|))))) (-1233)) (T -1162)) -((-4063 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1162 *3))))) -(-13 (-1136 |#1|) (-10 -8 (-15 -4063 ($ (-654 |#1|))))) -((-3134 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1250 (-574)) |#2|) 53) ((|#2| $ (-574) |#2|) 50)) (-1930 (((-112) $) 12)) (-2461 (($ (-1 |#2| |#2|) $) 48)) (-2924 ((|#2| $) NIL) (($ $ (-781)) 17)) (-4276 (($ $ |#2|) 49)) (-1425 (((-112) $) 11)) (-2208 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1250 (-574))) 36) ((|#2| $ (-574)) 26) ((|#2| $ (-574) |#2|) NIL)) (-4226 (($ $ $) 56) (($ $ |#2|) NIL)) (-4131 (($ $ $) 38) (($ |#2| $) NIL) (($ (-654 $)) 45) (($ $ |#2|) NIL))) -(((-1163 |#1| |#2|) (-10 -8 (-15 -1930 ((-112) |#1|)) (-15 -1425 ((-112) |#1|)) (-15 -3134 (|#2| |#1| (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574))) (-15 -4276 (|#1| |#1| |#2|)) (-15 -2208 (|#1| |#1| (-1250 (-574)))) (-15 -4131 (|#1| |#1| |#2|)) (-15 -4131 (|#1| (-654 |#1|))) (-15 -3134 (|#2| |#1| (-1250 (-574)) |#2|)) (-15 -3134 (|#2| |#1| "last" |#2|)) (-15 -3134 (|#1| |#1| "rest" |#1|)) (-15 -3134 (|#2| |#1| "first" |#2|)) (-15 -4226 (|#1| |#1| |#2|)) (-15 -4226 (|#1| |#1| |#1|)) (-15 -2208 (|#2| |#1| "last")) (-15 -2208 (|#1| |#1| "rest")) (-15 -2924 (|#1| |#1| (-781))) (-15 -2208 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#1|)) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -2208 (|#2| |#1| "value")) (-15 -2461 (|#1| (-1 |#2| |#2|) |#1|))) (-1164 |#2|) (-1233)) (T -1163)) -NIL -(-10 -8 (-15 -1930 ((-112) |#1|)) (-15 -1425 ((-112) |#1|)) (-15 -3134 (|#2| |#1| (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574) |#2|)) (-15 -2208 (|#2| |#1| (-574))) (-15 -4276 (|#1| |#1| |#2|)) (-15 -2208 (|#1| |#1| (-1250 (-574)))) (-15 -4131 (|#1| |#1| |#2|)) (-15 -4131 (|#1| (-654 |#1|))) (-15 -3134 (|#2| |#1| (-1250 (-574)) |#2|)) (-15 -3134 (|#2| |#1| "last" |#2|)) (-15 -3134 (|#1| |#1| "rest" |#1|)) (-15 -3134 (|#2| |#1| "first" |#2|)) (-15 -4226 (|#1| |#1| |#2|)) (-15 -4226 (|#1| |#1| |#1|)) (-15 -2208 (|#2| |#1| "last")) (-15 -2208 (|#1| |#1| "rest")) (-15 -2924 (|#1| |#1| (-781))) (-15 -2208 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#1|)) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -2208 (|#2| |#1| "value")) (-15 -2461 (|#1| (-1 |#2| |#2|) |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-2420 ((|#1| $) 66)) (-1979 (($ $) 68)) (-3287 (((-1288) $ (-574) (-574)) 99 (|has| $ (-6 -4459)))) (-1344 (($ $ (-574)) 53 (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) 8)) (-3906 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-3168 (($ $ $) 57 (|has| $ (-6 -4459)))) (-2976 ((|#1| $ |#1|) 55 (|has| $ (-6 -4459)))) (-3576 ((|#1| $ |#1|) 59 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4459))) (($ $ "rest" $) 56 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 119 (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4458)))) (-2407 ((|#1| $) 67)) (-3831 (($) 7 T CONST)) (-2934 (($ $) 74) (($ $ (-781)) 72)) (-2560 (($ $) 101 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4458))) (($ |#1| $) 102 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2472 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 89)) (-1930 (((-112) $) 85)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) 51)) (-2661 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) 111)) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 97 (|has| (-574) (-860)))) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 96 (|has| (-574) (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-3625 (((-112) $ (-781)) 10)) (-3481 (((-654 |#1|) $) 46)) (-4069 (((-112) $) 50)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3333 ((|#1| $) 71) (($ $ (-781)) 69)) (-1603 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-3228 (((-654 (-574)) $) 94)) (-3071 (((-112) (-574) $) 93)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 77) (($ $ (-781)) 75)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4276 (($ $ |#1|) 98 (|has| $ (-6 -4459)))) (-1425 (((-112) $) 86)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) 92)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1250 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-4418 (((-574) $ $) 45)) (-2853 (($ $ (-1250 (-574))) 116) (($ $ (-574)) 115)) (-1966 (((-112) $) 47)) (-2013 (($ $) 63)) (-1429 (($ $) 60 (|has| $ (-6 -4459)))) (-2746 (((-781) $) 64)) (-1476 (($ $) 65)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1845 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 109)) (-4226 (($ $ $) 62 (|has| $ (-6 -4459))) (($ $ |#1|) 61 (|has| $ (-6 -4459)))) (-4131 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) 52)) (-1870 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-1164 |#1|) (-141) (-1233)) (T -1164)) -((-1425 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) -(-13 (-1271 |t#1|) (-661 |t#1|) (-10 -8 (-15 -1425 ((-112) $)) (-15 -1930 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T) ((-1271 |#1|) . T)) -((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3287 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) NIL)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2171 (((-3 |#2| "failed") |#1| $) NIL)) (-3831 (($) NIL T CONST)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-1941 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) NIL)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1873 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-860)))) (-2247 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1772 (((-654 |#1|) $) NIL)) (-2056 (((-112) |#1| $) NIL)) (-1748 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2609 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-3228 (((-654 |#1|) $) NIL)) (-3071 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-2294 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL)) (-4276 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3667 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3838 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1165 |#1| |#2| |#3|) (-1209 |#1| |#2|) (-1115) (-1115) |#2|) (T -1165)) -NIL -(-1209 |#1| |#2|) -((-2863 (((-112) $ $) NIL)) (-2604 (((-701 (-1150)) $) 27)) (-4120 (((-1150) $) 15)) (-2683 (((-1150) $) 17)) (-3945 (((-1174) $) NIL)) (-3206 (((-516) $) 13)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 37) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1166) (-13 (-1098) (-10 -8 (-15 -3206 ((-516) $)) (-15 -2683 ((-1150) $)) (-15 -2604 ((-701 (-1150)) $)) (-15 -4120 ((-1150) $))))) (T -1166)) -((-3206 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1166)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1166)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-701 (-1150))) (-5 *1 (-1166)))) (-4120 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1166))))) -(-13 (-1098) (-10 -8 (-15 -3206 ((-516) $)) (-15 -2683 ((-1150) $)) (-15 -2604 ((-701 (-1150)) $)) (-15 -4120 ((-1150) $)))) -((-2863 (((-112) $ $) 7)) (-1353 (((-3 $ "failed") $) 14)) (-3945 (((-1174) $) 10)) (-3791 (($) 15 T CONST)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) -(((-1167) (-141)) (T -1167)) -((-3791 (*1 *1) (-4 *1 (-1167))) (-1353 (*1 *1 *1) (|partial| -4 *1 (-1167)))) -(-13 (-1115) (-10 -8 (-15 -3791 ($) -1715) (-15 -1353 ((-3 $ "failed") $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) -((-2158 (((-1172 |#1|) (-1172 |#1|)) 17)) (-1923 (((-1172 |#1|) (-1172 |#1|)) 13)) (-1610 (((-1172 |#1|) (-1172 |#1|) (-574) (-574)) 20)) (-3192 (((-1172 |#1|) (-1172 |#1|)) 15))) -(((-1168 |#1|) (-10 -7 (-15 -1923 ((-1172 |#1|) (-1172 |#1|))) (-15 -3192 ((-1172 |#1|) (-1172 |#1|))) (-15 -2158 ((-1172 |#1|) (-1172 |#1|))) (-15 -1610 ((-1172 |#1|) (-1172 |#1|) (-574) (-574)))) (-13 (-566) (-148))) (T -1168)) -((-1610 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1168 *4)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1168 *3)))) (-3192 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1168 *3)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1168 *3))))) -(-10 -7 (-15 -1923 ((-1172 |#1|) (-1172 |#1|))) (-15 -3192 ((-1172 |#1|) (-1172 |#1|))) (-15 -2158 ((-1172 |#1|) (-1172 |#1|))) (-15 -1610 ((-1172 |#1|) (-1172 |#1|) (-574) (-574)))) -((-4131 (((-1172 |#1|) (-1172 (-1172 |#1|))) 15))) -(((-1169 |#1|) (-10 -7 (-15 -4131 ((-1172 |#1|) (-1172 (-1172 |#1|))))) (-1233)) (T -1169)) -((-4131 (*1 *2 *3) (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1169 *4)) (-4 *4 (-1233))))) -(-10 -7 (-15 -4131 ((-1172 |#1|) (-1172 (-1172 |#1|))))) -((-4214 (((-1172 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|)) 25)) (-2881 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|)) 26)) (-1786 (((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|)) 16))) -(((-1170 |#1| |#2|) (-10 -7 (-15 -1786 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (-15 -4214 ((-1172 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|))) (-15 -2881 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|)))) (-1233) (-1233)) (T -1170)) -((-2881 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1172 *5)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-1170 *5 *2)))) (-4214 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1172 *6)) (-4 *6 (-1233)) (-4 *3 (-1233)) (-5 *2 (-1172 *3)) (-5 *1 (-1170 *6 *3)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6))))) -(-10 -7 (-15 -1786 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (-15 -4214 ((-1172 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|))) (-15 -2881 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|)))) -((-1786 (((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-1172 |#2|)) 21))) -(((-1171 |#1| |#2| |#3|) (-10 -7 (-15 -1786 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-1172 |#2|)))) (-1233) (-1233) (-1233)) (T -1171)) -((-1786 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1172 *6)) (-5 *5 (-1172 *7)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) (-5 *1 (-1171 *6 *7 *8))))) -(-10 -7 (-15 -1786 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-1172 |#2|)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) NIL)) (-2420 ((|#1| $) NIL)) (-1979 (($ $) 67)) (-3287 (((-1288) $ (-574) (-574)) 99 (|has| $ (-6 -4459)))) (-1344 (($ $ (-574)) 128 (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-1953 (((-872) $) 56 (|has| |#1| (-1115)))) (-1633 (((-112)) 55 (|has| |#1| (-1115)))) (-3906 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3168 (($ $ $) 115 (|has| $ (-6 -4459))) (($ $ (-574) $) 141)) (-2976 ((|#1| $ |#1|) 125 (|has| $ (-6 -4459)))) (-3576 ((|#1| $ |#1|) 120 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4459))) (($ $ "rest" $) 124 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 112 (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) 77 (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 80)) (-2407 ((|#1| $) NIL)) (-3831 (($) NIL T CONST)) (-2475 (($ $) 14)) (-2934 (($ $) 40) (($ $ (-781)) 111)) (-2337 (((-112) (-654 |#1|) $) 134 (|has| |#1| (-1115)))) (-1820 (($ (-654 |#1|)) 130)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) 79)) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2472 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1930 (((-112) $) NIL)) (-1873 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3230 (((-1288) (-574) $) 140 (|has| |#1| (-1115)))) (-2252 (((-781) $) 137)) (-2898 (((-654 $) $) NIL)) (-2661 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-3625 (((-112) $ (-781)) NIL)) (-3481 (((-654 |#1|) $) NIL)) (-4069 (((-112) $) NIL)) (-2441 (($ $) 113)) (-1676 (((-112) $) 13)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3333 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1603 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) 96)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2103 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-2716 ((|#1| $) 10)) (-2924 ((|#1| $) 39) (($ $ (-781)) 65)) (-3366 (((-2 (|:| |cycle?| (-112)) (|:| -4196 (-781)) (|:| |period| (-781))) (-781) $) 34)) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2149 (($ (-1 (-112) |#1|) $) 145)) (-2160 (($ (-1 (-112) |#1|) $) 146)) (-4276 (($ $ |#1|) 90 (|has| $ (-6 -4459)))) (-2115 (($ $ (-574)) 45)) (-1425 (((-112) $) 94)) (-1766 (((-112) $) 12)) (-4315 (((-112) $) 136)) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 30)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) 20)) (-2833 (($) 60)) (-2208 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1250 (-574))) NIL) ((|#1| $ (-574)) 75) ((|#1| $ (-574) |#1|) NIL)) (-4418 (((-574) $ $) 64)) (-2853 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-1665 (($ (-1 $)) 63)) (-1966 (((-112) $) 91)) (-2013 (($ $) 92)) (-1429 (($ $) 116 (|has| $ (-6 -4459)))) (-2746 (((-781) $) NIL)) (-1476 (($ $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 59)) (-1845 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 73)) (-2234 (($ |#1| $) 114)) (-4226 (($ $ $) 118 (|has| $ (-6 -4459))) (($ $ |#1|) 119 (|has| $ (-6 -4459)))) (-4131 (($ $ $) 101) (($ |#1| $) 61) (($ (-654 $)) 106) (($ $ |#1|) 100)) (-4209 (($ $) 66)) (-2950 (($ (-654 |#1|)) 129) (((-872) $) 57 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) NIL)) (-1870 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 132 (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1172 |#1|) (-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4459) (-15 -1820 ($ (-654 |#1|))) (IF (|has| |#1| (-1115)) (-15 -2337 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -3366 ((-2 (|:| |cycle?| (-112)) (|:| -4196 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -1665 ($ (-1 $))) (-15 -2234 ($ |#1| $)) (IF (|has| |#1| (-1115)) (PROGN (-15 -3230 ((-1288) (-574) $)) (-15 -1953 ((-872) $)) (-15 -1633 ((-112)))) |%noBranch|) (-15 -3168 ($ $ (-574) $)) (-15 -2103 ($ (-1 |#1|))) (-15 -2103 ($ (-1 |#1| |#1|) |#1|)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2160 ($ (-1 (-112) |#1|) $)))) (-1233)) (T -1172)) -((-1820 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3)))) (-2337 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-4 *4 (-1233)) (-5 *2 (-112)) (-5 *1 (-1172 *4)))) (-3366 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4196 (-781)) (|:| |period| (-781)))) (-5 *1 (-1172 *4)) (-4 *4 (-1233)) (-5 *3 (-781)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-1 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1233)))) (-2234 (*1 *1 *2 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1233)))) (-3230 (*1 *2 *3 *1) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1172 *4)) (-4 *4 (-1115)) (-4 *4 (-1233)))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1172 *3)) (-4 *3 (-1115)) (-4 *3 (-1233)))) (-1633 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1115)) (-4 *3 (-1233)))) (-3168 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1172 *3)) (-4 *3 (-1233)))) (-2103 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3)))) (-2103 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3)))) (-2149 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3)))) (-2160 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3))))) -(-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4459) (-15 -1820 ($ (-654 |#1|))) (IF (|has| |#1| (-1115)) (-15 -2337 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -3366 ((-2 (|:| |cycle?| (-112)) (|:| -4196 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -1665 ($ (-1 $))) (-15 -2234 ($ |#1| $)) (IF (|has| |#1| (-1115)) (PROGN (-15 -3230 ((-1288) (-574) $)) (-15 -1953 ((-872) $)) (-15 -1633 ((-112)))) |%noBranch|) (-15 -3168 ($ $ (-574) $)) (-15 -2103 ($ (-1 |#1|))) (-15 -2103 ($ (-1 |#1| |#1|) |#1|)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2160 ($ (-1 (-112) |#1|) $)))) -((-2863 (((-112) $ $) 19)) (-3798 (($ $) 123)) (-3635 (($ $) 124)) (-3929 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3287 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-3684 (((-112) $ $) 121)) (-3664 (((-112) $ $ (-574)) 120)) (-3231 (($ (-574)) 130)) (-3749 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-4331 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-3565 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-2818 (((-112) $ (-781)) 8)) (-3134 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4459))) (((-145) $ (-1250 (-574)) (-145)) 60 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2631 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2163 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2279 (($ $ (-1250 (-574)) $) 117)) (-2560 (($ $) 80 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ (-145) $) 79 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4458)))) (-2881 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4458)))) (-2472 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4459)))) (-2399 (((-145) $ (-574)) 52)) (-3706 (((-112) $ $) 122)) (-1451 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1115))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1115))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1873 (((-654 (-145)) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) (-145)) 70)) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| (-145) (-860)))) (-4297 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-2247 (((-654 (-145)) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 45 (|has| (-574) (-860)))) (-1593 (($ $ $) 89 (|has| (-145) (-860)))) (-1329 (((-112) $ $ (-145)) 118)) (-2697 (((-781) $ $ (-145)) 119)) (-2461 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1951 (($ $) 125)) (-3234 (($ $) 126)) (-3625 (((-112) $ (-781)) 10)) (-2645 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3945 (((-1174) $) 22)) (-1603 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-3228 (((-654 (-574)) $) 47)) (-3071 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21)) (-2924 (((-145) $) 43 (|has| (-574) (-860)))) (-2294 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-4276 (($ $ (-145)) 42 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2379 (((-654 (-145)) $) 49)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1250 (-574))) 71) (($ $ $) 105)) (-2853 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4458))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-2315 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1845 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2962 (($ (-654 (-145))) 72)) (-4131 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (($ (-145)) 114) (((-872) $) 18)) (-3838 (((-112) $ $) 23)) (-2980 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4458)))) (-4057 (((-1174) $) 134) (((-1174) $ (-112)) 133) (((-1288) (-832) $) 132) (((-1288) (-832) $ (-112)) 131)) (-3041 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3018 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2985 (((-112) $ $) 20)) (-3029 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3009 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-1173) (-141)) (T -1173)) -((-3231 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1173))))) -(-13 (-1159) (-1115) (-838) (-10 -8 (-15 -3231 ($ (-574))))) -(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))) ((-661 #0#) . T) ((-19 #0#) . T) ((-838) . T) ((-860) |has| (-145) (-860)) ((-1115) . T) ((-1159) . T) ((-1233) . T)) -((-2863 (((-112) $ $) NIL)) (-3798 (($ $) NIL)) (-3635 (($ $) NIL)) (-3929 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-3684 (((-112) $ $) NIL)) (-3664 (((-112) $ $ (-574)) NIL)) (-3231 (($ (-574)) 8)) (-3749 (((-654 $) $ (-145)) NIL) (((-654 $) $ (-142)) NIL)) (-4331 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-3565 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-860))))) (-2785 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4459))) (((-145) $ (-1250 (-574)) (-145)) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2631 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2279 (($ $ (-1250 (-574)) $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-3310 (($ (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2472 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4459)))) (-2399 (((-145) $ (-574)) NIL)) (-3706 (((-112) $ $) NIL)) (-1451 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1115))) (((-574) (-145) $ (-574)) NIL (|has| (-145) (-1115))) (((-574) $ $ (-574)) NIL) (((-574) (-142) $ (-574)) NIL)) (-1873 (((-654 (-145)) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) (-145)) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| (-145) (-860)))) (-4297 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-2247 (((-654 (-145)) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2429 (((-574) $) NIL (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| (-145) (-860)))) (-1329 (((-112) $ $ (-145)) NIL)) (-2697 (((-781) $ $ (-145)) NIL)) (-2461 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1951 (($ $) NIL)) (-3234 (($ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-2645 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3945 (((-1174) $) NIL)) (-1603 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-145) $) NIL (|has| (-574) (-860)))) (-2294 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4276 (($ $ (-145)) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2379 (((-654 (-145)) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1250 (-574))) NIL) (($ $ $) NIL)) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2962 (($ (-654 (-145))) NIL)) (-4131 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (($ (-145)) NIL) (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2980 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-4057 (((-1174) $) 19) (((-1174) $ (-112)) 21) (((-1288) (-832) $) 22) (((-1288) (-832) $ (-112)) 23)) (-3041 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1174) (-1173)) (T -1174)) -NIL -(-1173) -((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)) (|has| |#1| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL)) (-3287 (((-1288) $ (-1174) (-1174)) NIL (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-1174) |#1|) NIL)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2171 (((-3 |#1| "failed") (-1174) $) NIL)) (-3831 (($) NIL T CONST)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115))))) (-1941 (($ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#1| "failed") (-1174) $) NIL)) (-3310 (($ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-1174) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-1174)) NIL)) (-1873 (((-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-1174) $) NIL (|has| (-1174) (-860)))) (-2247 (((-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-1174) $) NIL (|has| (-1174) (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)) (|has| |#1| (-1115))))) (-1772 (((-654 (-1174)) $) NIL)) (-2056 (((-112) (-1174) $) NIL)) (-1748 (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL)) (-2609 (($ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL)) (-3228 (((-654 (-1174)) $) NIL)) (-3071 (((-112) (-1174) $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)) (|has| |#1| (-1115))))) (-2924 ((|#1| $) NIL (|has| (-1174) (-860)))) (-2294 (((-3 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) "failed") (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL)) (-4276 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (($ $ (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-1174)) NIL) ((|#1| $ (-1174) |#1|) NIL)) (-3667 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-623 (-872))) (|has| |#1| (-623 (-872)))))) (-3838 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)) (|has| |#1| (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)))) NIL)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (-1115)) (|has| |#1| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1175 |#1|) (-13 (-1209 (-1174) |#1|) (-10 -7 (-6 -4458))) (-1115)) (T -1175)) -NIL -(-13 (-1209 (-1174) |#1|) (-10 -7 (-6 -4458))) -((-1418 (((-1172 |#1|) (-1172 |#1|)) 83)) (-3911 (((-3 (-1172 |#1|) "failed") (-1172 |#1|)) 39)) (-4308 (((-1172 |#1|) (-417 (-574)) (-1172 |#1|)) 133 (|has| |#1| (-38 (-417 (-574)))))) (-4301 (((-1172 |#1|) |#1| (-1172 |#1|)) 139 (|has| |#1| (-372)))) (-3403 (((-1172 |#1|) (-1172 |#1|)) 97)) (-2291 (((-1172 (-574)) (-574)) 63)) (-1441 (((-1172 |#1|) (-1172 (-1172 |#1|))) 116 (|has| |#1| (-38 (-417 (-574)))))) (-1630 (((-1172 |#1|) (-574) (-574) (-1172 |#1|)) 102)) (-3805 (((-1172 |#1|) |#1| (-574)) 51)) (-2140 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 66)) (-4181 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 136 (|has| |#1| (-372)))) (-4359 (((-1172 |#1|) |#1| (-1 (-1172 |#1|))) 115 (|has| |#1| (-38 (-417 (-574)))))) (-3519 (((-1172 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1172 |#1|))) 137 (|has| |#1| (-372)))) (-3316 (((-1172 |#1|) (-1172 |#1|)) 96)) (-3172 (((-1172 |#1|) (-1172 |#1|)) 82)) (-1405 (((-1172 |#1|) (-574) (-574) (-1172 |#1|)) 103)) (-1578 (((-1172 |#1|) |#1| (-1172 |#1|)) 112 (|has| |#1| (-38 (-417 (-574)))))) (-2800 (((-1172 (-574)) (-574)) 62)) (-3086 (((-1172 |#1|) |#1|) 65)) (-3120 (((-1172 |#1|) (-1172 |#1|) (-574) (-574)) 99)) (-3712 (((-1172 |#1|) (-1 |#1| (-574)) (-1172 |#1|)) 72)) (-2852 (((-3 (-1172 |#1|) "failed") (-1172 |#1|) (-1172 |#1|)) 37)) (-2754 (((-1172 |#1|) (-1172 |#1|)) 98)) (-2660 (((-1172 |#1|) (-1172 |#1|) |#1|) 77)) (-2122 (((-1172 |#1|) (-1172 |#1|)) 68)) (-2258 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 78)) (-2950 (((-1172 |#1|) |#1|) 73)) (-2072 (((-1172 |#1|) (-1172 (-1172 |#1|))) 88)) (-3098 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 38)) (-3089 (((-1172 |#1|) (-1172 |#1|)) 21) (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 23)) (-3074 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 17)) (* (((-1172 |#1|) (-1172 |#1|) |#1|) 29) (((-1172 |#1|) |#1| (-1172 |#1|)) 26) (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 27))) -(((-1176 |#1|) (-10 -7 (-15 -3074 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3089 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3089 ((-1172 |#1|) (-1172 |#1|))) (-15 * ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 * ((-1172 |#1|) |#1| (-1172 |#1|))) (-15 * ((-1172 |#1|) (-1172 |#1|) |#1|)) (-15 -2852 ((-3 (-1172 |#1|) "failed") (-1172 |#1|) (-1172 |#1|))) (-15 -3098 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3911 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -3805 ((-1172 |#1|) |#1| (-574))) (-15 -2800 ((-1172 (-574)) (-574))) (-15 -2291 ((-1172 (-574)) (-574))) (-15 -3086 ((-1172 |#1|) |#1|)) (-15 -2140 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2122 ((-1172 |#1|) (-1172 |#1|))) (-15 -3712 ((-1172 |#1|) (-1 |#1| (-574)) (-1172 |#1|))) (-15 -2950 ((-1172 |#1|) |#1|)) (-15 -2660 ((-1172 |#1|) (-1172 |#1|) |#1|)) (-15 -2258 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3172 ((-1172 |#1|) (-1172 |#1|))) (-15 -1418 ((-1172 |#1|) (-1172 |#1|))) (-15 -2072 ((-1172 |#1|) (-1172 (-1172 |#1|)))) (-15 -3316 ((-1172 |#1|) (-1172 |#1|))) (-15 -3403 ((-1172 |#1|) (-1172 |#1|))) (-15 -2754 ((-1172 |#1|) (-1172 |#1|))) (-15 -3120 ((-1172 |#1|) (-1172 |#1|) (-574) (-574))) (-15 -1630 ((-1172 |#1|) (-574) (-574) (-1172 |#1|))) (-15 -1405 ((-1172 |#1|) (-574) (-574) (-1172 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ((-1172 |#1|) |#1| (-1172 |#1|))) (-15 -4359 ((-1172 |#1|) |#1| (-1 (-1172 |#1|)))) (-15 -1441 ((-1172 |#1|) (-1172 (-1172 |#1|)))) (-15 -4308 ((-1172 |#1|) (-417 (-574)) (-1172 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -4181 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3519 ((-1172 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1172 |#1|)))) (-15 -4301 ((-1172 |#1|) |#1| (-1172 |#1|)))) |%noBranch|)) (-1064)) (T -1176)) -((-4301 (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3519 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1172 *4))) (-4 *4 (-372)) (-4 *4 (-1064)) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4)))) (-4181 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-4308 (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1064)) (-5 *3 (-417 (-574))) (-5 *1 (-1176 *4)))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1064)))) (-4359 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1172 *3))) (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)))) (-1578 (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-1405 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) (-5 *1 (-1176 *4)))) (-1630 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) (-5 *1 (-1176 *4)))) (-3120 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) (-5 *1 (-1176 *4)))) (-2754 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3403 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1064)))) (-1418 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3172 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-2258 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-2660 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1064)))) (-3712 (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1064)) (-5 *1 (-1176 *4)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-2140 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3086 (*1 *2 *3) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1064)))) (-2291 (*1 *2 *3) (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1176 *4)) (-4 *4 (-1064)) (-5 *3 (-574)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1176 *4)) (-4 *4 (-1064)) (-5 *3 (-574)))) (-3805 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1064)))) (-3911 (*1 *2 *2) (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3098 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-2852 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3089 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3089 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3074 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) -(-10 -7 (-15 -3074 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3089 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3089 ((-1172 |#1|) (-1172 |#1|))) (-15 * ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 * ((-1172 |#1|) |#1| (-1172 |#1|))) (-15 * ((-1172 |#1|) (-1172 |#1|) |#1|)) (-15 -2852 ((-3 (-1172 |#1|) "failed") (-1172 |#1|) (-1172 |#1|))) (-15 -3098 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3911 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -3805 ((-1172 |#1|) |#1| (-574))) (-15 -2800 ((-1172 (-574)) (-574))) (-15 -2291 ((-1172 (-574)) (-574))) (-15 -3086 ((-1172 |#1|) |#1|)) (-15 -2140 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2122 ((-1172 |#1|) (-1172 |#1|))) (-15 -3712 ((-1172 |#1|) (-1 |#1| (-574)) (-1172 |#1|))) (-15 -2950 ((-1172 |#1|) |#1|)) (-15 -2660 ((-1172 |#1|) (-1172 |#1|) |#1|)) (-15 -2258 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3172 ((-1172 |#1|) (-1172 |#1|))) (-15 -1418 ((-1172 |#1|) (-1172 |#1|))) (-15 -2072 ((-1172 |#1|) (-1172 (-1172 |#1|)))) (-15 -3316 ((-1172 |#1|) (-1172 |#1|))) (-15 -3403 ((-1172 |#1|) (-1172 |#1|))) (-15 -2754 ((-1172 |#1|) (-1172 |#1|))) (-15 -3120 ((-1172 |#1|) (-1172 |#1|) (-574) (-574))) (-15 -1630 ((-1172 |#1|) (-574) (-574) (-1172 |#1|))) (-15 -1405 ((-1172 |#1|) (-574) (-574) (-1172 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ((-1172 |#1|) |#1| (-1172 |#1|))) (-15 -4359 ((-1172 |#1|) |#1| (-1 (-1172 |#1|)))) (-15 -1441 ((-1172 |#1|) (-1172 (-1172 |#1|)))) (-15 -4308 ((-1172 |#1|) (-417 (-574)) (-1172 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -4181 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3519 ((-1172 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1172 |#1|)))) (-15 -4301 ((-1172 |#1|) |#1| (-1172 |#1|)))) |%noBranch|)) -((-2378 (((-1172 |#1|) (-1172 |#1|)) 60)) (-2259 (((-1172 |#1|) (-1172 |#1|)) 42)) (-2357 (((-1172 |#1|) (-1172 |#1|)) 56)) (-2237 (((-1172 |#1|) (-1172 |#1|)) 38)) (-2403 (((-1172 |#1|) (-1172 |#1|)) 63)) (-2281 (((-1172 |#1|) (-1172 |#1|)) 45)) (-3112 (((-1172 |#1|) (-1172 |#1|)) 34)) (-1618 (((-1172 |#1|) (-1172 |#1|)) 29)) (-2416 (((-1172 |#1|) (-1172 |#1|)) 64)) (-2289 (((-1172 |#1|) (-1172 |#1|)) 46)) (-2389 (((-1172 |#1|) (-1172 |#1|)) 61)) (-2269 (((-1172 |#1|) (-1172 |#1|)) 43)) (-2367 (((-1172 |#1|) (-1172 |#1|)) 58)) (-2248 (((-1172 |#1|) (-1172 |#1|)) 40)) (-2455 (((-1172 |#1|) (-1172 |#1|)) 68)) (-2319 (((-1172 |#1|) (-1172 |#1|)) 50)) (-2427 (((-1172 |#1|) (-1172 |#1|)) 66)) (-2300 (((-1172 |#1|) (-1172 |#1|)) 48)) (-2479 (((-1172 |#1|) (-1172 |#1|)) 71)) (-2339 (((-1172 |#1|) (-1172 |#1|)) 53)) (-2535 (((-1172 |#1|) (-1172 |#1|)) 72)) (-2348 (((-1172 |#1|) (-1172 |#1|)) 54)) (-2466 (((-1172 |#1|) (-1172 |#1|)) 70)) (-2329 (((-1172 |#1|) (-1172 |#1|)) 52)) (-2442 (((-1172 |#1|) (-1172 |#1|)) 69)) (-2311 (((-1172 |#1|) (-1172 |#1|)) 51)) (** (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 36))) -(((-1177 |#1|) (-10 -7 (-15 -1618 ((-1172 |#1|) (-1172 |#1|))) (-15 -3112 ((-1172 |#1|) (-1172 |#1|))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2237 ((-1172 |#1|) (-1172 |#1|))) (-15 -2248 ((-1172 |#1|) (-1172 |#1|))) (-15 -2259 ((-1172 |#1|) (-1172 |#1|))) (-15 -2269 ((-1172 |#1|) (-1172 |#1|))) (-15 -2281 ((-1172 |#1|) (-1172 |#1|))) (-15 -2289 ((-1172 |#1|) (-1172 |#1|))) (-15 -2300 ((-1172 |#1|) (-1172 |#1|))) (-15 -2311 ((-1172 |#1|) (-1172 |#1|))) (-15 -2319 ((-1172 |#1|) (-1172 |#1|))) (-15 -2329 ((-1172 |#1|) (-1172 |#1|))) (-15 -2339 ((-1172 |#1|) (-1172 |#1|))) (-15 -2348 ((-1172 |#1|) (-1172 |#1|))) (-15 -2357 ((-1172 |#1|) (-1172 |#1|))) (-15 -2367 ((-1172 |#1|) (-1172 |#1|))) (-15 -2378 ((-1172 |#1|) (-1172 |#1|))) (-15 -2389 ((-1172 |#1|) (-1172 |#1|))) (-15 -2403 ((-1172 |#1|) (-1172 |#1|))) (-15 -2416 ((-1172 |#1|) (-1172 |#1|))) (-15 -2427 ((-1172 |#1|) (-1172 |#1|))) (-15 -2442 ((-1172 |#1|) (-1172 |#1|))) (-15 -2455 ((-1172 |#1|) (-1172 |#1|))) (-15 -2466 ((-1172 |#1|) (-1172 |#1|))) (-15 -2479 ((-1172 |#1|) (-1172 |#1|))) (-15 -2535 ((-1172 |#1|) (-1172 |#1|)))) (-38 (-417 (-574)))) (T -1177)) -((-2535 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2479 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2455 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2427 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2389 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2311 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2300 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2259 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2248 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-3112 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3))))) -(-10 -7 (-15 -1618 ((-1172 |#1|) (-1172 |#1|))) (-15 -3112 ((-1172 |#1|) (-1172 |#1|))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2237 ((-1172 |#1|) (-1172 |#1|))) (-15 -2248 ((-1172 |#1|) (-1172 |#1|))) (-15 -2259 ((-1172 |#1|) (-1172 |#1|))) (-15 -2269 ((-1172 |#1|) (-1172 |#1|))) (-15 -2281 ((-1172 |#1|) (-1172 |#1|))) (-15 -2289 ((-1172 |#1|) (-1172 |#1|))) (-15 -2300 ((-1172 |#1|) (-1172 |#1|))) (-15 -2311 ((-1172 |#1|) (-1172 |#1|))) (-15 -2319 ((-1172 |#1|) (-1172 |#1|))) (-15 -2329 ((-1172 |#1|) (-1172 |#1|))) (-15 -2339 ((-1172 |#1|) (-1172 |#1|))) (-15 -2348 ((-1172 |#1|) (-1172 |#1|))) (-15 -2357 ((-1172 |#1|) (-1172 |#1|))) (-15 -2367 ((-1172 |#1|) (-1172 |#1|))) (-15 -2378 ((-1172 |#1|) (-1172 |#1|))) (-15 -2389 ((-1172 |#1|) (-1172 |#1|))) (-15 -2403 ((-1172 |#1|) (-1172 |#1|))) (-15 -2416 ((-1172 |#1|) (-1172 |#1|))) (-15 -2427 ((-1172 |#1|) (-1172 |#1|))) (-15 -2442 ((-1172 |#1|) (-1172 |#1|))) (-15 -2455 ((-1172 |#1|) (-1172 |#1|))) (-15 -2466 ((-1172 |#1|) (-1172 |#1|))) (-15 -2479 ((-1172 |#1|) (-1172 |#1|))) (-15 -2535 ((-1172 |#1|) (-1172 |#1|)))) -((-2378 (((-1172 |#1|) (-1172 |#1|)) 102)) (-2259 (((-1172 |#1|) (-1172 |#1|)) 61)) (-3580 (((-2 (|:| -2357 (-1172 |#1|)) (|:| -2367 (-1172 |#1|))) (-1172 |#1|)) 98)) (-2357 (((-1172 |#1|) (-1172 |#1|)) 99)) (-3470 (((-2 (|:| -2237 (-1172 |#1|)) (|:| -2248 (-1172 |#1|))) (-1172 |#1|)) 54)) (-2237 (((-1172 |#1|) (-1172 |#1|)) 55)) (-2403 (((-1172 |#1|) (-1172 |#1|)) 104)) (-2281 (((-1172 |#1|) (-1172 |#1|)) 68)) (-3112 (((-1172 |#1|) (-1172 |#1|)) 40)) (-1618 (((-1172 |#1|) (-1172 |#1|)) 37)) (-2416 (((-1172 |#1|) (-1172 |#1|)) 105)) (-2289 (((-1172 |#1|) (-1172 |#1|)) 69)) (-2389 (((-1172 |#1|) (-1172 |#1|)) 103)) (-2269 (((-1172 |#1|) (-1172 |#1|)) 64)) (-2367 (((-1172 |#1|) (-1172 |#1|)) 100)) (-2248 (((-1172 |#1|) (-1172 |#1|)) 56)) (-2455 (((-1172 |#1|) (-1172 |#1|)) 113)) (-2319 (((-1172 |#1|) (-1172 |#1|)) 88)) (-2427 (((-1172 |#1|) (-1172 |#1|)) 107)) (-2300 (((-1172 |#1|) (-1172 |#1|)) 84)) (-2479 (((-1172 |#1|) (-1172 |#1|)) 117)) (-2339 (((-1172 |#1|) (-1172 |#1|)) 92)) (-2535 (((-1172 |#1|) (-1172 |#1|)) 119)) (-2348 (((-1172 |#1|) (-1172 |#1|)) 94)) (-2466 (((-1172 |#1|) (-1172 |#1|)) 115)) (-2329 (((-1172 |#1|) (-1172 |#1|)) 90)) (-2442 (((-1172 |#1|) (-1172 |#1|)) 109)) (-2311 (((-1172 |#1|) (-1172 |#1|)) 86)) (** (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 41))) -(((-1178 |#1|) (-10 -7 (-15 -1618 ((-1172 |#1|) (-1172 |#1|))) (-15 -3112 ((-1172 |#1|) (-1172 |#1|))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3470 ((-2 (|:| -2237 (-1172 |#1|)) (|:| -2248 (-1172 |#1|))) (-1172 |#1|))) (-15 -2237 ((-1172 |#1|) (-1172 |#1|))) (-15 -2248 ((-1172 |#1|) (-1172 |#1|))) (-15 -2259 ((-1172 |#1|) (-1172 |#1|))) (-15 -2269 ((-1172 |#1|) (-1172 |#1|))) (-15 -2281 ((-1172 |#1|) (-1172 |#1|))) (-15 -2289 ((-1172 |#1|) (-1172 |#1|))) (-15 -2300 ((-1172 |#1|) (-1172 |#1|))) (-15 -2311 ((-1172 |#1|) (-1172 |#1|))) (-15 -2319 ((-1172 |#1|) (-1172 |#1|))) (-15 -2329 ((-1172 |#1|) (-1172 |#1|))) (-15 -2339 ((-1172 |#1|) (-1172 |#1|))) (-15 -2348 ((-1172 |#1|) (-1172 |#1|))) (-15 -3580 ((-2 (|:| -2357 (-1172 |#1|)) (|:| -2367 (-1172 |#1|))) (-1172 |#1|))) (-15 -2357 ((-1172 |#1|) (-1172 |#1|))) (-15 -2367 ((-1172 |#1|) (-1172 |#1|))) (-15 -2378 ((-1172 |#1|) (-1172 |#1|))) (-15 -2389 ((-1172 |#1|) (-1172 |#1|))) (-15 -2403 ((-1172 |#1|) (-1172 |#1|))) (-15 -2416 ((-1172 |#1|) (-1172 |#1|))) (-15 -2427 ((-1172 |#1|) (-1172 |#1|))) (-15 -2442 ((-1172 |#1|) (-1172 |#1|))) (-15 -2455 ((-1172 |#1|) (-1172 |#1|))) (-15 -2466 ((-1172 |#1|) (-1172 |#1|))) (-15 -2479 ((-1172 |#1|) (-1172 |#1|))) (-15 -2535 ((-1172 |#1|) (-1172 |#1|)))) (-38 (-417 (-574)))) (T -1178)) -((-2535 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2479 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2455 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2427 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2389 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-3580 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2357 (-1172 *4)) (|:| -2367 (-1172 *4)))) (-5 *1 (-1178 *4)) (-5 *3 (-1172 *4)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2311 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2300 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2259 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2248 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-3470 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2237 (-1172 *4)) (|:| -2248 (-1172 *4)))) (-5 *1 (-1178 *4)) (-5 *3 (-1172 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-3112 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3))))) -(-10 -7 (-15 -1618 ((-1172 |#1|) (-1172 |#1|))) (-15 -3112 ((-1172 |#1|) (-1172 |#1|))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3470 ((-2 (|:| -2237 (-1172 |#1|)) (|:| -2248 (-1172 |#1|))) (-1172 |#1|))) (-15 -2237 ((-1172 |#1|) (-1172 |#1|))) (-15 -2248 ((-1172 |#1|) (-1172 |#1|))) (-15 -2259 ((-1172 |#1|) (-1172 |#1|))) (-15 -2269 ((-1172 |#1|) (-1172 |#1|))) (-15 -2281 ((-1172 |#1|) (-1172 |#1|))) (-15 -2289 ((-1172 |#1|) (-1172 |#1|))) (-15 -2300 ((-1172 |#1|) (-1172 |#1|))) (-15 -2311 ((-1172 |#1|) (-1172 |#1|))) (-15 -2319 ((-1172 |#1|) (-1172 |#1|))) (-15 -2329 ((-1172 |#1|) (-1172 |#1|))) (-15 -2339 ((-1172 |#1|) (-1172 |#1|))) (-15 -2348 ((-1172 |#1|) (-1172 |#1|))) (-15 -3580 ((-2 (|:| -2357 (-1172 |#1|)) (|:| -2367 (-1172 |#1|))) (-1172 |#1|))) (-15 -2357 ((-1172 |#1|) (-1172 |#1|))) (-15 -2367 ((-1172 |#1|) (-1172 |#1|))) (-15 -2378 ((-1172 |#1|) (-1172 |#1|))) (-15 -2389 ((-1172 |#1|) (-1172 |#1|))) (-15 -2403 ((-1172 |#1|) (-1172 |#1|))) (-15 -2416 ((-1172 |#1|) (-1172 |#1|))) (-15 -2427 ((-1172 |#1|) (-1172 |#1|))) (-15 -2442 ((-1172 |#1|) (-1172 |#1|))) (-15 -2455 ((-1172 |#1|) (-1172 |#1|))) (-15 -2466 ((-1172 |#1|) (-1172 |#1|))) (-15 -2479 ((-1172 |#1|) (-1172 |#1|))) (-15 -2535 ((-1172 |#1|) (-1172 |#1|)))) -((-3103 (((-971 |#2|) |#2| |#2|) 50)) (-1509 ((|#2| |#2| |#1|) 19 (|has| |#1| (-315))))) -(((-1179 |#1| |#2|) (-10 -7 (-15 -3103 ((-971 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -1509 (|#2| |#2| |#1|)) |%noBranch|)) (-566) (-1259 |#1|)) (T -1179)) -((-1509 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1259 *3)))) (-3103 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-971 *3)) (-5 *1 (-1179 *4 *3)) (-4 *3 (-1259 *4))))) -(-10 -7 (-15 -3103 ((-971 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -1509 (|#2| |#2| |#1|)) |%noBranch|)) -((-2863 (((-112) $ $) NIL)) (-2557 (($ $ (-654 (-781))) 79)) (-2686 (($) 33)) (-4210 (($ $) 51)) (-1720 (((-654 $) $) 60)) (-2297 (((-112) $) 19)) (-4430 (((-654 (-956 |#2|)) $) 86)) (-3219 (($ $) 80)) (-1983 (((-781) $) 47)) (-3763 (($) 32)) (-1494 (($ $ (-654 (-781)) (-956 |#2|)) 72) (($ $ (-654 (-781)) (-781)) 73) (($ $ (-781) (-956 |#2|)) 75)) (-4297 (($ $ $) 57) (($ (-654 $)) 59)) (-4312 (((-781) $) 87)) (-4069 (((-112) $) 15)) (-3945 (((-1174) $) NIL)) (-3915 (((-112) $) 22)) (-3939 (((-1135) $) NIL)) (-1698 (((-173) $) 85)) (-4145 (((-956 |#2|) $) 81)) (-3824 (((-781) $) 82)) (-2657 (((-112) $) 84)) (-3718 (($ $ (-654 (-781)) (-173)) 78)) (-2233 (($ $) 52)) (-2950 (((-872) $) 99)) (-4223 (($ $ (-654 (-781)) (-112)) 77)) (-4414 (((-654 $) $) 11)) (-3958 (($ $ (-781)) 46)) (-3517 (($ $) 43)) (-3838 (((-112) $ $) NIL)) (-3772 (($ $ $ (-956 |#2|) (-781)) 68)) (-3351 (($ $ (-956 |#2|)) 67)) (-2559 (($ $ (-654 (-781)) (-956 |#2|)) 66) (($ $ (-654 (-781)) (-781)) 70) (((-781) $ (-956 |#2|)) 71)) (-2985 (((-112) $ $) 92))) -(((-1180 |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -4069 ((-112) $)) (-15 -2297 ((-112) $)) (-15 -3915 ((-112) $)) (-15 -3763 ($)) (-15 -2686 ($)) (-15 -3517 ($ $)) (-15 -3958 ($ $ (-781))) (-15 -4414 ((-654 $) $)) (-15 -1983 ((-781) $)) (-15 -4210 ($ $)) (-15 -2233 ($ $)) (-15 -4297 ($ $ $)) (-15 -4297 ($ (-654 $))) (-15 -1720 ((-654 $) $)) (-15 -2559 ($ $ (-654 (-781)) (-956 |#2|))) (-15 -3351 ($ $ (-956 |#2|))) (-15 -3772 ($ $ $ (-956 |#2|) (-781))) (-15 -1494 ($ $ (-654 (-781)) (-956 |#2|))) (-15 -2559 ($ $ (-654 (-781)) (-781))) (-15 -1494 ($ $ (-654 (-781)) (-781))) (-15 -2559 ((-781) $ (-956 |#2|))) (-15 -1494 ($ $ (-781) (-956 |#2|))) (-15 -4223 ($ $ (-654 (-781)) (-112))) (-15 -3718 ($ $ (-654 (-781)) (-173))) (-15 -2557 ($ $ (-654 (-781)))) (-15 -4145 ((-956 |#2|) $)) (-15 -3824 ((-781) $)) (-15 -2657 ((-112) $)) (-15 -1698 ((-173) $)) (-15 -4312 ((-781) $)) (-15 -3219 ($ $)) (-15 -4430 ((-654 (-956 |#2|)) $)))) (-934) (-1064)) (T -1180)) -((-4069 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-2297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-3763 (*1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-2686 (*1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-3517 (*1 *1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-3958 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-4414 (*1 *2 *1) (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-4210 (*1 *1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-2233 (*1 *1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-4297 (*1 *1 *1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-4297 (*1 *1 *2) (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-1720 (*1 *2 *1) (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-2559 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-956 *5)) (-4 *5 (-1064)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) (-3351 (*1 *1 *1 *2) (-12 (-5 *2 (-956 *4)) (-4 *4 (-1064)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)))) (-3772 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-956 *5)) (-5 *3 (-781)) (-4 *5 (-1064)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) (-1494 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-956 *5)) (-4 *5 (-1064)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) (-2559 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)) (-4 *5 (-1064)))) (-1494 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)) (-4 *5 (-1064)))) (-2559 (*1 *2 *1 *3) (-12 (-5 *3 (-956 *5)) (-4 *5 (-1064)) (-5 *2 (-781)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) (-1494 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-956 *5)) (-4 *5 (-1064)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) (-4223 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)) (-4 *5 (-1064)))) (-3718 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)) (-4 *5 (-1064)))) (-2557 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-956 *4)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-1698 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-3219 (*1 *1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-4430 (*1 *2 *1) (-12 (-5 *2 (-654 (-956 *4))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064))))) -(-13 (-1115) (-10 -8 (-15 -4069 ((-112) $)) (-15 -2297 ((-112) $)) (-15 -3915 ((-112) $)) (-15 -3763 ($)) (-15 -2686 ($)) (-15 -3517 ($ $)) (-15 -3958 ($ $ (-781))) (-15 -4414 ((-654 $) $)) (-15 -1983 ((-781) $)) (-15 -4210 ($ $)) (-15 -2233 ($ $)) (-15 -4297 ($ $ $)) (-15 -4297 ($ (-654 $))) (-15 -1720 ((-654 $) $)) (-15 -2559 ($ $ (-654 (-781)) (-956 |#2|))) (-15 -3351 ($ $ (-956 |#2|))) (-15 -3772 ($ $ $ (-956 |#2|) (-781))) (-15 -1494 ($ $ (-654 (-781)) (-956 |#2|))) (-15 -2559 ($ $ (-654 (-781)) (-781))) (-15 -1494 ($ $ (-654 (-781)) (-781))) (-15 -2559 ((-781) $ (-956 |#2|))) (-15 -1494 ($ $ (-781) (-956 |#2|))) (-15 -4223 ($ $ (-654 (-781)) (-112))) (-15 -3718 ($ $ (-654 (-781)) (-173))) (-15 -2557 ($ $ (-654 (-781)))) (-15 -4145 ((-956 |#2|) $)) (-15 -3824 ((-781) $)) (-15 -2657 ((-112) $)) (-15 -1698 ((-173) $)) (-15 -4312 ((-781) $)) (-15 -3219 ($ $)) (-15 -4430 ((-654 (-956 |#2|)) $)))) -((-2863 (((-112) $ $) NIL)) (-1818 ((|#2| $) 11)) (-1804 ((|#1| $) 10)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2962 (($ |#1| |#2|) 9)) (-2950 (((-872) $) 16)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1181 |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -2962 ($ |#1| |#2|)) (-15 -1804 (|#1| $)) (-15 -1818 (|#2| $)))) (-1115) (-1115)) (T -1181)) -((-2962 (*1 *1 *2 *3) (-12 (-5 *1 (-1181 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-1804 (*1 *2 *1) (-12 (-4 *2 (-1115)) (-5 *1 (-1181 *2 *3)) (-4 *3 (-1115)))) (-1818 (*1 *2 *1) (-12 (-4 *2 (-1115)) (-5 *1 (-1181 *3 *2)) (-4 *3 (-1115))))) -(-13 (-1115) (-10 -8 (-15 -2962 ($ |#1| |#2|)) (-15 -1804 (|#1| $)) (-15 -1818 (|#2| $)))) -((-2863 (((-112) $ $) NIL)) (-2529 (((-1150) $) 9)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1182) (-13 (-1098) (-10 -8 (-15 -2529 ((-1150) $))))) (T -1182)) -((-2529 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1182))))) -(-13 (-1098) (-10 -8 (-15 -2529 ((-1150) $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4018 (((-1190 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4349 (((-654 (-1097)) $) NIL)) (-1497 (((-1192) $) 11)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-3648 (($ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1527 (((-112) $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-3842 (($ $ (-574)) NIL) (($ $ (-574) (-574)) 75)) (-3786 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-1787 (((-1190 |#1| |#2| |#3|) $) 42)) (-2630 (((-3 (-1190 |#1| |#2| |#3|) "failed") $) 32)) (-4401 (((-1190 |#1| |#2| |#3|) $) 33)) (-2378 (($ $) 116 (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-3296 (($ $) NIL (|has| |#1| (-372)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) 112 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-3011 (((-574) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-1190 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1192) "failed") $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))))) (-2216 (((-1190 |#1| |#2| |#3|) $) 140) (((-1192) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))))) (-3892 (($ $) 37) (($ (-574) $) 38)) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-3465 (((-699 (-1190 |#1| |#2| |#3|)) (-1283 $)) NIL (|has| |#1| (-372))) (((-699 (-1190 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4047 (-699 (-1190 |#1| |#2| |#3|))) (|:| |vec| (-1283 (-1190 |#1| |#2| |#3|)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-3911 (((-3 $ "failed") $) 54)) (-3493 (((-417 (-965 |#1|)) $ (-574)) 74 (|has| |#1| (-566))) (((-417 (-965 |#1|)) $ (-574) (-574)) 76 (|has| |#1| (-566)))) (-2834 (($) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1782 (((-112) $) NIL (|has| |#1| (-372)))) (-1913 (((-112) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3938 (((-112) $) 28)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-2725 (((-574) $) NIL) (((-574) $ (-574)) 26)) (-3372 (((-112) $) NIL)) (-3536 (($ $) NIL (|has| |#1| (-372)))) (-2970 (((-1190 |#1| |#2| |#3|) $) 44 (|has| |#1| (-372)))) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1353 (((-3 $ "failed") $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1167)) (|has| |#1| (-372))))) (-1808 (((-112) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2057 (($ $ (-934)) NIL)) (-1988 (($ (-1 |#1| (-574)) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-574)) 19) (($ $ (-1097) (-574)) NIL) (($ $ (-654 (-1097)) (-654 (-574))) NIL)) (-3632 (($ $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1593 (($ $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3112 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) (-1190 |#1| |#2| |#3|)) 36)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-1578 (($ $) 79 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 80 (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1167)) (|has| |#1| (-372))) CONST)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2244 (($ $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-3471 (((-1190 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2115 (($ $ (-574)) 158)) (-2852 (((-3 $ "failed") $ $) 55 (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1618 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1192) (-1190 |#1| |#2| |#3|)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-524 (-1192) (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 (-1190 |#1| |#2| |#3|))) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-524 (-1192) (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1190 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1190 |#1| |#2| |#3|))) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1190 |#1| |#2| |#3|)) (-654 (-1190 |#1| |#2| |#3|))) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-2208 ((|#1| $ (-574)) NIL) (($ $ $) 61 (|has| (-574) (-1127))) (($ $ (-1190 |#1| |#2| |#3|)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-294 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-1 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1279 |#2|)) 57) (($ $) 56 (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-2120 (($ $) NIL (|has| |#1| (-372)))) (-2981 (((-1190 |#1| |#2| |#3|) $) 46 (|has| |#1| (-372)))) (-3584 (((-574) $) 43)) (-2416 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 118 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 114 (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-1845 (((-546) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1037)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1037)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-4209 (($ $) NIL)) (-2950 (((-872) $) 162) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1190 |#1| |#2| |#3|)) 30) (($ (-1279 |#2|)) 25) (($ (-1192)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (($ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-2930 ((|#1| $ (-574)) 77)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-4019 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 12)) (-2753 (((-1190 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2427 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 108 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 110 (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 106 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-3306 (($ $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2142 (($) 21 T CONST)) (-2154 (($) 16 T CONST)) (-3583 (($ $ (-1 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-3041 (((-112) $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3018 (((-112) $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3009 (((-112) $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 49 (|has| |#1| (-372))) (($ (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|)) 50 (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 23)) (** (($ $ (-934)) NIL) (($ $ (-781)) 60) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) 83 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 137 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1190 |#1| |#2| |#3|)) 48 (|has| |#1| (-372))) (($ (-1190 |#1| |#2| |#3|) $) 47 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1183 |#1| |#2| |#3|) (-13 (-1245 |#1| (-1190 |#1| |#2| |#3|)) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1183)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-1578 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) -(-13 (-1245 |#1| (-1190 |#1| |#2| |#3|)) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) -((-3534 ((|#2| |#2| (-1107 |#2|)) 26) ((|#2| |#2| (-1192)) 28))) -(((-1184 |#1| |#2|) (-10 -7 (-15 -3534 (|#2| |#2| (-1192))) (-15 -3534 (|#2| |#2| (-1107 |#2|)))) (-13 (-566) (-1053 (-574)) (-649 (-574))) (-13 (-440 |#1|) (-161) (-27) (-1218))) (T -1184)) -((-3534 (*1 *2 *2 *3) (-12 (-5 *3 (-1107 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1218))) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1184 *4 *2)))) (-3534 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1218)))))) -(-10 -7 (-15 -3534 (|#2| |#2| (-1192))) (-15 -3534 (|#2| |#2| (-1107 |#2|)))) -((-3534 (((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1107 (-417 (-965 |#1|)))) 31) (((-417 (-965 |#1|)) (-965 |#1|) (-1107 (-965 |#1|))) 44) (((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1192)) 33) (((-417 (-965 |#1|)) (-965 |#1|) (-1192)) 36))) -(((-1185 |#1|) (-10 -7 (-15 -3534 ((-417 (-965 |#1|)) (-965 |#1|) (-1192))) (-15 -3534 ((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1192))) (-15 -3534 ((-417 (-965 |#1|)) (-965 |#1|) (-1107 (-965 |#1|)))) (-15 -3534 ((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1107 (-417 (-965 |#1|)))))) (-13 (-566) (-1053 (-574)))) (T -1185)) -((-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-3 *3 (-324 *5))) (-5 *1 (-1185 *5)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-965 *5))) (-5 *3 (-965 *5)) (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-417 *3)) (-5 *1 (-1185 *5)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-3 (-417 (-965 *5)) (-324 *5))) (-5 *1 (-1185 *5)) (-5 *3 (-417 (-965 *5))))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-417 (-965 *5))) (-5 *1 (-1185 *5)) (-5 *3 (-965 *5))))) -(-10 -7 (-15 -3534 ((-417 (-965 |#1|)) (-965 |#1|) (-1192))) (-15 -3534 ((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1192))) (-15 -3534 ((-417 (-965 |#1|)) (-965 |#1|) (-1107 (-965 |#1|)))) (-15 -3534 ((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1107 (-417 (-965 |#1|)))))) -((-1786 (((-1188 |#2|) (-1 |#2| |#1|) (-1188 |#1|)) 13))) -(((-1186 |#1| |#2|) (-10 -7 (-15 -1786 ((-1188 |#2|) (-1 |#2| |#1|) (-1188 |#1|)))) (-1064) (-1064)) (T -1186)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1188 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-5 *2 (-1188 *6)) (-5 *1 (-1186 *5 *6))))) -(-10 -7 (-15 -1786 ((-1188 |#2|) (-1 |#2| |#1|) (-1188 |#1|)))) -((-3954 (((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|))) 51)) (-4200 (((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|))) 52))) -(((-1187 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|)))) (-15 -3954 ((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|))))) (-803) (-860) (-462) (-962 |#3| |#1| |#2|)) (T -1187)) -((-3954 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 (-417 *7)))) (-5 *1 (-1187 *4 *5 *6 *7)) (-5 *3 (-1188 (-417 *7))))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 (-417 *7)))) (-5 *1 (-1187 *4 *5 *6 *7)) (-5 *3 (-1188 (-417 *7)))))) -(-10 -7 (-15 -4200 ((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|)))) (-15 -3954 ((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|))))) -((-2863 (((-112) $ $) 171)) (-3520 (((-112) $) 43)) (-1420 (((-1283 |#1|) $ (-781)) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-3473 (($ (-1188 |#1|)) NIL)) (-4171 (((-1188 $) $ (-1097)) 82) (((-1188 |#1|) $) 71)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) 164 (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 (-1097))) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-2891 (($ $ $) 158 (|has| |#1| (-566)))) (-4055 (((-428 (-1188 $)) (-1188 $)) 95 (|has| |#1| (-922)))) (-3296 (($ $) NIL (|has| |#1| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 115 (|has| |#1| (-922)))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-3186 (($ $ (-781)) 61)) (-2939 (($ $ (-781)) 63)) (-1720 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-1097) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-1097) $) NIL)) (-3496 (($ $ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) 80)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-1490 (($ $ $) 131)) (-2816 (($ $ $) NIL (|has| |#1| (-566)))) (-3960 (((-2 (|:| -1867 |#1|) (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-566)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1509 (($ $) 165 (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#1| (-922)))) (-4389 (($ $ |#1| (-781) $) 69)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1097) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1097) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2152 (((-872) $ (-872)) 148)) (-2725 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3372 (((-112) $) 48)) (-3241 (((-781) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-1167)))) (-4338 (($ (-1188 |#1|) (-1097)) 73) (($ (-1188 $) (-1097)) 89)) (-2057 (($ $ (-781)) 51)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) 87) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-1097)) NIL) (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 153)) (-1503 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-3558 (($ (-1 (-781) (-781)) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3707 (((-1188 |#1|) $) NIL)) (-1803 (((-3 (-1097) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) 76)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3945 (((-1174) $) NIL)) (-1466 (((-2 (|:| -4415 $) (|:| -1484 $)) $ (-781)) 60)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| (-1097)) (|:| -2017 (-781))) "failed") $) NIL)) (-1578 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#1| (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) 50)) (-1354 ((|#1| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 103 (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 167 (|has| |#1| (-462)))) (-1687 (($ $ (-781) |#1| $) 123)) (-2743 (((-428 (-1188 $)) (-1188 $)) 101 (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) 100 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 108 (|has| |#1| (-922)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1097) |#1|) NIL) (($ $ (-654 (-1097)) (-654 |#1|)) NIL) (($ $ (-1097) $) NIL) (($ $ (-654 (-1097)) (-654 $)) NIL)) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-2208 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-2595 (((-3 $ "failed") $ (-781)) 54)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 172 (|has| |#1| (-372)))) (-1738 (($ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3878 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3584 (((-781) $) 78) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1097) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3631 ((|#1| $) 162 (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2228 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2950 (((-872) $) 149) (($ (-574)) NIL) (($ |#1|) 77) (($ (-1097)) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-781)) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) 41 (|has| |#1| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2142 (($) 17 T CONST)) (-2154 (($) 19 T CONST)) (-3583 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) 120)) (-3098 (($ $ |#1|) 173 (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 90)) (** (($ $ (-934)) 14) (($ $ (-781)) 12)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1188 |#1|) (-13 (-1259 |#1|) (-10 -8 (-15 -2152 ((-872) $ (-872))) (-15 -1687 ($ $ (-781) |#1| $)))) (-1064)) (T -1188)) -((-2152 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1188 *3)) (-4 *3 (-1064)))) (-1687 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1188 *3)) (-4 *3 (-1064))))) -(-13 (-1259 |#1|) (-10 -8 (-15 -2152 ((-872) $ (-872))) (-15 -1687 ($ $ (-781) |#1| $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1497 (((-1192) $) 11)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3842 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-3786 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-372)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-1183 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1190 |#1| |#2| |#3|) "failed") $) 36)) (-2216 (((-1183 |#1| |#2| |#3|) $) NIL) (((-1190 |#1| |#2| |#3|) $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2665 (((-417 (-574)) $) 59)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-4425 (($ (-417 (-574)) (-1183 |#1| |#2| |#3|)) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1782 (((-112) $) NIL (|has| |#1| (-372)))) (-3938 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3372 (((-112) $) NIL)) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2057 (($ $ (-934)) NIL) (($ $ (-417 (-574))) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-417 (-574))) 20) (($ $ (-1097) (-417 (-574))) NIL) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3112 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4320 (((-1183 |#1| |#2| |#3|) $) 41)) (-2809 (((-3 (-1183 |#1| |#2| |#3|) "failed") $) NIL)) (-4413 (((-1183 |#1| |#2| |#3|) $) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-1578 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2115 (($ $ (-417 (-574))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1618 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-2208 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1127)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1279 |#2|)) 38)) (-3584 (((-417 (-574)) $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) NIL)) (-2950 (((-872) $) 62) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1183 |#1| |#2| |#3|)) 30) (($ (-1190 |#1| |#2| |#3|)) 31) (($ (-1279 |#2|)) 26) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2930 ((|#1| $ (-417 (-574))) NIL)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 12)) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2427 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) 22 T CONST)) (-2154 (($) 16 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 24)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1189 |#1| |#2| |#3|) (-13 (-1266 |#1| (-1183 |#1| |#2| |#3|)) (-1053 (-1190 |#1| |#2| |#3|)) (-626 (-1279 |#2|)) (-10 -8 (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1189)) -((-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-1578 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) -(-13 (-1266 |#1| (-1183 |#1| |#2| |#3|)) (-1053 (-1190 |#1| |#2| |#3|)) (-626 (-1279 |#2|)) (-10 -8 (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 129)) (-4349 (((-654 (-1097)) $) NIL)) (-1497 (((-1192) $) 119)) (-4026 (((-1256 |#2| |#1|) $ (-781)) 69)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3842 (($ $ (-781)) 85) (($ $ (-781) (-781)) 82)) (-3786 (((-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 105)) (-2378 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 118) (($ (-1172 |#1|)) 113)) (-2403 (($ $) 177 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) 25)) (-1524 (($ $) 28)) (-4025 (((-965 |#1|) $ (-781)) 81) (((-965 |#1|) $ (-781) (-781)) 83)) (-3938 (((-112) $) 124)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-781) $) 126) (((-781) $ (-781)) 128)) (-3372 (((-112) $) NIL)) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2057 (($ $ (-934)) NIL)) (-1988 (($ (-1 |#1| (-574)) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) 13) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3112 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-1578 (($ $) 133 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-2115 (($ $ (-781)) 15)) (-2852 (((-3 $ "failed") $ $) 26 (|has| |#1| (-566)))) (-1618 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2208 ((|#1| $ (-781)) 122) (($ $ $) 132 (|has| (-781) (-1127)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1279 |#2|)) 31)) (-3584 (((-781) $) NIL)) (-2416 (($ $) 179 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) NIL)) (-2950 (((-872) $) 206) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1256 |#2| |#1|)) 55) (($ (-1279 |#2|)) 36)) (-2836 (((-1172 |#1|) $) 101)) (-2930 ((|#1| $ (-781)) 121)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 58)) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2427 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 165 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-781)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 167 (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 163 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 159 (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) 17 T CONST)) (-2154 (($) 20 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) 198)) (-3074 (($ $ $) 35)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 203 (|has| |#1| (-372))) (($ $ $) 138 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 141 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1190 |#1| |#2| |#3|) (-13 (-1274 |#1|) (-10 -8 (-15 -2950 ($ (-1256 |#2| |#1|))) (-15 -4026 ((-1256 |#2| |#1|) $ (-781))) (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1190)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3) (-5 *1 (-1190 *3 *4 *5)))) (-4026 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1190 *4 *5 *6)) (-4 *4 (-1064)) (-14 *5 (-1192)) (-14 *6 *4))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-1578 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) -(-13 (-1274 |#1|) (-10 -8 (-15 -2950 ($ (-1256 |#2| |#1|))) (-15 -4026 ((-1256 |#2| |#1|) $ (-781))) (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) -((-2950 (((-872) $) 33) (($ (-1192)) 35)) (-2832 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 46)) (-2819 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 39) (($ $) 40)) (-2534 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 41)) (-2522 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 43)) (-2510 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 42)) (-2497 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 44)) (-2086 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 45))) -(((-1191) (-13 (-623 (-872)) (-10 -8 (-15 -2950 ($ (-1192))) (-15 -2534 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2510 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2522 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2497 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2832 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2086 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2819 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2819 ($ $))))) (T -1191)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1191)))) (-2534 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2510 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2522 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2497 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2832 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2086 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2819 (*1 *1 *1) (-5 *1 (-1191)))) -(-13 (-623 (-872)) (-10 -8 (-15 -2950 ($ (-1192))) (-15 -2534 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2510 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2522 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2497 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2832 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2086 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2819 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2819 ($ $)))) -((-2863 (((-112) $ $) NIL)) (-3235 (($ $ (-654 (-872))) 62)) (-3543 (($ $ (-654 (-872))) 60)) (-3231 (((-1174) $) 101)) (-4121 (((-2 (|:| -3191 (-654 (-872))) (|:| -2620 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3073 (-654 (-872))) (|:| |args| (-654 (-872)))) $) 108)) (-2997 (((-112) $) 23)) (-3839 (($ $ (-654 (-654 (-872)))) 59) (($ $ (-2 (|:| -3191 (-654 (-872))) (|:| -2620 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3073 (-654 (-872))) (|:| |args| (-654 (-872))))) 99)) (-3831 (($) 163 T CONST)) (-3595 (((-1288)) 135)) (-3552 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 69) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 76)) (-3763 (($) 122) (($ $) 131)) (-2040 (($ $) 100)) (-3632 (($ $ $) NIL)) (-1593 (($ $ $) NIL)) (-1797 (((-654 $) $) 136)) (-3945 (((-1174) $) 114)) (-3939 (((-1135) $) NIL)) (-2208 (($ $ (-654 (-872))) 61)) (-1845 (((-546) $) 48) (((-1192) $) 49) (((-903 (-574)) $) 80) (((-903 (-388)) $) 78)) (-2950 (((-872) $) 55) (($ (-1174)) 50)) (-3838 (((-112) $ $) NIL)) (-2749 (($ $ (-654 (-872))) 63)) (-4057 (((-1174) $) 34) (((-1174) $ (-112)) 35) (((-1288) (-832) $) 36) (((-1288) (-832) $ (-112)) 37)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 51)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 52))) -(((-1192) (-13 (-860) (-624 (-546)) (-838) (-624 (-1192)) (-626 (-1174)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3763 ($)) (-15 -3763 ($ $)) (-15 -3595 ((-1288))) (-15 -2040 ($ $)) (-15 -2997 ((-112) $)) (-15 -4121 ((-2 (|:| -3191 (-654 (-872))) (|:| -2620 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3073 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3839 ($ $ (-654 (-654 (-872))))) (-15 -3839 ($ $ (-2 (|:| -3191 (-654 (-872))) (|:| -2620 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3073 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -3543 ($ $ (-654 (-872)))) (-15 -3235 ($ $ (-654 (-872)))) (-15 -2749 ($ $ (-654 (-872)))) (-15 -2208 ($ $ (-654 (-872)))) (-15 -3231 ((-1174) $)) (-15 -1797 ((-654 $) $)) (-15 -3831 ($) -1715)))) (T -1192)) -((-3763 (*1 *1) (-5 *1 (-1192))) (-3763 (*1 *1 *1) (-5 *1 (-1192))) (-3595 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1192)))) (-2040 (*1 *1 *1) (-5 *1 (-1192))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1192)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3191 (-654 (-872))) (|:| -2620 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3073 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1192)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1192)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3191 (-654 (-872))) (|:| -2620 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3073 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1192)))) (-3543 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192)))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192)))) (-2749 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1192)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1192)))) (-3831 (*1 *1) (-5 *1 (-1192)))) -(-13 (-860) (-624 (-546)) (-838) (-624 (-1192)) (-626 (-1174)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3763 ($)) (-15 -3763 ($ $)) (-15 -3595 ((-1288))) (-15 -2040 ($ $)) (-15 -2997 ((-112) $)) (-15 -4121 ((-2 (|:| -3191 (-654 (-872))) (|:| -2620 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3073 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3839 ($ $ (-654 (-654 (-872))))) (-15 -3839 ($ $ (-2 (|:| -3191 (-654 (-872))) (|:| -2620 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3073 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -3543 ($ $ (-654 (-872)))) (-15 -3235 ($ $ (-654 (-872)))) (-15 -2749 ($ $ (-654 (-872)))) (-15 -2208 ($ $ (-654 (-872)))) (-15 -3231 ((-1174) $)) (-15 -1797 ((-654 $) $)) (-15 -3831 ($) -1715))) -((-3314 (((-1283 |#1|) |#1| (-934)) 18) (((-1283 |#1|) (-654 |#1|)) 25))) -(((-1193 |#1|) (-10 -7 (-15 -3314 ((-1283 |#1|) (-654 |#1|))) (-15 -3314 ((-1283 |#1|) |#1| (-934)))) (-1064)) (T -1193)) -((-3314 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-5 *2 (-1283 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1064)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1064)) (-5 *2 (-1283 *4)) (-5 *1 (-1193 *4))))) -(-10 -7 (-15 -3314 ((-1283 |#1|) (-654 |#1|))) (-15 -3314 ((-1283 |#1|) |#1| (-934)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1509 (($ $) NIL (|has| |#1| (-462)))) (-4389 (($ $ |#1| (-986) $) NIL)) (-3372 (((-112) $) 17)) (-3241 (((-781) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-986)) NIL)) (-1503 (((-986) $) NIL)) (-3558 (($ (-1 (-986) (-986)) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-1687 (($ $ (-986) |#1| $) NIL (-12 (|has| (-986) (-132)) (|has| |#1| (-566))))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3584 (((-986) $) NIL)) (-3631 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ (-986)) NIL)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2142 (($) 10 T CONST)) (-2154 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 21)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1194 |#1|) (-13 (-334 |#1| (-986)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-986) (-132)) (-15 -1687 ($ $ (-986) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) (-1064)) (T -1194)) -((-1687 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-986)) (-4 *2 (-132)) (-5 *1 (-1194 *3)) (-4 *3 (-566)) (-4 *3 (-1064))))) -(-13 (-334 |#1| (-986)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-986) (-132)) (-15 -1687 ($ $ (-986) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) -((-1605 (((-1196) (-1192) $) 25)) (-2750 (($) 29)) (-4011 (((-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-1192) $) 22)) (-3383 (((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")) $) 41) (((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) 42) (((-1288) (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) 43)) (-1572 (((-1288) (-1192)) 58)) (-3602 (((-1288) (-1192) $) 55) (((-1288) (-1192)) 56) (((-1288)) 57)) (-1954 (((-1288) (-1192)) 37)) (-4254 (((-1192)) 36)) (-2833 (($) 34)) (-3148 (((-447) (-1192) (-447) (-1192) $) 45) (((-447) (-654 (-1192)) (-447) (-1192) $) 49) (((-447) (-1192) (-447)) 46) (((-447) (-1192) (-447) (-1192)) 50)) (-2418 (((-1192)) 35)) (-2950 (((-872) $) 28)) (-2423 (((-1288)) 30) (((-1288) (-1192)) 33)) (-1852 (((-654 (-1192)) (-1192) $) 24)) (-1648 (((-1288) (-1192) (-654 (-1192)) $) 38) (((-1288) (-1192) (-654 (-1192))) 39) (((-1288) (-654 (-1192))) 40))) -(((-1195) (-13 (-623 (-872)) (-10 -8 (-15 -2750 ($)) (-15 -2423 ((-1288))) (-15 -2423 ((-1288) (-1192))) (-15 -3148 ((-447) (-1192) (-447) (-1192) $)) (-15 -3148 ((-447) (-654 (-1192)) (-447) (-1192) $)) (-15 -3148 ((-447) (-1192) (-447))) (-15 -3148 ((-447) (-1192) (-447) (-1192))) (-15 -1954 ((-1288) (-1192))) (-15 -2418 ((-1192))) (-15 -4254 ((-1192))) (-15 -1648 ((-1288) (-1192) (-654 (-1192)) $)) (-15 -1648 ((-1288) (-1192) (-654 (-1192)))) (-15 -1648 ((-1288) (-654 (-1192)))) (-15 -3383 ((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")) $)) (-15 -3383 ((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")))) (-15 -3383 ((-1288) (-3 (|:| |fst| (-444)) (|:| -2440 "void")))) (-15 -3602 ((-1288) (-1192) $)) (-15 -3602 ((-1288) (-1192))) (-15 -3602 ((-1288))) (-15 -1572 ((-1288) (-1192))) (-15 -2833 ($)) (-15 -4011 ((-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-1192) $)) (-15 -1852 ((-654 (-1192)) (-1192) $)) (-15 -1605 ((-1196) (-1192) $))))) (T -1195)) -((-2750 (*1 *1) (-5 *1 (-1195))) (-2423 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1195)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-3148 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) (-3148 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1192))) (-5 *4 (-1192)) (-5 *1 (-1195)))) (-3148 (*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) (-3148 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-2418 (*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1195)))) (-4254 (*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1195)))) (-1648 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-3383 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1192)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-3602 (*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-3602 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1195)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-2833 (*1 *1) (-5 *1 (-1195))) (-4011 (*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *1 (-1195)))) (-1852 (*1 *2 *3 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1195)) (-5 *3 (-1192)))) (-1605 (*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-1196)) (-5 *1 (-1195))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2750 ($)) (-15 -2423 ((-1288))) (-15 -2423 ((-1288) (-1192))) (-15 -3148 ((-447) (-1192) (-447) (-1192) $)) (-15 -3148 ((-447) (-654 (-1192)) (-447) (-1192) $)) (-15 -3148 ((-447) (-1192) (-447))) (-15 -3148 ((-447) (-1192) (-447) (-1192))) (-15 -1954 ((-1288) (-1192))) (-15 -2418 ((-1192))) (-15 -4254 ((-1192))) (-15 -1648 ((-1288) (-1192) (-654 (-1192)) $)) (-15 -1648 ((-1288) (-1192) (-654 (-1192)))) (-15 -1648 ((-1288) (-654 (-1192)))) (-15 -3383 ((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")) $)) (-15 -3383 ((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")))) (-15 -3383 ((-1288) (-3 (|:| |fst| (-444)) (|:| -2440 "void")))) (-15 -3602 ((-1288) (-1192) $)) (-15 -3602 ((-1288) (-1192))) (-15 -3602 ((-1288))) (-15 -1572 ((-1288) (-1192))) (-15 -2833 ($)) (-15 -4011 ((-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-1192) $)) (-15 -1852 ((-654 (-1192)) (-1192) $)) (-15 -1605 ((-1196) (-1192) $)))) -((-4125 (((-654 (-654 (-3 (|:| -2040 (-1192)) (|:| -3260 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574))))))))) $) 66)) (-2829 (((-654 (-3 (|:| -2040 (-1192)) (|:| -3260 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574)))))))) (-444) $) 47)) (-3696 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-447))))) 17)) (-1572 (((-1288) $) 73)) (-4313 (((-654 (-1192)) $) 22)) (-2398 (((-1119) $) 60)) (-1933 (((-447) (-1192) $) 27)) (-3668 (((-654 (-1192)) $) 30)) (-2833 (($) 19)) (-3148 (((-447) (-654 (-1192)) (-447) $) 25) (((-447) (-1192) (-447) $) 24)) (-2950 (((-872) $) 9) (((-1205 (-1192) (-447)) $) 13))) -(((-1196) (-13 (-623 (-872)) (-10 -8 (-15 -2950 ((-1205 (-1192) (-447)) $)) (-15 -2833 ($)) (-15 -3148 ((-447) (-654 (-1192)) (-447) $)) (-15 -3148 ((-447) (-1192) (-447) $)) (-15 -1933 ((-447) (-1192) $)) (-15 -4313 ((-654 (-1192)) $)) (-15 -2829 ((-654 (-3 (|:| -2040 (-1192)) (|:| -3260 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574)))))))) (-444) $)) (-15 -3668 ((-654 (-1192)) $)) (-15 -4125 ((-654 (-654 (-3 (|:| -2040 (-1192)) (|:| -3260 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574))))))))) $)) (-15 -2398 ((-1119) $)) (-15 -1572 ((-1288) $)) (-15 -3696 ($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-447))))))))) (T -1196)) -((-2950 (*1 *2 *1) (-12 (-5 *2 (-1205 (-1192) (-447))) (-5 *1 (-1196)))) (-2833 (*1 *1) (-5 *1 (-1196))) (-3148 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1192))) (-5 *1 (-1196)))) (-3148 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1196)))) (-1933 (*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-447)) (-5 *1 (-1196)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1196)))) (-2829 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-654 (-3 (|:| -2040 (-1192)) (|:| -3260 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574))))))))) (-5 *1 (-1196)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1196)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-3 (|:| -2040 (-1192)) (|:| -3260 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574)))))))))) (-5 *1 (-1196)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1196)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1196)))) (-3696 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-447))))) (-5 *1 (-1196))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2950 ((-1205 (-1192) (-447)) $)) (-15 -2833 ($)) (-15 -3148 ((-447) (-654 (-1192)) (-447) $)) (-15 -3148 ((-447) (-1192) (-447) $)) (-15 -1933 ((-447) (-1192) $)) (-15 -4313 ((-654 (-1192)) $)) (-15 -2829 ((-654 (-3 (|:| -2040 (-1192)) (|:| -3260 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574)))))))) (-444) $)) (-15 -3668 ((-654 (-1192)) $)) (-15 -4125 ((-654 (-654 (-3 (|:| -2040 (-1192)) (|:| -3260 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574))))))))) $)) (-15 -2398 ((-1119) $)) (-15 -1572 ((-1288) $)) (-15 -3696 ($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-447)))))))) -((-2863 (((-112) $ $) NIL)) (-1705 (((-3 (-574) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-516) "failed") $) 43) (((-3 (-1174) "failed") $) 47)) (-2216 (((-574) $) 30) (((-227) $) 36) (((-516) $) 40) (((-1174) $) 48)) (-2501 (((-112) $) 53)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3043 (((-3 (-574) (-227) (-516) (-1174) $) $) 55)) (-2714 (((-654 $) $) 57)) (-1845 (((-1119) $) 24) (($ (-1119)) 25)) (-2012 (((-112) $) 56)) (-2950 (((-872) $) 23) (($ (-574)) 26) (($ (-227)) 32) (($ (-516)) 38) (($ (-1174)) 44) (((-546) $) 59) (((-574) $) 31) (((-227) $) 37) (((-516) $) 41) (((-1174) $) 49)) (-2131 (((-112) $ (|[\|\|]| (-574))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-516))) 19) (((-112) $ (|[\|\|]| (-1174))) 16)) (-3062 (($ (-516) (-654 $)) 51) (($ $ (-654 $)) 52)) (-3838 (((-112) $ $) NIL)) (-1337 (((-574) $) 27) (((-227) $) 33) (((-516) $) 39) (((-1174) $) 45)) (-2985 (((-112) $ $) 7))) -(((-1197) (-13 (-1278) (-1115) (-1053 (-574)) (-1053 (-227)) (-1053 (-516)) (-1053 (-1174)) (-623 (-546)) (-10 -8 (-15 -1845 ((-1119) $)) (-15 -1845 ($ (-1119))) (-15 -2950 ((-574) $)) (-15 -1337 ((-574) $)) (-15 -2950 ((-227) $)) (-15 -1337 ((-227) $)) (-15 -2950 ((-516) $)) (-15 -1337 ((-516) $)) (-15 -2950 ((-1174) $)) (-15 -1337 ((-1174) $)) (-15 -3062 ($ (-516) (-654 $))) (-15 -3062 ($ $ (-654 $))) (-15 -2501 ((-112) $)) (-15 -3043 ((-3 (-574) (-227) (-516) (-1174) $) $)) (-15 -2714 ((-654 $) $)) (-15 -2012 ((-112) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-574)))) (-15 -2131 ((-112) $ (|[\|\|]| (-227)))) (-15 -2131 ((-112) $ (|[\|\|]| (-516)))) (-15 -2131 ((-112) $ (|[\|\|]| (-1174))))))) (T -1197)) -((-1845 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1197)))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1197)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1197)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1197)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1197)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1197)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1197)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1197)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1197)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1197)))) (-3062 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1197))) (-5 *1 (-1197)))) (-3062 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1197)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1174) (-1197))) (-5 *1 (-1197)))) (-2714 (*1 *2 *1) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1197)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197)))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1197)))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1197)))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1197)))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)) (-5 *1 (-1197))))) -(-13 (-1278) (-1115) (-1053 (-574)) (-1053 (-227)) (-1053 (-516)) (-1053 (-1174)) (-623 (-546)) (-10 -8 (-15 -1845 ((-1119) $)) (-15 -1845 ($ (-1119))) (-15 -2950 ((-574) $)) (-15 -1337 ((-574) $)) (-15 -2950 ((-227) $)) (-15 -1337 ((-227) $)) (-15 -2950 ((-516) $)) (-15 -1337 ((-516) $)) (-15 -2950 ((-1174) $)) (-15 -1337 ((-1174) $)) (-15 -3062 ($ (-516) (-654 $))) (-15 -3062 ($ $ (-654 $))) (-15 -2501 ((-112) $)) (-15 -3043 ((-3 (-574) (-227) (-516) (-1174) $) $)) (-15 -2714 ((-654 $) $)) (-15 -2012 ((-112) $)) (-15 -2131 ((-112) $ (|[\|\|]| (-574)))) (-15 -2131 ((-112) $ (|[\|\|]| (-227)))) (-15 -2131 ((-112) $ (|[\|\|]| (-516)))) (-15 -2131 ((-112) $ (|[\|\|]| (-1174)))))) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) 22)) (-3831 (($) 12 T CONST)) (-2834 (($) 26)) (-3632 (($ $ $) NIL) (($) 19 T CONST)) (-1593 (($ $ $) NIL) (($) 20 T CONST)) (-3271 (((-934) $) 24)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) 23)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) -(((-1198 |#1|) (-13 (-854) (-10 -8 (-15 -3831 ($) -1715))) (-934)) (T -1198)) -((-3831 (*1 *1) (-12 (-5 *1 (-1198 *2)) (-14 *2 (-934))))) -(-13 (-854) (-10 -8 (-15 -3831 ($) -1715))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2010 ((|#1| $) 45)) (-3146 (((-112) $ (-781)) 8)) (-3250 (($) 7 T CONST)) (-2231 ((|#1| |#1| $) 47)) (-4073 ((|#1| $) 46)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-2375 ((|#1| $) 40)) (-3285 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3801 ((|#1| $) 42)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-4293 (((-781) $) 44)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) 43)) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-1137 |#1|) (-141) (-1234)) (T -1137)) +((-2231 (*1 *2 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1234)) (-5 *2 (-781))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4459) (-15 -2231 (|t#1| |t#1| $)) (-15 -4073 (|t#1| $)) (-15 -2010 (|t#1| $)) (-15 -4293 ((-781) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-1644 ((|#3| $) 87)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2214 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#3| $) 47)) (-1831 (((-699 (-574)) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3082 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 $) (-1284 $)) 84) (((-699 |#3|) (-699 $)) 76) (((-699 |#3|) (-1284 $)) NIL)) (-3879 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2366 ((|#3| $) 89)) (-4401 ((|#4| $) 43)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#3|) 25)) (** (($ $ (-935)) NIL) (($ $ (-781)) 24) (($ $ (-574)) 95))) +(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -2366 (|#3| |#1|)) (-15 -1644 (|#3| |#1|)) (-15 -4401 (|#4| |#1|)) (-15 -1831 ((-699 |#3|) (-1284 |#1|))) (-15 -1831 ((-699 |#3|) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -2951 (|#1| |#3|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2214 (|#3| |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935))) (-15 -2951 ((-872) |#1|))) (-1139 |#2| |#3| |#4| |#5|) (-781) (-1065) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1138)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -2366 (|#3| |#1|)) (-15 -1644 (|#3| |#1|)) (-15 -4401 (|#4| |#1|)) (-15 -1831 ((-699 |#3|) (-1284 |#1|))) (-15 -1831 ((-699 |#3|) (-699 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1831 ((-699 (-574)) (-699 |#1|))) (-15 -1831 ((-699 (-574)) (-1284 |#1|))) (-15 -2951 (|#1| |#3|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2214 (|#3| |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935))) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-1644 ((|#2| $) 79)) (-3399 (((-112) $) 121)) (-2600 (((-3 $ "failed") $ $) 20)) (-2711 (((-112) $) 119)) (-3146 (((-112) $ (-781)) 111)) (-2317 (($ |#2|) 82)) (-3250 (($) 18 T CONST)) (-1430 (($ $) 138 (|has| |#2| (-315)))) (-1959 ((|#3| $ (-574)) 133)) (-1704 (((-3 (-574) "failed") $) 96 (|has| |#2| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 93 (|has| |#2| (-1054 (-417 (-574))))) (((-3 |#2| "failed") $) 90)) (-2214 (((-574) $) 95 (|has| |#2| (-1054 (-574)))) (((-417 (-574)) $) 92 (|has| |#2| (-1054 (-417 (-574))))) ((|#2| $) 91)) (-1831 (((-699 (-574)) (-1284 $)) 88 (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) 87 (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 86 (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 85) (((-699 |#2|) (-699 $)) 84) (((-699 |#2|) (-1284 $)) 83)) (-4322 (((-3 $ "failed") $) 37)) (-3558 (((-781) $) 139 (|has| |#2| (-566)))) (-2400 ((|#2| $ (-574) (-574)) 131)) (-1871 (((-654 |#2|) $) 104 (|has| $ (-6 -4459)))) (-4226 (((-112) $) 35)) (-2893 (((-781) $) 140 (|has| |#2| (-566)))) (-1381 (((-654 |#4|) $) 141 (|has| |#2| (-566)))) (-2197 (((-781) $) 127)) (-2206 (((-781) $) 128)) (-2189 (((-112) $ (-781)) 112)) (-1706 ((|#2| $) 74 (|has| |#2| (-6 (-4461 "*"))))) (-2219 (((-574) $) 123)) (-2126 (((-574) $) 125)) (-2036 (((-654 |#2|) $) 103 (|has| $ (-6 -4459)))) (-4134 (((-112) |#2| $) 101 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-3352 (((-574) $) 124)) (-1695 (((-574) $) 126)) (-2924 (($ (-654 (-654 |#2|))) 118)) (-2462 (($ (-1 |#2| |#2|) $) 108 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2| |#2|) $ $) 135) (($ (-1 |#2| |#2|) $) 109)) (-2014 (((-654 (-654 |#2|)) $) 129)) (-1653 (((-112) $ (-781)) 113)) (-1489 (((-1175) $) 10)) (-3593 (((-3 $ "failed") $) 73 (|has| |#2| (-372)))) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ |#2|) 136 (|has| |#2| (-566)))) (-3449 (((-112) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) 100 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) 99 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) 98 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) 97 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) 117)) (-2754 (((-112) $) 114)) (-3336 (($) 115)) (-2207 ((|#2| $ (-574) (-574) |#2|) 132) ((|#2| $ (-574) (-574)) 130)) (-3879 (($ $ (-1 |#2| |#2|)) 58) (($ $ (-1 |#2| |#2|) (-781)) 57) (($ $ (-1193)) 54 (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) 52 (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) 51 (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 50 (|has| |#2| (-912 (-1193)))) (($ $) 46 (|has| |#2| (-239))) (($ $ (-781)) 44 (|has| |#2| (-239)))) (-2366 ((|#2| $) 78)) (-1761 (($ (-654 |#2|)) 81)) (-4049 (((-112) $) 120)) (-4401 ((|#3| $) 80)) (-1386 ((|#2| $) 75 (|has| |#2| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#2|) $) 105 (|has| $ (-6 -4459))) (((-781) |#2| $) 102 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 116)) (-1425 ((|#4| $ (-574)) 134)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 94 (|has| |#2| (-1054 (-417 (-574))))) (($ |#2|) 89)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2020 (((-112) (-1 (-112) |#2|) $) 107 (|has| $ (-6 -4459)))) (-2649 (((-112) $) 122)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-781)) 55) (($ $ (-1193)) 53 (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) 49 (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) 48 (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 47 (|has| |#2| (-912 (-1193)))) (($ $) 45 (|has| |#2| (-239))) (($ $ (-781)) 43 (|has| |#2| (-239)))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#2|) 137 (|has| |#2| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 72 (|has| |#2| (-372)))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#2|) 143) (($ |#2| $) 142) ((|#4| $ |#4|) 77) ((|#3| |#3| $) 76)) (-2877 (((-781) $) 110 (|has| $ (-6 -4459))))) +(((-1139 |#1| |#2| |#3| |#4|) (-141) (-781) (-1065) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1139)) +((-2317 (*1 *1 *2) (-12 (-4 *2 (-1065)) (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-654 *4)) (-4 *4 (-1065)) (-4 *1 (-1139 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *4 *2 *5)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1065)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1065)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1139 *3 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1139 *3 *4 *2 *5)) (-4 *4 (-1065)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))) (-3593 (*1 *1 *1) (|partial| -12 (-4 *1 (-1139 *2 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1139 *3 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-372))))) +(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1069 |t#1| |t#1| |t#2| |t#3| |t#4|) (-421 |t#2|) (-386 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-727 |t#2|)) |%noBranch|) (-15 -2317 ($ |t#2|)) (-15 -1761 ($ (-654 |t#2|))) (-15 -4401 (|t#3| $)) (-15 -1644 (|t#2| $)) (-15 -2366 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4461 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1386 (|t#2| $)) (-15 -1706 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-372)) (PROGN (-15 -3593 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4461 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#2| (-1054 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-235 $) |has| |#2| (-239)) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-238) |has| |#2| (-239)) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-386 |#2|) . T) ((-421 |#2|) . T) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 #1=(-574)) |has| |#2| (-649 (-574))) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-6 (-4461 "*")))) ((-649 #1#) |has| |#2| (-649 (-574))) ((-649 |#2|) . T) ((-727 |#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-6 (-4461 "*")))) ((-736) . T) ((-907 $ #2=(-1193)) |has| |#2| (-912 (-1193))) ((-912 #2#) |has| |#2| (-912 (-1193))) ((-914 #2#) |has| |#2| (-912 (-1193))) ((-1069 |#1| |#1| |#2| |#3| |#4|) . T) ((-1054 #0#) |has| |#2| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#2| (-1054 (-574))) ((-1054 |#2|) . T) ((-1067 |#2|) . T) ((-1072 |#2|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T)) +((-1946 ((|#4| |#4|) 81)) (-3076 ((|#4| |#4|) 76)) (-2592 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2391 (-654 |#3|))) |#4| |#3|) 91)) (-4407 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1525 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3076 (|#4| |#4|)) (-15 -1525 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1946 (|#4| |#4|)) (-15 -4407 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2592 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2391 (-654 |#3|))) |#4| |#3|))) (-315) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1140)) +((-2592 (*1 *2 *3 *4) (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) (-5 *1 (-1140 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-4407 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1140 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1946 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1140 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1525 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1140 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1140 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(-10 -7 (-15 -3076 (|#4| |#4|)) (-15 -1525 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1946 (|#4| |#4|)) (-15 -4407 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2592 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2391 (-654 |#3|))) |#4| |#3|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 18)) (-4350 (((-654 |#2|) $) 174)) (-4173 (((-1189 $) $ |#2|) 60) (((-1189 |#1|) $) 49)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 116 (|has| |#1| (-566)))) (-2884 (($ $) 118 (|has| |#1| (-566)))) (-1981 (((-112) $) 120 (|has| |#1| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 |#2|)) 213)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2991 (($ $) NIL (|has| |#1| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 167) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 |#2| "failed") $) NIL)) (-2214 ((|#1| $) 165) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) ((|#2| $) NIL)) (-3319 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1402 (($ $) 217)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) 90)) (-3621 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#1| (-923)))) (-1849 (($ $ |#1| (-541 |#2|) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-4226 (((-112) $) 20)) (-3023 (((-781) $) 30)) (-4339 (($ (-1189 |#1|) |#2|) 54) (($ (-1189 $) |#2|) 71)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) 38)) (-4328 (($ |#1| (-541 |#2|)) 78) (($ $ |#2| (-781)) 58) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ |#2|) NIL)) (-3192 (((-541 |#2|) $) 205) (((-781) $ |#2|) 206) (((-654 (-781)) $ (-654 |#2|)) 207)) (-4303 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) 128)) (-2284 (((-3 |#2| "failed") $) 177)) (-1366 (($ $) 216)) (-1378 ((|#1| $) 43)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1489 (((-1175) $) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| |#2|) (|:| -3139 (-781))) "failed") $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) 39)) (-1355 ((|#1| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 148 (|has| |#1| (-462)))) (-2887 (($ (-654 $)) 153 (|has| |#1| (-462))) (($ $ $) 138 (|has| |#1| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-654 |#2|) (-654 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-654 |#2|) (-654 $)) 194)) (-2394 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) 215)) (-3580 (((-541 |#2|) $) 201) (((-781) $ |#2|) 196) (((-654 (-781)) $ (-654 |#2|)) 199)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-2372 ((|#1| $) 134 (|has| |#1| (-462))) (($ $ |#2|) 137 (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 159) (($ (-574)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-1634 (((-654 |#1|) $) 162)) (-2706 ((|#1| $ (-541 |#2|)) 80) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) 87 T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) 123 (|has| |#1| (-566)))) (-2141 (($) 12 T CONST)) (-2153 (($) 14 T CONST)) (-3584 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) NIL)) (-2986 (((-112) $ $) 106)) (-3103 (($ $ |#1|) 132 (|has| |#1| (-372)))) (-3090 (($ $) 93) (($ $ $) 104)) (-3074 (($ $ $) 55)) (** (($ $ (-935)) 110) (($ $ (-781)) 109)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 96) (($ $ $) 72) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1141 |#1| |#2|) (-963 |#1| (-541 |#2|) |#2|) (-1065) (-860)) (T -1141)) +NIL +(-963 |#1| (-541 |#2|) |#2|) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 |#2|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2379 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2404 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-4027 (((-966 |#1|) $ (-781)) NIL) (((-966 |#1|) $ (-781) (-781)) NIL)) (-4189 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-781) $ |#2|) NIL) (((-781) $ |#2| (-781)) NIL)) (-4226 (((-112) $) NIL)) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1555 (((-112) $) NIL)) (-4328 (($ $ (-654 |#2|) (-654 (-541 |#2|))) NIL) (($ $ |#2| (-541 |#2|)) NIL) (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 63) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3342 (($ $ |#2|) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-2612 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2433 (($ $ (-781)) 16)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1617 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (($ $ |#2| $) 106) (($ $ (-654 |#2|) (-654 $)) 99) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3879 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) 109)) (-3580 (((-541 |#2|) $) NIL)) (-1817 (((-1 (-1173 |#3|) |#3|) (-654 |#2|) (-654 (-1173 |#3|))) 87)) (-2417 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) 18)) (-2951 (((-872) $) 198) (($ (-574)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#2|) 70) (($ |#3|) 68)) (-2706 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL) ((|#3| $ (-781)) 43)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2536 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 52 T CONST)) (-2153 (($) 62 T CONST)) (-3584 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) 200 (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 66)) (** (($ $ (-935)) NIL) (($ $ (-781)) 77) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 112 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ $ (-417 (-574))) 117 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 115 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1142 |#1| |#2| |#3|) (-13 (-750 |#1| |#2|) (-10 -8 (-15 -2706 (|#3| $ (-781))) (-15 -2951 ($ |#2|)) (-15 -2951 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1817 ((-1 (-1173 |#3|) |#3|) (-654 |#2|) (-654 (-1173 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ($ $ |#2| |#1|)) (-15 -2612 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1065) (-860) (-963 |#1| (-541 |#2|) |#2|)) (T -1142)) +((-2706 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-963 *4 (-541 *5) *5)) (-5 *1 (-1142 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-860)))) (-2951 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-4 *2 (-860)) (-5 *1 (-1142 *3 *2 *4)) (-4 *4 (-963 *3 (-541 *2) *2)))) (-2951 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-4 *4 (-860)) (-5 *1 (-1142 *3 *4 *2)) (-4 *2 (-963 *3 (-541 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-860)) (-5 *1 (-1142 *3 *4 *2)) (-4 *2 (-963 *3 (-541 *4) *4)))) (-1817 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1173 *7))) (-4 *6 (-860)) (-4 *7 (-963 *5 (-541 *6) *6)) (-4 *5 (-1065)) (-5 *2 (-1 (-1173 *7) *7)) (-5 *1 (-1142 *5 *6 *7)))) (-3342 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-4 *2 (-860)) (-5 *1 (-1142 *3 *2 *4)) (-4 *4 (-963 *3 (-541 *2) *2)))) (-2612 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1142 *4 *3 *5))) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1065)) (-4 *3 (-860)) (-5 *1 (-1142 *4 *3 *5)) (-4 *5 (-963 *4 (-541 *3) *3))))) +(-13 (-750 |#1| |#2|) (-10 -8 (-15 -2706 (|#3| $ (-781))) (-15 -2951 ($ |#2|)) (-15 -2951 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1817 ((-1 (-1173 |#3|) |#3|) (-654 |#2|) (-654 (-1173 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ($ $ |#2| |#1|)) (-15 -2612 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2864 (((-112) $ $) 7)) (-2298 (((-654 (-2 (|:| -1390 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) 86)) (-3656 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4350 (((-654 |#3|) $) 34)) (-1437 (((-112) $) 27)) (-2176 (((-112) $) 18 (|has| |#1| (-566)))) (-2972 (((-112) |#4| $) 102) (((-112) $) 98)) (-2104 ((|#4| |#4| $) 93)) (-2991 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 127)) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#3|) 28)) (-3146 (((-112) $ (-781)) 45)) (-2172 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 80)) (-3250 (($) 46 T CONST)) (-3721 (((-112) $) 23 (|has| |#1| (-566)))) (-3913 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2196 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3564 (((-112) $) 26 (|has| |#1| (-566)))) (-4434 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1855 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3406 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2214 (($ (-654 |#4|)) 36)) (-2935 (((-3 $ "failed") $) 83)) (-2660 ((|#4| |#4| $) 90)) (-2804 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-1857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3347 ((|#4| |#4| $) 88)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2830 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) 106)) (-1647 (((-112) |#4| $) 137)) (-4126 (((-112) |#4| $) 134)) (-3832 (((-112) |#4| $) 138) (((-112) $) 135)) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-3145 (((-112) |#4| $) 105) (((-112) $) 104)) (-4241 ((|#3| $) 35)) (-2189 (((-112) $ (-781)) 44)) (-2036 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2737 (((-654 |#3|) $) 33)) (-3161 (((-112) |#3| $) 32)) (-1653 (((-112) $ (-781)) 43)) (-1489 (((-1175) $) 10)) (-1900 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2623 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 128)) (-3334 (((-3 |#4| "failed") $) 84)) (-1976 (((-654 $) |#4| $) 130)) (-2659 (((-3 (-112) (-654 $)) |#4| $) 133)) (-3029 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3891 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3268 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-1957 (((-654 |#4|) $) 108)) (-3749 (((-112) |#4| $) 100) (((-112) $) 96)) (-2254 ((|#4| |#4| $) 91)) (-3877 (((-112) $ $) 111)) (-3581 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2712 (((-112) |#4| $) 101) (((-112) $) 97)) (-3173 ((|#4| |#4| $) 92)) (-3940 (((-1136) $) 11)) (-2925 (((-3 |#4| "failed") $) 85)) (-2183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4233 (((-3 $ "failed") $ |#4|) 79)) (-2433 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-3449 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) 39)) (-2754 (((-112) $) 42)) (-3336 (($) 41)) (-3580 (((-781) $) 107)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-1423 (($ $ |#3|) 29)) (-1671 (($ $ |#3|) 31)) (-2167 (($ $) 89)) (-2287 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2105 (((-781) $) 77 (|has| |#3| (-377)))) (-4069 (((-112) $ $) 9)) (-3917 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3912 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-3896 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2020 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-1642 (((-654 |#3|) $) 82)) (-2945 (((-112) |#4| $) 136)) (-3504 (((-112) |#3| $) 81)) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459))))) +(((-1143 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -1143)) +NIL +(-13 (-1125 |t#1| |t#2| |t#3| |t#4|) (-794 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-794 |#1| |#2| |#3| |#4|) . T) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1087 |#1| |#2| |#3| |#4|) . T) ((-1116) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1227 |#1| |#2| |#3| |#4|) . T) ((-1234) . T)) +((-3987 (((-654 |#2|) |#1|) 15)) (-1738 (((-654 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-654 |#2|) |#1|) 61)) (-2775 (((-654 |#2|) |#2| |#2| |#2|) 45) (((-654 |#2|) |#1|) 59)) (-4091 ((|#2| |#1|) 54)) (-3180 (((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4008 (((-654 |#2|) |#2| |#2|) 42) (((-654 |#2|) |#1|) 58)) (-1352 (((-654 |#2|) |#2| |#2| |#2| |#2|) 46) (((-654 |#2|) |#1|) 60)) (-4097 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-1535 ((|#2| |#2| |#2| |#2|) 51)) (-4128 ((|#2| |#2| |#2|) 50)) (-3639 ((|#2| |#2| |#2| |#2| |#2|) 52))) +(((-1144 |#1| |#2|) (-10 -7 (-15 -3987 ((-654 |#2|) |#1|)) (-15 -4091 (|#2| |#1|)) (-15 -3180 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4008 ((-654 |#2|) |#1|)) (-15 -2775 ((-654 |#2|) |#1|)) (-15 -1352 ((-654 |#2|) |#1|)) (-15 -1738 ((-654 |#2|) |#1|)) (-15 -4008 ((-654 |#2|) |#2| |#2|)) (-15 -2775 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -1352 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1738 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4128 (|#2| |#2| |#2|)) (-15 -1535 (|#2| |#2| |#2| |#2|)) (-15 -3639 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4097 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1260 |#2|) (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (T -1144)) +((-4097 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))) (-3639 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))) (-1535 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))) (-4128 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))) (-1738 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))) (-1352 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))) (-2775 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))) (-4008 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))) (-1738 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) (-1352 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) (-2775 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) (-4008 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) (-3180 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-2 (|:| |solns| (-654 *5)) (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1144 *3 *5)) (-4 *3 (-1260 *5)))) (-4091 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4))))) +(-10 -7 (-15 -3987 ((-654 |#2|) |#1|)) (-15 -4091 (|#2| |#1|)) (-15 -3180 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4008 ((-654 |#2|) |#1|)) (-15 -2775 ((-654 |#2|) |#1|)) (-15 -1352 ((-654 |#2|) |#1|)) (-15 -1738 ((-654 |#2|) |#1|)) (-15 -4008 ((-654 |#2|) |#2| |#2|)) (-15 -2775 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -1352 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1738 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4128 (|#2| |#2| |#2|)) (-15 -1535 (|#2| |#2| |#2| |#2|)) (-15 -3639 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4097 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-2079 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|))))) 118) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193))) 117) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|)))) 115) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|))) (-654 (-1193))) 113) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|)))) 97) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|))) (-1193)) 98) (((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|))) 92) (((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|)) (-1193)) 82)) (-2757 (((-654 (-654 (-324 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193))) 111) (((-654 (-324 |#1|)) (-417 (-966 |#1|)) (-1193)) 54)) (-3091 (((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-966 |#1|)) (-1193)) 122) (((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193)) 121))) +(((-1145 |#1|) (-10 -7 (-15 -2079 ((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -2079 ((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|)))) (-15 -2079 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -2079 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|))))) (-15 -2079 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -2079 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|))))) (-15 -2079 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193)))) (-15 -2079 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -2757 ((-654 (-324 |#1|)) (-417 (-966 |#1|)) (-1193))) (-15 -2757 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -3091 ((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -3091 ((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-966 |#1|)) (-1193)))) (-13 (-315) (-148))) (T -1145)) +((-3091 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1182 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1145 *5)))) (-3091 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-966 *5)))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1182 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1145 *5)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5)))) (-5 *1 (-1145 *5)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5))) (-5 *1 (-1145 *5)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-966 *4))))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1145 *4)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-966 *5))))) (-5 *4 (-654 (-1193))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1145 *5)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-966 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1145 *4)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1145 *5)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-302 (-417 (-966 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1145 *4)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-966 *5)))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1145 *5)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1145 *4)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1145 *5))))) +(-10 -7 (-15 -2079 ((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -2079 ((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|)))) (-15 -2079 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -2079 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|))))) (-15 -2079 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -2079 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|))))) (-15 -2079 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193)))) (-15 -2079 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -2757 ((-654 (-324 |#1|)) (-417 (-966 |#1|)) (-1193))) (-15 -2757 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -3091 ((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -3091 ((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-966 |#1|)) (-1193)))) +((-3484 (((-417 (-1189 (-324 |#1|))) (-1284 (-324 |#1|)) (-417 (-1189 (-324 |#1|))) (-574)) 36)) (-3508 (((-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|)))) 48))) +(((-1146 |#1|) (-10 -7 (-15 -3508 ((-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))))) (-15 -3484 ((-417 (-1189 (-324 |#1|))) (-1284 (-324 |#1|)) (-417 (-1189 (-324 |#1|))) (-574)))) (-566)) (T -1146)) +((-3484 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-417 (-1189 (-324 *5)))) (-5 *3 (-1284 (-324 *5))) (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1146 *5)))) (-3508 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-417 (-1189 (-324 *3)))) (-4 *3 (-566)) (-5 *1 (-1146 *3))))) +(-10 -7 (-15 -3508 ((-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))))) (-15 -3484 ((-417 (-1189 (-324 |#1|))) (-1284 (-324 |#1|)) (-417 (-1189 (-324 |#1|))) (-574)))) +((-3987 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1193))) 244) (((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1193)) 23) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1193)) 29) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|))) 28) (((-654 (-302 (-324 |#1|))) (-324 |#1|)) 24))) +(((-1147 |#1|) (-10 -7 (-15 -3987 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -3987 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -3987 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1193))) (-15 -3987 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1193))) (-15 -3987 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1193))))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (T -1147)) +((-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1193))) (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1147 *5)) (-5 *3 (-654 (-302 (-324 *5)))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1147 *5)) (-5 *3 (-324 *5)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1147 *5)) (-5 *3 (-302 (-324 *5))))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1147 *4)) (-5 *3 (-302 (-324 *4))))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1147 *4)) (-5 *3 (-324 *4))))) +(-10 -7 (-15 -3987 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -3987 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -3987 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1193))) (-15 -3987 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1193))) (-15 -3987 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1193))))) +((-1501 ((|#2| |#2|) 28 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-3444 ((|#2| |#2|) 27 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1148 |#1| |#2|) (-10 -7 (-15 -3444 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1501 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -3444 (|#2| |#2|)) (-15 -1501 (|#2| |#2|))) |%noBranch|)) (-1234) (-13 (-614 (-574) |#1|) (-10 -7 (-6 -4459) (-6 -4460)))) (T -1148)) +((-1501 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1234)) (-5 *1 (-1148 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4459) (-6 -4460)))))) (-3444 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1234)) (-5 *1 (-1148 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4459) (-6 -4460)))))) (-1501 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-1148 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4459) (-6 -4460)))))) (-3444 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-1148 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4459) (-6 -4460))))))) +(-10 -7 (-15 -3444 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1501 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -3444 (|#2| |#2|)) (-15 -1501 (|#2| |#2|))) |%noBranch|)) +((-2864 (((-112) $ $) NIL)) (-1757 (((-1181 3 |#1|) $) 141)) (-3672 (((-112) $) 101)) (-1825 (($ $ (-654 (-957 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 104) (($ (-654 (-957 |#1|))) 103) (((-654 (-957 |#1|)) $) 102)) (-3520 (((-112) $) 72)) (-3565 (($ $ (-957 |#1|)) 76) (($ $ (-654 |#1|)) 81) (($ $ (-781)) 83) (($ (-957 |#1|)) 77) (((-957 |#1|) $) 75)) (-2629 (((-2 (|:| -1851 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 139)) (-2314 (((-781) $) 53)) (-2723 (((-781) $) 52)) (-1512 (($ $ (-781) (-957 |#1|)) 67)) (-3044 (((-112) $) 111)) (-2484 (($ $ (-654 (-654 (-957 |#1|))) (-654 (-173)) (-173)) 118) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 120) (($ $ (-654 (-654 (-957 |#1|))) (-112) (-112)) 115) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 127) (($ (-654 (-654 (-957 |#1|)))) 116) (($ (-654 (-654 (-957 |#1|))) (-112) (-112)) 117) (((-654 (-654 (-957 |#1|))) $) 114)) (-3404 (($ (-654 $)) 56) (($ $ $) 57)) (-2029 (((-654 (-173)) $) 133)) (-2940 (((-654 (-957 |#1|)) $) 130)) (-3057 (((-654 (-654 (-173))) $) 132)) (-1449 (((-654 (-654 (-654 (-957 |#1|)))) $) NIL)) (-3921 (((-654 (-654 (-654 (-781)))) $) 131)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3567 (((-781) $ (-654 (-957 |#1|))) 65)) (-2545 (((-112) $) 84)) (-2686 (($ $ (-654 (-957 |#1|))) 86) (($ $ (-654 (-654 |#1|))) 92) (($ (-654 (-957 |#1|))) 87) (((-654 (-957 |#1|)) $) 85)) (-3400 (($) 48) (($ (-1181 3 |#1|)) 49)) (-3157 (($ $) 63)) (-1538 (((-654 $) $) 62)) (-4374 (($ (-654 $)) 59)) (-1589 (((-654 $) $) 61)) (-2951 (((-872) $) 146)) (-3922 (((-112) $) 94)) (-4195 (($ $ (-654 (-957 |#1|))) 96) (($ $ (-654 (-654 |#1|))) 99) (($ (-654 (-957 |#1|))) 97) (((-654 (-957 |#1|)) $) 95)) (-3706 (($ $) 140)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1149 |#1|) (-1150 |#1|) (-1065)) (T -1149)) +NIL +(-1150 |#1|) +((-2864 (((-112) $ $) 7)) (-1757 (((-1181 3 |#1|) $) 14)) (-3672 (((-112) $) 30)) (-1825 (($ $ (-654 (-957 |#1|))) 34) (($ $ (-654 (-654 |#1|))) 33) (($ (-654 (-957 |#1|))) 32) (((-654 (-957 |#1|)) $) 31)) (-3520 (((-112) $) 45)) (-3565 (($ $ (-957 |#1|)) 50) (($ $ (-654 |#1|)) 49) (($ $ (-781)) 48) (($ (-957 |#1|)) 47) (((-957 |#1|) $) 46)) (-2629 (((-2 (|:| -1851 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 16)) (-2314 (((-781) $) 59)) (-2723 (((-781) $) 60)) (-1512 (($ $ (-781) (-957 |#1|)) 51)) (-3044 (((-112) $) 22)) (-2484 (($ $ (-654 (-654 (-957 |#1|))) (-654 (-173)) (-173)) 29) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 28) (($ $ (-654 (-654 (-957 |#1|))) (-112) (-112)) 27) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 26) (($ (-654 (-654 (-957 |#1|)))) 25) (($ (-654 (-654 (-957 |#1|))) (-112) (-112)) 24) (((-654 (-654 (-957 |#1|))) $) 23)) (-3404 (($ (-654 $)) 58) (($ $ $) 57)) (-2029 (((-654 (-173)) $) 17)) (-2940 (((-654 (-957 |#1|)) $) 21)) (-3057 (((-654 (-654 (-173))) $) 18)) (-1449 (((-654 (-654 (-654 (-957 |#1|)))) $) 19)) (-3921 (((-654 (-654 (-654 (-781)))) $) 20)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3567 (((-781) $ (-654 (-957 |#1|))) 52)) (-2545 (((-112) $) 40)) (-2686 (($ $ (-654 (-957 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 43) (($ (-654 (-957 |#1|))) 42) (((-654 (-957 |#1|)) $) 41)) (-3400 (($) 62) (($ (-1181 3 |#1|)) 61)) (-3157 (($ $) 53)) (-1538 (((-654 $) $) 54)) (-4374 (($ (-654 $)) 56)) (-1589 (((-654 $) $) 55)) (-2951 (((-872) $) 12)) (-3922 (((-112) $) 35)) (-4195 (($ $ (-654 (-957 |#1|))) 39) (($ $ (-654 (-654 |#1|))) 38) (($ (-654 (-957 |#1|))) 37) (((-654 (-957 |#1|)) $) 36)) (-3706 (($ $) 15)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) +(((-1150 |#1|) (-141) (-1065)) (T -1150)) +((-2951 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-872)))) (-3400 (*1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))) (-3400 (*1 *1 *2) (-12 (-5 *2 (-1181 3 *3)) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-3404 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-3404 (*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-1589 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)))) (-1538 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-957 *4))) (-4 *1 (-1150 *4)) (-4 *4 (-1065)) (-5 *2 (-781)))) (-1512 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-957 *4)) (-4 *1 (-1150 *4)) (-4 *4 (-1065)))) (-3565 (*1 *1 *1 *2) (-12 (-5 *2 (-957 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-3565 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-3565 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-3565 (*1 *1 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-957 *3)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))) (-4195 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-4195 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-4195 (*1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-4195 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))) (-1825 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-1825 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))) (-2484 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-957 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1150 *5)) (-4 *5 (-1065)))) (-2484 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1150 *5)) (-4 *5 (-1065)))) (-2484 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-957 *4)))) (-5 *3 (-112)) (-4 *1 (-1150 *4)) (-4 *4 (-1065)))) (-2484 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112)) (-4 *1 (-1150 *4)) (-4 *4 (-1065)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-957 *3)))) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-2484 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-957 *4)))) (-5 *3 (-112)) (-4 *4 (-1065)) (-4 *1 (-1150 *4)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-654 (-957 *3)))))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-654 (-654 (-781))))))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-654 (-654 (-957 *3))))))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-654 (-173)))))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-173))))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -1851 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781)))))) (-3706 (*1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-1181 3 *3))))) +(-13 (-1116) (-10 -8 (-15 -3400 ($)) (-15 -3400 ($ (-1181 3 |t#1|))) (-15 -2723 ((-781) $)) (-15 -2314 ((-781) $)) (-15 -3404 ($ (-654 $))) (-15 -3404 ($ $ $)) (-15 -4374 ($ (-654 $))) (-15 -1589 ((-654 $) $)) (-15 -1538 ((-654 $) $)) (-15 -3157 ($ $)) (-15 -3567 ((-781) $ (-654 (-957 |t#1|)))) (-15 -1512 ($ $ (-781) (-957 |t#1|))) (-15 -3565 ($ $ (-957 |t#1|))) (-15 -3565 ($ $ (-654 |t#1|))) (-15 -3565 ($ $ (-781))) (-15 -3565 ($ (-957 |t#1|))) (-15 -3565 ((-957 |t#1|) $)) (-15 -3520 ((-112) $)) (-15 -2686 ($ $ (-654 (-957 |t#1|)))) (-15 -2686 ($ $ (-654 (-654 |t#1|)))) (-15 -2686 ($ (-654 (-957 |t#1|)))) (-15 -2686 ((-654 (-957 |t#1|)) $)) (-15 -2545 ((-112) $)) (-15 -4195 ($ $ (-654 (-957 |t#1|)))) (-15 -4195 ($ $ (-654 (-654 |t#1|)))) (-15 -4195 ($ (-654 (-957 |t#1|)))) (-15 -4195 ((-654 (-957 |t#1|)) $)) (-15 -3922 ((-112) $)) (-15 -1825 ($ $ (-654 (-957 |t#1|)))) (-15 -1825 ($ $ (-654 (-654 |t#1|)))) (-15 -1825 ($ (-654 (-957 |t#1|)))) (-15 -1825 ((-654 (-957 |t#1|)) $)) (-15 -3672 ((-112) $)) (-15 -2484 ($ $ (-654 (-654 (-957 |t#1|))) (-654 (-173)) (-173))) (-15 -2484 ($ $ (-654 (-654 (-654 |t#1|))) (-654 (-173)) (-173))) (-15 -2484 ($ $ (-654 (-654 (-957 |t#1|))) (-112) (-112))) (-15 -2484 ($ $ (-654 (-654 (-654 |t#1|))) (-112) (-112))) (-15 -2484 ($ (-654 (-654 (-957 |t#1|))))) (-15 -2484 ($ (-654 (-654 (-957 |t#1|))) (-112) (-112))) (-15 -2484 ((-654 (-654 (-957 |t#1|))) $)) (-15 -3044 ((-112) $)) (-15 -2940 ((-654 (-957 |t#1|)) $)) (-15 -3921 ((-654 (-654 (-654 (-781)))) $)) (-15 -1449 ((-654 (-654 (-654 (-957 |t#1|)))) $)) (-15 -3057 ((-654 (-654 (-173))) $)) (-15 -2029 ((-654 (-173)) $)) (-15 -2629 ((-2 (|:| -1851 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $)) (-15 -3706 ($ $)) (-15 -1757 ((-1181 3 |t#1|) $)) (-15 -2951 ((-872) $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 184) (($ (-1198)) NIL) (((-1198) $) 7)) (-2130 (((-112) $ (|[\|\|]| (-534))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-686))) 27) (((-112) $ (|[\|\|]| (-1294))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-616))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1131))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-691))) 55) (((-112) $ (|[\|\|]| (-527))) 59) (((-112) $ (|[\|\|]| (-1082))) 63) (((-112) $ (|[\|\|]| (-1295))) 67) (((-112) $ (|[\|\|]| (-535))) 71) (((-112) $ (|[\|\|]| (-1167))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-681))) 83) (((-112) $ (|[\|\|]| (-319))) 87) (((-112) $ (|[\|\|]| (-1052))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-986))) 99) (((-112) $ (|[\|\|]| (-1089))) 103) (((-112) $ (|[\|\|]| (-1106))) 107) (((-112) $ (|[\|\|]| (-1112))) 111) (((-112) $ (|[\|\|]| (-636))) 115) (((-112) $ (|[\|\|]| (-1183))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-488))) 131) (((-112) $ (|[\|\|]| (-602))) 135) (((-112) $ (|[\|\|]| (-516))) 139) (((-112) $ (|[\|\|]| (-1175))) 143) (((-112) $ (|[\|\|]| (-574))) 147)) (-4069 (((-112) $ $) NIL)) (-1337 (((-534) $) 20) (((-220) $) 24) (((-686) $) 28) (((-1294) $) 32) (((-139) $) 36) (((-616) $) 40) (((-134) $) 44) (((-1131) $) 48) (((-96) $) 52) (((-691) $) 56) (((-527) $) 60) (((-1082) $) 64) (((-1295) $) 68) (((-535) $) 72) (((-1167) $) 76) (((-155) $) 80) (((-681) $) 84) (((-319) $) 88) (((-1052) $) 92) (((-182) $) 96) (((-986) $) 100) (((-1089) $) 104) (((-1106) $) 108) (((-1112) $) 112) (((-636) $) 116) (((-1183) $) 120) (((-157) $) 124) (((-138) $) 128) (((-488) $) 132) (((-602) $) 136) (((-516) $) 140) (((-1175) $) 144) (((-574) $) 148)) (-2986 (((-112) $ $) NIL))) +(((-1151) (-1153)) (T -1151)) +NIL +(-1153) +((-3710 (((-654 (-1198)) (-1175)) 9))) +(((-1152) (-10 -7 (-15 -3710 ((-654 (-1198)) (-1175))))) (T -1152)) +((-3710 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-1198))) (-5 *1 (-1152))))) +(-10 -7 (-15 -3710 ((-654 (-1198)) (-1175)))) +((-2864 (((-112) $ $) 7)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-1198)) 17) (((-1198) $) 16)) (-2130 (((-112) $ (|[\|\|]| (-534))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-686))) 81) (((-112) $ (|[\|\|]| (-1294))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-616))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1131))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-691))) 67) (((-112) $ (|[\|\|]| (-527))) 65) (((-112) $ (|[\|\|]| (-1082))) 63) (((-112) $ (|[\|\|]| (-1295))) 61) (((-112) $ (|[\|\|]| (-535))) 59) (((-112) $ (|[\|\|]| (-1167))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-681))) 53) (((-112) $ (|[\|\|]| (-319))) 51) (((-112) $ (|[\|\|]| (-1052))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-986))) 45) (((-112) $ (|[\|\|]| (-1089))) 43) (((-112) $ (|[\|\|]| (-1106))) 41) (((-112) $ (|[\|\|]| (-1112))) 39) (((-112) $ (|[\|\|]| (-636))) 37) (((-112) $ (|[\|\|]| (-1183))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-488))) 29) (((-112) $ (|[\|\|]| (-602))) 27) (((-112) $ (|[\|\|]| (-516))) 25) (((-112) $ (|[\|\|]| (-1175))) 23) (((-112) $ (|[\|\|]| (-574))) 21)) (-4069 (((-112) $ $) 9)) (-1337 (((-534) $) 84) (((-220) $) 82) (((-686) $) 80) (((-1294) $) 78) (((-139) $) 76) (((-616) $) 74) (((-134) $) 72) (((-1131) $) 70) (((-96) $) 68) (((-691) $) 66) (((-527) $) 64) (((-1082) $) 62) (((-1295) $) 60) (((-535) $) 58) (((-1167) $) 56) (((-155) $) 54) (((-681) $) 52) (((-319) $) 50) (((-1052) $) 48) (((-182) $) 46) (((-986) $) 44) (((-1089) $) 42) (((-1106) $) 40) (((-1112) $) 38) (((-636) $) 36) (((-1183) $) 34) (((-157) $) 32) (((-138) $) 30) (((-488) $) 28) (((-602) $) 26) (((-516) $) 24) (((-1175) $) 22) (((-574) $) 20)) (-2986 (((-112) $ $) 6))) +(((-1153) (-141)) (T -1153)) +((-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-534)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-220)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-686)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1294))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1294)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-139)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-616)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-134)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1131)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-96)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-691)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-527)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1082)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1295))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1295)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-535)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1167)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-155)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-681)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-319)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1052))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1052)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-182)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-986)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1089)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1106)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1112)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-636)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1183)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-157)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-138)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-488)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-602)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-516)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1175)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-574))))) +(-13 (-1099) (-1279) (-10 -8 (-15 -2130 ((-112) $ (|[\|\|]| (-534)))) (-15 -1337 ((-534) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-220)))) (-15 -1337 ((-220) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-686)))) (-15 -1337 ((-686) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1294)))) (-15 -1337 ((-1294) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-139)))) (-15 -1337 ((-139) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-616)))) (-15 -1337 ((-616) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-134)))) (-15 -1337 ((-134) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1131)))) (-15 -1337 ((-1131) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-96)))) (-15 -1337 ((-96) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-691)))) (-15 -1337 ((-691) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-527)))) (-15 -1337 ((-527) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1082)))) (-15 -1337 ((-1082) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1295)))) (-15 -1337 ((-1295) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-535)))) (-15 -1337 ((-535) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1167)))) (-15 -1337 ((-1167) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-155)))) (-15 -1337 ((-155) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-681)))) (-15 -1337 ((-681) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-319)))) (-15 -1337 ((-319) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1052)))) (-15 -1337 ((-1052) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-182)))) (-15 -1337 ((-182) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-986)))) (-15 -1337 ((-986) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1089)))) (-15 -1337 ((-1089) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1106)))) (-15 -1337 ((-1106) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1112)))) (-15 -1337 ((-1112) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-636)))) (-15 -1337 ((-636) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1183)))) (-15 -1337 ((-1183) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-157)))) (-15 -1337 ((-157) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-138)))) (-15 -1337 ((-138) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-488)))) (-15 -1337 ((-488) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-602)))) (-15 -1337 ((-602) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1175)))) (-15 -1337 ((-1175) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-574)))) (-15 -1337 ((-574) $)))) +(((-93) . T) ((-102) . T) ((-626 #0=(-1198)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1116) . T) ((-1099) . T) ((-1279) . T)) +((-4038 (((-1289) (-654 (-872))) 22) (((-1289) (-872)) 21)) (-3062 (((-1289) (-654 (-872))) 20) (((-1289) (-872)) 19)) (-3742 (((-1289) (-654 (-872))) 18) (((-1289) (-872)) 10) (((-1289) (-1175) (-872)) 16))) +(((-1154) (-10 -7 (-15 -3742 ((-1289) (-1175) (-872))) (-15 -3742 ((-1289) (-872))) (-15 -3062 ((-1289) (-872))) (-15 -4038 ((-1289) (-872))) (-15 -3742 ((-1289) (-654 (-872)))) (-15 -3062 ((-1289) (-654 (-872)))) (-15 -4038 ((-1289) (-654 (-872)))))) (T -1154)) +((-4038 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-4038 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-3742 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154))))) +(-10 -7 (-15 -3742 ((-1289) (-1175) (-872))) (-15 -3742 ((-1289) (-872))) (-15 -3062 ((-1289) (-872))) (-15 -4038 ((-1289) (-872))) (-15 -3742 ((-1289) (-654 (-872)))) (-15 -3062 ((-1289) (-654 (-872)))) (-15 -4038 ((-1289) (-654 (-872))))) +((-1445 (($ $ $) 10)) (-1669 (($ $) 9)) (-3346 (($ $ $) 13)) (-1359 (($ $ $) 15)) (-1509 (($ $ $) 12)) (-2108 (($ $ $) 14)) (-1802 (($ $) 17)) (-1460 (($ $) 16)) (-3936 (($ $) 6)) (-2988 (($ $ $) 11) (($ $) 7)) (-3418 (($ $ $) 8))) +(((-1155) (-141)) (T -1155)) +((-1802 (*1 *1 *1) (-4 *1 (-1155))) (-1460 (*1 *1 *1) (-4 *1 (-1155))) (-1359 (*1 *1 *1 *1) (-4 *1 (-1155))) (-2108 (*1 *1 *1 *1) (-4 *1 (-1155))) (-3346 (*1 *1 *1 *1) (-4 *1 (-1155))) (-1509 (*1 *1 *1 *1) (-4 *1 (-1155))) (-2988 (*1 *1 *1 *1) (-4 *1 (-1155))) (-1445 (*1 *1 *1 *1) (-4 *1 (-1155))) (-1669 (*1 *1 *1) (-4 *1 (-1155))) (-3418 (*1 *1 *1 *1) (-4 *1 (-1155))) (-2988 (*1 *1 *1) (-4 *1 (-1155))) (-3936 (*1 *1 *1) (-4 *1 (-1155)))) +(-13 (-10 -8 (-15 -3936 ($ $)) (-15 -2988 ($ $)) (-15 -3418 ($ $ $)) (-15 -1669 ($ $)) (-15 -1445 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -1509 ($ $ $)) (-15 -3346 ($ $ $)) (-15 -2108 ($ $ $)) (-15 -1359 ($ $ $)) (-15 -1460 ($ $)) (-15 -1802 ($ $)))) +((-2864 (((-112) $ $) 44)) (-3079 ((|#1| $) 17)) (-2654 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2398 (((-112) $) 19)) (-3552 (($ $ |#1|) 30)) (-4369 (($ $ (-112)) 32)) (-1326 (($ $) 33)) (-3186 (($ $ |#2|) 31)) (-1489 (((-1175) $) NIL)) (-3910 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3940 (((-1136) $) NIL)) (-2754 (((-112) $) 16)) (-3336 (($) 13)) (-3157 (($ $) 29)) (-2963 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4068 |#2|))) 23) (((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|)))) 26) (((-654 $) |#1| (-654 |#2|)) 28)) (-2277 ((|#2| $) 18)) (-2951 (((-872) $) 53)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 42))) +(((-1156 |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -3336 ($)) (-15 -2754 ((-112) $)) (-15 -3079 (|#1| $)) (-15 -2277 (|#2| $)) (-15 -2398 ((-112) $)) (-15 -2963 ($ |#1| |#2| (-112))) (-15 -2963 ($ |#1| |#2|)) (-15 -2963 ($ (-2 (|:| |val| |#1|) (|:| -4068 |#2|)))) (-15 -2963 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|))))) (-15 -2963 ((-654 $) |#1| (-654 |#2|))) (-15 -3157 ($ $)) (-15 -3552 ($ $ |#1|)) (-15 -3186 ($ $ |#2|)) (-15 -4369 ($ $ (-112))) (-15 -1326 ($ $)) (-15 -3910 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2654 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1116) (-34)) (-13 (-1116) (-34))) (T -1156)) +((-3336 (*1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))))) (-3079 (*1 *2 *1) (-12 (-4 *2 (-13 (-1116) (-34))) (-5 *1 (-1156 *2 *3)) (-4 *3 (-13 (-1116) (-34))))) (-2277 (*1 *2 *1) (-12 (-4 *2 (-13 (-1116) (-34))) (-5 *1 (-1156 *3 *2)) (-4 *3 (-13 (-1116) (-34))))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))))) (-2963 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-2963 (*1 *1 *2 *3) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4068 *4))) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1156 *3 *4)))) (-2963 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4068 *5)))) (-4 *4 (-13 (-1116) (-34))) (-4 *5 (-13 (-1116) (-34))) (-5 *2 (-654 (-1156 *4 *5))) (-5 *1 (-1156 *4 *5)))) (-2963 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1116) (-34))) (-5 *2 (-654 (-1156 *3 *5))) (-5 *1 (-1156 *3 *5)) (-4 *3 (-13 (-1116) (-34))))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-3552 (*1 *1 *1 *2) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-3186 (*1 *1 *1 *2) (-12 (-5 *1 (-1156 *3 *2)) (-4 *3 (-13 (-1116) (-34))) (-4 *2 (-13 (-1116) (-34))))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))))) (-1326 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-3910 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1116) (-34))) (-4 *6 (-13 (-1116) (-34))) (-5 *2 (-112)) (-5 *1 (-1156 *5 *6)))) (-2654 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1116) (-34))) (-5 *2 (-112)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-13 (-1116) (-34)))))) +(-13 (-1116) (-10 -8 (-15 -3336 ($)) (-15 -2754 ((-112) $)) (-15 -3079 (|#1| $)) (-15 -2277 (|#2| $)) (-15 -2398 ((-112) $)) (-15 -2963 ($ |#1| |#2| (-112))) (-15 -2963 ($ |#1| |#2|)) (-15 -2963 ($ (-2 (|:| |val| |#1|) (|:| -4068 |#2|)))) (-15 -2963 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|))))) (-15 -2963 ((-654 $) |#1| (-654 |#2|))) (-15 -3157 ($ $)) (-15 -3552 ($ $ |#1|)) (-15 -3186 ($ $ |#2|)) (-15 -4369 ($ $ (-112))) (-15 -1326 ($ $)) (-15 -3910 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2654 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2864 (((-112) $ $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-3079 (((-1156 |#1| |#2|) $) 27)) (-2497 (($ $) 91)) (-4135 (((-112) (-1156 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1587 (($ $ $ (-654 (-1156 |#1| |#2|))) 108) (($ $ $ (-654 (-1156 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3146 (((-112) $ (-781)) NIL)) (-4433 (((-1156 |#1| |#2|) $ (-1156 |#1| |#2|)) 46 (|has| $ (-6 -4460)))) (-3135 (((-1156 |#1| |#2|) $ "value" (-1156 |#1| |#2|)) NIL (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) 44 (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-4045 (((-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|))) $) 95)) (-2424 (($ (-1156 |#1| |#2|) $) 42)) (-3311 (($ (-1156 |#1| |#2|) $) 34)) (-1871 (((-654 (-1156 |#1| |#2|)) $) NIL (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) 54)) (-2002 (((-112) (-1156 |#1| |#2|) $) 97)) (-2622 (((-112) $ $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 (-1156 |#1| |#2|)) $) 58 (|has| $ (-6 -4459)))) (-4134 (((-112) (-1156 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-1156 |#1| |#2|) (-1116))))) (-2462 (($ (-1 (-1156 |#1| |#2|) (-1156 |#1| |#2|)) $) 50 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-1156 |#1| |#2|) (-1156 |#1| |#2|)) $) 49)) (-1653 (((-112) $ (-781)) NIL)) (-3483 (((-654 (-1156 |#1| |#2|)) $) 56)) (-1580 (((-112) $) 45)) (-1489 (((-1175) $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-3940 (((-1136) $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-3986 (((-3 $ "failed") $) 89)) (-3449 (((-112) (-1 (-112) (-1156 |#1| |#2|)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-1156 |#1| |#2|)))) NIL (-12 (|has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|))) (|has| (-1156 |#1| |#2|) (-1116)))) (($ $ (-302 (-1156 |#1| |#2|))) NIL (-12 (|has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|))) (|has| (-1156 |#1| |#2|) (-1116)))) (($ $ (-1156 |#1| |#2|) (-1156 |#1| |#2|)) NIL (-12 (|has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|))) (|has| (-1156 |#1| |#2|) (-1116)))) (($ $ (-654 (-1156 |#1| |#2|)) (-654 (-1156 |#1| |#2|))) NIL (-12 (|has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|))) (|has| (-1156 |#1| |#2|) (-1116))))) (-2526 (((-112) $ $) 53)) (-2754 (((-112) $) 24)) (-3336 (($) 26)) (-2207 (((-1156 |#1| |#2|) $ "value") NIL)) (-3615 (((-574) $ $) NIL)) (-3911 (((-112) $) 47)) (-3949 (((-781) (-1 (-112) (-1156 |#1| |#2|)) $) NIL (|has| $ (-6 -4459))) (((-781) (-1156 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-1156 |#1| |#2|) (-1116))))) (-3157 (($ $) 52)) (-2963 (($ (-1156 |#1| |#2|)) 10) (($ |#1| |#2| (-654 $)) 13) (($ |#1| |#2| (-654 (-1156 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-654 |#2|)) 18)) (-2685 (((-654 |#2|) $) 96)) (-2951 (((-872) $) 87 (|has| (-1156 |#1| |#2|) (-623 (-872))))) (-4163 (((-654 $) $) 31)) (-4208 (((-112) $ $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-4069 (((-112) $ $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-2020 (((-112) (-1 (-112) (-1156 |#1| |#2|)) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 70 (|has| (-1156 |#1| |#2|) (-1116)))) (-2877 (((-781) $) 64 (|has| $ (-6 -4459))))) +(((-1157 |#1| |#2|) (-13 (-1026 (-1156 |#1| |#2|)) (-10 -8 (-6 -4460) (-6 -4459) (-15 -3986 ((-3 $ "failed") $)) (-15 -2497 ($ $)) (-15 -2963 ($ (-1156 |#1| |#2|))) (-15 -2963 ($ |#1| |#2| (-654 $))) (-15 -2963 ($ |#1| |#2| (-654 (-1156 |#1| |#2|)))) (-15 -2963 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2685 ((-654 |#2|) $)) (-15 -4045 ((-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|))) $)) (-15 -2002 ((-112) (-1156 |#1| |#2|) $)) (-15 -4135 ((-112) (-1156 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3311 ($ (-1156 |#1| |#2|) $)) (-15 -2424 ($ (-1156 |#1| |#2|) $)) (-15 -1587 ($ $ $ (-654 (-1156 |#1| |#2|)))) (-15 -1587 ($ $ $ (-654 (-1156 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1116) (-34)) (-13 (-1116) (-34))) (T -1157)) +((-3986 (*1 *1 *1) (|partial| -12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-2497 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))) (-2963 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1157 *2 *3))) (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-2963 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1156 *2 *3))) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))) (-5 *1 (-1157 *2 *3)))) (-2963 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1116) (-34))) (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34))))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-654 *4)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))))) (-2002 (*1 *2 *3 *1) (-12 (-5 *3 (-1156 *4 *5)) (-4 *4 (-13 (-1116) (-34))) (-4 *5 (-13 (-1116) (-34))) (-5 *2 (-112)) (-5 *1 (-1157 *4 *5)))) (-4135 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1156 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1116) (-34))) (-4 *6 (-13 (-1116) (-34))) (-5 *2 (-112)) (-5 *1 (-1157 *5 *6)))) (-3311 (*1 *1 *2 *1) (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))) (-2424 (*1 *1 *2 *1) (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))) (-1587 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-654 (-1156 *3 *4))) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))) (-1587 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1156 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1116) (-34))) (-4 *5 (-13 (-1116) (-34))) (-5 *1 (-1157 *4 *5))))) +(-13 (-1026 (-1156 |#1| |#2|)) (-10 -8 (-6 -4460) (-6 -4459) (-15 -3986 ((-3 $ "failed") $)) (-15 -2497 ($ $)) (-15 -2963 ($ (-1156 |#1| |#2|))) (-15 -2963 ($ |#1| |#2| (-654 $))) (-15 -2963 ($ |#1| |#2| (-654 (-1156 |#1| |#2|)))) (-15 -2963 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2685 ((-654 |#2|) $)) (-15 -4045 ((-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|))) $)) (-15 -2002 ((-112) (-1156 |#1| |#2|) $)) (-15 -4135 ((-112) (-1156 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3311 ($ (-1156 |#1| |#2|) $)) (-15 -2424 ($ (-1156 |#1| |#2|) $)) (-15 -1587 ($ $ $ (-654 (-1156 |#1| |#2|)))) (-15 -1587 ($ $ $ (-654 (-1156 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4033 (($ $) NIL)) (-1644 ((|#2| $) NIL)) (-3399 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3420 (($ (-699 |#2|)) 56)) (-2711 (((-112) $) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-2317 (($ |#2|) 14)) (-3250 (($) NIL T CONST)) (-1430 (($ $) 69 (|has| |#2| (-315)))) (-1959 (((-246 |#1| |#2|) $ (-574)) 42)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) ((|#2| $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) 83)) (-3558 (((-781) $) 71 (|has| |#2| (-566)))) (-2400 ((|#2| $ (-574) (-574)) NIL)) (-1871 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4226 (((-112) $) NIL)) (-2893 (((-781) $) 73 (|has| |#2| (-566)))) (-1381 (((-654 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-566)))) (-2197 (((-781) $) NIL)) (-3764 (($ |#2|) 25)) (-2206 (((-781) $) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-1706 ((|#2| $) 67 (|has| |#2| (-6 (-4461 "*"))))) (-2219 (((-574) $) NIL)) (-2126 (((-574) $) NIL)) (-2036 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3352 (((-574) $) NIL)) (-1695 (((-574) $) NIL)) (-2924 (($ (-654 (-654 |#2|))) 37)) (-2462 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2014 (((-654 (-654 |#2|)) $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-3593 (((-3 $ "failed") $) 80 (|has| |#2| (-372)))) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-3449 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) NIL)) (-3879 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2366 ((|#2| $) NIL)) (-1761 (($ (-654 |#2|)) 50)) (-4049 (((-112) $) NIL)) (-4401 (((-246 |#1| |#2|) $) NIL)) (-1386 ((|#2| $) 65 (|has| |#2| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3157 (($ $) NIL)) (-1844 (((-546) $) 89 (|has| |#2| (-624 (-546))))) (-1425 (((-246 |#1| |#2|) $ (-574)) 44)) (-2951 (((-872) $) 47) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1054 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) 52)) (-2898 (((-781)) 23 T CONST)) (-4069 (((-112) $ $) NIL)) (-2020 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2649 (((-112) $) NIL)) (-2141 (($) 16 T CONST)) (-2153 (($) 21 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) 63) (($ $ (-574)) 82 (|has| |#2| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1158 |#1| |#2|) (-13 (-1139 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3764 ($ |#2|)) (-15 -4033 ($ $)) (-15 -3420 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4461 "*"))) (-6 -4448) |%noBranch|) (IF (|has| |#2| (-6 (-4461 "*"))) (IF (|has| |#2| (-6 -4456)) (-6 -4456) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-781) (-1065)) (T -1158)) +((-3764 (*1 *1 *2) (-12 (-5 *1 (-1158 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1065)))) (-4033 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1065)))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-699 *4)) (-4 *4 (-1065)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-781))))) +(-13 (-1139 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3764 ($ |#2|)) (-15 -4033 ($ $)) (-15 -3420 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4461 "*"))) (-6 -4448) |%noBranch|) (IF (|has| |#2| (-6 (-4461 "*"))) (IF (|has| |#2| (-6 -4456)) (-6 -4456) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) +((-4149 (($ $) 19)) (-2837 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3707 (((-112) $ $) 24)) (-2089 (($ $) 17)) (-2207 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1251 (-574))) NIL) (($ $ $) 31)) (-2951 (($ (-145)) 29) (((-872) $) NIL))) +(((-1159 |#1|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -2207 (|#1| |#1| |#1|)) (-15 -2837 (|#1| |#1| (-142))) (-15 -2837 (|#1| |#1| (-145))) (-15 -2951 (|#1| (-145))) (-15 -3707 ((-112) |#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -2089 (|#1| |#1|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2207 ((-145) |#1| (-574))) (-15 -2207 ((-145) |#1| (-574) (-145)))) (-1160)) (T -1159)) +NIL +(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -2207 (|#1| |#1| |#1|)) (-15 -2837 (|#1| |#1| (-142))) (-15 -2837 (|#1| |#1| (-145))) (-15 -2951 (|#1| (-145))) (-15 -3707 ((-112) |#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -2089 (|#1| |#1|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2207 ((-145) |#1| (-574))) (-15 -2207 ((-145) |#1| (-574) (-145)))) +((-2864 (((-112) $ $) 19 (|has| (-145) (-1116)))) (-3512 (($ $) 123)) (-4149 (($ $) 124)) (-2837 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2985 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-3685 (((-112) $ $) 121)) (-3665 (((-112) $ $ (-574)) 120)) (-1408 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-3861 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-4140 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-3146 (((-112) $ (-781)) 8)) (-3135 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4460))) (((-145) $ (-1251 (-574)) (-145)) 60 (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2632 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2412 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-2781 (($ $ (-1251 (-574)) $) 117)) (-2804 (($ $) 80 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ (-145) $) 79 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4459)))) (-2882 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4459)))) (-2473 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4460)))) (-2400 (((-145) $ (-574)) 52)) (-3707 (((-112) $ $) 122)) (-1452 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1116))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1116))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1871 (((-654 (-145)) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) (-145)) 70)) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| (-145) (-860)))) (-3404 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-2036 (((-654 (-145)) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 45 (|has| (-574) (-860)))) (-4380 (($ $ $) 89 (|has| (-145) (-860)))) (-1330 (((-112) $ $ (-145)) 118)) (-2698 (((-781) $ $ (-145)) 119)) (-2462 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1749 (($ $) 125)) (-2089 (($ $) 126)) (-1653 (((-112) $ (-781)) 10)) (-2646 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-1489 (((-1175) $) 22 (|has| (-145) (-1116)))) (-1602 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-1393 (((-654 (-574)) $) 47)) (-1506 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| (-145) (-1116)))) (-2925 (((-145) $) 43 (|has| (-574) (-860)))) (-2183 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1822 (($ $ (-145)) 42 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2315 (((-654 (-145)) $) 49)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1251 (-574))) 71) (($ $ $) 105)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4459))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-4036 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2963 (($ (-654 (-145))) 72)) (-4132 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (($ (-145)) 114) (((-872) $) 18 (|has| (-145) (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| (-145) (-1116)))) (-2020 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3020 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2986 (((-112) $ $) 20 (|has| (-145) (-1116)))) (-3030 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3009 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-1160) (-141)) (T -1160)) +((-2089 (*1 *1 *1) (-4 *1 (-1160))) (-1749 (*1 *1 *1) (-4 *1 (-1160))) (-4149 (*1 *1 *1) (-4 *1 (-1160))) (-3512 (*1 *1 *1) (-4 *1 (-1160))) (-3707 (*1 *2 *1 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-112)))) (-3685 (*1 *2 *1 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-112)))) (-3665 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-574)) (-5 *2 (-112)))) (-2698 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-145)) (-5 *2 (-781)))) (-1330 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-145)) (-5 *2 (-112)))) (-2781 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-1251 (-574))))) (-1452 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-574)))) (-1452 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-574)) (-5 *3 (-142)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1160)))) (-1408 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1160)))) (-1408 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1160)))) (-2837 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145)))) (-2837 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142)))) (-2646 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145)))) (-2646 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142)))) (-2632 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145)))) (-2632 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142)))) (-2207 (*1 *1 *1 *1) (-4 *1 (-1160)))) +(-13 (-19 (-145)) (-10 -8 (-15 -2089 ($ $)) (-15 -1749 ($ $)) (-15 -4149 ($ $)) (-15 -3512 ($ $)) (-15 -3707 ((-112) $ $)) (-15 -3685 ((-112) $ $)) (-15 -3665 ((-112) $ $ (-574))) (-15 -2698 ((-781) $ $ (-145))) (-15 -1330 ((-112) $ $ (-145))) (-15 -2781 ($ $ (-1251 (-574)) $)) (-15 -1452 ((-574) $ $ (-574))) (-15 -1452 ((-574) (-142) $ (-574))) (-15 -2951 ($ (-145))) (-15 -1408 ((-654 $) $ (-145))) (-15 -1408 ((-654 $) $ (-142))) (-15 -2837 ($ $ (-145))) (-15 -2837 ($ $ (-142))) (-15 -2646 ($ $ (-145))) (-15 -2646 ($ $ (-142))) (-15 -2632 ($ $ (-145))) (-15 -2632 ($ $ (-142))) (-15 -2207 ($ $ $)))) +(((-34) . T) ((-102) -2833 (|has| (-145) (-1116)) (|has| (-145) (-860))) ((-623 (-872)) -2833 (|has| (-145) (-1116)) (|has| (-145) (-860)) (|has| (-145) (-623 (-872)))) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))) ((-661 #0#) . T) ((-19 #0#) . T) ((-860) |has| (-145) (-860)) ((-1116) -2833 (|has| (-145) (-1116)) (|has| (-145) (-860))) ((-1234) . T)) +((-3787 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781)) 112)) (-2932 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781)) 61)) (-3644 (((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781)) 97)) (-1850 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-2750 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781)) 63) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112)) 65)) (-1377 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 85)) (-1844 (((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) 90)) (-1742 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|) 60)) (-2909 (((-781) (-654 |#4|) (-654 |#5|)) 21))) +(((-1161 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2909 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1850 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1742 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -2932 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2932 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -1377 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1377 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3787 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781))) (-15 -1844 ((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3644 ((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781)))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1125 |#1| |#2| |#3| |#4|)) (T -1161)) +((-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) (-5 *4 (-781)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1289)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1125 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1175)) (-5 *1 (-1161 *4 *5 *6 *7 *8)))) (-3787 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4068 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4068 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1081 *7 *8 *9)) (-4 *11 (-1125 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1161 *7 *8 *9 *10 *11)))) (-1377 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))) (-1377 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))) (-2750 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3)))) (-2750 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *6 *7 *8 *3 *4)) (-4 *4 (-1125 *6 *7 *8 *3)))) (-2750 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1081 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *7 *8 *9 *3 *4)) (-4 *4 (-1125 *7 *8 *9 *3)))) (-2932 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3)))) (-2932 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *6 *7 *8 *3 *4)) (-4 *4 (-1125 *6 *7 *8 *3)))) (-1742 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1161 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2909 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1850 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1742 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -2932 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2932 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2750 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -1377 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1377 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3787 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781))) (-15 -1844 ((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3644 ((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781)))) +((-2864 (((-112) $ $) NIL)) (-2298 (((-654 (-2 (|:| -1390 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3656 (((-654 $) (-654 |#4|)) 124) (((-654 $) (-654 |#4|) (-112)) 125) (((-654 $) (-654 |#4|) (-112) (-112)) 123) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 126)) (-4350 (((-654 |#3|) $) NIL)) (-1437 (((-112) $) NIL)) (-2176 (((-112) $) NIL (|has| |#1| (-566)))) (-2972 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2104 ((|#4| |#4| $) NIL)) (-2991 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 97)) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#3|) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-2172 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 75)) (-3250 (($) NIL T CONST)) (-3721 (((-112) $) 29 (|has| |#1| (-566)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2196 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3564 (((-112) $) NIL (|has| |#1| (-566)))) (-4434 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1855 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-3406 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2214 (($ (-654 |#4|)) NIL)) (-2935 (((-3 $ "failed") $) 45)) (-2660 ((|#4| |#4| $) 78)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3311 (($ |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-566)))) (-1857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3347 ((|#4| |#4| $) NIL)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2830 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) NIL)) (-1647 (((-112) |#4| $) NIL)) (-4126 (((-112) |#4| $) NIL)) (-3832 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1821 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 139)) (-1871 (((-654 |#4|) $) 18 (|has| $ (-6 -4459)))) (-3145 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4241 ((|#3| $) 38)) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#4|) $) 19 (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2462 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 23)) (-2737 (((-654 |#3|) $) NIL)) (-3161 (((-112) |#3| $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-1900 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-2623 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 117)) (-3334 (((-3 |#4| "failed") $) 42)) (-1976 (((-654 $) |#4| $) 102)) (-2659 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-3029 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3891 (((-654 $) |#4| $) 121) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 122) (((-654 $) |#4| (-654 $)) NIL)) (-2619 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 134)) (-3268 (($ |#4| $) 88) (($ (-654 |#4|) $) 89) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-1957 (((-654 |#4|) $) NIL)) (-3749 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2254 ((|#4| |#4| $) NIL)) (-3877 (((-112) $ $) NIL)) (-3581 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2712 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3173 ((|#4| |#4| $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-3 |#4| "failed") $) 40)) (-2183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4233 (((-3 $ "failed") $ |#4|) 59)) (-2433 (($ $ |#4|) NIL) (((-654 $) |#4| $) 104) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 99)) (-3449 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 17)) (-3336 (($) 14)) (-3580 (((-781) $) NIL)) (-3949 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) 13)) (-1844 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 22)) (-1423 (($ $ |#3|) 52)) (-1671 (($ $ |#3|) 54)) (-2167 (($ $) NIL)) (-2287 (($ $ |#3|) NIL)) (-2951 (((-872) $) 35) (((-654 |#4|) $) 46)) (-2105 (((-781) $) NIL (|has| |#3| (-377)))) (-4069 (((-112) $ $) NIL)) (-3917 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3912 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-3896 (((-654 $) |#4| $) 66) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-2020 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-1642 (((-654 |#3|) $) NIL)) (-2945 (((-112) |#4| $) NIL)) (-3504 (((-112) |#3| $) 74)) (-2986 (((-112) $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1162 |#1| |#2| |#3| |#4|) (-13 (-1125 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3268 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3656 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3656 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2619 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1821 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -1162)) +((-3268 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1162 *5 *6 *7 *3))) (-5 *1 (-1162 *5 *6 *7 *3)) (-4 *3 (-1081 *5 *6 *7)))) (-3656 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8)))) (-3656 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8)))) (-2619 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8)))) (-1821 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1162 *5 *6 *7 *8))))) (-5 *1 (-1162 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) +(-13 (-1125 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3268 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3656 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3656 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2619 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1821 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2010 ((|#1| $) 37)) (-4064 (($ (-654 |#1|)) 45)) (-3146 (((-112) $ (-781)) NIL)) (-3250 (($) NIL T CONST)) (-2231 ((|#1| |#1| $) 40)) (-4073 ((|#1| $) 35)) (-1871 (((-654 |#1|) $) 18 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 22)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-2375 ((|#1| $) 38)) (-3285 (($ |#1| $) 41)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-3801 ((|#1| $) 36)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 32)) (-3336 (($) 43)) (-4293 (((-781) $) 30)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 27)) (-2951 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2829 (($ (-654 |#1|)) NIL)) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 17 (|has| |#1| (-1116)))) (-2877 (((-781) $) 31 (|has| $ (-6 -4459))))) +(((-1163 |#1|) (-13 (-1137 |#1|) (-10 -8 (-15 -4064 ($ (-654 |#1|))))) (-1234)) (T -1163)) +((-4064 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1163 *3))))) +(-13 (-1137 |#1|) (-10 -8 (-15 -4064 ($ (-654 |#1|))))) +((-3135 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1251 (-574)) |#2|) 53) ((|#2| $ (-574) |#2|) 50)) (-4186 (((-112) $) 12)) (-2462 (($ (-1 |#2| |#2|) $) 48)) (-2925 ((|#2| $) NIL) (($ $ (-781)) 17)) (-1822 (($ $ |#2|) 49)) (-3070 (((-112) $) 11)) (-2207 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1251 (-574))) 36) ((|#2| $ (-574)) 26) ((|#2| $ (-574) |#2|) NIL)) (-2982 (($ $ $) 56) (($ $ |#2|) NIL)) (-4132 (($ $ $) 38) (($ |#2| $) NIL) (($ (-654 $)) 45) (($ $ |#2|) NIL))) +(((-1164 |#1| |#2|) (-10 -8 (-15 -4186 ((-112) |#1|)) (-15 -3070 ((-112) |#1|)) (-15 -3135 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -1822 (|#1| |#1| |#2|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -4132 (|#1| |#1| |#2|)) (-15 -4132 (|#1| (-654 |#1|))) (-15 -3135 (|#2| |#1| (-1251 (-574)) |#2|)) (-15 -3135 (|#2| |#1| "last" |#2|)) (-15 -3135 (|#1| |#1| "rest" |#1|)) (-15 -3135 (|#2| |#1| "first" |#2|)) (-15 -2982 (|#1| |#1| |#2|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2207 (|#2| |#1| "last")) (-15 -2207 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "first")) (-15 -2925 (|#2| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -2207 (|#2| |#1| "value")) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|))) (-1165 |#2|) (-1234)) (T -1164)) +NIL +(-10 -8 (-15 -4186 ((-112) |#1|)) (-15 -3070 ((-112) |#1|)) (-15 -3135 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -1822 (|#1| |#1| |#2|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -4132 (|#1| |#1| |#2|)) (-15 -4132 (|#1| (-654 |#1|))) (-15 -3135 (|#2| |#1| (-1251 (-574)) |#2|)) (-15 -3135 (|#2| |#1| "last" |#2|)) (-15 -3135 (|#1| |#1| "rest" |#1|)) (-15 -3135 (|#2| |#1| "first" |#2|)) (-15 -2982 (|#1| |#1| |#2|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2207 (|#2| |#1| "last")) (-15 -2207 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "first")) (-15 -2925 (|#2| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -2207 (|#2| |#1| "value")) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-2421 ((|#1| $) 66)) (-1978 (($ $) 68)) (-2985 (((-1289) $ (-574) (-574)) 99 (|has| $ (-6 -4460)))) (-1652 (($ $ (-574)) 53 (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) 8)) (-4433 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3370 (($ $ $) 57 (|has| $ (-6 -4460)))) (-2523 ((|#1| $ |#1|) 55 (|has| $ (-6 -4460)))) (-2186 ((|#1| $ |#1|) 59 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4460))) (($ $ "rest" $) 56 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 119 (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4459)))) (-2408 ((|#1| $) 67)) (-3250 (($) 7 T CONST)) (-2935 (($ $) 74) (($ $ (-781)) 72)) (-2804 (($ $) 101 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4459))) (($ |#1| $) 102 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2473 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 89)) (-4186 (((-112) $) 85)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) 51)) (-2622 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) 111)) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 97 (|has| (-574) (-860)))) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 96 (|has| (-574) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1653 (((-112) $ (-781)) 10)) (-3483 (((-654 |#1|) $) 46)) (-1580 (((-112) $) 50)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3334 ((|#1| $) 71) (($ $ (-781)) 69)) (-1602 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-1393 (((-654 (-574)) $) 94)) (-1506 (((-112) (-574) $) 93)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 77) (($ $ (-781)) 75)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1822 (($ $ |#1|) 98 (|has| $ (-6 -4460)))) (-3070 (((-112) $) 86)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) 92)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1251 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-3615 (((-574) $ $) 45)) (-2855 (($ $ (-1251 (-574))) 116) (($ $ (-574)) 115)) (-3911 (((-112) $) 47)) (-1939 (($ $) 63)) (-2043 (($ $) 60 (|has| $ (-6 -4460)))) (-1746 (((-781) $) 64)) (-2386 (($ $) 65)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 109)) (-2982 (($ $ $) 62 (|has| $ (-6 -4460))) (($ $ |#1|) 61 (|has| $ (-6 -4460)))) (-4132 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) 52)) (-4208 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-1165 |#1|) (-141) (-1234)) (T -1165)) +((-3070 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1234)) (-5 *2 (-112))))) +(-13 (-1272 |t#1|) (-661 |t#1|) (-10 -8 (-15 -3070 ((-112) $)) (-15 -4186 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T) ((-1272 |#1|) . T)) +((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2985 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) NIL)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2171 (((-3 |#2| "failed") |#1| $) NIL)) (-3250 (($) NIL T CONST)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2424 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) NIL)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2036 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-1698 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1771 (((-654 |#1|) $) NIL)) (-2229 (((-112) |#1| $) NIL)) (-2375 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3285 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1393 (((-654 |#1|) $) NIL)) (-1506 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-2183 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1822 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3162 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4069 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1166 |#1| |#2| |#3|) (-1210 |#1| |#2|) (-1116) (-1116) |#2|) (T -1166)) +NIL +(-1210 |#1| |#2|) +((-2864 (((-112) $ $) NIL)) (-1998 (((-701 (-1151)) $) 27)) (-4121 (((-1151) $) 15)) (-3382 (((-1151) $) 17)) (-1489 (((-1175) $) NIL)) (-2787 (((-516) $) 13)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 37) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1167) (-13 (-1099) (-10 -8 (-15 -2787 ((-516) $)) (-15 -3382 ((-1151) $)) (-15 -1998 ((-701 (-1151)) $)) (-15 -4121 ((-1151) $))))) (T -1167)) +((-2787 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1167)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1167)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-701 (-1151))) (-5 *1 (-1167)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1167))))) +(-13 (-1099) (-10 -8 (-15 -2787 ((-516) $)) (-15 -3382 ((-1151) $)) (-15 -1998 ((-701 (-1151)) $)) (-15 -4121 ((-1151) $)))) +((-2864 (((-112) $ $) 7)) (-2414 (((-3 $ "failed") $) 14)) (-1489 (((-1175) $) 10)) (-3791 (($) 15 T CONST)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6))) +(((-1168) (-141)) (T -1168)) +((-3791 (*1 *1) (-4 *1 (-1168))) (-2414 (*1 *1 *1) (|partial| -4 *1 (-1168)))) +(-13 (-1116) (-10 -8 (-15 -3791 ($) -1714) (-15 -2414 ((-3 $ "failed") $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1116) . T)) +((-1936 (((-1173 |#1|) (-1173 |#1|)) 17)) (-3646 (((-1173 |#1|) (-1173 |#1|)) 13)) (-1779 (((-1173 |#1|) (-1173 |#1|) (-574) (-574)) 20)) (-1951 (((-1173 |#1|) (-1173 |#1|)) 15))) +(((-1169 |#1|) (-10 -7 (-15 -3646 ((-1173 |#1|) (-1173 |#1|))) (-15 -1951 ((-1173 |#1|) (-1173 |#1|))) (-15 -1936 ((-1173 |#1|) (-1173 |#1|))) (-15 -1779 ((-1173 |#1|) (-1173 |#1|) (-574) (-574)))) (-13 (-566) (-148))) (T -1169)) +((-1779 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1169 *4)))) (-1936 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1169 *3)))) (-1951 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1169 *3)))) (-3646 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1169 *3))))) +(-10 -7 (-15 -3646 ((-1173 |#1|) (-1173 |#1|))) (-15 -1951 ((-1173 |#1|) (-1173 |#1|))) (-15 -1936 ((-1173 |#1|) (-1173 |#1|))) (-15 -1779 ((-1173 |#1|) (-1173 |#1|) (-574) (-574)))) +((-4132 (((-1173 |#1|) (-1173 (-1173 |#1|))) 15))) +(((-1170 |#1|) (-10 -7 (-15 -4132 ((-1173 |#1|) (-1173 (-1173 |#1|))))) (-1234)) (T -1170)) +((-4132 (*1 *2 *3) (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1170 *4)) (-4 *4 (-1234))))) +(-10 -7 (-15 -4132 ((-1173 |#1|) (-1173 (-1173 |#1|))))) +((-3465 (((-1173 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|)) 25)) (-2882 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|)) 26)) (-1785 (((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|)) 16))) +(((-1171 |#1| |#2|) (-10 -7 (-15 -1785 ((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|))) (-15 -3465 ((-1173 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|))) (-15 -2882 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|)))) (-1234) (-1234)) (T -1171)) +((-2882 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1173 *5)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-1171 *5 *2)))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1173 *6)) (-4 *6 (-1234)) (-4 *3 (-1234)) (-5 *2 (-1173 *3)) (-5 *1 (-1171 *6 *3)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1173 *6)) (-5 *1 (-1171 *5 *6))))) +(-10 -7 (-15 -1785 ((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|))) (-15 -3465 ((-1173 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|))) (-15 -2882 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|)))) +((-1785 (((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-1173 |#2|)) 21))) +(((-1172 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-1173 |#2|)))) (-1234) (-1234) (-1234)) (T -1172)) +((-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1173 *6)) (-5 *5 (-1173 *7)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8)) (-5 *1 (-1172 *6 *7 *8))))) +(-10 -7 (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-1173 |#2|)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) NIL)) (-2421 ((|#1| $) NIL)) (-1978 (($ $) 67)) (-2985 (((-1289) $ (-574) (-574)) 99 (|has| $ (-6 -4460)))) (-1652 (($ $ (-574)) 128 (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3481 (((-872) $) 56 (|has| |#1| (-1116)))) (-1554 (((-112)) 55 (|has| |#1| (-1116)))) (-4433 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3370 (($ $ $) 115 (|has| $ (-6 -4460))) (($ $ (-574) $) 141)) (-2523 ((|#1| $ |#1|) 125 (|has| $ (-6 -4460)))) (-2186 ((|#1| $ |#1|) 120 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4460))) (($ $ "rest" $) 124 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 112 (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) 77 (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) 80)) (-2408 ((|#1| $) NIL)) (-3250 (($) NIL T CONST)) (-2335 (($ $) 14)) (-2935 (($ $) 40) (($ $ (-781)) 111)) (-2751 (((-112) (-654 |#1|) $) 134 (|has| |#1| (-1116)))) (-2583 (($ (-654 |#1|)) 130)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) 79)) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-4186 (((-112) $) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3231 (((-1289) (-574) $) 140 (|has| |#1| (-1116)))) (-4141 (((-781) $) 137)) (-1482 (((-654 $) $) NIL)) (-2622 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-1653 (((-112) $ (-781)) NIL)) (-3483 (((-654 |#1|) $) NIL)) (-1580 (((-112) $) NIL)) (-1673 (($ $) 113)) (-3664 (((-112) $) 13)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3334 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) 96)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2102 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-4130 ((|#1| $) 10)) (-2925 ((|#1| $) 39) (($ $ (-781)) 65)) (-2543 (((-2 (|:| |cycle?| (-112)) (|:| -4197 (-781)) (|:| |period| (-781))) (-781) $) 34)) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2149 (($ (-1 (-112) |#1|) $) 145)) (-2160 (($ (-1 (-112) |#1|) $) 146)) (-1822 (($ $ |#1|) 90 (|has| $ (-6 -4460)))) (-2433 (($ $ (-574)) 45)) (-3070 (((-112) $) 94)) (-3701 (((-112) $) 12)) (-1584 (((-112) $) 136)) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 30)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) 20)) (-3336 (($) 60)) (-2207 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1251 (-574))) NIL) ((|#1| $ (-574)) 75) ((|#1| $ (-574) |#1|) NIL)) (-3615 (((-574) $ $) 64)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-2641 (($ (-1 $)) 63)) (-3911 (((-112) $) 91)) (-1939 (($ $) 92)) (-2043 (($ $) 116 (|has| $ (-6 -4460)))) (-1746 (((-781) $) NIL)) (-2386 (($ $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 59)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 73)) (-2234 (($ |#1| $) 114)) (-2982 (($ $ $) 118 (|has| $ (-6 -4460))) (($ $ |#1|) 119 (|has| $ (-6 -4460)))) (-4132 (($ $ $) 101) (($ |#1| $) 61) (($ (-654 $)) 106) (($ $ |#1|) 100)) (-2916 (($ $) 66)) (-2951 (($ (-654 |#1|)) 129) (((-872) $) 57 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) NIL)) (-4208 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 132 (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1173 |#1|) (-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4460) (-15 -2583 ($ (-654 |#1|))) (IF (|has| |#1| (-1116)) (-15 -2751 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -2543 ((-2 (|:| |cycle?| (-112)) (|:| -4197 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -2641 ($ (-1 $))) (-15 -2234 ($ |#1| $)) (IF (|has| |#1| (-1116)) (PROGN (-15 -3231 ((-1289) (-574) $)) (-15 -3481 ((-872) $)) (-15 -1554 ((-112)))) |%noBranch|) (-15 -3370 ($ $ (-574) $)) (-15 -2102 ($ (-1 |#1|))) (-15 -2102 ($ (-1 |#1| |#1|) |#1|)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2160 ($ (-1 (-112) |#1|) $)))) (-1234)) (T -1173)) +((-2583 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))) (-2751 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-4 *4 (-1234)) (-5 *2 (-112)) (-5 *1 (-1173 *4)))) (-2543 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4197 (-781)) (|:| |period| (-781)))) (-5 *1 (-1173 *4)) (-4 *4 (-1234)) (-5 *3 (-781)))) (-2641 (*1 *1 *2) (-12 (-5 *2 (-1 (-1173 *3))) (-5 *1 (-1173 *3)) (-4 *3 (-1234)))) (-2234 (*1 *1 *2 *1) (-12 (-5 *1 (-1173 *2)) (-4 *2 (-1234)))) (-3231 (*1 *2 *3 *1) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1173 *4)) (-4 *4 (-1116)) (-4 *4 (-1234)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1173 *3)) (-4 *3 (-1116)) (-4 *3 (-1234)))) (-1554 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1116)) (-4 *3 (-1234)))) (-3370 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1173 *3)) (-4 *3 (-1234)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))) (-2102 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))) (-2149 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))) (-2160 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3))))) +(-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4460) (-15 -2583 ($ (-654 |#1|))) (IF (|has| |#1| (-1116)) (-15 -2751 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -2543 ((-2 (|:| |cycle?| (-112)) (|:| -4197 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -2641 ($ (-1 $))) (-15 -2234 ($ |#1| $)) (IF (|has| |#1| (-1116)) (PROGN (-15 -3231 ((-1289) (-574) $)) (-15 -3481 ((-872) $)) (-15 -1554 ((-112)))) |%noBranch|) (-15 -3370 ($ $ (-574) $)) (-15 -2102 ($ (-1 |#1|))) (-15 -2102 ($ (-1 |#1| |#1|) |#1|)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2160 ($ (-1 (-112) |#1|) $)))) +((-2864 (((-112) $ $) 19)) (-3512 (($ $) 123)) (-4149 (($ $) 124)) (-2837 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2985 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-3685 (((-112) $ $) 121)) (-3665 (((-112) $ $ (-574)) 120)) (-3232 (($ (-574)) 130)) (-1408 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-3861 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-4140 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-3146 (((-112) $ (-781)) 8)) (-3135 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4460))) (((-145) $ (-1251 (-574)) (-145)) 60 (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2632 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2412 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-2781 (($ $ (-1251 (-574)) $) 117)) (-2804 (($ $) 80 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ (-145) $) 79 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4459)))) (-2882 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4459)))) (-2473 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4460)))) (-2400 (((-145) $ (-574)) 52)) (-3707 (((-112) $ $) 122)) (-1452 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1116))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1116))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1871 (((-654 (-145)) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) (-145)) 70)) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| (-145) (-860)))) (-3404 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-2036 (((-654 (-145)) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 45 (|has| (-574) (-860)))) (-4380 (($ $ $) 89 (|has| (-145) (-860)))) (-1330 (((-112) $ $ (-145)) 118)) (-2698 (((-781) $ $ (-145)) 119)) (-2462 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1749 (($ $) 125)) (-2089 (($ $) 126)) (-1653 (((-112) $ (-781)) 10)) (-2646 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-1489 (((-1175) $) 22)) (-1602 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-1393 (((-654 (-574)) $) 47)) (-1506 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21)) (-2925 (((-145) $) 43 (|has| (-574) (-860)))) (-2183 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1822 (($ $ (-145)) 42 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2315 (((-654 (-145)) $) 49)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1251 (-574))) 71) (($ $ $) 105)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4459))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-4036 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2963 (($ (-654 (-145))) 72)) (-4132 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (($ (-145)) 114) (((-872) $) 18)) (-4069 (((-112) $ $) 23)) (-2020 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4459)))) (-3927 (((-1175) $) 134) (((-1175) $ (-112)) 133) (((-1289) (-832) $) 132) (((-1289) (-832) $ (-112)) 131)) (-3042 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3020 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2986 (((-112) $ $) 20)) (-3030 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3009 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-1174) (-141)) (T -1174)) +((-3232 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1174))))) +(-13 (-1160) (-1116) (-838) (-10 -8 (-15 -3232 ($ (-574))))) +(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))) ((-661 #0#) . T) ((-19 #0#) . T) ((-838) . T) ((-860) |has| (-145) (-860)) ((-1116) . T) ((-1160) . T) ((-1234) . T)) +((-2864 (((-112) $ $) NIL)) (-3512 (($ $) NIL)) (-4149 (($ $) NIL)) (-2837 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3685 (((-112) $ $) NIL)) (-3665 (((-112) $ $ (-574)) NIL)) (-3232 (($ (-574)) 8)) (-1408 (((-654 $) $ (-145)) NIL) (((-654 $) $ (-142)) NIL)) (-3861 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-4140 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-860))))) (-2786 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4460))) (((-145) $ (-1251 (-574)) (-145)) NIL (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2632 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2781 (($ $ (-1251 (-574)) $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-3311 (($ (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2473 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4460)))) (-2400 (((-145) $ (-574)) NIL)) (-3707 (((-112) $ $) NIL)) (-1452 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1116))) (((-574) (-145) $ (-574)) NIL (|has| (-145) (-1116))) (((-574) $ $ (-574)) NIL) (((-574) (-142) $ (-574)) NIL)) (-1871 (((-654 (-145)) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) (-145)) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| (-145) (-860)))) (-3404 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-2036 (((-654 (-145)) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-1698 (((-574) $) NIL (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| (-145) (-860)))) (-1330 (((-112) $ $ (-145)) NIL)) (-2698 (((-781) $ $ (-145)) NIL)) (-2462 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1749 (($ $) NIL)) (-2089 (($ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-2646 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1489 (((-1175) $) NIL)) (-1602 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-145) $) NIL (|has| (-574) (-860)))) (-2183 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1822 (($ $ (-145)) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2315 (((-654 (-145)) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1251 (-574))) NIL) (($ $ $) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2963 (($ (-654 (-145))) NIL)) (-4132 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (($ (-145)) NIL) (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2020 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-3927 (((-1175) $) 19) (((-1175) $ (-112)) 21) (((-1289) (-832) $) 22) (((-1289) (-832) $ (-112)) 23)) (-3042 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1175) (-1174)) (T -1175)) +NIL +(-1174) +((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)) (|has| |#1| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-2985 (((-1289) $ (-1175) (-1175)) NIL (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-1175) |#1|) NIL)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2171 (((-3 |#1| "failed") (-1175) $) NIL)) (-3250 (($) NIL T CONST)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-2424 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#1| "failed") (-1175) $) NIL)) (-3311 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-1175) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-1175)) NIL)) (-1871 (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-1175) $) NIL (|has| (-1175) (-860)))) (-2036 (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-1175) $) NIL (|has| (-1175) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)) (|has| |#1| (-1116))))) (-1771 (((-654 (-1175)) $) NIL)) (-2229 (((-112) (-1175) $) NIL)) (-2375 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-3285 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-1393 (((-654 (-1175)) $) NIL)) (-1506 (((-112) (-1175) $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)) (|has| |#1| (-1116))))) (-2925 ((|#1| $) NIL (|has| (-1175) (-860)))) (-2183 (((-3 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) "failed") (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL)) (-1822 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-1175)) NIL) ((|#1| $ (-1175) |#1|) NIL)) (-3162 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-623 (-872))) (|has| |#1| (-623 (-872)))))) (-4069 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)) (|has| |#1| (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)) (|has| |#1| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1176 |#1|) (-13 (-1210 (-1175) |#1|) (-10 -7 (-6 -4459))) (-1116)) (T -1176)) +NIL +(-13 (-1210 (-1175) |#1|) (-10 -7 (-6 -4459))) +((-1524 (((-1173 |#1|) (-1173 |#1|)) 83)) (-4322 (((-3 (-1173 |#1|) "failed") (-1173 |#1|)) 39)) (-2534 (((-1173 |#1|) (-417 (-574)) (-1173 |#1|)) 133 (|has| |#1| (-38 (-417 (-574)))))) (-2226 (((-1173 |#1|) |#1| (-1173 |#1|)) 139 (|has| |#1| (-372)))) (-4042 (((-1173 |#1|) (-1173 |#1|)) 97)) (-4047 (((-1173 (-574)) (-574)) 63)) (-2603 (((-1173 |#1|) (-1173 (-1173 |#1|))) 116 (|has| |#1| (-38 (-417 (-574)))))) (-2187 (((-1173 |#1|) (-574) (-574) (-1173 |#1|)) 102)) (-3806 (((-1173 |#1|) |#1| (-574)) 51)) (-4366 (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 66)) (-3416 (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 136 (|has| |#1| (-372)))) (-2475 (((-1173 |#1|) |#1| (-1 (-1173 |#1|))) 115 (|has| |#1| (-38 (-417 (-574)))))) (-2777 (((-1173 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1173 |#1|))) 137 (|has| |#1| (-372)))) (-4003 (((-1173 |#1|) (-1173 |#1|)) 96)) (-1456 (((-1173 |#1|) (-1173 |#1|)) 82)) (-3438 (((-1173 |#1|) (-574) (-574) (-1173 |#1|)) 103)) (-3342 (((-1173 |#1|) |#1| (-1173 |#1|)) 112 (|has| |#1| (-38 (-417 (-574)))))) (-3882 (((-1173 (-574)) (-574)) 62)) (-3087 (((-1173 |#1|) |#1|) 65)) (-3059 (((-1173 |#1|) (-1173 |#1|) (-574) (-574)) 99)) (-3115 (((-1173 |#1|) (-1 |#1| (-574)) (-1173 |#1|)) 72)) (-2853 (((-3 (-1173 |#1|) "failed") (-1173 |#1|) (-1173 |#1|)) 37)) (-2199 (((-1173 |#1|) (-1173 |#1|)) 98)) (-2661 (((-1173 |#1|) (-1173 |#1|) |#1|) 77)) (-3107 (((-1173 |#1|) (-1173 |#1|)) 68)) (-3907 (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 78)) (-2951 (((-1173 |#1|) |#1|) 73)) (-2979 (((-1173 |#1|) (-1173 (-1173 |#1|))) 88)) (-3103 (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 38)) (-3090 (((-1173 |#1|) (-1173 |#1|)) 21) (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 23)) (-3074 (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 17)) (* (((-1173 |#1|) (-1173 |#1|) |#1|) 29) (((-1173 |#1|) |#1| (-1173 |#1|)) 26) (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 27))) +(((-1177 |#1|) (-10 -7 (-15 -3074 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3090 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3090 ((-1173 |#1|) (-1173 |#1|))) (-15 * ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 * ((-1173 |#1|) |#1| (-1173 |#1|))) (-15 * ((-1173 |#1|) (-1173 |#1|) |#1|)) (-15 -2853 ((-3 (-1173 |#1|) "failed") (-1173 |#1|) (-1173 |#1|))) (-15 -3103 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -4322 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -3806 ((-1173 |#1|) |#1| (-574))) (-15 -3882 ((-1173 (-574)) (-574))) (-15 -4047 ((-1173 (-574)) (-574))) (-15 -3087 ((-1173 |#1|) |#1|)) (-15 -4366 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3107 ((-1173 |#1|) (-1173 |#1|))) (-15 -3115 ((-1173 |#1|) (-1 |#1| (-574)) (-1173 |#1|))) (-15 -2951 ((-1173 |#1|) |#1|)) (-15 -2661 ((-1173 |#1|) (-1173 |#1|) |#1|)) (-15 -3907 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -1456 ((-1173 |#1|) (-1173 |#1|))) (-15 -1524 ((-1173 |#1|) (-1173 |#1|))) (-15 -2979 ((-1173 |#1|) (-1173 (-1173 |#1|)))) (-15 -4003 ((-1173 |#1|) (-1173 |#1|))) (-15 -4042 ((-1173 |#1|) (-1173 |#1|))) (-15 -2199 ((-1173 |#1|) (-1173 |#1|))) (-15 -3059 ((-1173 |#1|) (-1173 |#1|) (-574) (-574))) (-15 -2187 ((-1173 |#1|) (-574) (-574) (-1173 |#1|))) (-15 -3438 ((-1173 |#1|) (-574) (-574) (-1173 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ((-1173 |#1|) |#1| (-1173 |#1|))) (-15 -2475 ((-1173 |#1|) |#1| (-1 (-1173 |#1|)))) (-15 -2603 ((-1173 |#1|) (-1173 (-1173 |#1|)))) (-15 -2534 ((-1173 |#1|) (-417 (-574)) (-1173 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -3416 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2777 ((-1173 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1173 |#1|)))) (-15 -2226 ((-1173 |#1|) |#1| (-1173 |#1|)))) |%noBranch|)) (-1065)) (T -1177)) +((-2226 (*1 *2 *3 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1173 *4))) (-4 *4 (-372)) (-4 *4 (-1065)) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4)))) (-3416 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2534 (*1 *2 *3 *2) (-12 (-5 *2 (-1173 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1065)) (-5 *3 (-417 (-574))) (-5 *1 (-1177 *4)))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1065)))) (-2475 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1173 *3))) (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)))) (-3342 (*1 *2 *3 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3438 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065)) (-5 *1 (-1177 *4)))) (-2187 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065)) (-5 *1 (-1177 *4)))) (-3059 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065)) (-5 *1 (-1177 *4)))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4)) (-4 *4 (-1065)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3907 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2661 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-1065)))) (-3115 (*1 *2 *3 *2) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1065)) (-5 *1 (-1177 *4)))) (-3107 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-4366 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3087 (*1 *2 *3) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-1065)))) (-4047 (*1 *2 *3) (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1177 *4)) (-4 *4 (-1065)) (-5 *3 (-574)))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1177 *4)) (-4 *4 (-1065)) (-5 *3 (-574)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-1065)))) (-4322 (*1 *2 *2) (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3103 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2853 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3090 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3090 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3074 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))) +(-10 -7 (-15 -3074 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3090 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3090 ((-1173 |#1|) (-1173 |#1|))) (-15 * ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 * ((-1173 |#1|) |#1| (-1173 |#1|))) (-15 * ((-1173 |#1|) (-1173 |#1|) |#1|)) (-15 -2853 ((-3 (-1173 |#1|) "failed") (-1173 |#1|) (-1173 |#1|))) (-15 -3103 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -4322 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -3806 ((-1173 |#1|) |#1| (-574))) (-15 -3882 ((-1173 (-574)) (-574))) (-15 -4047 ((-1173 (-574)) (-574))) (-15 -3087 ((-1173 |#1|) |#1|)) (-15 -4366 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3107 ((-1173 |#1|) (-1173 |#1|))) (-15 -3115 ((-1173 |#1|) (-1 |#1| (-574)) (-1173 |#1|))) (-15 -2951 ((-1173 |#1|) |#1|)) (-15 -2661 ((-1173 |#1|) (-1173 |#1|) |#1|)) (-15 -3907 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -1456 ((-1173 |#1|) (-1173 |#1|))) (-15 -1524 ((-1173 |#1|) (-1173 |#1|))) (-15 -2979 ((-1173 |#1|) (-1173 (-1173 |#1|)))) (-15 -4003 ((-1173 |#1|) (-1173 |#1|))) (-15 -4042 ((-1173 |#1|) (-1173 |#1|))) (-15 -2199 ((-1173 |#1|) (-1173 |#1|))) (-15 -3059 ((-1173 |#1|) (-1173 |#1|) (-574) (-574))) (-15 -2187 ((-1173 |#1|) (-574) (-574) (-1173 |#1|))) (-15 -3438 ((-1173 |#1|) (-574) (-574) (-1173 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ((-1173 |#1|) |#1| (-1173 |#1|))) (-15 -2475 ((-1173 |#1|) |#1| (-1 (-1173 |#1|)))) (-15 -2603 ((-1173 |#1|) (-1173 (-1173 |#1|)))) (-15 -2534 ((-1173 |#1|) (-417 (-574)) (-1173 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -3416 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2777 ((-1173 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1173 |#1|)))) (-15 -2226 ((-1173 |#1|) |#1| (-1173 |#1|)))) |%noBranch|)) +((-2379 (((-1173 |#1|) (-1173 |#1|)) 60)) (-2258 (((-1173 |#1|) (-1173 |#1|)) 42)) (-2358 (((-1173 |#1|) (-1173 |#1|)) 56)) (-2235 (((-1173 |#1|) (-1173 |#1|)) 38)) (-2404 (((-1173 |#1|) (-1173 |#1|)) 63)) (-2280 (((-1173 |#1|) (-1173 |#1|)) 45)) (-3113 (((-1173 |#1|) (-1173 |#1|)) 34)) (-1617 (((-1173 |#1|) (-1173 |#1|)) 29)) (-2417 (((-1173 |#1|) (-1173 |#1|)) 64)) (-2289 (((-1173 |#1|) (-1173 |#1|)) 46)) (-2390 (((-1173 |#1|) (-1173 |#1|)) 61)) (-2269 (((-1173 |#1|) (-1173 |#1|)) 43)) (-2368 (((-1173 |#1|) (-1173 |#1|)) 58)) (-2247 (((-1173 |#1|) (-1173 |#1|)) 40)) (-2456 (((-1173 |#1|) (-1173 |#1|)) 68)) (-2320 (((-1173 |#1|) (-1173 |#1|)) 50)) (-2429 (((-1173 |#1|) (-1173 |#1|)) 66)) (-2301 (((-1173 |#1|) (-1173 |#1|)) 48)) (-2480 (((-1173 |#1|) (-1173 |#1|)) 71)) (-2340 (((-1173 |#1|) (-1173 |#1|)) 53)) (-2536 (((-1173 |#1|) (-1173 |#1|)) 72)) (-2349 (((-1173 |#1|) (-1173 |#1|)) 54)) (-2468 (((-1173 |#1|) (-1173 |#1|)) 70)) (-2330 (((-1173 |#1|) (-1173 |#1|)) 52)) (-2443 (((-1173 |#1|) (-1173 |#1|)) 69)) (-2312 (((-1173 |#1|) (-1173 |#1|)) 51)) (** (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 36))) +(((-1178 |#1|) (-10 -7 (-15 -1617 ((-1173 |#1|) (-1173 |#1|))) (-15 -3113 ((-1173 |#1|) (-1173 |#1|))) (-15 ** ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2235 ((-1173 |#1|) (-1173 |#1|))) (-15 -2247 ((-1173 |#1|) (-1173 |#1|))) (-15 -2258 ((-1173 |#1|) (-1173 |#1|))) (-15 -2269 ((-1173 |#1|) (-1173 |#1|))) (-15 -2280 ((-1173 |#1|) (-1173 |#1|))) (-15 -2289 ((-1173 |#1|) (-1173 |#1|))) (-15 -2301 ((-1173 |#1|) (-1173 |#1|))) (-15 -2312 ((-1173 |#1|) (-1173 |#1|))) (-15 -2320 ((-1173 |#1|) (-1173 |#1|))) (-15 -2330 ((-1173 |#1|) (-1173 |#1|))) (-15 -2340 ((-1173 |#1|) (-1173 |#1|))) (-15 -2349 ((-1173 |#1|) (-1173 |#1|))) (-15 -2358 ((-1173 |#1|) (-1173 |#1|))) (-15 -2368 ((-1173 |#1|) (-1173 |#1|))) (-15 -2379 ((-1173 |#1|) (-1173 |#1|))) (-15 -2390 ((-1173 |#1|) (-1173 |#1|))) (-15 -2404 ((-1173 |#1|) (-1173 |#1|))) (-15 -2417 ((-1173 |#1|) (-1173 |#1|))) (-15 -2429 ((-1173 |#1|) (-1173 |#1|))) (-15 -2443 ((-1173 |#1|) (-1173 |#1|))) (-15 -2456 ((-1173 |#1|) (-1173 |#1|))) (-15 -2468 ((-1173 |#1|) (-1173 |#1|))) (-15 -2480 ((-1173 |#1|) (-1173 |#1|))) (-15 -2536 ((-1173 |#1|) (-1173 |#1|)))) (-38 (-417 (-574)))) (T -1178)) +((-2536 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2480 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2443 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2417 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2368 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2349 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2340 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2280 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2258 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3))))) +(-10 -7 (-15 -1617 ((-1173 |#1|) (-1173 |#1|))) (-15 -3113 ((-1173 |#1|) (-1173 |#1|))) (-15 ** ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2235 ((-1173 |#1|) (-1173 |#1|))) (-15 -2247 ((-1173 |#1|) (-1173 |#1|))) (-15 -2258 ((-1173 |#1|) (-1173 |#1|))) (-15 -2269 ((-1173 |#1|) (-1173 |#1|))) (-15 -2280 ((-1173 |#1|) (-1173 |#1|))) (-15 -2289 ((-1173 |#1|) (-1173 |#1|))) (-15 -2301 ((-1173 |#1|) (-1173 |#1|))) (-15 -2312 ((-1173 |#1|) (-1173 |#1|))) (-15 -2320 ((-1173 |#1|) (-1173 |#1|))) (-15 -2330 ((-1173 |#1|) (-1173 |#1|))) (-15 -2340 ((-1173 |#1|) (-1173 |#1|))) (-15 -2349 ((-1173 |#1|) (-1173 |#1|))) (-15 -2358 ((-1173 |#1|) (-1173 |#1|))) (-15 -2368 ((-1173 |#1|) (-1173 |#1|))) (-15 -2379 ((-1173 |#1|) (-1173 |#1|))) (-15 -2390 ((-1173 |#1|) (-1173 |#1|))) (-15 -2404 ((-1173 |#1|) (-1173 |#1|))) (-15 -2417 ((-1173 |#1|) (-1173 |#1|))) (-15 -2429 ((-1173 |#1|) (-1173 |#1|))) (-15 -2443 ((-1173 |#1|) (-1173 |#1|))) (-15 -2456 ((-1173 |#1|) (-1173 |#1|))) (-15 -2468 ((-1173 |#1|) (-1173 |#1|))) (-15 -2480 ((-1173 |#1|) (-1173 |#1|))) (-15 -2536 ((-1173 |#1|) (-1173 |#1|)))) +((-2379 (((-1173 |#1|) (-1173 |#1|)) 102)) (-2258 (((-1173 |#1|) (-1173 |#1|)) 61)) (-2413 (((-2 (|:| -2358 (-1173 |#1|)) (|:| -2368 (-1173 |#1|))) (-1173 |#1|)) 98)) (-2358 (((-1173 |#1|) (-1173 |#1|)) 99)) (-2291 (((-2 (|:| -2235 (-1173 |#1|)) (|:| -2247 (-1173 |#1|))) (-1173 |#1|)) 54)) (-2235 (((-1173 |#1|) (-1173 |#1|)) 55)) (-2404 (((-1173 |#1|) (-1173 |#1|)) 104)) (-2280 (((-1173 |#1|) (-1173 |#1|)) 68)) (-3113 (((-1173 |#1|) (-1173 |#1|)) 40)) (-1617 (((-1173 |#1|) (-1173 |#1|)) 37)) (-2417 (((-1173 |#1|) (-1173 |#1|)) 105)) (-2289 (((-1173 |#1|) (-1173 |#1|)) 69)) (-2390 (((-1173 |#1|) (-1173 |#1|)) 103)) (-2269 (((-1173 |#1|) (-1173 |#1|)) 64)) (-2368 (((-1173 |#1|) (-1173 |#1|)) 100)) (-2247 (((-1173 |#1|) (-1173 |#1|)) 56)) (-2456 (((-1173 |#1|) (-1173 |#1|)) 113)) (-2320 (((-1173 |#1|) (-1173 |#1|)) 88)) (-2429 (((-1173 |#1|) (-1173 |#1|)) 107)) (-2301 (((-1173 |#1|) (-1173 |#1|)) 84)) (-2480 (((-1173 |#1|) (-1173 |#1|)) 117)) (-2340 (((-1173 |#1|) (-1173 |#1|)) 92)) (-2536 (((-1173 |#1|) (-1173 |#1|)) 119)) (-2349 (((-1173 |#1|) (-1173 |#1|)) 94)) (-2468 (((-1173 |#1|) (-1173 |#1|)) 115)) (-2330 (((-1173 |#1|) (-1173 |#1|)) 90)) (-2443 (((-1173 |#1|) (-1173 |#1|)) 109)) (-2312 (((-1173 |#1|) (-1173 |#1|)) 86)) (** (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 41))) +(((-1179 |#1|) (-10 -7 (-15 -1617 ((-1173 |#1|) (-1173 |#1|))) (-15 -3113 ((-1173 |#1|) (-1173 |#1|))) (-15 ** ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2291 ((-2 (|:| -2235 (-1173 |#1|)) (|:| -2247 (-1173 |#1|))) (-1173 |#1|))) (-15 -2235 ((-1173 |#1|) (-1173 |#1|))) (-15 -2247 ((-1173 |#1|) (-1173 |#1|))) (-15 -2258 ((-1173 |#1|) (-1173 |#1|))) (-15 -2269 ((-1173 |#1|) (-1173 |#1|))) (-15 -2280 ((-1173 |#1|) (-1173 |#1|))) (-15 -2289 ((-1173 |#1|) (-1173 |#1|))) (-15 -2301 ((-1173 |#1|) (-1173 |#1|))) (-15 -2312 ((-1173 |#1|) (-1173 |#1|))) (-15 -2320 ((-1173 |#1|) (-1173 |#1|))) (-15 -2330 ((-1173 |#1|) (-1173 |#1|))) (-15 -2340 ((-1173 |#1|) (-1173 |#1|))) (-15 -2349 ((-1173 |#1|) (-1173 |#1|))) (-15 -2413 ((-2 (|:| -2358 (-1173 |#1|)) (|:| -2368 (-1173 |#1|))) (-1173 |#1|))) (-15 -2358 ((-1173 |#1|) (-1173 |#1|))) (-15 -2368 ((-1173 |#1|) (-1173 |#1|))) (-15 -2379 ((-1173 |#1|) (-1173 |#1|))) (-15 -2390 ((-1173 |#1|) (-1173 |#1|))) (-15 -2404 ((-1173 |#1|) (-1173 |#1|))) (-15 -2417 ((-1173 |#1|) (-1173 |#1|))) (-15 -2429 ((-1173 |#1|) (-1173 |#1|))) (-15 -2443 ((-1173 |#1|) (-1173 |#1|))) (-15 -2456 ((-1173 |#1|) (-1173 |#1|))) (-15 -2468 ((-1173 |#1|) (-1173 |#1|))) (-15 -2480 ((-1173 |#1|) (-1173 |#1|))) (-15 -2536 ((-1173 |#1|) (-1173 |#1|)))) (-38 (-417 (-574)))) (T -1179)) +((-2536 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2480 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2443 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2417 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2368 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2413 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2358 (-1173 *4)) (|:| -2368 (-1173 *4)))) (-5 *1 (-1179 *4)) (-5 *3 (-1173 *4)))) (-2349 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2340 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2280 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2258 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2291 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2235 (-1173 *4)) (|:| -2247 (-1173 *4)))) (-5 *1 (-1179 *4)) (-5 *3 (-1173 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3))))) +(-10 -7 (-15 -1617 ((-1173 |#1|) (-1173 |#1|))) (-15 -3113 ((-1173 |#1|) (-1173 |#1|))) (-15 ** ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2291 ((-2 (|:| -2235 (-1173 |#1|)) (|:| -2247 (-1173 |#1|))) (-1173 |#1|))) (-15 -2235 ((-1173 |#1|) (-1173 |#1|))) (-15 -2247 ((-1173 |#1|) (-1173 |#1|))) (-15 -2258 ((-1173 |#1|) (-1173 |#1|))) (-15 -2269 ((-1173 |#1|) (-1173 |#1|))) (-15 -2280 ((-1173 |#1|) (-1173 |#1|))) (-15 -2289 ((-1173 |#1|) (-1173 |#1|))) (-15 -2301 ((-1173 |#1|) (-1173 |#1|))) (-15 -2312 ((-1173 |#1|) (-1173 |#1|))) (-15 -2320 ((-1173 |#1|) (-1173 |#1|))) (-15 -2330 ((-1173 |#1|) (-1173 |#1|))) (-15 -2340 ((-1173 |#1|) (-1173 |#1|))) (-15 -2349 ((-1173 |#1|) (-1173 |#1|))) (-15 -2413 ((-2 (|:| -2358 (-1173 |#1|)) (|:| -2368 (-1173 |#1|))) (-1173 |#1|))) (-15 -2358 ((-1173 |#1|) (-1173 |#1|))) (-15 -2368 ((-1173 |#1|) (-1173 |#1|))) (-15 -2379 ((-1173 |#1|) (-1173 |#1|))) (-15 -2390 ((-1173 |#1|) (-1173 |#1|))) (-15 -2404 ((-1173 |#1|) (-1173 |#1|))) (-15 -2417 ((-1173 |#1|) (-1173 |#1|))) (-15 -2429 ((-1173 |#1|) (-1173 |#1|))) (-15 -2443 ((-1173 |#1|) (-1173 |#1|))) (-15 -2456 ((-1173 |#1|) (-1173 |#1|))) (-15 -2468 ((-1173 |#1|) (-1173 |#1|))) (-15 -2480 ((-1173 |#1|) (-1173 |#1|))) (-15 -2536 ((-1173 |#1|) (-1173 |#1|)))) +((-1565 (((-972 |#2|) |#2| |#2|) 50)) (-3621 ((|#2| |#2| |#1|) 19 (|has| |#1| (-315))))) +(((-1180 |#1| |#2|) (-10 -7 (-15 -1565 ((-972 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -3621 (|#2| |#2| |#1|)) |%noBranch|)) (-566) (-1260 |#1|)) (T -1180)) +((-3621 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1180 *3 *2)) (-4 *2 (-1260 *3)))) (-1565 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-972 *3)) (-5 *1 (-1180 *4 *3)) (-4 *3 (-1260 *4))))) +(-10 -7 (-15 -1565 ((-972 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -3621 (|#2| |#2| |#1|)) |%noBranch|)) +((-2864 (((-112) $ $) NIL)) (-1677 (($ $ (-654 (-781))) 79)) (-1757 (($) 33)) (-2593 (($ $) 51)) (-2017 (((-654 $) $) 60)) (-4341 (((-112) $) 19)) (-1503 (((-654 (-957 |#2|)) $) 86)) (-3686 (($ $) 80)) (-1384 (((-781) $) 47)) (-3764 (($) 32)) (-2193 (($ $ (-654 (-781)) (-957 |#2|)) 72) (($ $ (-654 (-781)) (-781)) 73) (($ $ (-781) (-957 |#2|)) 75)) (-3404 (($ $ $) 57) (($ (-654 $)) 59)) (-4313 (((-781) $) 87)) (-1580 (((-112) $) 15)) (-1489 (((-1175) $) NIL)) (-2918 (((-112) $) 22)) (-3940 (((-1136) $) NIL)) (-1601 (((-173) $) 85)) (-4320 (((-957 |#2|) $) 81)) (-3796 (((-781) $) 82)) (-1462 (((-112) $) 84)) (-2753 (($ $ (-654 (-781)) (-173)) 78)) (-1484 (($ $) 52)) (-2951 (((-872) $) 99)) (-2045 (($ $ (-654 (-781)) (-112)) 77)) (-4163 (((-654 $) $) 11)) (-4286 (($ $ (-781)) 46)) (-4206 (($ $) 43)) (-4069 (((-112) $ $) NIL)) (-1549 (($ $ $ (-957 |#2|) (-781)) 68)) (-1962 (($ $ (-957 |#2|)) 67)) (-3353 (($ $ (-654 (-781)) (-957 |#2|)) 66) (($ $ (-654 (-781)) (-781)) 70) (((-781) $ (-957 |#2|)) 71)) (-2986 (((-112) $ $) 92))) +(((-1181 |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -1580 ((-112) $)) (-15 -4341 ((-112) $)) (-15 -2918 ((-112) $)) (-15 -3764 ($)) (-15 -1757 ($)) (-15 -4206 ($ $)) (-15 -4286 ($ $ (-781))) (-15 -4163 ((-654 $) $)) (-15 -1384 ((-781) $)) (-15 -2593 ($ $)) (-15 -1484 ($ $)) (-15 -3404 ($ $ $)) (-15 -3404 ($ (-654 $))) (-15 -2017 ((-654 $) $)) (-15 -3353 ($ $ (-654 (-781)) (-957 |#2|))) (-15 -1962 ($ $ (-957 |#2|))) (-15 -1549 ($ $ $ (-957 |#2|) (-781))) (-15 -2193 ($ $ (-654 (-781)) (-957 |#2|))) (-15 -3353 ($ $ (-654 (-781)) (-781))) (-15 -2193 ($ $ (-654 (-781)) (-781))) (-15 -3353 ((-781) $ (-957 |#2|))) (-15 -2193 ($ $ (-781) (-957 |#2|))) (-15 -2045 ($ $ (-654 (-781)) (-112))) (-15 -2753 ($ $ (-654 (-781)) (-173))) (-15 -1677 ($ $ (-654 (-781)))) (-15 -4320 ((-957 |#2|) $)) (-15 -3796 ((-781) $)) (-15 -1462 ((-112) $)) (-15 -1601 ((-173) $)) (-15 -4313 ((-781) $)) (-15 -3686 ($ $)) (-15 -1503 ((-654 (-957 |#2|)) $)))) (-935) (-1065)) (T -1181)) +((-1580 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3764 (*1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-1757 (*1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-4206 (*1 *1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-4286 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-2593 (*1 *1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-1484 (*1 *1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-3404 (*1 *1 *1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-3404 (*1 *1 *2) (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3353 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-957 *5)) (-4 *5 (-1065)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) (-1962 (*1 *1 *1 *2) (-12 (-5 *2 (-957 *4)) (-4 *4 (-1065)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)))) (-1549 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-957 *5)) (-5 *3 (-781)) (-4 *5 (-1065)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) (-2193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-957 *5)) (-4 *5 (-1065)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) (-3353 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)) (-4 *5 (-1065)))) (-2193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)) (-4 *5 (-1065)))) (-3353 (*1 *2 *1 *3) (-12 (-5 *3 (-957 *5)) (-4 *5 (-1065)) (-5 *2 (-781)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) (-2193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-957 *5)) (-4 *5 (-1065)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) (-2045 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)) (-4 *5 (-1065)))) (-2753 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)) (-4 *5 (-1065)))) (-1677 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-957 *4)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3686 (*1 *1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-654 (-957 *4))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065))))) +(-13 (-1116) (-10 -8 (-15 -1580 ((-112) $)) (-15 -4341 ((-112) $)) (-15 -2918 ((-112) $)) (-15 -3764 ($)) (-15 -1757 ($)) (-15 -4206 ($ $)) (-15 -4286 ($ $ (-781))) (-15 -4163 ((-654 $) $)) (-15 -1384 ((-781) $)) (-15 -2593 ($ $)) (-15 -1484 ($ $)) (-15 -3404 ($ $ $)) (-15 -3404 ($ (-654 $))) (-15 -2017 ((-654 $) $)) (-15 -3353 ($ $ (-654 (-781)) (-957 |#2|))) (-15 -1962 ($ $ (-957 |#2|))) (-15 -1549 ($ $ $ (-957 |#2|) (-781))) (-15 -2193 ($ $ (-654 (-781)) (-957 |#2|))) (-15 -3353 ($ $ (-654 (-781)) (-781))) (-15 -2193 ($ $ (-654 (-781)) (-781))) (-15 -3353 ((-781) $ (-957 |#2|))) (-15 -2193 ($ $ (-781) (-957 |#2|))) (-15 -2045 ($ $ (-654 (-781)) (-112))) (-15 -2753 ($ $ (-654 (-781)) (-173))) (-15 -1677 ($ $ (-654 (-781)))) (-15 -4320 ((-957 |#2|) $)) (-15 -3796 ((-781) $)) (-15 -1462 ((-112) $)) (-15 -1601 ((-173) $)) (-15 -4313 ((-781) $)) (-15 -3686 ($ $)) (-15 -1503 ((-654 (-957 |#2|)) $)))) +((-2864 (((-112) $ $) NIL)) (-1814 ((|#2| $) 11)) (-1804 ((|#1| $) 10)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2963 (($ |#1| |#2|) 9)) (-2951 (((-872) $) 16)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1182 |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -2963 ($ |#1| |#2|)) (-15 -1804 (|#1| $)) (-15 -1814 (|#2| $)))) (-1116) (-1116)) (T -1182)) +((-2963 (*1 *1 *2 *3) (-12 (-5 *1 (-1182 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-1804 (*1 *2 *1) (-12 (-4 *2 (-1116)) (-5 *1 (-1182 *2 *3)) (-4 *3 (-1116)))) (-1814 (*1 *2 *1) (-12 (-4 *2 (-1116)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1116))))) +(-13 (-1116) (-10 -8 (-15 -2963 ($ |#1| |#2|)) (-15 -1804 (|#1| $)) (-15 -1814 (|#2| $)))) +((-2864 (((-112) $ $) NIL)) (-2530 (((-1151) $) 9)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1183) (-13 (-1099) (-10 -8 (-15 -2530 ((-1151) $))))) (T -1183)) +((-2530 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1183))))) +(-13 (-1099) (-10 -8 (-15 -2530 ((-1151) $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4146 (((-1191 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 11)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2884 (($ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1981 (((-112) $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-3332 (($ $ (-574)) NIL) (($ $ (-574) (-574)) 75)) (-3108 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-3859 (((-1191 |#1| |#2| |#3|) $) 42)) (-3422 (((-3 (-1191 |#1| |#2| |#3|) "failed") $) 32)) (-4402 (((-1191 |#1| |#2| |#3|) $) 33)) (-2379 (($ $) 116 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-2991 (($ $) NIL (|has| |#1| (-372)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) 112 (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-2472 (((-574) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-1191 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1193) "failed") $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))))) (-2214 (((-1191 |#1| |#2| |#3|) $) 140) (((-1193) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))))) (-3663 (($ $) 37) (($ (-574) $) 38)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-1831 (((-699 (-1191 |#1| |#2| |#3|)) (-1284 $)) NIL (|has| |#1| (-372))) (((-699 (-1191 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3082 (-699 (-1191 |#1| |#2| |#3|))) (|:| |vec| (-1284 (-1191 |#1| |#2| |#3|)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-4322 (((-3 $ "failed") $) 54)) (-2025 (((-417 (-966 |#1|)) $ (-574)) 74 (|has| |#1| (-566))) (((-417 (-966 |#1|)) $ (-574) (-574)) 76 (|has| |#1| (-566)))) (-2835 (($) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3978 (((-112) $) NIL (|has| |#1| (-372)))) (-3408 (((-112) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-4189 (((-112) $) 28)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-3547 (((-574) $) NIL) (((-574) $ (-574)) 26)) (-4226 (((-112) $) NIL)) (-2967 (($ $) NIL (|has| |#1| (-372)))) (-2971 (((-1191 |#1| |#2| |#3|) $) 44 (|has| |#1| (-372)))) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2414 (((-3 $ "failed") $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1168)) (|has| |#1| (-372))))) (-3182 (((-112) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3966 (($ $ (-935)) NIL)) (-4152 (($ (-1 |#1| (-574)) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-574)) 19) (($ $ (-1098) (-574)) NIL) (($ $ (-654 (-1098)) (-654 (-574))) NIL)) (-3634 (($ $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-4380 (($ $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3113 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4414 (($ (-574) (-1191 |#1| |#2| |#3|)) 36)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3342 (($ $) 79 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 80 (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1168)) (|has| |#1| (-372))) CONST)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2162 (($ $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-2260 (((-1191 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-4202 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2433 (($ $ (-574)) 158)) (-2853 (((-3 $ "failed") $ $) 55 (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1193) (-1191 |#1| |#2| |#3|)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-524 (-1193) (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1193)) (-654 (-1191 |#1| |#2| |#3|))) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-524 (-1193) (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1191 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1191 |#1| |#2| |#3|))) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1191 |#1| |#2| |#3|)) (-654 (-1191 |#1| |#2| |#3|))) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-574)) NIL) (($ $ $) 61 (|has| (-574) (-1128))) (($ $ (-1191 |#1| |#2| |#3|)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-294 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1280 |#2|)) 57) (($ $) 56 (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-2808 (($ $) NIL (|has| |#1| (-372)))) (-2981 (((-1191 |#1| |#2| |#3|) $) 46 (|has| |#1| (-372)))) (-3580 (((-574) $) 43)) (-2417 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 118 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 114 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-1844 (((-546) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1038)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1038)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-2916 (($ $) NIL)) (-2951 (((-872) $) 162) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1191 |#1| |#2| |#3|)) 30) (($ (-1280 |#2|)) 25) (($ (-1193)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (($ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-2706 ((|#1| $ (-574)) 77)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3333 ((|#1| $) 12)) (-2544 (((-1191 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2429 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 108 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 110 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 106 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-3936 (($ $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2141 (($) 21 T CONST)) (-2153 (($) 16 T CONST)) (-3584 (($ $ (-1 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-3042 (((-112) $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3020 (((-112) $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3009 (((-112) $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 49 (|has| |#1| (-372))) (($ (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|)) 50 (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 23)) (** (($ $ (-935)) NIL) (($ $ (-781)) 60) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) 83 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 137 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1191 |#1| |#2| |#3|)) 48 (|has| |#1| (-372))) (($ (-1191 |#1| |#2| |#3|) $) 47 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1184 |#1| |#2| |#3|) (-13 (-1246 |#1| (-1191 |#1| |#2| |#3|)) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1184)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))) +(-13 (-1246 |#1| (-1191 |#1| |#2| |#3|)) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) +((-3535 ((|#2| |#2| (-1108 |#2|)) 26) ((|#2| |#2| (-1193)) 28))) +(((-1185 |#1| |#2|) (-10 -7 (-15 -3535 (|#2| |#2| (-1193))) (-15 -3535 (|#2| |#2| (-1108 |#2|)))) (-13 (-566) (-1054 (-574)) (-649 (-574))) (-13 (-440 |#1|) (-161) (-27) (-1219))) (T -1185)) +((-3535 (*1 *2 *2 *3) (-12 (-5 *3 (-1108 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1219))) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1185 *4 *2)))) (-3535 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1185 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1219)))))) +(-10 -7 (-15 -3535 (|#2| |#2| (-1193))) (-15 -3535 (|#2| |#2| (-1108 |#2|)))) +((-3535 (((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1108 (-417 (-966 |#1|)))) 31) (((-417 (-966 |#1|)) (-966 |#1|) (-1108 (-966 |#1|))) 44) (((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1193)) 33) (((-417 (-966 |#1|)) (-966 |#1|) (-1193)) 36))) +(((-1186 |#1|) (-10 -7 (-15 -3535 ((-417 (-966 |#1|)) (-966 |#1|) (-1193))) (-15 -3535 ((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1193))) (-15 -3535 ((-417 (-966 |#1|)) (-966 |#1|) (-1108 (-966 |#1|)))) (-15 -3535 ((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1108 (-417 (-966 |#1|)))))) (-13 (-566) (-1054 (-574)))) (T -1186)) +((-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1108 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5))) (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-3 *3 (-324 *5))) (-5 *1 (-1186 *5)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1108 (-966 *5))) (-5 *3 (-966 *5)) (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-417 *3)) (-5 *1 (-1186 *5)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-3 (-417 (-966 *5)) (-324 *5))) (-5 *1 (-1186 *5)) (-5 *3 (-417 (-966 *5))))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-417 (-966 *5))) (-5 *1 (-1186 *5)) (-5 *3 (-966 *5))))) +(-10 -7 (-15 -3535 ((-417 (-966 |#1|)) (-966 |#1|) (-1193))) (-15 -3535 ((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1193))) (-15 -3535 ((-417 (-966 |#1|)) (-966 |#1|) (-1108 (-966 |#1|)))) (-15 -3535 ((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1108 (-417 (-966 |#1|)))))) +((-1785 (((-1189 |#2|) (-1 |#2| |#1|) (-1189 |#1|)) 13))) +(((-1187 |#1| |#2|) (-10 -7 (-15 -1785 ((-1189 |#2|) (-1 |#2| |#1|) (-1189 |#1|)))) (-1065) (-1065)) (T -1187)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1189 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-5 *2 (-1189 *6)) (-5 *1 (-1187 *5 *6))))) +(-10 -7 (-15 -1785 ((-1189 |#2|) (-1 |#2| |#1|) (-1189 |#1|)))) +((-1610 (((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|))) 51)) (-4202 (((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|))) 52))) +(((-1188 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 ((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|)))) (-15 -1610 ((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|))))) (-803) (-860) (-462) (-963 |#3| |#1| |#2|)) (T -1188)) +((-1610 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 (-417 *7)))) (-5 *1 (-1188 *4 *5 *6 *7)) (-5 *3 (-1189 (-417 *7))))) (-4202 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 (-417 *7)))) (-5 *1 (-1188 *4 *5 *6 *7)) (-5 *3 (-1189 (-417 *7)))))) +(-10 -7 (-15 -4202 ((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|)))) (-15 -1610 ((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|))))) +((-2864 (((-112) $ $) 171)) (-1431 (((-112) $) 43)) (-3613 (((-1284 |#1|) $ (-781)) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-4298 (($ (-1189 |#1|)) NIL)) (-4173 (((-1189 $) $ (-1098)) 82) (((-1189 |#1|) $) 71)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) 164 (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 (-1098))) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3022 (($ $ $) 158 (|has| |#1| (-566)))) (-2488 (((-428 (-1189 $)) (-1189 $)) 95 (|has| |#1| (-923)))) (-2991 (($ $) NIL (|has| |#1| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 115 (|has| |#1| (-923)))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1751 (($ $ (-781)) 61)) (-3805 (($ $ (-781)) 63)) (-2017 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-1098) "failed") $) NIL)) (-2214 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-1098) $) NIL)) (-3319 (($ $ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) 80)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4347 (($ $ $) 131)) (-3778 (($ $ $) NIL (|has| |#1| (-566)))) (-2861 (((-2 (|:| -1866 |#1|) (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-566)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3621 (($ $) 165 (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#1| (-923)))) (-1849 (($ $ |#1| (-781) $) 69)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1098) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1098) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-1678 (((-872) $ (-872)) 148)) (-3547 (((-781) $ $) NIL (|has| |#1| (-566)))) (-4226 (((-112) $) 48)) (-3023 (((-781) $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| |#1| (-1168)))) (-4339 (($ (-1189 |#1|) (-1098)) 73) (($ (-1189 $) (-1098)) 89)) (-3966 (($ $ (-781)) 51)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) 87) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-1098)) NIL) (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 153)) (-3192 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-4303 (($ (-1 (-781) (-781)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2077 (((-1189 |#1|) $) NIL)) (-2284 (((-3 (-1098) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) 76)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1489 (((-1175) $) NIL)) (-3821 (((-2 (|:| -3901 $) (|:| -1880 $)) $ (-781)) 60)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| (-1098)) (|:| -3139 (-781))) "failed") $) NIL)) (-3342 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#1| (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) 50)) (-1355 ((|#1| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 103 (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 167 (|has| |#1| (-462)))) (-2997 (($ $ (-781) |#1| $) 123)) (-3651 (((-428 (-1189 $)) (-1189 $)) 101 (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) 100 (|has| |#1| (-923)))) (-4202 (((-428 $) $) 108 (|has| |#1| (-923)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1098) |#1|) NIL) (($ $ (-654 (-1098)) (-654 |#1|)) NIL) (($ $ (-1098) $) NIL) (($ $ (-654 (-1098)) (-654 $)) NIL)) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-3224 (((-3 $ "failed") $ (-781)) 54)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 172 (|has| |#1| (-372)))) (-2394 (($ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3580 (((-781) $) 78) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1098) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-2372 ((|#1| $) 162 (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-4374 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2951 (((-872) $) 149) (($ (-574)) NIL) (($ |#1|) 77) (($ (-1098)) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-781)) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) 41 (|has| |#1| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 17 T CONST)) (-2153 (($) 19 T CONST)) (-3584 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) 120)) (-3103 (($ $ |#1|) 173 (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 90)) (** (($ $ (-935)) 14) (($ $ (-781)) 12)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1189 |#1|) (-13 (-1260 |#1|) (-10 -8 (-15 -1678 ((-872) $ (-872))) (-15 -2997 ($ $ (-781) |#1| $)))) (-1065)) (T -1189)) +((-1678 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1189 *3)) (-4 *3 (-1065)))) (-2997 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1189 *3)) (-4 *3 (-1065))))) +(-13 (-1260 |#1|) (-10 -8 (-15 -1678 ((-872) $ (-872))) (-15 -2997 ($ $ (-781) |#1| $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 11)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-3332 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-3108 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL (|has| |#1| (-372)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-1184 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1191 |#1| |#2| |#3|) "failed") $) 36)) (-2214 (((-1184 |#1| |#2| |#3|) $) NIL) (((-1191 |#1| |#2| |#3|) $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3128 (((-417 (-574)) $) 59)) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4426 (($ (-417 (-574)) (-1184 |#1| |#2| |#3|)) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3978 (((-112) $) NIL (|has| |#1| (-372)))) (-4189 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-4226 (((-112) $) NIL)) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3966 (($ $ (-935)) NIL) (($ $ (-417 (-574))) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-417 (-574))) 20) (($ $ (-1098) (-417 (-574))) NIL) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1881 (((-1184 |#1| |#2| |#3|) $) 41)) (-2179 (((-3 (-1184 |#1| |#2| |#3|) "failed") $) NIL)) (-4414 (((-1184 |#1| |#2| |#3|) $) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3342 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2433 (($ $ (-417 (-574))) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1128)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1280 |#2|)) 38)) (-3580 (((-417 (-574)) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) NIL)) (-2951 (((-872) $) 62) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1184 |#1| |#2| |#3|)) 30) (($ (-1191 |#1| |#2| |#3|)) 31) (($ (-1280 |#2|)) 26) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2706 ((|#1| $ (-417 (-574))) NIL)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-3333 ((|#1| $) 12)) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 22 T CONST)) (-2153 (($) 16 T CONST)) (-3584 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 24)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1190 |#1| |#2| |#3|) (-13 (-1267 |#1| (-1184 |#1| |#2| |#3|)) (-1054 (-1191 |#1| |#2| |#3|)) (-626 (-1280 |#2|)) (-10 -8 (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1190)) +((-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))) +(-13 (-1267 |#1| (-1184 |#1| |#2| |#3|)) (-1054 (-1191 |#1| |#2| |#3|)) (-626 (-1280 |#2|)) (-10 -8 (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 129)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 119)) (-2276 (((-1257 |#2| |#1|) $ (-781)) 69)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-3332 (($ $ (-781)) 85) (($ $ (-781) (-781)) 82)) (-3108 (((-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 105)) (-2379 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 118) (($ (-1173 |#1|)) 113)) (-2404 (($ $) 177 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) 25)) (-3012 (($ $) 28)) (-4027 (((-966 |#1|) $ (-781)) 81) (((-966 |#1|) $ (-781) (-781)) 83)) (-4189 (((-112) $) 124)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-781) $) 126) (((-781) $ (-781)) 128)) (-4226 (((-112) $) NIL)) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3966 (($ $ (-935)) NIL)) (-4152 (($ (-1 |#1| (-574)) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) 13) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3342 (($ $) 133 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-2433 (($ $ (-781)) 15)) (-2853 (((-3 $ "failed") $ $) 26 (|has| |#1| (-566)))) (-1617 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2207 ((|#1| $ (-781)) 122) (($ $ $) 132 (|has| (-781) (-1128)))) (-3879 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1280 |#2|)) 31)) (-3580 (((-781) $) NIL)) (-2417 (($ $) 179 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) NIL)) (-2951 (((-872) $) 206) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1257 |#2| |#1|)) 55) (($ (-1280 |#2|)) 36)) (-1634 (((-1173 |#1|) $) 101)) (-2706 ((|#1| $ (-781)) 121)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-3333 ((|#1| $) 58)) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 165 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-781)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 167 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 163 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 159 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 17 T CONST)) (-2153 (($) 20 T CONST)) (-3584 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) 198)) (-3074 (($ $ $) 35)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 203 (|has| |#1| (-372))) (($ $ $) 138 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 141 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1191 |#1| |#2| |#3|) (-13 (-1275 |#1|) (-10 -8 (-15 -2951 ($ (-1257 |#2| |#1|))) (-15 -2276 ((-1257 |#2| |#1|) $ (-781))) (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1191)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3) (-5 *1 (-1191 *3 *4 *5)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1191 *4 *5 *6)) (-4 *4 (-1065)) (-14 *5 (-1193)) (-14 *6 *4))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))) +(-13 (-1275 |#1|) (-10 -8 (-15 -2951 ($ (-1257 |#2| |#1|))) (-15 -2276 ((-1257 |#2| |#1|) $ (-781))) (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) +((-2951 (((-872) $) 33) (($ (-1193)) 35)) (-2833 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 46)) (-2820 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 39) (($ $) 40)) (-2535 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 41)) (-2522 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 43)) (-2511 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 42)) (-2499 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 44)) (-2085 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 45))) +(((-1192) (-13 (-623 (-872)) (-10 -8 (-15 -2951 ($ (-1193))) (-15 -2535 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2511 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2522 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2499 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2833 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2085 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2820 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2820 ($ $))))) (T -1192)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1192)))) (-2535 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2511 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2522 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2499 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2833 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2085 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2820 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2820 (*1 *1 *1) (-5 *1 (-1192)))) +(-13 (-623 (-872)) (-10 -8 (-15 -2951 ($ (-1193))) (-15 -2535 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2511 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2522 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2499 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2833 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2085 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2820 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2820 ($ $)))) +((-2864 (((-112) $ $) NIL)) (-3876 (($ $ (-654 (-872))) 62)) (-3679 (($ $ (-654 (-872))) 60)) (-3232 (((-1175) $) 101)) (-4122 (((-2 (|:| -2357 (-654 (-872))) (|:| -1968 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3677 (-654 (-872))) (|:| |args| (-654 (-872)))) $) 108)) (-1502 (((-112) $) 23)) (-3840 (($ $ (-654 (-654 (-872)))) 59) (($ $ (-2 (|:| -2357 (-654 (-872))) (|:| -1968 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3677 (-654 (-872))) (|:| |args| (-654 (-872))))) 99)) (-3250 (($) 163 T CONST)) (-3886 (((-1289)) 135)) (-4078 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 69) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 76)) (-3764 (($) 122) (($ $) 131)) (-2039 (($ $) 100)) (-3634 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-1795 (((-654 $) $) 136)) (-1489 (((-1175) $) 114)) (-3940 (((-1136) $) NIL)) (-2207 (($ $ (-654 (-872))) 61)) (-1844 (((-546) $) 48) (((-1193) $) 49) (((-903 (-574)) $) 80) (((-903 (-388)) $) 78)) (-2951 (((-872) $) 55) (($ (-1175)) 50)) (-4069 (((-112) $ $) NIL)) (-4191 (($ $ (-654 (-872))) 63)) (-3927 (((-1175) $) 34) (((-1175) $ (-112)) 35) (((-1289) (-832) $) 36) (((-1289) (-832) $ (-112)) 37)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 51)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 52))) +(((-1193) (-13 (-860) (-624 (-546)) (-838) (-624 (-1193)) (-626 (-1175)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3764 ($)) (-15 -3764 ($ $)) (-15 -3886 ((-1289))) (-15 -2039 ($ $)) (-15 -1502 ((-112) $)) (-15 -4122 ((-2 (|:| -2357 (-654 (-872))) (|:| -1968 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3677 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3840 ($ $ (-654 (-654 (-872))))) (-15 -3840 ($ $ (-2 (|:| -2357 (-654 (-872))) (|:| -1968 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3677 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -3679 ($ $ (-654 (-872)))) (-15 -3876 ($ $ (-654 (-872)))) (-15 -4191 ($ $ (-654 (-872)))) (-15 -2207 ($ $ (-654 (-872)))) (-15 -3232 ((-1175) $)) (-15 -1795 ((-654 $) $)) (-15 -3250 ($) -1714)))) (T -1193)) +((-3764 (*1 *1) (-5 *1 (-1193))) (-3764 (*1 *1 *1) (-5 *1 (-1193))) (-3886 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1193)))) (-2039 (*1 *1 *1) (-5 *1 (-1193))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2357 (-654 (-872))) (|:| -1968 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3677 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1193)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1193)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2357 (-654 (-872))) (|:| -1968 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3677 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1193)))) (-3679 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))) (-3876 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1193)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1193)))) (-3250 (*1 *1) (-5 *1 (-1193)))) +(-13 (-860) (-624 (-546)) (-838) (-624 (-1193)) (-626 (-1175)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3764 ($)) (-15 -3764 ($ $)) (-15 -3886 ((-1289))) (-15 -2039 ($ $)) (-15 -1502 ((-112) $)) (-15 -4122 ((-2 (|:| -2357 (-654 (-872))) (|:| -1968 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3677 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3840 ($ $ (-654 (-654 (-872))))) (-15 -3840 ($ $ (-2 (|:| -2357 (-654 (-872))) (|:| -1968 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3677 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -3679 ($ $ (-654 (-872)))) (-15 -3876 ($ $ (-654 (-872)))) (-15 -4191 ($ $ (-654 (-872)))) (-15 -2207 ($ $ (-654 (-872)))) (-15 -3232 ((-1175) $)) (-15 -1795 ((-654 $) $)) (-15 -3250 ($) -1714))) +((-2730 (((-1284 |#1|) |#1| (-935)) 18) (((-1284 |#1|) (-654 |#1|)) 25))) +(((-1194 |#1|) (-10 -7 (-15 -2730 ((-1284 |#1|) (-654 |#1|))) (-15 -2730 ((-1284 |#1|) |#1| (-935)))) (-1065)) (T -1194)) +((-2730 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-5 *2 (-1284 *3)) (-5 *1 (-1194 *3)) (-4 *3 (-1065)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1065)) (-5 *2 (-1284 *4)) (-5 *1 (-1194 *4))))) +(-10 -7 (-15 -2730 ((-1284 |#1|) (-654 |#1|))) (-15 -2730 ((-1284 |#1|) |#1| (-935)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2214 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3621 (($ $) NIL (|has| |#1| (-462)))) (-1849 (($ $ |#1| (-987) $) NIL)) (-4226 (((-112) $) 17)) (-3023 (((-781) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-987)) NIL)) (-3192 (((-987) $) NIL)) (-4303 (($ (-1 (-987) (-987)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2997 (($ $ (-987) |#1| $) NIL (-12 (|has| (-987) (-132)) (|has| |#1| (-566))))) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3580 (((-987) $) NIL)) (-2372 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ (-987)) NIL)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 10 T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 21)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1195 |#1|) (-13 (-334 |#1| (-987)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-987) (-132)) (-15 -2997 ($ $ (-987) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|))) (-1065)) (T -1195)) +((-2997 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-987)) (-4 *2 (-132)) (-5 *1 (-1195 *3)) (-4 *3 (-566)) (-4 *3 (-1065))))) +(-13 (-334 |#1| (-987)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-987) (-132)) (-15 -2997 ($ $ (-987) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|))) +((-3745 (((-1197) (-1193) $) 25)) (-2447 (($) 29)) (-4203 (((-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-1193) $) 22)) (-2946 (((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")) $) 41) (((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) 42) (((-1289) (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) 43)) (-2138 (((-1289) (-1193)) 58)) (-2881 (((-1289) (-1193) $) 55) (((-1289) (-1193)) 56) (((-1289)) 57)) (-2073 (((-1289) (-1193)) 37)) (-4113 (((-1193)) 36)) (-3336 (($) 34)) (-3149 (((-447) (-1193) (-447) (-1193) $) 45) (((-447) (-654 (-1193)) (-447) (-1193) $) 49) (((-447) (-1193) (-447)) 46) (((-447) (-1193) (-447) (-1193)) 50)) (-3441 (((-1193)) 35)) (-2951 (((-872) $) 28)) (-4044 (((-1289)) 30) (((-1289) (-1193)) 33)) (-3772 (((-654 (-1193)) (-1193) $) 24)) (-3134 (((-1289) (-1193) (-654 (-1193)) $) 38) (((-1289) (-1193) (-654 (-1193))) 39) (((-1289) (-654 (-1193))) 40))) +(((-1196) (-13 (-623 (-872)) (-10 -8 (-15 -2447 ($)) (-15 -4044 ((-1289))) (-15 -4044 ((-1289) (-1193))) (-15 -3149 ((-447) (-1193) (-447) (-1193) $)) (-15 -3149 ((-447) (-654 (-1193)) (-447) (-1193) $)) (-15 -3149 ((-447) (-1193) (-447))) (-15 -3149 ((-447) (-1193) (-447) (-1193))) (-15 -2073 ((-1289) (-1193))) (-15 -3441 ((-1193))) (-15 -4113 ((-1193))) (-15 -3134 ((-1289) (-1193) (-654 (-1193)) $)) (-15 -3134 ((-1289) (-1193) (-654 (-1193)))) (-15 -3134 ((-1289) (-654 (-1193)))) (-15 -2946 ((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")) $)) (-15 -2946 ((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")))) (-15 -2946 ((-1289) (-3 (|:| |fst| (-444)) (|:| -2441 "void")))) (-15 -2881 ((-1289) (-1193) $)) (-15 -2881 ((-1289) (-1193))) (-15 -2881 ((-1289))) (-15 -2138 ((-1289) (-1193))) (-15 -3336 ($)) (-15 -4203 ((-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-1193) $)) (-15 -3772 ((-654 (-1193)) (-1193) $)) (-15 -3745 ((-1197) (-1193) $))))) (T -1196)) +((-2447 (*1 *1) (-5 *1 (-1196))) (-4044 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1196)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-3149 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196)))) (-3149 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1193))) (-5 *4 (-1193)) (-5 *1 (-1196)))) (-3149 (*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196)))) (-3149 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-3441 (*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1196)))) (-4113 (*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1196)))) (-3134 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-3134 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-2946 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1193)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-2946 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-2881 (*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-2881 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-2881 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1196)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-3336 (*1 *1) (-5 *1 (-1196))) (-4203 (*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *1 (-1196)))) (-3772 (*1 *2 *3 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1196)) (-5 *3 (-1193)))) (-3745 (*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-1197)) (-5 *1 (-1196))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2447 ($)) (-15 -4044 ((-1289))) (-15 -4044 ((-1289) (-1193))) (-15 -3149 ((-447) (-1193) (-447) (-1193) $)) (-15 -3149 ((-447) (-654 (-1193)) (-447) (-1193) $)) (-15 -3149 ((-447) (-1193) (-447))) (-15 -3149 ((-447) (-1193) (-447) (-1193))) (-15 -2073 ((-1289) (-1193))) (-15 -3441 ((-1193))) (-15 -4113 ((-1193))) (-15 -3134 ((-1289) (-1193) (-654 (-1193)) $)) (-15 -3134 ((-1289) (-1193) (-654 (-1193)))) (-15 -3134 ((-1289) (-654 (-1193)))) (-15 -2946 ((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")) $)) (-15 -2946 ((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")))) (-15 -2946 ((-1289) (-3 (|:| |fst| (-444)) (|:| -2441 "void")))) (-15 -2881 ((-1289) (-1193) $)) (-15 -2881 ((-1289) (-1193))) (-15 -2881 ((-1289))) (-15 -2138 ((-1289) (-1193))) (-15 -3336 ($)) (-15 -4203 ((-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-1193) $)) (-15 -3772 ((-654 (-1193)) (-1193) $)) (-15 -3745 ((-1197) (-1193) $)))) +((-3489 (((-654 (-654 (-3 (|:| -2039 (-1193)) (|:| -3602 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574))))))))) $) 66)) (-1772 (((-654 (-3 (|:| -2039 (-1193)) (|:| -3602 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574)))))))) (-444) $) 47)) (-3697 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-447))))) 17)) (-2138 (((-1289) $) 73)) (-3585 (((-654 (-1193)) $) 22)) (-2392 (((-1120) $) 60)) (-4345 (((-447) (-1193) $) 27)) (-2019 (((-654 (-1193)) $) 30)) (-3336 (($) 19)) (-3149 (((-447) (-654 (-1193)) (-447) $) 25) (((-447) (-1193) (-447) $) 24)) (-2951 (((-872) $) 9) (((-1206 (-1193) (-447)) $) 13))) +(((-1197) (-13 (-623 (-872)) (-10 -8 (-15 -2951 ((-1206 (-1193) (-447)) $)) (-15 -3336 ($)) (-15 -3149 ((-447) (-654 (-1193)) (-447) $)) (-15 -3149 ((-447) (-1193) (-447) $)) (-15 -4345 ((-447) (-1193) $)) (-15 -3585 ((-654 (-1193)) $)) (-15 -1772 ((-654 (-3 (|:| -2039 (-1193)) (|:| -3602 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574)))))))) (-444) $)) (-15 -2019 ((-654 (-1193)) $)) (-15 -3489 ((-654 (-654 (-3 (|:| -2039 (-1193)) (|:| -3602 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574))))))))) $)) (-15 -2392 ((-1120) $)) (-15 -2138 ((-1289) $)) (-15 -3697 ($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-447))))))))) (T -1197)) +((-2951 (*1 *2 *1) (-12 (-5 *2 (-1206 (-1193) (-447))) (-5 *1 (-1197)))) (-3336 (*1 *1) (-5 *1 (-1197))) (-3149 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1193))) (-5 *1 (-1197)))) (-3149 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1197)))) (-4345 (*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-447)) (-5 *1 (-1197)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1197)))) (-1772 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-654 (-3 (|:| -2039 (-1193)) (|:| -3602 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574))))))))) (-5 *1 (-1197)))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1197)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-3 (|:| -2039 (-1193)) (|:| -3602 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574)))))))))) (-5 *1 (-1197)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1197)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1197)))) (-3697 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-447))))) (-5 *1 (-1197))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2951 ((-1206 (-1193) (-447)) $)) (-15 -3336 ($)) (-15 -3149 ((-447) (-654 (-1193)) (-447) $)) (-15 -3149 ((-447) (-1193) (-447) $)) (-15 -4345 ((-447) (-1193) $)) (-15 -3585 ((-654 (-1193)) $)) (-15 -1772 ((-654 (-3 (|:| -2039 (-1193)) (|:| -3602 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574)))))))) (-444) $)) (-15 -2019 ((-654 (-1193)) $)) (-15 -3489 ((-654 (-654 (-3 (|:| -2039 (-1193)) (|:| -3602 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574))))))))) $)) (-15 -2392 ((-1120) $)) (-15 -2138 ((-1289) $)) (-15 -3697 ($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-447)))))))) +((-2864 (((-112) $ $) NIL)) (-1704 (((-3 (-574) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-516) "failed") $) 43) (((-3 (-1175) "failed") $) 47)) (-2214 (((-574) $) 30) (((-227) $) 36) (((-516) $) 40) (((-1175) $) 48)) (-3035 (((-112) $) 53)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2636 (((-3 (-574) (-227) (-516) (-1175) $) $) 55)) (-2931 (((-654 $) $) 57)) (-1844 (((-1120) $) 24) (($ (-1120)) 25)) (-3359 (((-112) $) 56)) (-2951 (((-872) $) 23) (($ (-574)) 26) (($ (-227)) 32) (($ (-516)) 38) (($ (-1175)) 44) (((-546) $) 59) (((-574) $) 31) (((-227) $) 37) (((-516) $) 41) (((-1175) $) 49)) (-2130 (((-112) $ (|[\|\|]| (-574))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-516))) 19) (((-112) $ (|[\|\|]| (-1175))) 16)) (-2897 (($ (-516) (-654 $)) 51) (($ $ (-654 $)) 52)) (-4069 (((-112) $ $) NIL)) (-1337 (((-574) $) 27) (((-227) $) 33) (((-516) $) 39) (((-1175) $) 45)) (-2986 (((-112) $ $) 7))) +(((-1198) (-13 (-1279) (-1116) (-1054 (-574)) (-1054 (-227)) (-1054 (-516)) (-1054 (-1175)) (-623 (-546)) (-10 -8 (-15 -1844 ((-1120) $)) (-15 -1844 ($ (-1120))) (-15 -2951 ((-574) $)) (-15 -1337 ((-574) $)) (-15 -2951 ((-227) $)) (-15 -1337 ((-227) $)) (-15 -2951 ((-516) $)) (-15 -1337 ((-516) $)) (-15 -2951 ((-1175) $)) (-15 -1337 ((-1175) $)) (-15 -2897 ($ (-516) (-654 $))) (-15 -2897 ($ $ (-654 $))) (-15 -3035 ((-112) $)) (-15 -2636 ((-3 (-574) (-227) (-516) (-1175) $) $)) (-15 -2931 ((-654 $) $)) (-15 -3359 ((-112) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-574)))) (-15 -2130 ((-112) $ (|[\|\|]| (-227)))) (-15 -2130 ((-112) $ (|[\|\|]| (-516)))) (-15 -2130 ((-112) $ (|[\|\|]| (-1175))))))) (T -1198)) +((-1844 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1198)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-1198)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1198)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1198)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1198)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1198)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1198)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1198)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1198)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1198)))) (-2897 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1198))) (-5 *1 (-1198)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1198)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1175) (-1198))) (-5 *1 (-1198)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1198)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1198)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1198)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1198)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)) (-5 *1 (-1198))))) +(-13 (-1279) (-1116) (-1054 (-574)) (-1054 (-227)) (-1054 (-516)) (-1054 (-1175)) (-623 (-546)) (-10 -8 (-15 -1844 ((-1120) $)) (-15 -1844 ($ (-1120))) (-15 -2951 ((-574) $)) (-15 -1337 ((-574) $)) (-15 -2951 ((-227) $)) (-15 -1337 ((-227) $)) (-15 -2951 ((-516) $)) (-15 -1337 ((-516) $)) (-15 -2951 ((-1175) $)) (-15 -1337 ((-1175) $)) (-15 -2897 ($ (-516) (-654 $))) (-15 -2897 ($ $ (-654 $))) (-15 -3035 ((-112) $)) (-15 -2636 ((-3 (-574) (-227) (-516) (-1175) $) $)) (-15 -2931 ((-654 $) $)) (-15 -3359 ((-112) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-574)))) (-15 -2130 ((-112) $ (|[\|\|]| (-227)))) (-15 -2130 ((-112) $ (|[\|\|]| (-516)))) (-15 -2130 ((-112) $ (|[\|\|]| (-1175)))))) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) 22)) (-3250 (($) 12 T CONST)) (-2835 (($) 26)) (-3634 (($ $ $) NIL) (($) 19 T CONST)) (-4380 (($ $ $) NIL) (($) 20 T CONST)) (-3383 (((-935) $) 24)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) 23)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) +(((-1199 |#1|) (-13 (-854) (-10 -8 (-15 -3250 ($) -1714))) (-935)) (T -1199)) +((-3250 (*1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-935))))) +(-13 (-854) (-10 -8 (-15 -3250 ($) -1714))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3831 (($) 19 T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) 12 T CONST)) (-1593 (($ $ $) NIL) (($) 18 T CONST)) (-3271 (((-934) $) NIL)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-1763 (($ $ $) 21)) (-1752 (($ $ $) 20)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) -(((-1199 |#1|) (-13 (-854) (-10 -8 (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715))) (-934)) (T -1199)) -((-1752 (*1 *1 *1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934)))) (-1763 (*1 *1 *1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934)))) (-3831 (*1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934))))) -(-13 (-854) (-10 -8 (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715))) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3250 (($) 19 T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) 12 T CONST)) (-4380 (($ $ $) NIL) (($) 18 T CONST)) (-3383 (((-935) $) NIL)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-1762 (($ $ $) 21)) (-1750 (($ $ $) 20)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) +(((-1200 |#1|) (-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714))) (-935)) (T -1200)) +((-1750 (*1 *1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935)))) (-1762 (*1 *1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935)))) (-3250 (*1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935))))) +(-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 9)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 7))) -(((-1200) (-1115)) (T -1200)) -NIL -(-1115) -((-3095 (((-654 (-654 (-965 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192))) 69)) (-2514 (((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|)))) 80) (((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|))) 76) (((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192)) 81) (((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192)) 75) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|))))) 106) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|)))) 105) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192))) 107) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|))) (-654 (-1192))) 104))) -(((-1201 |#1|) (-10 -7 (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192)))) (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|))))) (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -2514 ((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192))) (-15 -2514 ((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -2514 ((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|)))) (-15 -2514 ((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|))))) (-15 -3095 ((-654 (-654 (-965 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192))))) (-566)) (T -1201)) -((-3095 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-965 *5)))) (-5 *1 (-1201 *5)))) (-2514 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *4))))) (-5 *1 (-1201 *4)) (-5 *3 (-302 (-417 (-965 *4)))))) (-2514 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *4))))) (-5 *1 (-1201 *4)) (-5 *3 (-417 (-965 *4))))) (-2514 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *5))))) (-5 *1 (-1201 *5)) (-5 *3 (-302 (-417 (-965 *5)))))) (-2514 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *5))))) (-5 *1 (-1201 *5)) (-5 *3 (-417 (-965 *5))))) (-2514 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-1201 *4)) (-5 *3 (-654 (-302 (-417 (-965 *4))))))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-965 *4)))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-1201 *4)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1192))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-1201 *5)) (-5 *3 (-654 (-302 (-417 (-965 *5))))))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-1201 *5))))) -(-10 -7 (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192)))) (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|))))) (-15 -2514 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -2514 ((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192))) (-15 -2514 ((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -2514 ((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|)))) (-15 -2514 ((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|))))) (-15 -3095 ((-654 (-654 (-965 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192))))) -((-1848 (((-1174)) 7)) (-1934 (((-1174)) 11 T CONST)) (-3697 (((-1288) (-1174)) 13)) (-1871 (((-1174)) 8 T CONST)) (-2060 (((-131)) 10 T CONST))) -(((-1202) (-13 (-1233) (-10 -7 (-15 -1848 ((-1174))) (-15 -1871 ((-1174)) -1715) (-15 -2060 ((-131)) -1715) (-15 -1934 ((-1174)) -1715) (-15 -3697 ((-1288) (-1174)))))) (T -1202)) -((-1848 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202)))) (-1871 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202)))) (-2060 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1202)))) (-1934 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202)))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1202))))) -(-13 (-1233) (-10 -7 (-15 -1848 ((-1174))) (-15 -1871 ((-1174)) -1715) (-15 -2060 ((-131)) -1715) (-15 -1934 ((-1174)) -1715) (-15 -3697 ((-1288) (-1174))))) -((-3683 (((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 56)) (-1625 (((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|))) 38)) (-1530 (((-1204 (-654 |#1|)) (-654 |#1|)) 49)) (-3169 (((-654 (-654 |#1|)) (-654 |#1|)) 45)) (-4252 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))) 53)) (-3166 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|)))) 52)) (-3128 (((-654 (-654 |#1|)) (-654 (-654 |#1|))) 43)) (-4333 (((-654 |#1|) (-654 |#1|)) 46)) (-2063 (((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 32)) (-2637 (((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 29)) (-1439 (((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|))) 24)) (-3909 (((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 58)) (-2990 (((-654 (-654 |#1|)) (-1204 (-654 |#1|))) 60))) -(((-1203 |#1|) (-10 -7 (-15 -1439 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -2637 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -2063 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -3683 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -3909 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -2990 ((-654 (-654 |#1|)) (-1204 (-654 |#1|)))) (-15 -1625 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -1530 ((-1204 (-654 |#1|)) (-654 |#1|))) (-15 -3128 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -3169 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -4333 ((-654 |#1|) (-654 |#1|))) (-15 -3166 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4252 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))))) (-860)) (T -1203)) -((-4252 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-2 (|:| |f1| (-654 *4)) (|:| |f2| (-654 (-654 (-654 *4)))) (|:| |f3| (-654 (-654 *4))) (|:| |f4| (-654 (-654 (-654 *4)))))) (-5 *1 (-1203 *4)) (-5 *3 (-654 (-654 (-654 *4)))))) (-3166 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5) (|:| |f4| (-654 *5)))) (-5 *1 (-1203 *6)) (-5 *4 (-654 *5)))) (-4333 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1203 *3)))) (-3169 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1203 *4)) (-5 *3 (-654 *4)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1203 *3)))) (-1530 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-1204 (-654 *4))) (-5 *1 (-1203 *4)) (-5 *3 (-654 *4)))) (-1625 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4)))) (-5 *1 (-1203 *4)) (-5 *3 (-654 (-654 *4))))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-1204 (-654 *4))) (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1203 *4)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1203 *4)) (-4 *4 (-860)))) (-3683 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-4 *4 (-860)) (-5 *1 (-1203 *4)))) (-2063 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *1 (-1203 *4)))) (-2637 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1203 *5)))) (-1439 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4)))) (-5 *1 (-1203 *6)) (-5 *5 (-654 *4))))) -(-10 -7 (-15 -1439 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -2637 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -2063 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -3683 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -3909 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -2990 ((-654 (-654 |#1|)) (-1204 (-654 |#1|)))) (-15 -1625 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -1530 ((-1204 (-654 |#1|)) (-654 |#1|))) (-15 -3128 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -3169 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -4333 ((-654 |#1|) (-654 |#1|))) (-15 -3166 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4252 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))))) -((-2787 (($ (-654 (-654 |#1|))) 10)) (-1626 (((-654 (-654 |#1|)) $) 11)) (-2950 (((-872) $) 33))) -(((-1204 |#1|) (-10 -8 (-15 -2787 ($ (-654 (-654 |#1|)))) (-15 -1626 ((-654 (-654 |#1|)) $)) (-15 -2950 ((-872) $))) (-1115)) (T -1204)) -((-2950 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1204 *3)) (-4 *3 (-1115)))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1115)))) (-2787 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-1204 *3))))) -(-10 -8 (-15 -2787 ($ (-654 (-654 |#1|)))) (-15 -1626 ((-654 (-654 |#1|)) $)) (-15 -2950 ((-872) $))) -((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3287 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) NIL)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2171 (((-3 |#2| "failed") |#1| $) NIL)) (-3831 (($) NIL T CONST)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-1941 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) NIL)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1873 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-860)))) (-2247 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1772 (((-654 |#1|) $) NIL)) (-2056 (((-112) |#1| $) NIL)) (-1748 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2609 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-3228 (((-654 |#1|) $) NIL)) (-3071 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-2294 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL)) (-4276 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3667 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3838 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) NIL)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1205 |#1| |#2|) (-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) (-1115) (-1115)) (T -1205)) -NIL -(-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) -((-2863 (((-112) $ $) NIL)) (-4150 (($ |#1| (-55)) 10)) (-2040 ((|#1| $) 12)) (-3945 (((-1174) $) NIL)) (-3571 (((-112) $ |#1|) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2533 (((-55) $) 14)) (-2985 (((-112) $ $) NIL))) -(((-1206 |#1|) (-13 (-845 |#1|) (-10 -8 (-15 -4150 ($ |#1| (-55))))) (-1115)) (T -1206)) -((-4150 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1206 *2)) (-4 *2 (-1115))))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 9)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 7))) +(((-1201) (-1116)) (T -1201)) +NIL +(-1116) +((-1711 (((-654 (-654 (-966 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193))) 69)) (-3987 (((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|)))) 80) (((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|))) 76) (((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193)) 81) (((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193)) 75) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|))))) 106) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|)))) 105) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193))) 107) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|))) (-654 (-1193))) 104))) +(((-1202 |#1|) (-10 -7 (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193)))) (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|))))) (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -3987 ((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193))) (-15 -3987 ((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -3987 ((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|)))) (-15 -3987 ((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|))))) (-15 -1711 ((-654 (-654 (-966 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193))))) (-566)) (T -1202)) +((-1711 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-966 *5)))) (-5 *1 (-1202 *5)))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *4))))) (-5 *1 (-1202 *4)) (-5 *3 (-302 (-417 (-966 *4)))))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *4))))) (-5 *1 (-1202 *4)) (-5 *3 (-417 (-966 *4))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *5))))) (-5 *1 (-1202 *5)) (-5 *3 (-302 (-417 (-966 *5)))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *5))))) (-5 *1 (-1202 *5)) (-5 *3 (-417 (-966 *5))))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-1202 *4)) (-5 *3 (-654 (-302 (-417 (-966 *4))))))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-966 *4)))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-1202 *4)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1193))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-1202 *5)) (-5 *3 (-654 (-302 (-417 (-966 *5))))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-1202 *5))))) +(-10 -7 (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193)))) (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|))))) (-15 -3987 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -3987 ((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193))) (-15 -3987 ((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -3987 ((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|)))) (-15 -3987 ((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|))))) (-15 -1711 ((-654 (-654 (-966 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193))))) +((-2030 (((-1175)) 7)) (-3171 (((-1175)) 11 T CONST)) (-3698 (((-1289) (-1175)) 13)) (-2758 (((-1175)) 8 T CONST)) (-3262 (((-131)) 10 T CONST))) +(((-1203) (-13 (-1234) (-10 -7 (-15 -2030 ((-1175))) (-15 -2758 ((-1175)) -1714) (-15 -3262 ((-131)) -1714) (-15 -3171 ((-1175)) -1714) (-15 -3698 ((-1289) (-1175)))))) (T -1203)) +((-2030 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203)))) (-2758 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203)))) (-3262 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1203)))) (-3171 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203)))) (-3698 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1203))))) +(-13 (-1234) (-10 -7 (-15 -2030 ((-1175))) (-15 -2758 ((-1175)) -1714) (-15 -3262 ((-131)) -1714) (-15 -3171 ((-1175)) -1714) (-15 -3698 ((-1289) (-1175))))) +((-1872 (((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 56)) (-3542 (((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|))) 38)) (-2817 (((-1205 (-654 |#1|)) (-654 |#1|)) 49)) (-2058 (((-654 (-654 |#1|)) (-654 |#1|)) 45)) (-4253 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))) 53)) (-3761 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|)))) 52)) (-1874 (((-654 (-654 |#1|)) (-654 (-654 |#1|))) 43)) (-3593 (((-654 |#1|) (-654 |#1|)) 46)) (-3212 (((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 32)) (-2221 (((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 29)) (-3102 (((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|))) 24)) (-2645 (((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 58)) (-3236 (((-654 (-654 |#1|)) (-1205 (-654 |#1|))) 60))) +(((-1204 |#1|) (-10 -7 (-15 -3102 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -2221 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -3212 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -1872 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -2645 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -3236 ((-654 (-654 |#1|)) (-1205 (-654 |#1|)))) (-15 -3542 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -2817 ((-1205 (-654 |#1|)) (-654 |#1|))) (-15 -1874 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -2058 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -3593 ((-654 |#1|) (-654 |#1|))) (-15 -3761 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4253 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))))) (-860)) (T -1204)) +((-4253 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-2 (|:| |f1| (-654 *4)) (|:| |f2| (-654 (-654 (-654 *4)))) (|:| |f3| (-654 (-654 *4))) (|:| |f4| (-654 (-654 (-654 *4)))))) (-5 *1 (-1204 *4)) (-5 *3 (-654 (-654 (-654 *4)))))) (-3761 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5) (|:| |f4| (-654 *5)))) (-5 *1 (-1204 *6)) (-5 *4 (-654 *5)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1204 *3)))) (-2058 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1204 *4)) (-5 *3 (-654 *4)))) (-1874 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1204 *3)))) (-2817 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-1205 (-654 *4))) (-5 *1 (-1204 *4)) (-5 *3 (-654 *4)))) (-3542 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4)))) (-5 *1 (-1204 *4)) (-5 *3 (-654 (-654 *4))))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-1205 (-654 *4))) (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1204 *4)))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1204 *4)) (-4 *4 (-860)))) (-1872 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-4 *4 (-860)) (-5 *1 (-1204 *4)))) (-3212 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *1 (-1204 *4)))) (-2221 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1204 *5)))) (-3102 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4)))) (-5 *1 (-1204 *6)) (-5 *5 (-654 *4))))) +(-10 -7 (-15 -3102 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -2221 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -3212 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -1872 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -2645 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -3236 ((-654 (-654 |#1|)) (-1205 (-654 |#1|)))) (-15 -3542 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -2817 ((-1205 (-654 |#1|)) (-654 |#1|))) (-15 -1874 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -2058 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -3593 ((-654 |#1|) (-654 |#1|))) (-15 -3761 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4253 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))))) +((-3930 (($ (-654 (-654 |#1|))) 10)) (-2014 (((-654 (-654 |#1|)) $) 11)) (-2951 (((-872) $) 33))) +(((-1205 |#1|) (-10 -8 (-15 -3930 ($ (-654 (-654 |#1|)))) (-15 -2014 ((-654 (-654 |#1|)) $)) (-15 -2951 ((-872) $))) (-1116)) (T -1205)) +((-2951 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1205 *3)) (-4 *3 (-1116)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1116)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-1205 *3))))) +(-10 -8 (-15 -3930 ($ (-654 (-654 |#1|)))) (-15 -2014 ((-654 (-654 |#1|)) $)) (-15 -2951 ((-872) $))) +((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2985 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) NIL)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2171 (((-3 |#2| "failed") |#1| $) NIL)) (-3250 (($) NIL T CONST)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2424 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) NIL)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) NIL)) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2036 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-1698 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1771 (((-654 |#1|) $) NIL)) (-2229 (((-112) |#1| $) NIL)) (-2375 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3285 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1393 (((-654 |#1|) $) NIL)) (-1506 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-2183 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1822 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3162 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4069 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1206 |#1| |#2|) (-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) (-1116) (-1116)) (T -1206)) +NIL +(-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) +((-2864 (((-112) $ $) NIL)) (-4150 (($ |#1| (-55)) 10)) (-2039 ((|#1| $) 12)) (-1489 (((-1175) $) NIL)) (-2154 (((-112) $ |#1|) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2875 (((-55) $) 14)) (-2986 (((-112) $ $) NIL))) +(((-1207 |#1|) (-13 (-845 |#1|) (-10 -8 (-15 -4150 ($ |#1| (-55))))) (-1116)) (T -1207)) +((-4150 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1207 *2)) (-4 *2 (-1116))))) (-13 (-845 |#1|) (-10 -8 (-15 -4150 ($ |#1| (-55))))) -((-2655 ((|#1| (-654 |#1|)) 46)) (-1944 ((|#1| |#1| (-574)) 24)) (-1473 (((-1188 |#1|) |#1| (-934)) 20))) -(((-1207 |#1|) (-10 -7 (-15 -2655 (|#1| (-654 |#1|))) (-15 -1473 ((-1188 |#1|) |#1| (-934))) (-15 -1944 (|#1| |#1| (-574)))) (-372)) (T -1207)) -((-1944 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1207 *2)) (-4 *2 (-372)))) (-1473 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-5 *2 (-1188 *3)) (-5 *1 (-1207 *3)) (-4 *3 (-372)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1207 *2)) (-4 *2 (-372))))) -(-10 -7 (-15 -2655 (|#1| (-654 |#1|))) (-15 -1473 ((-1188 |#1|) |#1| (-934))) (-15 -1944 (|#1| |#1| (-574)))) -((-3751 (($) 10) (($ (-654 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)))) 14)) (-1941 (($ (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1873 (((-654 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) $) 39) (((-654 |#3|) $) 41)) (-2461 (($ (-1 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1786 (($ (-1 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1748 (((-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) $) 60)) (-2609 (($ (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) $) 16)) (-3228 (((-654 |#2|) $) 19)) (-3071 (((-112) |#2| $) 65)) (-2294 (((-3 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) "failed") (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) $) 64)) (-3484 (((-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) $) 69)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2379 (((-654 |#3|) $) 43)) (-2208 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) $) NIL) (((-781) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) $) NIL) (((-781) |#3| $) NIL) (((-781) (-1 (-112) |#3|) $) 79)) (-2950 (((-872) $) 27)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2985 (((-112) $ $) 51))) -(((-1208 |#1| |#2| |#3|) (-10 -8 (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -1786 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3751 (|#1| (-654 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))))) (-15 -3751 (|#1|)) (-15 -1786 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2461 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2000 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1873 ((-654 |#3|) |#1|)) (-15 -3948 ((-781) |#3| |#1|)) (-15 -2208 (|#3| |#1| |#2| |#3|)) (-15 -2208 (|#3| |#1| |#2|)) (-15 -2379 ((-654 |#3|) |#1|)) (-15 -3071 ((-112) |#2| |#1|)) (-15 -3228 ((-654 |#2|) |#1|)) (-15 -1941 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1941 (|#1| (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -1941 (|#1| (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|)) (-15 -2294 ((-3 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) "failed") (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -1748 ((-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|)) (-15 -2609 (|#1| (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|)) (-15 -3484 ((-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|)) (-15 -3948 ((-781) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|)) (-15 -1873 ((-654 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -3948 ((-781) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -2000 ((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -2980 ((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -2461 (|#1| (-1 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -1786 (|#1| (-1 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|))) (-1209 |#2| |#3|) (-1115) (-1115)) (T -1208)) -NIL -(-10 -8 (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -1786 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3751 (|#1| (-654 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))))) (-15 -3751 (|#1|)) (-15 -1786 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2461 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2980 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2000 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1873 ((-654 |#3|) |#1|)) (-15 -3948 ((-781) |#3| |#1|)) (-15 -2208 (|#3| |#1| |#2| |#3|)) (-15 -2208 (|#3| |#1| |#2|)) (-15 -2379 ((-654 |#3|) |#1|)) (-15 -3071 ((-112) |#2| |#1|)) (-15 -3228 ((-654 |#2|) |#1|)) (-15 -1941 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1941 (|#1| (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -1941 (|#1| (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|)) (-15 -2294 ((-3 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) "failed") (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -1748 ((-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|)) (-15 -2609 (|#1| (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|)) (-15 -3484 ((-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|)) (-15 -3948 ((-781) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) |#1|)) (-15 -1873 ((-654 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -3948 ((-781) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -2000 ((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -2980 ((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -2461 (|#1| (-1 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|)) (-15 -1786 (|#1| (-1 (-2 (|:| -3666 |#2|) (|:| -1917 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1917 |#3|))) |#1|))) -((-2863 (((-112) $ $) 19 (-2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-3751 (($) 73) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 72)) (-3287 (((-1288) $ |#1| |#1|) 100 (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) 8)) (-3134 ((|#2| $ |#1| |#2|) 74)) (-2551 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 46 (|has| $ (-6 -4458)))) (-2173 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 56 (|has| $ (-6 -4458)))) (-2171 (((-3 |#2| "failed") |#1| $) 62)) (-3831 (($) 7 T CONST)) (-2560 (($ $) 59 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458))))) (-1941 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 47 (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 63)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 55 (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 57 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 54 (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 53 (|has| $ (-6 -4458)))) (-2472 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) 89)) (-1873 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 31 (|has| $ (-6 -4458))) (((-654 |#2|) $) 80 (|has| $ (-6 -4458)))) (-2224 (((-112) $ (-781)) 9)) (-1767 ((|#1| $) 97 (|has| |#1| (-860)))) (-2247 (((-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 30 (|has| $ (-6 -4458))) (((-654 |#2|) $) 81 (|has| $ (-6 -4458)))) (-2231 (((-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-2429 ((|#1| $) 96 (|has| |#1| (-860)))) (-2461 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 35 (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4459)))) (-1786 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-3625 (((-112) $ (-781)) 10)) (-3945 (((-1174) $) 22 (-2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-1772 (((-654 |#1|) $) 64)) (-2056 (((-112) |#1| $) 65)) (-1748 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 40)) (-2609 (($ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 41)) (-3228 (((-654 |#1|) $) 94)) (-3071 (((-112) |#1| $) 93)) (-3939 (((-1135) $) 21 (-2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-2924 ((|#2| $) 98 (|has| |#1| (-860)))) (-2294 (((-3 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 52)) (-4276 (($ $ |#2|) 99 (|has| $ (-6 -4459)))) (-3484 (((-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 42)) (-2000 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 33 (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))))) 27 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 26 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) 25 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 24 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2379 (((-654 |#2|) $) 92)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3667 (($) 50) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 49)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 32 (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4458)))) (-3156 (($ $) 13)) (-1845 (((-546) $) 60 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 51)) (-2950 (((-872) $) 18 (-2832 (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872)))))) (-3838 (((-112) $ $) 23 (-2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-3180 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) 43)) (-2980 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) $) 34 (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (-2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-1209 |#1| |#2|) (-141) (-1115) (-1115)) (T -1209)) -((-3134 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) (-3751 (*1 *1) (-12 (-4 *1 (-1209 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3666 *3) (|:| -1917 *4)))) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *1 (-1209 *3 *4)))) (-1786 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1209 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115))))) -(-13 (-620 |t#1| |t#2|) (-614 |t#1| |t#2|) (-10 -8 (-15 -3134 (|t#2| $ |t#1| |t#2|)) (-15 -3751 ($)) (-15 -3751 ($ (-654 (-2 (|:| -3666 |t#1|) (|:| -1917 |t#2|))))) (-15 -1786 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3666 |#1|) (|:| -1917 |#2|))) . T) ((-102) -2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))) ((-623 (-872)) -2832 (|has| |#2| (-1115)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-499 #0#) . T) ((-499 |#2|) . T) ((-614 |#1| |#2|) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-620 |#1| |#2|) . T) ((-1115) -2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (-1115))) ((-1233) . T)) -((-2212 (((-112)) 29)) (-4157 (((-1288) (-1174)) 31)) (-3754 (((-112)) 41)) (-4123 (((-1288)) 39)) (-3136 (((-1288) (-1174) (-1174)) 30)) (-2135 (((-112)) 42)) (-2609 (((-1288) |#1| |#2|) 53)) (-1553 (((-1288)) 26)) (-2090 (((-3 |#2| "failed") |#1|) 51)) (-3269 (((-1288)) 40))) -(((-1210 |#1| |#2|) (-10 -7 (-15 -1553 ((-1288))) (-15 -3136 ((-1288) (-1174) (-1174))) (-15 -4157 ((-1288) (-1174))) (-15 -4123 ((-1288))) (-15 -3269 ((-1288))) (-15 -2212 ((-112))) (-15 -3754 ((-112))) (-15 -2135 ((-112))) (-15 -2090 ((-3 |#2| "failed") |#1|)) (-15 -2609 ((-1288) |#1| |#2|))) (-1115) (-1115)) (T -1210)) -((-2609 (*1 *2 *3 *4) (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-2090 (*1 *2 *3) (|partial| -12 (-4 *2 (-1115)) (-5 *1 (-1210 *3 *2)) (-4 *3 (-1115)))) (-2135 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-3754 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-2212 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-3269 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-4123 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1210 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)))) (-3136 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1210 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)))) (-1553 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115))))) -(-10 -7 (-15 -1553 ((-1288))) (-15 -3136 ((-1288) (-1174) (-1174))) (-15 -4157 ((-1288) (-1174))) (-15 -4123 ((-1288))) (-15 -3269 ((-1288))) (-15 -2212 ((-112))) (-15 -3754 ((-112))) (-15 -2135 ((-112))) (-15 -2090 ((-3 |#2| "failed") |#1|)) (-15 -2609 ((-1288) |#1| |#2|))) -((-3785 (((-1174) (-1174)) 22)) (-3437 (((-52) (-1174)) 25))) -(((-1211) (-10 -7 (-15 -3437 ((-52) (-1174))) (-15 -3785 ((-1174) (-1174))))) (T -1211)) -((-3785 (*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1211)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-1211))))) -(-10 -7 (-15 -3437 ((-52) (-1174))) (-15 -3785 ((-1174) (-1174)))) -((-2950 (((-1213) |#1|) 11))) -(((-1212 |#1|) (-10 -7 (-15 -2950 ((-1213) |#1|))) (-1115)) (T -1212)) -((-2950 (*1 *2 *3) (-12 (-5 *2 (-1213)) (-5 *1 (-1212 *3)) (-4 *3 (-1115))))) -(-10 -7 (-15 -2950 ((-1213) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3870 (((-654 (-1174)) $) 39)) (-1378 (((-654 (-1174)) $ (-654 (-1174))) 42)) (-3705 (((-654 (-1174)) $ (-654 (-1174))) 41)) (-1526 (((-654 (-1174)) $ (-654 (-1174))) 43)) (-2802 (((-654 (-1174)) $) 38)) (-3763 (($) 28)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3708 (((-654 (-1174)) $) 40)) (-1413 (((-1288) $ (-574)) 35) (((-1288) $) 36)) (-1845 (($ (-872) (-574)) 33) (($ (-872) (-574) (-872)) NIL)) (-2950 (((-872) $) 49) (($ (-872)) 32)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1213) (-13 (-1115) (-626 (-872)) (-10 -8 (-15 -1845 ($ (-872) (-574))) (-15 -1845 ($ (-872) (-574) (-872))) (-15 -1413 ((-1288) $ (-574))) (-15 -1413 ((-1288) $)) (-15 -3708 ((-654 (-1174)) $)) (-15 -3870 ((-654 (-1174)) $)) (-15 -3763 ($)) (-15 -2802 ((-654 (-1174)) $)) (-15 -1526 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -1378 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -3705 ((-654 (-1174)) $ (-654 (-1174))))))) (T -1213)) -((-1845 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1213)))) (-1845 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1213)))) (-1413 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1213)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1213)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213)))) (-3763 (*1 *1) (-5 *1 (-1213))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213)))) (-1526 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213)))) (-1378 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213)))) (-3705 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) -(-13 (-1115) (-626 (-872)) (-10 -8 (-15 -1845 ($ (-872) (-574))) (-15 -1845 ($ (-872) (-574) (-872))) (-15 -1413 ((-1288) $ (-574))) (-15 -1413 ((-1288) $)) (-15 -3708 ((-654 (-1174)) $)) (-15 -3870 ((-654 (-1174)) $)) (-15 -3763 ($)) (-15 -2802 ((-654 (-1174)) $)) (-15 -1526 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -1378 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -3705 ((-654 (-1174)) $ (-654 (-1174)))))) -((-2863 (((-112) $ $) NIL)) (-3256 (((-1174) $ (-1174)) 17) (((-1174) $) 16)) (-2506 (((-1174) $ (-1174)) 15)) (-2695 (($ $ (-1174)) NIL)) (-4278 (((-3 (-1174) "failed") $) 11)) (-1683 (((-1174) $) 8)) (-3539 (((-3 (-1174) "failed") $) 12)) (-2412 (((-1174) $) 9)) (-1684 (($ (-398)) NIL) (($ (-398) (-1174)) NIL)) (-2040 (((-398) $) NIL)) (-3945 (((-1174) $) NIL)) (-4293 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3853 (((-112) $) 21)) (-2950 (((-872) $) NIL)) (-3894 (($ $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1214) (-13 (-373 (-398) (-1174)) (-10 -8 (-15 -3256 ((-1174) $ (-1174))) (-15 -3256 ((-1174) $)) (-15 -1683 ((-1174) $)) (-15 -4278 ((-3 (-1174) "failed") $)) (-15 -3539 ((-3 (-1174) "failed") $)) (-15 -3853 ((-112) $))))) (T -1214)) -((-3256 (*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1214)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1214)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1214)))) (-4278 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174)) (-5 *1 (-1214)))) (-3539 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174)) (-5 *1 (-1214)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214))))) -(-13 (-373 (-398) (-1174)) (-10 -8 (-15 -3256 ((-1174) $ (-1174))) (-15 -3256 ((-1174) $)) (-15 -1683 ((-1174) $)) (-15 -4278 ((-3 (-1174) "failed") $)) (-15 -3539 ((-3 (-1174) "failed") $)) (-15 -3853 ((-112) $)))) -((-3011 (((-3 (-574) "failed") |#1|) 19)) (-2387 (((-3 (-574) "failed") |#1|) 14)) (-3623 (((-574) (-1174)) 33))) -(((-1215 |#1|) (-10 -7 (-15 -3011 ((-3 (-574) "failed") |#1|)) (-15 -2387 ((-3 (-574) "failed") |#1|)) (-15 -3623 ((-574) (-1174)))) (-1064)) (T -1215)) -((-3623 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-574)) (-5 *1 (-1215 *4)) (-4 *4 (-1064)))) (-2387 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1215 *3)) (-4 *3 (-1064)))) (-3011 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1215 *3)) (-4 *3 (-1064))))) -(-10 -7 (-15 -3011 ((-3 (-574) "failed") |#1|)) (-15 -2387 ((-3 (-574) "failed") |#1|)) (-15 -3623 ((-574) (-1174)))) -((-2176 (((-1148 (-227))) 9))) -(((-1216) (-10 -7 (-15 -2176 ((-1148 (-227)))))) (T -1216)) -((-2176 (*1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1216))))) -(-10 -7 (-15 -2176 ((-1148 (-227))))) -((-3003 (($) 12)) (-2455 (($ $) 36)) (-2427 (($ $) 34)) (-2300 (($ $) 26)) (-2479 (($ $) 18)) (-2535 (($ $) 16)) (-2466 (($ $) 20)) (-2329 (($ $) 31)) (-2442 (($ $) 35)) (-2311 (($ $) 30))) -(((-1217 |#1|) (-10 -8 (-15 -3003 (|#1|)) (-15 -2455 (|#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2466 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2311 (|#1| |#1|))) (-1218)) (T -1217)) -NIL -(-10 -8 (-15 -3003 (|#1|)) (-15 -2455 (|#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2466 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2311 (|#1| |#1|))) -((-2378 (($ $) 26)) (-2259 (($ $) 11)) (-2357 (($ $) 27)) (-2237 (($ $) 10)) (-2403 (($ $) 28)) (-2281 (($ $) 9)) (-3003 (($) 16)) (-3112 (($ $) 19)) (-1618 (($ $) 18)) (-2416 (($ $) 29)) (-2289 (($ $) 8)) (-2389 (($ $) 30)) (-2269 (($ $) 7)) (-2367 (($ $) 31)) (-2248 (($ $) 6)) (-2455 (($ $) 20)) (-2319 (($ $) 32)) (-2427 (($ $) 21)) (-2300 (($ $) 33)) (-2479 (($ $) 22)) (-2339 (($ $) 34)) (-2535 (($ $) 23)) (-2348 (($ $) 35)) (-2466 (($ $) 24)) (-2329 (($ $) 36)) (-2442 (($ $) 25)) (-2311 (($ $) 37)) (** (($ $ $) 17))) -(((-1218) (-141)) (T -1218)) -((-3003 (*1 *1) (-4 *1 (-1218)))) -(-13 (-1221) (-95) (-503) (-35) (-292) (-10 -8 (-15 -3003 ($)))) -(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-1221) . T)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) 19)) (-2589 (($ |#1| (-654 $)) 28) (($ (-654 |#1|)) 35) (($ |#1|) 30)) (-2818 (((-112) $ (-781)) 72)) (-3906 ((|#1| $ |#1|) 14 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) 13 (|has| $ (-6 -4459)))) (-3831 (($) NIL T CONST)) (-1873 (((-654 |#1|) $) 77 (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) 64)) (-2661 (((-112) $ $) 50 (|has| |#1| (-1115)))) (-2224 (((-112) $ (-781)) 62)) (-2247 (((-654 |#1|) $) 78 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2461 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 27)) (-3625 (((-112) $ (-781)) 60)) (-3481 (((-654 |#1|) $) 55)) (-4069 (((-112) $) 53)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2000 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 107)) (-2880 (((-112) $) 9)) (-2833 (($) 10)) (-2208 ((|#1| $ "value") NIL)) (-4418 (((-574) $ $) 48)) (-3318 (((-654 $) $) 89)) (-1831 (((-112) $ $) 110)) (-3652 (((-654 $) $) 105)) (-4072 (($ $) 106)) (-1966 (((-112) $) 84)) (-3948 (((-781) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4458))) (((-781) |#1| $) 17 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 88)) (-2950 (((-872) $) 91 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) 12)) (-1870 (((-112) $ $) 39 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 37 (|has| |#1| (-1115)))) (-2876 (((-781) $) 58 (|has| $ (-6 -4458))))) -(((-1219 |#1|) (-13 (-1025 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -2589 ($ |#1| (-654 $))) (-15 -2589 ($ (-654 |#1|))) (-15 -2589 ($ |#1|)) (-15 -1966 ((-112) $)) (-15 -4072 ($ $)) (-15 -3652 ((-654 $) $)) (-15 -1831 ((-112) $ $)) (-15 -3318 ((-654 $) $)))) (-1115)) (T -1219)) -((-1966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1115)))) (-2589 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1219 *2))) (-5 *1 (-1219 *2)) (-4 *2 (-1115)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-1219 *3)))) (-2589 (*1 *1 *2) (-12 (-5 *1 (-1219 *2)) (-4 *2 (-1115)))) (-4072 (*1 *1 *1) (-12 (-5 *1 (-1219 *2)) (-4 *2 (-1115)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-654 (-1219 *3))) (-5 *1 (-1219 *3)) (-4 *3 (-1115)))) (-1831 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1115)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-654 (-1219 *3))) (-5 *1 (-1219 *3)) (-4 *3 (-1115))))) -(-13 (-1025 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -2589 ($ |#1| (-654 $))) (-15 -2589 ($ (-654 |#1|))) (-15 -2589 ($ |#1|)) (-15 -1966 ((-112) $)) (-15 -4072 ($ $)) (-15 -3652 ((-654 $) $)) (-15 -1831 ((-112) $ $)) (-15 -3318 ((-654 $) $)))) -((-2259 (($ $) 15)) (-2281 (($ $) 12)) (-2289 (($ $) 10)) (-2269 (($ $) 17))) -(((-1220 |#1|) (-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2259 (|#1| |#1|))) (-1221)) (T -1220)) -NIL -(-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2259 (|#1| |#1|))) -((-2259 (($ $) 11)) (-2237 (($ $) 10)) (-2281 (($ $) 9)) (-2289 (($ $) 8)) (-2269 (($ $) 7)) (-2248 (($ $) 6))) -(((-1221) (-141)) (T -1221)) -((-2259 (*1 *1 *1) (-4 *1 (-1221))) (-2237 (*1 *1 *1) (-4 *1 (-1221))) (-2281 (*1 *1 *1) (-4 *1 (-1221))) (-2289 (*1 *1 *1) (-4 *1 (-1221))) (-2269 (*1 *1 *1) (-4 *1 (-1221))) (-2248 (*1 *1 *1) (-4 *1 (-1221)))) -(-13 (-10 -8 (-15 -2248 ($ $)) (-15 -2269 ($ $)) (-15 -2289 ($ $)) (-15 -2281 ($ $)) (-15 -2237 ($ $)) (-15 -2259 ($ $)))) -((-3871 ((|#2| |#2|) 98)) (-1976 (((-112) |#2|) 29)) (-4222 ((|#2| |#2|) 33)) (-4233 ((|#2| |#2|) 35)) (-4232 ((|#2| |#2| (-1192)) 92) ((|#2| |#2|) 93)) (-2061 (((-171 |#2|) |#2|) 31)) (-1849 ((|#2| |#2| (-1192)) 94) ((|#2| |#2|) 95))) -(((-1222 |#1| |#2|) (-10 -7 (-15 -4232 (|#2| |#2|)) (-15 -4232 (|#2| |#2| (-1192))) (-15 -1849 (|#2| |#2|)) (-15 -1849 (|#2| |#2| (-1192))) (-15 -3871 (|#2| |#2|)) (-15 -4222 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (-15 -1976 ((-112) |#2|)) (-15 -2061 ((-171 |#2|) |#2|))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -1222)) -((-2061 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-171 *3)) (-5 *1 (-1222 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-1976 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1222 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-4233 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) (-4222 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) (-1849 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) (-4232 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-4232 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3)))))) -(-10 -7 (-15 -4232 (|#2| |#2|)) (-15 -4232 (|#2| |#2| (-1192))) (-15 -1849 (|#2| |#2|)) (-15 -1849 (|#2| |#2| (-1192))) (-15 -3871 (|#2| |#2|)) (-15 -4222 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (-15 -1976 ((-112) |#2|)) (-15 -2061 ((-171 |#2|) |#2|))) -((-1348 ((|#4| |#4| |#1|) 31)) (-3998 ((|#4| |#4| |#1|) 32))) -(((-1223 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1348 (|#4| |#4| |#1|)) (-15 -3998 (|#4| |#4| |#1|))) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1223)) -((-3998 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1223 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1348 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1223 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(-10 -7 (-15 -1348 (|#4| |#4| |#1|)) (-15 -3998 (|#4| |#4| |#1|))) -((-3542 ((|#2| |#2|) 148)) (-4310 ((|#2| |#2|) 145)) (-2719 ((|#2| |#2|) 136)) (-3913 ((|#2| |#2|) 133)) (-4438 ((|#2| |#2|) 141)) (-2346 ((|#2| |#2|) 129)) (-4384 ((|#2| |#2|) 44)) (-3164 ((|#2| |#2|) 105)) (-1889 ((|#2| |#2|) 88)) (-4360 ((|#2| |#2|) 143)) (-3171 ((|#2| |#2|) 131)) (-2701 ((|#2| |#2|) 153)) (-3220 ((|#2| |#2|) 151)) (-2373 ((|#2| |#2|) 152)) (-3265 ((|#2| |#2|) 150)) (-2254 ((|#2| |#2|) 163)) (-2774 ((|#2| |#2|) 30 (-12 (|has| |#2| (-624 (-903 |#1|))) (|has| |#2| (-897 |#1|)) (|has| |#1| (-624 (-903 |#1|))) (|has| |#1| (-897 |#1|))))) (-2567 ((|#2| |#2|) 89)) (-3167 ((|#2| |#2|) 154)) (-2138 ((|#2| |#2|) 155)) (-1821 ((|#2| |#2|) 142)) (-2964 ((|#2| |#2|) 130)) (-1762 ((|#2| |#2|) 149)) (-3185 ((|#2| |#2|) 147)) (-4048 ((|#2| |#2|) 137)) (-3023 ((|#2| |#2|) 135)) (-3390 ((|#2| |#2|) 139)) (-3346 ((|#2| |#2|) 127))) -(((-1224 |#1| |#2|) (-10 -7 (-15 -2138 (|#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -3164 (|#2| |#2|)) (-15 -4384 (|#2| |#2|)) (-15 -2567 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -3346 (|#2| |#2|)) (-15 -3390 (|#2| |#2|)) (-15 -4048 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -3171 (|#2| |#2|)) (-15 -4360 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -4438 (|#2| |#2|)) (-15 -2719 (|#2| |#2|)) (-15 -3542 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -4310 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3185 (|#2| |#2|)) (-15 -3265 (|#2| |#2|)) (-15 -3220 (|#2| |#2|)) (-15 -2373 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -2774 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-462) (-13 (-440 |#1|) (-1218))) (T -1224)) -((-2774 (*1 *2 *2) (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3220 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3265 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3185 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-4310 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3542 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2719 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-4438 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-4360 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3171 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2964 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-1762 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-4048 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3390 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3346 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3167 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2567 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-4384 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3164 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-1889 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2138 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218)))))) -(-10 -7 (-15 -2138 (|#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -3164 (|#2| |#2|)) (-15 -4384 (|#2| |#2|)) (-15 -2567 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -3346 (|#2| |#2|)) (-15 -3390 (|#2| |#2|)) (-15 -4048 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -3171 (|#2| |#2|)) (-15 -4360 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -4438 (|#2| |#2|)) (-15 -2719 (|#2| |#2|)) (-15 -3542 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -4310 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3185 (|#2| |#2|)) (-15 -3265 (|#2| |#2|)) (-15 -3220 (|#2| |#2|)) (-15 -2373 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -2774 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3522 (((-112) |#5| $) 68) (((-112) $) 110)) (-3885 ((|#5| |#5| $) 83)) (-2173 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3665 (((-654 |#5|) (-654 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1705 (((-3 $ "failed") (-654 |#5|)) 135)) (-2934 (((-3 $ "failed") $) 120)) (-1685 ((|#5| |#5| $) 102)) (-3369 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-4037 ((|#5| |#5| $) 106)) (-2881 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1426 (((-2 (|:| -1389 (-654 |#5|)) (|:| -1684 (-654 |#5|))) $) 63)) (-3762 (((-112) |#5| $) 66) (((-112) $) 111)) (-2968 ((|#4| $) 116)) (-3333 (((-3 |#5| "failed") $) 118)) (-3981 (((-654 |#5|) $) 55)) (-2397 (((-112) |#5| $) 75) (((-112) $) 115)) (-1576 ((|#5| |#5| $) 89)) (-2326 (((-112) $ $) 29)) (-1548 (((-112) |#5| $) 71) (((-112) $) 113)) (-3503 ((|#5| |#5| $) 86)) (-2924 (((-3 |#5| "failed") $) 117)) (-2115 (($ $ |#5|) 136)) (-3584 (((-781) $) 60)) (-2962 (($ (-654 |#5|)) 133)) (-1689 (($ $ |#4|) 131)) (-2639 (($ $ |#4|) 129)) (-4330 (($ $) 128)) (-2950 (((-872) $) NIL) (((-654 |#5|) $) 121)) (-2706 (((-781) $) 140)) (-2270 (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-1587 (((-112) $ (-1 (-112) |#5| (-654 |#5|))) 108)) (-1437 (((-654 |#4|) $) 123)) (-1469 (((-112) |#4| $) 126)) (-2985 (((-112) $ $) 20))) -(((-1225 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2706 ((-781) |#1|)) (-15 -2115 (|#1| |#1| |#5|)) (-15 -2173 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1469 ((-112) |#4| |#1|)) (-15 -1437 ((-654 |#4|) |#1|)) (-15 -2934 ((-3 |#1| "failed") |#1|)) (-15 -3333 ((-3 |#5| "failed") |#1|)) (-15 -2924 ((-3 |#5| "failed") |#1|)) (-15 -4037 (|#5| |#5| |#1|)) (-15 -4330 (|#1| |#1|)) (-15 -1685 (|#5| |#5| |#1|)) (-15 -1576 (|#5| |#5| |#1|)) (-15 -3503 (|#5| |#5| |#1|)) (-15 -3885 (|#5| |#5| |#1|)) (-15 -3665 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2881 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2397 ((-112) |#1|)) (-15 -1548 ((-112) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 -1587 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -2397 ((-112) |#5| |#1|)) (-15 -1548 ((-112) |#5| |#1|)) (-15 -3522 ((-112) |#5| |#1|)) (-15 -3369 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3762 ((-112) |#1|)) (-15 -3762 ((-112) |#5| |#1|)) (-15 -1426 ((-2 (|:| -1389 (-654 |#5|)) (|:| -1684 (-654 |#5|))) |#1|)) (-15 -3584 ((-781) |#1|)) (-15 -3981 ((-654 |#5|) |#1|)) (-15 -2270 ((-3 (-2 (|:| |bas| |#1|) (|:| -2011 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2270 ((-3 (-2 (|:| |bas| |#1|) (|:| -2011 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2326 ((-112) |#1| |#1|)) (-15 -1689 (|#1| |#1| |#4|)) (-15 -2639 (|#1| |#1| |#4|)) (-15 -2968 (|#4| |#1|)) (-15 -1705 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2950 ((-654 |#5|) |#1|)) (-15 -2962 (|#1| (-654 |#5|))) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2173 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-1226 |#2| |#3| |#4| |#5|) (-566) (-803) (-860) (-1080 |#2| |#3| |#4|)) (T -1225)) -NIL -(-10 -8 (-15 -2706 ((-781) |#1|)) (-15 -2115 (|#1| |#1| |#5|)) (-15 -2173 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1469 ((-112) |#4| |#1|)) (-15 -1437 ((-654 |#4|) |#1|)) (-15 -2934 ((-3 |#1| "failed") |#1|)) (-15 -3333 ((-3 |#5| "failed") |#1|)) (-15 -2924 ((-3 |#5| "failed") |#1|)) (-15 -4037 (|#5| |#5| |#1|)) (-15 -4330 (|#1| |#1|)) (-15 -1685 (|#5| |#5| |#1|)) (-15 -1576 (|#5| |#5| |#1|)) (-15 -3503 (|#5| |#5| |#1|)) (-15 -3885 (|#5| |#5| |#1|)) (-15 -3665 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2881 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2397 ((-112) |#1|)) (-15 -1548 ((-112) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 -1587 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -2397 ((-112) |#5| |#1|)) (-15 -1548 ((-112) |#5| |#1|)) (-15 -3522 ((-112) |#5| |#1|)) (-15 -3369 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3762 ((-112) |#1|)) (-15 -3762 ((-112) |#5| |#1|)) (-15 -1426 ((-2 (|:| -1389 (-654 |#5|)) (|:| -1684 (-654 |#5|))) |#1|)) (-15 -3584 ((-781) |#1|)) (-15 -3981 ((-654 |#5|) |#1|)) (-15 -2270 ((-3 (-2 (|:| |bas| |#1|) (|:| -2011 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2270 ((-3 (-2 (|:| |bas| |#1|) (|:| -2011 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2326 ((-112) |#1| |#1|)) (-15 -1689 (|#1| |#1| |#4|)) (-15 -2639 (|#1| |#1| |#4|)) (-15 -2968 (|#4| |#1|)) (-15 -1705 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2950 ((-654 |#5|) |#1|)) (-15 -2962 (|#1| (-654 |#5|))) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2173 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) -((-2863 (((-112) $ $) 7)) (-4205 (((-654 (-2 (|:| -1389 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) 86)) (-1721 (((-654 $) (-654 |#4|)) 87)) (-4349 (((-654 |#3|) $) 34)) (-3278 (((-112) $) 27)) (-3814 (((-112) $) 18 (|has| |#1| (-566)))) (-3522 (((-112) |#4| $) 102) (((-112) $) 98)) (-3885 ((|#4| |#4| $) 93)) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#3|) 28)) (-2818 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 80)) (-3831 (($) 46 T CONST)) (-4241 (((-112) $) 23 (|has| |#1| (-566)))) (-3297 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2860 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2450 (((-112) $) 26 (|has| |#1| (-566)))) (-3665 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4010 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1438 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2934 (((-3 $ "failed") $) 83)) (-1685 ((|#4| |#4| $) 90)) (-2560 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3369 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4037 ((|#4| |#4| $) 88)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1426 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) 106)) (-1873 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-3762 (((-112) |#4| $) 105) (((-112) $) 104)) (-2968 ((|#3| $) 35)) (-2224 (((-112) $ (-781)) 44)) (-2247 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) 48)) (-2740 (((-654 |#3|) $) 33)) (-2080 (((-112) |#3| $) 32)) (-3625 (((-112) $ (-781)) 43)) (-3945 (((-1174) $) 10)) (-3333 (((-3 |#4| "failed") $) 84)) (-3981 (((-654 |#4|) $) 108)) (-2397 (((-112) |#4| $) 100) (((-112) $) 96)) (-1576 ((|#4| |#4| $) 91)) (-2326 (((-112) $ $) 111)) (-3081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1548 (((-112) |#4| $) 101) (((-112) $) 97)) (-3503 ((|#4| |#4| $) 92)) (-3939 (((-1135) $) 11)) (-2924 (((-3 |#4| "failed") $) 85)) (-2294 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2200 (((-3 $ "failed") $ |#4|) 79)) (-2115 (($ $ |#4|) 78)) (-2000 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) 39)) (-2880 (((-112) $) 42)) (-2833 (($) 41)) (-3584 (((-781) $) 107)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1845 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-1689 (($ $ |#3|) 29)) (-2639 (($ $ |#3|) 31)) (-4330 (($ $) 89)) (-3386 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2706 (((-781) $) 77 (|has| |#3| (-377)))) (-3838 (((-112) $ $) 9)) (-2270 (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1587 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-1437 (((-654 |#3|) $) 82)) (-1469 (((-112) |#3| $) 81)) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) -(((-1226 |#1| |#2| |#3| |#4|) (-141) (-566) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -1226)) -((-2326 (*1 *2 *1 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-2270 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2011 (-654 *8)))) (-5 *3 (-654 *8)) (-4 *1 (-1226 *5 *6 *7 *8)))) (-2270 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2011 (-654 *9)))) (-5 *3 (-654 *9)) (-4 *1 (-1226 *6 *7 *8 *9)))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *6)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-781)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-2 (|:| -1389 (-654 *6)) (|:| -1684 (-654 *6)))))) (-3762 (*1 *2 *3 *1) (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-3369 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1226 *5 *6 *7 *3)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112)))) (-3522 (*1 *2 *3 *1) (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-1548 (*1 *2 *3 *1) (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-2397 (*1 *2 *3 *1) (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-1587 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1226 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-2881 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1226 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *2 (-1080 *5 *6 *7)))) (-3665 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1226 *5 *6 *7 *8)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)))) (-3885 (*1 *2 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-3503 (*1 *2 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-1576 (*1 *2 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-1685 (*1 *2 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-4330 (*1 *1 *1) (-12 (-4 *1 (-1226 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1080 *2 *3 *4)))) (-4037 (*1 *2 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1226 *4 *5 *6 *7)))) (-4205 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| -1389 *1) (|:| -1684 (-654 *7))))) (-5 *3 (-654 *7)) (-4 *1 (-1226 *4 *5 *6 *7)))) (-2924 (*1 *2 *1) (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-3333 (*1 *2 *1) (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-2934 (*1 *1 *1) (|partial| -12 (-4 *1 (-1226 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1080 *2 *3 *4)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5)))) (-1469 (*1 *2 *3 *1) (-12 (-4 *1 (-1226 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1080 *4 *5 *3)) (-5 *2 (-112)))) (-2173 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1226 *4 *5 *3 *2)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1080 *4 *5 *3)))) (-2200 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-2115 (*1 *1 *1 *2) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *5 (-377)) (-5 *2 (-781))))) -(-13 (-991 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -2326 ((-112) $ $)) (-15 -2270 ((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2270 ((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3981 ((-654 |t#4|) $)) (-15 -3584 ((-781) $)) (-15 -1426 ((-2 (|:| -1389 (-654 |t#4|)) (|:| -1684 (-654 |t#4|))) $)) (-15 -3762 ((-112) |t#4| $)) (-15 -3762 ((-112) $)) (-15 -3369 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3522 ((-112) |t#4| $)) (-15 -1548 ((-112) |t#4| $)) (-15 -2397 ((-112) |t#4| $)) (-15 -1587 ((-112) $ (-1 (-112) |t#4| (-654 |t#4|)))) (-15 -3522 ((-112) $)) (-15 -1548 ((-112) $)) (-15 -2397 ((-112) $)) (-15 -2881 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3665 ((-654 |t#4|) (-654 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3885 (|t#4| |t#4| $)) (-15 -3503 (|t#4| |t#4| $)) (-15 -1576 (|t#4| |t#4| $)) (-15 -1685 (|t#4| |t#4| $)) (-15 -4330 ($ $)) (-15 -4037 (|t#4| |t#4| $)) (-15 -1721 ((-654 $) (-654 |t#4|))) (-15 -4205 ((-654 (-2 (|:| -1389 $) (|:| -1684 (-654 |t#4|)))) (-654 |t#4|))) (-15 -2924 ((-3 |t#4| "failed") $)) (-15 -3333 ((-3 |t#4| "failed") $)) (-15 -2934 ((-3 $ "failed") $)) (-15 -1437 ((-654 |t#3|) $)) (-15 -1469 ((-112) |t#3| $)) (-15 -2173 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2200 ((-3 $ "failed") $ |t#4|)) (-15 -2115 ($ $ |t#4|)) (IF (|has| |t#3| (-377)) (-15 -2706 ((-781) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-991 |#1| |#2| |#3| |#4|) . T) ((-1115) . T) ((-1233) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 (-1192)) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-4025 (((-965 |#1|) $ (-781)) 17) (((-965 |#1|) $ (-781) (-781)) NIL)) (-3938 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-781) $ (-1192)) NIL) (((-781) $ (-1192) (-781)) NIL)) (-3372 (((-112) $) NIL)) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3257 (((-112) $) NIL)) (-4327 (($ $ (-654 (-1192)) (-654 (-541 (-1192)))) NIL) (($ $ (-1192) (-541 (-1192))) NIL) (($ |#1| (-541 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3112 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-1578 (($ $ (-1192)) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-2393 (($ (-1 $) (-1192) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2115 (($ $ (-781)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1618 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (($ $ (-1192) $) NIL) (($ $ (-654 (-1192)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3878 (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-3584 (((-541 (-1192)) $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-1192)) NIL) (($ (-965 |#1|)) NIL)) (-2930 ((|#1| $ (-541 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (((-965 |#1|) $ (-781)) NIL)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2427 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-3583 (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1227 |#1|) (-13 (-750 |#1| (-1192)) (-10 -8 (-15 -2930 ((-965 |#1|) $ (-781))) (-15 -2950 ($ (-1192))) (-15 -2950 ($ (-965 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ($ $ (-1192) |#1|)) (-15 -2393 ($ (-1 $) (-1192) |#1|))) |%noBranch|))) (-1064)) (T -1227)) -((-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-965 *4)) (-5 *1 (-1227 *4)) (-4 *4 (-1064)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1227 *3)) (-4 *3 (-1064)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-965 *3)) (-4 *3 (-1064)) (-5 *1 (-1227 *3)))) (-1578 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *1 (-1227 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)))) (-2393 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1227 *4))) (-5 *3 (-1192)) (-5 *1 (-1227 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1064))))) -(-13 (-750 |#1| (-1192)) (-10 -8 (-15 -2930 ((-965 |#1|) $ (-781))) (-15 -2950 ($ (-1192))) (-15 -2950 ($ (-965 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ($ $ (-1192) |#1|)) (-15 -2393 ($ (-1 $) (-1192) |#1|))) |%noBranch|))) -((-3695 (($ |#1| (-654 (-654 (-956 (-227)))) (-112)) 19)) (-1351 (((-112) $ (-112)) 18)) (-4003 (((-112) $) 17)) (-2062 (((-654 (-654 (-956 (-227)))) $) 13)) (-2711 ((|#1| $) 8)) (-3585 (((-112) $) 15))) -(((-1228 |#1|) (-10 -8 (-15 -2711 (|#1| $)) (-15 -2062 ((-654 (-654 (-956 (-227)))) $)) (-15 -3585 ((-112) $)) (-15 -4003 ((-112) $)) (-15 -1351 ((-112) $ (-112))) (-15 -3695 ($ |#1| (-654 (-654 (-956 (-227)))) (-112)))) (-989)) (T -1228)) -((-3695 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-112)) (-5 *1 (-1228 *2)) (-4 *2 (-989)))) (-1351 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-1228 *3)) (-4 *3 (-989)))) (-2711 (*1 *2 *1) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-989))))) -(-10 -8 (-15 -2711 (|#1| $)) (-15 -2062 ((-654 (-654 (-956 (-227)))) $)) (-15 -3585 ((-112) $)) (-15 -4003 ((-112) $)) (-15 -1351 ((-112) $ (-112))) (-15 -3695 ($ |#1| (-654 (-654 (-956 (-227)))) (-112)))) -((-3196 (((-956 (-227)) (-956 (-227))) 31)) (-3564 (((-956 (-227)) (-227) (-227) (-227) (-227)) 10)) (-1475 (((-654 (-956 (-227))) (-956 (-227)) (-956 (-227)) (-956 (-227)) (-227) (-654 (-654 (-227)))) 56)) (-3036 (((-227) (-956 (-227)) (-956 (-227))) 27)) (-4237 (((-956 (-227)) (-956 (-227)) (-956 (-227))) 28)) (-1758 (((-654 (-654 (-227))) (-574)) 44)) (-3089 (((-956 (-227)) (-956 (-227)) (-956 (-227))) 26)) (-3074 (((-956 (-227)) (-956 (-227)) (-956 (-227))) 24)) (* (((-956 (-227)) (-227) (-956 (-227))) 22))) -(((-1229) (-10 -7 (-15 -3564 ((-956 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-956 (-227)) (-227) (-956 (-227)))) (-15 -3074 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -3089 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -3036 ((-227) (-956 (-227)) (-956 (-227)))) (-15 -4237 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -3196 ((-956 (-227)) (-956 (-227)))) (-15 -1758 ((-654 (-654 (-227))) (-574))) (-15 -1475 ((-654 (-956 (-227))) (-956 (-227)) (-956 (-227)) (-956 (-227)) (-227) (-654 (-654 (-227))))))) (T -1229)) -((-1475 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 (-956 *4))) (-5 *1 (-1229)) (-5 *3 (-956 *4)))) (-1758 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1229)))) (-3196 (*1 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) (-4237 (*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) (-3036 (*1 *2 *3 *3) (-12 (-5 *3 (-956 (-227))) (-5 *2 (-227)) (-5 *1 (-1229)))) (-3089 (*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) (-3074 (*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-956 (-227))) (-5 *3 (-227)) (-5 *1 (-1229)))) (-3564 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)) (-5 *3 (-227))))) -(-10 -7 (-15 -3564 ((-956 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-956 (-227)) (-227) (-956 (-227)))) (-15 -3074 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -3089 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -3036 ((-227) (-956 (-227)) (-956 (-227)))) (-15 -4237 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -3196 ((-956 (-227)) (-956 (-227)))) (-15 -1758 ((-654 (-654 (-227))) (-574))) (-15 -1475 ((-654 (-956 (-227))) (-956 (-227)) (-956 (-227)) (-956 (-227)) (-227) (-654 (-654 (-227)))))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2173 ((|#1| $ (-781)) 18)) (-4108 (((-781) $) 13)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2950 (((-971 |#1|) $) 12) (($ (-971 |#1|)) 11) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2985 (((-112) $ $) 22 (|has| |#1| (-1115))))) -(((-1230 |#1|) (-13 (-500 (-971 |#1|)) (-10 -8 (-15 -2173 (|#1| $ (-781))) (-15 -4108 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) (-1233)) (T -1230)) -((-2173 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-1230 *2)) (-4 *2 (-1233)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1230 *3)) (-4 *3 (-1233))))) -(-13 (-500 (-971 |#1|)) (-10 -8 (-15 -2173 (|#1| $ (-781))) (-15 -4108 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) -((-2185 (((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)) (-574)) 94)) (-1540 (((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|))) 86)) (-2075 (((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|))) 70))) -(((-1231 |#1|) (-10 -7 (-15 -1540 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)))) (-15 -2075 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)))) (-15 -2185 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)) (-574)))) (-358)) (T -1231)) -((-2185 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1188 (-1188 *5)))) (-5 *1 (-1231 *5)) (-5 *3 (-1188 (-1188 *5))))) (-2075 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1188 (-1188 *4)))) (-5 *1 (-1231 *4)) (-5 *3 (-1188 (-1188 *4))))) (-1540 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1188 (-1188 *4)))) (-5 *1 (-1231 *4)) (-5 *3 (-1188 (-1188 *4)))))) -(-10 -7 (-15 -1540 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)))) (-15 -2075 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)))) (-15 -2185 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)) (-574)))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 9) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1232) (-1098)) (T -1232)) -NIL -(-1098) -NIL -(((-1233) (-141)) (T -1233)) -NIL -(-13 (-10 -7 (-6 -3494))) -((-2928 (((-112)) 18)) (-2255 (((-1288) (-654 |#1|) (-654 |#1|)) 22) (((-1288) (-654 |#1|)) 23)) (-2224 (((-112) |#1| |#1|) 37 (|has| |#1| (-860)))) (-3625 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-3587 ((|#1| (-654 |#1|)) 38 (|has| |#1| (-860))) ((|#1| (-654 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-4094 (((-2 (|:| -3163 (-654 |#1|)) (|:| -3701 (-654 |#1|)))) 20))) -(((-1234 |#1|) (-10 -7 (-15 -2255 ((-1288) (-654 |#1|))) (-15 -2255 ((-1288) (-654 |#1|) (-654 |#1|))) (-15 -4094 ((-2 (|:| -3163 (-654 |#1|)) (|:| -3701 (-654 |#1|))))) (-15 -3625 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3625 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3587 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2928 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -3587 (|#1| (-654 |#1|))) (-15 -2224 ((-112) |#1| |#1|))) |%noBranch|)) (-1115)) (T -1234)) -((-2224 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-860)) (-4 *3 (-1115)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-860)) (-5 *1 (-1234 *2)))) (-2928 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1115)))) (-3587 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1234 *2)) (-4 *2 (-1115)))) (-3625 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1115)) (-5 *2 (-112)) (-5 *1 (-1234 *3)))) (-3625 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1115)))) (-4094 (*1 *2) (-12 (-5 *2 (-2 (|:| -3163 (-654 *3)) (|:| -3701 (-654 *3)))) (-5 *1 (-1234 *3)) (-4 *3 (-1115)))) (-2255 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-5 *2 (-1288)) (-5 *1 (-1234 *4)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-5 *2 (-1288)) (-5 *1 (-1234 *4))))) -(-10 -7 (-15 -2255 ((-1288) (-654 |#1|))) (-15 -2255 ((-1288) (-654 |#1|) (-654 |#1|))) (-15 -4094 ((-2 (|:| -3163 (-654 |#1|)) (|:| -3701 (-654 |#1|))))) (-15 -3625 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3625 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3587 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2928 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -3587 (|#1| (-654 |#1|))) (-15 -2224 ((-112) |#1| |#1|))) |%noBranch|)) -((-4407 (((-1288) (-654 (-1192)) (-654 (-1192))) 14) (((-1288) (-654 (-1192))) 12)) (-2004 (((-1288)) 16)) (-3308 (((-2 (|:| -3701 (-654 (-1192))) (|:| -3163 (-654 (-1192))))) 20))) -(((-1235) (-10 -7 (-15 -4407 ((-1288) (-654 (-1192)))) (-15 -4407 ((-1288) (-654 (-1192)) (-654 (-1192)))) (-15 -3308 ((-2 (|:| -3701 (-654 (-1192))) (|:| -3163 (-654 (-1192)))))) (-15 -2004 ((-1288))))) (T -1235)) -((-2004 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1235)))) (-3308 (*1 *2) (-12 (-5 *2 (-2 (|:| -3701 (-654 (-1192))) (|:| -3163 (-654 (-1192))))) (-5 *1 (-1235)))) (-4407 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1235)))) (-4407 (*1 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1235))))) -(-10 -7 (-15 -4407 ((-1288) (-654 (-1192)))) (-15 -4407 ((-1288) (-654 (-1192)) (-654 (-1192)))) (-15 -3308 ((-2 (|:| -3701 (-654 (-1192))) (|:| -3163 (-654 (-1192)))))) (-15 -2004 ((-1288)))) -((-3296 (($ $) 17)) (-1782 (((-112) $) 28))) -(((-1236 |#1|) (-10 -8 (-15 -3296 (|#1| |#1|)) (-15 -1782 ((-112) |#1|))) (-1237)) (T -1236)) -NIL -(-10 -8 (-15 -3296 (|#1| |#1|)) (-15 -1782 ((-112) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 57)) (-3954 (((-428 $) $) 58)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-1782 (((-112) $) 59)) (-3372 (((-112) $) 35)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-4200 (((-428 $) $) 56)) (-2852 (((-3 $ "failed") $ $) 48)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-1237) (-141)) (T -1237)) -((-1782 (*1 *2 *1) (-12 (-4 *1 (-1237)) (-5 *2 (-112)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1237)))) (-3296 (*1 *1 *1) (-4 *1 (-1237))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1237))))) -(-13 (-462) (-10 -8 (-15 -1782 ((-112) $)) (-15 -3954 ((-428 $) $)) (-15 -3296 ($ $)) (-15 -4200 ((-428 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3831 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-1593 (($ $ $) NIL) (($) NIL T CONST)) (-3271 (((-934) $) NIL)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-1763 (($ $ $) NIL)) (-1752 (($ $ $) NIL)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) -(((-1238) (-13 (-854) (-10 -8 (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715)))) (T -1238)) -((-1752 (*1 *1 *1 *1) (-5 *1 (-1238))) (-1763 (*1 *1 *1 *1) (-5 *1 (-1238))) (-3831 (*1 *1) (-5 *1 (-1238)))) -(-13 (-854) (-10 -8 (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715))) +((-3213 ((|#1| (-654 |#1|)) 46)) (-1781 ((|#1| |#1| (-574)) 24)) (-1763 (((-1189 |#1|) |#1| (-935)) 20))) +(((-1208 |#1|) (-10 -7 (-15 -3213 (|#1| (-654 |#1|))) (-15 -1763 ((-1189 |#1|) |#1| (-935))) (-15 -1781 (|#1| |#1| (-574)))) (-372)) (T -1208)) +((-1781 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1208 *2)) (-4 *2 (-372)))) (-1763 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-5 *2 (-1189 *3)) (-5 *1 (-1208 *3)) (-4 *3 (-372)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1208 *2)) (-4 *2 (-372))))) +(-10 -7 (-15 -3213 (|#1| (-654 |#1|))) (-15 -1763 ((-1189 |#1|) |#1| (-935))) (-15 -1781 (|#1| |#1| (-574)))) +((-3752 (($) 10) (($ (-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)))) 14)) (-2424 (($ (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) 39) (((-654 |#3|) $) 41)) (-2462 (($ (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1785 (($ (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2375 (((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) 60)) (-3285 (($ (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) 16)) (-1393 (((-654 |#2|) $) 19)) (-1506 (((-112) |#2| $) 65)) (-2183 (((-3 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) "failed") (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) 64)) (-3801 (((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) 69)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2315 (((-654 |#3|) $) 43)) (-2207 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) NIL) (((-781) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) NIL) (((-781) |#3| $) NIL) (((-781) (-1 (-112) |#3|) $) 79)) (-2951 (((-872) $) 27)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2986 (((-112) $ $) 51))) +(((-1209 |#1| |#2| |#3|) (-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -1785 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3752 (|#1| (-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))))) (-15 -3752 (|#1|)) (-15 -1785 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2462 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3449 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1871 ((-654 |#3|) |#1|)) (-15 -3949 ((-781) |#3| |#1|)) (-15 -2207 (|#3| |#1| |#2| |#3|)) (-15 -2207 (|#3| |#1| |#2|)) (-15 -2315 ((-654 |#3|) |#1|)) (-15 -1506 ((-112) |#2| |#1|)) (-15 -1393 ((-654 |#2|) |#1|)) (-15 -2424 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2424 (|#1| (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2424 (|#1| (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -2183 ((-3 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) "failed") (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2375 ((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3285 (|#1| (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3801 ((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3949 ((-781) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -1871 ((-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -3949 ((-781) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -3449 ((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2020 ((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2462 (|#1| (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -1785 (|#1| (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|))) (-1210 |#2| |#3|) (-1116) (-1116)) (T -1209)) +NIL +(-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -1785 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3752 (|#1| (-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))))) (-15 -3752 (|#1|)) (-15 -1785 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2462 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2020 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3449 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1871 ((-654 |#3|) |#1|)) (-15 -3949 ((-781) |#3| |#1|)) (-15 -2207 (|#3| |#1| |#2| |#3|)) (-15 -2207 (|#3| |#1| |#2|)) (-15 -2315 ((-654 |#3|) |#1|)) (-15 -1506 ((-112) |#2| |#1|)) (-15 -1393 ((-654 |#2|) |#1|)) (-15 -2424 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2424 (|#1| (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2424 (|#1| (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -2183 ((-3 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) "failed") (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2375 ((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3285 (|#1| (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3801 ((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3949 ((-781) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -1871 ((-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -3949 ((-781) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -3449 ((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2020 ((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2462 (|#1| (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -1785 (|#1| (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|))) +((-2864 (((-112) $ $) 19 (-2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3752 (($) 73) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 72)) (-2985 (((-1289) $ |#1| |#1|) 100 (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) 8)) (-3135 ((|#2| $ |#1| |#2|) 74)) (-1923 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 46 (|has| $ (-6 -4459)))) (-2172 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 56 (|has| $ (-6 -4459)))) (-2171 (((-3 |#2| "failed") |#1| $) 62)) (-3250 (($) 7 T CONST)) (-2804 (($ $) 59 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))))) (-2424 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 47 (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 63)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 55 (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 57 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 54 (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 53 (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) 89)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 31 (|has| $ (-6 -4459))) (((-654 |#2|) $) 80 (|has| $ (-6 -4459)))) (-2189 (((-112) $ (-781)) 9)) (-3429 ((|#1| $) 97 (|has| |#1| (-860)))) (-2036 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 30 (|has| $ (-6 -4459))) (((-654 |#2|) $) 81 (|has| $ (-6 -4459)))) (-4134 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-1698 ((|#1| $) 96 (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 35 (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-1653 (((-112) $ (-781)) 10)) (-1489 (((-1175) $) 22 (-2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-1771 (((-654 |#1|) $) 64)) (-2229 (((-112) |#1| $) 65)) (-2375 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 40)) (-3285 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 41)) (-1393 (((-654 |#1|) $) 94)) (-1506 (((-112) |#1| $) 93)) (-3940 (((-1136) $) 21 (-2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2925 ((|#2| $) 98 (|has| |#1| (-860)))) (-2183 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 52)) (-1822 (($ $ |#2|) 99 (|has| $ (-6 -4460)))) (-3801 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 42)) (-3449 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 33 (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) 27 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 26 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 25 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 24 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2315 (((-654 |#2|) $) 92)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3162 (($) 50) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 49)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 32 (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4459)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 51)) (-2951 (((-872) $) 18 (-2833 (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872)))))) (-4069 (((-112) $ $) 23 (-2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2829 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 43)) (-2020 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 34 (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (-2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-1210 |#1| |#2|) (-141) (-1116) (-1116)) (T -1210)) +((-3135 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))) (-3752 (*1 *1) (-12 (-4 *1 (-1210 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3667 *3) (|:| -1916 *4)))) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *1 (-1210 *3 *4)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116))))) +(-13 (-620 |t#1| |t#2|) (-614 |t#1| |t#2|) (-10 -8 (-15 -3135 (|t#2| $ |t#1| |t#2|)) (-15 -3752 ($)) (-15 -3752 ($ (-654 (-2 (|:| -3667 |t#1|) (|:| -1916 |t#2|))))) (-15 -1785 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((-102) -2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-623 (-872)) -2833 (|has| |#2| (-1116)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-499 #0#) . T) ((-499 |#2|) . T) ((-614 |#1| |#2|) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-620 |#1| |#2|) . T) ((-1116) -2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-1234) . T)) +((-3903 (((-112)) 29)) (-2302 (((-1289) (-1175)) 31)) (-2370 (((-112)) 41)) (-1796 (((-1289)) 39)) (-3530 (((-1289) (-1175) (-1175)) 30)) (-1733 (((-112)) 42)) (-3285 (((-1289) |#1| |#2|) 53)) (-1930 (((-1289)) 26)) (-2794 (((-3 |#2| "failed") |#1|) 51)) (-2054 (((-1289)) 40))) +(((-1211 |#1| |#2|) (-10 -7 (-15 -1930 ((-1289))) (-15 -3530 ((-1289) (-1175) (-1175))) (-15 -2302 ((-1289) (-1175))) (-15 -1796 ((-1289))) (-15 -2054 ((-1289))) (-15 -3903 ((-112))) (-15 -2370 ((-112))) (-15 -1733 ((-112))) (-15 -2794 ((-3 |#2| "failed") |#1|)) (-15 -3285 ((-1289) |#1| |#2|))) (-1116) (-1116)) (T -1211)) +((-3285 (*1 *2 *3 *4) (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-2794 (*1 *2 *3) (|partial| -12 (-4 *2 (-1116)) (-5 *1 (-1211 *3 *2)) (-4 *3 (-1116)))) (-1733 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-2370 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-3903 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-2054 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-1796 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1211 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116)))) (-3530 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1211 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116)))) (-1930 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116))))) +(-10 -7 (-15 -1930 ((-1289))) (-15 -3530 ((-1289) (-1175) (-1175))) (-15 -2302 ((-1289) (-1175))) (-15 -1796 ((-1289))) (-15 -2054 ((-1289))) (-15 -3903 ((-112))) (-15 -2370 ((-112))) (-15 -1733 ((-112))) (-15 -2794 ((-3 |#2| "failed") |#1|)) (-15 -3285 ((-1289) |#1| |#2|))) +((-1363 (((-1175) (-1175)) 22)) (-2145 (((-52) (-1175)) 25))) +(((-1212) (-10 -7 (-15 -2145 ((-52) (-1175))) (-15 -1363 ((-1175) (-1175))))) (T -1212)) +((-1363 (*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1212)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-1212))))) +(-10 -7 (-15 -2145 ((-52) (-1175))) (-15 -1363 ((-1175) (-1175)))) +((-2951 (((-1214) |#1|) 11))) +(((-1213 |#1|) (-10 -7 (-15 -2951 ((-1214) |#1|))) (-1116)) (T -1213)) +((-2951 (*1 *2 *3) (-12 (-5 *2 (-1214)) (-5 *1 (-1213 *3)) (-4 *3 (-1116))))) +(-10 -7 (-15 -2951 ((-1214) |#1|))) +((-2864 (((-112) $ $) NIL)) (-3871 (((-654 (-1175)) $) 39)) (-3110 (((-654 (-1175)) $ (-654 (-1175))) 42)) (-3493 (((-654 (-1175)) $ (-654 (-1175))) 41)) (-3492 (((-654 (-1175)) $ (-654 (-1175))) 43)) (-2110 (((-654 (-1175)) $) 38)) (-3764 (($) 28)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4156 (((-654 (-1175)) $) 40)) (-1414 (((-1289) $ (-574)) 35) (((-1289) $) 36)) (-1844 (($ (-872) (-574)) 33) (($ (-872) (-574) (-872)) NIL)) (-2951 (((-872) $) 49) (($ (-872)) 32)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1214) (-13 (-1116) (-626 (-872)) (-10 -8 (-15 -1844 ($ (-872) (-574))) (-15 -1844 ($ (-872) (-574) (-872))) (-15 -1414 ((-1289) $ (-574))) (-15 -1414 ((-1289) $)) (-15 -4156 ((-654 (-1175)) $)) (-15 -3871 ((-654 (-1175)) $)) (-15 -3764 ($)) (-15 -2110 ((-654 (-1175)) $)) (-15 -3492 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -3110 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -3493 ((-654 (-1175)) $ (-654 (-1175))))))) (T -1214)) +((-1844 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1214)))) (-1844 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1214)))) (-1414 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1214)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1214)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))) (-3764 (*1 *1) (-5 *1 (-1214))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))) (-3492 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))) (-3110 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))) (-3493 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214))))) +(-13 (-1116) (-626 (-872)) (-10 -8 (-15 -1844 ($ (-872) (-574))) (-15 -1844 ($ (-872) (-574) (-872))) (-15 -1414 ((-1289) $ (-574))) (-15 -1414 ((-1289) $)) (-15 -4156 ((-654 (-1175)) $)) (-15 -3871 ((-654 (-1175)) $)) (-15 -3764 ($)) (-15 -2110 ((-654 (-1175)) $)) (-15 -3492 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -3110 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -3493 ((-654 (-1175)) $ (-654 (-1175)))))) +((-2864 (((-112) $ $) NIL)) (-2596 (((-1175) $ (-1175)) 17) (((-1175) $) 16)) (-4048 (((-1175) $ (-1175)) 15)) (-3538 (($ $ (-1175)) NIL)) (-1571 (((-3 (-1175) "failed") $) 11)) (-2081 (((-1175) $) 8)) (-4157 (((-3 (-1175) "failed") $) 12)) (-3991 (((-1175) $) 9)) (-1684 (($ (-398)) NIL) (($ (-398) (-1175)) NIL)) (-2039 (((-398) $) NIL)) (-1489 (((-1175) $) NIL)) (-2082 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4145 (((-112) $) 21)) (-2951 (((-872) $) NIL)) (-1731 (($ $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1215) (-13 (-373 (-398) (-1175)) (-10 -8 (-15 -2596 ((-1175) $ (-1175))) (-15 -2596 ((-1175) $)) (-15 -2081 ((-1175) $)) (-15 -1571 ((-3 (-1175) "failed") $)) (-15 -4157 ((-3 (-1175) "failed") $)) (-15 -4145 ((-112) $))))) (T -1215)) +((-2596 (*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1215)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1215)))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1215)))) (-1571 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-1215)))) (-4157 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-1215)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215))))) +(-13 (-373 (-398) (-1175)) (-10 -8 (-15 -2596 ((-1175) $ (-1175))) (-15 -2596 ((-1175) $)) (-15 -2081 ((-1175) $)) (-15 -1571 ((-3 (-1175) "failed") $)) (-15 -4157 ((-3 (-1175) "failed") $)) (-15 -4145 ((-112) $)))) +((-2472 (((-3 (-574) "failed") |#1|) 19)) (-2388 (((-3 (-574) "failed") |#1|) 14)) (-2466 (((-574) (-1175)) 33))) +(((-1216 |#1|) (-10 -7 (-15 -2472 ((-3 (-574) "failed") |#1|)) (-15 -2388 ((-3 (-574) "failed") |#1|)) (-15 -2466 ((-574) (-1175)))) (-1065)) (T -1216)) +((-2466 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-574)) (-5 *1 (-1216 *4)) (-4 *4 (-1065)))) (-2388 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1216 *3)) (-4 *3 (-1065)))) (-2472 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1216 *3)) (-4 *3 (-1065))))) +(-10 -7 (-15 -2472 ((-3 (-574) "failed") |#1|)) (-15 -2388 ((-3 (-574) "failed") |#1|)) (-15 -2466 ((-574) (-1175)))) +((-2892 (((-1149 (-227))) 9))) +(((-1217) (-10 -7 (-15 -2892 ((-1149 (-227)))))) (T -1217)) +((-2892 (*1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1217))))) +(-10 -7 (-15 -2892 ((-1149 (-227))))) +((-3004 (($) 12)) (-2456 (($ $) 36)) (-2429 (($ $) 34)) (-2301 (($ $) 26)) (-2480 (($ $) 18)) (-2536 (($ $) 16)) (-2468 (($ $) 20)) (-2330 (($ $) 31)) (-2443 (($ $) 35)) (-2312 (($ $) 30))) +(((-1218 |#1|) (-10 -8 (-15 -3004 (|#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2312 (|#1| |#1|))) (-1219)) (T -1218)) +NIL +(-10 -8 (-15 -3004 (|#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2312 (|#1| |#1|))) +((-2379 (($ $) 26)) (-2258 (($ $) 11)) (-2358 (($ $) 27)) (-2235 (($ $) 10)) (-2404 (($ $) 28)) (-2280 (($ $) 9)) (-3004 (($) 16)) (-3113 (($ $) 19)) (-1617 (($ $) 18)) (-2417 (($ $) 29)) (-2289 (($ $) 8)) (-2390 (($ $) 30)) (-2269 (($ $) 7)) (-2368 (($ $) 31)) (-2247 (($ $) 6)) (-2456 (($ $) 20)) (-2320 (($ $) 32)) (-2429 (($ $) 21)) (-2301 (($ $) 33)) (-2480 (($ $) 22)) (-2340 (($ $) 34)) (-2536 (($ $) 23)) (-2349 (($ $) 35)) (-2468 (($ $) 24)) (-2330 (($ $) 36)) (-2443 (($ $) 25)) (-2312 (($ $) 37)) (** (($ $ $) 17))) +(((-1219) (-141)) (T -1219)) +((-3004 (*1 *1) (-4 *1 (-1219)))) +(-13 (-1222) (-95) (-503) (-35) (-292) (-10 -8 (-15 -3004 ($)))) +(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-1222) . T)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) 19)) (-2590 (($ |#1| (-654 $)) 28) (($ (-654 |#1|)) 35) (($ |#1|) 30)) (-3146 (((-112) $ (-781)) 72)) (-4433 ((|#1| $ |#1|) 14 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) 13 (|has| $ (-6 -4460)))) (-3250 (($) NIL T CONST)) (-1871 (((-654 |#1|) $) 77 (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) 64)) (-2622 (((-112) $ $) 50 (|has| |#1| (-1116)))) (-2189 (((-112) $ (-781)) 62)) (-2036 (((-654 |#1|) $) 78 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 27)) (-1653 (((-112) $ (-781)) 60)) (-3483 (((-654 |#1|) $) 55)) (-1580 (((-112) $) 53)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-3449 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 107)) (-2754 (((-112) $) 9)) (-3336 (($) 10)) (-2207 ((|#1| $ "value") NIL)) (-3615 (((-574) $ $) 48)) (-4032 (((-654 $) $) 89)) (-2211 (((-112) $ $) 110)) (-1816 (((-654 $) $) 105)) (-1688 (($ $) 106)) (-3911 (((-112) $) 84)) (-3949 (((-781) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4459))) (((-781) |#1| $) 17 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 88)) (-2951 (((-872) $) 91 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) 12)) (-4208 (((-112) $ $) 39 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 37 (|has| |#1| (-1116)))) (-2877 (((-781) $) 58 (|has| $ (-6 -4459))))) +(((-1220 |#1|) (-13 (-1026 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -2590 ($ |#1| (-654 $))) (-15 -2590 ($ (-654 |#1|))) (-15 -2590 ($ |#1|)) (-15 -3911 ((-112) $)) (-15 -1688 ($ $)) (-15 -1816 ((-654 $) $)) (-15 -2211 ((-112) $ $)) (-15 -4032 ((-654 $) $)))) (-1116)) (T -1220)) +((-3911 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1116)))) (-2590 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1220 *2))) (-5 *1 (-1220 *2)) (-4 *2 (-1116)))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-1220 *3)))) (-2590 (*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1116)))) (-1688 (*1 *1 *1) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1116)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-654 (-1220 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1116)))) (-2211 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1116)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-654 (-1220 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1116))))) +(-13 (-1026 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -2590 ($ |#1| (-654 $))) (-15 -2590 ($ (-654 |#1|))) (-15 -2590 ($ |#1|)) (-15 -3911 ((-112) $)) (-15 -1688 ($ $)) (-15 -1816 ((-654 $) $)) (-15 -2211 ((-112) $ $)) (-15 -4032 ((-654 $) $)))) +((-2258 (($ $) 15)) (-2280 (($ $) 12)) (-2289 (($ $) 10)) (-2269 (($ $) 17))) +(((-1221 |#1|) (-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -2258 (|#1| |#1|))) (-1222)) (T -1221)) +NIL +(-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -2258 (|#1| |#1|))) +((-2258 (($ $) 11)) (-2235 (($ $) 10)) (-2280 (($ $) 9)) (-2289 (($ $) 8)) (-2269 (($ $) 7)) (-2247 (($ $) 6))) +(((-1222) (-141)) (T -1222)) +((-2258 (*1 *1 *1) (-4 *1 (-1222))) (-2235 (*1 *1 *1) (-4 *1 (-1222))) (-2280 (*1 *1 *1) (-4 *1 (-1222))) (-2289 (*1 *1 *1) (-4 *1 (-1222))) (-2269 (*1 *1 *1) (-4 *1 (-1222))) (-2247 (*1 *1 *1) (-4 *1 (-1222)))) +(-13 (-10 -8 (-15 -2247 ($ $)) (-15 -2269 ($ $)) (-15 -2289 ($ $)) (-15 -2280 ($ $)) (-15 -2235 ($ $)) (-15 -2258 ($ $)))) +((-3804 ((|#2| |#2|) 98)) (-1980 (((-112) |#2|) 29)) (-4223 ((|#2| |#2|) 33)) (-4234 ((|#2| |#2|) 35)) (-2139 ((|#2| |#2| (-1193)) 92) ((|#2| |#2|) 93)) (-2901 (((-171 |#2|) |#2|) 31)) (-2638 ((|#2| |#2| (-1193)) 94) ((|#2| |#2|) 95))) +(((-1223 |#1| |#2|) (-10 -7 (-15 -2139 (|#2| |#2|)) (-15 -2139 (|#2| |#2| (-1193))) (-15 -2638 (|#2| |#2|)) (-15 -2638 (|#2| |#2| (-1193))) (-15 -3804 (|#2| |#2|)) (-15 -4223 (|#2| |#2|)) (-15 -4234 (|#2| |#2|)) (-15 -1980 ((-112) |#2|)) (-15 -2901 ((-171 |#2|) |#2|))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -1223)) +((-2901 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-171 *3)) (-5 *1 (-1223 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-1980 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1223 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-4234 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) (-4223 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) (-2638 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) (-2139 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-2139 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3)))))) +(-10 -7 (-15 -2139 (|#2| |#2|)) (-15 -2139 (|#2| |#2| (-1193))) (-15 -2638 (|#2| |#2|)) (-15 -2638 (|#2| |#2| (-1193))) (-15 -3804 (|#2| |#2|)) (-15 -4223 (|#2| |#2|)) (-15 -4234 (|#2| |#2|)) (-15 -1980 ((-112) |#2|)) (-15 -2901 ((-171 |#2|) |#2|))) +((-3243 ((|#4| |#4| |#1|) 31)) (-2908 ((|#4| |#4| |#1|) 32))) +(((-1224 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3243 (|#4| |#4| |#1|)) (-15 -2908 (|#4| |#4| |#1|))) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1224)) +((-2908 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1224 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3243 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1224 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(-10 -7 (-15 -3243 (|#4| |#4| |#1|)) (-15 -2908 (|#4| |#4| |#1|))) +((-2052 ((|#2| |#2|) 148)) (-3875 ((|#2| |#2|) 145)) (-3072 ((|#2| |#2|) 136)) (-3283 ((|#2| |#2|) 133)) (-2588 ((|#2| |#2|) 141)) (-2796 ((|#2| |#2|) 129)) (-4117 ((|#2| |#2|) 44)) (-2509 ((|#2| |#2|) 105)) (-1539 ((|#2| |#2|) 88)) (-2230 ((|#2| |#2|) 143)) (-1373 ((|#2| |#2|) 131)) (-1526 ((|#2| |#2|) 153)) (-3488 ((|#2| |#2|) 151)) (-3765 ((|#2| |#2|) 152)) (-3297 ((|#2| |#2|) 150)) (-3618 ((|#2| |#2|) 163)) (-2529 ((|#2| |#2|) 30 (-12 (|has| |#2| (-624 (-903 |#1|))) (|has| |#2| (-897 |#1|)) (|has| |#1| (-624 (-903 |#1|))) (|has| |#1| (-897 |#1|))))) (-2571 ((|#2| |#2|) 89)) (-1605 ((|#2| |#2|) 154)) (-2136 ((|#2| |#2|) 155)) (-1534 ((|#2| |#2|) 142)) (-3167 ((|#2| |#2|) 130)) (-1338 ((|#2| |#2|) 149)) (-3362 ((|#2| |#2|) 147)) (-3138 ((|#2| |#2|) 137)) (-3191 ((|#2| |#2|) 135)) (-2599 ((|#2| |#2|) 139)) (-2175 ((|#2| |#2|) 127))) +(((-1225 |#1| |#2|) (-10 -7 (-15 -2136 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -3618 (|#2| |#2|)) (-15 -2509 (|#2| |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -2571 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -2599 (|#2| |#2|)) (-15 -3138 (|#2| |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2588 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -2052 (|#2| |#2|)) (-15 -3283 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3191 (|#2| |#2|)) (-15 -3362 (|#2| |#2|)) (-15 -3297 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -2529 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-462) (-13 (-440 |#1|) (-1219))) (T -1225)) +((-2529 (*1 *2 *2) (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3297 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3362 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3191 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3283 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2052 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3072 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2588 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3167 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1338 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3138 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2599 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2175 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2571 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2509 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2136 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219)))))) +(-10 -7 (-15 -2136 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -3618 (|#2| |#2|)) (-15 -2509 (|#2| |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -2571 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -2599 (|#2| |#2|)) (-15 -3138 (|#2| |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2588 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -2052 (|#2| |#2|)) (-15 -3283 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3191 (|#2| |#2|)) (-15 -3362 (|#2| |#2|)) (-15 -3297 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -2529 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2972 (((-112) |#5| $) 68) (((-112) $) 110)) (-2104 ((|#5| |#5| $) 83)) (-2172 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4434 (((-654 |#5|) (-654 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1704 (((-3 $ "failed") (-654 |#5|)) 135)) (-2935 (((-3 $ "failed") $) 120)) (-2660 ((|#5| |#5| $) 102)) (-1857 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3347 ((|#5| |#5| $) 106)) (-2882 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-2830 (((-2 (|:| -1390 (-654 |#5|)) (|:| -1684 (-654 |#5|))) $) 63)) (-3145 (((-112) |#5| $) 66) (((-112) $) 111)) (-4241 ((|#4| $) 116)) (-3334 (((-3 |#5| "failed") $) 118)) (-1957 (((-654 |#5|) $) 55)) (-3749 (((-112) |#5| $) 75) (((-112) $) 115)) (-2254 ((|#5| |#5| $) 89)) (-3877 (((-112) $ $) 29)) (-2712 (((-112) |#5| $) 71) (((-112) $) 113)) (-3173 ((|#5| |#5| $) 86)) (-2925 (((-3 |#5| "failed") $) 117)) (-2433 (($ $ |#5|) 136)) (-3580 (((-781) $) 60)) (-2963 (($ (-654 |#5|)) 133)) (-1423 (($ $ |#4|) 131)) (-1671 (($ $ |#4|) 129)) (-2167 (($ $) 128)) (-2951 (((-872) $) NIL) (((-654 |#5|) $) 121)) (-2105 (((-781) $) 140)) (-3917 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3912 (((-112) $ (-1 (-112) |#5| (-654 |#5|))) 108)) (-1642 (((-654 |#4|) $) 123)) (-3504 (((-112) |#4| $) 126)) (-2986 (((-112) $ $) 20))) +(((-1226 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2105 ((-781) |#1|)) (-15 -2433 (|#1| |#1| |#5|)) (-15 -2172 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3504 ((-112) |#4| |#1|)) (-15 -1642 ((-654 |#4|) |#1|)) (-15 -2935 ((-3 |#1| "failed") |#1|)) (-15 -3334 ((-3 |#5| "failed") |#1|)) (-15 -2925 ((-3 |#5| "failed") |#1|)) (-15 -3347 (|#5| |#5| |#1|)) (-15 -2167 (|#1| |#1|)) (-15 -2660 (|#5| |#5| |#1|)) (-15 -2254 (|#5| |#5| |#1|)) (-15 -3173 (|#5| |#5| |#1|)) (-15 -2104 (|#5| |#5| |#1|)) (-15 -4434 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2882 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3749 ((-112) |#1|)) (-15 -2712 ((-112) |#1|)) (-15 -2972 ((-112) |#1|)) (-15 -3912 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -3749 ((-112) |#5| |#1|)) (-15 -2712 ((-112) |#5| |#1|)) (-15 -2972 ((-112) |#5| |#1|)) (-15 -1857 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3145 ((-112) |#1|)) (-15 -3145 ((-112) |#5| |#1|)) (-15 -2830 ((-2 (|:| -1390 (-654 |#5|)) (|:| -1684 (-654 |#5|))) |#1|)) (-15 -3580 ((-781) |#1|)) (-15 -1957 ((-654 |#5|) |#1|)) (-15 -3917 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3917 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3877 ((-112) |#1| |#1|)) (-15 -1423 (|#1| |#1| |#4|)) (-15 -1671 (|#1| |#1| |#4|)) (-15 -4241 (|#4| |#1|)) (-15 -1704 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2951 ((-654 |#5|) |#1|)) (-15 -2963 (|#1| (-654 |#5|))) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2172 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-1227 |#2| |#3| |#4| |#5|) (-566) (-803) (-860) (-1081 |#2| |#3| |#4|)) (T -1226)) +NIL +(-10 -8 (-15 -2105 ((-781) |#1|)) (-15 -2433 (|#1| |#1| |#5|)) (-15 -2172 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3504 ((-112) |#4| |#1|)) (-15 -1642 ((-654 |#4|) |#1|)) (-15 -2935 ((-3 |#1| "failed") |#1|)) (-15 -3334 ((-3 |#5| "failed") |#1|)) (-15 -2925 ((-3 |#5| "failed") |#1|)) (-15 -3347 (|#5| |#5| |#1|)) (-15 -2167 (|#1| |#1|)) (-15 -2660 (|#5| |#5| |#1|)) (-15 -2254 (|#5| |#5| |#1|)) (-15 -3173 (|#5| |#5| |#1|)) (-15 -2104 (|#5| |#5| |#1|)) (-15 -4434 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2882 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3749 ((-112) |#1|)) (-15 -2712 ((-112) |#1|)) (-15 -2972 ((-112) |#1|)) (-15 -3912 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -3749 ((-112) |#5| |#1|)) (-15 -2712 ((-112) |#5| |#1|)) (-15 -2972 ((-112) |#5| |#1|)) (-15 -1857 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3145 ((-112) |#1|)) (-15 -3145 ((-112) |#5| |#1|)) (-15 -2830 ((-2 (|:| -1390 (-654 |#5|)) (|:| -1684 (-654 |#5|))) |#1|)) (-15 -3580 ((-781) |#1|)) (-15 -1957 ((-654 |#5|) |#1|)) (-15 -3917 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3917 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3877 ((-112) |#1| |#1|)) (-15 -1423 (|#1| |#1| |#4|)) (-15 -1671 (|#1| |#1| |#4|)) (-15 -4241 (|#4| |#1|)) (-15 -1704 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2951 ((-654 |#5|) |#1|)) (-15 -2963 (|#1| (-654 |#5|))) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2172 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) +((-2864 (((-112) $ $) 7)) (-2298 (((-654 (-2 (|:| -1390 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) 86)) (-3656 (((-654 $) (-654 |#4|)) 87)) (-4350 (((-654 |#3|) $) 34)) (-1437 (((-112) $) 27)) (-2176 (((-112) $) 18 (|has| |#1| (-566)))) (-2972 (((-112) |#4| $) 102) (((-112) $) 98)) (-2104 ((|#4| |#4| $) 93)) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#3|) 28)) (-3146 (((-112) $ (-781)) 45)) (-2172 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 80)) (-3250 (($) 46 T CONST)) (-3721 (((-112) $) 23 (|has| |#1| (-566)))) (-3913 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2196 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3564 (((-112) $) 26 (|has| |#1| (-566)))) (-4434 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1855 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3406 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2214 (($ (-654 |#4|)) 36)) (-2935 (((-3 $ "failed") $) 83)) (-2660 ((|#4| |#4| $) 90)) (-2804 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-1857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3347 ((|#4| |#4| $) 88)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2830 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) 106)) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-3145 (((-112) |#4| $) 105) (((-112) $) 104)) (-4241 ((|#3| $) 35)) (-2189 (((-112) $ (-781)) 44)) (-2036 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2737 (((-654 |#3|) $) 33)) (-3161 (((-112) |#3| $) 32)) (-1653 (((-112) $ (-781)) 43)) (-1489 (((-1175) $) 10)) (-3334 (((-3 |#4| "failed") $) 84)) (-1957 (((-654 |#4|) $) 108)) (-3749 (((-112) |#4| $) 100) (((-112) $) 96)) (-2254 ((|#4| |#4| $) 91)) (-3877 (((-112) $ $) 111)) (-3581 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2712 (((-112) |#4| $) 101) (((-112) $) 97)) (-3173 ((|#4| |#4| $) 92)) (-3940 (((-1136) $) 11)) (-2925 (((-3 |#4| "failed") $) 85)) (-2183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4233 (((-3 $ "failed") $ |#4|) 79)) (-2433 (($ $ |#4|) 78)) (-3449 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) 39)) (-2754 (((-112) $) 42)) (-3336 (($) 41)) (-3580 (((-781) $) 107)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-1423 (($ $ |#3|) 29)) (-1671 (($ $ |#3|) 31)) (-2167 (($ $) 89)) (-2287 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2105 (((-781) $) 77 (|has| |#3| (-377)))) (-4069 (((-112) $ $) 9)) (-3917 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3912 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2020 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-1642 (((-654 |#3|) $) 82)) (-3504 (((-112) |#3| $) 81)) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459))))) +(((-1227 |#1| |#2| |#3| |#4|) (-141) (-566) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -1227)) +((-3877 (*1 *2 *1 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-3917 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-654 *8)))) (-5 *3 (-654 *8)) (-4 *1 (-1227 *5 *6 *7 *8)))) (-3917 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-654 *9)))) (-5 *3 (-654 *9)) (-4 *1 (-1227 *6 *7 *8 *9)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *6)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-781)))) (-2830 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-2 (|:| -1390 (-654 *6)) (|:| -1684 (-654 *6)))))) (-3145 (*1 *2 *3 *1) (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-1857 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1227 *5 *6 *7 *3)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112)))) (-2972 (*1 *2 *3 *1) (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-2712 (*1 *2 *3 *1) (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-3749 (*1 *2 *3 *1) (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1227 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-2972 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-2882 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1227 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *2 (-1081 *5 *6 *7)))) (-4434 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1227 *5 *6 *7 *8)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)))) (-2104 (*1 *2 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-3173 (*1 *2 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-2254 (*1 *2 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-2660 (*1 *2 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-2167 (*1 *1 *1) (-12 (-4 *1 (-1227 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1081 *2 *3 *4)))) (-3347 (*1 *2 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1227 *4 *5 *6 *7)))) (-2298 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| -1390 *1) (|:| -1684 (-654 *7))))) (-5 *3 (-654 *7)) (-4 *1 (-1227 *4 *5 *6 *7)))) (-2925 (*1 *2 *1) (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-3334 (*1 *2 *1) (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-2935 (*1 *1 *1) (|partial| -12 (-4 *1 (-1227 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1081 *2 *3 *4)))) (-1642 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5)))) (-3504 (*1 *2 *3 *1) (-12 (-4 *1 (-1227 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1081 *4 *5 *3)) (-5 *2 (-112)))) (-2172 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1227 *4 *5 *3 *2)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1081 *4 *5 *3)))) (-4233 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-2433 (*1 *1 *1 *2) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-2105 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *5 (-377)) (-5 *2 (-781))))) +(-13 (-992 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -3877 ((-112) $ $)) (-15 -3917 ((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3917 ((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1957 ((-654 |t#4|) $)) (-15 -3580 ((-781) $)) (-15 -2830 ((-2 (|:| -1390 (-654 |t#4|)) (|:| -1684 (-654 |t#4|))) $)) (-15 -3145 ((-112) |t#4| $)) (-15 -3145 ((-112) $)) (-15 -1857 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2972 ((-112) |t#4| $)) (-15 -2712 ((-112) |t#4| $)) (-15 -3749 ((-112) |t#4| $)) (-15 -3912 ((-112) $ (-1 (-112) |t#4| (-654 |t#4|)))) (-15 -2972 ((-112) $)) (-15 -2712 ((-112) $)) (-15 -3749 ((-112) $)) (-15 -2882 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4434 ((-654 |t#4|) (-654 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2104 (|t#4| |t#4| $)) (-15 -3173 (|t#4| |t#4| $)) (-15 -2254 (|t#4| |t#4| $)) (-15 -2660 (|t#4| |t#4| $)) (-15 -2167 ($ $)) (-15 -3347 (|t#4| |t#4| $)) (-15 -3656 ((-654 $) (-654 |t#4|))) (-15 -2298 ((-654 (-2 (|:| -1390 $) (|:| -1684 (-654 |t#4|)))) (-654 |t#4|))) (-15 -2925 ((-3 |t#4| "failed") $)) (-15 -3334 ((-3 |t#4| "failed") $)) (-15 -2935 ((-3 $ "failed") $)) (-15 -1642 ((-654 |t#3|) $)) (-15 -3504 ((-112) |t#3| $)) (-15 -2172 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4233 ((-3 $ "failed") $ |t#4|)) (-15 -2433 ($ $ |t#4|)) (IF (|has| |t#3| (-377)) (-15 -2105 ((-781) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1116) . T) ((-1234) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 (-1193)) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-4027 (((-966 |#1|) $ (-781)) 17) (((-966 |#1|) $ (-781) (-781)) NIL)) (-4189 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-781) $ (-1193)) NIL) (((-781) $ (-1193) (-781)) NIL)) (-4226 (((-112) $) NIL)) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1555 (((-112) $) NIL)) (-4328 (($ $ (-654 (-1193)) (-654 (-541 (-1193)))) NIL) (($ $ (-1193) (-541 (-1193))) NIL) (($ |#1| (-541 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3342 (($ $ (-1193)) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-2612 (($ (-1 $) (-1193) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2433 (($ $ (-781)) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (($ $ (-1193) $) NIL) (($ $ (-654 (-1193)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3879 (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL)) (-3580 (((-541 (-1193)) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-1193)) NIL) (($ (-966 |#1|)) NIL)) (-2706 ((|#1| $ (-541 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (((-966 |#1|) $ (-781)) NIL)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3584 (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1228 |#1|) (-13 (-750 |#1| (-1193)) (-10 -8 (-15 -2706 ((-966 |#1|) $ (-781))) (-15 -2951 ($ (-1193))) (-15 -2951 ($ (-966 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ($ $ (-1193) |#1|)) (-15 -2612 ($ (-1 $) (-1193) |#1|))) |%noBranch|))) (-1065)) (T -1228)) +((-2706 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-966 *4)) (-5 *1 (-1228 *4)) (-4 *4 (-1065)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1228 *3)) (-4 *3 (-1065)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-1065)) (-5 *1 (-1228 *3)))) (-3342 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *1 (-1228 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)))) (-2612 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1228 *4))) (-5 *3 (-1193)) (-5 *1 (-1228 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1065))))) +(-13 (-750 |#1| (-1193)) (-10 -8 (-15 -2706 ((-966 |#1|) $ (-781))) (-15 -2951 ($ (-1193))) (-15 -2951 ($ (-966 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ($ $ (-1193) |#1|)) (-15 -2612 ($ (-1 $) (-1193) |#1|))) |%noBranch|))) +((-3696 (($ |#1| (-654 (-654 (-957 (-227)))) (-112)) 19)) (-2217 (((-112) $ (-112)) 18)) (-3215 (((-112) $) 17)) (-1497 (((-654 (-654 (-957 (-227)))) $) 13)) (-1552 ((|#1| $) 8)) (-4284 (((-112) $) 15))) +(((-1229 |#1|) (-10 -8 (-15 -1552 (|#1| $)) (-15 -1497 ((-654 (-654 (-957 (-227)))) $)) (-15 -4284 ((-112) $)) (-15 -3215 ((-112) $)) (-15 -2217 ((-112) $ (-112))) (-15 -3696 ($ |#1| (-654 (-654 (-957 (-227)))) (-112)))) (-990)) (T -1229)) +((-3696 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-112)) (-5 *1 (-1229 *2)) (-4 *2 (-990)))) (-2217 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990)))) (-3215 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-1229 *3)) (-4 *3 (-990)))) (-1552 (*1 *2 *1) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-990))))) +(-10 -8 (-15 -1552 (|#1| $)) (-15 -1497 ((-654 (-654 (-957 (-227)))) $)) (-15 -4284 ((-112) $)) (-15 -3215 ((-112) $)) (-15 -2217 ((-112) $ (-112))) (-15 -3696 ($ |#1| (-654 (-654 (-957 (-227)))) (-112)))) +((-1399 (((-957 (-227)) (-957 (-227))) 31)) (-3565 (((-957 (-227)) (-227) (-227) (-227) (-227)) 10)) (-1457 (((-654 (-957 (-227))) (-957 (-227)) (-957 (-227)) (-957 (-227)) (-227) (-654 (-654 (-227)))) 56)) (-3918 (((-227) (-957 (-227)) (-957 (-227))) 27)) (-3712 (((-957 (-227)) (-957 (-227)) (-957 (-227))) 28)) (-3719 (((-654 (-654 (-227))) (-574)) 44)) (-3090 (((-957 (-227)) (-957 (-227)) (-957 (-227))) 26)) (-3074 (((-957 (-227)) (-957 (-227)) (-957 (-227))) 24)) (* (((-957 (-227)) (-227) (-957 (-227))) 22))) +(((-1230) (-10 -7 (-15 -3565 ((-957 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-957 (-227)) (-227) (-957 (-227)))) (-15 -3074 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -3090 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -3918 ((-227) (-957 (-227)) (-957 (-227)))) (-15 -3712 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -1399 ((-957 (-227)) (-957 (-227)))) (-15 -3719 ((-654 (-654 (-227))) (-574))) (-15 -1457 ((-654 (-957 (-227))) (-957 (-227)) (-957 (-227)) (-957 (-227)) (-227) (-654 (-654 (-227))))))) (T -1230)) +((-1457 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 (-957 *4))) (-5 *1 (-1230)) (-5 *3 (-957 *4)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1230)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))) (-3712 (*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))) (-3918 (*1 *2 *3 *3) (-12 (-5 *3 (-957 (-227))) (-5 *2 (-227)) (-5 *1 (-1230)))) (-3090 (*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))) (-3074 (*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-957 (-227))) (-5 *3 (-227)) (-5 *1 (-1230)))) (-3565 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)) (-5 *3 (-227))))) +(-10 -7 (-15 -3565 ((-957 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-957 (-227)) (-227) (-957 (-227)))) (-15 -3074 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -3090 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -3918 ((-227) (-957 (-227)) (-957 (-227)))) (-15 -3712 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -1399 ((-957 (-227)) (-957 (-227)))) (-15 -3719 ((-654 (-654 (-227))) (-574))) (-15 -1457 ((-654 (-957 (-227))) (-957 (-227)) (-957 (-227)) (-957 (-227)) (-227) (-654 (-654 (-227)))))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2172 ((|#1| $ (-781)) 18)) (-4109 (((-781) $) 13)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2951 (((-972 |#1|) $) 12) (($ (-972 |#1|)) 11) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2986 (((-112) $ $) 22 (|has| |#1| (-1116))))) +(((-1231 |#1|) (-13 (-500 (-972 |#1|)) (-10 -8 (-15 -2172 (|#1| $ (-781))) (-15 -4109 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|))) (-1234)) (T -1231)) +((-2172 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-1231 *2)) (-4 *2 (-1234)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1231 *3)) (-4 *3 (-1234))))) +(-13 (-500 (-972 |#1|)) (-10 -8 (-15 -2172 (|#1| $ (-781))) (-15 -4109 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|))) +((-1984 (((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)) (-574)) 94)) (-4309 (((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|))) 86)) (-2489 (((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|))) 70))) +(((-1232 |#1|) (-10 -7 (-15 -4309 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)))) (-15 -2489 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)))) (-15 -1984 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)) (-574)))) (-358)) (T -1232)) +((-1984 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1189 (-1189 *5)))) (-5 *1 (-1232 *5)) (-5 *3 (-1189 (-1189 *5))))) (-2489 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1189 (-1189 *4)))) (-5 *1 (-1232 *4)) (-5 *3 (-1189 (-1189 *4))))) (-4309 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1189 (-1189 *4)))) (-5 *1 (-1232 *4)) (-5 *3 (-1189 (-1189 *4)))))) +(-10 -7 (-15 -4309 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)))) (-15 -2489 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)))) (-15 -1984 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)) (-574)))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 9) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1233) (-1099)) (T -1233)) +NIL +(-1099) +NIL +(((-1234) (-141)) (T -1234)) +NIL +(-13 (-10 -7 (-6 -3495))) +((-2074 (((-112)) 18)) (-2252 (((-1289) (-654 |#1|) (-654 |#1|)) 22) (((-1289) (-654 |#1|)) 23)) (-2189 (((-112) |#1| |#1|) 37 (|has| |#1| (-860)))) (-1653 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2486 ((|#1| (-654 |#1|)) 38 (|has| |#1| (-860))) ((|#1| (-654 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-4393 (((-2 (|:| -2939 (-654 |#1|)) (|:| -3470 (-654 |#1|)))) 20))) +(((-1235 |#1|) (-10 -7 (-15 -2252 ((-1289) (-654 |#1|))) (-15 -2252 ((-1289) (-654 |#1|) (-654 |#1|))) (-15 -4393 ((-2 (|:| -2939 (-654 |#1|)) (|:| -3470 (-654 |#1|))))) (-15 -1653 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1653 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2486 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2074 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -2486 (|#1| (-654 |#1|))) (-15 -2189 ((-112) |#1| |#1|))) |%noBranch|)) (-1116)) (T -1235)) +((-2189 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-860)) (-4 *3 (-1116)))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-860)) (-5 *1 (-1235 *2)))) (-2074 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1116)))) (-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1235 *2)) (-4 *2 (-1116)))) (-1653 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1116)) (-5 *2 (-112)) (-5 *1 (-1235 *3)))) (-1653 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1116)))) (-4393 (*1 *2) (-12 (-5 *2 (-2 (|:| -2939 (-654 *3)) (|:| -3470 (-654 *3)))) (-5 *1 (-1235 *3)) (-4 *3 (-1116)))) (-2252 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-5 *2 (-1289)) (-5 *1 (-1235 *4)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-5 *2 (-1289)) (-5 *1 (-1235 *4))))) +(-10 -7 (-15 -2252 ((-1289) (-654 |#1|))) (-15 -2252 ((-1289) (-654 |#1|) (-654 |#1|))) (-15 -4393 ((-2 (|:| -2939 (-654 |#1|)) (|:| -3470 (-654 |#1|))))) (-15 -1653 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1653 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2486 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2074 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -2486 (|#1| (-654 |#1|))) (-15 -2189 ((-112) |#1| |#1|))) |%noBranch|)) +((-2051 (((-1289) (-654 (-1193)) (-654 (-1193))) 14) (((-1289) (-654 (-1193))) 12)) (-3626 (((-1289)) 16)) (-2009 (((-2 (|:| -3470 (-654 (-1193))) (|:| -2939 (-654 (-1193))))) 20))) +(((-1236) (-10 -7 (-15 -2051 ((-1289) (-654 (-1193)))) (-15 -2051 ((-1289) (-654 (-1193)) (-654 (-1193)))) (-15 -2009 ((-2 (|:| -3470 (-654 (-1193))) (|:| -2939 (-654 (-1193)))))) (-15 -3626 ((-1289))))) (T -1236)) +((-3626 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1236)))) (-2009 (*1 *2) (-12 (-5 *2 (-2 (|:| -3470 (-654 (-1193))) (|:| -2939 (-654 (-1193))))) (-5 *1 (-1236)))) (-2051 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1236)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1236))))) +(-10 -7 (-15 -2051 ((-1289) (-654 (-1193)))) (-15 -2051 ((-1289) (-654 (-1193)) (-654 (-1193)))) (-15 -2009 ((-2 (|:| -3470 (-654 (-1193))) (|:| -2939 (-654 (-1193)))))) (-15 -3626 ((-1289)))) +((-2991 (($ $) 17)) (-3978 (((-112) $) 28))) +(((-1237 |#1|) (-10 -8 (-15 -2991 (|#1| |#1|)) (-15 -3978 ((-112) |#1|))) (-1238)) (T -1237)) +NIL +(-10 -8 (-15 -2991 (|#1| |#1|)) (-15 -3978 ((-112) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 57)) (-1610 (((-428 $) $) 58)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-3978 (((-112) $) 59)) (-4226 (((-112) $) 35)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-4202 (((-428 $) $) 56)) (-2853 (((-3 $ "failed") $ $) 48)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-1238) (-141)) (T -1238)) +((-3978 (*1 *2 *1) (-12 (-4 *1 (-1238)) (-5 *2 (-112)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1238)))) (-2991 (*1 *1 *1) (-4 *1 (-1238))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1238))))) +(-13 (-462) (-10 -8 (-15 -3978 ((-112) $)) (-15 -1610 ((-428 $) $)) (-15 -2991 ($ $)) (-15 -4202 ((-428 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3250 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-4380 (($ $ $) NIL) (($) NIL T CONST)) (-3383 (((-935) $) NIL)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-1762 (($ $ $) NIL)) (-1750 (($ $ $) NIL)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) +(((-1239) (-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714)))) (T -1239)) +((-1750 (*1 *1 *1 *1) (-5 *1 (-1239))) (-1762 (*1 *1 *1 *1) (-5 *1 (-1239))) (-3250 (*1 *1) (-5 *1 (-1239)))) +(-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3831 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-1593 (($ $ $) NIL) (($) NIL T CONST)) (-3271 (((-934) $) NIL)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-1763 (($ $ $) NIL)) (-1752 (($ $ $) NIL)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) -(((-1239) (-13 (-854) (-10 -8 (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715)))) (T -1239)) -((-1752 (*1 *1 *1 *1) (-5 *1 (-1239))) (-1763 (*1 *1 *1 *1) (-5 *1 (-1239))) (-3831 (*1 *1) (-5 *1 (-1239)))) -(-13 (-854) (-10 -8 (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715))) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3250 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-4380 (($ $ $) NIL) (($) NIL T CONST)) (-3383 (((-935) $) NIL)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-1762 (($ $ $) NIL)) (-1750 (($ $ $) NIL)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) +(((-1240) (-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714)))) (T -1240)) +((-1750 (*1 *1 *1 *1) (-5 *1 (-1240))) (-1762 (*1 *1 *1 *1) (-5 *1 (-1240))) (-3250 (*1 *1) (-5 *1 (-1240)))) +(-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3831 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-1593 (($ $ $) NIL) (($) NIL T CONST)) (-3271 (((-934) $) NIL)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-1763 (($ $ $) NIL)) (-1752 (($ $ $) NIL)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) -(((-1240) (-13 (-854) (-10 -8 (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715)))) (T -1240)) -((-1752 (*1 *1 *1 *1) (-5 *1 (-1240))) (-1763 (*1 *1 *1 *1) (-5 *1 (-1240))) (-3831 (*1 *1) (-5 *1 (-1240)))) -(-13 (-854) (-10 -8 (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715))) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3250 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-4380 (($ $ $) NIL) (($) NIL T CONST)) (-3383 (((-935) $) NIL)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-1762 (($ $ $) NIL)) (-1750 (($ $ $) NIL)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) +(((-1241) (-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714)))) (T -1241)) +((-1750 (*1 *1 *1 *1) (-5 *1 (-1241))) (-1762 (*1 *1 *1 *1) (-5 *1 (-1241))) (-3250 (*1 *1) (-5 *1 (-1241)))) +(-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-2863 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3831 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-1593 (($ $ $) NIL) (($) NIL T CONST)) (-3271 (((-934) $) NIL)) (-3945 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-1763 (($ $ $) NIL)) (-1752 (($ $ $) NIL)) (-3838 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) -(((-1241) (-13 (-854) (-10 -8 (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715)))) (T -1241)) -((-1752 (*1 *1 *1 *1) (-5 *1 (-1241))) (-1763 (*1 *1 *1 *1) (-5 *1 (-1241))) (-3831 (*1 *1) (-5 *1 (-1241)))) -(-13 (-854) (-10 -8 (-15 -1752 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -3831 ($) -1715))) +((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-3250 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-4380 (($ $ $) NIL) (($) NIL T CONST)) (-3383 (((-935) $) NIL)) (-1489 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-1762 (($ $ $) NIL)) (-1750 (($ $ $) NIL)) (-4069 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL))) +(((-1242) (-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714)))) (T -1242)) +((-1750 (*1 *1 *1 *1) (-5 *1 (-1242))) (-1762 (*1 *1 *1 *1) (-5 *1 (-1242))) (-3250 (*1 *1) (-5 *1 (-1242)))) +(-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -3250 ($) -1714))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-1786 (((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)) 23))) -(((-1242 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1786 ((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)))) (-1064) (-1064) (-1192) (-1192) |#1| |#2|) (T -1242)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5 *7 *9)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-14 *7 (-1192)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1247 *6 *8 *10)) (-5 *1 (-1242 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1192))))) -(-10 -7 (-15 -1786 ((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4349 (((-654 (-1097)) $) 86)) (-1497 (((-1192) $) 117)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-3648 (($ $) 64 (|has| |#1| (-566)))) (-1527 (((-112) $) 66 (|has| |#1| (-566)))) (-3842 (($ $ (-574)) 112) (($ $ (-574) (-574)) 111)) (-3786 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 118)) (-2378 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 176 (|has| |#1| (-372)))) (-3954 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4211 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3656 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 187)) (-2403 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) 18 T CONST)) (-2799 (($ $ $) 171 (|has| |#1| (-372)))) (-1401 (($ $) 72)) (-3911 (((-3 $ "failed") $) 37)) (-3493 (((-417 (-965 |#1|)) $ (-574)) 185 (|has| |#1| (-566))) (((-417 (-965 |#1|)) $ (-574) (-574)) 184 (|has| |#1| (-566)))) (-2811 (($ $ $) 170 (|has| |#1| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-1782 (((-112) $) 178 (|has| |#1| (-372)))) (-3938 (((-112) $) 85)) (-3003 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-574) $) 114) (((-574) $ (-574)) 113)) (-3372 (((-112) $) 35)) (-2132 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2057 (($ $ (-934)) 115)) (-1988 (($ (-1 |#1| (-574)) $) 186)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3257 (((-112) $) 74)) (-4327 (($ |#1| (-574)) 73) (($ $ (-1097) (-574)) 88) (($ $ (-654 (-1097)) (-654 (-574))) 87)) (-1786 (($ (-1 |#1| |#1|) $) 75)) (-3112 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-2848 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-3945 (((-1174) $) 10)) (-1327 (($ $) 179 (|has| |#1| (-372)))) (-1578 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 182 (-2832 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-972)) (|has| |#1| (-1218)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 164 (|has| |#1| (-372)))) (-2886 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4200 (((-428 $) $) 175 (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 172 (|has| |#1| (-372)))) (-2115 (($ $ (-574)) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1618 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-3364 (((-781) $) 168 (|has| |#1| (-372)))) (-2208 ((|#1| $ (-574)) 119) (($ $ $) 95 (|has| (-574) (-1127)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 169 (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 103 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1192) (-781)) 102 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192))) 101 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1192)) 100 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-3584 (((-574) $) 76)) (-2416 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-2930 ((|#1| $ (-574)) 71)) (-3247 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-3838 (((-112) $ $) 9)) (-2455 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2427 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-574)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 107 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1192) (-781)) 106 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192))) 105 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1192)) 104 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) 96 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1243 |#1|) (-141) (-1064)) (T -1243)) -((-3596 (*1 *1 *2) (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1064)) (-4 *1 (-1243 *3)))) (-1988 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1243 *3)) (-4 *3 (-1064)))) (-3493 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1243 *4)) (-4 *4 (-1064)) (-4 *4 (-566)) (-5 *2 (-417 (-965 *4))))) (-3493 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1243 *4)) (-4 *4 (-1064)) (-4 *4 (-566)) (-5 *2 (-417 (-965 *4))))) (-1578 (*1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) (-1578 (*1 *1 *1 *2) (-2832 (-12 (-5 *2 (-1192)) (-4 *1 (-1243 *3)) (-4 *3 (-1064)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1192)) (-4 *1 (-1243 *3)) (-4 *3 (-1064)) (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) (|has| *3 (-15 -1578 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) -(-13 (-1261 |t#1| (-574)) (-10 -8 (-15 -3596 ($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |t#1|))))) (-15 -1988 ($ (-1 |t#1| (-574)) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -3493 ((-417 (-965 |t#1|)) $ (-574))) (-15 -3493 ((-417 (-965 |t#1|)) $ (-574) (-574)))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ($ $)) (IF (|has| |t#1| (-15 -1578 (|t#1| |t#1| (-1192)))) (IF (|has| |t#1| (-15 -4349 ((-654 (-1192)) |t#1|))) (-15 -1578 ($ $ (-1192))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1218)) (IF (|has| |t#1| (-972)) (IF (|has| |t#1| (-29 (-574))) (-15 -1578 ($ $ (-1192))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1017)) (-6 (-1218))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-574) (-1127)) ((-298) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))) ((-988 |#1| #0# (-1097)) . T) ((-933) |has| |#1| (-372)) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1066 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1071 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574)))) ((-1233) . T) ((-1237) |has| |#1| (-372)) ((-1261 |#1| #0#) . T)) -((-3520 (((-112) $) 12)) (-1705 (((-3 |#3| "failed") $) 17) (((-3 (-1192) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL)) (-2216 ((|#3| $) 14) (((-1192) $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL))) -(((-1244 |#1| |#2| |#3|) (-10 -8 (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -1705 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -3520 ((-112) |#1|))) (-1245 |#2| |#3|) (-1064) (-1274 |#2|)) (T -1244)) -NIL -(-10 -8 (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1705 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -1705 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -3520 ((-112) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4018 ((|#2| $) 246 (-2096 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4349 (((-654 (-1097)) $) 86)) (-1497 (((-1192) $) 117)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-3648 (($ $) 64 (|has| |#1| (-566)))) (-1527 (((-112) $) 66 (|has| |#1| (-566)))) (-3842 (($ $ (-574)) 112) (($ $ (-574) (-574)) 111)) (-3786 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 118)) (-1787 ((|#2| $) 282)) (-2630 (((-3 |#2| "failed") $) 278)) (-4401 ((|#2| $) 279)) (-2378 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) 20)) (-4055 (((-428 (-1188 $)) (-1188 $)) 255 (-2096 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-3296 (($ $) 176 (|has| |#1| (-372)))) (-3954 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4211 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 252 (-2096 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-3656 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3011 (((-574) $) 264 (-2096 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 187)) (-2403 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) 18 T CONST)) (-1705 (((-3 |#2| "failed") $) 285) (((-3 (-574) "failed") $) 275 (-2096 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) 273 (-2096 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-1192) "failed") $) 257 (-2096 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372))))) (-2216 ((|#2| $) 286) (((-574) $) 274 (-2096 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) 272 (-2096 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-1192) $) 256 (-2096 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372))))) (-3892 (($ $) 281) (($ (-574) $) 280)) (-2799 (($ $ $) 171 (|has| |#1| (-372)))) (-1401 (($ $) 72)) (-3465 (((-699 |#2|) (-1283 $)) 236 (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) 235 (|has| |#1| (-372))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 234 (|has| |#1| (-372))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 233 (-2096 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) 232 (-2096 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1283 $)) 231 (-2096 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-3911 (((-3 $ "failed") $) 37)) (-3493 (((-417 (-965 |#1|)) $ (-574)) 185 (|has| |#1| (-566))) (((-417 (-965 |#1|)) $ (-574) (-574)) 184 (|has| |#1| (-566)))) (-2834 (($) 248 (-2096 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2811 (($ $ $) 170 (|has| |#1| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-1782 (((-112) $) 178 (|has| |#1| (-372)))) (-1913 (((-112) $) 262 (-2096 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3938 (((-112) $) 85)) (-3003 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 240 (-2096 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 239 (-2096 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-2725 (((-574) $) 114) (((-574) $ (-574)) 113)) (-3372 (((-112) $) 35)) (-3536 (($ $) 244 (|has| |#1| (-372)))) (-2970 ((|#2| $) 242 (|has| |#1| (-372)))) (-2132 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-1353 (((-3 $ "failed") $) 276 (-2096 (|has| |#2| (-1167)) (|has| |#1| (-372))))) (-1808 (((-112) $) 263 (-2096 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2057 (($ $ (-934)) 115)) (-1988 (($ (-1 |#1| (-574)) $) 186)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3257 (((-112) $) 74)) (-4327 (($ |#1| (-574)) 73) (($ $ (-1097) (-574)) 88) (($ $ (-654 (-1097)) (-654 (-574))) 87)) (-3632 (($ $ $) 266 (-2096 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1593 (($ $ $) 267 (-2096 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1786 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 226 (|has| |#1| (-372)))) (-3112 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-2848 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-4413 (($ (-574) |#2|) 283)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 179 (|has| |#1| (-372)))) (-1578 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 182 (-2832 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-972)) (|has| |#1| (-1218)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3791 (($) 277 (-2096 (|has| |#2| (-1167)) (|has| |#1| (-372))) CONST)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 164 (|has| |#1| (-372)))) (-2886 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-2244 (($ $) 247 (-2096 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-3471 ((|#2| $) 250 (-2096 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2743 (((-428 (-1188 $)) (-1188 $)) 253 (-2096 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-4428 (((-428 (-1188 $)) (-1188 $)) 254 (-2096 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-4200 (((-428 $) $) 175 (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 172 (|has| |#1| (-372)))) (-2115 (($ $ (-574)) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1618 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1192) |#2|) 225 (-2096 (|has| |#2| (-524 (-1192) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 |#2|)) 224 (-2096 (|has| |#2| (-524 (-1192) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) 223 (-2096 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) 222 (-2096 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) 221 (-2096 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) 220 (-2096 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-3364 (((-781) $) 168 (|has| |#1| (-372)))) (-2208 ((|#1| $ (-574)) 119) (($ $ $) 95 (|has| (-574) (-1127))) (($ $ |#2|) 219 (-2096 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 169 (|has| |#1| (-372)))) (-3878 (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 229 (|has| |#1| (-372))) (($ $) 99 (-2832 (-2096 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 97 (-2832 (-2096 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) 103 (-2832 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1192) (-781)) 102 (-2832 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1192))) 101 (-2832 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1192)) 100 (-2832 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-2120 (($ $) 245 (|has| |#1| (-372)))) (-2981 ((|#2| $) 243 (|has| |#1| (-372)))) (-3584 (((-574) $) 76)) (-2416 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-1845 (((-227) $) 261 (-2096 (|has| |#2| (-1037)) (|has| |#1| (-372)))) (((-388) $) 260 (-2096 (|has| |#2| (-1037)) (|has| |#1| (-372)))) (((-546) $) 259 (-2096 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) 238 (-2096 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) 237 (-2096 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 251 (-2096 (-2096 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#1| (-372))))) (-4209 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 284) (($ (-1192)) 258 (-2096 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372)))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-2930 ((|#1| $ (-574)) 71)) (-3247 (((-3 $ "failed") $) 60 (-2832 (-2096 (-2832 (|has| |#2| (-146)) (-2096 (|has| $ (-146)) (|has| |#2| (-922)))) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-4019 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-2753 ((|#2| $) 249 (-2096 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-3838 (((-112) $ $) 9)) (-2455 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2427 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-574)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-3306 (($ $) 265 (-2096 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 227 (|has| |#1| (-372))) (($ $) 98 (-2832 (-2096 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 96 (-2832 (-2096 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) 107 (-2832 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1192) (-781)) 106 (-2832 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1192))) 105 (-2832 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1192)) 104 (-2832 (-2096 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-3041 (((-112) $ $) 269 (-2096 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3018 (((-112) $ $) 270 (-2096 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 268 (-2096 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3009 (((-112) $ $) 271 (-2096 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3098 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372))) (($ |#2| |#2|) 241 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 218 (|has| |#1| (-372))) (($ |#2| $) 217 (|has| |#1| (-372))) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1245 |#1| |#2|) (-141) (-1064) (-1274 |t#1|)) (T -1245)) -((-3584 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1274 *3)) (-5 *2 (-574)))) (-4413 (*1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *4 (-1064)) (-4 *1 (-1245 *4 *3)) (-4 *3 (-1274 *4)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1274 *3)))) (-3892 (*1 *1 *1) (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1274 *2)))) (-3892 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1274 *3)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1274 *3)))) (-2630 (*1 *2 *1) (|partial| -12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1274 *3))))) -(-13 (-1243 |t#1|) (-1053 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4413 ($ (-574) |t#2|)) (-15 -3584 ((-574) $)) (-15 -1787 (|t#2| $)) (-15 -3892 ($ $)) (-15 -3892 ($ (-574) $)) (-15 -4401 (|t#2| $)) (-15 -2630 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-372)) (-6 (-1007 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-372)) ((-38 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-372)) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-626 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1192)) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-1192)))) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1037))) ((-624 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1037))) ((-624 (-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) ((-235 $) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-233 |#2|) |has| |#1| (-372)) ((-239) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-238) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 |#2| $) -12 (|has| |#1| (-372)) (|has| |#2| (-294 |#2| |#2|))) ((-294 $ $) |has| (-574) (-1127)) ((-298) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-372) |has| |#1| (-372)) ((-347 |#2|) |has| |#1| (-372)) ((-386 |#2|) |has| |#1| (-372)) ((-410 |#2|) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 (-1192) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1192) |#2|))) ((-524 |#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-566) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 |#2|) |has| |#1| (-372)) ((-656 $) . T) ((-658 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 #3=(-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-372)) ((-658 $) . T) ((-650 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 |#2|) |has| |#1| (-372)) ((-650 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-649 #3#) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-649 |#2|) |has| |#1| (-372)) ((-727 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 |#2|) |has| |#1| (-372)) ((-727 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-801) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-802) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-804) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-805) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-830) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-858) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-860) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-860))) (-12 (|has| |#1| (-372)) (|has| |#2| (-830)))) ((-913 (-1192)) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-913 (-1192)))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) ((-897 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-574)))) ((-895 |#2|) |has| |#1| (-372)) ((-922) -12 (|has| |#1| (-372)) (|has| |#2| (-922))) ((-988 |#1| #0# (-1097)) . T) ((-933) |has| |#1| (-372)) ((-1007 |#2|) |has| |#1| (-372)) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1037) -12 (|has| |#1| (-372)) (|has| |#2| (-1037))) ((-1053 (-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-574)))) ((-1053 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-574)))) ((-1053 #2#) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-1192)))) ((-1053 |#2|) . T) ((-1066 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1066 |#1|) . T) ((-1066 |#2|) |has| |#1| (-372)) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1071 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1071 |#1|) . T) ((-1071 |#2|) |has| |#1| (-372)) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) -12 (|has| |#1| (-372)) (|has| |#2| (-1167))) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574)))) ((-1233) . T) ((-1237) |has| |#1| (-372)) ((-1243 |#1|) . T) ((-1261 |#1| #0#) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 81)) (-4018 ((|#2| $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4349 (((-654 (-1097)) $) NIL)) (-1497 (((-1192) $) 100)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3842 (($ $ (-574)) 109) (($ $ (-574) (-574)) 111)) (-3786 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 51)) (-1787 ((|#2| $) 11)) (-2630 (((-3 |#2| "failed") $) 35)) (-4401 ((|#2| $) 36)) (-2378 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-3296 (($ $) NIL (|has| |#1| (-372)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-3011 (((-574) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 59)) (-2403 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#2| "failed") $) 157) (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-1192) "failed") $) NIL (-12 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372))))) (-2216 ((|#2| $) 156) (((-574) $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-1192) $) NIL (-12 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372))))) (-3892 (($ $) 65) (($ (-574) $) 28)) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-3465 (((-699 |#2|) (-1283 $)) NIL (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-3911 (((-3 $ "failed") $) 88)) (-3493 (((-417 (-965 |#1|)) $ (-574)) 124 (|has| |#1| (-566))) (((-417 (-965 |#1|)) $ (-574) (-574)) 126 (|has| |#1| (-566)))) (-2834 (($) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1782 (((-112) $) NIL (|has| |#1| (-372)))) (-1913 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3938 (((-112) $) 74)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-2725 (((-574) $) 105) (((-574) $ (-574)) 107)) (-3372 (((-112) $) NIL)) (-3536 (($ $) NIL (|has| |#1| (-372)))) (-2970 ((|#2| $) 165 (|has| |#1| (-372)))) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1353 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1167)) (|has| |#1| (-372))))) (-1808 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2057 (($ $ (-934)) 148)) (-1988 (($ (-1 |#1| (-574)) $) 144)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-574)) 20) (($ $ (-1097) (-574)) NIL) (($ $ (-654 (-1097)) (-654 (-574))) NIL)) (-3632 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1593 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1786 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-372)))) (-3112 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) |#2|) 10)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 159 (|has| |#1| (-372)))) (-1578 (($ $) 228 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 233 (-2832 (-12 (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218)))))) (-3791 (($) NIL (-12 (|has| |#2| (-1167)) (|has| |#1| (-372))) CONST)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2244 (($ $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-3471 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2115 (($ $ (-574)) 138)) (-2852 (((-3 $ "failed") $ $) 128 (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1618 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1192) |#2|) NIL (-12 (|has| |#2| (-524 (-1192) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 |#2|)) NIL (-12 (|has| |#2| (-524 (-1192) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-2208 ((|#1| $ (-574)) 103) (($ $ $) 90 (|has| (-574) (-1127))) (($ $ |#2|) NIL (-12 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $) 149 (-2832 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) 153 (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-2120 (($ $) NIL (|has| |#1| (-372)))) (-2981 ((|#2| $) 166 (|has| |#1| (-372)))) (-3584 (((-574) $) 12)) (-2416 (($ $) 212 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-1845 (((-227) $) NIL (-12 (|has| |#2| (-1037)) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| |#2| (-1037)) (|has| |#1| (-372)))) (((-546) $) NIL (-12 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922)) (|has| |#1| (-372))))) (-4209 (($ $) 136)) (-2950 (((-872) $) 266) (($ (-574)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1192)) NIL (-12 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372)))) (($ (-417 (-574))) 169 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2930 ((|#1| $ (-574)) 85)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922)) (|has| |#1| (-372))) (-12 (|has| |#2| (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-4019 (((-781)) 155 T CONST)) (-3332 ((|#1| $) 102)) (-2753 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) 218 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2427 (($ $) 214 (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 222 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-574)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 224 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) 220 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 216 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-3306 (($ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2142 (($) 13 T CONST)) (-2154 (($) 18 T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2832 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-3041 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3018 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2985 (((-112) $ $) 72)) (-3029 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3009 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372))) (($ |#2| |#2|) 164 (|has| |#1| (-372)))) (-3089 (($ $) 227) (($ $ $) 78)) (-3074 (($ $ $) 76)) (** (($ $ (-934)) NIL) (($ $ (-781)) 84) (($ $ (-574)) 160 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 172 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-372))) (($ |#2| $) 161 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1246 |#1| |#2|) (-1245 |#1| |#2|) (-1064) (-1274 |#1|)) (T -1246)) -NIL -(-1245 |#1| |#2|) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4018 (((-1275 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4349 (((-654 (-1097)) $) NIL)) (-1497 (((-1192) $) 10)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-3648 (($ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1527 (((-112) $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-3842 (($ $ (-574)) NIL) (($ $ (-574) (-574)) NIL)) (-3786 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-1787 (((-1275 |#1| |#2| |#3|) $) NIL)) (-2630 (((-3 (-1275 |#1| |#2| |#3|) "failed") $) NIL)) (-4401 (((-1275 |#1| |#2| |#3|) $) NIL)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-3296 (($ $) NIL (|has| |#1| (-372)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3011 (((-574) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-1275 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))))) (-2216 (((-1275 |#1| |#2| |#3|) $) NIL) (((-1192) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))))) (-3892 (($ $) NIL) (($ (-574) $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-3465 (((-699 (-1275 |#1| |#2| |#3|)) (-1283 $)) NIL (|has| |#1| (-372))) (((-699 (-1275 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4047 (-699 (-1275 |#1| |#2| |#3|))) (|:| |vec| (-1283 (-1275 |#1| |#2| |#3|)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-3911 (((-3 $ "failed") $) NIL)) (-3493 (((-417 (-965 |#1|)) $ (-574)) NIL (|has| |#1| (-566))) (((-417 (-965 |#1|)) $ (-574) (-574)) NIL (|has| |#1| (-566)))) (-2834 (($) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1782 (((-112) $) NIL (|has| |#1| (-372)))) (-1913 (((-112) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3938 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-2725 (((-574) $) NIL) (((-574) $ (-574)) NIL)) (-3372 (((-112) $) NIL)) (-3536 (($ $) NIL (|has| |#1| (-372)))) (-2970 (((-1275 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1353 (((-3 $ "failed") $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1167)) (|has| |#1| (-372))))) (-1808 (((-112) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2057 (($ $ (-934)) NIL)) (-1988 (($ (-1 |#1| (-574)) $) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-574)) 18) (($ $ (-1097) (-574)) NIL) (($ $ (-654 (-1097)) (-654 (-574))) NIL)) (-3632 (($ $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1593 (($ $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3112 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) (-1275 |#1| |#2| |#3|)) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-1578 (($ $) 27 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 28 (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1167)) (|has| |#1| (-372))) CONST)) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2244 (($ $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-3471 (((-1275 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2115 (($ $ (-574)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1618 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1192) (-1275 |#1| |#2| |#3|)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-524 (-1192) (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 (-1275 |#1| |#2| |#3|))) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-524 (-1192) (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1275 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1275 |#1| |#2| |#3|))) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1275 |#1| |#2| |#3|)) (-654 (-1275 |#1| |#2| |#3|))) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-2208 ((|#1| $ (-574)) NIL) (($ $ $) NIL (|has| (-574) (-1127))) (($ $ (-1275 |#1| |#2| |#3|)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-294 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-1 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1279 |#2|)) 26) (($ $) 25 (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-2120 (($ $) NIL (|has| |#1| (-372)))) (-2981 (((-1275 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-3584 (((-574) $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1845 (((-546) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1037)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1037)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-4209 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1275 |#1| |#2| |#3|)) NIL) (($ (-1279 |#2|)) 24) (($ (-1192)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (($ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-2930 ((|#1| $ (-574)) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-4019 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 11)) (-2753 (((-1275 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2427 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3306 (($ $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2142 (($) 20 T CONST)) (-2154 (($) 15 T CONST)) (-3583 (($ $ (-1 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-3041 (((-112) $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3018 (((-112) $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3009 (((-112) $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372))) (($ (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 22)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1275 |#1| |#2| |#3|)) NIL (|has| |#1| (-372))) (($ (-1275 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1247 |#1| |#2| |#3|) (-13 (-1245 |#1| (-1275 |#1| |#2| |#3|)) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1247)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-1578 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) -(-13 (-1245 |#1| (-1275 |#1| |#2| |#3|)) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) -((-3482 (((-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574)))))) |#1| (-112)) 13)) (-3748 (((-428 |#1|) |#1|) 26)) (-4200 (((-428 |#1|) |#1|) 24))) -(((-1248 |#1|) (-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3748 ((-428 |#1|) |#1|)) (-15 -3482 ((-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574)))))) |#1| (-112)))) (-1259 (-574))) (T -1248)) -((-3482 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| *3) (|:| -2265 (-574))))))) (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574))))) (-3748 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574)))))) -(-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3748 ((-428 |#1|) |#1|)) (-15 -3482 ((-2 (|:| |contp| (-574)) (|:| -4279 (-654 (-2 (|:| |irr| |#1|) (|:| -2265 (-574)))))) |#1| (-112)))) -((-1786 (((-1172 |#2|) (-1 |#2| |#1|) (-1250 |#1|)) 23 (|has| |#1| (-858))) (((-1250 |#2|) (-1 |#2| |#1|) (-1250 |#1|)) 17))) -(((-1249 |#1| |#2|) (-10 -7 (-15 -1786 ((-1250 |#2|) (-1 |#2| |#1|) (-1250 |#1|))) (IF (|has| |#1| (-858)) (-15 -1786 ((-1172 |#2|) (-1 |#2| |#1|) (-1250 |#1|))) |%noBranch|)) (-1233) (-1233)) (T -1249)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5)) (-4 *5 (-858)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1172 *6)) (-5 *1 (-1249 *5 *6)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1250 *6)) (-5 *1 (-1249 *5 *6))))) -(-10 -7 (-15 -1786 ((-1250 |#2|) (-1 |#2| |#1|) (-1250 |#1|))) (IF (|has| |#1| (-858)) (-15 -1786 ((-1172 |#2|) (-1 |#2| |#1|) (-1250 |#1|))) |%noBranch|)) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3224 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1786 (((-1172 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-858)))) (-3163 ((|#1| $) 15)) (-2830 ((|#1| $) 12)) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1963 (((-574) $) 19)) (-3701 ((|#1| $) 18)) (-1975 ((|#1| $) 13)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2301 (((-112) $) 17)) (-2138 (((-1172 |#1|) $) 41 (|has| |#1| (-858))) (((-1172 |#1|) (-654 $)) 40 (|has| |#1| (-858)))) (-1845 (($ |#1|) 26)) (-2950 (($ (-1109 |#1|)) 25) (((-872) $) 37 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4264 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2747 (($ $ (-574)) 14)) (-2985 (((-112) $ $) 30 (|has| |#1| (-1115))))) -(((-1250 |#1|) (-13 (-1108 |#1|) (-10 -8 (-15 -4264 ($ |#1|)) (-15 -3224 ($ |#1|)) (-15 -2950 ($ (-1109 |#1|))) (-15 -2301 ((-112) $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1110 |#1| (-1172 |#1|))) |%noBranch|))) (-1233)) (T -1250)) -((-4264 (*1 *1 *2) (-12 (-5 *1 (-1250 *2)) (-4 *2 (-1233)))) (-3224 (*1 *1 *2) (-12 (-5 *1 (-1250 *2)) (-4 *2 (-1233)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1109 *3)) (-4 *3 (-1233)) (-5 *1 (-1250 *3)))) (-2301 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1250 *3)) (-4 *3 (-1233))))) -(-13 (-1108 |#1|) (-10 -8 (-15 -4264 ($ |#1|)) (-15 -3224 ($ |#1|)) (-15 -2950 ($ (-1109 |#1|))) (-15 -2301 ((-112) $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1110 |#1| (-1172 |#1|))) |%noBranch|))) -((-1786 (((-1256 |#3| |#4|) (-1 |#4| |#2|) (-1256 |#1| |#2|)) 15))) -(((-1251 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1786 ((-1256 |#3| |#4|) (-1 |#4| |#2|) (-1256 |#1| |#2|)))) (-1192) (-1064) (-1192) (-1064)) (T -1251)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1256 *5 *6)) (-14 *5 (-1192)) (-4 *6 (-1064)) (-4 *8 (-1064)) (-5 *2 (-1256 *7 *8)) (-5 *1 (-1251 *5 *6 *7 *8)) (-14 *7 (-1192))))) -(-10 -7 (-15 -1786 ((-1256 |#3| |#4|) (-1 |#4| |#2|) (-1256 |#1| |#2|)))) -((-1699 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2365 ((|#1| |#3|) 13)) (-3357 ((|#3| |#3|) 19))) -(((-1252 |#1| |#2| |#3|) (-10 -7 (-15 -2365 (|#1| |#3|)) (-15 -3357 (|#3| |#3|)) (-15 -1699 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1007 |#1|) (-1259 |#2|)) (T -1252)) -((-1699 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1252 *4 *5 *3)) (-4 *3 (-1259 *5)))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1007 *3)) (-5 *1 (-1252 *3 *4 *2)) (-4 *2 (-1259 *4)))) (-2365 (*1 *2 *3) (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-1252 *2 *4 *3)) (-4 *3 (-1259 *4))))) -(-10 -7 (-15 -2365 (|#1| |#3|)) (-15 -3357 (|#3| |#3|)) (-15 -1699 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3379 (((-3 |#2| "failed") |#2| (-781) |#1|) 35)) (-2515 (((-3 |#2| "failed") |#2| (-781)) 36)) (-2277 (((-3 (-2 (|:| -3864 |#2|) (|:| -3877 |#2|)) "failed") |#2|) 50)) (-3811 (((-654 |#2|) |#2|) 52)) (-3847 (((-3 |#2| "failed") |#2| |#2|) 46))) -(((-1253 |#1| |#2|) (-10 -7 (-15 -2515 ((-3 |#2| "failed") |#2| (-781))) (-15 -3379 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -3847 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2277 ((-3 (-2 (|:| -3864 |#2|) (|:| -3877 |#2|)) "failed") |#2|)) (-15 -3811 ((-654 |#2|) |#2|))) (-13 (-566) (-148)) (-1259 |#1|)) (T -1253)) -((-3811 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3)) (-5 *1 (-1253 *4 *3)) (-4 *3 (-1259 *4)))) (-2277 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| -3864 *3) (|:| -3877 *3))) (-5 *1 (-1253 *4 *3)) (-4 *3 (-1259 *4)))) (-3847 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1253 *3 *2)) (-4 *2 (-1259 *3)))) (-3379 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1253 *4 *2)) (-4 *2 (-1259 *4)))) (-2515 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1253 *4 *2)) (-4 *2 (-1259 *4))))) -(-10 -7 (-15 -2515 ((-3 |#2| "failed") |#2| (-781))) (-15 -3379 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -3847 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2277 ((-3 (-2 (|:| -3864 |#2|) (|:| -3877 |#2|)) "failed") |#2|)) (-15 -3811 ((-654 |#2|) |#2|))) -((-3654 (((-3 (-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) "failed") |#2| |#2|) 30))) -(((-1254 |#1| |#2|) (-10 -7 (-15 -3654 ((-3 (-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) "failed") |#2| |#2|))) (-566) (-1259 |#1|)) (T -1254)) -((-3654 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-1254 *4 *3)) (-4 *3 (-1259 *4))))) -(-10 -7 (-15 -3654 ((-3 (-2 (|:| -4415 |#2|) (|:| -1484 |#2|)) "failed") |#2| |#2|))) -((-4344 ((|#2| |#2| |#2|) 22)) (-4096 ((|#2| |#2| |#2|) 36)) (-4115 ((|#2| |#2| |#2| (-781) (-781)) 44))) -(((-1255 |#1| |#2|) (-10 -7 (-15 -4344 (|#2| |#2| |#2|)) (-15 -4096 (|#2| |#2| |#2|)) (-15 -4115 (|#2| |#2| |#2| (-781) (-781)))) (-1064) (-1259 |#1|)) (T -1255)) -((-4115 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1064)) (-5 *1 (-1255 *4 *2)) (-4 *2 (-1259 *4)))) (-4096 (*1 *2 *2 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1259 *3)))) (-4344 (*1 *2 *2 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1259 *3))))) -(-10 -7 (-15 -4344 (|#2| |#2| |#2|)) (-15 -4096 (|#2| |#2| |#2|)) (-15 -4115 (|#2| |#2| |#2| (-781) (-781)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1420 (((-1283 |#2|) $ (-781)) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-3473 (($ (-1188 |#2|)) NIL)) (-4171 (((-1188 $) $ (-1097)) NIL) (((-1188 |#2|) $) NIL)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-3648 (($ $) NIL (|has| |#2| (-566)))) (-1527 (((-112) $) NIL (|has| |#2| (-566)))) (-3335 (((-781) $) NIL) (((-781) $ (-654 (-1097))) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-2891 (($ $ $) NIL (|has| |#2| (-566)))) (-4055 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3296 (($ $) NIL (|has| |#2| (-462)))) (-3954 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3656 (((-112) $ $) NIL (|has| |#2| (-372)))) (-3186 (($ $ (-781)) NIL)) (-2939 (($ $ (-781)) NIL)) (-1720 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-462)))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-1097) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-1097) $) NIL)) (-3496 (($ $ $ (-1097)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2799 (($ $ $) NIL (|has| |#2| (-372)))) (-1401 (($ $) NIL)) (-3465 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#2| (-372)))) (-1490 (($ $ $) NIL)) (-2816 (($ $ $) NIL (|has| |#2| (-566)))) (-3960 (((-2 (|:| -1867 |#2|) (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#2| (-566)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-1509 (($ $) NIL (|has| |#2| (-462))) (($ $ (-1097)) NIL (|has| |#2| (-462)))) (-1388 (((-654 $) $) NIL)) (-1782 (((-112) $) NIL (|has| |#2| (-922)))) (-4389 (($ $ |#2| (-781) $) NIL)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1097) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1097) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-2725 (((-781) $ $) NIL (|has| |#2| (-566)))) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| |#2| (-1167)))) (-4338 (($ (-1188 |#2|) (-1097)) NIL) (($ (-1188 $) (-1097)) NIL)) (-2057 (($ $ (-781)) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-4327 (($ |#2| (-781)) 18) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-1097)) NIL) (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL)) (-1503 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-3558 (($ (-1 (-781) (-781)) $) NIL)) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-3707 (((-1188 |#2|) $) NIL)) (-1803 (((-3 (-1097) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#2| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3945 (((-1174) $) NIL)) (-1466 (((-2 (|:| -4415 $) (|:| -1484 $)) $ (-781)) NIL)) (-1810 (((-3 (-654 $) "failed") $) NIL)) (-1577 (((-3 (-654 $) "failed") $) NIL)) (-3404 (((-3 (-2 (|:| |var| (-1097)) (|:| -2017 (-781))) "failed") $) NIL)) (-1578 (($ $) NIL (|has| |#2| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#2| (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#2| $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-1687 (($ $ (-781) |#2| $) NIL)) (-2743 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-922)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1097) |#2|) NIL) (($ $ (-654 (-1097)) (-654 |#2|)) NIL) (($ $ (-1097) $) NIL) (($ $ (-654 (-1097)) (-654 $)) NIL)) (-3364 (((-781) $) NIL (|has| |#2| (-372)))) (-2208 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#2| (-566))) ((|#2| (-417 $) |#2|) NIL (|has| |#2| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#2| (-566)))) (-2595 (((-3 $ "failed") $ (-781)) NIL)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#2| (-372)))) (-1738 (($ $ (-1097)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3878 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3584 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-1845 (((-903 (-388)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1097) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3631 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-1097)) NIL (|has| |#2| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-2228 (((-3 $ "failed") $ $) NIL (|has| |#2| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#2| (-566)))) (-2950 (((-872) $) 13) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1097)) NIL) (($ (-1279 |#1|)) 20) (($ (-417 (-574))) NIL (-2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-2836 (((-654 |#2|) $) NIL)) (-2930 ((|#2| $ (-781)) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-3247 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2142 (($) NIL T CONST)) (-2154 (($) 14 T CONST)) (-3583 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1256 |#1| |#2|) (-13 (-1259 |#2|) (-626 (-1279 |#1|)) (-10 -8 (-15 -1687 ($ $ (-781) |#2| $)))) (-1192) (-1064)) (T -1256)) -((-1687 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1256 *4 *3)) (-14 *4 (-1192)) (-4 *3 (-1064))))) -(-13 (-1259 |#2|) (-626 (-1279 |#1|)) (-10 -8 (-15 -1687 ($ $ (-781) |#2| $)))) -((-1786 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1257 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1786 (|#4| (-1 |#3| |#1|) |#2|))) (-1064) (-1259 |#1|) (-1064) (-1259 |#3|)) (T -1257)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-4 *2 (-1259 *6)) (-5 *1 (-1257 *5 *4 *6 *2)) (-4 *4 (-1259 *5))))) -(-10 -7 (-15 -1786 (|#4| (-1 |#3| |#1|) |#2|))) -((-1420 (((-1283 |#2|) $ (-781)) 129)) (-4349 (((-654 (-1097)) $) 16)) (-3473 (($ (-1188 |#2|)) 80)) (-3335 (((-781) $) NIL) (((-781) $ (-654 (-1097))) 21)) (-4055 (((-428 (-1188 $)) (-1188 $)) 204)) (-3296 (($ $) 194)) (-3954 (((-428 $) $) 192)) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 95)) (-3186 (($ $ (-781)) 84)) (-2939 (($ $ (-781)) 86)) (-1720 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1705 (((-3 |#2| "failed") $) 132) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-1097) "failed") $) NIL)) (-2216 ((|#2| $) 130) (((-417 (-574)) $) NIL) (((-574) $) NIL) (((-1097) $) NIL)) (-2816 (($ $ $) 170)) (-3960 (((-2 (|:| -1867 |#2|) (|:| -4415 $) (|:| -1484 $)) $ $) 172)) (-2725 (((-781) $ $) 189)) (-1353 (((-3 $ "failed") $) 138)) (-4327 (($ |#2| (-781)) NIL) (($ $ (-1097) (-781)) 59) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-1503 (((-781) $) NIL) (((-781) $ (-1097)) 54) (((-654 (-781)) $ (-654 (-1097))) 55)) (-3707 (((-1188 |#2|) $) 72)) (-1803 (((-3 (-1097) "failed") $) 52)) (-1466 (((-2 (|:| -4415 $) (|:| -1484 $)) $ (-781)) 83)) (-1578 (($ $) 219)) (-3791 (($) 134)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 201)) (-2743 (((-428 (-1188 $)) (-1188 $)) 101)) (-4428 (((-428 (-1188 $)) (-1188 $)) 99)) (-4200 (((-428 $) $) 120)) (-2660 (($ $ (-654 (-302 $))) 51) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1097) |#2|) 39) (($ $ (-654 (-1097)) (-654 |#2|)) 36) (($ $ (-1097) $) 32) (($ $ (-654 (-1097)) (-654 $)) 30)) (-3364 (((-781) $) 207)) (-2208 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) 164) ((|#2| (-417 $) |#2|) 206) (((-417 $) $ (-417 $)) 188)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 212)) (-3878 (($ $ (-1097)) 157) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) 155) (($ $ (-781)) NIL) (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3584 (((-781) $) NIL) (((-781) $ (-1097)) 17) (((-654 (-781)) $ (-654 (-1097))) 23)) (-3631 ((|#2| $) NIL) (($ $ (-1097)) 140)) (-2228 (((-3 $ "failed") $ $) 180) (((-3 (-417 $) "failed") (-417 $) $) 176)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1097)) 64) (($ (-417 (-574))) NIL) (($ $) NIL))) -(((-1258 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -3578 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -3954 ((-428 |#1|) |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -3791 (|#1|)) (-15 -1353 ((-3 |#1| "failed") |#1|)) (-15 -2208 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -3364 ((-781) |#1|)) (-15 -3444 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -2208 (|#2| (-417 |#1|) |#2|)) (-15 -1720 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3960 ((-2 (|:| -1867 |#2|) (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -2816 (|#1| |#1| |#1|)) (-15 -2228 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -2228 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2725 ((-781) |#1| |#1|)) (-15 -2208 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2939 (|#1| |#1| (-781))) (-15 -3186 (|#1| |#1| (-781))) (-15 -1466 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| (-781))) (-15 -3473 (|#1| (-1188 |#2|))) (-15 -3707 ((-1188 |#2|) |#1|)) (-15 -1420 ((-1283 |#2|) |#1| (-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -2208 (|#1| |#1| |#1|)) (-15 -2208 (|#2| |#1| |#2|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -4055 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -4428 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2743 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2352 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -3631 (|#1| |#1| (-1097))) (-15 -4349 ((-654 (-1097)) |#1|)) (-15 -3335 ((-781) |#1| (-654 (-1097)))) (-15 -3335 ((-781) |#1|)) (-15 -4327 (|#1| |#1| (-654 (-1097)) (-654 (-781)))) (-15 -4327 (|#1| |#1| (-1097) (-781))) (-15 -1503 ((-654 (-781)) |#1| (-654 (-1097)))) (-15 -1503 ((-781) |#1| (-1097))) (-15 -1803 ((-3 (-1097) "failed") |#1|)) (-15 -3584 ((-654 (-781)) |#1| (-654 (-1097)))) (-15 -3584 ((-781) |#1| (-1097))) (-15 -2950 (|#1| (-1097))) (-15 -1705 ((-3 (-1097) "failed") |#1|)) (-15 -2216 ((-1097) |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1097)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-1097) |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1097)) (-654 |#2|))) (-15 -2660 (|#1| |#1| (-1097) |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3584 ((-781) |#1|)) (-15 -4327 (|#1| |#2| (-781))) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1503 ((-781) |#1|)) (-15 -3631 (|#2| |#1|)) (-15 -3878 (|#1| |#1| (-654 (-1097)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1097) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1097)))) (-15 -3878 (|#1| |#1| (-1097))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-1259 |#2|) (-1064)) (T -1258)) -NIL -(-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -3578 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -3954 ((-428 |#1|) |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -3791 (|#1|)) (-15 -1353 ((-3 |#1| "failed") |#1|)) (-15 -2208 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -3364 ((-781) |#1|)) (-15 -3444 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -2208 (|#2| (-417 |#1|) |#2|)) (-15 -1720 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3960 ((-2 (|:| -1867 |#2|) (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| |#1|)) (-15 -2816 (|#1| |#1| |#1|)) (-15 -2228 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -2228 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2725 ((-781) |#1| |#1|)) (-15 -2208 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2939 (|#1| |#1| (-781))) (-15 -3186 (|#1| |#1| (-781))) (-15 -1466 ((-2 (|:| -4415 |#1|) (|:| -1484 |#1|)) |#1| (-781))) (-15 -3473 (|#1| (-1188 |#2|))) (-15 -3707 ((-1188 |#2|) |#1|)) (-15 -1420 ((-1283 |#2|) |#1| (-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -2208 (|#1| |#1| |#1|)) (-15 -2208 (|#2| |#1| |#2|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -4055 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -4428 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2743 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2352 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -3631 (|#1| |#1| (-1097))) (-15 -4349 ((-654 (-1097)) |#1|)) (-15 -3335 ((-781) |#1| (-654 (-1097)))) (-15 -3335 ((-781) |#1|)) (-15 -4327 (|#1| |#1| (-654 (-1097)) (-654 (-781)))) (-15 -4327 (|#1| |#1| (-1097) (-781))) (-15 -1503 ((-654 (-781)) |#1| (-654 (-1097)))) (-15 -1503 ((-781) |#1| (-1097))) (-15 -1803 ((-3 (-1097) "failed") |#1|)) (-15 -3584 ((-654 (-781)) |#1| (-654 (-1097)))) (-15 -3584 ((-781) |#1| (-1097))) (-15 -2950 (|#1| (-1097))) (-15 -1705 ((-3 (-1097) "failed") |#1|)) (-15 -2216 ((-1097) |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1097)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-1097) |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1097)) (-654 |#2|))) (-15 -2660 (|#1| |#1| (-1097) |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3584 ((-781) |#1|)) (-15 -4327 (|#1| |#2| (-781))) (-15 -1705 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1705 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1705 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1503 ((-781) |#1|)) (-15 -3631 (|#2| |#1|)) (-15 -3878 (|#1| |#1| (-654 (-1097)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1097) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1097)))) (-15 -3878 (|#1| |#1| (-1097))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1420 (((-1283 |#1|) $ (-781)) 243)) (-4349 (((-654 (-1097)) $) 112)) (-3473 (($ (-1188 |#1|)) 241)) (-4171 (((-1188 $) $ (-1097)) 127) (((-1188 |#1|) $) 126)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-3648 (($ $) 90 (|has| |#1| (-566)))) (-1527 (((-112) $) 92 (|has| |#1| (-566)))) (-3335 (((-781) $) 114) (((-781) $ (-654 (-1097))) 113)) (-1597 (((-3 $ "failed") $ $) 20)) (-2891 (($ $ $) 228 (|has| |#1| (-566)))) (-4055 (((-428 (-1188 $)) (-1188 $)) 102 (|has| |#1| (-922)))) (-3296 (($ $) 100 (|has| |#1| (-462)))) (-3954 (((-428 $) $) 99 (|has| |#1| (-462)))) (-2352 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 105 (|has| |#1| (-922)))) (-3656 (((-112) $ $) 213 (|has| |#1| (-372)))) (-3186 (($ $ (-781)) 236)) (-2939 (($ $ (-781)) 235)) (-1720 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 223 (|has| |#1| (-462)))) (-3831 (($) 18 T CONST)) (-1705 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1053 (-574)))) (((-3 (-1097) "failed") $) 140)) (-2216 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1053 (-574)))) (((-1097) $) 141)) (-3496 (($ $ $ (-1097)) 110 (|has| |#1| (-174))) ((|#1| $ $) 231 (|has| |#1| (-174)))) (-2799 (($ $ $) 217 (|has| |#1| (-372)))) (-1401 (($ $) 158)) (-3465 (((-699 (-574)) (-1283 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4047 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1283 $)) 133)) (-3911 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 216 (|has| |#1| (-372)))) (-1490 (($ $ $) 234)) (-2816 (($ $ $) 225 (|has| |#1| (-566)))) (-3960 (((-2 (|:| -1867 |#1|) (|:| -4415 $) (|:| -1484 $)) $ $) 224 (|has| |#1| (-566)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 211 (|has| |#1| (-372)))) (-1509 (($ $) 180 (|has| |#1| (-462))) (($ $ (-1097)) 107 (|has| |#1| (-462)))) (-1388 (((-654 $) $) 111)) (-1782 (((-112) $) 98 (|has| |#1| (-922)))) (-4389 (($ $ |#1| (-781) $) 176)) (-3552 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| (-1097) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| (-1097) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2725 (((-781) $ $) 229 (|has| |#1| (-566)))) (-3372 (((-112) $) 35)) (-3241 (((-781) $) 173)) (-1353 (((-3 $ "failed") $) 209 (|has| |#1| (-1167)))) (-4338 (($ (-1188 |#1|) (-1097)) 119) (($ (-1188 $) (-1097)) 118)) (-2057 (($ $ (-781)) 240)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 220 (|has| |#1| (-372)))) (-1854 (((-654 $) $) 128)) (-3257 (((-112) $) 156)) (-4327 (($ |#1| (-781)) 157) (($ $ (-1097) (-781)) 121) (($ $ (-654 (-1097)) (-654 (-781))) 120)) (-4217 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $ (-1097)) 122) (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 238)) (-1503 (((-781) $) 174) (((-781) $ (-1097)) 124) (((-654 (-781)) $ (-654 (-1097))) 123)) (-3558 (($ (-1 (-781) (-781)) $) 175)) (-1786 (($ (-1 |#1| |#1|) $) 155)) (-3707 (((-1188 |#1|) $) 242)) (-1803 (((-3 (-1097) "failed") $) 125)) (-1365 (($ $) 153)) (-1377 ((|#1| $) 152)) (-2848 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-3945 (((-1174) $) 10)) (-1466 (((-2 (|:| -4415 $) (|:| -1484 $)) $ (-781)) 237)) (-1810 (((-3 (-654 $) "failed") $) 116)) (-1577 (((-3 (-654 $) "failed") $) 117)) (-3404 (((-3 (-2 (|:| |var| (-1097)) (|:| -2017 (-781))) "failed") $) 115)) (-1578 (($ $) 221 (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) 208 (|has| |#1| (-1167)) CONST)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 170)) (-1354 ((|#1| $) 171)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 97 (|has| |#1| (-462)))) (-2886 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2743 (((-428 (-1188 $)) (-1188 $)) 104 (|has| |#1| (-922)))) (-4428 (((-428 (-1188 $)) (-1188 $)) 103 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 101 (|has| |#1| (-922)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 219 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 218 (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 212 (|has| |#1| (-372)))) (-2660 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ (-1097) |#1|) 145) (($ $ (-654 (-1097)) (-654 |#1|)) 144) (($ $ (-1097) $) 143) (($ $ (-654 (-1097)) (-654 $)) 142)) (-3364 (((-781) $) 214 (|has| |#1| (-372)))) (-2208 ((|#1| $ |#1|) 261) (($ $ $) 260) (((-417 $) (-417 $) (-417 $)) 230 (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) 222 (|has| |#1| (-372))) (((-417 $) $ (-417 $)) 210 (|has| |#1| (-566)))) (-2595 (((-3 $ "failed") $ (-781)) 239)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 215 (|has| |#1| (-372)))) (-1738 (($ $ (-1097)) 109 (|has| |#1| (-174))) ((|#1| $) 232 (|has| |#1| (-174)))) (-3878 (($ $ (-1097)) 46) (($ $ (-654 (-1097))) 45) (($ $ (-1097) (-781)) 44) (($ $ (-654 (-1097)) (-654 (-781))) 43) (($ $) 259) (($ $ (-781)) 257) (($ $ (-1192)) 255 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 254 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 253 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 252 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 245) (($ $ (-1 |#1| |#1|)) 244) (($ $ (-1 |#1| |#1|) $) 233)) (-3584 (((-781) $) 154) (((-781) $ (-1097)) 132) (((-654 (-781)) $ (-654 (-1097))) 131)) (-1845 (((-903 (-388)) $) 84 (-12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| (-1097) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3631 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ (-1097)) 108 (|has| |#1| (-462)))) (-1533 (((-3 (-1283 $) "failed") (-699 $)) 106 (-2096 (|has| $ (-146)) (|has| |#1| (-922))))) (-2228 (((-3 $ "failed") $ $) 227 (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) 226 (|has| |#1| (-566)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ (-1097)) 139) (($ (-417 (-574))) 80 (-2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-2836 (((-654 |#1|) $) 172)) (-2930 ((|#1| $ (-781)) 159) (($ $ (-1097) (-781)) 130) (($ $ (-654 (-1097)) (-654 (-781))) 129)) (-3247 (((-3 $ "failed") $) 81 (-2832 (-2096 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-4019 (((-781)) 32 T CONST)) (-2037 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-1097)) 42) (($ $ (-654 (-1097))) 41) (($ $ (-1097) (-781)) 40) (($ $ (-654 (-1097)) (-654 (-781))) 39) (($ $) 258) (($ $ (-781)) 256) (($ $ (-1192)) 251 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 250 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 249 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 248 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 247) (($ $ (-1 |#1| |#1|)) 246)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-1259 |#1|) (-141) (-1064)) (T -1259)) -((-1420 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1259 *4)) (-4 *4 (-1064)) (-5 *2 (-1283 *4)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-5 *2 (-1188 *3)))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1064)) (-4 *1 (-1259 *3)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) (-2595 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) (-4217 (*1 *2 *1 *1) (-12 (-4 *3 (-1064)) (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-1259 *3)))) (-1466 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1064)) (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-1259 *4)))) (-3186 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) (-2939 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) (-1490 (*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)))) (-3878 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-174)))) (-3496 (*1 *2 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-174)))) (-2208 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-4 *3 (-566)))) (-2725 (*1 *2 *1 *1) (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-4 *3 (-566)) (-5 *2 (-781)))) (-2891 (*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566)))) (-2228 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566)))) (-2228 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-4 *3 (-566)))) (-2816 (*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566)))) (-3960 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -1867 *3) (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-1259 *3)))) (-1720 (*1 *2 *1 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1259 *3)))) (-2208 (*1 *2 *3 *2) (-12 (-5 *3 (-417 *1)) (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-1578 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574))))))) -(-13 (-962 |t#1| (-781) (-1097)) (-294 |t#1| |t#1|) (-294 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -1420 ((-1283 |t#1|) $ (-781))) (-15 -3707 ((-1188 |t#1|) $)) (-15 -3473 ($ (-1188 |t#1|))) (-15 -2057 ($ $ (-781))) (-15 -2595 ((-3 $ "failed") $ (-781))) (-15 -4217 ((-2 (|:| -4415 $) (|:| -1484 $)) $ $)) (-15 -1466 ((-2 (|:| -4415 $) (|:| -1484 $)) $ (-781))) (-15 -3186 ($ $ (-781))) (-15 -2939 ($ $ (-781))) (-15 -1490 ($ $ $)) (-15 -3878 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1167)) (-6 (-1167)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1738 (|t#1| $)) (-15 -3496 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-294 (-417 $) (-417 $))) (-15 -2208 ((-417 $) (-417 $) (-417 $))) (-15 -2725 ((-781) $ $)) (-15 -2891 ($ $ $)) (-15 -2228 ((-3 $ "failed") $ $)) (-15 -2228 ((-3 (-417 $) "failed") (-417 $) $)) (-15 -2816 ($ $ $)) (-15 -3960 ((-2 (|:| -1867 |t#1|) (|:| -4415 $) (|:| -1484 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (-15 -1720 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-315)) (-6 -4454) (-15 -2208 (|t#1| (-417 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-15 -1578 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1097)) . T) ((-626 |#1|) . T) ((-626 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| (-1097) (-624 (-546))) (|has| |#1| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-238) . T) ((-294 (-417 $) (-417 $)) |has| |#1| (-566)) ((-294 |#1| |#1|) . T) ((-294 $ $) . T) ((-298) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 $) . T) ((-334 |#1| #0#) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-922)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-524 #2# |#1|) . T) ((-524 #2# $) . T) ((-524 $ $) . T) ((-566) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 #3=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-649 #3#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-736) . T) ((-913 #2#) . T) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-897 (-388)) -12 (|has| (-1097) (-897 (-388))) (|has| |#1| (-897 (-388)))) ((-897 (-574)) -12 (|has| (-1097) (-897 (-574))) (|has| |#1| (-897 (-574)))) ((-962 |#1| #0# #2#) . T) ((-922) |has| |#1| (-922)) ((-933) |has| |#1| (-372)) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 #2#) . T) ((-1053 |#1|) . T) ((-1066 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1071 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| |#1| (-1167)) ((-1233) . T) ((-1237) |has| |#1| (-922))) -((-4349 (((-654 (-1097)) $) 34)) (-1401 (($ $) 31)) (-4327 (($ |#2| |#3|) NIL) (($ $ (-1097) |#3|) 28) (($ $ (-654 (-1097)) (-654 |#3|)) 27)) (-1365 (($ $) 14)) (-1377 ((|#2| $) 12)) (-3584 ((|#3| $) 10))) -(((-1260 |#1| |#2| |#3|) (-10 -8 (-15 -4349 ((-654 (-1097)) |#1|)) (-15 -4327 (|#1| |#1| (-654 (-1097)) (-654 |#3|))) (-15 -4327 (|#1| |#1| (-1097) |#3|)) (-15 -1401 (|#1| |#1|)) (-15 -4327 (|#1| |#2| |#3|)) (-15 -3584 (|#3| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -1377 (|#2| |#1|))) (-1261 |#2| |#3|) (-1064) (-802)) (T -1260)) -NIL -(-10 -8 (-15 -4349 ((-654 (-1097)) |#1|)) (-15 -4327 (|#1| |#1| (-654 (-1097)) (-654 |#3|))) (-15 -4327 (|#1| |#1| (-1097) |#3|)) (-15 -1401 (|#1| |#1|)) (-15 -4327 (|#1| |#2| |#3|)) (-15 -3584 (|#3| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -1377 (|#2| |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4349 (((-654 (-1097)) $) 86)) (-1497 (((-1192) $) 117)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-3648 (($ $) 64 (|has| |#1| (-566)))) (-1527 (((-112) $) 66 (|has| |#1| (-566)))) (-3842 (($ $ |#2|) 112) (($ $ |#2| |#2|) 111)) (-3786 (((-1172 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 118)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-1401 (($ $) 72)) (-3911 (((-3 $ "failed") $) 37)) (-3938 (((-112) $) 85)) (-2725 ((|#2| $) 114) ((|#2| $ |#2|) 113)) (-3372 (((-112) $) 35)) (-2057 (($ $ (-934)) 115)) (-3257 (((-112) $) 74)) (-4327 (($ |#1| |#2|) 73) (($ $ (-1097) |#2|) 88) (($ $ (-654 (-1097)) (-654 |#2|)) 87)) (-1786 (($ (-1 |#1| |#1|) $) 75)) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2115 (($ $ |#2|) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2208 ((|#1| $ |#2|) 119) (($ $ $) 95 (|has| |#2| (-1127)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 103 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1192) (-781)) 102 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1192))) 101 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1192)) 100 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3584 ((|#2| $) 76)) (-4209 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2930 ((|#1| $ |#2|) 71)) (-3247 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 65 (|has| |#1| (-566)))) (-3524 ((|#1| $ |#2|) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 107 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1192) (-781)) 106 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1192))) 105 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1192)) 104 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-781)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1261 |#1| |#2|) (-141) (-1064) (-802)) (T -1261)) -((-3786 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-1172 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-1192)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1261 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-2725 (*1 *2 *1 *2) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-3842 (*1 *1 *1 *2) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-3842 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-3524 (*1 *2 *1 *3) (-12 (-4 *1 (-1261 *2 *3)) (-4 *3 (-802)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2950 (*2 (-1192)))) (-4 *2 (-1064)))) (-2115 (*1 *1 *1 *2) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-2660 (*1 *2 *1 *3) (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1172 *3))))) -(-13 (-988 |t#1| |t#2| (-1097)) (-294 |t#2| |t#1|) (-10 -8 (-15 -3786 ((-1172 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1497 ((-1192) $)) (-15 -3332 (|t#1| $)) (-15 -2057 ($ $ (-934))) (-15 -2725 (|t#2| $)) (-15 -2725 (|t#2| $ |t#2|)) (-15 -3842 ($ $ |t#2|)) (-15 -3842 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2950 (|t#1| (-1192)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3524 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2115 ($ $ |t#2|)) (IF (|has| |t#2| (-1127)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-913 (-1192))) (-6 (-913 (-1192))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2660 ((-1172 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-294 |#2| |#1|) . T) ((-294 $ $) |has| |#2| (-1127)) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-913 (-1192)))) ((-988 |#1| |#2| (-1097)) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) . T)) -((-3296 ((|#2| |#2|) 12)) (-3954 (((-428 |#2|) |#2|) 14)) (-3840 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))) 30))) -(((-1262 |#1| |#2|) (-10 -7 (-15 -3954 ((-428 |#2|) |#2|)) (-15 -3296 (|#2| |#2|)) (-15 -3840 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))))) (-566) (-13 (-1259 |#1|) (-566) (-10 -8 (-15 -2886 ($ $ $))))) (T -1262)) -((-3840 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-574)))) (-4 *4 (-13 (-1259 *3) (-566) (-10 -8 (-15 -2886 ($ $ $))))) (-4 *3 (-566)) (-5 *1 (-1262 *3 *4)))) (-3296 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-1262 *3 *2)) (-4 *2 (-13 (-1259 *3) (-566) (-10 -8 (-15 -2886 ($ $ $))))))) (-3954 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1262 *4 *3)) (-4 *3 (-13 (-1259 *4) (-566) (-10 -8 (-15 -2886 ($ $ $)))))))) -(-10 -7 (-15 -3954 ((-428 |#2|) |#2|)) (-15 -3296 (|#2| |#2|)) (-15 -3840 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))))) -((-1786 (((-1268 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1268 |#1| |#3| |#5|)) 24))) -(((-1263 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1786 ((-1268 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1268 |#1| |#3| |#5|)))) (-1064) (-1064) (-1192) (-1192) |#1| |#2|) (T -1263)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1268 *5 *7 *9)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-14 *7 (-1192)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1268 *6 *8 *10)) (-5 *1 (-1263 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1192))))) -(-10 -7 (-15 -1786 ((-1268 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1268 |#1| |#3| |#5|)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4349 (((-654 (-1097)) $) 86)) (-1497 (((-1192) $) 117)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-3648 (($ $) 64 (|has| |#1| (-566)))) (-1527 (((-112) $) 66 (|has| |#1| (-566)))) (-3842 (($ $ (-417 (-574))) 112) (($ $ (-417 (-574)) (-417 (-574))) 111)) (-3786 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 118)) (-2378 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 176 (|has| |#1| (-372)))) (-3954 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4211 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3656 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 185)) (-2403 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) 18 T CONST)) (-2799 (($ $ $) 171 (|has| |#1| (-372)))) (-1401 (($ $) 72)) (-3911 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 170 (|has| |#1| (-372)))) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-1782 (((-112) $) 178 (|has| |#1| (-372)))) (-3938 (((-112) $) 85)) (-3003 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-417 (-574)) $) 114) (((-417 (-574)) $ (-417 (-574))) 113)) (-3372 (((-112) $) 35)) (-2132 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2057 (($ $ (-934)) 115) (($ $ (-417 (-574))) 184)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3257 (((-112) $) 74)) (-4327 (($ |#1| (-417 (-574))) 73) (($ $ (-1097) (-417 (-574))) 88) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) 87)) (-1786 (($ (-1 |#1| |#1|) $) 75)) (-3112 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-2848 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-3945 (((-1174) $) 10)) (-1327 (($ $) 179 (|has| |#1| (-372)))) (-1578 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 182 (-2832 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-972)) (|has| |#1| (-1218)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 164 (|has| |#1| (-372)))) (-2886 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4200 (((-428 $) $) 175 (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 172 (|has| |#1| (-372)))) (-2115 (($ $ (-417 (-574))) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1618 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3364 (((-781) $) 168 (|has| |#1| (-372)))) (-2208 ((|#1| $ (-417 (-574))) 119) (($ $ $) 95 (|has| (-417 (-574)) (-1127)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 169 (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 103 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192) (-781)) 102 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1192))) 101 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192)) 100 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3584 (((-417 (-574)) $) 76)) (-2416 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-2930 ((|#1| $ (-417 (-574))) 71)) (-3247 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-3838 (((-112) $ $) 9)) (-2455 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2427 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 107 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192) (-781)) 106 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1192))) 105 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192)) 104 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 96 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1264 |#1|) (-141) (-1064)) (T -1264)) -((-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))) (-4 *4 (-1064)) (-4 *1 (-1264 *4)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1264 *3)) (-4 *3 (-1064)))) (-1578 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) (-1578 (*1 *1 *1 *2) (-2832 (-12 (-5 *2 (-1192)) (-4 *1 (-1264 *3)) (-4 *3 (-1064)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1192)) (-4 *1 (-1264 *3)) (-4 *3 (-1064)) (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) (|has| *3 (-15 -1578 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) -(-13 (-1261 |t#1| (-417 (-574))) (-10 -8 (-15 -3596 ($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |t#1|))))) (-15 -2057 ($ $ (-417 (-574)))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ($ $)) (IF (|has| |t#1| (-15 -1578 (|t#1| |t#1| (-1192)))) (IF (|has| |t#1| (-15 -4349 ((-654 (-1192)) |t#1|))) (-15 -1578 ($ $ (-1192))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1218)) (IF (|has| |t#1| (-972)) (IF (|has| |t#1| (-29 (-574))) (-15 -1578 ($ $ (-1192))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1017)) (-6 (-1218))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1127)) ((-298) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192)))) ((-988 |#1| #0# (-1097)) . T) ((-933) |has| |#1| (-372)) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1066 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1071 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574)))) ((-1233) . T) ((-1237) |has| |#1| (-372)) ((-1261 |#1| #0#) . T)) -((-3520 (((-112) $) 12)) (-1705 (((-3 |#3| "failed") $) 17)) (-2216 ((|#3| $) 14))) -(((-1265 |#1| |#2| |#3|) (-10 -8 (-15 -1705 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -3520 ((-112) |#1|))) (-1266 |#2| |#3|) (-1064) (-1243 |#2|)) (T -1265)) -NIL -(-10 -8 (-15 -1705 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -3520 ((-112) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4349 (((-654 (-1097)) $) 86)) (-1497 (((-1192) $) 117)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-3648 (($ $) 64 (|has| |#1| (-566)))) (-1527 (((-112) $) 66 (|has| |#1| (-566)))) (-3842 (($ $ (-417 (-574))) 112) (($ $ (-417 (-574)) (-417 (-574))) 111)) (-3786 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 118)) (-2378 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 176 (|has| |#1| (-372)))) (-3954 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4211 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3656 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 185)) (-2403 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) 18 T CONST)) (-1705 (((-3 |#2| "failed") $) 196)) (-2216 ((|#2| $) 197)) (-2799 (($ $ $) 171 (|has| |#1| (-372)))) (-1401 (($ $) 72)) (-3911 (((-3 $ "failed") $) 37)) (-2665 (((-417 (-574)) $) 193)) (-2811 (($ $ $) 170 (|has| |#1| (-372)))) (-4425 (($ (-417 (-574)) |#2|) 194)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-1782 (((-112) $) 178 (|has| |#1| (-372)))) (-3938 (((-112) $) 85)) (-3003 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-417 (-574)) $) 114) (((-417 (-574)) $ (-417 (-574))) 113)) (-3372 (((-112) $) 35)) (-2132 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2057 (($ $ (-934)) 115) (($ $ (-417 (-574))) 184)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3257 (((-112) $) 74)) (-4327 (($ |#1| (-417 (-574))) 73) (($ $ (-1097) (-417 (-574))) 88) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) 87)) (-1786 (($ (-1 |#1| |#1|) $) 75)) (-3112 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-2848 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-4320 ((|#2| $) 192)) (-2809 (((-3 |#2| "failed") $) 190)) (-4413 ((|#2| $) 191)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 179 (|has| |#1| (-372)))) (-1578 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 182 (-2832 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-972)) (|has| |#1| (-1218)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 164 (|has| |#1| (-372)))) (-2886 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4200 (((-428 $) $) 175 (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 172 (|has| |#1| (-372)))) (-2115 (($ $ (-417 (-574))) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1618 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3364 (((-781) $) 168 (|has| |#1| (-372)))) (-2208 ((|#1| $ (-417 (-574))) 119) (($ $ $) 95 (|has| (-417 (-574)) (-1127)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 169 (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 103 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192) (-781)) 102 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1192))) 101 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192)) 100 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3584 (((-417 (-574)) $) 76)) (-2416 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 195) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-2930 ((|#1| $ (-417 (-574))) 71)) (-3247 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-3838 (((-112) $ $) 9)) (-2455 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2427 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 107 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192) (-781)) 106 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1192))) 105 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192)) 104 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 96 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1266 |#1| |#2|) (-141) (-1064) (-1243 |t#1|)) (T -1266)) -((-3584 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1243 *3)) (-5 *2 (-417 (-574))))) (-4425 (*1 *1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1064)) (-4 *1 (-1266 *4 *3)) (-4 *3 (-1243 *4)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1243 *3)) (-5 *2 (-417 (-574))))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1243 *3)))) (-4413 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1243 *3)))) (-2809 (*1 *2 *1) (|partial| -12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1243 *3))))) -(-13 (-1264 |t#1|) (-1053 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4425 ($ (-417 (-574)) |t#2|)) (-15 -2665 ((-417 (-574)) $)) (-15 -4320 (|t#2| $)) (-15 -3584 ((-417 (-574)) $)) (-15 -4413 (|t#2| $)) (-15 -2809 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1127)) ((-298) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192)))) ((-988 |#1| #0# (-1097)) . T) ((-933) |has| |#1| (-372)) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1053 |#2|) . T) ((-1066 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1071 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574)))) ((-1233) . T) ((-1237) |has| |#1| (-372)) ((-1261 |#1| #0#) . T) ((-1264 |#1|) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1497 (((-1192) $) 104)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3842 (($ $ (-417 (-574))) 116) (($ $ (-417 (-574)) (-417 (-574))) 118)) (-3786 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 54)) (-2378 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-372)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 65)) (-2403 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#2| "failed") $) NIL)) (-2216 ((|#2| $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) 85)) (-2665 (((-417 (-574)) $) 13)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-4425 (($ (-417 (-574)) |#2|) 11)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1782 (((-112) $) NIL (|has| |#1| (-372)))) (-3938 (((-112) $) 74)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-417 (-574)) $) 113) (((-417 (-574)) $ (-417 (-574))) 114)) (-3372 (((-112) $) NIL)) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2057 (($ $ (-934)) 130) (($ $ (-417 (-574))) 128)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-417 (-574))) 33) (($ $ (-1097) (-417 (-574))) NIL) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) NIL)) (-1786 (($ (-1 |#1| |#1|) $) 125)) (-3112 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4320 ((|#2| $) 12)) (-2809 (((-3 |#2| "failed") $) 44)) (-4413 ((|#2| $) 45)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) 101 (|has| |#1| (-372)))) (-1578 (($ $) 146 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 151 (-2832 (-12 (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218)))))) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2115 (($ $ (-417 (-574))) 122)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1618 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-2208 ((|#1| $ (-417 (-574))) 108) (($ $ $) 94 (|has| (-417 (-574)) (-1127)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) 138 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3584 (((-417 (-574)) $) 16)) (-2416 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) 120)) (-2950 (((-872) $) NIL) (($ (-574)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-417 (-574))) 139 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2930 ((|#1| $ (-417 (-574))) 107)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) 127 T CONST)) (-3332 ((|#1| $) 106)) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2427 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) 21 T CONST)) (-2154 (($) 17 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) 72)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 100 (|has| |#1| (-372)))) (-3089 (($ $) 142) (($ $ $) 78)) (-3074 (($ $ $) 76)) (** (($ $ (-934)) NIL) (($ $ (-781)) 82) (($ $ (-574)) 157 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 158 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1267 |#1| |#2|) (-1266 |#1| |#2|) (-1064) (-1243 |#1|)) (T -1267)) -NIL -(-1266 |#1| |#2|) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1497 (((-1192) $) 11)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) NIL (|has| |#1| (-566)))) (-3842 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-3786 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-372)))) (-3954 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3656 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-1247 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1275 |#1| |#2| |#3|) "failed") $) 22)) (-2216 (((-1247 |#1| |#2| |#3|) $) NIL) (((-1275 |#1| |#2| |#3|) $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-2665 (((-417 (-574)) $) 69)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-4425 (($ (-417 (-574)) (-1247 |#1| |#2| |#3|)) NIL)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1782 (((-112) $) NIL (|has| |#1| (-372)))) (-3938 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3372 (((-112) $) NIL)) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2057 (($ $ (-934)) NIL) (($ $ (-417 (-574))) NIL)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-417 (-574))) 30) (($ $ (-1097) (-417 (-574))) NIL) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3112 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2848 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4320 (((-1247 |#1| |#2| |#3|) $) 72)) (-2809 (((-3 (-1247 |#1| |#2| |#3|) "failed") $) NIL)) (-4413 (((-1247 |#1| |#2| |#3|) $) NIL)) (-3945 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-1578 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2318 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2115 (($ $ (-417 (-574))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2190 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1618 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3364 (((-781) $) NIL (|has| |#1| (-372)))) (-2208 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1127)))) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1279 |#2|)) 38)) (-3584 (((-417 (-574)) $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) NIL)) (-2950 (((-872) $) 107) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1247 |#1| |#2| |#3|)) 16) (($ (-1275 |#1| |#2| |#3|)) 17) (($ (-1279 |#2|)) 36) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2930 ((|#1| $ (-417 (-574))) NIL)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 12)) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2427 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) 32 T CONST)) (-2154 (($) 26 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 34)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1268 |#1| |#2| |#3|) (-13 (-1266 |#1| (-1247 |#1| |#2| |#3|)) (-1053 (-1275 |#1| |#2| |#3|)) (-626 (-1279 |#2|)) (-10 -8 (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1268)) -((-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-1578 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) -(-13 (-1266 |#1| (-1247 |#1| |#2| |#3|)) (-1053 (-1275 |#1| |#2| |#3|)) (-626 (-1279 |#2|)) (-10 -8 (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 37)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-3648 (($ $) NIL)) (-1527 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 (-574) "failed") $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1053 (-417 (-574))))) (((-3 (-1268 |#2| |#3| |#4|) "failed") $) 22)) (-2216 (((-574) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1053 (-417 (-574))))) (((-1268 |#2| |#3| |#4|) $) NIL)) (-1401 (($ $) 41)) (-3911 (((-3 $ "failed") $) 27)) (-1509 (($ $) NIL (|has| (-1268 |#2| |#3| |#4|) (-462)))) (-4389 (($ $ (-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|) $) NIL)) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) 11)) (-3257 (((-112) $) NIL)) (-4327 (($ (-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) 25)) (-1503 (((-327 |#2| |#3| |#4|) $) NIL)) (-3558 (($ (-1 (-327 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) $) NIL)) (-1786 (($ (-1 (-1268 |#2| |#3| |#4|) (-1268 |#2| |#3| |#4|)) $) NIL)) (-3034 (((-3 (-853 |#2|) "failed") $) 90)) (-1365 (($ $) NIL)) (-1377 (((-1268 |#2| |#3| |#4|) $) 20)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 (((-1268 |#2| |#3| |#4|) $) NIL)) (-2852 (((-3 $ "failed") $ (-1268 |#2| |#3| |#4|)) NIL (|has| (-1268 |#2| |#3| |#4|) (-566))) (((-3 $ "failed") $ $) NIL)) (-3947 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1268 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1174))) "failed") $) 74)) (-3584 (((-327 |#2| |#3| |#4|) $) 17)) (-3631 (((-1268 |#2| |#3| |#4|) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-1268 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL (-2832 (|has| (-1268 |#2| |#3| |#4|) (-38 (-417 (-574)))) (|has| (-1268 |#2| |#3| |#4|) (-1053 (-417 (-574))))))) (-2836 (((-654 (-1268 |#2| |#3| |#4|)) $) NIL)) (-2930 (((-1268 |#2| |#3| |#4|) $ (-327 |#2| |#3| |#4|)) NIL)) (-3247 (((-3 $ "failed") $) NIL (|has| (-1268 |#2| |#3| |#4|) (-146)))) (-4019 (((-781)) NIL T CONST)) (-2037 (($ $ $ (-781)) NIL (|has| (-1268 |#2| |#3| |#4|) (-174)))) (-3838 (((-112) $ $) NIL)) (-1842 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-2154 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ (-1268 |#2| |#3| |#4|)) NIL (|has| (-1268 |#2| |#3| |#4|) (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-1268 |#2| |#3| |#4|)) NIL) (($ (-1268 |#2| |#3| |#4|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| (-1268 |#2| |#3| |#4|) (-38 (-417 (-574))))))) -(((-1269 |#1| |#2| |#3| |#4|) (-13 (-334 (-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -3034 ((-3 (-853 |#2|) "failed") $)) (-15 -3947 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1268 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1174))) "failed") $)))) (-13 (-1053 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1218) (-440 |#1|)) (-1192) |#2|) (T -1269)) -((-3034 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-1269 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) (-14 *6 *4))) (-3947 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1268 *4 *5 *6)) (|:| |%expon| (-327 *4 *5 *6)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))))) (|:| |%type| (-1174)))) (-5 *1 (-1269 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) (-14 *6 *4)))) -(-13 (-334 (-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -3034 ((-3 (-853 |#2|) "failed") $)) (-15 -3947 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1268 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1174))) "failed") $)))) -((-3078 ((|#2| $) 34)) (-2420 ((|#2| $) 18)) (-1979 (($ $) 53)) (-1344 (($ $ (-574)) 85)) (-2818 (((-112) $ (-781)) 46)) (-3906 ((|#2| $ |#2|) 82)) (-2976 ((|#2| $ |#2|) 78)) (-3134 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2566 (($ $ (-654 $)) 81)) (-2407 ((|#2| $) 17)) (-2934 (($ $) NIL) (($ $ (-781)) 59)) (-2898 (((-654 $) $) 31)) (-2661 (((-112) $ $) 69)) (-2224 (((-112) $ (-781)) 45)) (-3625 (((-112) $ (-781)) 43)) (-4069 (((-112) $) 33)) (-3333 ((|#2| $) 25) (($ $ (-781)) 64)) (-2208 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1966 (((-112) $) 23)) (-2013 (($ $) 56)) (-1429 (($ $) 86)) (-2746 (((-781) $) 58)) (-1476 (($ $) 57)) (-4131 (($ $ $) 77) (($ |#2| $) NIL)) (-4414 (((-654 $) $) 32)) (-2985 (((-112) $ $) 67)) (-2876 (((-781) $) 52))) -(((-1270 |#1| |#2|) (-10 -8 (-15 -1344 (|#1| |#1| (-574))) (-15 -3134 (|#2| |#1| "last" |#2|)) (-15 -2976 (|#2| |#1| |#2|)) (-15 -3134 (|#1| |#1| "rest" |#1|)) (-15 -3134 (|#2| |#1| "first" |#2|)) (-15 -1429 (|#1| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2746 ((-781) |#1|)) (-15 -1476 (|#1| |#1|)) (-15 -2420 (|#2| |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -3333 (|#1| |#1| (-781))) (-15 -2208 (|#2| |#1| "last")) (-15 -3333 (|#2| |#1|)) (-15 -2934 (|#1| |#1| (-781))) (-15 -2208 (|#1| |#1| "rest")) (-15 -2934 (|#1| |#1|)) (-15 -2208 (|#2| |#1| "first")) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#1|)) (-15 -3906 (|#2| |#1| |#2|)) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -2566 (|#1| |#1| (-654 |#1|))) (-15 -2661 ((-112) |#1| |#1|)) (-15 -1966 ((-112) |#1|)) (-15 -2208 (|#2| |#1| "value")) (-15 -3078 (|#2| |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -2898 ((-654 |#1|) |#1|)) (-15 -4414 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -2818 ((-112) |#1| (-781))) (-15 -2224 ((-112) |#1| (-781))) (-15 -3625 ((-112) |#1| (-781)))) (-1271 |#2|) (-1233)) (T -1270)) -NIL -(-10 -8 (-15 -1344 (|#1| |#1| (-574))) (-15 -3134 (|#2| |#1| "last" |#2|)) (-15 -2976 (|#2| |#1| |#2|)) (-15 -3134 (|#1| |#1| "rest" |#1|)) (-15 -3134 (|#2| |#1| "first" |#2|)) (-15 -1429 (|#1| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2746 ((-781) |#1|)) (-15 -1476 (|#1| |#1|)) (-15 -2420 (|#2| |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -3333 (|#1| |#1| (-781))) (-15 -2208 (|#2| |#1| "last")) (-15 -3333 (|#2| |#1|)) (-15 -2934 (|#1| |#1| (-781))) (-15 -2208 (|#1| |#1| "rest")) (-15 -2934 (|#1| |#1|)) (-15 -2208 (|#2| |#1| "first")) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#1|)) (-15 -3906 (|#2| |#1| |#2|)) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -2566 (|#1| |#1| (-654 |#1|))) (-15 -2661 ((-112) |#1| |#1|)) (-15 -1966 ((-112) |#1|)) (-15 -2208 (|#2| |#1| "value")) (-15 -3078 (|#2| |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -2898 ((-654 |#1|) |#1|)) (-15 -4414 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -2818 ((-112) |#1| (-781))) (-15 -2224 ((-112) |#1| (-781))) (-15 -3625 ((-112) |#1| (-781)))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-2420 ((|#1| $) 66)) (-1979 (($ $) 68)) (-1344 (($ $ (-574)) 53 (|has| $ (-6 -4459)))) (-2818 (((-112) $ (-781)) 8)) (-3906 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-3168 (($ $ $) 57 (|has| $ (-6 -4459)))) (-2976 ((|#1| $ |#1|) 55 (|has| $ (-6 -4459)))) (-3576 ((|#1| $ |#1|) 59 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4459))) (($ $ "rest" $) 56 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4459)))) (-2566 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-2407 ((|#1| $) 67)) (-3831 (($) 7 T CONST)) (-2934 (($ $) 74) (($ $ (-781)) 72)) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2898 (((-654 $) $) 51)) (-2661 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-2224 (((-112) $ (-781)) 9)) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36)) (-3625 (((-112) $ (-781)) 10)) (-3481 (((-654 |#1|) $) 46)) (-4069 (((-112) $) 50)) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3333 ((|#1| $) 71) (($ $ (-781)) 69)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 77) (($ $ (-781)) 75)) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-4418 (((-574) $ $) 45)) (-1966 (((-112) $) 47)) (-2013 (($ $) 63)) (-1429 (($ $) 60 (|has| $ (-6 -4459)))) (-2746 (((-781) $) 64)) (-1476 (($ $) 65)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-4226 (($ $ $) 62 (|has| $ (-6 -4459))) (($ $ |#1|) 61 (|has| $ (-6 -4459)))) (-4131 (($ $ $) 79) (($ |#1| $) 78)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4414 (((-654 $) $) 52)) (-1870 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-1271 |#1|) (-141) (-1233)) (T -1271)) -((-4131 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-4131 (*1 *1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) (-2934 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) (-2934 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) (-1979 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-1476 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) (-2013 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-4226 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-4226 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-1429 (*1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3576 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3134 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3168 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3134 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) (-2976 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3134 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-1344 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4459)) (-4 *1 (-1271 *3)) (-4 *3 (-1233))))) -(-13 (-1025 |t#1|) (-10 -8 (-15 -4131 ($ $ $)) (-15 -4131 ($ |t#1| $)) (-15 -2924 (|t#1| $)) (-15 -2208 (|t#1| $ "first")) (-15 -2924 ($ $ (-781))) (-15 -2934 ($ $)) (-15 -2208 ($ $ "rest")) (-15 -2934 ($ $ (-781))) (-15 -3333 (|t#1| $)) (-15 -2208 (|t#1| $ "last")) (-15 -3333 ($ $ (-781))) (-15 -1979 ($ $)) (-15 -2407 (|t#1| $)) (-15 -2420 (|t#1| $)) (-15 -1476 ($ $)) (-15 -2746 ((-781) $)) (-15 -2013 ($ $)) (IF (|has| $ (-6 -4459)) (PROGN (-15 -4226 ($ $ $)) (-15 -4226 ($ $ |t#1|)) (-15 -1429 ($ $)) (-15 -3576 (|t#1| $ |t#1|)) (-15 -3134 (|t#1| $ "first" |t#1|)) (-15 -3168 ($ $ $)) (-15 -3134 ($ $ "rest" $)) (-15 -2976 (|t#1| $ |t#1|)) (-15 -3134 (|t#1| $ "last" |t#1|)) (-15 -1344 ($ $ (-574)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) -((-1786 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1786 (|#4| (-1 |#2| |#1|) |#3|))) (-1064) (-1064) (-1274 |#1|) (-1274 |#2|)) (T -1272)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-4 *2 (-1274 *6)) (-5 *1 (-1272 *5 *6 *4 *2)) (-4 *4 (-1274 *5))))) -(-10 -7 (-15 -1786 (|#4| (-1 |#2| |#1|) |#3|))) -((-3520 (((-112) $) 17)) (-2378 (($ $) 105)) (-2259 (($ $) 81)) (-2357 (($ $) 101)) (-2237 (($ $) 77)) (-2403 (($ $) 109)) (-2281 (($ $) 85)) (-3112 (($ $) 75)) (-1618 (($ $) 73)) (-2416 (($ $) 111)) (-2289 (($ $) 87)) (-2389 (($ $) 107)) (-2269 (($ $) 83)) (-2367 (($ $) 103)) (-2248 (($ $) 79)) (-2950 (((-872) $) 61) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2455 (($ $) 117)) (-2319 (($ $) 93)) (-2427 (($ $) 113)) (-2300 (($ $) 89)) (-2479 (($ $) 121)) (-2339 (($ $) 97)) (-2535 (($ $) 123)) (-2348 (($ $) 99)) (-2466 (($ $) 119)) (-2329 (($ $) 95)) (-2442 (($ $) 115)) (-2311 (($ $) 91)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-417 (-574))) 71))) -(((-1273 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2259 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2248 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2466 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3112 (|#1| |#1|)) (-15 -1618 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934))) (-15 -3520 ((-112) |#1|)) (-15 -2950 ((-872) |#1|))) (-1274 |#2|) (-1064)) (T -1273)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2259 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2248 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2466 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3112 (|#1| |#1|)) (-15 -1618 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934))) (-15 -3520 ((-112) |#1|)) (-15 -2950 ((-872) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-4349 (((-654 (-1097)) $) 86)) (-1497 (((-1192) $) 117)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-3648 (($ $) 64 (|has| |#1| (-566)))) (-1527 (((-112) $) 66 (|has| |#1| (-566)))) (-3842 (($ $ (-781)) 112) (($ $ (-781) (-781)) 111)) (-3786 (((-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 118)) (-2378 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) 20)) (-4211 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 169) (($ (-1172 |#1|)) 167)) (-2403 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) 18 T CONST)) (-1401 (($ $) 72)) (-3911 (((-3 $ "failed") $) 37)) (-1524 (($ $) 166)) (-4025 (((-965 |#1|) $ (-781)) 164) (((-965 |#1|) $ (-781) (-781)) 163)) (-3938 (((-112) $) 85)) (-3003 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-781) $) 114) (((-781) $ (-781)) 113)) (-3372 (((-112) $) 35)) (-2132 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2057 (($ $ (-934)) 115)) (-1988 (($ (-1 |#1| (-574)) $) 165)) (-3257 (((-112) $) 74)) (-4327 (($ |#1| (-781)) 73) (($ $ (-1097) (-781)) 88) (($ $ (-654 (-1097)) (-654 (-781))) 87)) (-1786 (($ (-1 |#1| |#1|) $) 75)) (-3112 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-3945 (((-1174) $) 10)) (-1578 (($ $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 160 (-2832 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-972)) (|has| |#1| (-1218)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3939 (((-1135) $) 11)) (-2115 (($ $ (-781)) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1618 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2208 ((|#1| $ (-781)) 119) (($ $ $) 95 (|has| (-781) (-1127)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 103 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1192) (-781)) 102 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1192))) 101 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1192)) 100 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-3584 (((-781) $) 76)) (-2416 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2836 (((-1172 |#1|) $) 168)) (-2930 ((|#1| $ (-781)) 71)) (-3247 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4019 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-3838 (((-112) $ $) 9)) (-2455 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2427 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-781)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 107 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1192) (-781)) 106 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1192))) 105 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1192)) 104 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) 96 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ |#1|) 162 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1274 |#1|) (-141) (-1064)) (T -1274)) -((-3596 (*1 *1 *2) (-12 (-5 *2 (-1172 (-2 (|:| |k| (-781)) (|:| |c| *3)))) (-4 *3 (-1064)) (-4 *1 (-1274 *3)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1064)) (-5 *2 (-1172 *3)))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-4 *1 (-1274 *3)))) (-1524 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064)))) (-1988 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1274 *3)) (-4 *3 (-1064)))) (-4025 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1274 *4)) (-4 *4 (-1064)) (-5 *2 (-965 *4)))) (-4025 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1274 *4)) (-4 *4 (-1064)) (-5 *2 (-965 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-1578 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) (-1578 (*1 *1 *1 *2) (-2832 (-12 (-5 *2 (-1192)) (-4 *1 (-1274 *3)) (-4 *3 (-1064)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1192)) (-4 *1 (-1274 *3)) (-4 *3 (-1064)) (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) (|has| *3 (-15 -1578 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) -(-13 (-1261 |t#1| (-781)) (-10 -8 (-15 -3596 ($ (-1172 (-2 (|:| |k| (-781)) (|:| |c| |t#1|))))) (-15 -2836 ((-1172 |t#1|) $)) (-15 -3596 ($ (-1172 |t#1|))) (-15 -1524 ($ $)) (-15 -1988 ($ (-1 |t#1| (-574)) $)) (-15 -4025 ((-965 |t#1|) $ (-781))) (-15 -4025 ((-965 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-372)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -1578 ($ $)) (IF (|has| |t#1| (-15 -1578 (|t#1| |t#1| (-1192)))) (IF (|has| |t#1| (-15 -4349 ((-654 (-1192)) |t#1|))) (-15 -1578 ($ $ (-1192))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1218)) (IF (|has| |t#1| (-972)) (IF (|has| |t#1| (-29 (-574))) (-15 -1578 ($ $ (-1192))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1017)) (-6 (-1218))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-781) (-1127)) ((-298) |has| |#1| (-566)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192)))) ((-988 |#1| #0# (-1097)) . T) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1066 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574)))) ((-1233) . T) ((-1261 |#1| #0#) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1497 (((-1192) $) 90)) (-4026 (((-1256 |#2| |#1|) $ (-781)) 73)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-3648 (($ $) NIL (|has| |#1| (-566)))) (-1527 (((-112) $) 142 (|has| |#1| (-566)))) (-3842 (($ $ (-781)) 127) (($ $ (-781) (-781)) 130)) (-3786 (((-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 43)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2259 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1597 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 52) (($ (-1172 |#1|)) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3831 (($) NIL T CONST)) (-1418 (($ $) 134)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1524 (($ $) 140)) (-4025 (((-965 |#1|) $ (-781)) 63) (((-965 |#1|) $ (-781) (-781)) 65)) (-3938 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2725 (((-781) $) NIL) (((-781) $ (-781)) NIL)) (-3372 (((-112) $) NIL)) (-3403 (($ $) 117)) (-2132 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1630 (($ (-574) (-574) $) 136)) (-2057 (($ $ (-934)) 139)) (-1988 (($ (-1 |#1| (-574)) $) 111)) (-3257 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) 16) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-1786 (($ (-1 |#1| |#1|) $) 98)) (-3112 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3316 (($ $) 115)) (-3172 (($ $) 113)) (-1405 (($ (-574) (-574) $) 138)) (-1578 (($ $) 150 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 156 (-2832 (-12 (|has| |#1| (-15 -1578 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 151 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-3120 (($ $ (-574) (-574)) 121)) (-2115 (($ $ (-781)) 123)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1618 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2754 (($ $) 119)) (-2660 (((-1172 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2208 ((|#1| $ (-781)) 95) (($ $ $) 132 (|has| (-781) (-1127)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) 108 (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1279 |#2|)) 103)) (-3584 (((-781) $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2248 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4209 (($ $) 125)) (-2950 (((-872) $) NIL) (($ (-574)) 26) (($ (-417 (-574))) 148 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1256 |#2| |#1|)) 81) (($ (-1279 |#2|)) 22)) (-2836 (((-1172 |#1|) $) NIL)) (-2930 ((|#1| $ (-781)) 94)) (-3247 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4019 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 91)) (-3838 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1842 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2427 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-781)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2466 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2142 (($) 18 T CONST)) (-2154 (($) 13 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2985 (((-112) $ $) NIL)) (-3098 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) 107)) (-3074 (($ $ $) 20)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 145 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1275 |#1| |#2| |#3|) (-13 (-1274 |#1|) (-10 -8 (-15 -2950 ($ (-1256 |#2| |#1|))) (-15 -4026 ((-1256 |#2| |#1|) $ (-781))) (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (-15 -3172 ($ $)) (-15 -3316 ($ $)) (-15 -3403 ($ $)) (-15 -2754 ($ $)) (-15 -3120 ($ $ (-574) (-574))) (-15 -1418 ($ $)) (-15 -1630 ($ (-574) (-574) $)) (-15 -1405 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1275)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3) (-5 *1 (-1275 *3 *4 *5)))) (-4026 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1275 *4 *5 *6)) (-4 *4 (-1064)) (-14 *5 (-1192)) (-14 *6 *4))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3172 (*1 *1 *1) (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) (-14 *4 *2))) (-3316 (*1 *1 *1) (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) (-14 *4 *2))) (-3403 (*1 *1 *1) (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) (-14 *4 *2))) (-2754 (*1 *1 *1) (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) (-14 *4 *2))) (-3120 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3))) (-1418 (*1 *1 *1) (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) (-14 *4 *2))) (-1630 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3))) (-1405 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3))) (-1578 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) -(-13 (-1274 |#1|) (-10 -8 (-15 -2950 ($ (-1256 |#2| |#1|))) (-15 -4026 ((-1256 |#2| |#1|) $ (-781))) (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (-15 -3172 ($ $)) (-15 -3316 ($ $)) (-15 -3403 ($ $)) (-15 -2754 ($ $)) (-15 -3120 ($ $ (-574) (-574))) (-15 -1418 ($ $)) (-15 -1630 ($ (-574) (-574) $)) (-15 -1405 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -1578 ($ $ (-1279 |#2|))) |%noBranch|))) -((-3439 (((-1 (-1172 |#1|) (-654 (-1172 |#1|))) (-1 |#2| (-654 |#2|))) 24)) (-1905 (((-1 (-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4106 (((-1 (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2|)) 13)) (-2164 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3678 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1592 ((|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|)) 60)) (-4393 (((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))) 66)) (-1387 ((|#2| |#2| |#2|) 43))) -(((-1276 |#1| |#2|) (-10 -7 (-15 -4106 ((-1 (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2|))) (-15 -1905 ((-1 (-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3439 ((-1 (-1172 |#1|) (-654 (-1172 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -1387 (|#2| |#2| |#2|)) (-15 -3678 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2164 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1592 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -4393 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))))) (-38 (-417 (-574))) (-1274 |#1|)) (T -1276)) -((-4393 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6)))) (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1274 *5)) (-5 *2 (-654 *6)) (-5 *1 (-1276 *5 *6)))) (-1592 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5)) (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1274 *5)) (-5 *1 (-1276 *5 *2)))) (-2164 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-1276 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-1276 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-1387 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1276 *3 *2)) (-4 *2 (-1274 *3)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1274 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1172 *4) (-654 (-1172 *4)))) (-5 *1 (-1276 *4 *5)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1172 *4) (-1172 *4) (-1172 *4))) (-5 *1 (-1276 *4 *5)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1172 *4) (-1172 *4))) (-5 *1 (-1276 *4 *5))))) -(-10 -7 (-15 -4106 ((-1 (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2|))) (-15 -1905 ((-1 (-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3439 ((-1 (-1172 |#1|) (-654 (-1172 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -1387 (|#2| |#2| |#2|)) (-15 -3678 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2164 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1592 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -4393 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))))) -((-3212 ((|#2| |#4| (-781)) 31)) (-3505 ((|#4| |#2|) 26)) (-2945 ((|#4| (-417 |#2|)) 49 (|has| |#1| (-566)))) (-2444 (((-1 |#4| (-654 |#4|)) |#3|) 43))) -(((-1277 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3505 (|#4| |#2|)) (-15 -3212 (|#2| |#4| (-781))) (-15 -2444 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -2945 (|#4| (-417 |#2|))) |%noBranch|)) (-1064) (-1259 |#1|) (-666 |#2|) (-1274 |#1|)) (T -1277)) -((-2945 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-566)) (-4 *4 (-1064)) (-4 *2 (-1274 *4)) (-5 *1 (-1277 *4 *5 *6 *2)) (-4 *6 (-666 *5)))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-1259 *4)) (-5 *2 (-1 *6 (-654 *6))) (-5 *1 (-1277 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1274 *4)))) (-3212 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1064)) (-4 *2 (-1259 *5)) (-5 *1 (-1277 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1274 *5)))) (-3505 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *3 (-1259 *4)) (-4 *2 (-1274 *4)) (-5 *1 (-1277 *4 *3 *5 *2)) (-4 *5 (-666 *3))))) -(-10 -7 (-15 -3505 (|#4| |#2|)) (-15 -3212 (|#2| |#4| (-781))) (-15 -2444 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -2945 (|#4| (-417 |#2|))) |%noBranch|)) -NIL -(((-1278) (-141)) (T -1278)) -NIL -(-13 (-10 -7 (-6 -3494))) -((-2863 (((-112) $ $) NIL)) (-1497 (((-1192)) 12)) (-3945 (((-1174) $) 18)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 11) (((-1192) $) 8)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 15))) -(((-1279 |#1|) (-13 (-1115) (-623 (-1192)) (-10 -8 (-15 -2950 ((-1192) $)) (-15 -1497 ((-1192))))) (-1192)) (T -1279)) -((-2950 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1279 *3)) (-14 *3 *2))) (-1497 (*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1279 *3)) (-14 *3 *2)))) -(-13 (-1115) (-623 (-1192)) (-10 -8 (-15 -2950 ((-1192) $)) (-15 -1497 ((-1192))))) -((-2226 (($ (-781)) 19)) (-3872 (((-699 |#2|) $ $) 41)) (-4316 ((|#2| $) 51)) (-4108 ((|#2| $) 50)) (-3036 ((|#2| $ $) 36)) (-4237 (($ $ $) 47)) (-3089 (($ $) 23) (($ $ $) 29)) (-3074 (($ $ $) 15)) (* (($ (-574) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1280 |#1| |#2|) (-10 -8 (-15 -4316 (|#2| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -4237 (|#1| |#1| |#1|)) (-15 -3872 ((-699 |#2|) |#1| |#1|)) (-15 -3036 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -2226 (|#1| (-781))) (-15 -3074 (|#1| |#1| |#1|))) (-1281 |#2|) (-1233)) (T -1280)) -NIL -(-10 -8 (-15 -4316 (|#2| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -4237 (|#1| |#1| |#1|)) (-15 -3872 ((-699 |#2|) |#1| |#1|)) (-15 -3036 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -2226 (|#1| (-781))) (-15 -3074 (|#1| |#1| |#1|))) -((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2226 (($ (-781)) 115 (|has| |#1| (-23)))) (-3287 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3831 (($) 7 T CONST)) (-2163 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2560 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1451 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1115)))) (-1873 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3872 (((-699 |#1|) $ $) 108 (|has| |#1| (-1064)))) (-3763 (($ (-781) |#1|) 70)) (-2224 (((-112) $ (-781)) 9)) (-1767 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| |#1| (-860)))) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2429 (((-574) $) 45 (|has| (-574) (-860)))) (-1593 (($ $ $) 89 (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4316 ((|#1| $) 105 (-12 (|has| |#1| (-1064)) (|has| |#1| (-1017))))) (-3625 (((-112) $ (-781)) 10)) (-4108 ((|#1| $) 106 (-12 (|has| |#1| (-1064)) (|has| |#1| (-1017))))) (-3945 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1603 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-3228 (((-654 (-574)) $) 47)) (-3071 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4276 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) 14)) (-2764 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) 49)) (-2880 (((-112) $) 11)) (-2833 (($) 12)) (-2208 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-3036 ((|#1| $ $) 109 (|has| |#1| (-1064)))) (-2853 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-4237 (($ $ $) 107 (|has| |#1| (-1064)))) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2315 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1845 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 72)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3089 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3074 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) -(((-1281 |#1|) (-141) (-1233)) (T -1281)) -((-3074 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-25)))) (-2226 (*1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1281 *3)) (-4 *3 (-23)) (-4 *3 (-1233)))) (-3089 (*1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-21)))) (-3089 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1281 *3)) (-4 *3 (-1233)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-736)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-736)))) (-3036 (*1 *2 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1064)))) (-3872 (*1 *2 *1 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-1233)) (-4 *3 (-1064)) (-5 *2 (-699 *3)))) (-4237 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1064)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1017)) (-4 *2 (-1064)))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1017)) (-4 *2 (-1064))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3074 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2226 ($ (-781))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3089 ($ $)) (-15 -3089 ($ $ $)) (-15 * ($ (-574) $))) |%noBranch|) (IF (|has| |t#1| (-736)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1064)) (PROGN (-15 -3036 (|t#1| $ $)) (-15 -3872 ((-699 |t#1|) $ $)) (-15 -4237 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1017)) (IF (|has| |t#1| (-1064)) (PROGN (-15 -4108 (|t#1| $)) (-15 -4316 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1115) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-1233) . T)) -((-4214 (((-1283 |#2|) (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|) 13)) (-2881 ((|#2| (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|) 15)) (-1786 (((-3 (-1283 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1283 |#1|)) 30) (((-1283 |#2|) (-1 |#2| |#1|) (-1283 |#1|)) 18))) -(((-1282 |#1| |#2|) (-10 -7 (-15 -4214 ((-1283 |#2|) (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|)) (-15 -1786 ((-1283 |#2|) (-1 |#2| |#1|) (-1283 |#1|))) (-15 -1786 ((-3 (-1283 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1283 |#1|)))) (-1233) (-1233)) (T -1282)) -((-1786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1283 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1283 *6)) (-5 *1 (-1282 *5 *6)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1283 *6)) (-5 *1 (-1282 *5 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1283 *5)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-1282 *5 *2)))) (-4214 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1283 *6)) (-4 *6 (-1233)) (-4 *5 (-1233)) (-5 *2 (-1283 *5)) (-5 *1 (-1282 *6 *5))))) -(-10 -7 (-15 -4214 ((-1283 |#2|) (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|)) (-15 -1786 ((-1283 |#2|) (-1 |#2| |#1|) (-1283 |#1|))) (-15 -1786 ((-3 (-1283 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1283 |#1|)))) -((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2226 (($ (-781)) NIL (|has| |#1| (-23)))) (-3865 (($ (-654 |#1|)) 11)) (-3287 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4331 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3565 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2818 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3831 (($) NIL T CONST)) (-2163 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2472 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1873 (((-654 |#1|) $) 16 (|has| $ (-6 -4458)))) (-3872 (((-699 |#1|) $ $) NIL (|has| |#1| (-1064)))) (-3763 (($ (-781) |#1|) NIL)) (-2224 (((-112) $ (-781)) NIL)) (-1767 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4297 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2247 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2231 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2429 (((-574) $) 12 (|has| (-574) (-860)))) (-1593 (($ $ $) NIL (|has| |#1| (-860)))) (-2461 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4316 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-3625 (((-112) $ (-781)) NIL)) (-4108 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-3945 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1603 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-3228 (((-654 (-574)) $) NIL)) (-3071 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-2294 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4276 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-2000 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2379 (((-654 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-2833 (($) NIL)) (-2208 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3036 ((|#1| $ $) NIL (|has| |#1| (-1064)))) (-2853 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-4237 (($ $ $) NIL (|has| |#1| (-1064)))) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2315 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) 20 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 10)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3838 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3089 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3074 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1283 |#1|) (-13 (-1281 |#1|) (-10 -8 (-15 -3865 ($ (-654 |#1|))))) (-1233)) (T -1283)) -((-3865 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1283 *3))))) -(-13 (-1281 |#1|) (-10 -8 (-15 -3865 ($ (-654 |#1|))))) -((-2863 (((-112) $ $) NIL)) (-1611 (((-1174) $ (-1174)) 107) (((-1174) $ (-1174) (-1174)) 105) (((-1174) $ (-1174) (-654 (-1174))) 104)) (-1792 (($) 69)) (-1402 (((-1288) $ (-478) (-934)) 54)) (-2006 (((-1288) $ (-934) (-1174)) 89) (((-1288) $ (-934) (-884)) 90)) (-2822 (((-1288) $ (-934) (-388) (-388)) 57)) (-3850 (((-1288) $ (-1174)) 84)) (-1627 (((-1288) $ (-934) (-1174)) 94)) (-3387 (((-1288) $ (-934) (-388) (-388)) 58)) (-4270 (((-1288) $ (-934) (-934)) 55)) (-1589 (((-1288) $) 85)) (-2021 (((-1288) $ (-934) (-1174)) 93)) (-4421 (((-1288) $ (-478) (-934)) 41)) (-4012 (((-1288) $ (-934) (-1174)) 92)) (-3198 (((-654 (-270)) $) 29) (($ $ (-654 (-270))) 30)) (-2871 (((-1288) $ (-781) (-781)) 52)) (-3447 (($ $) 70) (($ (-478) (-654 (-270))) 71)) (-3945 (((-1174) $) NIL)) (-3666 (((-574) $) 48)) (-3939 (((-1135) $) NIL)) (-3689 (((-1283 (-3 (-478) "undefined")) $) 47)) (-2246 (((-1283 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4012 (-574)) (|:| -2760 (-574)) (|:| |spline| (-574)) (|:| -4261 (-574)) (|:| |axesColor| (-884)) (|:| -2006 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $) 46)) (-2147 (((-1288) $ (-934) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574)) 83)) (-1886 (((-654 (-956 (-227))) $) NIL)) (-2205 (((-478) $ (-934)) 43)) (-2250 (((-1288) $ (-781) (-781) (-934) (-934)) 50)) (-3381 (((-1288) $ (-1174)) 95)) (-2760 (((-1288) $ (-934) (-1174)) 91)) (-2950 (((-872) $) 102)) (-1389 (((-1288) $) 96)) (-3838 (((-112) $ $) NIL)) (-4261 (((-1288) $ (-934) (-1174)) 87) (((-1288) $ (-934) (-884)) 88)) (-2985 (((-112) $ $) NIL))) -(((-1284) (-13 (-1115) (-10 -8 (-15 -1886 ((-654 (-956 (-227))) $)) (-15 -1792 ($)) (-15 -3447 ($ $)) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -3447 ($ (-478) (-654 (-270)))) (-15 -2147 ((-1288) $ (-934) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -2246 ((-1283 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4012 (-574)) (|:| -2760 (-574)) (|:| |spline| (-574)) (|:| -4261 (-574)) (|:| |axesColor| (-884)) (|:| -2006 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -3689 ((-1283 (-3 (-478) "undefined")) $)) (-15 -3850 ((-1288) $ (-1174))) (-15 -4421 ((-1288) $ (-478) (-934))) (-15 -2205 ((-478) $ (-934))) (-15 -4261 ((-1288) $ (-934) (-1174))) (-15 -4261 ((-1288) $ (-934) (-884))) (-15 -2006 ((-1288) $ (-934) (-1174))) (-15 -2006 ((-1288) $ (-934) (-884))) (-15 -4012 ((-1288) $ (-934) (-1174))) (-15 -2021 ((-1288) $ (-934) (-1174))) (-15 -2760 ((-1288) $ (-934) (-1174))) (-15 -3381 ((-1288) $ (-1174))) (-15 -1389 ((-1288) $)) (-15 -2250 ((-1288) $ (-781) (-781) (-934) (-934))) (-15 -3387 ((-1288) $ (-934) (-388) (-388))) (-15 -2822 ((-1288) $ (-934) (-388) (-388))) (-15 -1627 ((-1288) $ (-934) (-1174))) (-15 -2871 ((-1288) $ (-781) (-781))) (-15 -1402 ((-1288) $ (-478) (-934))) (-15 -4270 ((-1288) $ (-934) (-934))) (-15 -1611 ((-1174) $ (-1174))) (-15 -1611 ((-1174) $ (-1174) (-1174))) (-15 -1611 ((-1174) $ (-1174) (-654 (-1174)))) (-15 -1589 ((-1288) $)) (-15 -3666 ((-574) $)) (-15 -2950 ((-872) $))))) (T -1284)) -((-2950 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1284)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-654 (-956 (-227)))) (-5 *1 (-1284)))) (-1792 (*1 *1) (-5 *1 (-1284))) (-3447 (*1 *1 *1) (-5 *1 (-1284))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1284)))) (-3198 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1284)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1284)))) (-2147 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-934)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-1283 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4012 (-574)) (|:| -2760 (-574)) (|:| |spline| (-574)) (|:| -4261 (-574)) (|:| |axesColor| (-884)) (|:| -2006 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574))))) (-5 *1 (-1284)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-1283 (-3 (-478) "undefined"))) (-5 *1 (-1284)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-4421 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2205 (*1 *2 *1 *3) (-12 (-5 *3 (-934)) (-5 *2 (-478)) (-5 *1 (-1284)))) (-4261 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-4261 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-884)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2006 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2006 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-884)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-4012 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2021 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2760 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-3381 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2250 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-3387 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-934)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2822 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-934)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-1627 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2871 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-1402 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-4270 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-1611 (*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1284)))) (-1611 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1284)))) (-1611 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-1284)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1284)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1284))))) -(-13 (-1115) (-10 -8 (-15 -1886 ((-654 (-956 (-227))) $)) (-15 -1792 ($)) (-15 -3447 ($ $)) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -3447 ($ (-478) (-654 (-270)))) (-15 -2147 ((-1288) $ (-934) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -2246 ((-1283 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4012 (-574)) (|:| -2760 (-574)) (|:| |spline| (-574)) (|:| -4261 (-574)) (|:| |axesColor| (-884)) (|:| -2006 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -3689 ((-1283 (-3 (-478) "undefined")) $)) (-15 -3850 ((-1288) $ (-1174))) (-15 -4421 ((-1288) $ (-478) (-934))) (-15 -2205 ((-478) $ (-934))) (-15 -4261 ((-1288) $ (-934) (-1174))) (-15 -4261 ((-1288) $ (-934) (-884))) (-15 -2006 ((-1288) $ (-934) (-1174))) (-15 -2006 ((-1288) $ (-934) (-884))) (-15 -4012 ((-1288) $ (-934) (-1174))) (-15 -2021 ((-1288) $ (-934) (-1174))) (-15 -2760 ((-1288) $ (-934) (-1174))) (-15 -3381 ((-1288) $ (-1174))) (-15 -1389 ((-1288) $)) (-15 -2250 ((-1288) $ (-781) (-781) (-934) (-934))) (-15 -3387 ((-1288) $ (-934) (-388) (-388))) (-15 -2822 ((-1288) $ (-934) (-388) (-388))) (-15 -1627 ((-1288) $ (-934) (-1174))) (-15 -2871 ((-1288) $ (-781) (-781))) (-15 -1402 ((-1288) $ (-478) (-934))) (-15 -4270 ((-1288) $ (-934) (-934))) (-15 -1611 ((-1174) $ (-1174))) (-15 -1611 ((-1174) $ (-1174) (-1174))) (-15 -1611 ((-1174) $ (-1174) (-654 (-1174)))) (-15 -1589 ((-1288) $)) (-15 -3666 ((-574) $)) (-15 -2950 ((-872) $)))) -((-2863 (((-112) $ $) NIL)) (-2943 (((-1288) $ (-388)) 169) (((-1288) $ (-388) (-388) (-388)) 170)) (-1611 (((-1174) $ (-1174)) 179) (((-1174) $ (-1174) (-1174)) 177) (((-1174) $ (-1174) (-654 (-1174))) 176)) (-2485 (($) 67)) (-4274 (((-1288) $ (-388) (-388) (-388) (-388) (-388)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1288) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1288) $ (-574) (-574) (-388) (-388) (-388)) 144) (((-1288) $ (-388) (-388)) 145) (((-1288) $ (-388) (-388) (-388)) 152)) (-2467 (((-388)) 122) (((-388) (-388)) 123)) (-4314 (((-388)) 117) (((-388) (-388)) 119)) (-2513 (((-388)) 120) (((-388) (-388)) 121)) (-3899 (((-388)) 126) (((-388) (-388)) 127)) (-4283 (((-388)) 124) (((-388) (-388)) 125)) (-2822 (((-1288) $ (-388) (-388)) 171)) (-3850 (((-1288) $ (-1174)) 153)) (-2686 (((-1148 (-227)) $) 68) (($ $ (-1148 (-227))) 69)) (-4245 (((-1288) $ (-1174)) 187)) (-3783 (((-1288) $ (-1174)) 188)) (-3061 (((-1288) $ (-388) (-388)) 151) (((-1288) $ (-574) (-574)) 168)) (-4270 (((-1288) $ (-934) (-934)) 160)) (-1589 (((-1288) $) 137)) (-4090 (((-1288) $ (-1174)) 186)) (-3917 (((-1288) $ (-1174)) 134)) (-3198 (((-654 (-270)) $) 70) (($ $ (-654 (-270))) 71)) (-2871 (((-1288) $ (-781) (-781)) 159)) (-2843 (((-1288) $ (-781) (-956 (-227))) 193)) (-2688 (($ $) 73) (($ (-1148 (-227)) (-1174)) 74) (($ (-1148 (-227)) (-654 (-270))) 75)) (-2988 (((-1288) $ (-388) (-388) (-388)) 131)) (-3945 (((-1174) $) NIL)) (-3666 (((-574) $) 128)) (-1477 (((-1288) $ (-388)) 174)) (-4353 (((-1288) $ (-388)) 191)) (-3939 (((-1135) $) NIL)) (-1712 (((-1288) $ (-388)) 190)) (-2505 (((-1288) $ (-1174)) 136)) (-2250 (((-1288) $ (-781) (-781) (-934) (-934)) 158)) (-3458 (((-1288) $ (-1174)) 133)) (-3381 (((-1288) $ (-1174)) 135)) (-2841 (((-1288) $ (-158) (-158)) 157)) (-2950 (((-872) $) 166)) (-1389 (((-1288) $) 138)) (-1675 (((-1288) $ (-1174)) 189)) (-3838 (((-112) $ $) NIL)) (-4261 (((-1288) $ (-1174)) 132)) (-2985 (((-112) $ $) NIL))) -(((-1285) (-13 (-1115) (-10 -8 (-15 -4314 ((-388))) (-15 -4314 ((-388) (-388))) (-15 -2513 ((-388))) (-15 -2513 ((-388) (-388))) (-15 -2467 ((-388))) (-15 -2467 ((-388) (-388))) (-15 -4283 ((-388))) (-15 -4283 ((-388) (-388))) (-15 -3899 ((-388))) (-15 -3899 ((-388) (-388))) (-15 -2485 ($)) (-15 -2688 ($ $)) (-15 -2688 ($ (-1148 (-227)) (-1174))) (-15 -2688 ($ (-1148 (-227)) (-654 (-270)))) (-15 -2686 ((-1148 (-227)) $)) (-15 -2686 ($ $ (-1148 (-227)))) (-15 -2843 ((-1288) $ (-781) (-956 (-227)))) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -2871 ((-1288) $ (-781) (-781))) (-15 -4270 ((-1288) $ (-934) (-934))) (-15 -3850 ((-1288) $ (-1174))) (-15 -2250 ((-1288) $ (-781) (-781) (-934) (-934))) (-15 -4274 ((-1288) $ (-388) (-388) (-388) (-388) (-388))) (-15 -4274 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -4274 ((-1288) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -4274 ((-1288) $ (-574) (-574) (-388) (-388) (-388))) (-15 -4274 ((-1288) $ (-388) (-388))) (-15 -4274 ((-1288) $ (-388) (-388) (-388))) (-15 -3381 ((-1288) $ (-1174))) (-15 -4261 ((-1288) $ (-1174))) (-15 -3458 ((-1288) $ (-1174))) (-15 -3917 ((-1288) $ (-1174))) (-15 -2505 ((-1288) $ (-1174))) (-15 -3061 ((-1288) $ (-388) (-388))) (-15 -3061 ((-1288) $ (-574) (-574))) (-15 -2943 ((-1288) $ (-388))) (-15 -2943 ((-1288) $ (-388) (-388) (-388))) (-15 -2822 ((-1288) $ (-388) (-388))) (-15 -4090 ((-1288) $ (-1174))) (-15 -1712 ((-1288) $ (-388))) (-15 -4353 ((-1288) $ (-388))) (-15 -4245 ((-1288) $ (-1174))) (-15 -3783 ((-1288) $ (-1174))) (-15 -1675 ((-1288) $ (-1174))) (-15 -2988 ((-1288) $ (-388) (-388) (-388))) (-15 -1477 ((-1288) $ (-388))) (-15 -1589 ((-1288) $)) (-15 -2841 ((-1288) $ (-158) (-158))) (-15 -1611 ((-1174) $ (-1174))) (-15 -1611 ((-1174) $ (-1174) (-1174))) (-15 -1611 ((-1174) $ (-1174) (-654 (-1174)))) (-15 -1389 ((-1288) $)) (-15 -3666 ((-574) $))))) (T -1285)) -((-4314 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-4314 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-2513 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-2513 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-2467 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-4283 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-4283 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-3899 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-2485 (*1 *1) (-5 *1 (-1285))) (-2688 (*1 *1 *1) (-5 *1 (-1285))) (-2688 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-1174)) (-5 *1 (-1285)))) (-2688 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1285)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1285)))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1285)))) (-2843 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-956 (-227))) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) (-3198 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) (-2871 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4270 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2250 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4274 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1285)))) (-4274 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4274 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4274 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4274 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3381 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4261 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3458 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3917 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2505 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3061 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3061 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2943 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2943 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2822 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4090 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1712 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4245 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1675 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2988 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1477 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2841 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1611 (*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1285)))) (-1611 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1285)))) (-1611 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-1285)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1285))))) -(-13 (-1115) (-10 -8 (-15 -4314 ((-388))) (-15 -4314 ((-388) (-388))) (-15 -2513 ((-388))) (-15 -2513 ((-388) (-388))) (-15 -2467 ((-388))) (-15 -2467 ((-388) (-388))) (-15 -4283 ((-388))) (-15 -4283 ((-388) (-388))) (-15 -3899 ((-388))) (-15 -3899 ((-388) (-388))) (-15 -2485 ($)) (-15 -2688 ($ $)) (-15 -2688 ($ (-1148 (-227)) (-1174))) (-15 -2688 ($ (-1148 (-227)) (-654 (-270)))) (-15 -2686 ((-1148 (-227)) $)) (-15 -2686 ($ $ (-1148 (-227)))) (-15 -2843 ((-1288) $ (-781) (-956 (-227)))) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -2871 ((-1288) $ (-781) (-781))) (-15 -4270 ((-1288) $ (-934) (-934))) (-15 -3850 ((-1288) $ (-1174))) (-15 -2250 ((-1288) $ (-781) (-781) (-934) (-934))) (-15 -4274 ((-1288) $ (-388) (-388) (-388) (-388) (-388))) (-15 -4274 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -4274 ((-1288) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -4274 ((-1288) $ (-574) (-574) (-388) (-388) (-388))) (-15 -4274 ((-1288) $ (-388) (-388))) (-15 -4274 ((-1288) $ (-388) (-388) (-388))) (-15 -3381 ((-1288) $ (-1174))) (-15 -4261 ((-1288) $ (-1174))) (-15 -3458 ((-1288) $ (-1174))) (-15 -3917 ((-1288) $ (-1174))) (-15 -2505 ((-1288) $ (-1174))) (-15 -3061 ((-1288) $ (-388) (-388))) (-15 -3061 ((-1288) $ (-574) (-574))) (-15 -2943 ((-1288) $ (-388))) (-15 -2943 ((-1288) $ (-388) (-388) (-388))) (-15 -2822 ((-1288) $ (-388) (-388))) (-15 -4090 ((-1288) $ (-1174))) (-15 -1712 ((-1288) $ (-388))) (-15 -4353 ((-1288) $ (-388))) (-15 -4245 ((-1288) $ (-1174))) (-15 -3783 ((-1288) $ (-1174))) (-15 -1675 ((-1288) $ (-1174))) (-15 -2988 ((-1288) $ (-388) (-388) (-388))) (-15 -1477 ((-1288) $ (-388))) (-15 -1589 ((-1288) $)) (-15 -2841 ((-1288) $ (-158) (-158))) (-15 -1611 ((-1174) $ (-1174))) (-15 -1611 ((-1174) $ (-1174) (-1174))) (-15 -1611 ((-1174) $ (-1174) (-654 (-1174)))) (-15 -1389 ((-1288) $)) (-15 -3666 ((-574) $)))) -((-2770 (((-654 (-1174)) (-654 (-1174))) 104) (((-654 (-1174))) 96)) (-1371 (((-654 (-1174))) 94)) (-3429 (((-654 (-934)) (-654 (-934))) 69) (((-654 (-934))) 64)) (-3643 (((-654 (-781)) (-654 (-781))) 61) (((-654 (-781))) 55)) (-3352 (((-1288)) 71)) (-3368 (((-934) (-934)) 87) (((-934)) 86)) (-2865 (((-934) (-934)) 85) (((-934)) 84)) (-3813 (((-884) (-884)) 81) (((-884)) 80)) (-1791 (((-227)) 91) (((-227) (-388)) 93)) (-2033 (((-934)) 88) (((-934) (-934)) 89)) (-4151 (((-934) (-934)) 83) (((-934)) 82)) (-3598 (((-884) (-884)) 75) (((-884)) 73)) (-2428 (((-884) (-884)) 77) (((-884)) 76)) (-1919 (((-884) (-884)) 79) (((-884)) 78))) -(((-1286) (-10 -7 (-15 -3598 ((-884))) (-15 -3598 ((-884) (-884))) (-15 -2428 ((-884))) (-15 -2428 ((-884) (-884))) (-15 -1919 ((-884))) (-15 -1919 ((-884) (-884))) (-15 -3813 ((-884))) (-15 -3813 ((-884) (-884))) (-15 -4151 ((-934))) (-15 -4151 ((-934) (-934))) (-15 -3643 ((-654 (-781)))) (-15 -3643 ((-654 (-781)) (-654 (-781)))) (-15 -3429 ((-654 (-934)))) (-15 -3429 ((-654 (-934)) (-654 (-934)))) (-15 -3352 ((-1288))) (-15 -2770 ((-654 (-1174)))) (-15 -2770 ((-654 (-1174)) (-654 (-1174)))) (-15 -1371 ((-654 (-1174)))) (-15 -2865 ((-934))) (-15 -3368 ((-934))) (-15 -2865 ((-934) (-934))) (-15 -3368 ((-934) (-934))) (-15 -2033 ((-934) (-934))) (-15 -2033 ((-934))) (-15 -1791 ((-227) (-388))) (-15 -1791 ((-227))))) (T -1286)) -((-1791 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1286)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1286)))) (-2033 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-2033 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-2865 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-3368 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-2865 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-1371 (*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286)))) (-2770 (*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286)))) (-3352 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1286)))) (-3429 (*1 *2 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1286)))) (-3429 (*1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1286)))) (-3643 (*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1286)))) (-3643 (*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1286)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-4151 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-3813 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-1919 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-1919 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-2428 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-2428 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-3598 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286))))) -(-10 -7 (-15 -3598 ((-884))) (-15 -3598 ((-884) (-884))) (-15 -2428 ((-884))) (-15 -2428 ((-884) (-884))) (-15 -1919 ((-884))) (-15 -1919 ((-884) (-884))) (-15 -3813 ((-884))) (-15 -3813 ((-884) (-884))) (-15 -4151 ((-934))) (-15 -4151 ((-934) (-934))) (-15 -3643 ((-654 (-781)))) (-15 -3643 ((-654 (-781)) (-654 (-781)))) (-15 -3429 ((-654 (-934)))) (-15 -3429 ((-654 (-934)) (-654 (-934)))) (-15 -3352 ((-1288))) (-15 -2770 ((-654 (-1174)))) (-15 -2770 ((-654 (-1174)) (-654 (-1174)))) (-15 -1371 ((-654 (-1174)))) (-15 -2865 ((-934))) (-15 -3368 ((-934))) (-15 -2865 ((-934) (-934))) (-15 -3368 ((-934) (-934))) (-15 -2033 ((-934) (-934))) (-15 -2033 ((-934))) (-15 -1791 ((-227) (-388))) (-15 -1791 ((-227)))) -((-4148 (((-478) (-654 (-654 (-956 (-227)))) (-654 (-270))) 22) (((-478) (-654 (-654 (-956 (-227))))) 21) (((-478) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270))) 20)) (-4056 (((-1284) (-654 (-654 (-956 (-227)))) (-654 (-270))) 30) (((-1284) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270))) 29)) (-2950 (((-1284) (-478)) 46))) -(((-1287) (-10 -7 (-15 -4148 ((-478) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270)))) (-15 -4148 ((-478) (-654 (-654 (-956 (-227)))))) (-15 -4148 ((-478) (-654 (-654 (-956 (-227)))) (-654 (-270)))) (-15 -4056 ((-1284) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270)))) (-15 -4056 ((-1284) (-654 (-654 (-956 (-227)))) (-654 (-270)))) (-15 -2950 ((-1284) (-478))))) (T -1287)) -((-2950 (*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1284)) (-5 *1 (-1287)))) (-4056 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-1287)))) (-4056 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-884)) (-5 *5 (-934)) (-5 *6 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-1287)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1287)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *2 (-478)) (-5 *1 (-1287)))) (-4148 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-884)) (-5 *5 (-934)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1287))))) -(-10 -7 (-15 -4148 ((-478) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270)))) (-15 -4148 ((-478) (-654 (-654 (-956 (-227)))))) (-15 -4148 ((-478) (-654 (-654 (-956 (-227)))) (-654 (-270)))) (-15 -4056 ((-1284) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270)))) (-15 -4056 ((-1284) (-654 (-654 (-956 (-227)))) (-654 (-270)))) (-15 -2950 ((-1284) (-478)))) -((-2440 (($) 6)) (-2950 (((-872) $) 9))) -(((-1288) (-13 (-623 (-872)) (-10 -8 (-15 -2440 ($))))) (T -1288)) -((-2440 (*1 *1) (-5 *1 (-1288)))) -(-13 (-623 (-872)) (-10 -8 (-15 -2440 ($)))) -((-3098 (($ $ |#2|) 10))) -(((-1289 |#1| |#2|) (-10 -8 (-15 -3098 (|#1| |#1| |#2|))) (-1290 |#2|) (-372)) (T -1289)) -NIL -(-10 -8 (-15 -3098 (|#1| |#1| |#2|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3480 (((-135)) 33)) (-2950 (((-872) $) 12)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3098 (($ $ |#1|) 34)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1290 |#1|) (-141) (-372)) (T -1290)) -((-3098 (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-372)))) (-3480 (*1 *2) (-12 (-4 *1 (-1290 *3)) (-4 *3 (-372)) (-5 *2 (-135))))) -(-13 (-727 |t#1|) (-10 -8 (-15 -3098 ($ $ |t#1|)) (-15 -3480 ((-135))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) -((-3744 (((-654 (-1227 |#1|)) (-1192) (-1227 |#1|)) 83)) (-1788 (((-1172 (-1172 (-965 |#1|))) (-1192) (-1172 (-965 |#1|))) 63)) (-2261 (((-1 (-1172 (-1227 |#1|)) (-1172 (-1227 |#1|))) (-781) (-1227 |#1|) (-1172 (-1227 |#1|))) 74)) (-3675 (((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781)) 65)) (-1635 (((-1 (-1188 (-965 |#1|)) (-965 |#1|)) (-1192)) 32)) (-1731 (((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781)) 64))) -(((-1291 |#1|) (-10 -7 (-15 -3675 ((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781))) (-15 -1731 ((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781))) (-15 -1788 ((-1172 (-1172 (-965 |#1|))) (-1192) (-1172 (-965 |#1|)))) (-15 -1635 ((-1 (-1188 (-965 |#1|)) (-965 |#1|)) (-1192))) (-15 -3744 ((-654 (-1227 |#1|)) (-1192) (-1227 |#1|))) (-15 -2261 ((-1 (-1172 (-1227 |#1|)) (-1172 (-1227 |#1|))) (-781) (-1227 |#1|) (-1172 (-1227 |#1|))))) (-372)) (T -1291)) -((-2261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1227 *6)) (-5 *2 (-1 (-1172 *4) (-1172 *4))) (-5 *1 (-1291 *6)) (-5 *5 (-1172 *4)))) (-3744 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-4 *5 (-372)) (-5 *2 (-654 (-1227 *5))) (-5 *1 (-1291 *5)) (-5 *4 (-1227 *5)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1 (-1188 (-965 *4)) (-965 *4))) (-5 *1 (-1291 *4)) (-4 *4 (-372)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-4 *5 (-372)) (-5 *2 (-1172 (-1172 (-965 *5)))) (-5 *1 (-1291 *5)) (-5 *4 (-1172 (-965 *5))))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1172 (-965 *4)) (-1172 (-965 *4)))) (-5 *1 (-1291 *4)) (-4 *4 (-372)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1172 (-965 *4)) (-1172 (-965 *4)))) (-5 *1 (-1291 *4)) (-4 *4 (-372))))) -(-10 -7 (-15 -3675 ((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781))) (-15 -1731 ((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781))) (-15 -1788 ((-1172 (-1172 (-965 |#1|))) (-1192) (-1172 (-965 |#1|)))) (-15 -1635 ((-1 (-1188 (-965 |#1|)) (-965 |#1|)) (-1192))) (-15 -3744 ((-654 (-1227 |#1|)) (-1192) (-1227 |#1|))) (-15 -2261 ((-1 (-1172 (-1227 |#1|)) (-1172 (-1227 |#1|))) (-781) (-1227 |#1|) (-1172 (-1227 |#1|))))) -((-1949 (((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 80)) (-1555 (((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 79))) -(((-1292 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1555 ((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -1949 ((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|))) (-358) (-1259 |#1|) (-1259 |#2|) (-419 |#2| |#3|)) (T -1292)) -((-1949 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 *3)) (-5 *2 (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-1292 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5)))) (-1555 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| -2191 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-1292 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5))))) -(-10 -7 (-15 -1555 ((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -1949 ((-2 (|:| -2191 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|))) -((-2863 (((-112) $ $) NIL)) (-1977 (((-1150) $) 11)) (-3832 (((-1150) $) 9)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1293) (-13 (-1098) (-10 -8 (-15 -3832 ((-1150) $)) (-15 -1977 ((-1150) $))))) (T -1293)) -((-3832 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1293)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1293))))) -(-13 (-1098) (-10 -8 (-15 -3832 ((-1150) $)) (-15 -1977 ((-1150) $)))) -((-2863 (((-112) $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2278 (((-1150) $) 9)) (-2950 (((-872) $) 15) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) -(((-1294) (-13 (-1098) (-10 -8 (-15 -2278 ((-1150) $))))) (T -1294)) -((-2278 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1294))))) -(-13 (-1098) (-10 -8 (-15 -2278 ((-1150) $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 58)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) NIL)) (-3372 (((-112) $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 81) (($ (-574)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-4019 (((-781)) NIL T CONST)) (-3151 (((-1288) (-781)) 16)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 37 T CONST)) (-2154 (($) 84 T CONST)) (-2985 (((-112) $ $) 87)) (-3098 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) 89) (($ $ $) NIL)) (-3074 (($ $ $) 63)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-1295 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1064) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3151 ((-1288) (-781))))) (-1064) (-860) (-803) (-962 |#1| |#3| |#2|) (-654 |#2|) (-654 (-781)) (-781)) (T -1295)) -((-3098 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1064)) (-4 *3 (-860)) (-4 *4 (-803)) (-14 *6 (-654 *3)) (-5 *1 (-1295 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-962 *2 *4 *3)) (-14 *7 (-654 (-781))) (-14 *8 (-781)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1064)) (-4 *5 (-860)) (-4 *6 (-803)) (-14 *8 (-654 *5)) (-5 *2 (-1288)) (-5 *1 (-1295 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-962 *4 *6 *5)) (-14 *9 (-654 *3)) (-14 *10 *3)))) -(-13 (-1064) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3151 ((-1288) (-781))))) -((-2863 (((-112) $ $) NIL)) (-4205 (((-654 (-2 (|:| -1389 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1721 (((-654 $) (-654 |#4|)) 96)) (-4349 (((-654 |#3|) $) NIL)) (-3278 (((-112) $) NIL)) (-3814 (((-112) $) NIL (|has| |#1| (-566)))) (-3522 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3885 ((|#4| |#4| $) NIL)) (-2785 (((-2 (|:| |under| $) (|:| -3471 $) (|:| |upper| $)) $ |#3|) NIL)) (-2818 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3831 (($) NIL T CONST)) (-4241 (((-112) $) NIL (|has| |#1| (-566)))) (-3297 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2860 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2450 (((-112) $) NIL (|has| |#1| (-566)))) (-3665 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-4010 (((-654 |#4|) (-654 |#4|) $) 28 (|has| |#1| (-566)))) (-1438 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1705 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2934 (((-3 $ "failed") $) 78)) (-1685 ((|#4| |#4| $) 83)) (-2560 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-1484 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3369 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4037 ((|#4| |#4| $) NIL)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1426 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) NIL)) (-1873 (((-654 |#4|) $) NIL (|has| $ (-6 -4458)))) (-3762 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2968 ((|#3| $) 84)) (-2224 (((-112) $ (-781)) NIL)) (-2247 (((-654 |#4|) $) 32 (|has| $ (-6 -4458)))) (-2231 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3158 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-654 |#4|)) 38)) (-2461 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4459)))) (-1786 (($ (-1 |#4| |#4|) $) NIL)) (-2740 (((-654 |#3|) $) NIL)) (-2080 (((-112) |#3| $) NIL)) (-3625 (((-112) $ (-781)) NIL)) (-3945 (((-1174) $) NIL)) (-3333 (((-3 |#4| "failed") $) NIL)) (-3981 (((-654 |#4|) $) 54)) (-2397 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1576 ((|#4| |#4| $) 82)) (-2326 (((-112) $ $) 93)) (-3081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1548 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3503 ((|#4| |#4| $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-3 |#4| "failed") $) 77)) (-2294 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2200 (((-3 $ "failed") $ |#4|) NIL)) (-2115 (($ $ |#4|) NIL)) (-2000 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-4198 (((-112) $ $) NIL)) (-2880 (((-112) $) 75)) (-2833 (($) 46)) (-3584 (((-781) $) NIL)) (-3948 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1845 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) NIL)) (-1689 (($ $ |#3|) NIL)) (-2639 (($ $ |#3|) NIL)) (-4330 (($ $) NIL)) (-3386 (($ $ |#3|) NIL)) (-2950 (((-872) $) NIL) (((-654 |#4|) $) 63)) (-2706 (((-781) $) NIL (|has| |#3| (-377)))) (-2918 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-654 |#4|)) 45)) (-1903 (((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-654 $) (-654 |#4|)) 74)) (-3838 (((-112) $ $) NIL)) (-2270 (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2011 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1587 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-1437 (((-654 |#3|) $) NIL)) (-1469 (((-112) |#3| $) NIL)) (-2985 (((-112) $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) -(((-1296 |#1| |#2| |#3| |#4|) (-13 (-1226 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3158 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3158 ((-3 $ "failed") (-654 |#4|))) (-15 -2918 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2918 ((-3 $ "failed") (-654 |#4|))) (-15 -1903 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1903 ((-654 $) (-654 |#4|))))) (-566) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -1296)) -((-3158 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1296 *5 *6 *7 *8)))) (-3158 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1296 *3 *4 *5 *6)))) (-2918 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1296 *5 *6 *7 *8)))) (-2918 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1296 *3 *4 *5 *6)))) (-1903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1296 *6 *7 *8 *9))) (-5 *1 (-1296 *6 *7 *8 *9)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1296 *4 *5 *6 *7))) (-5 *1 (-1296 *4 *5 *6 *7))))) -(-13 (-1226 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3158 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3158 ((-3 $ "failed") (-654 |#4|))) (-15 -2918 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2918 ((-3 $ "failed") (-654 |#4|))) (-15 -1903 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1903 ((-654 $) (-654 |#4|))))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1597 (((-3 $ "failed") $ $) 20)) (-3831 (($) 18 T CONST)) (-3911 (((-3 $ "failed") $) 37)) (-3372 (((-112) $) 35)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1297 |#1|) (-141) (-1064)) (T -1297)) -NIL -(-13 (-1064) (-111 |t#1| |t#1|) (-626 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) -((-2863 (((-112) $ $) 67)) (-3520 (((-112) $) NIL)) (-1664 (((-654 |#1|) $) 52)) (-2795 (($ $ (-781)) 46)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3298 (($ $ (-781)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3831 (($) NIL T CONST)) (-4368 (($ $ $) 70) (($ $ (-829 |#1|)) 56) (($ $ |#1|) 60)) (-1705 (((-3 (-829 |#1|) "failed") $) NIL)) (-2216 (((-829 |#1|) $) NIL)) (-1401 (($ $) 39)) (-3911 (((-3 $ "failed") $) NIL)) (-1877 (((-112) $) NIL)) (-3455 (($ $) NIL)) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-3805 (($ (-829 |#1|) |#2|) 38)) (-3450 (($ $) 40)) (-1594 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 12)) (-2351 (((-829 |#1|) $) NIL)) (-3956 (((-829 |#1|) $) 41)) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-1412 (($ $ $) 69) (($ $ (-829 |#1|)) 58) (($ $ |#1|) 62)) (-3113 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1365 (((-829 |#1|) $) 35)) (-1377 ((|#2| $) 37)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3584 (((-781) $) 43)) (-2736 (((-112) $) 47)) (-1715 ((|#2| $) NIL)) (-2950 (((-872) $) NIL) (($ (-829 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-574)) NIL)) (-2836 (((-654 |#2|) $) NIL)) (-2930 ((|#2| $ (-829 |#1|)) NIL)) (-1867 ((|#2| $ $) 76) ((|#2| $ (-829 |#1|)) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 13 T CONST)) (-2154 (($) 19 T CONST)) (-4154 (((-654 (-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2985 (((-112) $ $) 44)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 28)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-829 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1298 |#1| |#2|) (-13 (-391 |#2| (-829 |#1|)) (-1304 |#1| |#2|)) (-860) (-1064)) (T -1298)) -NIL -(-13 (-391 |#2| (-829 |#1|)) (-1304 |#1| |#2|)) -((-3112 ((|#3| |#3| (-781)) 28)) (-1618 ((|#3| |#3| (-781)) 34)) (-2136 ((|#3| |#3| |#3| (-781)) 35))) -(((-1299 |#1| |#2| |#3|) (-10 -7 (-15 -1618 (|#3| |#3| (-781))) (-15 -3112 (|#3| |#3| (-781))) (-15 -2136 (|#3| |#3| |#3| (-781)))) (-13 (-1064) (-727 (-417 (-574)))) (-860) (-1304 |#2| |#1|)) (T -1299)) -((-2136 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4)))) (-3112 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4)))) (-1618 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4))))) -(-10 -7 (-15 -1618 (|#3| |#3| (-781))) (-15 -3112 (|#3| |#3| (-781))) (-15 -2136 (|#3| |#3| |#3| (-781)))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1664 (((-654 |#1|) $) 47)) (-1597 (((-3 $ "failed") $ $) 20)) (-3298 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-3831 (($) 18 T CONST)) (-4368 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1705 (((-3 (-829 |#1|) "failed") $) 71)) (-2216 (((-829 |#1|) $) 72)) (-3911 (((-3 $ "failed") $) 37)) (-1877 (((-112) $) 52)) (-3455 (($ $) 51)) (-3372 (((-112) $) 35)) (-3257 (((-112) $) 57)) (-3805 (($ (-829 |#1|) |#2|) 58)) (-3450 (($ $) 56)) (-1594 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-2351 (((-829 |#1|) $) 68)) (-1786 (($ (-1 |#2| |#2|) $) 48)) (-1412 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2736 (((-112) $) 54)) (-1715 ((|#2| $) 53)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1867 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1300 |#1| |#2|) (-141) (-860) (-1064)) (T -1300)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-829 *3)))) (-1594 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4))))) (-1867 (*1 *2 *1 *3) (-12 (-5 *3 (-829 *4)) (-4 *1 (-1300 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1064)))) (-1867 (*1 *2 *1 *1) (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) (-1412 (*1 *1 *1 *2) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-1412 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)))) (-1412 (*1 *1 *1 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-4368 (*1 *1 *1 *2) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)))) (-4368 (*1 *1 *1 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-3805 (*1 *1 *2 *3) (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1300 *4 *3)) (-4 *3 (-1064)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-112)))) (-3450 (*1 *1 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-2950 (*1 *1 *2) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-112)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-112)))) (-3455 (*1 *1 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-3298 (*1 *1 *1 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)) (-4 *3 (-174)))) (-3298 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-4 *4 (-174)))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-654 *3))))) -(-13 (-1064) (-1297 |t#2|) (-1053 (-829 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2351 ((-829 |t#1|) $)) (-15 -1594 ((-2 (|:| |k| (-829 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1867 (|t#2| $ (-829 |t#1|))) (-15 -1867 (|t#2| $ $)) (-15 -1412 ($ $ |t#1|)) (-15 -1412 ($ $ (-829 |t#1|))) (-15 -1412 ($ $ $)) (-15 -4368 ($ $ |t#1|)) (-15 -4368 ($ $ (-829 |t#1|))) (-15 -4368 ($ $ $)) (-15 -3805 ($ (-829 |t#1|) |t#2|)) (-15 -3257 ((-112) $)) (-15 -3450 ($ $)) (-15 -2950 ($ |t#1|)) (-15 -2736 ((-112) $)) (-15 -1715 (|t#2| $)) (-15 -1877 ((-112) $)) (-15 -3455 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -3298 ($ $ $)) (-15 -3298 ($ $ (-781)))) |%noBranch|) (-15 -1786 ($ (-1 |t#2| |t#2|) $)) (-15 -1664 ((-654 |t#1|) $)) (IF (|has| |t#2| (-6 -4451)) (-6 -4451) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1053 #0#) . T) ((-1066 |#2|) . T) ((-1071 |#2|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1297 |#2|) . T)) -((-1965 (((-112) $) 15)) (-1469 (((-112) $) 14)) (-2893 (($ $) 19) (($ $ (-781)) 21))) -(((-1301 |#1| |#2|) (-10 -8 (-15 -2893 (|#1| |#1| (-781))) (-15 -2893 (|#1| |#1|)) (-15 -1965 ((-112) |#1|)) (-15 -1469 ((-112) |#1|))) (-1302 |#2|) (-372)) (T -1301)) -NIL -(-10 -8 (-15 -2893 (|#1| |#1| (-781))) (-15 -2893 (|#1| |#1|)) (-15 -1965 ((-112) |#1|)) (-15 -1469 ((-112) |#1|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-3737 (((-2 (|:| -3775 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-3648 (($ $) 46)) (-1527 (((-112) $) 44)) (-1965 (((-112) $) 104)) (-2498 (((-781)) 100)) (-1597 (((-3 $ "failed") $ $) 20)) (-3296 (($ $) 81)) (-3954 (((-428 $) $) 80)) (-3656 (((-112) $ $) 65)) (-3831 (($) 18 T CONST)) (-1705 (((-3 |#1| "failed") $) 111)) (-2216 ((|#1| $) 112)) (-2799 (($ $ $) 61)) (-3911 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-3063 (((-2 (|:| -1867 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-4158 (($ $ (-781)) 97 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1782 (((-112) $) 79)) (-2725 (((-843 (-934)) $) 94 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3372 (((-112) $) 35)) (-3285 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2848 (($ $ $) 52) (($ (-654 $)) 51)) (-3945 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3854 (((-112) $) 103)) (-3939 (((-1135) $) 11)) (-3578 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-4200 (((-428 $) $) 82)) (-1971 (((-843 (-934))) 101)) (-2318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2190 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3364 (((-781) $) 64)) (-3444 (((-2 (|:| -4415 $) (|:| -1484 $)) $ $) 63)) (-3881 (((-3 (-781) "failed") $ $) 95 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3480 (((-135)) 109)) (-3584 (((-843 (-934)) $) 102)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-3247 (((-3 $ "failed") $) 93 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-1842 (((-112) $ $) 45)) (-1469 (((-112) $) 105)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2893 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-2985 (((-112) $ $) 6)) (-3098 (($ $ $) 73) (($ $ |#1|) 108)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1302 |#1|) (-141) (-372)) (T -1302)) -((-1469 (*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-934))))) (-1971 (*1 *2) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-934))))) (-2498 (*1 *2) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-781)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-1302 *2)) (-4 *2 (-372)) (-4 *2 (-377)))) (-2893 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-4 *3 (-377))))) -(-13 (-372) (-1053 |t#1|) (-1290 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-412)) |%noBranch|) (-15 -1469 ((-112) $)) (-15 -1965 ((-112) $)) (-15 -3854 ((-112) $)) (-15 -3584 ((-843 (-934)) $)) (-15 -1971 ((-843 (-934)))) (-15 -2498 ((-781))) (IF (|has| |t#1| (-377)) (PROGN (-6 (-412)) (-15 -2893 ($ $)) (-15 -2893 ($ $ (-781)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2832 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) -2832 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1053 |#1|) . T) ((-1066 #0#) . T) ((-1066 |#1|) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T) ((-1290 |#1|) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1664 (((-654 |#1|) $) 98)) (-2795 (($ $ (-781)) 102)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3298 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-781)) NIL (|has| |#2| (-174)))) (-3831 (($) NIL T CONST)) (-4368 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-1705 (((-3 (-829 |#1|) "failed") $) NIL) (((-3 (-904 |#1|) "failed") $) NIL)) (-2216 (((-829 |#1|) $) NIL) (((-904 |#1|) $) NIL)) (-1401 (($ $) 101)) (-3911 (((-3 $ "failed") $) NIL)) (-1877 (((-112) $) 90)) (-3455 (($ $) 93)) (-4272 (($ $ $ (-781)) 103)) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-3805 (($ (-829 |#1|) |#2|) NIL) (($ (-904 |#1|) |#2|) 29)) (-3450 (($ $) 119)) (-1594 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2351 (((-829 |#1|) $) NIL)) (-3956 (((-829 |#1|) $) NIL)) (-1786 (($ (-1 |#2| |#2|) $) NIL)) (-1412 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-3112 (($ $ (-781)) 112 (|has| |#2| (-727 (-417 (-574)))))) (-3113 (((-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1365 (((-904 |#1|) $) 83)) (-1377 ((|#2| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1618 (($ $ (-781)) 109 (|has| |#2| (-727 (-417 (-574)))))) (-3584 (((-781) $) 99)) (-2736 (((-112) $) 84)) (-1715 ((|#2| $) 88)) (-2950 (((-872) $) 69) (($ (-574)) NIL) (($ |#2|) 60) (($ (-829 |#1|)) NIL) (($ |#1|) 71) (($ (-904 |#1|)) NIL) (($ (-674 |#1| |#2|)) 48) (((-1298 |#1| |#2|) $) 76) (((-1307 |#1| |#2|) $) 81)) (-2836 (((-654 |#2|) $) NIL)) (-2930 ((|#2| $ (-904 |#1|)) NIL)) (-1867 ((|#2| $ (-829 |#1|)) NIL) ((|#2| $ $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 21 T CONST)) (-2154 (($) 28 T CONST)) (-4154 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1483 (((-3 (-674 |#1| |#2|) "failed") $) 118)) (-2985 (((-112) $ $) 77)) (-3089 (($ $) 111) (($ $ $) 110)) (-3074 (($ $ $) 20)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-904 |#1|)) NIL))) -(((-1303 |#1| |#2|) (-13 (-1304 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2950 ($ (-674 |#1| |#2|))) (-15 -2950 ((-1298 |#1| |#2|) $)) (-15 -2950 ((-1307 |#1| |#2|) $)) (-15 -1483 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -4272 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1618 ($ $ (-781))) (-15 -3112 ($ $ (-781)))) |%noBranch|))) (-860) (-174)) (T -1303)) -((-2950 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-1303 *3 *4)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1483 (*1 *2 *1) (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-4272 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1618 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))) (-3112 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174))))) -(-13 (-1304 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2950 ($ (-674 |#1| |#2|))) (-15 -2950 ((-1298 |#1| |#2|) $)) (-15 -2950 ((-1307 |#1| |#2|) $)) (-15 -1483 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -4272 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1618 ($ $ (-781))) (-15 -3112 ($ $ (-781)))) |%noBranch|))) -((-2863 (((-112) $ $) 7)) (-3520 (((-112) $) 17)) (-1664 (((-654 |#1|) $) 47)) (-2795 (($ $ (-781)) 80)) (-1597 (((-3 $ "failed") $ $) 20)) (-3298 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-3831 (($) 18 T CONST)) (-4368 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1705 (((-3 (-829 |#1|) "failed") $) 71)) (-2216 (((-829 |#1|) $) 72)) (-3911 (((-3 $ "failed") $) 37)) (-1877 (((-112) $) 52)) (-3455 (($ $) 51)) (-3372 (((-112) $) 35)) (-3257 (((-112) $) 57)) (-3805 (($ (-829 |#1|) |#2|) 58)) (-3450 (($ $) 56)) (-1594 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-2351 (((-829 |#1|) $) 68)) (-3956 (((-829 |#1|) $) 82)) (-1786 (($ (-1 |#2| |#2|) $) 48)) (-1412 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-3945 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3584 (((-781) $) 81)) (-2736 (((-112) $) 54)) (-1715 ((|#2| $) 53)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1867 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-4019 (((-781)) 32 T CONST)) (-3838 (((-112) $ $) 9)) (-2142 (($) 19 T CONST)) (-2154 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1304 |#1| |#2|) (-141) (-860) (-1064)) (T -1304)) -((-3956 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-829 *3)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-781)))) (-2795 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064))))) -(-13 (-1300 |t#1| |t#2|) (-10 -8 (-15 -3956 ((-829 |t#1|) $)) (-15 -3584 ((-781) $)) (-15 -2795 ($ $ (-781))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1053 #0#) . T) ((-1066 |#2|) . T) ((-1071 |#2|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1297 |#2|) . T) ((-1300 |#1| |#2|) . T)) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1664 (((-654 (-1192)) $) NIL)) (-3859 (($ (-1298 (-1192) |#1|)) NIL)) (-2795 (($ $ (-781)) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3298 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-781)) NIL (|has| |#1| (-174)))) (-3831 (($) NIL T CONST)) (-4368 (($ $ (-1192)) NIL) (($ $ (-829 (-1192))) NIL) (($ $ $) NIL)) (-1705 (((-3 (-829 (-1192)) "failed") $) NIL)) (-2216 (((-829 (-1192)) $) NIL)) (-3911 (((-3 $ "failed") $) NIL)) (-1877 (((-112) $) NIL)) (-3455 (($ $) NIL)) (-3372 (((-112) $) NIL)) (-3257 (((-112) $) NIL)) (-3805 (($ (-829 (-1192)) |#1|) NIL)) (-3450 (($ $) NIL)) (-1594 (((-2 (|:| |k| (-829 (-1192))) (|:| |c| |#1|)) $) NIL)) (-2351 (((-829 (-1192)) $) NIL)) (-3956 (((-829 (-1192)) $) NIL)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-1412 (($ $ (-1192)) NIL) (($ $ (-829 (-1192))) NIL) (($ $ $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2138 (((-1298 (-1192) |#1|) $) NIL)) (-3584 (((-781) $) NIL)) (-2736 (((-112) $) NIL)) (-1715 ((|#1| $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-829 (-1192))) NIL) (($ (-1192)) NIL)) (-1867 ((|#1| $ (-829 (-1192))) NIL) ((|#1| $ $) NIL)) (-4019 (((-781)) NIL T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-1670 (((-654 (-2 (|:| |k| (-1192)) (|:| |c| $))) $) NIL)) (-2154 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1192) $) NIL))) -(((-1305 |#1|) (-13 (-1304 (-1192) |#1|) (-10 -8 (-15 -2138 ((-1298 (-1192) |#1|) $)) (-15 -3859 ($ (-1298 (-1192) |#1|))) (-15 -1670 ((-654 (-2 (|:| |k| (-1192)) (|:| |c| $))) $)))) (-1064)) (T -1305)) -((-2138 (*1 *2 *1) (-12 (-5 *2 (-1298 (-1192) *3)) (-5 *1 (-1305 *3)) (-4 *3 (-1064)))) (-3859 (*1 *1 *2) (-12 (-5 *2 (-1298 (-1192) *3)) (-4 *3 (-1064)) (-5 *1 (-1305 *3)))) (-1670 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-1192)) (|:| |c| (-1305 *3))))) (-5 *1 (-1305 *3)) (-4 *3 (-1064))))) -(-13 (-1304 (-1192) |#1|) (-10 -8 (-15 -2138 ((-1298 (-1192) |#1|) $)) (-15 -3859 ($ (-1298 (-1192) |#1|))) (-15 -1670 ((-654 (-2 (|:| |k| (-1192)) (|:| |c| $))) $)))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) NIL)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3831 (($) NIL T CONST)) (-1705 (((-3 |#2| "failed") $) NIL)) (-2216 ((|#2| $) NIL)) (-1401 (($ $) NIL)) (-3911 (((-3 $ "failed") $) 42)) (-1877 (((-112) $) 35)) (-3455 (($ $) 37)) (-3372 (((-112) $) NIL)) (-3241 (((-781) $) NIL)) (-1854 (((-654 $) $) NIL)) (-3257 (((-112) $) NIL)) (-3805 (($ |#2| |#1|) NIL)) (-2351 ((|#2| $) 24)) (-3956 ((|#2| $) 22)) (-1786 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1365 ((|#2| $) NIL)) (-1377 ((|#1| $) NIL)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2736 (((-112) $) 32)) (-1715 ((|#1| $) 33)) (-2950 (((-872) $) 65) (($ (-574)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2836 (((-654 |#1|) $) NIL)) (-2930 ((|#1| $ |#2|) NIL)) (-1867 ((|#1| $ |#2|) 28)) (-4019 (((-781)) 14 T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 29 T CONST)) (-2154 (($) 11 T CONST)) (-4154 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2985 (((-112) $ $) 30)) (-3098 (($ $ |#1|) 67 (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 50)) (** (($ $ (-934)) NIL) (($ $ (-781)) 52)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2876 (((-781) $) 16))) -(((-1306 |#1| |#2|) (-13 (-1064) (-1297 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2876 ((-781) $)) (-15 -3956 (|#2| $)) (-15 -2351 (|#2| $)) (-15 -1401 ($ $)) (-15 -1867 (|#1| $ |#2|)) (-15 -2736 ((-112) $)) (-15 -1715 (|#1| $)) (-15 -1877 ((-112) $)) (-15 -3455 ($ $)) (-15 -1786 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3098 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) (-1064) (-856)) (T -1306)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856)))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856)))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-1306 *3 *4)) (-4 *4 (-856)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-856)))) (-3956 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1306 *3 *2)) (-4 *3 (-1064)))) (-2351 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1306 *3 *2)) (-4 *3 (-1064)))) (-1867 (*1 *2 *1 *3) (-12 (-4 *2 (-1064)) (-5 *1 (-1306 *2 *3)) (-4 *3 (-856)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-856)))) (-1715 (*1 *2 *1) (-12 (-4 *2 (-1064)) (-5 *1 (-1306 *2 *3)) (-4 *3 (-856)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-856)))) (-3455 (*1 *1 *1) (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856)))) (-3098 (*1 *1 *1 *2) (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1064)) (-4 *3 (-856))))) -(-13 (-1064) (-1297 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2876 ((-781) $)) (-15 -3956 (|#2| $)) (-15 -2351 (|#2| $)) (-15 -1401 ($ $)) (-15 -1867 (|#1| $ |#2|)) (-15 -2736 ((-112) $)) (-15 -1715 (|#1| $)) (-15 -1877 ((-112) $)) (-15 -3455 ($ $)) (-15 -1786 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3098 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) -((-2863 (((-112) $ $) 27)) (-3520 (((-112) $) NIL)) (-1664 (((-654 |#1|) $) 132)) (-3859 (($ (-1298 |#1| |#2|)) 50)) (-2795 (($ $ (-781)) 38)) (-1597 (((-3 $ "failed") $ $) NIL)) (-3298 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-781)) 52 (|has| |#2| (-174)))) (-3831 (($) NIL T CONST)) (-4368 (($ $ |#1|) 114) (($ $ (-829 |#1|)) 115) (($ $ $) 26)) (-1705 (((-3 (-829 |#1|) "failed") $) NIL)) (-2216 (((-829 |#1|) $) NIL)) (-3911 (((-3 $ "failed") $) 122)) (-1877 (((-112) $) 117)) (-3455 (($ $) 118)) (-3372 (((-112) $) NIL)) (-3257 (((-112) $) NIL)) (-3805 (($ (-829 |#1|) |#2|) 20)) (-3450 (($ $) NIL)) (-1594 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2351 (((-829 |#1|) $) 123)) (-3956 (((-829 |#1|) $) 126)) (-1786 (($ (-1 |#2| |#2|) $) 131)) (-1412 (($ $ |#1|) 112) (($ $ (-829 |#1|)) 113) (($ $ $) 62)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2138 (((-1298 |#1| |#2|) $) 94)) (-3584 (((-781) $) 129)) (-2736 (((-112) $) 81)) (-1715 ((|#2| $) 32)) (-2950 (((-872) $) 73) (($ (-574)) 87) (($ |#2|) 85) (($ (-829 |#1|)) 18) (($ |#1|) 84)) (-1867 ((|#2| $ (-829 |#1|)) 116) ((|#2| $ $) 28)) (-4019 (((-781)) 120 T CONST)) (-3838 (((-112) $ $) NIL)) (-2142 (($) 15 T CONST)) (-1670 (((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2154 (($) 33 T CONST)) (-2985 (((-112) $ $) 14)) (-3089 (($ $) 98) (($ $ $) 101)) (-3074 (($ $ $) 61)) (** (($ $ (-934)) NIL) (($ $ (-781)) 55)) (* (($ (-934) $) NIL) (($ (-781) $) 53) (($ (-574) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1307 |#1| |#2|) (-13 (-1304 |#1| |#2|) (-10 -8 (-15 -2138 ((-1298 |#1| |#2|) $)) (-15 -3859 ($ (-1298 |#1| |#2|))) (-15 -1670 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-860) (-1064)) (T -1307)) -((-2138 (*1 *2 *1) (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)))) (-3859 (*1 *1 *2) (-12 (-5 *2 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *1 (-1307 *3 *4)))) (-1670 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1307 *3 *4))))) (-5 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064))))) -(-13 (-1304 |#1| |#2|) (-10 -8 (-15 -2138 ((-1298 |#1| |#2|) $)) (-15 -3859 ($ (-1298 |#1| |#2|))) (-15 -1670 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-2863 (((-112) $ $) NIL)) (-2615 (($ (-654 (-934))) 10)) (-3789 (((-986) $) 12)) (-3945 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 25) (($ (-986)) 14) (((-986) $) 13)) (-3838 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 17))) -(((-1308) (-13 (-1115) (-500 (-986)) (-10 -8 (-15 -2615 ($ (-654 (-934)))) (-15 -3789 ((-986) $))))) (T -1308)) -((-2615 (*1 *1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1308)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-986)) (-5 *1 (-1308))))) -(-13 (-1115) (-500 (-986)) (-10 -8 (-15 -2615 ($ (-654 (-934)))) (-15 -3789 ((-986) $)))) -((-1890 (((-654 (-1172 |#1|)) (-1 (-654 (-1172 |#1|)) (-654 (-1172 |#1|))) (-574)) 16) (((-1172 |#1|) (-1 (-1172 |#1|) (-1172 |#1|))) 13))) -(((-1309 |#1|) (-10 -7 (-15 -1890 ((-1172 |#1|) (-1 (-1172 |#1|) (-1172 |#1|)))) (-15 -1890 ((-654 (-1172 |#1|)) (-1 (-654 (-1172 |#1|)) (-654 (-1172 |#1|))) (-574)))) (-1233)) (T -1309)) -((-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 (-1172 *5)) (-654 (-1172 *5)))) (-5 *4 (-574)) (-5 *2 (-654 (-1172 *5))) (-5 *1 (-1309 *5)) (-4 *5 (-1233)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1 (-1172 *4) (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1309 *4)) (-4 *4 (-1233))))) -(-10 -7 (-15 -1890 ((-1172 |#1|) (-1 (-1172 |#1|) (-1172 |#1|)))) (-15 -1890 ((-654 (-1172 |#1|)) (-1 (-654 (-1172 |#1|)) (-654 (-1172 |#1|))) (-574)))) -((-1435 (((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|))) 174) (((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112)) 173) (((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112)) 172) (((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112) (-112)) 171) (((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-1061 |#1| |#2|)) 156)) (-3961 (((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|))) 85) (((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112)) 84) (((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112) (-112)) 83)) (-3954 (((-654 (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1061 |#1| |#2|)) 73)) (-1937 (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|))) 140) (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112)) 139) (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112)) 138) (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112) (-112)) 137) (((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|)) 132)) (-3183 (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|))) 145) (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112)) 144) (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112)) 143) (((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|)) 142)) (-1845 (((-654 (-790 |#1| (-874 |#3|))) (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) 111) (((-1188 (-1039 (-417 |#1|))) (-1188 |#1|)) 102) (((-965 (-1039 (-417 |#1|))) (-790 |#1| (-874 |#3|))) 109) (((-965 (-1039 (-417 |#1|))) (-965 |#1|)) 107) (((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|))) 33))) -(((-1310 |#1| |#2| |#3|) (-10 -7 (-15 -3961 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112) (-112))) (-15 -3961 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112))) (-15 -3961 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)))) (-15 -1435 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-1061 |#1| |#2|))) (-15 -1435 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112) (-112))) (-15 -1435 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -1435 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112))) (-15 -1435 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -1937 ((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|))) (-15 -1937 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112) (-112))) (-15 -1937 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -1937 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112))) (-15 -1937 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)))) (-15 -3183 ((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|))) (-15 -3183 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -3183 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112))) (-15 -3183 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)))) (-15 -3954 ((-654 (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1061 |#1| |#2|))) (-15 -1845 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1845 ((-965 (-1039 (-417 |#1|))) (-965 |#1|))) (-15 -1845 ((-965 (-1039 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1845 ((-1188 (-1039 (-417 |#1|))) (-1188 |#1|))) (-15 -1845 ((-654 (-790 |#1| (-874 |#3|))) (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))))) (-13 (-858) (-315) (-148) (-1037)) (-654 (-1192)) (-654 (-1192))) (T -1310)) -((-1845 (*1 *2 *3) (-12 (-5 *3 (-1161 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-1188 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *6))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *6 (-654 (-1192))) (-5 *2 (-965 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-965 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *5))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-1161 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-3183 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-1937 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-1937 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-1937 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) (-1435 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-2 (|:| -3048 (-1188 *4)) (|:| -4346 (-654 (-965 *4)))))) (-5 *1 (-1310 *4 *5 *6)) (-5 *3 (-654 (-965 *4))) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-1435 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-2 (|:| -3048 (-1188 *5)) (|:| -4346 (-654 (-965 *5)))))) (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-1435 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-2 (|:| -3048 (-1188 *5)) (|:| -4346 (-654 (-965 *5)))))) (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-1435 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-2 (|:| -3048 (-1188 *5)) (|:| -4346 (-654 (-965 *5)))))) (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-2 (|:| -3048 (-1188 *4)) (|:| -4346 (-654 (-965 *4)))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-1061 *4 *5))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-3961 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192)))))) -(-10 -7 (-15 -3961 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112) (-112))) (-15 -3961 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112))) (-15 -3961 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)))) (-15 -1435 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-1061 |#1| |#2|))) (-15 -1435 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112) (-112))) (-15 -1435 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -1435 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112))) (-15 -1435 ((-654 (-2 (|:| -3048 (-1188 |#1|)) (|:| -4346 (-654 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -1937 ((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|))) (-15 -1937 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112) (-112))) (-15 -1937 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -1937 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112))) (-15 -1937 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)))) (-15 -3183 ((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|))) (-15 -3183 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -3183 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112))) (-15 -3183 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)))) (-15 -3954 ((-654 (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1061 |#1| |#2|))) (-15 -1845 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1845 ((-965 (-1039 (-417 |#1|))) (-965 |#1|))) (-15 -1845 ((-965 (-1039 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1845 ((-1188 (-1039 (-417 |#1|))) (-1188 |#1|))) (-15 -1845 ((-654 (-790 |#1| (-874 |#3|))) (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))))) -((-3734 (((-3 (-1283 (-417 (-574))) "failed") (-1283 |#1|) |#1|) 21)) (-2677 (((-112) (-1283 |#1|)) 12)) (-3339 (((-3 (-1283 (-574)) "failed") (-1283 |#1|)) 16))) -(((-1311 |#1|) (-10 -7 (-15 -2677 ((-112) (-1283 |#1|))) (-15 -3339 ((-3 (-1283 (-574)) "failed") (-1283 |#1|))) (-15 -3734 ((-3 (-1283 (-417 (-574))) "failed") (-1283 |#1|) |#1|))) (-13 (-1064) (-649 (-574)))) (T -1311)) -((-3734 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) (-5 *2 (-1283 (-417 (-574)))) (-5 *1 (-1311 *4)))) (-3339 (*1 *2 *3) (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) (-5 *2 (-1283 (-574))) (-5 *1 (-1311 *4)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1311 *4))))) -(-10 -7 (-15 -2677 ((-112) (-1283 |#1|))) (-15 -3339 ((-3 (-1283 (-574)) "failed") (-1283 |#1|))) (-15 -3734 ((-3 (-1283 (-417 (-574))) "failed") (-1283 |#1|) |#1|))) -((-2863 (((-112) $ $) NIL)) (-3520 (((-112) $) 11)) (-1597 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781)) 8)) (-3831 (($) NIL T CONST)) (-3911 (((-3 $ "failed") $) 58)) (-2834 (($) 49)) (-3372 (((-112) $) 57)) (-1353 (((-3 $ "failed") $) 40)) (-3271 (((-934) $) 15)) (-3945 (((-1174) $) NIL)) (-3791 (($) 32 T CONST)) (-2590 (($ (-934)) 50)) (-3939 (((-1135) $) NIL)) (-1845 (((-574) $) 13)) (-2950 (((-872) $) 27) (($ (-574)) 24)) (-4019 (((-781)) 9 T CONST)) (-3838 (((-112) $ $) 60)) (-2142 (($) 29 T CONST)) (-2154 (($) 31 T CONST)) (-2985 (((-112) $ $) 38)) (-3089 (($ $) 52) (($ $ $) 47)) (-3074 (($ $ $) 35)) (** (($ $ (-934)) NIL) (($ $ (-781)) 54)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 43))) -(((-1312 |#1|) (-13 (-174) (-377) (-624 (-574)) (-1167)) (-934)) (T -1312)) -NIL -(-13 (-174) (-377) (-624 (-574)) (-1167)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3235814 3235819 3235824 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3235799 3235804 3235809 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3235784 3235789 3235794 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3235769 3235774 3235779 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1312 3234912 3235644 3235721 "ZMOD" 3235726 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1311 3233966 3234130 3234353 "ZLINDEP" 3234744 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1310 3223266 3225034 3227006 "ZDSOLVE" 3232096 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1309 3222512 3222653 3222842 "YSTREAM" 3223112 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1308 3221940 3222186 3222299 "YDIAGRAM" 3222421 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1307 3219714 3221241 3221445 "XRPOLY" 3221783 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1306 3216267 3217585 3218160 "XPR" 3219186 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1305 3213988 3215598 3215802 "XPOLY" 3216098 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1304 3211641 3213009 3213064 "XPOLYC" 3213352 NIL XPOLYC (NIL T T) -9 NIL 3213465 NIL) (-1303 3208017 3210158 3210546 "XPBWPOLY" 3211299 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1302 3203712 3206007 3206049 "XF" 3206670 NIL XF (NIL T) -9 NIL 3207070 NIL) (-1301 3203333 3203421 3203590 "XF-" 3203595 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1300 3198529 3199818 3199873 "XFALG" 3202045 NIL XFALG (NIL T T) -9 NIL 3202834 NIL) (-1299 3197662 3197766 3197971 "XEXPPKG" 3198421 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1298 3195771 3197512 3197608 "XDPOLY" 3197613 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1297 3194578 3195178 3195221 "XALG" 3195226 NIL XALG (NIL T) -9 NIL 3195337 NIL) (-1296 3188020 3192555 3193049 "WUTSET" 3194170 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1295 3186276 3187072 3187395 "WP" 3187831 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1294 3185878 3186098 3186168 "WHILEAST" 3186228 T WHILEAST (NIL) -8 NIL NIL NIL) (-1293 3185350 3185595 3185689 "WHEREAST" 3185806 T WHEREAST (NIL) -8 NIL NIL NIL) (-1292 3184236 3184434 3184729 "WFFINTBS" 3185147 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1291 3182140 3182567 3183029 "WEIER" 3183808 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1290 3181186 3181636 3181678 "VSPACE" 3181814 NIL VSPACE (NIL T) -9 NIL 3181888 NIL) (-1289 3181024 3181051 3181142 "VSPACE-" 3181147 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1288 3180833 3180875 3180943 "VOID" 3180978 T VOID (NIL) -8 NIL NIL NIL) (-1287 3178969 3179328 3179734 "VIEW" 3180449 T VIEW (NIL) -7 NIL NIL NIL) (-1286 3175393 3176032 3176769 "VIEWDEF" 3178254 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1285 3164697 3166941 3169114 "VIEW3D" 3173242 T VIEW3D (NIL) -8 NIL NIL NIL) (-1284 3156948 3158608 3160187 "VIEW2D" 3163140 T VIEW2D (NIL) -8 NIL NIL NIL) (-1283 3152301 3156718 3156810 "VECTOR" 3156891 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1282 3150878 3151137 3151455 "VECTOR2" 3152031 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1281 3144320 3148629 3148672 "VECTCAT" 3149667 NIL VECTCAT (NIL T) -9 NIL 3150254 NIL) (-1280 3143334 3143588 3143978 "VECTCAT-" 3143983 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1279 3142788 3142985 3143105 "VARIABLE" 3143249 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1278 3142721 3142726 3142756 "UTYPE" 3142761 T UTYPE (NIL) -9 NIL NIL NIL) (-1277 3141551 3141705 3141967 "UTSODETL" 3142547 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1276 3138991 3139451 3139975 "UTSODE" 3141092 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1275 3130829 3136617 3137106 "UTS" 3138560 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1274 3121569 3126938 3126981 "UTSCAT" 3128093 NIL UTSCAT (NIL T) -9 NIL 3128851 NIL) (-1273 3118917 3119639 3120628 "UTSCAT-" 3120633 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1272 3118544 3118587 3118720 "UTS2" 3118868 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1271 3112770 3115382 3115425 "URAGG" 3117495 NIL URAGG (NIL T) -9 NIL 3118218 NIL) (-1270 3109709 3110572 3111695 "URAGG-" 3111700 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1269 3105418 3108344 3108809 "UPXSSING" 3109373 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1268 3097484 3104665 3104938 "UPXS" 3105203 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1267 3090557 3097388 3097460 "UPXSCONS" 3097465 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1266 3080154 3086949 3087011 "UPXSCCA" 3087585 NIL UPXSCCA (NIL T T) -9 NIL 3087818 NIL) (-1265 3079792 3079877 3080051 "UPXSCCA-" 3080056 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1264 3069241 3075809 3075852 "UPXSCAT" 3076500 NIL UPXSCAT (NIL T) -9 NIL 3077109 NIL) (-1263 3068671 3068750 3068929 "UPXS2" 3069156 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1262 3067325 3067578 3067929 "UPSQFREE" 3068414 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1261 3060705 3063764 3063819 "UPSCAT" 3064899 NIL UPSCAT (NIL T T) -9 NIL 3065664 NIL) (-1260 3059909 3060116 3060443 "UPSCAT-" 3060448 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1259 3045392 3053249 3053292 "UPOLYC" 3055393 NIL UPOLYC (NIL T) -9 NIL 3056614 NIL) (-1258 3036720 3039146 3042293 "UPOLYC-" 3042298 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1257 3036347 3036390 3036523 "UPOLYC2" 3036671 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1256 3028069 3036030 3036159 "UP" 3036266 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1255 3027408 3027515 3027679 "UPMP" 3027958 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1254 3026961 3027042 3027181 "UPDIVP" 3027321 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1253 3025529 3025778 3026094 "UPDECOMP" 3026710 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1252 3024760 3024872 3025058 "UPCDEN" 3025413 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1251 3024279 3024348 3024497 "UP2" 3024685 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1250 3022746 3023483 3023760 "UNISEG" 3024037 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1249 3021961 3022088 3022293 "UNISEG2" 3022589 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1248 3021021 3021201 3021427 "UNIFACT" 3021777 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1247 3004782 3020198 3020449 "ULS" 3020828 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1246 2992645 3004686 3004758 "ULSCONS" 3004763 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1245 2974244 2986368 2986430 "ULSCCAT" 2987068 NIL ULSCCAT (NIL T T) -9 NIL 2987357 NIL) (-1244 2973294 2973539 2973927 "ULSCCAT-" 2973932 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1243 2962534 2969016 2969059 "ULSCAT" 2969922 NIL ULSCAT (NIL T) -9 NIL 2970653 NIL) (-1242 2961964 2962043 2962222 "ULS2" 2962449 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1241 2961083 2961593 2961700 "UINT8" 2961811 T UINT8 (NIL) -8 NIL NIL 2961896) (-1240 2960201 2960711 2960818 "UINT64" 2960929 T UINT64 (NIL) -8 NIL NIL 2961014) (-1239 2959319 2959829 2959936 "UINT32" 2960047 T UINT32 (NIL) -8 NIL NIL 2960132) (-1238 2958437 2958947 2959054 "UINT16" 2959165 T UINT16 (NIL) -8 NIL NIL 2959250) (-1237 2956740 2957697 2957727 "UFD" 2957939 T UFD (NIL) -9 NIL 2958053 NIL) (-1236 2956534 2956580 2956675 "UFD-" 2956680 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1235 2955616 2955799 2956015 "UDVO" 2956340 T UDVO (NIL) -7 NIL NIL NIL) (-1234 2953432 2953841 2954312 "UDPO" 2955180 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1233 2953365 2953370 2953400 "TYPE" 2953405 T TYPE (NIL) -9 NIL NIL NIL) (-1232 2953125 2953320 2953351 "TYPEAST" 2953356 T TYPEAST (NIL) -8 NIL NIL NIL) (-1231 2952096 2952298 2952538 "TWOFACT" 2952919 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1230 2951119 2951505 2951740 "TUPLE" 2951896 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1229 2948810 2949329 2949868 "TUBETOOL" 2950602 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1228 2947659 2947864 2948105 "TUBE" 2948603 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1227 2942388 2946631 2946914 "TS" 2947411 NIL TS (NIL T) -8 NIL NIL NIL) (-1226 2931028 2935147 2935244 "TSETCAT" 2940513 NIL TSETCAT (NIL T T T T) -9 NIL 2942044 NIL) (-1225 2925760 2927360 2929251 "TSETCAT-" 2929256 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1224 2920399 2921246 2922175 "TRMANIP" 2924896 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1223 2919840 2919903 2920066 "TRIMAT" 2920331 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1222 2917706 2917943 2918300 "TRIGMNIP" 2919589 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1221 2917226 2917339 2917369 "TRIGCAT" 2917582 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1220 2916895 2916974 2917115 "TRIGCAT-" 2917120 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1219 2913740 2915753 2916034 "TREE" 2916649 NIL TREE (NIL T) -8 NIL NIL NIL) (-1218 2913014 2913542 2913572 "TRANFUN" 2913607 T TRANFUN (NIL) -9 NIL 2913673 NIL) (-1217 2912293 2912484 2912764 "TRANFUN-" 2912769 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1216 2912097 2912129 2912190 "TOPSP" 2912254 T TOPSP (NIL) -7 NIL NIL NIL) (-1215 2911445 2911560 2911714 "TOOLSIGN" 2911978 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1214 2910079 2910622 2910861 "TEXTFILE" 2911228 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1213 2907991 2908532 2908961 "TEX" 2909672 T TEX (NIL) -8 NIL NIL NIL) (-1212 2907772 2907803 2907875 "TEX1" 2907954 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1211 2907420 2907483 2907573 "TEMUTL" 2907704 T TEMUTL (NIL) -7 NIL NIL NIL) (-1210 2905574 2905854 2906179 "TBCMPPK" 2907143 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1209 2897351 2903734 2903790 "TBAGG" 2904190 NIL TBAGG (NIL T T) -9 NIL 2904401 NIL) (-1208 2892421 2893909 2895663 "TBAGG-" 2895668 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1207 2891805 2891912 2892057 "TANEXP" 2892310 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1206 2891316 2891580 2891670 "TALGOP" 2891750 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1205 2884706 2891173 2891266 "TABLE" 2891271 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1204 2884118 2884217 2884355 "TABLEAU" 2884603 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1203 2878726 2879946 2881194 "TABLBUMP" 2882904 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1202 2877948 2878095 2878276 "SYSTEM" 2878567 T SYSTEM (NIL) -8 NIL NIL NIL) (-1201 2874407 2875106 2875889 "SYSSOLP" 2877199 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1200 2874205 2874362 2874393 "SYSPTR" 2874398 T SYSPTR (NIL) -8 NIL NIL NIL) (-1199 2873241 2873746 2873865 "SYSNNI" 2874051 NIL SYSNNI (NIL NIL) -8 NIL NIL 2874136) (-1198 2872540 2872999 2873078 "SYSINT" 2873138 NIL SYSINT (NIL NIL) -8 NIL NIL 2873183) (-1197 2868872 2869818 2870528 "SYNTAX" 2871852 T SYNTAX (NIL) -8 NIL NIL NIL) (-1196 2866030 2866632 2867264 "SYMTAB" 2868262 T SYMTAB (NIL) -8 NIL NIL NIL) (-1195 2861279 2862181 2863164 "SYMS" 2865069 T SYMS (NIL) -8 NIL NIL NIL) (-1194 2858514 2860737 2860967 "SYMPOLY" 2861084 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1193 2858031 2858106 2858229 "SYMFUNC" 2858426 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1192 2854051 2855343 2856156 "SYMBOL" 2857240 T SYMBOL (NIL) -8 NIL NIL NIL) (-1191 2847590 2849279 2850999 "SWITCH" 2852353 T SWITCH (NIL) -8 NIL NIL NIL) (-1190 2840824 2846411 2846714 "SUTS" 2847345 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1189 2832890 2840071 2840344 "SUPXS" 2840609 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1188 2824560 2832508 2832634 "SUP" 2832799 NIL SUP (NIL T) -8 NIL NIL NIL) (-1187 2823719 2823846 2824063 "SUPFRACF" 2824428 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1186 2823340 2823399 2823512 "SUP2" 2823654 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1185 2821788 2822062 2822418 "SUMRF" 2823039 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1184 2821123 2821189 2821381 "SUMFS" 2821709 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1183 2804919 2820300 2820551 "SULS" 2820930 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1182 2804521 2804741 2804811 "SUCHTAST" 2804871 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1181 2803816 2804046 2804186 "SUCH" 2804429 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1180 2797683 2798722 2799681 "SUBSPACE" 2802904 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1179 2797113 2797203 2797367 "SUBRESP" 2797571 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1178 2790481 2791778 2793089 "STTF" 2795849 NIL STTF (NIL T) -7 NIL NIL NIL) (-1177 2784654 2785774 2786921 "STTFNC" 2789381 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1176 2775967 2777836 2779630 "STTAYLOR" 2782895 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1175 2769097 2775831 2775914 "STRTBL" 2775919 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1174 2764461 2769052 2769083 "STRING" 2769088 T STRING (NIL) -8 NIL NIL NIL) (-1173 2759290 2763804 2763834 "STRICAT" 2763893 T STRICAT (NIL) -9 NIL 2763955 NIL) (-1172 2752043 2756909 2757520 "STREAM" 2758714 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1171 2751553 2751630 2751774 "STREAM3" 2751960 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1170 2750535 2750718 2750953 "STREAM2" 2751366 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1169 2750223 2750275 2750368 "STREAM1" 2750477 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1168 2749239 2749420 2749651 "STINPROD" 2750039 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1167 2748791 2749001 2749031 "STEP" 2749111 T STEP (NIL) -9 NIL 2749189 NIL) (-1166 2747978 2748280 2748428 "STEPAST" 2748665 T STEPAST (NIL) -8 NIL NIL NIL) (-1165 2741410 2747877 2747954 "STBL" 2747959 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1164 2736505 2740601 2740644 "STAGG" 2740797 NIL STAGG (NIL T) -9 NIL 2740886 NIL) (-1163 2734207 2734809 2735681 "STAGG-" 2735686 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1162 2732354 2733977 2734069 "STACK" 2734150 NIL STACK (NIL T) -8 NIL NIL NIL) (-1161 2725049 2730495 2730951 "SREGSET" 2731984 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1160 2717474 2718843 2720356 "SRDCMPK" 2723655 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1159 2710359 2714884 2714914 "SRAGG" 2716217 T SRAGG (NIL) -9 NIL 2716825 NIL) (-1158 2709376 2709631 2710010 "SRAGG-" 2710015 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1157 2703747 2708323 2708744 "SQMATRIX" 2709002 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1156 2697432 2700465 2701192 "SPLTREE" 2703092 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1155 2693395 2694088 2694734 "SPLNODE" 2696858 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1154 2692442 2692675 2692705 "SPFCAT" 2693149 T SPFCAT (NIL) -9 NIL NIL NIL) (-1153 2691179 2691389 2691653 "SPECOUT" 2692200 T SPECOUT (NIL) -7 NIL NIL NIL) (-1152 2682289 2684161 2684191 "SPADXPT" 2688867 T SPADXPT (NIL) -9 NIL 2691031 NIL) (-1151 2682050 2682090 2682159 "SPADPRSR" 2682242 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1150 2680099 2682005 2682036 "SPADAST" 2682041 T SPADAST (NIL) -8 NIL NIL NIL) (-1149 2672044 2673817 2673860 "SPACEC" 2678233 NIL SPACEC (NIL T) -9 NIL 2680049 NIL) (-1148 2670174 2671976 2672025 "SPACE3" 2672030 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1147 2668926 2669097 2669388 "SORTPAK" 2669979 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1146 2667018 2667321 2667733 "SOLVETRA" 2668590 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1145 2666068 2666290 2666551 "SOLVESER" 2666791 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1144 2661372 2662260 2663255 "SOLVERAD" 2665120 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1143 2657187 2657796 2658525 "SOLVEFOR" 2660739 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1142 2651457 2656536 2656633 "SNTSCAT" 2656638 NIL SNTSCAT (NIL T T T T) -9 NIL 2656708 NIL) (-1141 2645563 2649780 2650171 "SMTS" 2651147 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1140 2640159 2645451 2645528 "SMP" 2645533 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1139 2638318 2638619 2639017 "SMITH" 2639856 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1138 2630844 2635130 2635233 "SMATCAT" 2636584 NIL SMATCAT (NIL NIL T T T) -9 NIL 2637134 NIL) (-1137 2627562 2628447 2629705 "SMATCAT-" 2629710 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1136 2625228 2626798 2626841 "SKAGG" 2627102 NIL SKAGG (NIL T) -9 NIL 2627237 NIL) (-1135 2621504 2624701 2624885 "SINT" 2625037 T SINT (NIL) -8 NIL NIL 2625199) (-1134 2621276 2621314 2621380 "SIMPAN" 2621460 T SIMPAN (NIL) -7 NIL NIL NIL) (-1133 2620555 2620811 2620951 "SIG" 2621158 T SIG (NIL) -8 NIL NIL NIL) (-1132 2619393 2619614 2619889 "SIGNRF" 2620314 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1131 2618226 2618377 2618661 "SIGNEF" 2619222 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1130 2617532 2617809 2617933 "SIGAST" 2618124 T SIGAST (NIL) -8 NIL NIL NIL) (-1129 2615222 2615676 2616182 "SHP" 2617073 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1128 2609218 2615123 2615199 "SHDP" 2615204 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1127 2608791 2608983 2609013 "SGROUP" 2609106 T SGROUP (NIL) -9 NIL 2609168 NIL) (-1126 2608649 2608675 2608748 "SGROUP-" 2608753 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1125 2605440 2606138 2606861 "SGCF" 2607948 T SGCF (NIL) -7 NIL NIL NIL) (-1124 2599808 2604887 2604984 "SFRTCAT" 2604989 NIL SFRTCAT (NIL T T T T) -9 NIL 2605028 NIL) (-1123 2593229 2594247 2595383 "SFRGCD" 2598791 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1122 2586355 2587428 2588614 "SFQCMPK" 2592162 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1121 2585975 2586064 2586175 "SFORT" 2586296 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1120 2585093 2585815 2585936 "SEXOF" 2585941 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1119 2584200 2584974 2585042 "SEX" 2585047 T SEX (NIL) -8 NIL NIL NIL) (-1118 2579981 2580696 2580791 "SEXCAT" 2583413 NIL SEXCAT (NIL T T T T T) -9 NIL 2583973 NIL) (-1117 2577134 2579915 2579963 "SET" 2579968 NIL SET (NIL T) -8 NIL NIL NIL) (-1116 2575358 2575847 2576152 "SETMN" 2576875 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1115 2574854 2575006 2575036 "SETCAT" 2575212 T SETCAT (NIL) -9 NIL 2575322 NIL) (-1114 2574546 2574624 2574754 "SETCAT-" 2574759 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1113 2570907 2573007 2573050 "SETAGG" 2573920 NIL SETAGG (NIL T) -9 NIL 2574260 NIL) (-1112 2570365 2570481 2570718 "SETAGG-" 2570723 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1111 2569808 2570061 2570162 "SEQAST" 2570286 T SEQAST (NIL) -8 NIL NIL NIL) (-1110 2569007 2569301 2569362 "SEGXCAT" 2569648 NIL SEGXCAT (NIL T T) -9 NIL 2569768 NIL) (-1109 2568013 2568673 2568855 "SEG" 2568860 NIL SEG (NIL T) -8 NIL NIL NIL) (-1108 2566992 2567206 2567249 "SEGCAT" 2567771 NIL SEGCAT (NIL T) -9 NIL 2567992 NIL) (-1107 2565924 2566355 2566563 "SEGBIND" 2566819 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1106 2565545 2565604 2565717 "SEGBIND2" 2565859 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1105 2565118 2565346 2565423 "SEGAST" 2565490 T SEGAST (NIL) -8 NIL NIL NIL) (-1104 2564337 2564463 2564667 "SEG2" 2564962 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1103 2563708 2564272 2564319 "SDVAR" 2564324 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1102 2556146 2563478 2563608 "SDPOL" 2563613 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1101 2554739 2555005 2555324 "SCPKG" 2555861 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1100 2553903 2554075 2554267 "SCOPE" 2554569 T SCOPE (NIL) -8 NIL NIL NIL) (-1099 2553123 2553257 2553436 "SCACHE" 2553758 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1098 2552769 2552955 2552985 "SASTCAT" 2552990 T SASTCAT (NIL) -9 NIL 2553003 NIL) (-1097 2552256 2552604 2552680 "SAOS" 2552715 T SAOS (NIL) -8 NIL NIL NIL) (-1096 2551821 2551856 2552029 "SAERFFC" 2552215 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1095 2545671 2551718 2551798 "SAE" 2551803 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1094 2545264 2545299 2545458 "SAEFACT" 2545630 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1093 2543585 2543899 2544300 "RURPK" 2544930 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1092 2542222 2542528 2542833 "RULESET" 2543419 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1091 2539445 2539975 2540433 "RULE" 2541903 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1090 2539057 2539239 2539322 "RULECOLD" 2539397 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1089 2538847 2538875 2538946 "RTVALUE" 2539008 T RTVALUE (NIL) -8 NIL NIL NIL) (-1088 2538318 2538564 2538658 "RSTRCAST" 2538775 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1087 2533166 2533961 2534881 "RSETGCD" 2537517 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1086 2522396 2527475 2527572 "RSETCAT" 2531691 NIL RSETCAT (NIL T T T T) -9 NIL 2532788 NIL) (-1085 2520323 2520862 2521686 "RSETCAT-" 2521691 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1084 2512709 2514085 2515605 "RSDCMPK" 2518922 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1083 2510688 2511155 2511229 "RRCC" 2512315 NIL RRCC (NIL T T) -9 NIL 2512659 NIL) (-1082 2510039 2510213 2510492 "RRCC-" 2510497 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1081 2509482 2509735 2509836 "RPTAST" 2509960 T RPTAST (NIL) -8 NIL NIL NIL) (-1080 2483198 2492646 2492713 "RPOLCAT" 2503379 NIL RPOLCAT (NIL T T T) -9 NIL 2506539 NIL) (-1079 2474696 2477036 2480158 "RPOLCAT-" 2480163 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1078 2465627 2472907 2473389 "ROUTINE" 2474236 T ROUTINE (NIL) -8 NIL NIL NIL) (-1077 2462374 2465253 2465393 "ROMAN" 2465509 T ROMAN (NIL) -8 NIL NIL NIL) (-1076 2460618 2461234 2461494 "ROIRC" 2462179 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1075 2456850 2459134 2459164 "RNS" 2459468 T RNS (NIL) -9 NIL 2459742 NIL) (-1074 2455359 2455742 2456276 "RNS-" 2456351 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1073 2454762 2455170 2455200 "RNG" 2455205 T RNG (NIL) -9 NIL 2455226 NIL) (-1072 2453765 2454127 2454329 "RNGBIND" 2454613 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1071 2453164 2453552 2453595 "RMODULE" 2453600 NIL RMODULE (NIL T) -9 NIL 2453627 NIL) (-1070 2452000 2452094 2452430 "RMCAT2" 2453065 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1069 2448850 2451346 2451643 "RMATRIX" 2451762 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1068 2441677 2443937 2444052 "RMATCAT" 2447411 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2448393 NIL) (-1067 2441052 2441199 2441506 "RMATCAT-" 2441511 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1066 2440453 2440674 2440717 "RLINSET" 2440911 NIL RLINSET (NIL T) -9 NIL 2441002 NIL) (-1065 2440020 2440095 2440223 "RINTERP" 2440372 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1064 2439078 2439632 2439662 "RING" 2439718 T RING (NIL) -9 NIL 2439810 NIL) (-1063 2438870 2438914 2439011 "RING-" 2439016 NIL RING- (NIL T) -8 NIL NIL NIL) (-1062 2437711 2437948 2438206 "RIDIST" 2438634 T RIDIST (NIL) -7 NIL NIL NIL) (-1061 2429000 2437179 2437385 "RGCHAIN" 2437559 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1060 2428350 2428756 2428797 "RGBCSPC" 2428855 NIL RGBCSPC (NIL T) -9 NIL 2428907 NIL) (-1059 2427508 2427889 2427930 "RGBCMDL" 2428162 NIL RGBCMDL (NIL T) -9 NIL 2428276 NIL) (-1058 2424502 2425116 2425786 "RF" 2426872 NIL RF (NIL T) -7 NIL NIL NIL) (-1057 2424148 2424211 2424314 "RFFACTOR" 2424433 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1056 2423873 2423908 2424005 "RFFACT" 2424107 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1055 2421990 2422354 2422736 "RFDIST" 2423513 T RFDIST (NIL) -7 NIL NIL NIL) (-1054 2421443 2421535 2421698 "RETSOL" 2421892 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1053 2421079 2421159 2421202 "RETRACT" 2421335 NIL RETRACT (NIL T) -9 NIL 2421422 NIL) (-1052 2420928 2420953 2421040 "RETRACT-" 2421045 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1051 2420530 2420750 2420820 "RETAST" 2420880 T RETAST (NIL) -8 NIL NIL NIL) (-1050 2413268 2420183 2420310 "RESULT" 2420425 T RESULT (NIL) -8 NIL NIL NIL) (-1049 2411859 2412537 2412736 "RESRING" 2413171 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1048 2411495 2411544 2411642 "RESLATC" 2411796 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1047 2411200 2411235 2411342 "REPSQ" 2411454 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1046 2408622 2409202 2409804 "REP" 2410620 T REP (NIL) -7 NIL NIL NIL) (-1045 2408319 2408354 2408465 "REPDB" 2408581 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1044 2402219 2403608 2404831 "REP2" 2407131 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1043 2398596 2399277 2400085 "REP1" 2401446 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1042 2391292 2396737 2397193 "REGSET" 2398226 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1041 2390057 2390440 2390690 "REF" 2391077 NIL REF (NIL T) -8 NIL NIL NIL) (-1040 2389434 2389537 2389704 "REDORDER" 2389941 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1039 2385402 2388647 2388874 "RECLOS" 2389262 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1038 2384454 2384635 2384850 "REALSOLV" 2385209 T REALSOLV (NIL) -7 NIL NIL NIL) (-1037 2384300 2384341 2384371 "REAL" 2384376 T REAL (NIL) -9 NIL 2384411 NIL) (-1036 2380783 2381585 2382469 "REAL0Q" 2383465 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1035 2376384 2377372 2378433 "REAL0" 2379764 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1034 2375855 2376101 2376195 "RDUCEAST" 2376312 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1033 2375260 2375332 2375539 "RDIV" 2375777 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1032 2374328 2374502 2374715 "RDIST" 2375082 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1031 2372925 2373212 2373584 "RDETRS" 2374036 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1030 2370737 2371191 2371729 "RDETR" 2372467 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1029 2369362 2369640 2370037 "RDEEFS" 2370453 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1028 2367871 2368177 2368602 "RDEEF" 2369050 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1027 2361932 2364852 2364882 "RCFIELD" 2366177 T RCFIELD (NIL) -9 NIL 2366908 NIL) (-1026 2359996 2360500 2361196 "RCFIELD-" 2361271 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1025 2356265 2358097 2358140 "RCAGG" 2359224 NIL RCAGG (NIL T) -9 NIL 2359689 NIL) (-1024 2355893 2355987 2356150 "RCAGG-" 2356155 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1023 2355228 2355340 2355505 "RATRET" 2355777 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1022 2354781 2354848 2354969 "RATFACT" 2355156 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1021 2354089 2354209 2354361 "RANDSRC" 2354651 T RANDSRC (NIL) -7 NIL NIL NIL) (-1020 2353823 2353867 2353940 "RADUTIL" 2354038 T RADUTIL (NIL) -7 NIL NIL NIL) (-1019 2346844 2352654 2352965 "RADIX" 2353546 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1018 2338360 2346686 2346816 "RADFF" 2346821 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1017 2338007 2338082 2338112 "RADCAT" 2338272 T RADCAT (NIL) -9 NIL NIL NIL) (-1016 2337789 2337837 2337937 "RADCAT-" 2337942 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1015 2335887 2337559 2337651 "QUEUE" 2337732 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1014 2332335 2335820 2335868 "QUAT" 2335873 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1013 2331966 2332009 2332140 "QUATCT2" 2332286 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1012 2325162 2328597 2328639 "QUATCAT" 2329430 NIL QUATCAT (NIL T) -9 NIL 2330196 NIL) (-1011 2321301 2322338 2323728 "QUATCAT-" 2323824 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1010 2318766 2320377 2320420 "QUAGG" 2320801 NIL QUAGG (NIL T) -9 NIL 2320976 NIL) (-1009 2318368 2318588 2318658 "QQUTAST" 2318718 T QQUTAST (NIL) -8 NIL NIL NIL) (-1008 2317381 2317881 2318046 "QFORM" 2318249 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1007 2308188 2313516 2313558 "QFCAT" 2314226 NIL QFCAT (NIL T) -9 NIL 2315227 NIL) (-1006 2303533 2304796 2306470 "QFCAT-" 2306566 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1005 2303164 2303207 2303338 "QFCAT2" 2303484 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1004 2302619 2302729 2302861 "QEQUAT" 2303054 T QEQUAT (NIL) -8 NIL NIL NIL) (-1003 2295745 2296818 2298004 "QCMPACK" 2301552 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1002 2293283 2293731 2294161 "QALGSET" 2295400 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1001 2292518 2292694 2292930 "QALGSET2" 2293101 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1000 2291203 2291427 2291746 "PWFFINTB" 2292291 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-999 2289385 2289553 2289907 "PUSHVAR" 2291017 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-998 2285303 2286357 2286398 "PTRANFN" 2288282 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-997 2283705 2283996 2284318 "PTPACK" 2285014 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-996 2283337 2283394 2283503 "PTFUNC2" 2283642 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-995 2277782 2282179 2282220 "PTCAT" 2282516 NIL PTCAT (NIL T) -9 NIL 2282669 NIL) (-994 2277440 2277475 2277599 "PSQFR" 2277741 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-993 2276035 2276333 2276667 "PSEUDLIN" 2277138 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-992 2262798 2265169 2267493 "PSETPK" 2273795 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-991 2255816 2258556 2258652 "PSETCAT" 2261673 NIL PSETCAT (NIL T T T T) -9 NIL 2262487 NIL) (-990 2253652 2254286 2255107 "PSETCAT-" 2255112 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-989 2253001 2253166 2253194 "PSCURVE" 2253462 T PSCURVE (NIL) -9 NIL 2253629 NIL) (-988 2248999 2250515 2250580 "PSCAT" 2251424 NIL PSCAT (NIL T T T) -9 NIL 2251664 NIL) (-987 2248062 2248278 2248678 "PSCAT-" 2248683 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-986 2246421 2247131 2247394 "PRTITION" 2247819 T PRTITION (NIL) -8 NIL NIL NIL) (-985 2245896 2246142 2246234 "PRTDAST" 2246349 T PRTDAST (NIL) -8 NIL NIL NIL) (-984 2234986 2237200 2239388 "PRS" 2243758 NIL PRS (NIL T T) -7 NIL NIL NIL) (-983 2232797 2234336 2234376 "PRQAGG" 2234559 NIL PRQAGG (NIL T) -9 NIL 2234661 NIL) (-982 2232133 2232438 2232466 "PROPLOG" 2232605 T PROPLOG (NIL) -9 NIL 2232720 NIL) (-981 2231737 2231794 2231917 "PROPFUN2" 2232056 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-980 2231052 2231173 2231345 "PROPFUN1" 2231598 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-979 2229233 2229799 2230096 "PROPFRML" 2230788 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-978 2228702 2228809 2228937 "PROPERTY" 2229125 T PROPERTY (NIL) -8 NIL NIL NIL) (-977 2222760 2226868 2227688 "PRODUCT" 2227928 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-976 2220038 2222218 2222452 "PR" 2222571 NIL PR (NIL T T) -8 NIL NIL NIL) (-975 2219834 2219866 2219925 "PRINT" 2219999 T PRINT (NIL) -7 NIL NIL NIL) (-974 2219174 2219291 2219443 "PRIMES" 2219714 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-973 2217239 2217640 2218106 "PRIMELT" 2218753 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-972 2216968 2217017 2217045 "PRIMCAT" 2217169 T PRIMCAT (NIL) -9 NIL NIL NIL) (-971 2213083 2216906 2216951 "PRIMARR" 2216956 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-970 2212090 2212268 2212496 "PRIMARR2" 2212901 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-969 2211733 2211789 2211900 "PREASSOC" 2212028 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-968 2211208 2211341 2211369 "PPCURVE" 2211574 T PPCURVE (NIL) -9 NIL 2211710 NIL) (-967 2210803 2211003 2211086 "PORTNUM" 2211145 T PORTNUM (NIL) -8 NIL NIL NIL) (-966 2208162 2208561 2209153 "POLYROOT" 2210384 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-965 2202255 2207766 2207926 "POLY" 2208035 NIL POLY (NIL T) -8 NIL NIL NIL) (-964 2201638 2201696 2201930 "POLYLIFT" 2202191 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-963 2197913 2198362 2198991 "POLYCATQ" 2201183 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-962 2184495 2189712 2189777 "POLYCAT" 2193291 NIL POLYCAT (NIL T T T) -9 NIL 2195169 NIL) (-961 2177722 2179646 2182110 "POLYCAT-" 2182115 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-960 2177309 2177377 2177497 "POLY2UP" 2177648 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-959 2176941 2176998 2177107 "POLY2" 2177246 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-958 2175626 2175865 2176141 "POLUTIL" 2176715 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-957 2173981 2174258 2174589 "POLTOPOL" 2175348 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-956 2169446 2173917 2173963 "POINT" 2173968 NIL POINT (NIL T) -8 NIL NIL NIL) (-955 2167633 2167990 2168365 "PNTHEORY" 2169091 T PNTHEORY (NIL) -7 NIL NIL NIL) (-954 2166091 2166388 2166787 "PMTOOLS" 2167331 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-953 2165684 2165762 2165879 "PMSYM" 2166007 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-952 2165192 2165261 2165436 "PMQFCAT" 2165609 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-951 2164547 2164657 2164813 "PMPRED" 2165069 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-950 2163940 2164026 2164188 "PMPREDFS" 2164448 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-949 2162604 2162812 2163190 "PMPLCAT" 2163702 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-948 2162136 2162215 2162367 "PMLSAGG" 2162519 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-947 2161609 2161685 2161867 "PMKERNEL" 2162054 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-946 2161226 2161301 2161414 "PMINS" 2161528 NIL PMINS (NIL T) -7 NIL NIL NIL) (-945 2160668 2160737 2160946 "PMFS" 2161151 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-944 2159896 2160014 2160219 "PMDOWN" 2160545 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-943 2159063 2159221 2159402 "PMASS" 2159735 T PMASS (NIL) -7 NIL NIL NIL) (-942 2158336 2158446 2158609 "PMASSFS" 2158950 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-941 2157991 2158059 2158153 "PLOTTOOL" 2158262 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-940 2152598 2153802 2154950 "PLOT" 2156863 T PLOT (NIL) -8 NIL NIL NIL) (-939 2148402 2149446 2150367 "PLOT3D" 2151697 T PLOT3D (NIL) -8 NIL NIL NIL) (-938 2147314 2147491 2147726 "PLOT1" 2148206 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-937 2122705 2127380 2132231 "PLEQN" 2142580 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-936 2122023 2122145 2122325 "PINTERP" 2122570 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-935 2121716 2121763 2121866 "PINTERPA" 2121970 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-934 2120932 2121480 2121567 "PI" 2121607 T PI (NIL) -8 NIL NIL 2121674) (-933 2119229 2120204 2120232 "PID" 2120414 T PID (NIL) -9 NIL 2120548 NIL) (-932 2118980 2119017 2119092 "PICOERCE" 2119186 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-931 2118300 2118439 2118615 "PGROEB" 2118836 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-930 2113887 2114701 2115606 "PGE" 2117415 T PGE (NIL) -7 NIL NIL NIL) (-929 2112010 2112257 2112623 "PGCD" 2113604 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-928 2111348 2111451 2111612 "PFRPAC" 2111894 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-927 2107988 2109896 2110249 "PFR" 2111027 NIL PFR (NIL T) -8 NIL NIL NIL) (-926 2106377 2106621 2106946 "PFOTOOLS" 2107735 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-925 2104910 2105149 2105500 "PFOQ" 2106134 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-924 2103411 2103623 2103979 "PFO" 2104694 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-923 2099964 2103300 2103369 "PF" 2103374 NIL PF (NIL NIL) -8 NIL NIL NIL) (-922 2097298 2098569 2098597 "PFECAT" 2099182 T PFECAT (NIL) -9 NIL 2099566 NIL) (-921 2096743 2096897 2097111 "PFECAT-" 2097116 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-920 2095346 2095598 2095899 "PFBRU" 2096492 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-919 2093212 2093564 2093996 "PFBR" 2094997 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-918 2089258 2090724 2091371 "PERM" 2092598 NIL PERM (NIL T) -8 NIL NIL NIL) (-917 2084492 2085465 2086335 "PERMGRP" 2088421 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-916 2082611 2083571 2083612 "PERMCAT" 2084012 NIL PERMCAT (NIL T) -9 NIL 2084310 NIL) (-915 2082264 2082305 2082429 "PERMAN" 2082564 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-914 2079752 2081929 2082051 "PENDTREE" 2082175 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-913 2077776 2078544 2078585 "PDRING" 2079242 NIL PDRING (NIL T) -9 NIL 2079528 NIL) (-912 2076879 2077097 2077459 "PDRING-" 2077464 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-911 2074094 2074872 2075540 "PDEPROB" 2076231 T PDEPROB (NIL) -8 NIL NIL NIL) (-910 2071639 2072143 2072698 "PDEPACK" 2073559 T PDEPACK (NIL) -7 NIL NIL NIL) (-909 2070551 2070741 2070992 "PDECOMP" 2071438 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-908 2068130 2068973 2069001 "PDECAT" 2069788 T PDECAT (NIL) -9 NIL 2070501 NIL) (-907 2067759 2067814 2067868 "PDDOM" 2068033 NIL PDDOM (NIL T T) -9 NIL 2068113 NIL) (-906 2067578 2067608 2067715 "PDDOM-" 2067720 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-905 2067329 2067362 2067452 "PCOMP" 2067539 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-904 2065507 2066130 2066427 "PBWLB" 2067058 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-903 2057980 2059580 2060918 "PATTERN" 2064190 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-902 2057612 2057669 2057778 "PATTERN2" 2057917 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-901 2055369 2055757 2056214 "PATTERN1" 2057201 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-900 2052737 2053318 2053799 "PATRES" 2054934 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-899 2052301 2052368 2052500 "PATRES2" 2052664 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-898 2050184 2050589 2050996 "PATMATCH" 2051968 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-897 2049694 2049903 2049944 "PATMAB" 2050051 NIL PATMAB (NIL T) -9 NIL 2050134 NIL) (-896 2048212 2048548 2048806 "PATLRES" 2049499 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-895 2047758 2047881 2047922 "PATAB" 2047927 NIL PATAB (NIL T) -9 NIL 2048099 NIL) (-894 2045940 2046335 2046758 "PARTPERM" 2047355 T PARTPERM (NIL) -7 NIL NIL NIL) (-893 2045561 2045624 2045726 "PARSURF" 2045871 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-892 2045193 2045250 2045359 "PARSU2" 2045498 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-891 2044957 2044997 2045064 "PARSER" 2045146 T PARSER (NIL) -7 NIL NIL NIL) (-890 2044578 2044641 2044743 "PARSCURV" 2044888 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-889 2044210 2044267 2044376 "PARSC2" 2044515 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-888 2043849 2043907 2044004 "PARPCURV" 2044146 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-887 2043481 2043538 2043647 "PARPC2" 2043786 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-886 2042542 2042854 2043036 "PARAMAST" 2043319 T PARAMAST (NIL) -8 NIL NIL NIL) (-885 2042062 2042148 2042267 "PAN2EXPR" 2042443 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-884 2040839 2041183 2041411 "PALETTE" 2041854 T PALETTE (NIL) -8 NIL NIL NIL) (-883 2039232 2039844 2040204 "PAIR" 2040525 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-882 2033011 2038489 2038684 "PADICRC" 2039086 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-881 2026135 2032355 2032540 "PADICRAT" 2032858 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-880 2024450 2026072 2026117 "PADIC" 2026122 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-879 2021560 2023124 2023164 "PADICCT" 2023745 NIL PADICCT (NIL NIL) -9 NIL 2024027 NIL) (-878 2020517 2020717 2020985 "PADEPAC" 2021347 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-877 2019729 2019862 2020068 "PADE" 2020379 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-876 2018116 2018937 2019217 "OWP" 2019533 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-875 2017609 2017822 2017919 "OVERSET" 2018039 T OVERSET (NIL) -8 NIL NIL NIL) (-874 2016655 2017214 2017386 "OVAR" 2017477 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-873 2015919 2016040 2016201 "OUT" 2016514 T OUT (NIL) -7 NIL NIL NIL) (-872 2004791 2007028 2009228 "OUTFORM" 2013739 T OUTFORM (NIL) -8 NIL NIL NIL) (-871 2004127 2004388 2004515 "OUTBFILE" 2004684 T OUTBFILE (NIL) -8 NIL NIL NIL) (-870 2003434 2003599 2003627 "OUTBCON" 2003945 T OUTBCON (NIL) -9 NIL 2004111 NIL) (-869 2003035 2003147 2003304 "OUTBCON-" 2003309 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-868 2002415 2002764 2002853 "OSI" 2002966 T OSI (NIL) -8 NIL NIL NIL) (-867 2001945 2002283 2002311 "OSGROUP" 2002316 T OSGROUP (NIL) -9 NIL 2002338 NIL) (-866 2000690 2000917 2001202 "ORTHPOL" 2001692 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-865 1998241 2000525 2000646 "OREUP" 2000651 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-864 1995644 1997932 1998059 "ORESUP" 1998183 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-863 1993172 1993672 1994233 "OREPCTO" 1995133 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-862 1986858 1989059 1989100 "OREPCAT" 1991448 NIL OREPCAT (NIL T) -9 NIL 1992552 NIL) (-861 1984005 1984787 1985845 "OREPCAT-" 1985850 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-860 1983156 1983454 1983482 "ORDSET" 1983791 T ORDSET (NIL) -9 NIL 1983955 NIL) (-859 1982587 1982735 1982959 "ORDSET-" 1982964 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-858 1981152 1981943 1981971 "ORDRING" 1982173 T ORDRING (NIL) -9 NIL 1982298 NIL) (-857 1980797 1980891 1981035 "ORDRING-" 1981040 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-856 1980177 1980640 1980668 "ORDMON" 1980673 T ORDMON (NIL) -9 NIL 1980694 NIL) (-855 1979339 1979486 1979681 "ORDFUNS" 1980026 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-854 1978677 1979096 1979124 "ORDFIN" 1979189 T ORDFIN (NIL) -9 NIL 1979263 NIL) (-853 1975236 1977263 1977672 "ORDCOMP" 1978301 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-852 1974502 1974629 1974815 "ORDCOMP2" 1975096 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-851 1971083 1971993 1972807 "OPTPROB" 1973708 T OPTPROB (NIL) -8 NIL NIL NIL) (-850 1967885 1968524 1969228 "OPTPACK" 1970399 T OPTPACK (NIL) -7 NIL NIL NIL) (-849 1965572 1966338 1966366 "OPTCAT" 1967185 T OPTCAT (NIL) -9 NIL 1967835 NIL) (-848 1964956 1965249 1965354 "OPSIG" 1965487 T OPSIG (NIL) -8 NIL NIL NIL) (-847 1964724 1964763 1964829 "OPQUERY" 1964910 T OPQUERY (NIL) -7 NIL NIL NIL) (-846 1961855 1963035 1963539 "OP" 1964253 NIL OP (NIL T) -8 NIL NIL NIL) (-845 1961229 1961455 1961496 "OPERCAT" 1961708 NIL OPERCAT (NIL T) -9 NIL 1961805 NIL) (-844 1960984 1961040 1961157 "OPERCAT-" 1961162 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-843 1957797 1959781 1960150 "ONECOMP" 1960648 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-842 1957102 1957217 1957391 "ONECOMP2" 1957669 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-841 1956521 1956627 1956757 "OMSERVER" 1956992 T OMSERVER (NIL) -7 NIL NIL NIL) (-840 1953383 1955961 1956001 "OMSAGG" 1956062 NIL OMSAGG (NIL T) -9 NIL 1956126 NIL) (-839 1952006 1952269 1952551 "OMPKG" 1953121 T OMPKG (NIL) -7 NIL NIL NIL) (-838 1951436 1951539 1951567 "OM" 1951866 T OM (NIL) -9 NIL NIL NIL) (-837 1949983 1950985 1951154 "OMLO" 1951317 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-836 1948943 1949090 1949310 "OMEXPR" 1949809 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-835 1948234 1948489 1948625 "OMERR" 1948827 T OMERR (NIL) -8 NIL NIL NIL) (-834 1947385 1947655 1947815 "OMERRK" 1948094 T OMERRK (NIL) -8 NIL NIL NIL) (-833 1946836 1947062 1947170 "OMENC" 1947297 T OMENC (NIL) -8 NIL NIL NIL) (-832 1940731 1941916 1943087 "OMDEV" 1945685 T OMDEV (NIL) -8 NIL NIL NIL) (-831 1939800 1939971 1940165 "OMCONN" 1940557 T OMCONN (NIL) -8 NIL NIL NIL) (-830 1938321 1939297 1939325 "OINTDOM" 1939330 T OINTDOM (NIL) -9 NIL 1939351 NIL) (-829 1935659 1937009 1937346 "OFMONOID" 1938016 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-828 1935031 1935596 1935641 "ODVAR" 1935646 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-827 1932454 1934776 1934931 "ODR" 1934936 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-826 1924946 1932230 1932356 "ODPOL" 1932361 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-825 1918912 1924818 1924923 "ODP" 1924928 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-824 1917678 1917893 1918168 "ODETOOLS" 1918686 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-823 1914645 1915303 1916019 "ODESYS" 1917011 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-822 1909527 1910435 1911460 "ODERTRIC" 1913720 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-821 1908953 1909035 1909229 "ODERED" 1909439 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-820 1905841 1906389 1907066 "ODERAT" 1908376 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-819 1902800 1903265 1903862 "ODEPRRIC" 1905370 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-818 1900743 1901339 1901825 "ODEPROB" 1902334 T ODEPROB (NIL) -8 NIL NIL NIL) (-817 1897263 1897748 1898395 "ODEPRIM" 1900222 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-816 1896512 1896614 1896874 "ODEPAL" 1897155 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-815 1892674 1893465 1894329 "ODEPACK" 1895668 T ODEPACK (NIL) -7 NIL NIL NIL) (-814 1891735 1891842 1892064 "ODEINT" 1892563 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-813 1885836 1887261 1888708 "ODEIFTBL" 1890308 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-812 1881234 1882020 1882972 "ODEEF" 1884995 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-811 1880583 1880672 1880895 "ODECONST" 1881139 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-810 1878708 1879369 1879397 "ODECAT" 1880002 T ODECAT (NIL) -9 NIL 1880533 NIL) (-809 1875563 1878413 1878535 "OCT" 1878618 NIL OCT (NIL T) -8 NIL NIL NIL) (-808 1875201 1875244 1875371 "OCTCT2" 1875514 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-807 1869812 1872247 1872287 "OC" 1873384 NIL OC (NIL T) -9 NIL 1874242 NIL) (-806 1867039 1867787 1868777 "OC-" 1868871 NIL OC- (NIL T T) -8 NIL NIL NIL) (-805 1866391 1866859 1866887 "OCAMON" 1866892 T OCAMON (NIL) -9 NIL 1866913 NIL) (-804 1865922 1866263 1866291 "OASGP" 1866296 T OASGP (NIL) -9 NIL 1866316 NIL) (-803 1865183 1865672 1865700 "OAMONS" 1865740 T OAMONS (NIL) -9 NIL 1865783 NIL) (-802 1864597 1865030 1865058 "OAMON" 1865063 T OAMON (NIL) -9 NIL 1865083 NIL) (-801 1863855 1864373 1864401 "OAGROUP" 1864406 T OAGROUP (NIL) -9 NIL 1864426 NIL) (-800 1863545 1863595 1863683 "NUMTUBE" 1863799 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-799 1857118 1858636 1860172 "NUMQUAD" 1862029 T NUMQUAD (NIL) -7 NIL NIL NIL) (-798 1852874 1853862 1854887 "NUMODE" 1856113 T NUMODE (NIL) -7 NIL NIL NIL) (-797 1850229 1851109 1851137 "NUMINT" 1852060 T NUMINT (NIL) -9 NIL 1852824 NIL) (-796 1849177 1849374 1849592 "NUMFMT" 1850031 T NUMFMT (NIL) -7 NIL NIL NIL) (-795 1835536 1838481 1841013 "NUMERIC" 1846684 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-794 1829906 1834985 1835080 "NTSCAT" 1835085 NIL NTSCAT (NIL T T T T) -9 NIL 1835124 NIL) (-793 1829100 1829265 1829458 "NTPOLFN" 1829745 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-792 1817088 1825925 1826737 "NSUP" 1828321 NIL NSUP (NIL T) -8 NIL NIL NIL) (-791 1816720 1816777 1816886 "NSUP2" 1817025 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-790 1806857 1816494 1816627 "NSMP" 1816632 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-789 1805289 1805590 1805947 "NREP" 1806545 NIL NREP (NIL T) -7 NIL NIL NIL) (-788 1803880 1804132 1804490 "NPCOEF" 1805032 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-787 1802946 1803061 1803277 "NORMRETR" 1803761 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-786 1800987 1801277 1801686 "NORMPK" 1802654 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-785 1800672 1800700 1800824 "NORMMA" 1800953 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-784 1800472 1800629 1800658 "NONE" 1800663 T NONE (NIL) -8 NIL NIL NIL) (-783 1800261 1800290 1800359 "NONE1" 1800436 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-782 1799758 1799820 1799999 "NODE1" 1800193 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-781 1798039 1798890 1799145 "NNI" 1799492 T NNI (NIL) -8 NIL NIL 1799727) (-780 1796459 1796772 1797136 "NLINSOL" 1797707 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-779 1792700 1793695 1794594 "NIPROB" 1795580 T NIPROB (NIL) -8 NIL NIL NIL) (-778 1791457 1791691 1791993 "NFINTBAS" 1792462 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-777 1790631 1791107 1791148 "NETCLT" 1791320 NIL NETCLT (NIL T) -9 NIL 1791402 NIL) (-776 1789339 1789570 1789851 "NCODIV" 1790399 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-775 1789101 1789138 1789213 "NCNTFRAC" 1789296 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-774 1787281 1787645 1788065 "NCEP" 1788726 NIL NCEP (NIL T) -7 NIL NIL NIL) (-773 1786132 1786905 1786933 "NASRING" 1787043 T NASRING (NIL) -9 NIL 1787123 NIL) (-772 1785927 1785971 1786065 "NASRING-" 1786070 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-771 1785034 1785559 1785587 "NARNG" 1785704 T NARNG (NIL) -9 NIL 1785795 NIL) (-770 1784726 1784793 1784927 "NARNG-" 1784932 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-769 1783605 1783812 1784047 "NAGSP" 1784511 T NAGSP (NIL) -7 NIL NIL NIL) (-768 1774877 1776561 1778234 "NAGS" 1781952 T NAGS (NIL) -7 NIL NIL NIL) (-767 1773425 1773733 1774064 "NAGF07" 1774566 T NAGF07 (NIL) -7 NIL NIL NIL) (-766 1767963 1769254 1770561 "NAGF04" 1772138 T NAGF04 (NIL) -7 NIL NIL NIL) (-765 1760931 1762545 1764178 "NAGF02" 1766350 T NAGF02 (NIL) -7 NIL NIL NIL) (-764 1756155 1757255 1758372 "NAGF01" 1759834 T NAGF01 (NIL) -7 NIL NIL NIL) (-763 1749783 1751349 1752934 "NAGE04" 1754590 T NAGE04 (NIL) -7 NIL NIL NIL) (-762 1740952 1743073 1745203 "NAGE02" 1747673 T NAGE02 (NIL) -7 NIL NIL NIL) (-761 1736905 1737852 1738816 "NAGE01" 1740008 T NAGE01 (NIL) -7 NIL NIL NIL) (-760 1734700 1735234 1735792 "NAGD03" 1736367 T NAGD03 (NIL) -7 NIL NIL NIL) (-759 1726450 1728378 1730332 "NAGD02" 1732766 T NAGD02 (NIL) -7 NIL NIL NIL) (-758 1720261 1721686 1723126 "NAGD01" 1725030 T NAGD01 (NIL) -7 NIL NIL NIL) (-757 1716470 1717292 1718129 "NAGC06" 1719444 T NAGC06 (NIL) -7 NIL NIL NIL) (-756 1714935 1715267 1715623 "NAGC05" 1716134 T NAGC05 (NIL) -7 NIL NIL NIL) (-755 1714311 1714430 1714574 "NAGC02" 1714811 T NAGC02 (NIL) -7 NIL NIL NIL) (-754 1713270 1713853 1713893 "NAALG" 1713972 NIL NAALG (NIL T) -9 NIL 1714033 NIL) (-753 1713105 1713134 1713224 "NAALG-" 1713229 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-752 1707055 1708163 1709350 "MULTSQFR" 1712001 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-751 1706374 1706449 1706633 "MULTFACT" 1706967 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-750 1699098 1703011 1703064 "MTSCAT" 1704134 NIL MTSCAT (NIL T T) -9 NIL 1704649 NIL) (-749 1698810 1698864 1698956 "MTHING" 1699038 NIL MTHING (NIL T) -7 NIL NIL NIL) (-748 1698602 1698635 1698695 "MSYSCMD" 1698770 T MSYSCMD (NIL) -7 NIL NIL NIL) (-747 1694684 1697357 1697677 "MSET" 1698315 NIL MSET (NIL T) -8 NIL NIL NIL) (-746 1691753 1694245 1694286 "MSETAGG" 1694291 NIL MSETAGG (NIL T) -9 NIL 1694325 NIL) (-745 1687595 1689132 1689877 "MRING" 1691053 NIL MRING (NIL T T) -8 NIL NIL NIL) (-744 1687161 1687228 1687359 "MRF2" 1687522 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-743 1686779 1686814 1686958 "MRATFAC" 1687120 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-742 1684391 1684686 1685117 "MPRFF" 1686484 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-741 1678599 1684245 1684342 "MPOLY" 1684347 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-740 1678089 1678124 1678332 "MPCPF" 1678558 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-739 1677603 1677646 1677830 "MPC3" 1678040 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-738 1676798 1676879 1677100 "MPC2" 1677518 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-737 1675099 1675436 1675826 "MONOTOOL" 1676458 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-736 1674324 1674641 1674669 "MONOID" 1674888 T MONOID (NIL) -9 NIL 1675035 NIL) (-735 1673870 1673989 1674170 "MONOID-" 1674175 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-734 1663968 1670009 1670068 "MONOGEN" 1670742 NIL MONOGEN (NIL T T) -9 NIL 1671198 NIL) (-733 1661186 1661921 1662921 "MONOGEN-" 1663040 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-732 1660019 1660465 1660493 "MONADWU" 1660885 T MONADWU (NIL) -9 NIL 1661123 NIL) (-731 1659391 1659550 1659798 "MONADWU-" 1659803 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-730 1658750 1658994 1659022 "MONAD" 1659229 T MONAD (NIL) -9 NIL 1659341 NIL) (-729 1658435 1658513 1658645 "MONAD-" 1658650 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-728 1656724 1657348 1657627 "MOEBIUS" 1658188 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-727 1656002 1656406 1656446 "MODULE" 1656451 NIL MODULE (NIL T) -9 NIL 1656490 NIL) (-726 1655570 1655666 1655856 "MODULE-" 1655861 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-725 1653250 1653934 1654261 "MODRING" 1655394 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-724 1650194 1651355 1651876 "MODOP" 1652779 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-723 1648782 1649261 1649538 "MODMONOM" 1650057 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-722 1638737 1647073 1647487 "MODMON" 1648419 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-721 1635893 1637581 1637857 "MODFIELD" 1638612 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-720 1634870 1635174 1635364 "MMLFORM" 1635723 T MMLFORM (NIL) -8 NIL NIL NIL) (-719 1634396 1634439 1634618 "MMAP" 1634821 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-718 1632475 1633242 1633283 "MLO" 1633706 NIL MLO (NIL T) -9 NIL 1633948 NIL) (-717 1629841 1630357 1630959 "MLIFT" 1631956 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-716 1629232 1629316 1629470 "MKUCFUNC" 1629752 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-715 1628831 1628901 1629024 "MKRECORD" 1629155 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-714 1627878 1628040 1628268 "MKFUNC" 1628642 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-713 1627266 1627370 1627526 "MKFLCFN" 1627761 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-712 1626543 1626645 1626830 "MKBCFUNC" 1627159 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-711 1623218 1626097 1626233 "MINT" 1626427 T MINT (NIL) -8 NIL NIL NIL) (-710 1622030 1622273 1622550 "MHROWRED" 1622973 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-709 1617410 1620565 1620970 "MFLOAT" 1621645 T MFLOAT (NIL) -8 NIL NIL NIL) (-708 1616767 1616843 1617014 "MFINFACT" 1617322 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-707 1613082 1613930 1614814 "MESH" 1615903 T MESH (NIL) -7 NIL NIL NIL) (-706 1611472 1611784 1612137 "MDDFACT" 1612769 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-705 1608267 1610631 1610672 "MDAGG" 1610927 NIL MDAGG (NIL T) -9 NIL 1611070 NIL) (-704 1597914 1607560 1607767 "MCMPLX" 1608080 T MCMPLX (NIL) -8 NIL NIL NIL) (-703 1597051 1597197 1597398 "MCDEN" 1597763 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-702 1594941 1595211 1595591 "MCALCFN" 1596781 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-701 1593866 1594106 1594339 "MAYBE" 1594747 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-700 1591478 1592001 1592563 "MATSTOR" 1593337 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-699 1587435 1590850 1591098 "MATRIX" 1591263 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-698 1583201 1583908 1584644 "MATLIN" 1586792 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-697 1573307 1576493 1576570 "MATCAT" 1581450 NIL MATCAT (NIL T T T) -9 NIL 1582867 NIL) (-696 1569663 1570684 1572040 "MATCAT-" 1572045 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-695 1568257 1568410 1568743 "MATCAT2" 1569498 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-694 1566369 1566693 1567077 "MAPPKG3" 1567932 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-693 1565350 1565523 1565745 "MAPPKG2" 1566193 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-692 1563849 1564133 1564460 "MAPPKG1" 1565056 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-691 1562928 1563255 1563432 "MAPPAST" 1563692 T MAPPAST (NIL) -8 NIL NIL NIL) (-690 1562539 1562597 1562720 "MAPHACK3" 1562864 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-689 1562131 1562192 1562306 "MAPHACK2" 1562471 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-688 1561569 1561672 1561814 "MAPHACK1" 1562022 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-687 1559648 1560269 1560573 "MAGMA" 1561297 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-686 1559127 1559372 1559463 "MACROAST" 1559577 T MACROAST (NIL) -8 NIL NIL NIL) (-685 1555545 1557366 1557827 "M3D" 1558699 NIL M3D (NIL T) -8 NIL NIL NIL) (-684 1549620 1553884 1553925 "LZSTAGG" 1554707 NIL LZSTAGG (NIL T) -9 NIL 1555002 NIL) (-683 1545578 1546751 1548208 "LZSTAGG-" 1548213 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-682 1542665 1543469 1543956 "LWORD" 1545123 NIL LWORD (NIL T) -8 NIL NIL NIL) (-681 1542241 1542469 1542544 "LSTAST" 1542610 T LSTAST (NIL) -8 NIL NIL NIL) (-680 1535318 1542012 1542146 "LSQM" 1542151 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-679 1534542 1534681 1534909 "LSPP" 1535173 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-678 1532354 1532655 1533111 "LSMP" 1534231 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-677 1529133 1529807 1530537 "LSMP1" 1531656 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-676 1522979 1528270 1528311 "LSAGG" 1528373 NIL LSAGG (NIL T) -9 NIL 1528451 NIL) (-675 1519674 1520598 1521811 "LSAGG-" 1521816 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-674 1517273 1518818 1519067 "LPOLY" 1519469 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-673 1516855 1516940 1517063 "LPEFRAC" 1517182 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-672 1515176 1515949 1516202 "LO" 1516687 NIL LO (NIL T T T) -8 NIL NIL NIL) (-671 1514828 1514940 1514968 "LOGIC" 1515079 T LOGIC (NIL) -9 NIL 1515160 NIL) (-670 1514690 1514713 1514784 "LOGIC-" 1514789 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-669 1513883 1514023 1514216 "LODOOPS" 1514546 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-668 1511306 1513799 1513865 "LODO" 1513870 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-667 1509844 1510079 1510432 "LODOF" 1511053 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-666 1506048 1508479 1508520 "LODOCAT" 1508958 NIL LODOCAT (NIL T) -9 NIL 1509169 NIL) (-665 1505781 1505839 1505966 "LODOCAT-" 1505971 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-664 1503101 1505622 1505740 "LODO2" 1505745 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-663 1500536 1503038 1503083 "LODO1" 1503088 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-662 1499417 1499582 1499887 "LODEEF" 1500359 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-661 1494720 1497611 1497652 "LNAGG" 1498514 NIL LNAGG (NIL T) -9 NIL 1498949 NIL) (-660 1493867 1494081 1494423 "LNAGG-" 1494428 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-659 1490003 1490792 1491431 "LMOPS" 1493282 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-658 1489406 1489794 1489835 "LMODULE" 1489840 NIL LMODULE (NIL T) -9 NIL 1489866 NIL) (-657 1486604 1489051 1489174 "LMDICT" 1489316 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-656 1486010 1486231 1486272 "LLINSET" 1486463 NIL LLINSET (NIL T) -9 NIL 1486554 NIL) (-655 1485709 1485918 1485978 "LITERAL" 1485983 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-654 1478872 1484643 1484947 "LIST" 1485438 NIL LIST (NIL T) -8 NIL NIL NIL) (-653 1478397 1478471 1478610 "LIST3" 1478792 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-652 1477404 1477582 1477810 "LIST2" 1478215 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-651 1475538 1475850 1476249 "LIST2MAP" 1477051 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-650 1475134 1475371 1475412 "LINSET" 1475417 NIL LINSET (NIL T) -9 NIL 1475451 NIL) (-649 1473863 1474396 1474437 "LINEXP" 1474788 NIL LINEXP (NIL T) -9 NIL 1474979 NIL) (-648 1472440 1472700 1473011 "LINDEP" 1473615 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-647 1469207 1469926 1470703 "LIMITRF" 1471695 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-646 1467510 1467806 1468215 "LIMITPS" 1468902 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-645 1461938 1467021 1467249 "LIE" 1467331 NIL LIE (NIL T T) -8 NIL NIL NIL) (-644 1460886 1461355 1461395 "LIECAT" 1461535 NIL LIECAT (NIL T) -9 NIL 1461686 NIL) (-643 1460727 1460754 1460842 "LIECAT-" 1460847 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-642 1453314 1460267 1460423 "LIB" 1460591 T LIB (NIL) -8 NIL NIL NIL) (-641 1448949 1449832 1450767 "LGROBP" 1452431 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-640 1446947 1447221 1447571 "LF" 1448670 NIL LF (NIL T T) -7 NIL NIL NIL) (-639 1445787 1446479 1446507 "LFCAT" 1446714 T LFCAT (NIL) -9 NIL 1446853 NIL) (-638 1442689 1443319 1444007 "LEXTRIPK" 1445151 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-637 1439433 1440259 1440762 "LEXP" 1442269 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-636 1438909 1439154 1439246 "LETAST" 1439361 T LETAST (NIL) -8 NIL NIL NIL) (-635 1437307 1437620 1438021 "LEADCDET" 1438591 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-634 1436497 1436571 1436800 "LAZM3PK" 1437228 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-633 1431414 1434574 1435112 "LAUPOL" 1436009 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-632 1430993 1431037 1431198 "LAPLACE" 1431364 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-631 1428932 1430094 1430345 "LA" 1430826 NIL LA (NIL T T T) -8 NIL NIL NIL) (-630 1427926 1428510 1428551 "LALG" 1428613 NIL LALG (NIL T) -9 NIL 1428672 NIL) (-629 1427640 1427699 1427835 "LALG-" 1427840 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-628 1427475 1427499 1427540 "KVTFROM" 1427602 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-627 1426398 1426842 1427027 "KTVLOGIC" 1427310 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-626 1426233 1426257 1426298 "KRCFROM" 1426360 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-625 1425137 1425324 1425623 "KOVACIC" 1426033 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-624 1424972 1424996 1425037 "KONVERT" 1425099 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-623 1424807 1424831 1424872 "KOERCE" 1424934 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-622 1422638 1423400 1423777 "KERNEL" 1424463 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-621 1422134 1422215 1422347 "KERNEL2" 1422552 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-620 1415904 1420673 1420727 "KDAGG" 1421104 NIL KDAGG (NIL T T) -9 NIL 1421310 NIL) (-619 1415433 1415557 1415762 "KDAGG-" 1415767 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-618 1408581 1415094 1415249 "KAFILE" 1415311 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-617 1403009 1408092 1408320 "JORDAN" 1408402 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-616 1402388 1402658 1402779 "JOINAST" 1402908 T JOINAST (NIL) -8 NIL NIL NIL) (-615 1402234 1402293 1402348 "JAVACODE" 1402353 T JAVACODE (NIL) -8 NIL NIL NIL) (-614 1398486 1400439 1400493 "IXAGG" 1401422 NIL IXAGG (NIL T T) -9 NIL 1401881 NIL) (-613 1397405 1397711 1398130 "IXAGG-" 1398135 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-612 1392935 1397327 1397386 "IVECTOR" 1397391 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-611 1391701 1391938 1392204 "ITUPLE" 1392702 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-610 1390203 1390380 1390675 "ITRIGMNP" 1391523 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-609 1388948 1389152 1389435 "ITFUN3" 1389979 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-608 1388580 1388637 1388746 "ITFUN2" 1388885 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-607 1387739 1388060 1388234 "ITFORM" 1388426 T ITFORM (NIL) -8 NIL NIL NIL) (-606 1385700 1386759 1387037 "ITAYLOR" 1387494 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-605 1374645 1379837 1381000 "ISUPS" 1384570 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-604 1373749 1373889 1374125 "ISUMP" 1374492 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-603 1369124 1373694 1373735 "ISTRING" 1373740 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-602 1368600 1368845 1368937 "ISAST" 1369052 T ISAST (NIL) -8 NIL NIL NIL) (-601 1367809 1367891 1368107 "IRURPK" 1368514 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-600 1366745 1366946 1367186 "IRSN" 1367589 T IRSN (NIL) -7 NIL NIL NIL) (-599 1364816 1365171 1365600 "IRRF2F" 1366383 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-598 1364563 1364601 1364677 "IRREDFFX" 1364772 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-597 1363178 1363437 1363736 "IROOT" 1364296 NIL IROOT (NIL T) -7 NIL NIL NIL) (-596 1359782 1360862 1361554 "IR" 1362518 NIL IR (NIL T) -8 NIL NIL NIL) (-595 1358987 1359275 1359426 "IRFORM" 1359651 T IRFORM (NIL) -8 NIL NIL NIL) (-594 1356600 1357095 1357661 "IR2" 1358465 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-593 1355700 1355813 1356027 "IR2F" 1356483 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-592 1355491 1355525 1355585 "IPRNTPK" 1355660 T IPRNTPK (NIL) -7 NIL NIL NIL) (-591 1352072 1355380 1355449 "IPF" 1355454 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-590 1350399 1351997 1352054 "IPADIC" 1352059 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-589 1349711 1349959 1350089 "IP4ADDR" 1350289 T IP4ADDR (NIL) -8 NIL NIL NIL) (-588 1349085 1349340 1349472 "IOMODE" 1349599 T IOMODE (NIL) -8 NIL NIL NIL) (-587 1348158 1348682 1348809 "IOBFILE" 1348978 T IOBFILE (NIL) -8 NIL NIL NIL) (-586 1347646 1348062 1348090 "IOBCON" 1348095 T IOBCON (NIL) -9 NIL 1348116 NIL) (-585 1347157 1347215 1347398 "INVLAPLA" 1347582 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-584 1336805 1339159 1341545 "INTTR" 1344821 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-583 1333140 1333882 1334747 "INTTOOLS" 1335990 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-582 1332726 1332817 1332934 "INTSLPE" 1333043 T INTSLPE (NIL) -7 NIL NIL NIL) (-581 1330679 1332649 1332708 "INTRVL" 1332713 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-580 1328281 1328793 1329368 "INTRF" 1330164 NIL INTRF (NIL T) -7 NIL NIL NIL) (-579 1327692 1327789 1327931 "INTRET" 1328179 NIL INTRET (NIL T) -7 NIL NIL NIL) (-578 1325689 1326078 1326548 "INTRAT" 1327300 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-577 1322952 1323535 1324154 "INTPM" 1325174 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-576 1319697 1320296 1321034 "INTPAF" 1322338 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-575 1314876 1315838 1316889 "INTPACK" 1318666 T INTPACK (NIL) -7 NIL NIL NIL) (-574 1311774 1314673 1314782 "INT" 1314787 T INT (NIL) -8 NIL NIL NIL) (-573 1311026 1311178 1311386 "INTHERTR" 1311616 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-572 1310465 1310545 1310733 "INTHERAL" 1310940 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-571 1308311 1308754 1309211 "INTHEORY" 1310028 T INTHEORY (NIL) -7 NIL NIL NIL) (-570 1299717 1301338 1303110 "INTG0" 1306663 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-569 1280290 1285080 1289890 "INTFTBL" 1294927 T INTFTBL (NIL) -8 NIL NIL NIL) (-568 1279539 1279677 1279850 "INTFACT" 1280149 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-567 1276966 1277412 1277969 "INTEF" 1279093 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-566 1275333 1276072 1276100 "INTDOM" 1276401 T INTDOM (NIL) -9 NIL 1276608 NIL) (-565 1274702 1274876 1275118 "INTDOM-" 1275123 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-564 1271090 1273018 1273072 "INTCAT" 1273871 NIL INTCAT (NIL T) -9 NIL 1274192 NIL) (-563 1270562 1270665 1270793 "INTBIT" 1270982 T INTBIT (NIL) -7 NIL NIL NIL) (-562 1269261 1269415 1269722 "INTALG" 1270407 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-561 1268744 1268834 1268991 "INTAF" 1269165 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-560 1262087 1268554 1268694 "INTABL" 1268699 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-559 1261420 1261886 1261951 "INT8" 1261985 T INT8 (NIL) -8 NIL NIL 1262030) (-558 1260752 1261218 1261283 "INT64" 1261317 T INT64 (NIL) -8 NIL NIL 1261362) (-557 1260084 1260550 1260615 "INT32" 1260649 T INT32 (NIL) -8 NIL NIL 1260694) (-556 1259416 1259882 1259947 "INT16" 1259981 T INT16 (NIL) -8 NIL NIL 1260026) (-555 1254211 1256977 1257005 "INS" 1257939 T INS (NIL) -9 NIL 1258604 NIL) (-554 1251451 1252222 1253196 "INS-" 1253269 NIL INS- (NIL T) -8 NIL NIL NIL) (-553 1250226 1250453 1250751 "INPSIGN" 1251204 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-552 1249344 1249461 1249658 "INPRODPF" 1250106 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-551 1248238 1248355 1248592 "INPRODFF" 1249224 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-550 1247238 1247390 1247650 "INNMFACT" 1248074 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-549 1246435 1246532 1246720 "INMODGCD" 1247137 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-548 1244943 1245188 1245512 "INFSP" 1246180 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-547 1244127 1244244 1244427 "INFPROD0" 1244823 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-546 1240982 1242192 1242707 "INFORM" 1243620 T INFORM (NIL) -8 NIL NIL NIL) (-545 1240592 1240652 1240750 "INFORM1" 1240917 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-544 1240115 1240204 1240318 "INFINITY" 1240498 T INFINITY (NIL) -7 NIL NIL NIL) (-543 1239291 1239835 1239936 "INETCLTS" 1240034 T INETCLTS (NIL) -8 NIL NIL NIL) (-542 1237907 1238157 1238478 "INEP" 1239039 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-541 1237156 1237804 1237869 "INDE" 1237874 NIL INDE (NIL T) -8 NIL NIL NIL) (-540 1236720 1236788 1236905 "INCRMAPS" 1237083 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-539 1235538 1235989 1236195 "INBFILE" 1236534 T INBFILE (NIL) -8 NIL NIL NIL) (-538 1230837 1231774 1232718 "INBFF" 1234626 NIL INBFF (NIL T) -7 NIL NIL NIL) (-537 1229745 1230014 1230042 "INBCON" 1230555 T INBCON (NIL) -9 NIL 1230821 NIL) (-536 1228997 1229220 1229496 "INBCON-" 1229501 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-535 1228476 1228721 1228812 "INAST" 1228926 T INAST (NIL) -8 NIL NIL NIL) (-534 1227903 1228155 1228261 "IMPTAST" 1228390 T IMPTAST (NIL) -8 NIL NIL NIL) (-533 1224349 1227747 1227851 "IMATRIX" 1227856 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-532 1223057 1223180 1223496 "IMATQF" 1224205 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-531 1221277 1221504 1221841 "IMATLIN" 1222813 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-530 1215855 1221201 1221259 "ILIST" 1221264 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-529 1213760 1215715 1215828 "IIARRAY2" 1215833 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-528 1209158 1213671 1213735 "IFF" 1213740 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-527 1208505 1208775 1208891 "IFAST" 1209062 T IFAST (NIL) -8 NIL NIL NIL) (-526 1203500 1207797 1207985 "IFARRAY" 1208362 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-525 1202680 1203404 1203477 "IFAMON" 1203482 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-524 1202264 1202329 1202383 "IEVALAB" 1202590 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-523 1201939 1202007 1202167 "IEVALAB-" 1202172 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-522 1201570 1201853 1201916 "IDPO" 1201921 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-521 1200820 1201459 1201534 "IDPOAMS" 1201539 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-520 1200127 1200709 1200784 "IDPOAM" 1200789 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-519 1199186 1199462 1199515 "IDPC" 1199928 NIL IDPC (NIL T T) -9 NIL 1200077 NIL) (-518 1198655 1199078 1199151 "IDPAM" 1199156 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-517 1198031 1198547 1198620 "IDPAG" 1198625 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-516 1197676 1197867 1197942 "IDENT" 1197976 T IDENT (NIL) -8 NIL NIL NIL) (-515 1193931 1194779 1195674 "IDECOMP" 1196833 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-514 1186768 1187854 1188901 "IDEAL" 1192967 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-513 1185928 1186040 1186240 "ICDEN" 1186652 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-512 1184999 1185408 1185555 "ICARD" 1185801 T ICARD (NIL) -8 NIL NIL NIL) (-511 1183059 1183372 1183777 "IBPTOOLS" 1184676 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-510 1178666 1182679 1182792 "IBITS" 1182978 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-509 1175389 1175965 1176660 "IBATOOL" 1178083 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-508 1173168 1173630 1174163 "IBACHIN" 1174924 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-507 1170997 1173014 1173117 "IARRAY2" 1173122 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-506 1167103 1170923 1170980 "IARRAY1" 1170985 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-505 1161141 1165515 1165996 "IAN" 1166642 T IAN (NIL) -8 NIL NIL NIL) (-504 1160652 1160709 1160882 "IALGFACT" 1161078 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-503 1160180 1160293 1160321 "HYPCAT" 1160528 T HYPCAT (NIL) -9 NIL NIL NIL) (-502 1159718 1159835 1160021 "HYPCAT-" 1160026 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-501 1159313 1159513 1159596 "HOSTNAME" 1159655 T HOSTNAME (NIL) -8 NIL NIL NIL) (-500 1159158 1159195 1159236 "HOMOTOP" 1159241 NIL HOMOTOP (NIL T) -9 NIL 1159274 NIL) (-499 1155790 1157168 1157209 "HOAGG" 1158190 NIL HOAGG (NIL T) -9 NIL 1158869 NIL) (-498 1154384 1154783 1155309 "HOAGG-" 1155314 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-497 1148293 1153977 1154127 "HEXADEC" 1154254 T HEXADEC (NIL) -8 NIL NIL NIL) (-496 1147041 1147263 1147526 "HEUGCD" 1148070 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-495 1146117 1146878 1147008 "HELLFDIV" 1147013 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-494 1144296 1145894 1145982 "HEAP" 1146061 NIL HEAP (NIL T) -8 NIL NIL NIL) (-493 1143559 1143848 1143982 "HEADAST" 1144182 T HEADAST (NIL) -8 NIL NIL NIL) (-492 1137569 1143474 1143536 "HDP" 1143541 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-491 1131468 1137204 1137356 "HDMP" 1137470 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-490 1130792 1130932 1131096 "HB" 1131324 T HB (NIL) -7 NIL NIL NIL) (-489 1124178 1130638 1130742 "HASHTBL" 1130747 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-488 1123654 1123899 1123991 "HASAST" 1124106 T HASAST (NIL) -8 NIL NIL NIL) (-487 1121432 1123276 1123458 "HACKPI" 1123492 T HACKPI (NIL) -8 NIL NIL NIL) (-486 1117100 1121285 1121398 "GTSET" 1121403 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-485 1110515 1116978 1117076 "GSTBL" 1117081 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-484 1102793 1109546 1109811 "GSERIES" 1110306 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-483 1101934 1102351 1102379 "GROUP" 1102582 T GROUP (NIL) -9 NIL 1102716 NIL) (-482 1101300 1101459 1101710 "GROUP-" 1101715 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-481 1099667 1099988 1100375 "GROEBSOL" 1100977 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-480 1098581 1098869 1098920 "GRMOD" 1099449 NIL GRMOD (NIL T T) -9 NIL 1099617 NIL) (-479 1098349 1098385 1098513 "GRMOD-" 1098518 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-478 1093639 1094703 1095703 "GRIMAGE" 1097369 T GRIMAGE (NIL) -8 NIL NIL NIL) (-477 1092105 1092366 1092690 "GRDEF" 1093335 T GRDEF (NIL) -7 NIL NIL NIL) (-476 1091549 1091665 1091806 "GRAY" 1091984 T GRAY (NIL) -7 NIL NIL NIL) (-475 1090736 1091142 1091193 "GRALG" 1091346 NIL GRALG (NIL T T) -9 NIL 1091439 NIL) (-474 1090397 1090470 1090633 "GRALG-" 1090638 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-473 1087174 1089982 1090160 "GPOLSET" 1090304 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-472 1086528 1086585 1086843 "GOSPER" 1087111 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-471 1082260 1082966 1083492 "GMODPOL" 1086227 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-470 1081265 1081449 1081687 "GHENSEL" 1082072 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-469 1075421 1076264 1077284 "GENUPS" 1080349 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-468 1075118 1075169 1075258 "GENUFACT" 1075364 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-467 1074530 1074607 1074772 "GENPGCD" 1075036 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-466 1074004 1074039 1074252 "GENMFACT" 1074489 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-465 1072570 1072827 1073134 "GENEEZ" 1073747 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-464 1066629 1072181 1072343 "GDMP" 1072493 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-463 1055972 1060400 1061506 "GCNAALG" 1065612 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-462 1054299 1055161 1055189 "GCDDOM" 1055444 T GCDDOM (NIL) -9 NIL 1055601 NIL) (-461 1053769 1053896 1054111 "GCDDOM-" 1054116 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-460 1052441 1052626 1052930 "GB" 1053548 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-459 1041057 1043387 1045779 "GBINTERN" 1050132 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-458 1038894 1039186 1039607 "GBF" 1040732 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-457 1037675 1037840 1038107 "GBEUCLID" 1038710 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-456 1037024 1037149 1037298 "GAUSSFAC" 1037546 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-455 1035391 1035693 1036007 "GALUTIL" 1036743 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-454 1033699 1033973 1034297 "GALPOLYU" 1035118 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-453 1031064 1031354 1031761 "GALFACTU" 1033396 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-452 1022870 1024369 1025977 "GALFACT" 1029496 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-451 1020258 1020916 1020944 "FVFUN" 1022100 T FVFUN (NIL) -9 NIL 1022820 NIL) (-450 1019524 1019706 1019734 "FVC" 1020025 T FVC (NIL) -9 NIL 1020208 NIL) (-449 1019167 1019349 1019417 "FUNDESC" 1019476 T FUNDESC (NIL) -8 NIL NIL NIL) (-448 1018782 1018964 1019045 "FUNCTION" 1019119 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-447 1016526 1017104 1017570 "FT" 1018336 T FT (NIL) -8 NIL NIL NIL) (-446 1015317 1015827 1016030 "FTEM" 1016343 T FTEM (NIL) -8 NIL NIL NIL) (-445 1013608 1013897 1014294 "FSUPFACT" 1015008 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-444 1012005 1012294 1012626 "FST" 1013296 T FST (NIL) -8 NIL NIL NIL) (-443 1011204 1011310 1011498 "FSRED" 1011887 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-442 1009903 1010159 1010506 "FSPRMELT" 1010919 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-441 1007209 1007647 1008133 "FSPECF" 1009466 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-440 988581 997052 997093 "FS" 1000977 NIL FS (NIL T) -9 NIL 1003266 NIL) (-439 977224 980217 984274 "FS-" 984574 NIL FS- (NIL T T) -8 NIL NIL NIL) (-438 976752 976806 976976 "FSINT" 977165 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-437 975044 975745 976048 "FSERIES" 976531 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-436 974086 974202 974426 "FSCINT" 974924 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-435 970294 973030 973071 "FSAGG" 973441 NIL FSAGG (NIL T) -9 NIL 973700 NIL) (-434 968056 968657 969453 "FSAGG-" 969548 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-433 967098 967241 967468 "FSAGG2" 967909 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-432 964780 965060 965607 "FS2UPS" 966816 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-431 964414 964457 964586 "FS2" 964731 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-430 963292 963463 963765 "FS2EXPXP" 964239 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-429 962718 962833 962985 "FRUTIL" 963172 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-428 954131 958213 959571 "FR" 961392 NIL FR (NIL T) -8 NIL NIL NIL) (-427 949145 951820 951860 "FRNAALG" 953180 NIL FRNAALG (NIL T) -9 NIL 953778 NIL) (-426 944818 945894 947169 "FRNAALG-" 947919 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-425 944456 944499 944626 "FRNAAF2" 944769 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-424 942831 943305 943601 "FRMOD" 944268 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-423 940574 941206 941524 "FRIDEAL" 942622 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-422 939765 939852 940143 "FRIDEAL2" 940481 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-421 938898 939312 939353 "FRETRCT" 939358 NIL FRETRCT (NIL T) -9 NIL 939534 NIL) (-420 938010 938241 938592 "FRETRCT-" 938597 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-419 935098 936308 936367 "FRAMALG" 937249 NIL FRAMALG (NIL T T) -9 NIL 937541 NIL) (-418 933232 933687 934317 "FRAMALG-" 934540 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-417 927062 932705 932982 "FRAC" 932987 NIL FRAC (NIL T) -8 NIL NIL NIL) (-416 926698 926755 926862 "FRAC2" 926999 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-415 926334 926391 926498 "FR2" 926635 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-414 920847 923740 923768 "FPS" 924887 T FPS (NIL) -9 NIL 925444 NIL) (-413 920296 920405 920569 "FPS-" 920715 NIL FPS- (NIL T) -8 NIL NIL NIL) (-412 917598 919267 919295 "FPC" 919520 T FPC (NIL) -9 NIL 919662 NIL) (-411 917391 917431 917528 "FPC-" 917533 NIL FPC- (NIL T) -8 NIL NIL NIL) (-410 916181 916879 916920 "FPATMAB" 916925 NIL FPATMAB (NIL T) -9 NIL 917077 NIL) (-409 913854 914357 914783 "FPARFRAC" 915818 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-408 909248 909746 910428 "FORTRAN" 913286 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-407 906964 907464 908003 "FORT" 908729 T FORT (NIL) -7 NIL NIL NIL) (-406 904640 905202 905230 "FORTFN" 906290 T FORTFN (NIL) -9 NIL 906914 NIL) (-405 904404 904454 904482 "FORTCAT" 904541 T FORTCAT (NIL) -9 NIL 904603 NIL) (-404 902510 903020 903410 "FORMULA" 904034 T FORMULA (NIL) -8 NIL NIL NIL) (-403 902298 902328 902397 "FORMULA1" 902474 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-402 901821 901873 902046 "FORDER" 902240 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-401 900917 901081 901274 "FOP" 901648 T FOP (NIL) -7 NIL NIL NIL) (-400 899498 900197 900371 "FNLA" 900799 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-399 898227 898642 898670 "FNCAT" 899130 T FNCAT (NIL) -9 NIL 899390 NIL) (-398 897766 898186 898214 "FNAME" 898219 T FNAME (NIL) -8 NIL NIL NIL) (-397 896329 897292 897320 "FMTC" 897325 T FMTC (NIL) -9 NIL 897361 NIL) (-396 895075 896265 896311 "FMONOID" 896316 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-395 891903 893071 893112 "FMONCAT" 894329 NIL FMONCAT (NIL T) -9 NIL 894934 NIL) (-394 891095 891645 891794 "FM" 891799 NIL FM (NIL T T) -8 NIL NIL NIL) (-393 888519 889165 889193 "FMFUN" 890337 T FMFUN (NIL) -9 NIL 891045 NIL) (-392 887788 887969 887997 "FMC" 888287 T FMC (NIL) -9 NIL 888469 NIL) (-391 884867 885727 885781 "FMCAT" 886976 NIL FMCAT (NIL T T) -9 NIL 887471 NIL) (-390 883733 884633 884733 "FM1" 884812 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-389 881507 881923 882417 "FLOATRP" 883284 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-388 875085 879236 879857 "FLOAT" 880906 T FLOAT (NIL) -8 NIL NIL NIL) (-387 872523 873023 873601 "FLOATCP" 874552 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-386 871370 872129 872170 "FLINEXP" 872175 NIL FLINEXP (NIL T) -9 NIL 872268 NIL) (-385 870302 870599 871007 "FLINEXP-" 871012 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-384 869378 869522 869746 "FLASORT" 870154 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-383 866494 867362 867414 "FLALG" 868641 NIL FLALG (NIL T T) -9 NIL 869108 NIL) (-382 860198 863950 863991 "FLAGG" 865253 NIL FLAGG (NIL T) -9 NIL 865905 NIL) (-381 858924 859263 859753 "FLAGG-" 859758 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-380 857966 858109 858336 "FLAGG2" 858777 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-379 854817 855825 855884 "FINRALG" 857012 NIL FINRALG (NIL T T) -9 NIL 857520 NIL) (-378 853977 854206 854545 "FINRALG-" 854550 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-377 853357 853596 853624 "FINITE" 853820 T FINITE (NIL) -9 NIL 853927 NIL) (-376 845714 847901 847941 "FINAALG" 851608 NIL FINAALG (NIL T) -9 NIL 853061 NIL) (-375 841046 842096 843240 "FINAALG-" 844619 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-374 840414 840801 840904 "FILE" 840976 NIL FILE (NIL T) -8 NIL NIL NIL) (-373 839072 839410 839464 "FILECAT" 840148 NIL FILECAT (NIL T T) -9 NIL 840364 NIL) (-372 836788 838316 838344 "FIELD" 838384 T FIELD (NIL) -9 NIL 838464 NIL) (-371 835408 835793 836304 "FIELD-" 836309 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-370 833258 834043 834390 "FGROUP" 835094 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-369 832348 832512 832732 "FGLMICPK" 833090 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-368 828180 832273 832330 "FFX" 832335 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-367 827781 827842 827977 "FFSLPE" 828113 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-366 823771 824553 825349 "FFPOLY" 827017 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-365 823275 823311 823520 "FFPOLY2" 823729 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-364 819121 823194 823257 "FFP" 823262 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-363 814519 819032 819096 "FF" 819101 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-362 809645 813862 814052 "FFNBX" 814373 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-361 804573 808780 809038 "FFNBP" 809499 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-360 799206 803857 804068 "FFNB" 804406 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-359 798038 798236 798551 "FFINTBAS" 799003 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-358 794064 796285 796313 "FFIELDC" 796933 T FFIELDC (NIL) -9 NIL 797309 NIL) (-357 792726 793097 793594 "FFIELDC-" 793599 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-356 792295 792341 792465 "FFHOM" 792668 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-355 789990 790477 790994 "FFF" 791810 NIL FFF (NIL T) -7 NIL NIL NIL) (-354 785608 789732 789833 "FFCGX" 789933 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-353 781230 785340 785447 "FFCGP" 785551 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-352 776413 780957 781065 "FFCG" 781166 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-351 757348 766533 766619 "FFCAT" 771784 NIL FFCAT (NIL T T T) -9 NIL 773235 NIL) (-350 752545 753593 754907 "FFCAT-" 756137 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-349 751956 751999 752234 "FFCAT2" 752496 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-348 741279 744928 746148 "FEXPR" 750808 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-347 740241 740676 740717 "FEVALAB" 740801 NIL FEVALAB (NIL T) -9 NIL 741062 NIL) (-346 739400 739610 739948 "FEVALAB-" 739953 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-345 737966 738783 738986 "FDIV" 739299 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-344 734986 735727 735842 "FDIVCAT" 737410 NIL FDIVCAT (NIL T T T T) -9 NIL 737847 NIL) (-343 734748 734775 734945 "FDIVCAT-" 734950 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-342 733968 734055 734332 "FDIV2" 734655 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 732942 733263 733465 "FCTRDATA" 733786 T FCTRDATA (NIL) -8 NIL NIL NIL) (-340 731628 731887 732176 "FCPAK1" 732673 T FCPAK1 (NIL) -7 NIL NIL NIL) (-339 730727 731128 731269 "FCOMP" 731519 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-338 714432 717877 721415 "FC" 727209 T FC (NIL) -8 NIL NIL NIL) (-337 706711 710739 710779 "FAXF" 712581 NIL FAXF (NIL T) -9 NIL 713273 NIL) (-336 703988 704645 705470 "FAXF-" 705935 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-335 699040 703364 703540 "FARRAY" 703845 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-334 693934 696001 696054 "FAMR" 697077 NIL FAMR (NIL T T) -9 NIL 697537 NIL) (-333 692824 693126 693561 "FAMR-" 693566 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-332 691993 692746 692799 "FAMONOID" 692804 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-331 689779 690489 690542 "FAMONC" 691483 NIL FAMONC (NIL T T) -9 NIL 691869 NIL) (-330 688443 689533 689670 "FAGROUP" 689675 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-329 686238 686557 686960 "FACUTIL" 688124 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-328 685337 685522 685744 "FACTFUNC" 686048 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-327 677759 684640 684839 "EXPUPXS" 685193 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-326 675242 675782 676368 "EXPRTUBE" 677193 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-325 671513 672105 672835 "EXPRODE" 674581 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-324 657232 670162 670591 "EXPR" 671117 NIL EXPR (NIL T) -8 NIL NIL NIL) (-323 651786 652373 653179 "EXPR2UPS" 656530 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-322 651418 651475 651584 "EXPR2" 651723 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-321 642671 650569 650860 "EXPEXPAN" 651254 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-320 642471 642628 642657 "EXIT" 642662 T EXIT (NIL) -8 NIL NIL NIL) (-319 641951 642195 642286 "EXITAST" 642400 T EXITAST (NIL) -8 NIL NIL NIL) (-318 641578 641640 641753 "EVALCYC" 641883 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-317 641119 641237 641278 "EVALAB" 641448 NIL EVALAB (NIL T) -9 NIL 641552 NIL) (-316 640600 640722 640943 "EVALAB-" 640948 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-315 637968 639270 639298 "EUCDOM" 639853 T EUCDOM (NIL) -9 NIL 640203 NIL) (-314 636373 636815 637405 "EUCDOM-" 637410 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-313 623912 626671 629421 "ESTOOLS" 633643 T ESTOOLS (NIL) -7 NIL NIL NIL) (-312 623544 623601 623710 "ESTOOLS2" 623849 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-311 623295 623337 623417 "ESTOOLS1" 623496 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-310 617332 618940 618968 "ES" 621736 T ES (NIL) -9 NIL 623146 NIL) (-309 612279 613566 615383 "ES-" 615547 NIL ES- (NIL T) -8 NIL NIL NIL) (-308 608653 609414 610194 "ESCONT" 611519 T ESCONT (NIL) -7 NIL NIL NIL) (-307 608398 608430 608512 "ESCONT1" 608615 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-306 608073 608123 608223 "ES2" 608342 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-305 607703 607761 607870 "ES1" 608009 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-304 606919 607048 607224 "ERROR" 607547 T ERROR (NIL) -7 NIL NIL NIL) (-303 600311 606778 606869 "EQTBL" 606874 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-302 592814 595625 597074 "EQ" 598895 NIL -2086 (NIL T) -8 NIL NIL NIL) (-301 592446 592503 592612 "EQ2" 592751 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-300 587737 588784 589877 "EP" 591385 NIL EP (NIL T) -7 NIL NIL NIL) (-299 586337 586628 586934 "ENV" 587451 T ENV (NIL) -8 NIL NIL NIL) (-298 585431 585985 586013 "ENTIRER" 586018 T ENTIRER (NIL) -9 NIL 586064 NIL) (-297 582125 583613 583974 "EMR" 585239 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-296 581255 581440 581494 "ELTAGG" 581874 NIL ELTAGG (NIL T T) -9 NIL 582085 NIL) (-295 580974 581036 581177 "ELTAGG-" 581182 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-294 580738 580767 580821 "ELTAB" 580905 NIL ELTAB (NIL T T) -9 NIL 580957 NIL) (-293 579864 580010 580209 "ELFUTS" 580589 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-292 579606 579662 579690 "ELEMFUN" 579795 T ELEMFUN (NIL) -9 NIL NIL NIL) (-291 579476 579497 579565 "ELEMFUN-" 579570 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-290 574290 577546 577587 "ELAGG" 578527 NIL ELAGG (NIL T) -9 NIL 578990 NIL) (-289 572575 573009 573672 "ELAGG-" 573677 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-288 571887 572024 572180 "ELABOR" 572439 T ELABOR (NIL) -8 NIL NIL NIL) (-287 570548 570827 571121 "ELABEXPR" 571613 T ELABEXPR (NIL) -8 NIL NIL NIL) (-286 563412 565215 566042 "EFUPXS" 569824 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-285 556862 558663 559473 "EFULS" 562688 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-284 554347 554705 555177 "EFSTRUC" 556494 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-283 544138 545704 547252 "EF" 552862 NIL EF (NIL T T) -7 NIL NIL NIL) (-282 543212 543623 543772 "EAB" 544009 T EAB (NIL) -8 NIL NIL NIL) (-281 542394 543171 543199 "E04UCFA" 543204 T E04UCFA (NIL) -8 NIL NIL NIL) (-280 541576 542353 542381 "E04NAFA" 542386 T E04NAFA (NIL) -8 NIL NIL NIL) (-279 540758 541535 541563 "E04MBFA" 541568 T E04MBFA (NIL) -8 NIL NIL NIL) (-278 539940 540717 540745 "E04JAFA" 540750 T E04JAFA (NIL) -8 NIL NIL NIL) (-277 539124 539899 539927 "E04GCFA" 539932 T E04GCFA (NIL) -8 NIL NIL NIL) (-276 538308 539083 539111 "E04FDFA" 539116 T E04FDFA (NIL) -8 NIL NIL NIL) (-275 537490 538267 538295 "E04DGFA" 538300 T E04DGFA (NIL) -8 NIL NIL NIL) (-274 531663 533015 534379 "E04AGNT" 536146 T E04AGNT (NIL) -7 NIL NIL NIL) (-273 530434 530977 531017 "DVARCAT" 531358 NIL DVARCAT (NIL T) -9 NIL 531521 NIL) (-272 529638 529850 530164 "DVARCAT-" 530169 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-271 522686 529437 529566 "DSMP" 529571 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-270 517467 518631 519699 "DROPT" 521638 T DROPT (NIL) -8 NIL NIL NIL) (-269 517132 517191 517289 "DROPT1" 517402 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 512247 513373 514510 "DROPT0" 516015 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 510592 510917 511303 "DRAWPT" 511881 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 505179 506102 507181 "DRAW" 509566 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 504812 504865 504983 "DRAWHACK" 505120 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 503543 503812 504103 "DRAWCX" 504541 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 503058 503127 503278 "DRAWCURV" 503469 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 493526 495488 497603 "DRAWCFUN" 500963 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 490290 492219 492260 "DQAGG" 492889 NIL DQAGG (NIL T) -9 NIL 493163 NIL) (-260 478200 484758 484841 "DPOLCAT" 486693 NIL DPOLCAT (NIL T T T T) -9 NIL 487238 NIL) (-259 473037 474385 476343 "DPOLCAT-" 476348 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 467343 472898 472996 "DPMO" 473001 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 461552 467123 467290 "DPMM" 467295 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 461122 461336 461425 "DOMTMPLT" 461483 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 460555 460924 461004 "DOMCTOR" 461062 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 459767 460035 460186 "DOMAIN" 460424 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 453666 459402 459554 "DMP" 459668 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 453266 453322 453466 "DLP" 453604 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 447088 452593 452783 "DLIST" 453108 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 443885 445941 445982 "DLAGG" 446532 NIL DLAGG (NIL T) -9 NIL 446762 NIL) (-249 442561 443225 443253 "DIVRING" 443345 T DIVRING (NIL) -9 NIL 443428 NIL) (-248 441798 441988 442288 "DIVRING-" 442293 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 439900 440257 440663 "DISPLAY" 441412 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 433930 439814 439877 "DIRPROD" 439882 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 432778 432981 433246 "DIRPROD2" 433723 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 422068 427933 427986 "DIRPCAT" 428244 NIL DIRPCAT (NIL NIL T) -9 NIL 429042 NIL) (-243 419172 419876 420837 "DIRPCAT-" 421174 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 418459 418619 418805 "DIOSP" 419006 T DIOSP (NIL) -7 NIL NIL NIL) (-241 415114 417371 417412 "DIOPS" 417846 NIL DIOPS (NIL T) -9 NIL 418075 NIL) (-240 414663 414777 414968 "DIOPS-" 414973 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 413714 414342 414370 "DIFRING" 414375 T DIFRING (NIL) -9 NIL 414397 NIL) (-238 413386 413460 413488 "DIFFSPC" 413607 T DIFFSPC (NIL) -9 NIL 413682 NIL) (-237 413031 413109 413261 "DIFFSPC-" 413266 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-236 412187 412665 412705 "DIFFMOD" 412710 NIL DIFFMOD (NIL T) -9 NIL 412737 NIL) (-235 411895 411940 411981 "DIFFDOM" 412102 NIL DIFFDOM (NIL T) -9 NIL 412170 NIL) (-234 411748 411772 411856 "DIFFDOM-" 411861 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 409400 410672 410713 "DIFEXT" 411076 NIL DIFEXT (NIL T) -9 NIL 411370 NIL) (-232 407685 408113 408779 "DIFEXT-" 408784 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 404960 407217 407258 "DIAGG" 407263 NIL DIAGG (NIL T) -9 NIL 407283 NIL) (-230 404344 404501 404753 "DIAGG-" 404758 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 399761 403303 403580 "DHMATRIX" 404113 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 395373 396282 397292 "DFSFUN" 398771 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 390453 394304 394616 "DFLOAT" 395081 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 388716 388997 389386 "DFINTTLS" 390161 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 385745 386737 387137 "DERHAM" 388382 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 383546 385520 385609 "DEQUEUE" 385689 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 382800 382933 383116 "DEGRED" 383408 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 379230 379975 380821 "DEFINTRF" 382028 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 376785 377254 377846 "DEFINTEF" 378749 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 376135 376405 376520 "DEFAST" 376690 T DEFAST (NIL) -8 NIL NIL NIL) (-219 370044 375728 375878 "DECIMAL" 376005 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 367556 368014 368520 "DDFACT" 369588 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 367152 367195 367346 "DBLRESP" 367507 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 365020 365382 365743 "DBASE" 366918 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 364262 364500 364646 "DATAARY" 364919 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 363368 364221 364249 "D03FAFA" 364254 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 362475 363327 363355 "D03EEFA" 363360 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 360425 360891 361380 "D03AGNT" 362006 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 359714 360384 360412 "D02EJFA" 360417 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 359003 359673 359701 "D02CJFA" 359706 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 358292 358962 358990 "D02BHFA" 358995 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 357581 358251 358279 "D02BBFA" 358284 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 350778 352367 353973 "D02AGNT" 355995 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 348546 349069 349615 "D01WGTS" 350252 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 347613 348505 348533 "D01TRNS" 348538 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 346681 347572 347600 "D01GBFA" 347605 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 345749 346640 346668 "D01FCFA" 346673 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 344817 345708 345736 "D01ASFA" 345741 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 343885 344776 344804 "D01AQFA" 344809 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 342953 343844 343872 "D01APFA" 343877 T D01APFA (NIL) -8 NIL NIL NIL) (-199 342021 342912 342940 "D01ANFA" 342945 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 341089 341980 342008 "D01AMFA" 342013 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 340157 341048 341076 "D01ALFA" 341081 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 339225 340116 340144 "D01AKFA" 340149 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 338293 339184 339212 "D01AJFA" 339217 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 331588 333141 334702 "D01AGNT" 336752 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 330925 331053 331205 "CYCLOTOM" 331456 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 327658 328373 329100 "CYCLES" 330218 T CYCLES (NIL) -7 NIL NIL NIL) (-191 326970 327104 327275 "CVMP" 327519 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 324811 325069 325438 "CTRIGMNP" 326698 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 324247 324605 324678 "CTOR" 324758 T CTOR (NIL) -8 NIL NIL NIL) (-188 323756 323978 324079 "CTORKIND" 324166 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 323047 323363 323391 "CTORCAT" 323573 T CTORCAT (NIL) -9 NIL 323686 NIL) (-186 322645 322756 322915 "CTORCAT-" 322920 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 322107 322319 322427 "CTORCALL" 322569 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 321481 321580 321733 "CSTTOOLS" 322004 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 317280 317937 318695 "CRFP" 320793 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 316755 317001 317093 "CRCEAST" 317208 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 315802 315987 316215 "CRAPACK" 316559 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 315186 315287 315491 "CPMATCH" 315678 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 314911 314939 315045 "CPIMA" 315152 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 311259 311931 312650 "COORDSYS" 314246 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 310671 310792 310934 "CONTOUR" 311137 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 306562 308674 309166 "CONTFRAC" 310211 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 306442 306463 306491 "CONDUIT" 306528 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 305530 306084 306112 "COMRING" 306117 T COMRING (NIL) -9 NIL 306169 NIL) (-173 304584 304888 305072 "COMPPROP" 305366 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 304245 304280 304408 "COMPLPAT" 304543 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 294447 304054 304163 "COMPLEX" 304168 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 294083 294140 294247 "COMPLEX2" 294384 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 293422 293543 293703 "COMPILER" 293943 T COMPILER (NIL) -8 NIL NIL NIL) (-168 293140 293175 293273 "COMPFACT" 293381 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 276977 287061 287101 "COMPCAT" 288105 NIL COMPCAT (NIL T) -9 NIL 289453 NIL) (-166 266267 269256 272963 "COMPCAT-" 273319 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 265996 266024 266127 "COMMUPC" 266233 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265790 265824 265883 "COMMONOP" 265957 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 265346 265541 265628 "COMM" 265723 T COMM (NIL) -8 NIL NIL NIL) (-162 264922 265150 265225 "COMMAAST" 265291 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 264171 264365 264393 "COMBOPC" 264731 T COMBOPC (NIL) -9 NIL 264906 NIL) (-160 263067 263277 263519 "COMBINAT" 263961 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 259524 260098 260725 "COMBF" 262489 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 258282 258640 258875 "COLOR" 259309 T COLOR (NIL) -8 NIL NIL NIL) (-157 257758 258003 258095 "COLONAST" 258210 T COLONAST (NIL) -8 NIL NIL NIL) (-156 257398 257445 257570 "CMPLXRT" 257705 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256846 257098 257197 "CLLCTAST" 257319 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 252348 253376 254456 "CLIP" 255786 T CLIP (NIL) -7 NIL NIL NIL) (-153 250689 251449 251689 "CLIF" 252175 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246864 248835 248876 "CLAGG" 249805 NIL CLAGG (NIL T) -9 NIL 250341 NIL) (-151 245286 245743 246326 "CLAGG-" 246331 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244830 244915 245055 "CINTSLPE" 245195 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 242331 242802 243350 "CHVAR" 244358 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 241505 242059 242087 "CHARZ" 242092 T CHARZ (NIL) -9 NIL 242107 NIL) (-147 241259 241299 241377 "CHARPOL" 241459 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 240317 240904 240932 "CHARNZ" 240979 T CHARNZ (NIL) -9 NIL 241035 NIL) (-145 238223 238971 239324 "CHAR" 239984 T CHAR (NIL) -8 NIL NIL NIL) (-144 237949 238010 238038 "CFCAT" 238149 T CFCAT (NIL) -9 NIL NIL NIL) (-143 237190 237301 237484 "CDEN" 237833 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 233155 236343 236623 "CCLASS" 236930 T CCLASS (NIL) -8 NIL NIL NIL) (-141 232406 232563 232740 "CATEGORY" 232998 T -10 (NIL) -8 NIL NIL NIL) (-140 231979 232325 232373 "CATCTOR" 232378 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 231430 231682 231780 "CATAST" 231901 T CATAST (NIL) -8 NIL NIL NIL) (-138 230906 231151 231243 "CASEAST" 231358 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226044 227063 227807 "CARTEN" 230218 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225152 225300 225521 "CARTEN2" 225891 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223468 224302 224559 "CARD" 224915 T CARD (NIL) -8 NIL NIL NIL) (-134 223044 223272 223347 "CAPSLAST" 223413 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 222548 222756 222784 "CACHSET" 222916 T CACHSET (NIL) -9 NIL 222994 NIL) (-132 222018 222340 222368 "CABMON" 222418 T CABMON (NIL) -9 NIL 222474 NIL) (-131 221491 221722 221832 "BYTEORD" 221928 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 220468 221020 221162 "BYTE" 221325 T BYTE (NIL) -8 NIL NIL 221447) (-129 215818 219973 220145 "BYTEBUF" 220316 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 213327 215510 215617 "BTREE" 215744 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210776 212975 213097 "BTOURN" 213237 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 208146 210246 210287 "BTCAT" 210355 NIL BTCAT (NIL T) -9 NIL 210432 NIL) (-125 207813 207893 208042 "BTCAT-" 208047 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 203192 207072 207100 "BTAGG" 207214 T BTAGG (NIL) -9 NIL 207324 NIL) (-123 202682 202807 203013 "BTAGG-" 203018 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 199677 201960 202175 "BSTREE" 202499 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198815 198941 199125 "BRILL" 199533 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 195467 197541 197582 "BRAGG" 198231 NIL BRAGG (NIL T) -9 NIL 198489 NIL) (-119 193996 194402 194957 "BRAGG-" 194962 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 187120 193340 193525 "BPADICRT" 193843 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 185435 187057 187102 "BPADIC" 187107 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 185133 185163 185277 "BOUNDZRO" 185399 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 180361 181559 182471 "BOP" 184241 T BOP (NIL) -8 NIL NIL NIL) (-114 178142 178546 179021 "BOP1" 179919 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177843 177904 177932 "BOOLE" 178043 T BOOLE (NIL) -9 NIL 178125 NIL) (-112 176668 177417 177566 "BOOLEAN" 177714 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175947 176351 176405 "BMODULE" 176410 NIL BMODULE (NIL T T) -9 NIL 176475 NIL) (-110 171748 175745 175818 "BITS" 175894 T BITS (NIL) -8 NIL NIL NIL) (-109 171169 171288 171428 "BINDING" 171628 T BINDING (NIL) -8 NIL NIL NIL) (-108 165081 170764 170913 "BINARY" 171040 T BINARY (NIL) -8 NIL NIL NIL) (-107 162861 164336 164377 "BGAGG" 164637 NIL BGAGG (NIL T) -9 NIL 164774 NIL) (-106 162692 162724 162815 "BGAGG-" 162820 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161763 162076 162281 "BFUNCT" 162507 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160453 160631 160919 "BEZOUT" 161587 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156922 159305 159635 "BBTREE" 160156 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156656 156709 156737 "BASTYPE" 156856 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156508 156537 156610 "BASTYPE-" 156615 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155942 156018 156170 "BALFACT" 156419 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154798 155357 155543 "AUTOMOR" 155787 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154524 154529 154555 "ATTREG" 154560 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152776 153221 153573 "ATTRBUT" 154190 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152384 152604 152670 "ATTRAST" 152728 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151920 152033 152059 "ATRIG" 152260 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151729 151770 151857 "ATRIG-" 151862 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151374 151560 151586 "ASTCAT" 151591 T ASTCAT (NIL) -9 NIL 151621 NIL) (-92 151101 151160 151279 "ASTCAT-" 151284 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149250 150877 150965 "ASTACK" 151044 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147755 148052 148417 "ASSOCEQ" 148932 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146787 147414 147538 "ASP9" 147662 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146550 146735 146774 "ASP8" 146779 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145418 146155 146297 "ASP80" 146439 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144316 145053 145185 "ASP7" 145317 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143270 143993 144111 "ASP78" 144229 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142239 142950 143067 "ASP77" 143184 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141151 141877 142008 "ASP74" 142139 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140051 140786 140918 "ASP73" 141050 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139155 139877 139977 "ASP6" 139982 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138102 138832 138950 "ASP55" 139068 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137051 137776 137895 "ASP50" 138014 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136139 136752 136862 "ASP4" 136972 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135227 135840 135950 "ASP49" 136060 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134011 134766 134934 "ASP42" 135116 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132788 133544 133714 "ASP41" 133898 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131738 132465 132583 "ASP35" 132701 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131503 131686 131725 "ASP34" 131730 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131240 131307 131383 "ASP33" 131458 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130134 130875 131007 "ASP31" 131139 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129899 130082 130121 "ASP30" 130126 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129634 129703 129779 "ASP29" 129854 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129399 129582 129621 "ASP28" 129626 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129164 129347 129386 "ASP27" 129391 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128248 128862 128973 "ASP24" 129084 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127325 128050 128162 "ASP20" 128167 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126413 127026 127136 "ASP1" 127246 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125356 126087 126206 "ASP19" 126325 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125093 125160 125236 "ASP12" 125311 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123945 124692 124836 "ASP10" 124980 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121796 123789 123880 "ARRAY2" 123885 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117561 121444 121558 "ARRAY1" 121713 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116593 116766 116987 "ARRAY12" 117384 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110905 112823 112898 "ARR2CAT" 115528 NIL ARR2CAT (NIL T T T) -9 NIL 116286 NIL) (-56 108339 109083 110037 "ARR2CAT-" 110042 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107656 107966 108091 "ARITY" 108232 T ARITY (NIL) -8 NIL NIL NIL) (-54 106432 106584 106883 "APPRULE" 107492 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106083 106131 106250 "APPLYORE" 106378 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 105437 105676 105796 "ANY" 105981 T ANY (NIL) -8 NIL NIL NIL) (-51 104715 104838 104995 "ANY1" 105311 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 102245 103152 103479 "ANTISYM" 104439 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101737 101952 102048 "ANON" 102167 T ANON (NIL) -8 NIL NIL NIL) (-48 95915 100276 100730 "AN" 101301 T AN (NIL) -8 NIL NIL NIL) (-47 91813 93201 93252 "AMR" 94000 NIL AMR (NIL T T) -9 NIL 94600 NIL) (-46 90925 91146 91509 "AMR-" 91514 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 75364 90842 90903 "ALIST" 90908 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 72169 74958 75127 "ALGSC" 75282 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68725 69279 69886 "ALGPKG" 71609 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68002 68103 68287 "ALGMFACT" 68611 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64037 64616 65210 "ALGMANIP" 67586 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55304 63663 63813 "ALGFF" 63970 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54500 54631 54810 "ALGFACT" 55162 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53441 54041 54079 "ALGEBRA" 54084 NIL ALGEBRA (NIL T) -9 NIL 54125 NIL) (-37 53159 53218 53350 "ALGEBRA-" 53355 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35222 51131 51183 "ALAGG" 51319 NIL ALAGG (NIL T T) -9 NIL 51480 NIL) (-35 34758 34871 34897 "AHYP" 35098 T AHYP (NIL) -9 NIL NIL NIL) (-34 33689 33937 33963 "AGG" 34462 T AGG (NIL) -9 NIL 34741 NIL) (-33 33123 33285 33499 "AGG-" 33504 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30929 31352 31757 "AF" 32765 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30409 30654 30744 "ADDAST" 30857 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29677 29936 30092 "ACPLOT" 30271 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file +((-1785 (((-1248 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1248 |#1| |#3| |#5|)) 23))) +(((-1243 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1785 ((-1248 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1248 |#1| |#3| |#5|)))) (-1065) (-1065) (-1193) (-1193) |#1| |#2|) (T -1243)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5 *7 *9)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-14 *7 (-1193)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1248 *6 *8 *10)) (-5 *1 (-1243 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1193))))) +(-10 -7 (-15 -1785 ((-1248 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1248 |#1| |#3| |#5|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2884 (($ $) 64 (|has| |#1| (-566)))) (-1981 (((-112) $) 66 (|has| |#1| (-566)))) (-3332 (($ $ (-574)) 113) (($ $ (-574) (-574)) 112)) (-3108 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 119)) (-2379 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 177 (|has| |#1| (-372)))) (-1610 (((-428 $) $) 178 (|has| |#1| (-372)))) (-4212 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3245 (((-112) $ $) 168 (|has| |#1| (-372)))) (-2358 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 188)) (-2404 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) 18 T CONST)) (-2800 (($ $ $) 172 (|has| |#1| (-372)))) (-1402 (($ $) 72)) (-4322 (((-3 $ "failed") $) 37)) (-2025 (((-417 (-966 |#1|)) $ (-574)) 186 (|has| |#1| (-566))) (((-417 (-966 |#1|)) $ (-574) (-574)) 185 (|has| |#1| (-566)))) (-2813 (($ $ $) 171 (|has| |#1| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 166 (|has| |#1| (-372)))) (-3978 (((-112) $) 179 (|has| |#1| (-372)))) (-4189 (((-112) $) 85)) (-3004 (($) 160 (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-574) $) 115) (((-574) $ (-574)) 114)) (-4226 (((-112) $) 35)) (-3527 (($ $ (-574)) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (($ $ (-935)) 116)) (-4152 (($ (-1 |#1| (-574)) $) 187)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 175 (|has| |#1| (-372)))) (-1555 (((-112) $) 74)) (-4328 (($ |#1| (-574)) 73) (($ $ (-1098) (-574)) 88) (($ $ (-654 (-1098)) (-654 (-574))) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-3113 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-2849 (($ (-654 $)) 164 (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372)))) (-1489 (((-1175) $) 10)) (-1328 (($ $) 180 (|has| |#1| (-372)))) (-3342 (($ $) 184 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 183 (-2833 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-973)) (|has| |#1| (-1219)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 165 (|has| |#1| (-372)))) (-2887 (($ (-654 $)) 162 (|has| |#1| (-372))) (($ $ $) 161 (|has| |#1| (-372)))) (-4202 (((-428 $) $) 176 (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 173 (|has| |#1| (-372)))) (-2433 (($ $ (-574)) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 167 (|has| |#1| (-372)))) (-1617 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-2098 (((-781) $) 169 (|has| |#1| (-372)))) (-2207 ((|#1| $ (-574)) 120) (($ $ $) 96 (|has| (-574) (-1128)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 170 (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1193))) 106 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193) (-781)) 105 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-3580 (((-574) $) 76)) (-2417 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-2706 ((|#1| $ (-574)) 71)) (-3424 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-3333 ((|#1| $) 117)) (-4069 (((-112) $ $) 9)) (-2456 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2429 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-574)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-1193)) 107 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1193))) 103 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193) (-781)) 102 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 182 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 181 (|has| |#1| (-372))) (($ $ $) 159 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 130 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1244 |#1|) (-141) (-1065)) (T -1244)) +((-3597 (*1 *1 *2) (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1065)) (-4 *1 (-1244 *3)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1244 *3)) (-4 *3 (-1065)))) (-2025 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1244 *4)) (-4 *4 (-1065)) (-4 *4 (-566)) (-5 *2 (-417 (-966 *4))))) (-2025 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1244 *4)) (-4 *4 (-1065)) (-4 *4 (-566)) (-5 *2 (-417 (-966 *4))))) (-3342 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574)))))) (-3342 (*1 *1 *1 *2) (-2833 (-12 (-5 *2 (-1193)) (-4 *1 (-1244 *3)) (-4 *3 (-1065)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1193)) (-4 *1 (-1244 *3)) (-4 *3 (-1065)) (-12 (|has| *3 (-15 -4350 ((-654 *2) *3))) (|has| *3 (-15 -3342 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) +(-13 (-1262 |t#1| (-574)) (-10 -8 (-15 -3597 ($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |t#1|))))) (-15 -4152 ($ (-1 |t#1| (-574)) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -2025 ((-417 (-966 |t#1|)) $ (-574))) (-15 -2025 ((-417 (-966 |t#1|)) $ (-574) (-574)))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ($ $)) (IF (|has| |t#1| (-15 -3342 (|t#1| |t#1| (-1193)))) (IF (|has| |t#1| (-15 -4350 ((-654 (-1193)) |t#1|))) (-15 -3342 ($ $ (-1193))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1219)) (IF (|has| |t#1| (-973)) (IF (|has| |t#1| (-29 (-574))) (-15 -3342 ($ $ (-1193))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1018)) (-6 (-1219))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-574) (-1128)) ((-298) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-907 $ #2=(-1193)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) ((-912 #2#) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) ((-989 |#1| #0# (-1098)) . T) ((-934) |has| |#1| (-372)) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1067 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1072 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T) ((-1238) |has| |#1| (-372)) ((-1262 |#1| #0#) . T)) +((-1431 (((-112) $) 12)) (-1704 (((-3 |#3| "failed") $) 17) (((-3 (-1193) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL)) (-2214 ((|#3| $) 14) (((-1193) $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL))) +(((-1245 |#1| |#2| |#3|) (-10 -8 (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2214 ((-1193) |#1|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2214 (|#3| |#1|)) (-15 -1431 ((-112) |#1|))) (-1246 |#2| |#3|) (-1065) (-1275 |#2|)) (T -1245)) +NIL +(-10 -8 (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2214 ((-1193) |#1|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2214 (|#3| |#1|)) (-15 -1431 ((-112) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4146 ((|#2| $) 247 (-2095 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2884 (($ $) 64 (|has| |#1| (-566)))) (-1981 (((-112) $) 66 (|has| |#1| (-566)))) (-3332 (($ $ (-574)) 113) (($ $ (-574) (-574)) 112)) (-3108 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 119)) (-3859 ((|#2| $) 283)) (-3422 (((-3 |#2| "failed") $) 279)) (-4402 ((|#2| $) 280)) (-2379 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) 20)) (-2488 (((-428 (-1189 $)) (-1189 $)) 256 (-2095 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-2991 (($ $) 177 (|has| |#1| (-372)))) (-1610 (((-428 $) $) 178 (|has| |#1| (-372)))) (-4212 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 253 (-2095 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-3245 (((-112) $ $) 168 (|has| |#1| (-372)))) (-2358 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2472 (((-574) $) 265 (-2095 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 188)) (-2404 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) 18 T CONST)) (-1704 (((-3 |#2| "failed") $) 286) (((-3 (-574) "failed") $) 276 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) 274 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-1193) "failed") $) 258 (-2095 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372))))) (-2214 ((|#2| $) 287) (((-574) $) 275 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) 273 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-1193) $) 257 (-2095 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372))))) (-3663 (($ $) 282) (($ (-574) $) 281)) (-2800 (($ $ $) 172 (|has| |#1| (-372)))) (-1402 (($ $) 72)) (-1831 (((-699 |#2|) (-1284 $)) 237 (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) 236 (|has| |#1| (-372))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 235 (|has| |#1| (-372))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 234 (-2095 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) 233 (-2095 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1284 $)) 232 (-2095 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-4322 (((-3 $ "failed") $) 37)) (-2025 (((-417 (-966 |#1|)) $ (-574)) 186 (|has| |#1| (-566))) (((-417 (-966 |#1|)) $ (-574) (-574)) 185 (|has| |#1| (-566)))) (-2835 (($) 249 (-2095 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2813 (($ $ $) 171 (|has| |#1| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 166 (|has| |#1| (-372)))) (-3978 (((-112) $) 179 (|has| |#1| (-372)))) (-3408 (((-112) $) 263 (-2095 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-4189 (((-112) $) 85)) (-3004 (($) 160 (|has| |#1| (-38 (-417 (-574)))))) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 241 (-2095 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 240 (-2095 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-3547 (((-574) $) 115) (((-574) $ (-574)) 114)) (-4226 (((-112) $) 35)) (-2967 (($ $) 245 (|has| |#1| (-372)))) (-2971 ((|#2| $) 243 (|has| |#1| (-372)))) (-3527 (($ $ (-574)) 131 (|has| |#1| (-38 (-417 (-574)))))) (-2414 (((-3 $ "failed") $) 277 (-2095 (|has| |#2| (-1168)) (|has| |#1| (-372))))) (-3182 (((-112) $) 264 (-2095 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3966 (($ $ (-935)) 116)) (-4152 (($ (-1 |#1| (-574)) $) 187)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 175 (|has| |#1| (-372)))) (-1555 (((-112) $) 74)) (-4328 (($ |#1| (-574)) 73) (($ $ (-1098) (-574)) 88) (($ $ (-654 (-1098)) (-654 (-574))) 87)) (-3634 (($ $ $) 267 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-4380 (($ $ $) 268 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1785 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 227 (|has| |#1| (-372)))) (-3113 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-2849 (($ (-654 $)) 164 (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372)))) (-4414 (($ (-574) |#2|) 284)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 180 (|has| |#1| (-372)))) (-3342 (($ $) 184 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 183 (-2833 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-973)) (|has| |#1| (-1219)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3791 (($) 278 (-2095 (|has| |#2| (-1168)) (|has| |#1| (-372))) CONST)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 165 (|has| |#1| (-372)))) (-2887 (($ (-654 $)) 162 (|has| |#1| (-372))) (($ $ $) 161 (|has| |#1| (-372)))) (-2162 (($ $) 248 (-2095 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-2260 ((|#2| $) 251 (-2095 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-3651 (((-428 (-1189 $)) (-1189 $)) 254 (-2095 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-3335 (((-428 (-1189 $)) (-1189 $)) 255 (-2095 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-4202 (((-428 $) $) 176 (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 173 (|has| |#1| (-372)))) (-2433 (($ $ (-574)) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 167 (|has| |#1| (-372)))) (-1617 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1193) |#2|) 226 (-2095 (|has| |#2| (-524 (-1193) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1193)) (-654 |#2|)) 225 (-2095 (|has| |#2| (-524 (-1193) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) 224 (-2095 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) 223 (-2095 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) 222 (-2095 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) 221 (-2095 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-2098 (((-781) $) 169 (|has| |#1| (-372)))) (-2207 ((|#1| $ (-574)) 120) (($ $ $) 96 (|has| (-574) (-1128))) (($ $ |#2|) 220 (-2095 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 170 (|has| |#1| (-372)))) (-3879 (($ $ (-1 |#2| |#2|)) 231 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 230 (|has| |#1| (-372))) (($ $) 100 (-2833 (-2095 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 98 (-2833 (-2095 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) 108 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1193))) 106 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1193) (-781)) 105 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-2808 (($ $) 246 (|has| |#1| (-372)))) (-2981 ((|#2| $) 244 (|has| |#1| (-372)))) (-3580 (((-574) $) 76)) (-2417 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-1844 (((-227) $) 262 (-2095 (|has| |#2| (-1038)) (|has| |#1| (-372)))) (((-388) $) 261 (-2095 (|has| |#2| (-1038)) (|has| |#1| (-372)))) (((-546) $) 260 (-2095 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) 239 (-2095 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) 238 (-2095 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 252 (-2095 (-2095 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#1| (-372))))) (-2916 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 285) (($ (-1193)) 259 (-2095 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372)))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-2706 ((|#1| $ (-574)) 71)) (-3424 (((-3 $ "failed") $) 60 (-2833 (-2095 (-2833 (|has| |#2| (-146)) (-2095 (|has| $ (-146)) (|has| |#2| (-923)))) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-2898 (((-781)) 32 T CONST)) (-3333 ((|#1| $) 117)) (-2544 ((|#2| $) 250 (-2095 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-4069 (((-112) $ $) 9)) (-2456 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2429 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-574)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-3936 (($ $) 266 (-2095 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) 229 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 228 (|has| |#1| (-372))) (($ $) 99 (-2833 (-2095 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 97 (-2833 (-2095 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) 107 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1193))) 103 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1193) (-781)) 102 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-3042 (((-112) $ $) 270 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3020 (((-112) $ $) 271 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2986 (((-112) $ $) 6)) (-3030 (((-112) $ $) 269 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3009 (((-112) $ $) 272 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3103 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 182 (|has| |#1| (-372))) (($ |#2| |#2|) 242 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 181 (|has| |#1| (-372))) (($ $ $) 159 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 130 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 219 (|has| |#1| (-372))) (($ |#2| $) 218 (|has| |#1| (-372))) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1246 |#1| |#2|) (-141) (-1065) (-1275 |t#1|)) (T -1246)) +((-3580 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1275 *3)) (-5 *2 (-574)))) (-4414 (*1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *4 (-1065)) (-4 *1 (-1246 *4 *3)) (-4 *3 (-1275 *4)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1275 *3)))) (-3663 (*1 *1 *1) (-12 (-4 *1 (-1246 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1275 *2)))) (-3663 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1246 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1275 *3)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1275 *3)))) (-3422 (*1 *2 *1) (|partial| -12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1275 *3))))) +(-13 (-1244 |t#1|) (-1054 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4414 ($ (-574) |t#2|)) (-15 -3580 ((-574) $)) (-15 -3859 (|t#2| $)) (-15 -3663 ($ $)) (-15 -3663 ($ (-574) $)) (-15 -4402 (|t#2| $)) (-15 -3422 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-372)) (-6 (-1008 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-372)) ((-38 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-372)) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-626 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1193)) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-1193)))) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1038))) ((-624 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1038))) ((-624 (-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) ((-235 $) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-233 |#2|) |has| |#1| (-372)) ((-239) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-238) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 |#2| $) -12 (|has| |#1| (-372)) (|has| |#2| (-294 |#2| |#2|))) ((-294 $ $) |has| (-574) (-1128)) ((-298) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-372) |has| |#1| (-372)) ((-347 |#2|) |has| |#1| (-372)) ((-386 |#2|) |has| |#1| (-372)) ((-410 |#2|) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 (-1193) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1193) |#2|))) ((-524 |#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-566) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 |#2|) |has| |#1| (-372)) ((-656 $) . T) ((-658 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 #3=(-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-372)) ((-658 $) . T) ((-650 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 |#2|) |has| |#1| (-372)) ((-650 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-649 #3#) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-649 |#2|) |has| |#1| (-372)) ((-727 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 |#2|) |has| |#1| (-372)) ((-727 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-801) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-802) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-804) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-805) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-830) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-858) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-860) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-860))) (-12 (|has| |#1| (-372)) (|has| |#2| (-830)))) ((-907 $ #4=(-1193)) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193)))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) ((-912 #4#) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193)))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) ((-914 #4#) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193)))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) ((-897 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-574)))) ((-895 |#2|) |has| |#1| (-372)) ((-923) -12 (|has| |#1| (-372)) (|has| |#2| (-923))) ((-989 |#1| #0# (-1098)) . T) ((-934) |has| |#1| (-372)) ((-1008 |#2|) |has| |#1| (-372)) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1038) -12 (|has| |#1| (-372)) (|has| |#2| (-1038))) ((-1054 (-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-574)))) ((-1054 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-574)))) ((-1054 #2#) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-1193)))) ((-1054 |#2|) . T) ((-1067 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1067 |#1|) . T) ((-1067 |#2|) |has| |#1| (-372)) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1072 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1072 |#1|) . T) ((-1072 |#2|) |has| |#1| (-372)) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) -12 (|has| |#1| (-372)) (|has| |#2| (-1168))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T) ((-1238) |has| |#1| (-372)) ((-1244 |#1|) . T) ((-1262 |#1| #0#) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 81)) (-4146 ((|#2| $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 100)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-3332 (($ $ (-574)) 109) (($ $ (-574) (-574)) 111)) (-3108 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 51)) (-3859 ((|#2| $) 11)) (-3422 (((-3 |#2| "failed") $) 35)) (-4402 ((|#2| $) 36)) (-2379 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-2991 (($ $) NIL (|has| |#1| (-372)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-2472 (((-574) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 59)) (-2404 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) 157) (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-1193) "failed") $) NIL (-12 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372))))) (-2214 ((|#2| $) 156) (((-574) $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-1193) $) NIL (-12 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372))))) (-3663 (($ $) 65) (($ (-574) $) 28)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-1831 (((-699 |#2|) (-1284 $)) NIL (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-4322 (((-3 $ "failed") $) 88)) (-2025 (((-417 (-966 |#1|)) $ (-574)) 124 (|has| |#1| (-566))) (((-417 (-966 |#1|)) $ (-574) (-574)) 126 (|has| |#1| (-566)))) (-2835 (($) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3978 (((-112) $) NIL (|has| |#1| (-372)))) (-3408 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-4189 (((-112) $) 74)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-3547 (((-574) $) 105) (((-574) $ (-574)) 107)) (-4226 (((-112) $) NIL)) (-2967 (($ $) NIL (|has| |#1| (-372)))) (-2971 ((|#2| $) 165 (|has| |#1| (-372)))) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2414 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1168)) (|has| |#1| (-372))))) (-3182 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3966 (($ $ (-935)) 148)) (-4152 (($ (-1 |#1| (-574)) $) 144)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-574)) 20) (($ $ (-1098) (-574)) NIL) (($ $ (-654 (-1098)) (-654 (-574))) NIL)) (-3634 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-4380 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1785 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-372)))) (-3113 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4414 (($ (-574) |#2|) 10)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 159 (|has| |#1| (-372)))) (-3342 (($ $) 228 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 233 (-2833 (-12 (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219)))))) (-3791 (($) NIL (-12 (|has| |#2| (-1168)) (|has| |#1| (-372))) CONST)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2162 (($ $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-2260 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-4202 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2433 (($ $ (-574)) 138)) (-2853 (((-3 $ "failed") $ $) 128 (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1193) |#2|) NIL (-12 (|has| |#2| (-524 (-1193) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1193)) (-654 |#2|)) NIL (-12 (|has| |#2| (-524 (-1193) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-574)) 103) (($ $ $) 90 (|has| (-574) (-1128))) (($ $ |#2|) NIL (-12 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $) 149 (-2833 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) 153 (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-2808 (($ $) NIL (|has| |#1| (-372)))) (-2981 ((|#2| $) 166 (|has| |#1| (-372)))) (-3580 (((-574) $) 12)) (-2417 (($ $) 212 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-1844 (((-227) $) NIL (-12 (|has| |#2| (-1038)) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| |#2| (-1038)) (|has| |#1| (-372)))) (((-546) $) NIL (-12 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923)) (|has| |#1| (-372))))) (-2916 (($ $) 136)) (-2951 (((-872) $) 266) (($ (-574)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1193)) NIL (-12 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372)))) (($ (-417 (-574))) 169 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2706 ((|#1| $ (-574)) 85)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923)) (|has| |#1| (-372))) (-12 (|has| |#2| (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-2898 (((-781)) 155 T CONST)) (-3333 ((|#1| $) 102)) (-2544 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) 218 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) 214 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 222 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-574)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 224 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 220 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 216 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-3936 (($ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2141 (($) 13 T CONST)) (-2153 (($) 18 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2833 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-3042 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3020 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2986 (((-112) $ $) 72)) (-3030 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3009 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372))) (($ |#2| |#2|) 164 (|has| |#1| (-372)))) (-3090 (($ $) 227) (($ $ $) 78)) (-3074 (($ $ $) 76)) (** (($ $ (-935)) NIL) (($ $ (-781)) 84) (($ $ (-574)) 160 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 172 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-372))) (($ |#2| $) 161 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1247 |#1| |#2|) (-1246 |#1| |#2|) (-1065) (-1275 |#1|)) (T -1247)) +NIL +(-1246 |#1| |#2|) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4146 (((-1276 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 10)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2884 (($ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1981 (((-112) $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-3332 (($ $ (-574)) NIL) (($ $ (-574) (-574)) NIL)) (-3108 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-3859 (((-1276 |#1| |#2| |#3|) $) NIL)) (-3422 (((-3 (-1276 |#1| |#2| |#3|) "failed") $) NIL)) (-4402 (((-1276 |#1| |#2| |#3|) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-2991 (($ $) NIL (|has| |#1| (-372)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2472 (((-574) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-1276 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))))) (-2214 (((-1276 |#1| |#2| |#3|) $) NIL) (((-1193) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))))) (-3663 (($ $) NIL) (($ (-574) $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-1831 (((-699 (-1276 |#1| |#2| |#3|)) (-1284 $)) NIL (|has| |#1| (-372))) (((-699 (-1276 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3082 (-699 (-1276 |#1| |#2| |#3|))) (|:| |vec| (-1284 (-1276 |#1| |#2| |#3|)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-4322 (((-3 $ "failed") $) NIL)) (-2025 (((-417 (-966 |#1|)) $ (-574)) NIL (|has| |#1| (-566))) (((-417 (-966 |#1|)) $ (-574) (-574)) NIL (|has| |#1| (-566)))) (-2835 (($) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3978 (((-112) $) NIL (|has| |#1| (-372)))) (-3408 (((-112) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-4189 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-3547 (((-574) $) NIL) (((-574) $ (-574)) NIL)) (-4226 (((-112) $) NIL)) (-2967 (($ $) NIL (|has| |#1| (-372)))) (-2971 (((-1276 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2414 (((-3 $ "failed") $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1168)) (|has| |#1| (-372))))) (-3182 (((-112) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3966 (($ $ (-935)) NIL)) (-4152 (($ (-1 |#1| (-574)) $) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-574)) 18) (($ $ (-1098) (-574)) NIL) (($ $ (-654 (-1098)) (-654 (-574))) NIL)) (-3634 (($ $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-4380 (($ $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4414 (($ (-574) (-1276 |#1| |#2| |#3|)) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3342 (($ $) 27 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 28 (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1168)) (|has| |#1| (-372))) CONST)) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2162 (($ $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-2260 (((-1276 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-4202 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2433 (($ $ (-574)) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1193) (-1276 |#1| |#2| |#3|)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-524 (-1193) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1193)) (-654 (-1276 |#1| |#2| |#3|))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-524 (-1193) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1276 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1276 |#1| |#2| |#3|))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1276 |#1| |#2| |#3|)) (-654 (-1276 |#1| |#2| |#3|))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-574)) NIL) (($ $ $) NIL (|has| (-574) (-1128))) (($ $ (-1276 |#1| |#2| |#3|)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-294 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1280 |#2|)) 26) (($ $) 25 (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-2808 (($ $) NIL (|has| |#1| (-372)))) (-2981 (((-1276 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-3580 (((-574) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1844 (((-546) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1038)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1038)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-2916 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1276 |#1| |#2| |#3|)) NIL) (($ (-1280 |#2|)) 24) (($ (-1193)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (($ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-2706 ((|#1| $ (-574)) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3333 ((|#1| $) 11)) (-2544 (((-1276 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3936 (($ $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2141 (($) 20 T CONST)) (-2153 (($) 15 T CONST)) (-3584 (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-3042 (((-112) $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3020 (((-112) $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2986 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3009 (((-112) $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372))) (($ (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 22)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1276 |#1| |#2| |#3|)) NIL (|has| |#1| (-372))) (($ (-1276 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1248 |#1| |#2| |#3|) (-13 (-1246 |#1| (-1276 |#1| |#2| |#3|)) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1248)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))) +(-13 (-1246 |#1| (-1276 |#1| |#2| |#3|)) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) +((-2687 (((-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574)))))) |#1| (-112)) 13)) (-2894 (((-428 |#1|) |#1|) 26)) (-4202 (((-428 |#1|) |#1|) 24))) +(((-1249 |#1|) (-10 -7 (-15 -4202 ((-428 |#1|) |#1|)) (-15 -2894 ((-428 |#1|) |#1|)) (-15 -2687 ((-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574)))))) |#1| (-112)))) (-1260 (-574))) (T -1249)) +((-2687 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| *3) (|:| -3868 (-574))))))) (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574))))) (-2894 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574))))) (-4202 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574)))))) +(-10 -7 (-15 -4202 ((-428 |#1|) |#1|)) (-15 -2894 ((-428 |#1|) |#1|)) (-15 -2687 ((-2 (|:| |contp| (-574)) (|:| -3314 (-654 (-2 (|:| |irr| |#1|) (|:| -3868 (-574)))))) |#1| (-112)))) +((-1785 (((-1173 |#2|) (-1 |#2| |#1|) (-1251 |#1|)) 23 (|has| |#1| (-858))) (((-1251 |#2|) (-1 |#2| |#1|) (-1251 |#1|)) 17))) +(((-1250 |#1| |#2|) (-10 -7 (-15 -1785 ((-1251 |#2|) (-1 |#2| |#1|) (-1251 |#1|))) (IF (|has| |#1| (-858)) (-15 -1785 ((-1173 |#2|) (-1 |#2| |#1|) (-1251 |#1|))) |%noBranch|)) (-1234) (-1234)) (T -1250)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5)) (-4 *5 (-858)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1173 *6)) (-5 *1 (-1250 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1251 *6)) (-5 *1 (-1250 *5 *6))))) +(-10 -7 (-15 -1785 ((-1251 |#2|) (-1 |#2| |#1|) (-1251 |#1|))) (IF (|has| |#1| (-858)) (-15 -1785 ((-1173 |#2|) (-1 |#2| |#1|) (-1251 |#1|))) |%noBranch|)) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3225 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1785 (((-1173 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-858)))) (-2939 ((|#1| $) 15)) (-2831 ((|#1| $) 12)) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1961 (((-574) $) 19)) (-3470 ((|#1| $) 18)) (-1974 ((|#1| $) 13)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2694 (((-112) $) 17)) (-2136 (((-1173 |#1|) $) 41 (|has| |#1| (-858))) (((-1173 |#1|) (-654 $)) 40 (|has| |#1| (-858)))) (-1844 (($ |#1|) 26)) (-2951 (($ (-1110 |#1|)) 25) (((-872) $) 37 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4266 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2748 (($ $ (-574)) 14)) (-2986 (((-112) $ $) 30 (|has| |#1| (-1116))))) +(((-1251 |#1|) (-13 (-1109 |#1|) (-10 -8 (-15 -4266 ($ |#1|)) (-15 -3225 ($ |#1|)) (-15 -2951 ($ (-1110 |#1|))) (-15 -2694 ((-112) $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1111 |#1| (-1173 |#1|))) |%noBranch|))) (-1234)) (T -1251)) +((-4266 (*1 *1 *2) (-12 (-5 *1 (-1251 *2)) (-4 *2 (-1234)))) (-3225 (*1 *1 *2) (-12 (-5 *1 (-1251 *2)) (-4 *2 (-1234)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1110 *3)) (-4 *3 (-1234)) (-5 *1 (-1251 *3)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1251 *3)) (-4 *3 (-1234))))) +(-13 (-1109 |#1|) (-10 -8 (-15 -4266 ($ |#1|)) (-15 -3225 ($ |#1|)) (-15 -2951 ($ (-1110 |#1|))) (-15 -2694 ((-112) $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1111 |#1| (-1173 |#1|))) |%noBranch|))) +((-1785 (((-1257 |#3| |#4|) (-1 |#4| |#2|) (-1257 |#1| |#2|)) 15))) +(((-1252 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 ((-1257 |#3| |#4|) (-1 |#4| |#2|) (-1257 |#1| |#2|)))) (-1193) (-1065) (-1193) (-1065)) (T -1252)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1257 *5 *6)) (-14 *5 (-1193)) (-4 *6 (-1065)) (-4 *8 (-1065)) (-5 *2 (-1257 *7 *8)) (-5 *1 (-1252 *5 *6 *7 *8)) (-14 *7 (-1193))))) +(-10 -7 (-15 -1785 ((-1257 |#3| |#4|) (-1 |#4| |#2|) (-1257 |#1| |#2|)))) +((-4431 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4231 ((|#1| |#3|) 13)) (-3810 ((|#3| |#3|) 19))) +(((-1253 |#1| |#2| |#3|) (-10 -7 (-15 -4231 (|#1| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -4431 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1008 |#1|) (-1260 |#2|)) (T -1253)) +((-4431 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1253 *4 *5 *3)) (-4 *3 (-1260 *5)))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1008 *3)) (-5 *1 (-1253 *3 *4 *2)) (-4 *2 (-1260 *4)))) (-4231 (*1 *2 *3) (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-1253 *2 *4 *3)) (-4 *3 (-1260 *4))))) +(-10 -7 (-15 -4231 (|#1| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -4431 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4224 (((-3 |#2| "failed") |#2| (-781) |#1|) 35)) (-2419 (((-3 |#2| "failed") |#2| (-781)) 36)) (-4354 (((-3 (-2 (|:| -3865 |#2|) (|:| -3878 |#2|)) "failed") |#2|) 50)) (-1401 (((-654 |#2|) |#2|) 52)) (-1635 (((-3 |#2| "failed") |#2| |#2|) 46))) +(((-1254 |#1| |#2|) (-10 -7 (-15 -2419 ((-3 |#2| "failed") |#2| (-781))) (-15 -4224 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -1635 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4354 ((-3 (-2 (|:| -3865 |#2|) (|:| -3878 |#2|)) "failed") |#2|)) (-15 -1401 ((-654 |#2|) |#2|))) (-13 (-566) (-148)) (-1260 |#1|)) (T -1254)) +((-1401 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3)) (-5 *1 (-1254 *4 *3)) (-4 *3 (-1260 *4)))) (-4354 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| -3865 *3) (|:| -3878 *3))) (-5 *1 (-1254 *4 *3)) (-4 *3 (-1260 *4)))) (-1635 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1254 *3 *2)) (-4 *2 (-1260 *3)))) (-4224 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1254 *4 *2)) (-4 *2 (-1260 *4)))) (-2419 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1254 *4 *2)) (-4 *2 (-1260 *4))))) +(-10 -7 (-15 -2419 ((-3 |#2| "failed") |#2| (-781))) (-15 -4224 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -1635 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4354 ((-3 (-2 (|:| -3865 |#2|) (|:| -3878 |#2|)) "failed") |#2|)) (-15 -1401 ((-654 |#2|) |#2|))) +((-1428 (((-3 (-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) "failed") |#2| |#2|) 30))) +(((-1255 |#1| |#2|) (-10 -7 (-15 -1428 ((-3 (-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) "failed") |#2| |#2|))) (-566) (-1260 |#1|)) (T -1255)) +((-1428 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-1255 *4 *3)) (-4 *3 (-1260 *4))))) +(-10 -7 (-15 -1428 ((-3 (-2 (|:| -3901 |#2|) (|:| -1880 |#2|)) "failed") |#2| |#2|))) +((-2868 ((|#2| |#2| |#2|) 22)) (-4166 ((|#2| |#2| |#2|) 36)) (-3982 ((|#2| |#2| |#2| (-781) (-781)) 44))) +(((-1256 |#1| |#2|) (-10 -7 (-15 -2868 (|#2| |#2| |#2|)) (-15 -4166 (|#2| |#2| |#2|)) (-15 -3982 (|#2| |#2| |#2| (-781) (-781)))) (-1065) (-1260 |#1|)) (T -1256)) +((-3982 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1065)) (-5 *1 (-1256 *4 *2)) (-4 *2 (-1260 *4)))) (-4166 (*1 *2 *2 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-1256 *3 *2)) (-4 *2 (-1260 *3)))) (-2868 (*1 *2 *2 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-1256 *3 *2)) (-4 *2 (-1260 *3))))) +(-10 -7 (-15 -2868 (|#2| |#2| |#2|)) (-15 -4166 (|#2| |#2| |#2|)) (-15 -3982 (|#2| |#2| |#2| (-781) (-781)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-3613 (((-1284 |#2|) $ (-781)) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-4298 (($ (-1189 |#2|)) NIL)) (-4173 (((-1189 $) $ (-1098)) NIL) (((-1189 |#2|) $) NIL)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-2884 (($ $) NIL (|has| |#2| (-566)))) (-1981 (((-112) $) NIL (|has| |#2| (-566)))) (-2824 (((-781) $) NIL) (((-781) $ (-654 (-1098))) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3022 (($ $ $) NIL (|has| |#2| (-566)))) (-2488 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2991 (($ $) NIL (|has| |#2| (-462)))) (-1610 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3245 (((-112) $ $) NIL (|has| |#2| (-372)))) (-1751 (($ $ (-781)) NIL)) (-3805 (($ $ (-781)) NIL)) (-2017 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-462)))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-1098) "failed") $) NIL)) (-2214 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-1098) $) NIL)) (-3319 (($ $ $ (-1098)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2800 (($ $ $) NIL (|has| |#2| (-372)))) (-1402 (($ $) NIL)) (-1831 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#2| (-372)))) (-4347 (($ $ $) NIL)) (-3778 (($ $ $) NIL (|has| |#2| (-566)))) (-2861 (((-2 (|:| -1866 |#2|) (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#2| (-566)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-3621 (($ $) NIL (|has| |#2| (-462))) (($ $ (-1098)) NIL (|has| |#2| (-462)))) (-1389 (((-654 $) $) NIL)) (-3978 (((-112) $) NIL (|has| |#2| (-923)))) (-1849 (($ $ |#2| (-781) $) NIL)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1098) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1098) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3547 (((-781) $ $) NIL (|has| |#2| (-566)))) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-2414 (((-3 $ "failed") $) NIL (|has| |#2| (-1168)))) (-4339 (($ (-1189 |#2|) (-1098)) NIL) (($ (-1189 $) (-1098)) NIL)) (-3966 (($ $ (-781)) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-4328 (($ |#2| (-781)) 18) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-1098)) NIL) (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL)) (-3192 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-4303 (($ (-1 (-781) (-781)) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-2077 (((-1189 |#2|) $) NIL)) (-2284 (((-3 (-1098) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#2| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-1489 (((-1175) $) NIL)) (-3821 (((-2 (|:| -3901 $) (|:| -1880 $)) $ (-781)) NIL)) (-1720 (((-3 (-654 $) "failed") $) NIL)) (-3825 (((-3 (-654 $) "failed") $) NIL)) (-2778 (((-3 (-2 (|:| |var| (-1098)) (|:| -3139 (-781))) "failed") $) NIL)) (-3342 (($ $) NIL (|has| |#2| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#2| (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#2| $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2997 (($ $ (-781) |#2| $) NIL)) (-3651 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4202 (((-428 $) $) NIL (|has| |#2| (-923)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1098) |#2|) NIL) (($ $ (-654 (-1098)) (-654 |#2|)) NIL) (($ $ (-1098) $) NIL) (($ $ (-654 (-1098)) (-654 $)) NIL)) (-2098 (((-781) $) NIL (|has| |#2| (-372)))) (-2207 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#2| (-566))) ((|#2| (-417 $) |#2|) NIL (|has| |#2| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#2| (-566)))) (-3224 (((-3 $ "failed") $ (-781)) NIL)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#2| (-372)))) (-2394 (($ $ (-1098)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3580 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1098) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-2372 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-1098)) NIL (|has| |#2| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-4374 (((-3 $ "failed") $ $) NIL (|has| |#2| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#2| (-566)))) (-2951 (((-872) $) 13) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1098)) NIL) (($ (-1280 |#1|)) 20) (($ (-417 (-574))) NIL (-2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-1634 (((-654 |#2|) $) NIL)) (-2706 ((|#2| $ (-781)) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-3424 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) 14 T CONST)) (-3584 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1257 |#1| |#2|) (-13 (-1260 |#2|) (-626 (-1280 |#1|)) (-10 -8 (-15 -2997 ($ $ (-781) |#2| $)))) (-1193) (-1065)) (T -1257)) +((-2997 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1257 *4 *3)) (-14 *4 (-1193)) (-4 *3 (-1065))))) +(-13 (-1260 |#2|) (-626 (-1280 |#1|)) (-10 -8 (-15 -2997 ($ $ (-781) |#2| $)))) +((-1785 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1258 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|))) (-1065) (-1260 |#1|) (-1065) (-1260 |#3|)) (T -1258)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-4 *2 (-1260 *6)) (-5 *1 (-1258 *5 *4 *6 *2)) (-4 *4 (-1260 *5))))) +(-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|))) +((-3613 (((-1284 |#2|) $ (-781)) 129)) (-4350 (((-654 (-1098)) $) 16)) (-4298 (($ (-1189 |#2|)) 80)) (-2824 (((-781) $) NIL) (((-781) $ (-654 (-1098))) 21)) (-2488 (((-428 (-1189 $)) (-1189 $)) 204)) (-2991 (($ $) 194)) (-1610 (((-428 $) $) 192)) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 95)) (-1751 (($ $ (-781)) 84)) (-3805 (($ $ (-781)) 86)) (-2017 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1704 (((-3 |#2| "failed") $) 132) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-1098) "failed") $) NIL)) (-2214 ((|#2| $) 130) (((-417 (-574)) $) NIL) (((-574) $) NIL) (((-1098) $) NIL)) (-3778 (($ $ $) 170)) (-2861 (((-2 (|:| -1866 |#2|) (|:| -3901 $) (|:| -1880 $)) $ $) 172)) (-3547 (((-781) $ $) 189)) (-2414 (((-3 $ "failed") $) 138)) (-4328 (($ |#2| (-781)) NIL) (($ $ (-1098) (-781)) 59) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-3192 (((-781) $) NIL) (((-781) $ (-1098)) 54) (((-654 (-781)) $ (-654 (-1098))) 55)) (-2077 (((-1189 |#2|) $) 72)) (-2284 (((-3 (-1098) "failed") $) 52)) (-3821 (((-2 (|:| -3901 $) (|:| -1880 $)) $ (-781)) 83)) (-3342 (($ $) 219)) (-3791 (($) 134)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 201)) (-3651 (((-428 (-1189 $)) (-1189 $)) 101)) (-3335 (((-428 (-1189 $)) (-1189 $)) 99)) (-4202 (((-428 $) $) 120)) (-2661 (($ $ (-654 (-302 $))) 51) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1098) |#2|) 39) (($ $ (-654 (-1098)) (-654 |#2|)) 36) (($ $ (-1098) $) 32) (($ $ (-654 (-1098)) (-654 $)) 30)) (-2098 (((-781) $) 207)) (-2207 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) 164) ((|#2| (-417 $) |#2|) 206) (((-417 $) $ (-417 $)) 188)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 212)) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) 157) (($ $) 155) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3580 (((-781) $) NIL) (((-781) $ (-1098)) 17) (((-654 (-781)) $ (-654 (-1098))) 23)) (-2372 ((|#2| $) NIL) (($ $ (-1098)) 140)) (-4374 (((-3 $ "failed") $ $) 180) (((-3 (-417 $) "failed") (-417 $) $) 176)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1098)) 64) (($ (-417 (-574))) NIL) (($ $) NIL))) +(((-1259 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2069 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -1610 ((-428 |#1|) |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -3791 (|#1|)) (-15 -2414 ((-3 |#1| "failed") |#1|)) (-15 -2207 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -2098 ((-781) |#1|)) (-15 -2969 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -2207 (|#2| (-417 |#1|) |#2|)) (-15 -2017 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2861 ((-2 (|:| -1866 |#2|) (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -3778 (|#1| |#1| |#1|)) (-15 -4374 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -4374 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3547 ((-781) |#1| |#1|)) (-15 -2207 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3805 (|#1| |#1| (-781))) (-15 -1751 (|#1| |#1| (-781))) (-15 -3821 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| (-781))) (-15 -4298 (|#1| (-1189 |#2|))) (-15 -2077 ((-1189 |#2|) |#1|)) (-15 -3613 ((-1284 |#2|) |#1| (-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -2207 (|#1| |#1| |#1|)) (-15 -2207 (|#2| |#1| |#2|)) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -2488 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3335 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3651 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -2630 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -2372 (|#1| |#1| (-1098))) (-15 -4350 ((-654 (-1098)) |#1|)) (-15 -2824 ((-781) |#1| (-654 (-1098)))) (-15 -2824 ((-781) |#1|)) (-15 -4328 (|#1| |#1| (-654 (-1098)) (-654 (-781)))) (-15 -4328 (|#1| |#1| (-1098) (-781))) (-15 -3192 ((-654 (-781)) |#1| (-654 (-1098)))) (-15 -3192 ((-781) |#1| (-1098))) (-15 -2284 ((-3 (-1098) "failed") |#1|)) (-15 -3580 ((-654 (-781)) |#1| (-654 (-1098)))) (-15 -3580 ((-781) |#1| (-1098))) (-15 -2951 (|#1| (-1098))) (-15 -1704 ((-3 (-1098) "failed") |#1|)) (-15 -2214 ((-1098) |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1098)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-1098) |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1098)) (-654 |#2|))) (-15 -2661 (|#1| |#1| (-1098) |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3580 ((-781) |#1|)) (-15 -4328 (|#1| |#2| (-781))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -3192 ((-781) |#1|)) (-15 -2372 (|#2| |#1|)) (-15 -3879 (|#1| |#1| (-1098))) (-15 -3879 (|#1| |#1| (-654 (-1098)))) (-15 -3879 (|#1| |#1| (-1098) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1098)) (-654 (-781)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-1260 |#2|) (-1065)) (T -1259)) +NIL +(-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2069 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -1610 ((-428 |#1|) |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -3791 (|#1|)) (-15 -2414 ((-3 |#1| "failed") |#1|)) (-15 -2207 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -2098 ((-781) |#1|)) (-15 -2969 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -2207 (|#2| (-417 |#1|) |#2|)) (-15 -2017 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2861 ((-2 (|:| -1866 |#2|) (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| |#1|)) (-15 -3778 (|#1| |#1| |#1|)) (-15 -4374 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -4374 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3547 ((-781) |#1| |#1|)) (-15 -2207 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3805 (|#1| |#1| (-781))) (-15 -1751 (|#1| |#1| (-781))) (-15 -3821 ((-2 (|:| -3901 |#1|) (|:| -1880 |#1|)) |#1| (-781))) (-15 -4298 (|#1| (-1189 |#2|))) (-15 -2077 ((-1189 |#2|) |#1|)) (-15 -3613 ((-1284 |#2|) |#1| (-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -2207 (|#1| |#1| |#1|)) (-15 -2207 (|#2| |#1| |#2|)) (-15 -4202 ((-428 |#1|) |#1|)) (-15 -2488 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3335 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3651 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -2630 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -2372 (|#1| |#1| (-1098))) (-15 -4350 ((-654 (-1098)) |#1|)) (-15 -2824 ((-781) |#1| (-654 (-1098)))) (-15 -2824 ((-781) |#1|)) (-15 -4328 (|#1| |#1| (-654 (-1098)) (-654 (-781)))) (-15 -4328 (|#1| |#1| (-1098) (-781))) (-15 -3192 ((-654 (-781)) |#1| (-654 (-1098)))) (-15 -3192 ((-781) |#1| (-1098))) (-15 -2284 ((-3 (-1098) "failed") |#1|)) (-15 -3580 ((-654 (-781)) |#1| (-654 (-1098)))) (-15 -3580 ((-781) |#1| (-1098))) (-15 -2951 (|#1| (-1098))) (-15 -1704 ((-3 (-1098) "failed") |#1|)) (-15 -2214 ((-1098) |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1098)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-1098) |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1098)) (-654 |#2|))) (-15 -2661 (|#1| |#1| (-1098) |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3580 ((-781) |#1|)) (-15 -4328 (|#1| |#2| (-781))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2214 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2214 ((-417 (-574)) |#1|)) (-15 -2214 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -3192 ((-781) |#1|)) (-15 -2372 (|#2| |#1|)) (-15 -3879 (|#1| |#1| (-1098))) (-15 -3879 (|#1| |#1| (-654 (-1098)))) (-15 -3879 (|#1| |#1| (-1098) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1098)) (-654 (-781)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-3613 (((-1284 |#1|) $ (-781)) 245)) (-4350 (((-654 (-1098)) $) 113)) (-4298 (($ (-1189 |#1|)) 243)) (-4173 (((-1189 $) $ (-1098)) 128) (((-1189 |#1|) $) 127)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 90 (|has| |#1| (-566)))) (-2884 (($ $) 91 (|has| |#1| (-566)))) (-1981 (((-112) $) 93 (|has| |#1| (-566)))) (-2824 (((-781) $) 115) (((-781) $ (-654 (-1098))) 114)) (-2600 (((-3 $ "failed") $ $) 20)) (-3022 (($ $ $) 230 (|has| |#1| (-566)))) (-2488 (((-428 (-1189 $)) (-1189 $)) 103 (|has| |#1| (-923)))) (-2991 (($ $) 101 (|has| |#1| (-462)))) (-1610 (((-428 $) $) 100 (|has| |#1| (-462)))) (-2630 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 106 (|has| |#1| (-923)))) (-3245 (((-112) $ $) 215 (|has| |#1| (-372)))) (-1751 (($ $ (-781)) 238)) (-3805 (($ $ (-781)) 237)) (-2017 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 225 (|has| |#1| (-462)))) (-3250 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 169) (((-3 (-417 (-574)) "failed") $) 166 (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) 164 (|has| |#1| (-1054 (-574)))) (((-3 (-1098) "failed") $) 141)) (-2214 ((|#1| $) 168) (((-417 (-574)) $) 167 (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) 165 (|has| |#1| (-1054 (-574)))) (((-1098) $) 142)) (-3319 (($ $ $ (-1098)) 111 (|has| |#1| (-174))) ((|#1| $ $) 233 (|has| |#1| (-174)))) (-2800 (($ $ $) 219 (|has| |#1| (-372)))) (-1402 (($ $) 159)) (-1831 (((-699 (-574)) (-1284 $)) 139 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 138 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3082 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 136) (((-699 |#1|) (-699 $)) 135) (((-699 |#1|) (-1284 $)) 134)) (-4322 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 218 (|has| |#1| (-372)))) (-4347 (($ $ $) 236)) (-3778 (($ $ $) 227 (|has| |#1| (-566)))) (-2861 (((-2 (|:| -1866 |#1|) (|:| -3901 $) (|:| -1880 $)) $ $) 226 (|has| |#1| (-566)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 213 (|has| |#1| (-372)))) (-3621 (($ $) 181 (|has| |#1| (-462))) (($ $ (-1098)) 108 (|has| |#1| (-462)))) (-1389 (((-654 $) $) 112)) (-3978 (((-112) $) 99 (|has| |#1| (-923)))) (-1849 (($ $ |#1| (-781) $) 177)) (-4078 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 87 (-12 (|has| (-1098) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 86 (-12 (|has| (-1098) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3547 (((-781) $ $) 231 (|has| |#1| (-566)))) (-4226 (((-112) $) 35)) (-3023 (((-781) $) 174)) (-2414 (((-3 $ "failed") $) 211 (|has| |#1| (-1168)))) (-4339 (($ (-1189 |#1|) (-1098)) 120) (($ (-1189 $) (-1098)) 119)) (-3966 (($ $ (-781)) 242)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 222 (|has| |#1| (-372)))) (-1963 (((-654 $) $) 129)) (-1555 (((-112) $) 157)) (-4328 (($ |#1| (-781)) 158) (($ $ (-1098) (-781)) 122) (($ $ (-654 (-1098)) (-654 (-781))) 121)) (-3320 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $ (-1098)) 123) (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 240)) (-3192 (((-781) $) 175) (((-781) $ (-1098)) 125) (((-654 (-781)) $ (-654 (-1098))) 124)) (-4303 (($ (-1 (-781) (-781)) $) 176)) (-1785 (($ (-1 |#1| |#1|) $) 156)) (-2077 (((-1189 |#1|) $) 244)) (-2284 (((-3 (-1098) "failed") $) 126)) (-1366 (($ $) 154)) (-1378 ((|#1| $) 153)) (-2849 (($ (-654 $)) 97 (|has| |#1| (-462))) (($ $ $) 96 (|has| |#1| (-462)))) (-1489 (((-1175) $) 10)) (-3821 (((-2 (|:| -3901 $) (|:| -1880 $)) $ (-781)) 239)) (-1720 (((-3 (-654 $) "failed") $) 117)) (-3825 (((-3 (-654 $) "failed") $) 118)) (-2778 (((-3 (-2 (|:| |var| (-1098)) (|:| -3139 (-781))) "failed") $) 116)) (-3342 (($ $) 223 (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) 210 (|has| |#1| (-1168)) CONST)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 171)) (-1355 ((|#1| $) 172)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 98 (|has| |#1| (-462)))) (-2887 (($ (-654 $)) 95 (|has| |#1| (-462))) (($ $ $) 94 (|has| |#1| (-462)))) (-3651 (((-428 (-1189 $)) (-1189 $)) 105 (|has| |#1| (-923)))) (-3335 (((-428 (-1189 $)) (-1189 $)) 104 (|has| |#1| (-923)))) (-4202 (((-428 $) $) 102 (|has| |#1| (-923)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 221 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 220 (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 214 (|has| |#1| (-372)))) (-2661 (($ $ (-654 (-302 $))) 150) (($ $ (-302 $)) 149) (($ $ $ $) 148) (($ $ (-654 $) (-654 $)) 147) (($ $ (-1098) |#1|) 146) (($ $ (-654 (-1098)) (-654 |#1|)) 145) (($ $ (-1098) $) 144) (($ $ (-654 (-1098)) (-654 $)) 143)) (-2098 (((-781) $) 216 (|has| |#1| (-372)))) (-2207 ((|#1| $ |#1|) 263) (($ $ $) 262) (((-417 $) (-417 $) (-417 $)) 232 (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) 224 (|has| |#1| (-372))) (((-417 $) $ (-417 $)) 212 (|has| |#1| (-566)))) (-3224 (((-3 $ "failed") $ (-781)) 241)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 217 (|has| |#1| (-372)))) (-2394 (($ $ (-1098)) 110 (|has| |#1| (-174))) ((|#1| $) 234 (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) 44) (($ $ (-1098) (-781)) 43) (($ $ (-654 (-1098))) 42) (($ $ (-1098)) 40) (($ $) 261) (($ $ (-781)) 259) (($ $ (-654 (-1193)) (-654 (-781))) 254 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 253 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 252 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 250 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 247) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) $) 235)) (-3580 (((-781) $) 155) (((-781) $ (-1098)) 133) (((-654 (-781)) $ (-654 (-1098))) 132)) (-1844 (((-903 (-388)) $) 85 (-12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 84 (-12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 83 (-12 (|has| (-1098) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-2372 ((|#1| $) 180 (|has| |#1| (-462))) (($ $ (-1098)) 109 (|has| |#1| (-462)))) (-3089 (((-3 (-1284 $) "failed") (-699 $)) 107 (-2095 (|has| $ (-146)) (|has| |#1| (-923))))) (-4374 (((-3 $ "failed") $ $) 229 (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) 228 (|has| |#1| (-566)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 170) (($ (-1098)) 140) (($ (-417 (-574))) 81 (-2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 88 (|has| |#1| (-566)))) (-1634 (((-654 |#1|) $) 173)) (-2706 ((|#1| $ (-781)) 160) (($ $ (-1098) (-781)) 131) (($ $ (-654 (-1098)) (-654 (-781))) 130)) (-3424 (((-3 $ "failed") $) 82 (-2833 (-2095 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2898 (((-781)) 32 T CONST)) (-3652 (($ $ $ (-781)) 178 (|has| |#1| (-174)))) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 92 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-654 (-1098)) (-654 (-781))) 47) (($ $ (-1098) (-781)) 46) (($ $ (-654 (-1098))) 45) (($ $ (-1098)) 41) (($ $) 260) (($ $ (-781)) 258) (($ $ (-654 (-1193)) (-654 (-781))) 257 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 256 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 255 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 251 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 249) (($ $ (-1 |#1| |#1|)) 248)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 161 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 163 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 162 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 152) (($ $ |#1|) 151))) +(((-1260 |#1|) (-141) (-1065)) (T -1260)) +((-3613 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1260 *4)) (-4 *4 (-1065)) (-5 *2 (-1284 *4)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-5 *2 (-1189 *3)))) (-4298 (*1 *1 *2) (-12 (-5 *2 (-1189 *3)) (-4 *3 (-1065)) (-4 *1 (-1260 *3)))) (-3966 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) (-3224 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) (-3320 (*1 *2 *1 *1) (-12 (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-1260 *3)))) (-3821 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1065)) (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-1260 *4)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) (-3805 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) (-4347 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)))) (-3879 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-174)))) (-3319 (*1 *2 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-174)))) (-2207 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-4 *3 (-566)))) (-3547 (*1 *2 *1 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-4 *3 (-566)) (-5 *2 (-781)))) (-3022 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))) (-4374 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))) (-4374 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-4 *3 (-566)))) (-3778 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))) (-2861 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -1866 *3) (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-1260 *3)))) (-2017 (*1 *2 *1 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1260 *3)))) (-2207 (*1 *2 *3 *2) (-12 (-5 *3 (-417 *1)) (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3342 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574))))))) +(-13 (-963 |t#1| (-781) (-1098)) (-294 |t#1| |t#1|) (-294 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -3613 ((-1284 |t#1|) $ (-781))) (-15 -2077 ((-1189 |t#1|) $)) (-15 -4298 ($ (-1189 |t#1|))) (-15 -3966 ($ $ (-781))) (-15 -3224 ((-3 $ "failed") $ (-781))) (-15 -3320 ((-2 (|:| -3901 $) (|:| -1880 $)) $ $)) (-15 -3821 ((-2 (|:| -3901 $) (|:| -1880 $)) $ (-781))) (-15 -1751 ($ $ (-781))) (-15 -3805 ($ $ (-781))) (-15 -4347 ($ $ $)) (-15 -3879 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1168)) (-6 (-1168)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2394 (|t#1| $)) (-15 -3319 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-294 (-417 $) (-417 $))) (-15 -2207 ((-417 $) (-417 $) (-417 $))) (-15 -3547 ((-781) $ $)) (-15 -3022 ($ $ $)) (-15 -4374 ((-3 $ "failed") $ $)) (-15 -4374 ((-3 (-417 $) "failed") (-417 $) $)) (-15 -3778 ($ $ $)) (-15 -2861 ((-2 (|:| -1866 |t#1|) (|:| -3901 $) (|:| -1880 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (-15 -2017 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-315)) (-6 -4455) (-15 -2207 (|t#1| (-417 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-15 -3342 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1098)) . T) ((-626 |#1|) . T) ((-626 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| (-1098) (-624 (-546))) (|has| |#1| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-238) . T) ((-294 (-417 $) (-417 $)) |has| |#1| (-566)) ((-294 |#1| |#1|) . T) ((-294 $ $) . T) ((-298) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 $) . T) ((-334 |#1| #0#) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-923)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-524 #2# |#1|) . T) ((-524 #2# $) . T) ((-524 $ $) . T) ((-566) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 #3=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-649 #3#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-736) . T) ((-907 $ #2#) . T) ((-907 $ #4=(-1193)) |has| |#1| (-912 (-1193))) ((-912 #2#) . T) ((-912 #4#) |has| |#1| (-912 (-1193))) ((-914 #2#) . T) ((-914 #4#) |has| |#1| (-912 (-1193))) ((-897 (-388)) -12 (|has| (-1098) (-897 (-388))) (|has| |#1| (-897 (-388)))) ((-897 (-574)) -12 (|has| (-1098) (-897 (-574))) (|has| |#1| (-897 (-574)))) ((-963 |#1| #0# #2#) . T) ((-923) |has| |#1| (-923)) ((-934) |has| |#1| (-372)) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 #2#) . T) ((-1054 |#1|) . T) ((-1067 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1072 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| |#1| (-1168)) ((-1234) . T) ((-1238) |has| |#1| (-923))) +((-4350 (((-654 (-1098)) $) 34)) (-1402 (($ $) 31)) (-4328 (($ |#2| |#3|) NIL) (($ $ (-1098) |#3|) 28) (($ $ (-654 (-1098)) (-654 |#3|)) 27)) (-1366 (($ $) 14)) (-1378 ((|#2| $) 12)) (-3580 ((|#3| $) 10))) +(((-1261 |#1| |#2| |#3|) (-10 -8 (-15 -4350 ((-654 (-1098)) |#1|)) (-15 -4328 (|#1| |#1| (-654 (-1098)) (-654 |#3|))) (-15 -4328 (|#1| |#1| (-1098) |#3|)) (-15 -1402 (|#1| |#1|)) (-15 -4328 (|#1| |#2| |#3|)) (-15 -3580 (|#3| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -1378 (|#2| |#1|))) (-1262 |#2| |#3|) (-1065) (-802)) (T -1261)) +NIL +(-10 -8 (-15 -4350 ((-654 (-1098)) |#1|)) (-15 -4328 (|#1| |#1| (-654 (-1098)) (-654 |#3|))) (-15 -4328 (|#1| |#1| (-1098) |#3|)) (-15 -1402 (|#1| |#1|)) (-15 -4328 (|#1| |#2| |#3|)) (-15 -3580 (|#3| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -1378 (|#2| |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2884 (($ $) 64 (|has| |#1| (-566)))) (-1981 (((-112) $) 66 (|has| |#1| (-566)))) (-3332 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-3108 (((-1173 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1402 (($ $) 72)) (-4322 (((-3 $ "failed") $) 37)) (-4189 (((-112) $) 85)) (-3547 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-4226 (((-112) $) 35)) (-3966 (($ $ (-935)) 116)) (-1555 (((-112) $) 74)) (-4328 (($ |#1| |#2|) 73) (($ $ (-1098) |#2|) 88) (($ $ (-654 (-1098)) (-654 |#2|)) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2433 (($ $ |#2|) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2207 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1128)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1193))) 106 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1193) (-781)) 105 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3580 ((|#2| $) 76)) (-2916 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2706 ((|#1| $ |#2|) 71)) (-3424 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-3333 ((|#1| $) 117)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 65 (|has| |#1| (-566)))) (-3525 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-1193)) 107 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1193))) 103 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1193) (-781)) 102 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1262 |#1| |#2|) (-141) (-1065) (-802)) (T -1262)) +((-3108 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-1173 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-1193)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-1262 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))) (-3966 (*1 *1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-3547 (*1 *2 *1 *2) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-3332 (*1 *1 *1 *2) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-3332 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-3525 (*1 *2 *1 *3) (-12 (-4 *1 (-1262 *2 *3)) (-4 *3 (-802)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2951 (*2 (-1193)))) (-4 *2 (-1065)))) (-2433 (*1 *1 *1 *2) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-2661 (*1 *2 *1 *3) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1173 *3))))) +(-13 (-989 |t#1| |t#2| (-1098)) (-294 |t#2| |t#1|) (-10 -8 (-15 -3108 ((-1173 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1498 ((-1193) $)) (-15 -3333 (|t#1| $)) (-15 -3966 ($ $ (-935))) (-15 -3547 (|t#2| $)) (-15 -3547 (|t#2| $ |t#2|)) (-15 -3332 ($ $ |t#2|)) (-15 -3332 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2951 (|t#1| (-1193)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3525 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2433 ($ $ |t#2|)) (IF (|has| |t#2| (-1128)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-912 (-1193))) (-6 (-912 (-1193))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2661 ((-1173 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-294 |#2| |#1|) . T) ((-294 $ $) |has| |#2| (-1128)) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-907 $ #1=(-1193)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-912 (-1193)))) ((-912 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-912 (-1193)))) ((-914 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-912 (-1193)))) ((-989 |#1| |#2| (-1098)) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T)) +((-2991 ((|#2| |#2|) 12)) (-1610 (((-428 |#2|) |#2|) 14)) (-2651 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))) 30))) +(((-1263 |#1| |#2|) (-10 -7 (-15 -1610 ((-428 |#2|) |#2|)) (-15 -2991 (|#2| |#2|)) (-15 -2651 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))))) (-566) (-13 (-1260 |#1|) (-566) (-10 -8 (-15 -2887 ($ $ $))))) (T -1263)) +((-2651 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-574)))) (-4 *4 (-13 (-1260 *3) (-566) (-10 -8 (-15 -2887 ($ $ $))))) (-4 *3 (-566)) (-5 *1 (-1263 *3 *4)))) (-2991 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-1263 *3 *2)) (-4 *2 (-13 (-1260 *3) (-566) (-10 -8 (-15 -2887 ($ $ $))))))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1263 *4 *3)) (-4 *3 (-13 (-1260 *4) (-566) (-10 -8 (-15 -2887 ($ $ $)))))))) +(-10 -7 (-15 -1610 ((-428 |#2|) |#2|)) (-15 -2991 (|#2| |#2|)) (-15 -2651 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))))) +((-1785 (((-1269 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1269 |#1| |#3| |#5|)) 24))) +(((-1264 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1785 ((-1269 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1269 |#1| |#3| |#5|)))) (-1065) (-1065) (-1193) (-1193) |#1| |#2|) (T -1264)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5 *7 *9)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-14 *7 (-1193)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1269 *6 *8 *10)) (-5 *1 (-1264 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1193))))) +(-10 -7 (-15 -1785 ((-1269 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1269 |#1| |#3| |#5|)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2884 (($ $) 64 (|has| |#1| (-566)))) (-1981 (((-112) $) 66 (|has| |#1| (-566)))) (-3332 (($ $ (-417 (-574))) 113) (($ $ (-417 (-574)) (-417 (-574))) 112)) (-3108 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 119)) (-2379 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 177 (|has| |#1| (-372)))) (-1610 (((-428 $) $) 178 (|has| |#1| (-372)))) (-4212 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3245 (((-112) $ $) 168 (|has| |#1| (-372)))) (-2358 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 186)) (-2404 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) 18 T CONST)) (-2800 (($ $ $) 172 (|has| |#1| (-372)))) (-1402 (($ $) 72)) (-4322 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 171 (|has| |#1| (-372)))) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 166 (|has| |#1| (-372)))) (-3978 (((-112) $) 179 (|has| |#1| (-372)))) (-4189 (((-112) $) 85)) (-3004 (($) 160 (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-417 (-574)) $) 115) (((-417 (-574)) $ (-417 (-574))) 114)) (-4226 (((-112) $) 35)) (-3527 (($ $ (-574)) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (($ $ (-935)) 116) (($ $ (-417 (-574))) 185)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 175 (|has| |#1| (-372)))) (-1555 (((-112) $) 74)) (-4328 (($ |#1| (-417 (-574))) 73) (($ $ (-1098) (-417 (-574))) 88) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-3113 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-2849 (($ (-654 $)) 164 (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372)))) (-1489 (((-1175) $) 10)) (-1328 (($ $) 180 (|has| |#1| (-372)))) (-3342 (($ $) 184 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 183 (-2833 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-973)) (|has| |#1| (-1219)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 165 (|has| |#1| (-372)))) (-2887 (($ (-654 $)) 162 (|has| |#1| (-372))) (($ $ $) 161 (|has| |#1| (-372)))) (-4202 (((-428 $) $) 176 (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 173 (|has| |#1| (-372)))) (-2433 (($ $ (-417 (-574))) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 167 (|has| |#1| (-372)))) (-1617 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-2098 (((-781) $) 169 (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) 120) (($ $ $) 96 (|has| (-417 (-574)) (-1128)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 170 (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193))) 106 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1193) (-781)) 105 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3580 (((-417 (-574)) $) 76)) (-2417 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-2706 ((|#1| $ (-417 (-574))) 71)) (-3424 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-3333 ((|#1| $) 117)) (-4069 (((-112) $ $) 9)) (-2456 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2429 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-1193)) 107 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193))) 103 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1193) (-781)) 102 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 182 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 181 (|has| |#1| (-372))) (($ $ $) 159 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 130 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1265 |#1|) (-141) (-1065)) (T -1265)) +((-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))) (-4 *4 (-1065)) (-4 *1 (-1265 *4)))) (-3966 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1265 *3)) (-4 *3 (-1065)))) (-3342 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574)))))) (-3342 (*1 *1 *1 *2) (-2833 (-12 (-5 *2 (-1193)) (-4 *1 (-1265 *3)) (-4 *3 (-1065)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1193)) (-4 *1 (-1265 *3)) (-4 *3 (-1065)) (-12 (|has| *3 (-15 -4350 ((-654 *2) *3))) (|has| *3 (-15 -3342 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) +(-13 (-1262 |t#1| (-417 (-574))) (-10 -8 (-15 -3597 ($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |t#1|))))) (-15 -3966 ($ $ (-417 (-574)))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ($ $)) (IF (|has| |t#1| (-15 -3342 (|t#1| |t#1| (-1193)))) (IF (|has| |t#1| (-15 -4350 ((-654 (-1193)) |t#1|))) (-15 -3342 ($ $ (-1193))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1219)) (IF (|has| |t#1| (-973)) (IF (|has| |t#1| (-29 (-574))) (-15 -3342 ($ $ (-1193))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1018)) (-6 (-1219))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1128)) ((-298) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-907 $ #2=(-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-912 #2#) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-989 |#1| #0# (-1098)) . T) ((-934) |has| |#1| (-372)) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1067 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1072 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T) ((-1238) |has| |#1| (-372)) ((-1262 |#1| #0#) . T)) +((-1431 (((-112) $) 12)) (-1704 (((-3 |#3| "failed") $) 17)) (-2214 ((|#3| $) 14))) +(((-1266 |#1| |#2| |#3|) (-10 -8 (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2214 (|#3| |#1|)) (-15 -1431 ((-112) |#1|))) (-1267 |#2| |#3|) (-1065) (-1244 |#2|)) (T -1266)) +NIL +(-10 -8 (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2214 (|#3| |#1|)) (-15 -1431 ((-112) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2884 (($ $) 64 (|has| |#1| (-566)))) (-1981 (((-112) $) 66 (|has| |#1| (-566)))) (-3332 (($ $ (-417 (-574))) 113) (($ $ (-417 (-574)) (-417 (-574))) 112)) (-3108 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 119)) (-2379 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 177 (|has| |#1| (-372)))) (-1610 (((-428 $) $) 178 (|has| |#1| (-372)))) (-4212 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3245 (((-112) $ $) 168 (|has| |#1| (-372)))) (-2358 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 186)) (-2404 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) 18 T CONST)) (-1704 (((-3 |#2| "failed") $) 197)) (-2214 ((|#2| $) 198)) (-2800 (($ $ $) 172 (|has| |#1| (-372)))) (-1402 (($ $) 72)) (-4322 (((-3 $ "failed") $) 37)) (-3128 (((-417 (-574)) $) 194)) (-2813 (($ $ $) 171 (|has| |#1| (-372)))) (-4426 (($ (-417 (-574)) |#2|) 195)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 166 (|has| |#1| (-372)))) (-3978 (((-112) $) 179 (|has| |#1| (-372)))) (-4189 (((-112) $) 85)) (-3004 (($) 160 (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-417 (-574)) $) 115) (((-417 (-574)) $ (-417 (-574))) 114)) (-4226 (((-112) $) 35)) (-3527 (($ $ (-574)) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (($ $ (-935)) 116) (($ $ (-417 (-574))) 185)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 175 (|has| |#1| (-372)))) (-1555 (((-112) $) 74)) (-4328 (($ |#1| (-417 (-574))) 73) (($ $ (-1098) (-417 (-574))) 88) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-3113 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-2849 (($ (-654 $)) 164 (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372)))) (-1881 ((|#2| $) 193)) (-2179 (((-3 |#2| "failed") $) 191)) (-4414 ((|#2| $) 192)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 180 (|has| |#1| (-372)))) (-3342 (($ $) 184 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 183 (-2833 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-973)) (|has| |#1| (-1219)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 165 (|has| |#1| (-372)))) (-2887 (($ (-654 $)) 162 (|has| |#1| (-372))) (($ $ $) 161 (|has| |#1| (-372)))) (-4202 (((-428 $) $) 176 (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 173 (|has| |#1| (-372)))) (-2433 (($ $ (-417 (-574))) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 167 (|has| |#1| (-372)))) (-1617 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-2098 (((-781) $) 169 (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) 120) (($ $ $) 96 (|has| (-417 (-574)) (-1128)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 170 (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193))) 106 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1193) (-781)) 105 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3580 (((-417 (-574)) $) 76)) (-2417 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-2706 ((|#1| $ (-417 (-574))) 71)) (-3424 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-3333 ((|#1| $) 117)) (-4069 (((-112) $ $) 9)) (-2456 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2429 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-1193)) 107 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193))) 103 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1193) (-781)) 102 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 182 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 181 (|has| |#1| (-372))) (($ $ $) 159 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 130 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1267 |#1| |#2|) (-141) (-1065) (-1244 |t#1|)) (T -1267)) +((-3580 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1244 *3)) (-5 *2 (-417 (-574))))) (-4426 (*1 *1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1065)) (-4 *1 (-1267 *4 *3)) (-4 *3 (-1244 *4)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1244 *3)) (-5 *2 (-417 (-574))))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1244 *3)))) (-4414 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1244 *3)))) (-2179 (*1 *2 *1) (|partial| -12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1244 *3))))) +(-13 (-1265 |t#1|) (-1054 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4426 ($ (-417 (-574)) |t#2|)) (-15 -3128 ((-417 (-574)) $)) (-15 -1881 (|t#2| $)) (-15 -3580 ((-417 (-574)) $)) (-15 -4414 (|t#2| $)) (-15 -2179 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1128)) ((-298) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-907 $ #2=(-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-912 #2#) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-989 |#1| #0# (-1098)) . T) ((-934) |has| |#1| (-372)) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1054 |#2|) . T) ((-1067 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1072 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T) ((-1238) |has| |#1| (-372)) ((-1262 |#1| #0#) . T) ((-1265 |#1|) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 104)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-3332 (($ $ (-417 (-574))) 116) (($ $ (-417 (-574)) (-417 (-574))) 118)) (-3108 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 54)) (-2379 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL (|has| |#1| (-372)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 65)) (-2404 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL)) (-2214 ((|#2| $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) 85)) (-3128 (((-417 (-574)) $) 13)) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4426 (($ (-417 (-574)) |#2|) 11)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3978 (((-112) $) NIL (|has| |#1| (-372)))) (-4189 (((-112) $) 74)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-417 (-574)) $) 113) (((-417 (-574)) $ (-417 (-574))) 114)) (-4226 (((-112) $) NIL)) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3966 (($ $ (-935)) 130) (($ $ (-417 (-574))) 128)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-417 (-574))) 33) (($ $ (-1098) (-417 (-574))) NIL) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) 125)) (-3113 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1881 ((|#2| $) 12)) (-2179 (((-3 |#2| "failed") $) 44)) (-4414 ((|#2| $) 45)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) 101 (|has| |#1| (-372)))) (-3342 (($ $) 146 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 151 (-2833 (-12 (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219)))))) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2433 (($ $ (-417 (-574))) 122)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) 108) (($ $ $) 94 (|has| (-417 (-574)) (-1128)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 138 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3580 (((-417 (-574)) $) 16)) (-2417 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) 120)) (-2951 (((-872) $) NIL) (($ (-574)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-417 (-574))) 139 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2706 ((|#1| $ (-417 (-574))) 107)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) 127 T CONST)) (-3333 ((|#1| $) 106)) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 21 T CONST)) (-2153 (($) 17 T CONST)) (-3584 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) 72)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 100 (|has| |#1| (-372)))) (-3090 (($ $) 142) (($ $ $) 78)) (-3074 (($ $ $) 76)) (** (($ $ (-935)) NIL) (($ $ (-781)) 82) (($ $ (-574)) 157 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 158 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1268 |#1| |#2|) (-1267 |#1| |#2|) (-1065) (-1244 |#1|)) (T -1268)) +NIL +(-1267 |#1| |#2|) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 11)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) NIL (|has| |#1| (-566)))) (-3332 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-3108 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-2991 (($ $) NIL (|has| |#1| (-372)))) (-1610 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3245 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-1248 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1276 |#1| |#2| |#3|) "failed") $) 22)) (-2214 (((-1248 |#1| |#2| |#3|) $) NIL) (((-1276 |#1| |#2| |#3|) $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3128 (((-417 (-574)) $) 69)) (-2813 (($ $ $) NIL (|has| |#1| (-372)))) (-4426 (($ (-417 (-574)) (-1248 |#1| |#2| |#3|)) NIL)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3978 (((-112) $) NIL (|has| |#1| (-372)))) (-4189 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-4226 (((-112) $) NIL)) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3966 (($ $ (-935)) NIL) (($ $ (-417 (-574))) NIL)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-417 (-574))) 30) (($ $ (-1098) (-417 (-574))) NIL) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2849 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1881 (((-1248 |#1| |#2| |#3|) $) 72)) (-2179 (((-3 (-1248 |#1| |#2| |#3|) "failed") $) NIL)) (-4414 (((-1248 |#1| |#2| |#3|) $) NIL)) (-1489 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3342 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4202 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1619 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2433 (($ $ (-417 (-574))) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-4095 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-2098 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1128)))) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1280 |#2|)) 38)) (-3580 (((-417 (-574)) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) NIL)) (-2951 (((-872) $) 107) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1248 |#1| |#2| |#3|)) 16) (($ (-1276 |#1| |#2| |#3|)) 17) (($ (-1280 |#2|)) 36) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-2706 ((|#1| $ (-417 (-574))) NIL)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-3333 ((|#1| $) 12)) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 32 T CONST)) (-2153 (($) 26 T CONST)) (-3584 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 34)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1269 |#1| |#2| |#3|) (-13 (-1267 |#1| (-1248 |#1| |#2| |#3|)) (-1054 (-1276 |#1| |#2| |#3|)) (-626 (-1280 |#2|)) (-10 -8 (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1269)) +((-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))) +(-13 (-1267 |#1| (-1248 |#1| |#2| |#3|)) (-1054 (-1276 |#1| |#2| |#3|)) (-626 (-1280 |#2|)) (-10 -8 (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 37)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-2884 (($ $) NIL)) (-1981 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1054 (-417 (-574))))) (((-3 (-1269 |#2| |#3| |#4|) "failed") $) 22)) (-2214 (((-574) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1054 (-417 (-574))))) (((-1269 |#2| |#3| |#4|) $) NIL)) (-1402 (($ $) 41)) (-4322 (((-3 $ "failed") $) 27)) (-3621 (($ $) NIL (|has| (-1269 |#2| |#3| |#4|) (-462)))) (-1849 (($ $ (-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|) $) NIL)) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) 11)) (-1555 (((-112) $) NIL)) (-4328 (($ (-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) 25)) (-3192 (((-327 |#2| |#3| |#4|) $) NIL)) (-4303 (($ (-1 (-327 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) $) NIL)) (-1785 (($ (-1 (-1269 |#2| |#3| |#4|) (-1269 |#2| |#3| |#4|)) $) NIL)) (-3410 (((-3 (-853 |#2|) "failed") $) 90)) (-1366 (($ $) NIL)) (-1378 (((-1269 |#2| |#3| |#4|) $) 20)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 (((-1269 |#2| |#3| |#4|) $) NIL)) (-2853 (((-3 $ "failed") $ (-1269 |#2| |#3| |#4|)) NIL (|has| (-1269 |#2| |#3| |#4|) (-566))) (((-3 $ "failed") $ $) NIL)) (-2738 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1269 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1175))) "failed") $) 74)) (-3580 (((-327 |#2| |#3| |#4|) $) 17)) (-2372 (((-1269 |#2| |#3| |#4|) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-1269 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL (-2833 (|has| (-1269 |#2| |#3| |#4|) (-38 (-417 (-574)))) (|has| (-1269 |#2| |#3| |#4|) (-1054 (-417 (-574))))))) (-1634 (((-654 (-1269 |#2| |#3| |#4|)) $) NIL)) (-2706 (((-1269 |#2| |#3| |#4|) $ (-327 |#2| |#3| |#4|)) NIL)) (-3424 (((-3 $ "failed") $) NIL (|has| (-1269 |#2| |#3| |#4|) (-146)))) (-2898 (((-781)) NIL T CONST)) (-3652 (($ $ $ (-781)) NIL (|has| (-1269 |#2| |#3| |#4|) (-174)))) (-4069 (((-112) $ $) NIL)) (-2836 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ (-1269 |#2| |#3| |#4|)) NIL (|has| (-1269 |#2| |#3| |#4|) (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-1269 |#2| |#3| |#4|)) NIL) (($ (-1269 |#2| |#3| |#4|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| (-1269 |#2| |#3| |#4|) (-38 (-417 (-574))))))) +(((-1270 |#1| |#2| |#3| |#4|) (-13 (-334 (-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -3410 ((-3 (-853 |#2|) "failed") $)) (-15 -2738 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1269 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1175))) "failed") $)))) (-13 (-1054 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1219) (-440 |#1|)) (-1193) |#2|) (T -1270)) +((-3410 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-1270 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193)) (-14 *6 *4))) (-2738 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1269 *4 *5 *6)) (|:| |%expon| (-327 *4 *5 *6)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))))) (|:| |%type| (-1175)))) (-5 *1 (-1270 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193)) (-14 *6 *4)))) +(-13 (-334 (-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -3410 ((-3 (-853 |#2|) "failed") $)) (-15 -2738 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1269 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1175))) "failed") $)))) +((-3079 ((|#2| $) 34)) (-2421 ((|#2| $) 18)) (-1978 (($ $) 53)) (-1652 (($ $ (-574)) 85)) (-3146 (((-112) $ (-781)) 46)) (-4433 ((|#2| $ |#2|) 82)) (-2523 ((|#2| $ |#2|) 78)) (-3135 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2705 (($ $ (-654 $)) 81)) (-2408 ((|#2| $) 17)) (-2935 (($ $) NIL) (($ $ (-781)) 59)) (-1482 (((-654 $) $) 31)) (-2622 (((-112) $ $) 69)) (-2189 (((-112) $ (-781)) 45)) (-1653 (((-112) $ (-781)) 43)) (-1580 (((-112) $) 33)) (-3334 ((|#2| $) 25) (($ $ (-781)) 64)) (-2207 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3911 (((-112) $) 23)) (-1939 (($ $) 56)) (-2043 (($ $) 86)) (-1746 (((-781) $) 58)) (-2386 (($ $) 57)) (-4132 (($ $ $) 77) (($ |#2| $) NIL)) (-4163 (((-654 $) $) 32)) (-2986 (((-112) $ $) 67)) (-2877 (((-781) $) 52))) +(((-1271 |#1| |#2|) (-10 -8 (-15 -1652 (|#1| |#1| (-574))) (-15 -3135 (|#2| |#1| "last" |#2|)) (-15 -2523 (|#2| |#1| |#2|)) (-15 -3135 (|#1| |#1| "rest" |#1|)) (-15 -3135 (|#2| |#1| "first" |#2|)) (-15 -2043 (|#1| |#1|)) (-15 -1939 (|#1| |#1|)) (-15 -1746 ((-781) |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -2421 (|#2| |#1|)) (-15 -2408 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3334 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "last")) (-15 -3334 (|#2| |#1|)) (-15 -2935 (|#1| |#1| (-781))) (-15 -2207 (|#1| |#1| "rest")) (-15 -2935 (|#1| |#1|)) (-15 -2207 (|#2| |#1| "first")) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4433 (|#2| |#1| |#2|)) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -2705 (|#1| |#1| (-654 |#1|))) (-15 -2622 ((-112) |#1| |#1|)) (-15 -3911 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -3079 (|#2| |#1|)) (-15 -1580 ((-112) |#1|)) (-15 -1482 ((-654 |#1|) |#1|)) (-15 -4163 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -3146 ((-112) |#1| (-781))) (-15 -2189 ((-112) |#1| (-781))) (-15 -1653 ((-112) |#1| (-781)))) (-1272 |#2|) (-1234)) (T -1271)) +NIL +(-10 -8 (-15 -1652 (|#1| |#1| (-574))) (-15 -3135 (|#2| |#1| "last" |#2|)) (-15 -2523 (|#2| |#1| |#2|)) (-15 -3135 (|#1| |#1| "rest" |#1|)) (-15 -3135 (|#2| |#1| "first" |#2|)) (-15 -2043 (|#1| |#1|)) (-15 -1939 (|#1| |#1|)) (-15 -1746 ((-781) |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -2421 (|#2| |#1|)) (-15 -2408 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3334 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "last")) (-15 -3334 (|#2| |#1|)) (-15 -2935 (|#1| |#1| (-781))) (-15 -2207 (|#1| |#1| "rest")) (-15 -2935 (|#1| |#1|)) (-15 -2207 (|#2| |#1| "first")) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4433 (|#2| |#1| |#2|)) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -2705 (|#1| |#1| (-654 |#1|))) (-15 -2622 ((-112) |#1| |#1|)) (-15 -3911 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -3079 (|#2| |#1|)) (-15 -1580 ((-112) |#1|)) (-15 -1482 ((-654 |#1|) |#1|)) (-15 -4163 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -3146 ((-112) |#1| (-781))) (-15 -2189 ((-112) |#1| (-781))) (-15 -1653 ((-112) |#1| (-781)))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-2421 ((|#1| $) 66)) (-1978 (($ $) 68)) (-1652 (($ $ (-574)) 53 (|has| $ (-6 -4460)))) (-3146 (((-112) $ (-781)) 8)) (-4433 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3370 (($ $ $) 57 (|has| $ (-6 -4460)))) (-2523 ((|#1| $ |#1|) 55 (|has| $ (-6 -4460)))) (-2186 ((|#1| $ |#1|) 59 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4460))) (($ $ "rest" $) 56 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4460)))) (-2705 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-2408 ((|#1| $) 67)) (-3250 (($) 7 T CONST)) (-2935 (($ $) 74) (($ $ (-781)) 72)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-1482 (((-654 $) $) 51)) (-2622 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-2189 (((-112) $ (-781)) 9)) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-1653 (((-112) $ (-781)) 10)) (-3483 (((-654 |#1|) $) 46)) (-1580 (((-112) $) 50)) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3334 ((|#1| $) 71) (($ $ (-781)) 69)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 77) (($ $ (-781)) 75)) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3615 (((-574) $ $) 45)) (-3911 (((-112) $) 47)) (-1939 (($ $) 63)) (-2043 (($ $) 60 (|has| $ (-6 -4460)))) (-1746 (((-781) $) 64)) (-2386 (($ $) 65)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2982 (($ $ $) 62 (|has| $ (-6 -4460))) (($ $ |#1|) 61 (|has| $ (-6 -4460)))) (-4132 (($ $ $) 79) (($ |#1| $) 78)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4163 (((-654 $) $) 52)) (-4208 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-1272 |#1|) (-141) (-1234)) (T -1272)) +((-4132 (*1 *1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-4132 (*1 *1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2925 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) (-2935 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) (-2935 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2386 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))) (-1939 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2982 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2982 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2043 (*1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2186 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-3135 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-3370 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-3135 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) (-2523 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-3135 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-1652 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4460)) (-4 *1 (-1272 *3)) (-4 *3 (-1234))))) +(-13 (-1026 |t#1|) (-10 -8 (-15 -4132 ($ $ $)) (-15 -4132 ($ |t#1| $)) (-15 -2925 (|t#1| $)) (-15 -2207 (|t#1| $ "first")) (-15 -2925 ($ $ (-781))) (-15 -2935 ($ $)) (-15 -2207 ($ $ "rest")) (-15 -2935 ($ $ (-781))) (-15 -3334 (|t#1| $)) (-15 -2207 (|t#1| $ "last")) (-15 -3334 ($ $ (-781))) (-15 -1978 ($ $)) (-15 -2408 (|t#1| $)) (-15 -2421 (|t#1| $)) (-15 -2386 ($ $)) (-15 -1746 ((-781) $)) (-15 -1939 ($ $)) (IF (|has| $ (-6 -4460)) (PROGN (-15 -2982 ($ $ $)) (-15 -2982 ($ $ |t#1|)) (-15 -2043 ($ $)) (-15 -2186 (|t#1| $ |t#1|)) (-15 -3135 (|t#1| $ "first" |t#1|)) (-15 -3370 ($ $ $)) (-15 -3135 ($ $ "rest" $)) (-15 -2523 (|t#1| $ |t#1|)) (-15 -3135 (|t#1| $ "last" |t#1|)) (-15 -1652 ($ $ (-574)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T)) +((-1785 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1273 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#2| |#1|) |#3|))) (-1065) (-1065) (-1275 |#1|) (-1275 |#2|)) (T -1273)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-4 *2 (-1275 *6)) (-5 *1 (-1273 *5 *6 *4 *2)) (-4 *4 (-1275 *5))))) +(-10 -7 (-15 -1785 (|#4| (-1 |#2| |#1|) |#3|))) +((-1431 (((-112) $) 17)) (-2379 (($ $) 105)) (-2258 (($ $) 81)) (-2358 (($ $) 101)) (-2235 (($ $) 77)) (-2404 (($ $) 109)) (-2280 (($ $) 85)) (-3113 (($ $) 75)) (-1617 (($ $) 73)) (-2417 (($ $) 111)) (-2289 (($ $) 87)) (-2390 (($ $) 107)) (-2269 (($ $) 83)) (-2368 (($ $) 103)) (-2247 (($ $) 79)) (-2951 (((-872) $) 61) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2456 (($ $) 117)) (-2320 (($ $) 93)) (-2429 (($ $) 113)) (-2301 (($ $) 89)) (-2480 (($ $) 121)) (-2340 (($ $) 97)) (-2536 (($ $) 123)) (-2349 (($ $) 99)) (-2468 (($ $) 119)) (-2330 (($ $) 95)) (-2443 (($ $) 115)) (-2312 (($ $) 91)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-417 (-574))) 71))) +(((-1274 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2258 (|#1| |#1|)) (-15 -2235 (|#1| |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -1617 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935))) (-15 -1431 ((-112) |#1|)) (-15 -2951 ((-872) |#1|))) (-1275 |#2|) (-1065)) (T -1274)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2258 (|#1| |#1|)) (-15 -2235 (|#1| |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -1617 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935))) (-15 -1431 ((-112) |#1|)) (-15 -2951 ((-872) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2884 (($ $) 64 (|has| |#1| (-566)))) (-1981 (((-112) $) 66 (|has| |#1| (-566)))) (-3332 (($ $ (-781)) 113) (($ $ (-781) (-781)) 112)) (-3108 (((-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 119)) (-2379 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) 20)) (-4212 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 170) (($ (-1173 |#1|)) 168)) (-2404 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) 18 T CONST)) (-1402 (($ $) 72)) (-4322 (((-3 $ "failed") $) 37)) (-3012 (($ $) 167)) (-4027 (((-966 |#1|) $ (-781)) 165) (((-966 |#1|) $ (-781) (-781)) 164)) (-4189 (((-112) $) 85)) (-3004 (($) 160 (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-781) $) 115) (((-781) $ (-781)) 114)) (-4226 (((-112) $) 35)) (-3527 (($ $ (-574)) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (($ $ (-935)) 116)) (-4152 (($ (-1 |#1| (-574)) $) 166)) (-1555 (((-112) $) 74)) (-4328 (($ |#1| (-781)) 73) (($ $ (-1098) (-781)) 88) (($ $ (-654 (-1098)) (-654 (-781))) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-3113 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-1489 (((-1175) $) 10)) (-3342 (($ $) 162 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 161 (-2833 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-973)) (|has| |#1| (-1219)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3940 (((-1136) $) 11)) (-2433 (($ $ (-781)) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1617 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2207 ((|#1| $ (-781)) 120) (($ $ $) 96 (|has| (-781) (-1128)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1193))) 106 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1193) (-781)) 105 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-3580 (((-781) $) 76)) (-2417 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1634 (((-1173 |#1|) $) 169)) (-2706 ((|#1| $ (-781)) 71)) (-3424 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2898 (((-781)) 32 T CONST)) (-3333 ((|#1| $) 117)) (-4069 (((-112) $ $) 9)) (-2456 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2429 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-781)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3584 (($ $ (-1193)) 107 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1193))) 103 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1193) (-781)) 102 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ |#1|) 163 (|has| |#1| (-372))) (($ $ $) 159 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 130 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1275 |#1|) (-141) (-1065)) (T -1275)) +((-3597 (*1 *1 *2) (-12 (-5 *2 (-1173 (-2 (|:| |k| (-781)) (|:| |c| *3)))) (-4 *3 (-1065)) (-4 *1 (-1275 *3)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1065)) (-5 *2 (-1173 *3)))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-4 *1 (-1275 *3)))) (-3012 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1275 *3)) (-4 *3 (-1065)))) (-4027 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1275 *4)) (-4 *4 (-1065)) (-5 *2 (-966 *4)))) (-4027 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1275 *4)) (-4 *4 (-1065)) (-5 *2 (-966 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3342 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574)))))) (-3342 (*1 *1 *1 *2) (-2833 (-12 (-5 *2 (-1193)) (-4 *1 (-1275 *3)) (-4 *3 (-1065)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1193)) (-4 *1 (-1275 *3)) (-4 *3 (-1065)) (-12 (|has| *3 (-15 -4350 ((-654 *2) *3))) (|has| *3 (-15 -3342 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) +(-13 (-1262 |t#1| (-781)) (-10 -8 (-15 -3597 ($ (-1173 (-2 (|:| |k| (-781)) (|:| |c| |t#1|))))) (-15 -1634 ((-1173 |t#1|) $)) (-15 -3597 ($ (-1173 |t#1|))) (-15 -3012 ($ $)) (-15 -4152 ($ (-1 |t#1| (-574)) $)) (-15 -4027 ((-966 |t#1|) $ (-781))) (-15 -4027 ((-966 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-372)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3342 ($ $)) (IF (|has| |t#1| (-15 -3342 (|t#1| |t#1| (-1193)))) (IF (|has| |t#1| (-15 -4350 ((-654 (-1193)) |t#1|))) (-15 -3342 ($ $ (-1193))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1219)) (IF (|has| |t#1| (-973)) (IF (|has| |t#1| (-29 (-574))) (-15 -3342 ($ $ (-1193))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1018)) (-6 (-1219))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-781) (-1128)) ((-298) |has| |#1| (-566)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-907 $ #2=(-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))) ((-912 #2#) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))) ((-989 |#1| #0# (-1098)) . T) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1067 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T) ((-1262 |#1| #0#) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 90)) (-2276 (((-1257 |#2| |#1|) $ (-781)) 73)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2884 (($ $) NIL (|has| |#1| (-566)))) (-1981 (((-112) $) 142 (|has| |#1| (-566)))) (-3332 (($ $ (-781)) 127) (($ $ (-781) (-781)) 130)) (-3108 (((-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 43)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2600 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 52) (($ (-1173 |#1|)) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3250 (($) NIL T CONST)) (-1524 (($ $) 134)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3012 (($ $) 140)) (-4027 (((-966 |#1|) $ (-781)) 63) (((-966 |#1|) $ (-781) (-781)) 65)) (-4189 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3547 (((-781) $) NIL) (((-781) $ (-781)) NIL)) (-4226 (((-112) $) NIL)) (-4042 (($ $) 117)) (-3527 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2187 (($ (-574) (-574) $) 136)) (-3966 (($ $ (-935)) 139)) (-4152 (($ (-1 |#1| (-574)) $) 111)) (-1555 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) 16) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) 98)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-4003 (($ $) 115)) (-1456 (($ $) 113)) (-3438 (($ (-574) (-574) $) 138)) (-3342 (($ $) 150 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 156 (-2833 (-12 (|has| |#1| (-15 -3342 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 151 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-3059 (($ $ (-574) (-574)) 121)) (-2433 (($ $ (-781)) 123)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2199 (($ $) 119)) (-2661 (((-1173 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2207 ((|#1| $ (-781)) 95) (($ $ $) 132 (|has| (-781) (-1128)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1280 |#2|)) 103)) (-3580 (((-781) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2916 (($ $) 125)) (-2951 (((-872) $) NIL) (($ (-574)) 26) (($ (-417 (-574))) 148 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1257 |#2| |#1|)) 81) (($ (-1280 |#2|)) 22)) (-1634 (((-1173 |#1|) $) NIL)) (-2706 ((|#1| $ (-781)) 94)) (-3424 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2898 (((-781)) NIL T CONST)) (-3333 ((|#1| $) 91)) (-4069 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2836 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-781)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 18 T CONST)) (-2153 (($) 13 T CONST)) (-3584 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2986 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) 107)) (-3074 (($ $ $) 20)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 145 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1276 |#1| |#2| |#3|) (-13 (-1275 |#1|) (-10 -8 (-15 -2951 ($ (-1257 |#2| |#1|))) (-15 -2276 ((-1257 |#2| |#1|) $ (-781))) (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (-15 -1456 ($ $)) (-15 -4003 ($ $)) (-15 -4042 ($ $)) (-15 -2199 ($ $)) (-15 -3059 ($ $ (-574) (-574))) (-15 -1524 ($ $)) (-15 -2187 ($ (-574) (-574) $)) (-15 -3438 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1276)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3) (-5 *1 (-1276 *3 *4 *5)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1276 *4 *5 *6)) (-4 *4 (-1065)) (-14 *5 (-1193)) (-14 *6 *4))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) (-14 *4 *2))) (-4003 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) (-14 *4 *2))) (-4042 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) (-14 *4 *2))) (-2199 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) (-14 *4 *2))) (-3059 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3))) (-1524 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) (-14 *4 *2))) (-2187 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3))) (-3438 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))) +(-13 (-1275 |#1|) (-10 -8 (-15 -2951 ($ (-1257 |#2| |#1|))) (-15 -2276 ((-1257 |#2| |#1|) $ (-781))) (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (-15 -1456 ($ $)) (-15 -4003 ($ $)) (-15 -4042 ($ $)) (-15 -2199 ($ $)) (-15 -3059 ($ $ (-574) (-574))) (-15 -1524 ($ $)) (-15 -2187 ($ (-574) (-574) $)) (-15 -3438 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3342 ($ $ (-1280 |#2|))) |%noBranch|))) +((-3540 (((-1 (-1173 |#1|) (-654 (-1173 |#1|))) (-1 |#2| (-654 |#2|))) 24)) (-1924 (((-1 (-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4315 (((-1 (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2|)) 13)) (-2182 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2180 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2605 ((|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|)) 60)) (-3291 (((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))) 66)) (-1426 ((|#2| |#2| |#2|) 43))) +(((-1277 |#1| |#2|) (-10 -7 (-15 -4315 ((-1 (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2|))) (-15 -1924 ((-1 (-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3540 ((-1 (-1173 |#1|) (-654 (-1173 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -1426 (|#2| |#2| |#2|)) (-15 -2180 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2182 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2605 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -3291 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))))) (-38 (-417 (-574))) (-1275 |#1|)) (T -1277)) +((-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6)))) (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1275 *5)) (-5 *2 (-654 *6)) (-5 *1 (-1277 *5 *6)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5)) (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1275 *5)) (-5 *1 (-1277 *5 *2)))) (-2182 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-1277 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-1277 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-1426 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1277 *3 *2)) (-4 *2 (-1275 *3)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1275 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1173 *4) (-654 (-1173 *4)))) (-5 *1 (-1277 *4 *5)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1173 *4) (-1173 *4) (-1173 *4))) (-5 *1 (-1277 *4 *5)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1173 *4) (-1173 *4))) (-5 *1 (-1277 *4 *5))))) +(-10 -7 (-15 -4315 ((-1 (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2|))) (-15 -1924 ((-1 (-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3540 ((-1 (-1173 |#1|) (-654 (-1173 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -1426 (|#2| |#2| |#2|)) (-15 -2180 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2182 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2605 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -3291 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))))) +((-3032 ((|#2| |#4| (-781)) 31)) (-1760 ((|#4| |#2|) 26)) (-3129 ((|#4| (-417 |#2|)) 49 (|has| |#1| (-566)))) (-4391 (((-1 |#4| (-654 |#4|)) |#3|) 43))) +(((-1278 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1760 (|#4| |#2|)) (-15 -3032 (|#2| |#4| (-781))) (-15 -4391 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -3129 (|#4| (-417 |#2|))) |%noBranch|)) (-1065) (-1260 |#1|) (-666 |#2|) (-1275 |#1|)) (T -1278)) +((-3129 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-566)) (-4 *4 (-1065)) (-4 *2 (-1275 *4)) (-5 *1 (-1278 *4 *5 *6 *2)) (-4 *6 (-666 *5)))) (-4391 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-1260 *4)) (-5 *2 (-1 *6 (-654 *6))) (-5 *1 (-1278 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1275 *4)))) (-3032 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1065)) (-4 *2 (-1260 *5)) (-5 *1 (-1278 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1275 *5)))) (-1760 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *3 (-1260 *4)) (-4 *2 (-1275 *4)) (-5 *1 (-1278 *4 *3 *5 *2)) (-4 *5 (-666 *3))))) +(-10 -7 (-15 -1760 (|#4| |#2|)) (-15 -3032 (|#2| |#4| (-781))) (-15 -4391 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -3129 (|#4| (-417 |#2|))) |%noBranch|)) +NIL +(((-1279) (-141)) (T -1279)) +NIL +(-13 (-10 -7 (-6 -3495))) +((-2864 (((-112) $ $) NIL)) (-1498 (((-1193)) 12)) (-1489 (((-1175) $) 18)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 11) (((-1193) $) 8)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 15))) +(((-1280 |#1|) (-13 (-1116) (-623 (-1193)) (-10 -8 (-15 -2951 ((-1193) $)) (-15 -1498 ((-1193))))) (-1193)) (T -1280)) +((-2951 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1280 *3)) (-14 *3 *2))) (-1498 (*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1280 *3)) (-14 *3 *2)))) +(-13 (-1116) (-623 (-1193)) (-10 -8 (-15 -2951 ((-1193) $)) (-15 -1498 ((-1193))))) +((-2225 (($ (-781)) 19)) (-3873 (((-699 |#2|) $ $) 41)) (-4397 ((|#2| $) 51)) (-4109 ((|#2| $) 50)) (-3918 ((|#2| $ $) 36)) (-3712 (($ $ $) 47)) (-3090 (($ $) 23) (($ $ $) 29)) (-3074 (($ $ $) 15)) (* (($ (-574) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1281 |#1| |#2|) (-10 -8 (-15 -4397 (|#2| |#1|)) (-15 -4109 (|#2| |#1|)) (-15 -3712 (|#1| |#1| |#1|)) (-15 -3873 ((-699 |#2|) |#1| |#1|)) (-15 -3918 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -2225 (|#1| (-781))) (-15 -3074 (|#1| |#1| |#1|))) (-1282 |#2|) (-1234)) (T -1281)) +NIL +(-10 -8 (-15 -4397 (|#2| |#1|)) (-15 -4109 (|#2| |#1|)) (-15 -3712 (|#1| |#1| |#1|)) (-15 -3873 ((-699 |#2|) |#1| |#1|)) (-15 -3918 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -2225 (|#1| (-781))) (-15 -3074 (|#1| |#1| |#1|))) +((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2225 (($ (-781)) 115 (|has| |#1| (-23)))) (-2985 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-3250 (($) 7 T CONST)) (-2412 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-2804 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1452 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3873 (((-699 |#1|) $ $) 108 (|has| |#1| (-1065)))) (-3764 (($ (-781) |#1|) 70)) (-2189 (((-112) $ (-781)) 9)) (-3429 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| |#1| (-860)))) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-1698 (((-574) $) 45 (|has| (-574) (-860)))) (-4380 (($ $ $) 89 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4397 ((|#1| $) 105 (-12 (|has| |#1| (-1065)) (|has| |#1| (-1018))))) (-1653 (((-112) $ (-781)) 10)) (-4109 ((|#1| $) 106 (-12 (|has| |#1| (-1065)) (|has| |#1| (-1018))))) (-1489 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1393 (((-654 (-574)) $) 47)) (-1506 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1822 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) 14)) (-2626 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) 49)) (-2754 (((-112) $) 11)) (-3336 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-3918 ((|#1| $ $) 109 (|has| |#1| (-1065)))) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3712 (($ $ $) 107 (|has| |#1| (-1065)))) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-4036 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 72)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3030 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3090 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3074 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459))))) +(((-1282 |#1|) (-141) (-1234)) (T -1282)) +((-3074 (*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-25)))) (-2225 (*1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1282 *3)) (-4 *3 (-23)) (-4 *3 (-1234)))) (-3090 (*1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-21)))) (-3090 (*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1282 *3)) (-4 *3 (-1234)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-736)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-736)))) (-3918 (*1 *2 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1065)))) (-3873 (*1 *2 *1 *1) (-12 (-4 *1 (-1282 *3)) (-4 *3 (-1234)) (-4 *3 (-1065)) (-5 *2 (-699 *3)))) (-3712 (*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1065)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1018)) (-4 *2 (-1065)))) (-4397 (*1 *2 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1018)) (-4 *2 (-1065))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3074 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2225 ($ (-781))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3090 ($ $)) (-15 -3090 ($ $ $)) (-15 * ($ (-574) $))) |%noBranch|) (IF (|has| |t#1| (-736)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1065)) (PROGN (-15 -3918 (|t#1| $ $)) (-15 -3873 ((-699 |t#1|) $ $)) (-15 -3712 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1018)) (IF (|has| |t#1| (-1065)) (PROGN (-15 -4109 (|t#1| $)) (-15 -4397 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1116) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-1234) . T)) +((-3465 (((-1284 |#2|) (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|) 13)) (-2882 ((|#2| (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|) 15)) (-1785 (((-3 (-1284 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1284 |#1|)) 30) (((-1284 |#2|) (-1 |#2| |#1|) (-1284 |#1|)) 18))) +(((-1283 |#1| |#2|) (-10 -7 (-15 -3465 ((-1284 |#2|) (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|)) (-15 -1785 ((-1284 |#2|) (-1 |#2| |#1|) (-1284 |#1|))) (-15 -1785 ((-3 (-1284 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1284 |#1|)))) (-1234) (-1234)) (T -1283)) +((-1785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1284 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1284 *6)) (-5 *1 (-1283 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1284 *6)) (-5 *1 (-1283 *5 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1284 *5)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-1283 *5 *2)))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1284 *6)) (-4 *6 (-1234)) (-4 *5 (-1234)) (-5 *2 (-1284 *5)) (-5 *1 (-1283 *6 *5))))) +(-10 -7 (-15 -3465 ((-1284 |#2|) (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|)) (-15 -1785 ((-1284 |#2|) (-1 |#2| |#1|) (-1284 |#1|))) (-15 -1785 ((-3 (-1284 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1284 |#1|)))) +((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2225 (($ (-781)) NIL (|has| |#1| (-23)))) (-3866 (($ (-654 |#1|)) 11)) (-2985 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3861 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4140 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3146 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2172 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3250 (($) NIL T CONST)) (-2412 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) 16 (|has| $ (-6 -4459)))) (-3873 (((-699 |#1|) $ $) NIL (|has| |#1| (-1065)))) (-3764 (($ (-781) |#1|) NIL)) (-2189 (((-112) $ (-781)) NIL)) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-3404 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-2036 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4134 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1698 (((-574) $) 12 (|has| (-574) (-860)))) (-4380 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4397 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-1653 (((-112) $ (-781)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-1489 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1393 (((-654 (-574)) $) NIL)) (-1506 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-2183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1822 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3449 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2626 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2315 (((-654 |#1|) $) NIL)) (-2754 (((-112) $) NIL)) (-3336 (($) NIL)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3918 ((|#1| $ $) NIL (|has| |#1| (-1065)))) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3712 (($ $ $) NIL (|has| |#1| (-1065)))) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-4036 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) 20 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 10)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4069 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2020 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3090 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3074 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1284 |#1|) (-13 (-1282 |#1|) (-10 -8 (-15 -3866 ($ (-654 |#1|))))) (-1234)) (T -1284)) +((-3866 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1284 *3))))) +(-13 (-1282 |#1|) (-10 -8 (-15 -3866 ($ (-654 |#1|))))) +((-2864 (((-112) $ $) NIL)) (-1612 (((-1175) $ (-1175)) 107) (((-1175) $ (-1175) (-1175)) 105) (((-1175) $ (-1175) (-654 (-1175))) 104)) (-1986 (($) 69)) (-1403 (((-1289) $ (-478) (-935)) 54)) (-2005 (((-1289) $ (-935) (-1175)) 89) (((-1289) $ (-935) (-884)) 90)) (-2823 (((-1289) $ (-935) (-388) (-388)) 57)) (-3851 (((-1289) $ (-1175)) 84)) (-1626 (((-1289) $ (-935) (-1175)) 94)) (-4251 (((-1289) $ (-935) (-388) (-388)) 58)) (-3543 (((-1289) $ (-935) (-935)) 55)) (-1588 (((-1289) $) 85)) (-4107 (((-1289) $ (-935) (-1175)) 93)) (-2851 (((-1289) $ (-478) (-935)) 41)) (-1851 (((-1289) $ (-935) (-1175)) 92)) (-3198 (((-654 (-270)) $) 29) (($ $ (-654 (-270))) 30)) (-1370 (((-1289) $ (-781) (-781)) 52)) (-3193 (($ $) 70) (($ (-478) (-654 (-270))) 71)) (-1489 (((-1175) $) NIL)) (-3667 (((-574) $) 48)) (-3940 (((-1136) $) NIL)) (-2236 (((-1284 (-3 (-478) "undefined")) $) 47)) (-2541 (((-1284 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1851 (-574)) (|:| -3890 (-574)) (|:| |spline| (-574)) (|:| -2937 (-574)) (|:| |axesColor| (-884)) (|:| -2005 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $) 46)) (-3678 (((-1289) $ (-935) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574)) 83)) (-1340 (((-654 (-957 (-227))) $) NIL)) (-2450 (((-478) $ (-935)) 43)) (-2628 (((-1289) $ (-781) (-781) (-935) (-935)) 50)) (-2848 (((-1289) $ (-1175)) 95)) (-3890 (((-1289) $ (-935) (-1175)) 91)) (-2951 (((-872) $) 102)) (-1390 (((-1289) $) 96)) (-4069 (((-112) $ $) NIL)) (-2937 (((-1289) $ (-935) (-1175)) 87) (((-1289) $ (-935) (-884)) 88)) (-2986 (((-112) $ $) NIL))) +(((-1285) (-13 (-1116) (-10 -8 (-15 -1340 ((-654 (-957 (-227))) $)) (-15 -1986 ($)) (-15 -3193 ($ $)) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -3193 ($ (-478) (-654 (-270)))) (-15 -3678 ((-1289) $ (-935) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -2541 ((-1284 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1851 (-574)) (|:| -3890 (-574)) (|:| |spline| (-574)) (|:| -2937 (-574)) (|:| |axesColor| (-884)) (|:| -2005 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -2236 ((-1284 (-3 (-478) "undefined")) $)) (-15 -3851 ((-1289) $ (-1175))) (-15 -2851 ((-1289) $ (-478) (-935))) (-15 -2450 ((-478) $ (-935))) (-15 -2937 ((-1289) $ (-935) (-1175))) (-15 -2937 ((-1289) $ (-935) (-884))) (-15 -2005 ((-1289) $ (-935) (-1175))) (-15 -2005 ((-1289) $ (-935) (-884))) (-15 -1851 ((-1289) $ (-935) (-1175))) (-15 -4107 ((-1289) $ (-935) (-1175))) (-15 -3890 ((-1289) $ (-935) (-1175))) (-15 -2848 ((-1289) $ (-1175))) (-15 -1390 ((-1289) $)) (-15 -2628 ((-1289) $ (-781) (-781) (-935) (-935))) (-15 -4251 ((-1289) $ (-935) (-388) (-388))) (-15 -2823 ((-1289) $ (-935) (-388) (-388))) (-15 -1626 ((-1289) $ (-935) (-1175))) (-15 -1370 ((-1289) $ (-781) (-781))) (-15 -1403 ((-1289) $ (-478) (-935))) (-15 -3543 ((-1289) $ (-935) (-935))) (-15 -1612 ((-1175) $ (-1175))) (-15 -1612 ((-1175) $ (-1175) (-1175))) (-15 -1612 ((-1175) $ (-1175) (-654 (-1175)))) (-15 -1588 ((-1289) $)) (-15 -3667 ((-574) $)) (-15 -2951 ((-872) $))))) (T -1285)) +((-2951 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1285)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-654 (-957 (-227)))) (-5 *1 (-1285)))) (-1986 (*1 *1) (-5 *1 (-1285))) (-3193 (*1 *1 *1) (-5 *1 (-1285))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) (-3198 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1285)))) (-3678 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-935)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-1284 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1851 (-574)) (|:| -3890 (-574)) (|:| |spline| (-574)) (|:| -2937 (-574)) (|:| |axesColor| (-884)) (|:| -2005 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574))))) (-5 *1 (-1285)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1284 (-3 (-478) "undefined"))) (-5 *1 (-1285)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2450 (*1 *2 *1 *3) (-12 (-5 *3 (-935)) (-5 *2 (-478)) (-5 *1 (-1285)))) (-2937 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2937 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-884)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2005 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2005 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-884)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-1851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-4107 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-3890 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2848 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2628 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-4251 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-935)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2823 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-935)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-1626 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-1370 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-1403 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-3543 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-1612 (*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1285)))) (-1612 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1285)))) (-1612 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-1285)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1285)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1285))))) +(-13 (-1116) (-10 -8 (-15 -1340 ((-654 (-957 (-227))) $)) (-15 -1986 ($)) (-15 -3193 ($ $)) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -3193 ($ (-478) (-654 (-270)))) (-15 -3678 ((-1289) $ (-935) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -2541 ((-1284 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1851 (-574)) (|:| -3890 (-574)) (|:| |spline| (-574)) (|:| -2937 (-574)) (|:| |axesColor| (-884)) (|:| -2005 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -2236 ((-1284 (-3 (-478) "undefined")) $)) (-15 -3851 ((-1289) $ (-1175))) (-15 -2851 ((-1289) $ (-478) (-935))) (-15 -2450 ((-478) $ (-935))) (-15 -2937 ((-1289) $ (-935) (-1175))) (-15 -2937 ((-1289) $ (-935) (-884))) (-15 -2005 ((-1289) $ (-935) (-1175))) (-15 -2005 ((-1289) $ (-935) (-884))) (-15 -1851 ((-1289) $ (-935) (-1175))) (-15 -4107 ((-1289) $ (-935) (-1175))) (-15 -3890 ((-1289) $ (-935) (-1175))) (-15 -2848 ((-1289) $ (-1175))) (-15 -1390 ((-1289) $)) (-15 -2628 ((-1289) $ (-781) (-781) (-935) (-935))) (-15 -4251 ((-1289) $ (-935) (-388) (-388))) (-15 -2823 ((-1289) $ (-935) (-388) (-388))) (-15 -1626 ((-1289) $ (-935) (-1175))) (-15 -1370 ((-1289) $ (-781) (-781))) (-15 -1403 ((-1289) $ (-478) (-935))) (-15 -3543 ((-1289) $ (-935) (-935))) (-15 -1612 ((-1175) $ (-1175))) (-15 -1612 ((-1175) $ (-1175) (-1175))) (-15 -1612 ((-1175) $ (-1175) (-654 (-1175)))) (-15 -1588 ((-1289) $)) (-15 -3667 ((-574) $)) (-15 -2951 ((-872) $)))) +((-2864 (((-112) $ $) NIL)) (-1786 (((-1289) $ (-388)) 169) (((-1289) $ (-388) (-388) (-388)) 170)) (-1612 (((-1175) $ (-1175)) 179) (((-1175) $ (-1175) (-1175)) 177) (((-1175) $ (-1175) (-654 (-1175))) 176)) (-3421 (($) 67)) (-1476 (((-1289) $ (-388) (-388) (-388) (-388) (-388)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1289) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1289) $ (-574) (-574) (-388) (-388) (-388)) 144) (((-1289) $ (-388) (-388)) 145) (((-1289) $ (-388) (-388) (-388)) 152)) (-2143 (((-388)) 122) (((-388) (-388)) 123)) (-1971 (((-388)) 117) (((-388) (-388)) 119)) (-4170 (((-388)) 120) (((-388) (-388)) 121)) (-1870 (((-388)) 126) (((-388) (-388)) 127)) (-3472 (((-388)) 124) (((-388) (-388)) 125)) (-2823 (((-1289) $ (-388) (-388)) 171)) (-3851 (((-1289) $ (-1175)) 153)) (-1757 (((-1149 (-227)) $) 68) (($ $ (-1149 (-227))) 69)) (-3490 (((-1289) $ (-1175)) 187)) (-2822 (((-1289) $ (-1175)) 188)) (-3159 (((-1289) $ (-388) (-388)) 151) (((-1289) $ (-574) (-574)) 168)) (-3543 (((-1289) $ (-935) (-935)) 160)) (-1588 (((-1289) $) 137)) (-3853 (((-1289) $ (-1175)) 186)) (-4118 (((-1289) $ (-1175)) 134)) (-3198 (((-654 (-270)) $) 70) (($ $ (-654 (-270))) 71)) (-1370 (((-1289) $ (-781) (-781)) 159)) (-1512 (((-1289) $ (-781) (-957 (-227))) 193)) (-3131 (($ $) 73) (($ (-1149 (-227)) (-1175)) 74) (($ (-1149 (-227)) (-654 (-270))) 75)) (-1682 (((-1289) $ (-388) (-388) (-388)) 131)) (-1489 (((-1175) $) NIL)) (-3667 (((-574) $) 128)) (-4179 (((-1289) $ (-388)) 174)) (-3971 (((-1289) $ (-388)) 191)) (-3940 (((-1136) $) NIL)) (-2204 (((-1289) $ (-388)) 190)) (-4342 (((-1289) $ (-1175)) 136)) (-2628 (((-1289) $ (-781) (-781) (-935) (-935)) 158)) (-4177 (((-1289) $ (-1175)) 133)) (-2848 (((-1289) $ (-1175)) 135)) (-3428 (((-1289) $ (-158) (-158)) 157)) (-2951 (((-872) $) 166)) (-1390 (((-1289) $) 138)) (-1891 (((-1289) $ (-1175)) 189)) (-4069 (((-112) $ $) NIL)) (-2937 (((-1289) $ (-1175)) 132)) (-2986 (((-112) $ $) NIL))) +(((-1286) (-13 (-1116) (-10 -8 (-15 -1971 ((-388))) (-15 -1971 ((-388) (-388))) (-15 -4170 ((-388))) (-15 -4170 ((-388) (-388))) (-15 -2143 ((-388))) (-15 -2143 ((-388) (-388))) (-15 -3472 ((-388))) (-15 -3472 ((-388) (-388))) (-15 -1870 ((-388))) (-15 -1870 ((-388) (-388))) (-15 -3421 ($)) (-15 -3131 ($ $)) (-15 -3131 ($ (-1149 (-227)) (-1175))) (-15 -3131 ($ (-1149 (-227)) (-654 (-270)))) (-15 -1757 ((-1149 (-227)) $)) (-15 -1757 ($ $ (-1149 (-227)))) (-15 -1512 ((-1289) $ (-781) (-957 (-227)))) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -1370 ((-1289) $ (-781) (-781))) (-15 -3543 ((-1289) $ (-935) (-935))) (-15 -3851 ((-1289) $ (-1175))) (-15 -2628 ((-1289) $ (-781) (-781) (-935) (-935))) (-15 -1476 ((-1289) $ (-388) (-388) (-388) (-388) (-388))) (-15 -1476 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1476 ((-1289) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1476 ((-1289) $ (-574) (-574) (-388) (-388) (-388))) (-15 -1476 ((-1289) $ (-388) (-388))) (-15 -1476 ((-1289) $ (-388) (-388) (-388))) (-15 -2848 ((-1289) $ (-1175))) (-15 -2937 ((-1289) $ (-1175))) (-15 -4177 ((-1289) $ (-1175))) (-15 -4118 ((-1289) $ (-1175))) (-15 -4342 ((-1289) $ (-1175))) (-15 -3159 ((-1289) $ (-388) (-388))) (-15 -3159 ((-1289) $ (-574) (-574))) (-15 -1786 ((-1289) $ (-388))) (-15 -1786 ((-1289) $ (-388) (-388) (-388))) (-15 -2823 ((-1289) $ (-388) (-388))) (-15 -3853 ((-1289) $ (-1175))) (-15 -2204 ((-1289) $ (-388))) (-15 -3971 ((-1289) $ (-388))) (-15 -3490 ((-1289) $ (-1175))) (-15 -2822 ((-1289) $ (-1175))) (-15 -1891 ((-1289) $ (-1175))) (-15 -1682 ((-1289) $ (-388) (-388) (-388))) (-15 -4179 ((-1289) $ (-388))) (-15 -1588 ((-1289) $)) (-15 -3428 ((-1289) $ (-158) (-158))) (-15 -1612 ((-1175) $ (-1175))) (-15 -1612 ((-1175) $ (-1175) (-1175))) (-15 -1612 ((-1175) $ (-1175) (-654 (-1175)))) (-15 -1390 ((-1289) $)) (-15 -3667 ((-574) $))))) (T -1286)) +((-1971 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-1971 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-4170 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-4170 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-2143 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-2143 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-3472 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-1870 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-1870 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-3421 (*1 *1) (-5 *1 (-1286))) (-3131 (*1 *1 *1) (-5 *1 (-1286))) (-3131 (*1 *1 *2 *3) (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-1175)) (-5 *1 (-1286)))) (-3131 (*1 *1 *2 *3) (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1286)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1286)))) (-1757 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1286)))) (-1512 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-957 (-227))) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1286)))) (-3198 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1286)))) (-1370 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3543 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2628 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1476 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1286)))) (-1476 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1476 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1476 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1476 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2848 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2937 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4177 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4342 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3159 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3159 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1786 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2823 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3853 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2204 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3971 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3490 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2822 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1891 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1682 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4179 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3428 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1612 (*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1286)))) (-1612 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1286)))) (-1612 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-1286)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1286))))) +(-13 (-1116) (-10 -8 (-15 -1971 ((-388))) (-15 -1971 ((-388) (-388))) (-15 -4170 ((-388))) (-15 -4170 ((-388) (-388))) (-15 -2143 ((-388))) (-15 -2143 ((-388) (-388))) (-15 -3472 ((-388))) (-15 -3472 ((-388) (-388))) (-15 -1870 ((-388))) (-15 -1870 ((-388) (-388))) (-15 -3421 ($)) (-15 -3131 ($ $)) (-15 -3131 ($ (-1149 (-227)) (-1175))) (-15 -3131 ($ (-1149 (-227)) (-654 (-270)))) (-15 -1757 ((-1149 (-227)) $)) (-15 -1757 ($ $ (-1149 (-227)))) (-15 -1512 ((-1289) $ (-781) (-957 (-227)))) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -1370 ((-1289) $ (-781) (-781))) (-15 -3543 ((-1289) $ (-935) (-935))) (-15 -3851 ((-1289) $ (-1175))) (-15 -2628 ((-1289) $ (-781) (-781) (-935) (-935))) (-15 -1476 ((-1289) $ (-388) (-388) (-388) (-388) (-388))) (-15 -1476 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1476 ((-1289) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1476 ((-1289) $ (-574) (-574) (-388) (-388) (-388))) (-15 -1476 ((-1289) $ (-388) (-388))) (-15 -1476 ((-1289) $ (-388) (-388) (-388))) (-15 -2848 ((-1289) $ (-1175))) (-15 -2937 ((-1289) $ (-1175))) (-15 -4177 ((-1289) $ (-1175))) (-15 -4118 ((-1289) $ (-1175))) (-15 -4342 ((-1289) $ (-1175))) (-15 -3159 ((-1289) $ (-388) (-388))) (-15 -3159 ((-1289) $ (-574) (-574))) (-15 -1786 ((-1289) $ (-388))) (-15 -1786 ((-1289) $ (-388) (-388) (-388))) (-15 -2823 ((-1289) $ (-388) (-388))) (-15 -3853 ((-1289) $ (-1175))) (-15 -2204 ((-1289) $ (-388))) (-15 -3971 ((-1289) $ (-388))) (-15 -3490 ((-1289) $ (-1175))) (-15 -2822 ((-1289) $ (-1175))) (-15 -1891 ((-1289) $ (-1175))) (-15 -1682 ((-1289) $ (-388) (-388) (-388))) (-15 -4179 ((-1289) $ (-388))) (-15 -1588 ((-1289) $)) (-15 -3428 ((-1289) $ (-158) (-158))) (-15 -1612 ((-1175) $ (-1175))) (-15 -1612 ((-1175) $ (-1175) (-1175))) (-15 -1612 ((-1175) $ (-1175) (-654 (-1175)))) (-15 -1390 ((-1289) $)) (-15 -3667 ((-574) $)))) +((-3767 (((-654 (-1175)) (-654 (-1175))) 104) (((-654 (-1175))) 96)) (-4394 (((-654 (-1175))) 94)) (-3001 (((-654 (-935)) (-654 (-935))) 69) (((-654 (-935))) 64)) (-2056 (((-654 (-781)) (-654 (-781))) 61) (((-654 (-781))) 55)) (-3709 (((-1289)) 71)) (-3244 (((-935) (-935)) 87) (((-935)) 86)) (-3083 (((-935) (-935)) 85) (((-935)) 84)) (-2554 (((-884) (-884)) 81) (((-884)) 80)) (-3373 (((-227)) 91) (((-227) (-388)) 93)) (-4427 (((-935)) 88) (((-935) (-935)) 89)) (-2974 (((-935) (-935)) 83) (((-935)) 82)) (-3460 (((-884) (-884)) 75) (((-884)) 73)) (-2134 (((-884) (-884)) 77) (((-884)) 76)) (-2911 (((-884) (-884)) 79) (((-884)) 78))) +(((-1287) (-10 -7 (-15 -3460 ((-884))) (-15 -3460 ((-884) (-884))) (-15 -2134 ((-884))) (-15 -2134 ((-884) (-884))) (-15 -2911 ((-884))) (-15 -2911 ((-884) (-884))) (-15 -2554 ((-884))) (-15 -2554 ((-884) (-884))) (-15 -2974 ((-935))) (-15 -2974 ((-935) (-935))) (-15 -2056 ((-654 (-781)))) (-15 -2056 ((-654 (-781)) (-654 (-781)))) (-15 -3001 ((-654 (-935)))) (-15 -3001 ((-654 (-935)) (-654 (-935)))) (-15 -3709 ((-1289))) (-15 -3767 ((-654 (-1175)))) (-15 -3767 ((-654 (-1175)) (-654 (-1175)))) (-15 -4394 ((-654 (-1175)))) (-15 -3083 ((-935))) (-15 -3244 ((-935))) (-15 -3083 ((-935) (-935))) (-15 -3244 ((-935) (-935))) (-15 -4427 ((-935) (-935))) (-15 -4427 ((-935))) (-15 -3373 ((-227) (-388))) (-15 -3373 ((-227))))) (T -1287)) +((-3373 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1287)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1287)))) (-4427 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-4427 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-3244 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-3244 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-3083 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-4394 (*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287)))) (-3767 (*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287)))) (-3709 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1287)))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1287)))) (-3001 (*1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1287)))) (-2056 (*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1287)))) (-2056 (*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1287)))) (-2974 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-2974 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-2554 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-2554 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-2911 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-2911 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-2134 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-2134 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-3460 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-3460 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287))))) +(-10 -7 (-15 -3460 ((-884))) (-15 -3460 ((-884) (-884))) (-15 -2134 ((-884))) (-15 -2134 ((-884) (-884))) (-15 -2911 ((-884))) (-15 -2911 ((-884) (-884))) (-15 -2554 ((-884))) (-15 -2554 ((-884) (-884))) (-15 -2974 ((-935))) (-15 -2974 ((-935) (-935))) (-15 -2056 ((-654 (-781)))) (-15 -2056 ((-654 (-781)) (-654 (-781)))) (-15 -3001 ((-654 (-935)))) (-15 -3001 ((-654 (-935)) (-654 (-935)))) (-15 -3709 ((-1289))) (-15 -3767 ((-654 (-1175)))) (-15 -3767 ((-654 (-1175)) (-654 (-1175)))) (-15 -4394 ((-654 (-1175)))) (-15 -3083 ((-935))) (-15 -3244 ((-935))) (-15 -3083 ((-935) (-935))) (-15 -3244 ((-935) (-935))) (-15 -4427 ((-935) (-935))) (-15 -4427 ((-935))) (-15 -3373 ((-227) (-388))) (-15 -3373 ((-227)))) +((-1536 (((-478) (-654 (-654 (-957 (-227)))) (-654 (-270))) 22) (((-478) (-654 (-654 (-957 (-227))))) 21) (((-478) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270))) 20)) (-4246 (((-1285) (-654 (-654 (-957 (-227)))) (-654 (-270))) 30) (((-1285) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270))) 29)) (-2951 (((-1285) (-478)) 46))) +(((-1288) (-10 -7 (-15 -1536 ((-478) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270)))) (-15 -1536 ((-478) (-654 (-654 (-957 (-227)))))) (-15 -1536 ((-478) (-654 (-654 (-957 (-227)))) (-654 (-270)))) (-15 -4246 ((-1285) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270)))) (-15 -4246 ((-1285) (-654 (-654 (-957 (-227)))) (-654 (-270)))) (-15 -2951 ((-1285) (-478))))) (T -1288)) +((-2951 (*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1285)) (-5 *1 (-1288)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-1288)))) (-4246 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-884)) (-5 *5 (-935)) (-5 *6 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-1288)))) (-1536 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1288)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *2 (-478)) (-5 *1 (-1288)))) (-1536 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-884)) (-5 *5 (-935)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1288))))) +(-10 -7 (-15 -1536 ((-478) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270)))) (-15 -1536 ((-478) (-654 (-654 (-957 (-227)))))) (-15 -1536 ((-478) (-654 (-654 (-957 (-227)))) (-654 (-270)))) (-15 -4246 ((-1285) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270)))) (-15 -4246 ((-1285) (-654 (-654 (-957 (-227)))) (-654 (-270)))) (-15 -2951 ((-1285) (-478)))) +((-2441 (($) 6)) (-2951 (((-872) $) 9))) +(((-1289) (-13 (-623 (-872)) (-10 -8 (-15 -2441 ($))))) (T -1289)) +((-2441 (*1 *1) (-5 *1 (-1289)))) +(-13 (-623 (-872)) (-10 -8 (-15 -2441 ($)))) +((-3103 (($ $ |#2|) 10))) +(((-1290 |#1| |#2|) (-10 -8 (-15 -3103 (|#1| |#1| |#2|))) (-1291 |#2|) (-372)) (T -1290)) +NIL +(-10 -8 (-15 -3103 (|#1| |#1| |#2|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2995 (((-135)) 33)) (-2951 (((-872) $) 12)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 34)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1291 |#1|) (-141) (-372)) (T -1291)) +((-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-1291 *2)) (-4 *2 (-372)))) (-2995 (*1 *2) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-372)) (-5 *2 (-135))))) +(-13 (-727 |t#1|) (-10 -8 (-15 -3103 ($ $ |t#1|)) (-15 -2995 ((-135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T)) +((-3270 (((-654 (-1228 |#1|)) (-1193) (-1228 |#1|)) 83)) (-2859 (((-1173 (-1173 (-966 |#1|))) (-1193) (-1173 (-966 |#1|))) 63)) (-2500 (((-1 (-1173 (-1228 |#1|)) (-1173 (-1228 |#1|))) (-781) (-1228 |#1|) (-1173 (-1228 |#1|))) 74)) (-1941 (((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781)) 65)) (-2227 (((-1 (-1189 (-966 |#1|)) (-966 |#1|)) (-1193)) 32)) (-3792 (((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781)) 64))) +(((-1292 |#1|) (-10 -7 (-15 -1941 ((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781))) (-15 -3792 ((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781))) (-15 -2859 ((-1173 (-1173 (-966 |#1|))) (-1193) (-1173 (-966 |#1|)))) (-15 -2227 ((-1 (-1189 (-966 |#1|)) (-966 |#1|)) (-1193))) (-15 -3270 ((-654 (-1228 |#1|)) (-1193) (-1228 |#1|))) (-15 -2500 ((-1 (-1173 (-1228 |#1|)) (-1173 (-1228 |#1|))) (-781) (-1228 |#1|) (-1173 (-1228 |#1|))))) (-372)) (T -1292)) +((-2500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1228 *6)) (-5 *2 (-1 (-1173 *4) (-1173 *4))) (-5 *1 (-1292 *6)) (-5 *5 (-1173 *4)))) (-3270 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-4 *5 (-372)) (-5 *2 (-654 (-1228 *5))) (-5 *1 (-1292 *5)) (-5 *4 (-1228 *5)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1 (-1189 (-966 *4)) (-966 *4))) (-5 *1 (-1292 *4)) (-4 *4 (-372)))) (-2859 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-4 *5 (-372)) (-5 *2 (-1173 (-1173 (-966 *5)))) (-5 *1 (-1292 *5)) (-5 *4 (-1173 (-966 *5))))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1173 (-966 *4)) (-1173 (-966 *4)))) (-5 *1 (-1292 *4)) (-4 *4 (-372)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1173 (-966 *4)) (-1173 (-966 *4)))) (-5 *1 (-1292 *4)) (-4 *4 (-372))))) +(-10 -7 (-15 -1941 ((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781))) (-15 -3792 ((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781))) (-15 -2859 ((-1173 (-1173 (-966 |#1|))) (-1193) (-1173 (-966 |#1|)))) (-15 -2227 ((-1 (-1189 (-966 |#1|)) (-966 |#1|)) (-1193))) (-15 -3270 ((-654 (-1228 |#1|)) (-1193) (-1228 |#1|))) (-15 -2500 ((-1 (-1173 (-1228 |#1|)) (-1173 (-1228 |#1|))) (-781) (-1228 |#1|) (-1173 (-1228 |#1|))))) +((-2232 (((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 80)) (-4367 (((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 79))) +(((-1293 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4367 ((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2232 ((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|))) (-358) (-1260 |#1|) (-1260 |#2|) (-419 |#2| |#3|)) (T -1293)) +((-2232 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 *3)) (-5 *2 (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-1293 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5)))) (-4367 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| -2391 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-1293 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5))))) +(-10 -7 (-15 -4367 ((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2232 ((-2 (|:| -2391 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|))) +((-2864 (((-112) $ $) NIL)) (-3673 (((-1151) $) 11)) (-1875 (((-1151) $) 9)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1294) (-13 (-1099) (-10 -8 (-15 -1875 ((-1151) $)) (-15 -3673 ((-1151) $))))) (T -1294)) +((-1875 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1294)))) (-3673 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1294))))) +(-13 (-1099) (-10 -8 (-15 -1875 ((-1151) $)) (-15 -3673 ((-1151) $)))) +((-2864 (((-112) $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2277 (((-1151) $) 9)) (-2951 (((-872) $) 15) (($ (-1198)) NIL) (((-1198) $) NIL)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) +(((-1295) (-13 (-1099) (-10 -8 (-15 -2277 ((-1151) $))))) (T -1295)) +((-2277 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1295))))) +(-13 (-1099) (-10 -8 (-15 -2277 ((-1151) $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 58)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) NIL)) (-4226 (((-112) $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 81) (($ (-574)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-2898 (((-781)) NIL T CONST)) (-2783 (((-1289) (-781)) 16)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 37 T CONST)) (-2153 (($) 84 T CONST)) (-2986 (((-112) $ $) 87)) (-3103 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) 89) (($ $ $) NIL)) (-3074 (($ $ $) 63)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-1296 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1065) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2783 ((-1289) (-781))))) (-1065) (-860) (-803) (-963 |#1| |#3| |#2|) (-654 |#2|) (-654 (-781)) (-781)) (T -1296)) +((-3103 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1065)) (-4 *3 (-860)) (-4 *4 (-803)) (-14 *6 (-654 *3)) (-5 *1 (-1296 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-963 *2 *4 *3)) (-14 *7 (-654 (-781))) (-14 *8 (-781)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1065)) (-4 *5 (-860)) (-4 *6 (-803)) (-14 *8 (-654 *5)) (-5 *2 (-1289)) (-5 *1 (-1296 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-963 *4 *6 *5)) (-14 *9 (-654 *3)) (-14 *10 *3)))) +(-13 (-1065) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2783 ((-1289) (-781))))) +((-2864 (((-112) $ $) NIL)) (-2298 (((-654 (-2 (|:| -1390 $) (|:| -1684 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3656 (((-654 $) (-654 |#4|)) 96)) (-4350 (((-654 |#3|) $) NIL)) (-1437 (((-112) $) NIL)) (-2176 (((-112) $) NIL (|has| |#1| (-566)))) (-2972 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2104 ((|#4| |#4| $) NIL)) (-2786 (((-2 (|:| |under| $) (|:| -2260 $) (|:| |upper| $)) $ |#3|) NIL)) (-3146 (((-112) $ (-781)) NIL)) (-2172 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3250 (($) NIL T CONST)) (-3721 (((-112) $) NIL (|has| |#1| (-566)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2196 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3564 (((-112) $) NIL (|has| |#1| (-566)))) (-4434 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-1855 (((-654 |#4|) (-654 |#4|) $) 28 (|has| |#1| (-566)))) (-3406 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2214 (($ (-654 |#4|)) NIL)) (-2935 (((-3 $ "failed") $) 78)) (-2660 ((|#4| |#4| $) 83)) (-2804 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3311 (($ |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-1880 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3347 ((|#4| |#4| $) NIL)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2830 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1684 (-654 |#4|))) $) NIL)) (-1871 (((-654 |#4|) $) NIL (|has| $ (-6 -4459)))) (-3145 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4241 ((|#3| $) 84)) (-2189 (((-112) $ (-781)) NIL)) (-2036 (((-654 |#4|) $) 32 (|has| $ (-6 -4459)))) (-4134 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2788 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-654 |#4|)) 38)) (-2462 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) NIL)) (-2737 (((-654 |#3|) $) NIL)) (-3161 (((-112) |#3| $) NIL)) (-1653 (((-112) $ (-781)) NIL)) (-1489 (((-1175) $) NIL)) (-3334 (((-3 |#4| "failed") $) NIL)) (-1957 (((-654 |#4|) $) 54)) (-3749 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2254 ((|#4| |#4| $) 82)) (-3877 (((-112) $ $) 93)) (-3581 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2712 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3173 ((|#4| |#4| $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-3 |#4| "failed") $) 77)) (-2183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4233 (((-3 $ "failed") $ |#4|) NIL)) (-2433 (($ $ |#4|) NIL)) (-3449 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-2526 (((-112) $ $) NIL)) (-2754 (((-112) $) 75)) (-3336 (($) 46)) (-3580 (((-781) $) NIL)) (-3949 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) NIL)) (-1423 (($ $ |#3|) NIL)) (-1671 (($ $ |#3|) NIL)) (-2167 (($ $) NIL)) (-2287 (($ $ |#3|) NIL)) (-2951 (((-872) $) NIL) (((-654 |#4|) $) 63)) (-2105 (((-781) $) NIL (|has| |#3| (-377)))) (-4072 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-654 |#4|)) 45)) (-1807 (((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-654 $) (-654 |#4|)) 74)) (-4069 (((-112) $ $) NIL)) (-3917 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3912 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2020 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-1642 (((-654 |#3|) $) NIL)) (-3504 (((-112) |#3| $) NIL)) (-2986 (((-112) $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459))))) +(((-1297 |#1| |#2| |#3| |#4|) (-13 (-1227 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2788 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2788 ((-3 $ "failed") (-654 |#4|))) (-15 -4072 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4072 ((-3 $ "failed") (-654 |#4|))) (-15 -1807 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1807 ((-654 $) (-654 |#4|))))) (-566) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -1297)) +((-2788 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1297 *5 *6 *7 *8)))) (-2788 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1297 *3 *4 *5 *6)))) (-4072 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1297 *5 *6 *7 *8)))) (-4072 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1297 *3 *4 *5 *6)))) (-1807 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1297 *6 *7 *8 *9))) (-5 *1 (-1297 *6 *7 *8 *9)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1297 *4 *5 *6 *7))) (-5 *1 (-1297 *4 *5 *6 *7))))) +(-13 (-1227 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2788 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2788 ((-3 $ "failed") (-654 |#4|))) (-15 -4072 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4072 ((-3 $ "failed") (-654 |#4|))) (-15 -1807 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1807 ((-654 $) (-654 |#4|))))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2600 (((-3 $ "failed") $ $) 20)) (-3250 (($) 18 T CONST)) (-4322 (((-3 $ "failed") $) 37)) (-4226 (((-112) $) 35)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1298 |#1|) (-141) (-1065)) (T -1298)) +NIL +(-13 (-1065) (-111 |t#1| |t#1|) (-626 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T)) +((-2864 (((-112) $ $) 67)) (-1431 (((-112) $) NIL)) (-1663 (((-654 |#1|) $) 52)) (-2825 (($ $ (-781)) 46)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2401 (($ $ (-781)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3250 (($) NIL T CONST)) (-3369 (($ $ $) 70) (($ $ (-829 |#1|)) 56) (($ $ |#1|) 60)) (-1704 (((-3 (-829 |#1|) "failed") $) NIL)) (-2214 (((-829 |#1|) $) NIL)) (-1402 (($ $) 39)) (-4322 (((-3 $ "failed") $) NIL)) (-3281 (((-112) $) NIL)) (-4125 (($ $) NIL)) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-3806 (($ (-829 |#1|) |#2|) 38)) (-3856 (($ $) 40)) (-3037 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 12)) (-4112 (((-829 |#1|) $) NIL)) (-2271 (((-829 |#1|) $) 41)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-4067 (($ $ $) 69) (($ $ (-829 |#1|)) 58) (($ $ |#1|) 62)) (-3011 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1366 (((-829 |#1|) $) 35)) (-1378 ((|#2| $) 37)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3580 (((-781) $) 43)) (-1918 (((-112) $) 47)) (-1714 ((|#2| $) NIL)) (-2951 (((-872) $) NIL) (($ (-829 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-574)) NIL)) (-1634 (((-654 |#2|) $) NIL)) (-2706 ((|#2| $ (-829 |#1|)) NIL)) (-1866 ((|#2| $ $) 76) ((|#2| $ (-829 |#1|)) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 13 T CONST)) (-2153 (($) 19 T CONST)) (-4148 (((-654 (-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2986 (((-112) $ $) 44)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 28)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-829 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1299 |#1| |#2|) (-13 (-391 |#2| (-829 |#1|)) (-1305 |#1| |#2|)) (-860) (-1065)) (T -1299)) +NIL +(-13 (-391 |#2| (-829 |#1|)) (-1305 |#1| |#2|)) +((-3113 ((|#3| |#3| (-781)) 28)) (-1617 ((|#3| |#3| (-781)) 34)) (-3411 ((|#3| |#3| |#3| (-781)) 35))) +(((-1300 |#1| |#2| |#3|) (-10 -7 (-15 -1617 (|#3| |#3| (-781))) (-15 -3113 (|#3| |#3| (-781))) (-15 -3411 (|#3| |#3| |#3| (-781)))) (-13 (-1065) (-727 (-417 (-574)))) (-860) (-1305 |#2| |#1|)) (T -1300)) +((-3411 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4)))) (-3113 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4)))) (-1617 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4))))) +(-10 -7 (-15 -1617 (|#3| |#3| (-781))) (-15 -3113 (|#3| |#3| (-781))) (-15 -3411 (|#3| |#3| |#3| (-781)))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-1663 (((-654 |#1|) $) 47)) (-2600 (((-3 $ "failed") $ $) 20)) (-2401 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-3250 (($) 18 T CONST)) (-3369 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1704 (((-3 (-829 |#1|) "failed") $) 71)) (-2214 (((-829 |#1|) $) 72)) (-4322 (((-3 $ "failed") $) 37)) (-3281 (((-112) $) 52)) (-4125 (($ $) 51)) (-4226 (((-112) $) 35)) (-1555 (((-112) $) 57)) (-3806 (($ (-829 |#1|) |#2|) 58)) (-3856 (($ $) 56)) (-3037 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-4112 (((-829 |#1|) $) 68)) (-1785 (($ (-1 |#2| |#2|) $) 48)) (-4067 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-1918 (((-112) $) 54)) (-1714 ((|#2| $) 53)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1866 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1301 |#1| |#2|) (-141) (-860) (-1065)) (T -1301)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-829 *3)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4))))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-829 *4)) (-4 *1 (-1301 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1065)))) (-1866 (*1 *2 *1 *1) (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065)))) (-4067 (*1 *1 *1 *2) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-4067 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)))) (-4067 (*1 *1 *1 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-3369 (*1 *1 *1 *2) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)))) (-3369 (*1 *1 *1 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1301 *4 *3)) (-4 *3 (-1065)))) (-1555 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-112)))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-2951 (*1 *1 *2) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-1918 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-112)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065)))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-112)))) (-4125 (*1 *1 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-2401 (*1 *1 *1 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)) (-4 *3 (-174)))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-4 *4 (-174)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-654 *3))))) +(-13 (-1065) (-1298 |t#2|) (-1054 (-829 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4112 ((-829 |t#1|) $)) (-15 -3037 ((-2 (|:| |k| (-829 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1866 (|t#2| $ (-829 |t#1|))) (-15 -1866 (|t#2| $ $)) (-15 -4067 ($ $ |t#1|)) (-15 -4067 ($ $ (-829 |t#1|))) (-15 -4067 ($ $ $)) (-15 -3369 ($ $ |t#1|)) (-15 -3369 ($ $ (-829 |t#1|))) (-15 -3369 ($ $ $)) (-15 -3806 ($ (-829 |t#1|) |t#2|)) (-15 -1555 ((-112) $)) (-15 -3856 ($ $)) (-15 -2951 ($ |t#1|)) (-15 -1918 ((-112) $)) (-15 -1714 (|t#2| $)) (-15 -3281 ((-112) $)) (-15 -4125 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -2401 ($ $ $)) (-15 -2401 ($ $ (-781)))) |%noBranch|) (-15 -1785 ($ (-1 |t#2| |t#2|) $)) (-15 -1663 ((-654 |t#1|) $)) (IF (|has| |t#2| (-6 -4452)) (-6 -4452) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1054 #0#) . T) ((-1067 |#2|) . T) ((-1072 |#2|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1298 |#2|) . T)) +((-1347 (((-112) $) 15)) (-3504 (((-112) $) 14)) (-2656 (($ $) 19) (($ $ (-781)) 21))) +(((-1302 |#1| |#2|) (-10 -8 (-15 -2656 (|#1| |#1| (-781))) (-15 -2656 (|#1| |#1|)) (-15 -1347 ((-112) |#1|)) (-15 -3504 ((-112) |#1|))) (-1303 |#2|) (-372)) (T -1302)) +NIL +(-10 -8 (-15 -2656 (|#1| |#1| (-781))) (-15 -2656 (|#1| |#1|)) (-15 -1347 ((-112) |#1|)) (-15 -3504 ((-112) |#1|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-2313 (((-2 (|:| -4098 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-2884 (($ $) 46)) (-1981 (((-112) $) 44)) (-1347 (((-112) $) 104)) (-2755 (((-781)) 100)) (-2600 (((-3 $ "failed") $ $) 20)) (-2991 (($ $) 81)) (-1610 (((-428 $) $) 80)) (-3245 (((-112) $ $) 65)) (-3250 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 111)) (-2214 ((|#1| $) 112)) (-2800 (($ $ $) 61)) (-4322 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-4413 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1995 (($ $ (-781)) 97 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3978 (((-112) $) 79)) (-3547 (((-843 (-935)) $) 94 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4226 (((-112) $) 35)) (-2814 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2849 (($ $ $) 52) (($ (-654 $)) 51)) (-1489 (((-1175) $) 10)) (-1328 (($ $) 78)) (-2228 (((-112) $) 103)) (-3940 (((-1136) $) 11)) (-2069 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-4202 (((-428 $) $) 82)) (-2027 (((-843 (-935))) 101)) (-1619 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-4095 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2098 (((-781) $) 64)) (-2969 (((-2 (|:| -3901 $) (|:| -1880 $)) $ $) 63)) (-3261 (((-3 (-781) "failed") $ $) 95 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2995 (((-135)) 109)) (-3580 (((-843 (-935)) $) 102)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-3424 (((-3 $ "failed") $) 93 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2836 (((-112) $ $) 45)) (-3504 (((-112) $) 105)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2656 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-2986 (((-112) $ $) 6)) (-3103 (($ $ $) 73) (($ $ |#1|) 108)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1303 |#1|) (-141) (-372)) (T -1303)) +((-3504 (*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-2228 (*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-935))))) (-2027 (*1 *2) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-935))))) (-2755 (*1 *2) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-781)))) (-2656 (*1 *1 *1) (-12 (-4 *1 (-1303 *2)) (-4 *2 (-372)) (-4 *2 (-377)))) (-2656 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-4 *3 (-377))))) +(-13 (-372) (-1054 |t#1|) (-1291 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-412)) |%noBranch|) (-15 -3504 ((-112) $)) (-15 -1347 ((-112) $)) (-15 -2228 ((-112) $)) (-15 -3580 ((-843 (-935)) $)) (-15 -2027 ((-843 (-935)))) (-15 -2755 ((-781))) (IF (|has| |t#1| (-377)) (PROGN (-6 (-412)) (-15 -2656 ($ $)) (-15 -2656 ($ $ (-781)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2833 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) -2833 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1054 |#1|) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T) ((-1291 |#1|) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-1663 (((-654 |#1|) $) 98)) (-2825 (($ $ (-781)) 102)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2401 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-781)) NIL (|has| |#2| (-174)))) (-3250 (($) NIL T CONST)) (-3369 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-1704 (((-3 (-829 |#1|) "failed") $) NIL) (((-3 (-904 |#1|) "failed") $) NIL)) (-2214 (((-829 |#1|) $) NIL) (((-904 |#1|) $) NIL)) (-1402 (($ $) 101)) (-4322 (((-3 $ "failed") $) NIL)) (-3281 (((-112) $) 90)) (-4125 (($ $) 93)) (-3937 (($ $ $ (-781)) 103)) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-3806 (($ (-829 |#1|) |#2|) NIL) (($ (-904 |#1|) |#2|) 29)) (-3856 (($ $) 119)) (-3037 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4112 (((-829 |#1|) $) NIL)) (-2271 (((-829 |#1|) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-4067 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-3113 (($ $ (-781)) 112 (|has| |#2| (-727 (-417 (-574)))))) (-3011 (((-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1366 (((-904 |#1|) $) 83)) (-1378 ((|#2| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1617 (($ $ (-781)) 109 (|has| |#2| (-727 (-417 (-574)))))) (-3580 (((-781) $) 99)) (-1918 (((-112) $) 84)) (-1714 ((|#2| $) 88)) (-2951 (((-872) $) 69) (($ (-574)) NIL) (($ |#2|) 60) (($ (-829 |#1|)) NIL) (($ |#1|) 71) (($ (-904 |#1|)) NIL) (($ (-674 |#1| |#2|)) 48) (((-1299 |#1| |#2|) $) 76) (((-1308 |#1| |#2|) $) 81)) (-1634 (((-654 |#2|) $) NIL)) (-2706 ((|#2| $ (-904 |#1|)) NIL)) (-1866 ((|#2| $ (-829 |#1|)) NIL) ((|#2| $ $) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 21 T CONST)) (-2153 (($) 28 T CONST)) (-4148 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3246 (((-3 (-674 |#1| |#2|) "failed") $) 118)) (-2986 (((-112) $ $) 77)) (-3090 (($ $) 111) (($ $ $) 110)) (-3074 (($ $ $) 20)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-904 |#1|)) NIL))) +(((-1304 |#1| |#2|) (-13 (-1305 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2951 ($ (-674 |#1| |#2|))) (-15 -2951 ((-1299 |#1| |#2|) $)) (-15 -2951 ((-1308 |#1| |#2|) $)) (-15 -3246 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -3937 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1617 ($ $ (-781))) (-15 -3113 ($ $ (-781)))) |%noBranch|))) (-860) (-174)) (T -1304)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-1304 *3 *4)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-3246 (*1 *2 *1) (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-3937 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1617 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174))))) +(-13 (-1305 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2951 ($ (-674 |#1| |#2|))) (-15 -2951 ((-1299 |#1| |#2|) $)) (-15 -2951 ((-1308 |#1| |#2|) $)) (-15 -3246 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -3937 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1617 ($ $ (-781))) (-15 -3113 ($ $ (-781)))) |%noBranch|))) +((-2864 (((-112) $ $) 7)) (-1431 (((-112) $) 17)) (-1663 (((-654 |#1|) $) 47)) (-2825 (($ $ (-781)) 80)) (-2600 (((-3 $ "failed") $ $) 20)) (-2401 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-3250 (($) 18 T CONST)) (-3369 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1704 (((-3 (-829 |#1|) "failed") $) 71)) (-2214 (((-829 |#1|) $) 72)) (-4322 (((-3 $ "failed") $) 37)) (-3281 (((-112) $) 52)) (-4125 (($ $) 51)) (-4226 (((-112) $) 35)) (-1555 (((-112) $) 57)) (-3806 (($ (-829 |#1|) |#2|) 58)) (-3856 (($ $) 56)) (-3037 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-4112 (((-829 |#1|) $) 68)) (-2271 (((-829 |#1|) $) 82)) (-1785 (($ (-1 |#2| |#2|) $) 48)) (-4067 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-1489 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3580 (((-781) $) 81)) (-1918 (((-112) $) 54)) (-1714 ((|#2| $) 53)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1866 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-2898 (((-781)) 32 T CONST)) (-4069 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1305 |#1| |#2|) (-141) (-860) (-1065)) (T -1305)) +((-2271 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-829 *3)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-781)))) (-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))))) +(-13 (-1301 |t#1| |t#2|) (-10 -8 (-15 -2271 ((-829 |t#1|) $)) (-15 -3580 ((-781) $)) (-15 -2825 ($ $ (-781))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1054 #0#) . T) ((-1067 |#2|) . T) ((-1072 |#2|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1298 |#2|) . T) ((-1301 |#1| |#2|) . T)) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-1663 (((-654 (-1193)) $) NIL)) (-1468 (($ (-1299 (-1193) |#1|)) NIL)) (-2825 (($ $ (-781)) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2401 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-781)) NIL (|has| |#1| (-174)))) (-3250 (($) NIL T CONST)) (-3369 (($ $ (-1193)) NIL) (($ $ (-829 (-1193))) NIL) (($ $ $) NIL)) (-1704 (((-3 (-829 (-1193)) "failed") $) NIL)) (-2214 (((-829 (-1193)) $) NIL)) (-4322 (((-3 $ "failed") $) NIL)) (-3281 (((-112) $) NIL)) (-4125 (($ $) NIL)) (-4226 (((-112) $) NIL)) (-1555 (((-112) $) NIL)) (-3806 (($ (-829 (-1193)) |#1|) NIL)) (-3856 (($ $) NIL)) (-3037 (((-2 (|:| |k| (-829 (-1193))) (|:| |c| |#1|)) $) NIL)) (-4112 (((-829 (-1193)) $) NIL)) (-2271 (((-829 (-1193)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-4067 (($ $ (-1193)) NIL) (($ $ (-829 (-1193))) NIL) (($ $ $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2136 (((-1299 (-1193) |#1|) $) NIL)) (-3580 (((-781) $) NIL)) (-1918 (((-112) $) NIL)) (-1714 ((|#1| $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-829 (-1193))) NIL) (($ (-1193)) NIL)) (-1866 ((|#1| $ (-829 (-1193))) NIL) ((|#1| $ $) NIL)) (-2898 (((-781)) NIL T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2300 (((-654 (-2 (|:| |k| (-1193)) (|:| |c| $))) $) NIL)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1193) $) NIL))) +(((-1306 |#1|) (-13 (-1305 (-1193) |#1|) (-10 -8 (-15 -2136 ((-1299 (-1193) |#1|) $)) (-15 -1468 ($ (-1299 (-1193) |#1|))) (-15 -2300 ((-654 (-2 (|:| |k| (-1193)) (|:| |c| $))) $)))) (-1065)) (T -1306)) +((-2136 (*1 *2 *1) (-12 (-5 *2 (-1299 (-1193) *3)) (-5 *1 (-1306 *3)) (-4 *3 (-1065)))) (-1468 (*1 *1 *2) (-12 (-5 *2 (-1299 (-1193) *3)) (-4 *3 (-1065)) (-5 *1 (-1306 *3)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-1193)) (|:| |c| (-1306 *3))))) (-5 *1 (-1306 *3)) (-4 *3 (-1065))))) +(-13 (-1305 (-1193) |#1|) (-10 -8 (-15 -2136 ((-1299 (-1193) |#1|) $)) (-15 -1468 ($ (-1299 (-1193) |#1|))) (-15 -2300 ((-654 (-2 (|:| |k| (-1193)) (|:| |c| $))) $)))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) NIL)) (-2600 (((-3 $ "failed") $ $) NIL)) (-3250 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL)) (-2214 ((|#2| $) NIL)) (-1402 (($ $) NIL)) (-4322 (((-3 $ "failed") $) 42)) (-3281 (((-112) $) 35)) (-4125 (($ $) 37)) (-4226 (((-112) $) NIL)) (-3023 (((-781) $) NIL)) (-1963 (((-654 $) $) NIL)) (-1555 (((-112) $) NIL)) (-3806 (($ |#2| |#1|) NIL)) (-4112 ((|#2| $) 24)) (-2271 ((|#2| $) 22)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3011 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1366 ((|#2| $) NIL)) (-1378 ((|#1| $) NIL)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1918 (((-112) $) 32)) (-1714 ((|#1| $) 33)) (-2951 (((-872) $) 65) (($ (-574)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-1634 (((-654 |#1|) $) NIL)) (-2706 ((|#1| $ |#2|) NIL)) (-1866 ((|#1| $ |#2|) 28)) (-2898 (((-781)) 14 T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 29 T CONST)) (-2153 (($) 11 T CONST)) (-4148 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2986 (((-112) $ $) 30)) (-3103 (($ $ |#1|) 67 (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 50)) (** (($ $ (-935)) NIL) (($ $ (-781)) 52)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2877 (((-781) $) 16))) +(((-1307 |#1| |#2|) (-13 (-1065) (-1298 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2877 ((-781) $)) (-15 -2271 (|#2| $)) (-15 -4112 (|#2| $)) (-15 -1402 ($ $)) (-15 -1866 (|#1| $ |#2|)) (-15 -1918 ((-112) $)) (-15 -1714 (|#1| $)) (-15 -3281 ((-112) $)) (-15 -4125 ($ $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3103 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|))) (-1065) (-856)) (T -1307)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856)))) (-1402 (*1 *1 *1) (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-856)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-856)))) (-2271 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1307 *3 *2)) (-4 *3 (-1065)))) (-4112 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1307 *3 *2)) (-4 *3 (-1065)))) (-1866 (*1 *2 *1 *3) (-12 (-4 *2 (-1065)) (-5 *1 (-1307 *2 *3)) (-4 *3 (-856)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-856)))) (-1714 (*1 *2 *1) (-12 (-4 *2 (-1065)) (-5 *1 (-1307 *2 *3)) (-4 *3 (-856)))) (-3281 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-856)))) (-4125 (*1 *1 *1) (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856)))) (-3103 (*1 *1 *1 *2) (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1065)) (-4 *3 (-856))))) +(-13 (-1065) (-1298 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2877 ((-781) $)) (-15 -2271 (|#2| $)) (-15 -4112 (|#2| $)) (-15 -1402 ($ $)) (-15 -1866 (|#1| $ |#2|)) (-15 -1918 ((-112) $)) (-15 -1714 (|#1| $)) (-15 -3281 ((-112) $)) (-15 -4125 ($ $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3103 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|))) +((-2864 (((-112) $ $) 27)) (-1431 (((-112) $) NIL)) (-1663 (((-654 |#1|) $) 132)) (-1468 (($ (-1299 |#1| |#2|)) 50)) (-2825 (($ $ (-781)) 38)) (-2600 (((-3 $ "failed") $ $) NIL)) (-2401 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-781)) 52 (|has| |#2| (-174)))) (-3250 (($) NIL T CONST)) (-3369 (($ $ |#1|) 114) (($ $ (-829 |#1|)) 115) (($ $ $) 26)) (-1704 (((-3 (-829 |#1|) "failed") $) NIL)) (-2214 (((-829 |#1|) $) NIL)) (-4322 (((-3 $ "failed") $) 122)) (-3281 (((-112) $) 117)) (-4125 (($ $) 118)) (-4226 (((-112) $) NIL)) (-1555 (((-112) $) NIL)) (-3806 (($ (-829 |#1|) |#2|) 20)) (-3856 (($ $) NIL)) (-3037 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4112 (((-829 |#1|) $) 123)) (-2271 (((-829 |#1|) $) 126)) (-1785 (($ (-1 |#2| |#2|) $) 131)) (-4067 (($ $ |#1|) 112) (($ $ (-829 |#1|)) 113) (($ $ $) 62)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2136 (((-1299 |#1| |#2|) $) 94)) (-3580 (((-781) $) 129)) (-1918 (((-112) $) 81)) (-1714 ((|#2| $) 32)) (-2951 (((-872) $) 73) (($ (-574)) 87) (($ |#2|) 85) (($ (-829 |#1|)) 18) (($ |#1|) 84)) (-1866 ((|#2| $ (-829 |#1|)) 116) ((|#2| $ $) 28)) (-2898 (((-781)) 120 T CONST)) (-4069 (((-112) $ $) NIL)) (-2141 (($) 15 T CONST)) (-2300 (((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2153 (($) 33 T CONST)) (-2986 (((-112) $ $) 14)) (-3090 (($ $) 98) (($ $ $) 101)) (-3074 (($ $ $) 61)) (** (($ $ (-935)) NIL) (($ $ (-781)) 55)) (* (($ (-935) $) NIL) (($ (-781) $) 53) (($ (-574) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1308 |#1| |#2|) (-13 (-1305 |#1| |#2|) (-10 -8 (-15 -2136 ((-1299 |#1| |#2|) $)) (-15 -1468 ($ (-1299 |#1| |#2|))) (-15 -2300 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-860) (-1065)) (T -1308)) +((-2136 (*1 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)))) (-1468 (*1 *1 *2) (-12 (-5 *2 (-1299 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *1 (-1308 *3 *4)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1308 *3 *4))))) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))))) +(-13 (-1305 |#1| |#2|) (-10 -8 (-15 -2136 ((-1299 |#1| |#2|) $)) (-15 -1468 ($ (-1299 |#1| |#2|))) (-15 -2300 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-2864 (((-112) $ $) NIL)) (-4361 (($ (-654 (-935))) 10)) (-1964 (((-987) $) 12)) (-1489 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 25) (($ (-987)) 14) (((-987) $) 13)) (-4069 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 17))) +(((-1309) (-13 (-1116) (-500 (-987)) (-10 -8 (-15 -4361 ($ (-654 (-935)))) (-15 -1964 ((-987) $))))) (T -1309)) +((-4361 (*1 *1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1309)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-987)) (-5 *1 (-1309))))) +(-13 (-1116) (-500 (-987)) (-10 -8 (-15 -4361 ($ (-654 (-935)))) (-15 -1964 ((-987) $)))) +((-1889 (((-654 (-1173 |#1|)) (-1 (-654 (-1173 |#1|)) (-654 (-1173 |#1|))) (-574)) 16) (((-1173 |#1|) (-1 (-1173 |#1|) (-1173 |#1|))) 13))) +(((-1310 |#1|) (-10 -7 (-15 -1889 ((-1173 |#1|) (-1 (-1173 |#1|) (-1173 |#1|)))) (-15 -1889 ((-654 (-1173 |#1|)) (-1 (-654 (-1173 |#1|)) (-654 (-1173 |#1|))) (-574)))) (-1234)) (T -1310)) +((-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 (-1173 *5)) (-654 (-1173 *5)))) (-5 *4 (-574)) (-5 *2 (-654 (-1173 *5))) (-5 *1 (-1310 *5)) (-4 *5 (-1234)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-1 (-1173 *4) (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1310 *4)) (-4 *4 (-1234))))) +(-10 -7 (-15 -1889 ((-1173 |#1|) (-1 (-1173 |#1|) (-1173 |#1|)))) (-15 -1889 ((-654 (-1173 |#1|)) (-1 (-654 (-1173 |#1|)) (-654 (-1173 |#1|))) (-574)))) +((-3137 (((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|))) 174) (((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112)) 173) (((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112)) 172) (((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112) (-112)) 171) (((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-1062 |#1| |#2|)) 156)) (-1504 (((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|))) 85) (((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112)) 84) (((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112) (-112)) 83)) (-1610 (((-654 (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1062 |#1| |#2|)) 73)) (-1413 (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|))) 140) (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112)) 139) (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112)) 138) (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112) (-112)) 137) (((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|)) 132)) (-4076 (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|))) 145) (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112)) 144) (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112)) 143) (((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|)) 142)) (-1844 (((-654 (-790 |#1| (-874 |#3|))) (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) 111) (((-1189 (-1040 (-417 |#1|))) (-1189 |#1|)) 102) (((-966 (-1040 (-417 |#1|))) (-790 |#1| (-874 |#3|))) 109) (((-966 (-1040 (-417 |#1|))) (-966 |#1|)) 107) (((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|))) 33))) +(((-1311 |#1| |#2| |#3|) (-10 -7 (-15 -1504 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112) (-112))) (-15 -1504 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112))) (-15 -1504 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)))) (-15 -3137 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-1062 |#1| |#2|))) (-15 -3137 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112) (-112))) (-15 -3137 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -3137 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112))) (-15 -3137 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -1413 ((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|))) (-15 -1413 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112) (-112))) (-15 -1413 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -1413 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112))) (-15 -1413 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)))) (-15 -4076 ((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|))) (-15 -4076 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -4076 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112))) (-15 -4076 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)))) (-15 -1610 ((-654 (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1062 |#1| |#2|))) (-15 -1844 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1844 ((-966 (-1040 (-417 |#1|))) (-966 |#1|))) (-15 -1844 ((-966 (-1040 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1844 ((-1189 (-1040 (-417 |#1|))) (-1189 |#1|))) (-15 -1844 ((-654 (-790 |#1| (-874 |#3|))) (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))))) (-13 (-858) (-315) (-148) (-1038)) (-654 (-1193)) (-654 (-1193))) (T -1311)) +((-1844 (*1 *2 *3) (-12 (-5 *3 (-1162 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-1189 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *6))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *6 (-654 (-1193))) (-5 *2 (-966 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-966 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-966 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *5))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193))) (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-1162 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-4076 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-1413 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-1413 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-1413 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) (-3137 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-2 (|:| -1718 (-1189 *4)) (|:| -1385 (-654 (-966 *4)))))) (-5 *1 (-1311 *4 *5 *6)) (-5 *3 (-654 (-966 *4))) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-3137 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-2 (|:| -1718 (-1189 *5)) (|:| -1385 (-654 (-966 *5)))))) (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5))) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-3137 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-2 (|:| -1718 (-1189 *5)) (|:| -1385 (-654 (-966 *5)))))) (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5))) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-3137 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-2 (|:| -1718 (-1189 *5)) (|:| -1385 (-654 (-966 *5)))))) (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5))) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-2 (|:| -1718 (-1189 *4)) (|:| -1385 (-654 (-966 *4)))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-1062 *4 *5))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193)))))) +(-10 -7 (-15 -1504 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112) (-112))) (-15 -1504 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112))) (-15 -1504 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)))) (-15 -3137 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-1062 |#1| |#2|))) (-15 -3137 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112) (-112))) (-15 -3137 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -3137 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112))) (-15 -3137 ((-654 (-2 (|:| -1718 (-1189 |#1|)) (|:| -1385 (-654 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -1413 ((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|))) (-15 -1413 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112) (-112))) (-15 -1413 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -1413 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112))) (-15 -1413 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)))) (-15 -4076 ((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|))) (-15 -4076 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -4076 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112))) (-15 -4076 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)))) (-15 -1610 ((-654 (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1062 |#1| |#2|))) (-15 -1844 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1844 ((-966 (-1040 (-417 |#1|))) (-966 |#1|))) (-15 -1844 ((-966 (-1040 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1844 ((-1189 (-1040 (-417 |#1|))) (-1189 |#1|))) (-15 -1844 ((-654 (-790 |#1| (-874 |#3|))) (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))))) +((-2374 (((-3 (-1284 (-417 (-574))) "failed") (-1284 |#1|) |#1|) 21)) (-3833 (((-112) (-1284 |#1|)) 12)) (-2844 (((-3 (-1284 (-574)) "failed") (-1284 |#1|)) 16))) +(((-1312 |#1|) (-10 -7 (-15 -3833 ((-112) (-1284 |#1|))) (-15 -2844 ((-3 (-1284 (-574)) "failed") (-1284 |#1|))) (-15 -2374 ((-3 (-1284 (-417 (-574))) "failed") (-1284 |#1|) |#1|))) (-13 (-1065) (-649 (-574)))) (T -1312)) +((-2374 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574)))) (-5 *2 (-1284 (-417 (-574)))) (-5 *1 (-1312 *4)))) (-2844 (*1 *2 *3) (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574)))) (-5 *2 (-1284 (-574))) (-5 *1 (-1312 *4)))) (-3833 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1312 *4))))) +(-10 -7 (-15 -3833 ((-112) (-1284 |#1|))) (-15 -2844 ((-3 (-1284 (-574)) "failed") (-1284 |#1|))) (-15 -2374 ((-3 (-1284 (-417 (-574))) "failed") (-1284 |#1|) |#1|))) +((-2864 (((-112) $ $) NIL)) (-1431 (((-112) $) 11)) (-2600 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781)) 8)) (-3250 (($) NIL T CONST)) (-4322 (((-3 $ "failed") $) 58)) (-2835 (($) 49)) (-4226 (((-112) $) 57)) (-2414 (((-3 $ "failed") $) 40)) (-3383 (((-935) $) 15)) (-1489 (((-1175) $) NIL)) (-3791 (($) 32 T CONST)) (-2591 (($ (-935)) 50)) (-3940 (((-1136) $) NIL)) (-1844 (((-574) $) 13)) (-2951 (((-872) $) 27) (($ (-574)) 24)) (-2898 (((-781)) 9 T CONST)) (-4069 (((-112) $ $) 60)) (-2141 (($) 29 T CONST)) (-2153 (($) 31 T CONST)) (-2986 (((-112) $ $) 38)) (-3090 (($ $) 52) (($ $ $) 47)) (-3074 (($ $ $) 35)) (** (($ $ (-935)) NIL) (($ $ (-781)) 54)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 43))) +(((-1313 |#1|) (-13 (-174) (-377) (-624 (-574)) (-1168)) (-935)) (T -1313)) +NIL +(-13 (-174) (-377) (-624 (-574)) (-1168)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3238806 3238811 3238816 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3238791 3238796 3238801 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3238776 3238781 3238786 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3238761 3238766 3238771 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1313 3237904 3238636 3238713 "ZMOD" 3238718 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1312 3236958 3237122 3237345 "ZLINDEP" 3237736 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1311 3226258 3228026 3229998 "ZDSOLVE" 3235088 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1310 3225504 3225645 3225834 "YSTREAM" 3226104 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1309 3224932 3225178 3225291 "YDIAGRAM" 3225413 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1308 3222706 3224233 3224437 "XRPOLY" 3224775 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1307 3219259 3220577 3221152 "XPR" 3222178 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1306 3216980 3218590 3218794 "XPOLY" 3219090 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1305 3214633 3216001 3216056 "XPOLYC" 3216344 NIL XPOLYC (NIL T T) -9 NIL 3216457 NIL) (-1304 3211009 3213150 3213538 "XPBWPOLY" 3214291 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1303 3206704 3208999 3209041 "XF" 3209662 NIL XF (NIL T) -9 NIL 3210062 NIL) (-1302 3206325 3206413 3206582 "XF-" 3206587 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1301 3201521 3202810 3202865 "XFALG" 3205037 NIL XFALG (NIL T T) -9 NIL 3205826 NIL) (-1300 3200654 3200758 3200963 "XEXPPKG" 3201413 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1299 3198763 3200504 3200600 "XDPOLY" 3200605 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1298 3197570 3198170 3198213 "XALG" 3198218 NIL XALG (NIL T) -9 NIL 3198329 NIL) (-1297 3191012 3195547 3196041 "WUTSET" 3197162 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1296 3189268 3190064 3190387 "WP" 3190823 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1295 3188870 3189090 3189160 "WHILEAST" 3189220 T WHILEAST (NIL) -8 NIL NIL NIL) (-1294 3188342 3188587 3188681 "WHEREAST" 3188798 T WHEREAST (NIL) -8 NIL NIL NIL) (-1293 3187228 3187426 3187721 "WFFINTBS" 3188139 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1292 3185132 3185559 3186021 "WEIER" 3186800 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1291 3184178 3184628 3184670 "VSPACE" 3184806 NIL VSPACE (NIL T) -9 NIL 3184880 NIL) (-1290 3184016 3184043 3184134 "VSPACE-" 3184139 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1289 3183825 3183867 3183935 "VOID" 3183970 T VOID (NIL) -8 NIL NIL NIL) (-1288 3181961 3182320 3182726 "VIEW" 3183441 T VIEW (NIL) -7 NIL NIL NIL) (-1287 3178385 3179024 3179761 "VIEWDEF" 3181246 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1286 3167689 3169933 3172106 "VIEW3D" 3176234 T VIEW3D (NIL) -8 NIL NIL NIL) (-1285 3159940 3161600 3163179 "VIEW2D" 3166132 T VIEW2D (NIL) -8 NIL NIL NIL) (-1284 3155293 3159710 3159802 "VECTOR" 3159883 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1283 3153870 3154129 3154447 "VECTOR2" 3155023 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1282 3147312 3151621 3151664 "VECTCAT" 3152659 NIL VECTCAT (NIL T) -9 NIL 3153246 NIL) (-1281 3146326 3146580 3146970 "VECTCAT-" 3146975 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1280 3145780 3145977 3146097 "VARIABLE" 3146241 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1279 3145713 3145718 3145748 "UTYPE" 3145753 T UTYPE (NIL) -9 NIL NIL NIL) (-1278 3144543 3144697 3144959 "UTSODETL" 3145539 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1277 3141983 3142443 3142967 "UTSODE" 3144084 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1276 3133821 3139609 3140098 "UTS" 3141552 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1275 3124385 3129755 3129798 "UTSCAT" 3130910 NIL UTSCAT (NIL T) -9 NIL 3131668 NIL) (-1274 3121733 3122455 3123444 "UTSCAT-" 3123449 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1273 3121360 3121403 3121536 "UTS2" 3121684 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1272 3115586 3118198 3118241 "URAGG" 3120311 NIL URAGG (NIL T) -9 NIL 3121034 NIL) (-1271 3112525 3113388 3114511 "URAGG-" 3114516 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1270 3108234 3111160 3111625 "UPXSSING" 3112189 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1269 3100300 3107481 3107754 "UPXS" 3108019 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1268 3093373 3100204 3100276 "UPXSCONS" 3100281 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1267 3082780 3089576 3089638 "UPXSCCA" 3090212 NIL UPXSCCA (NIL T T) -9 NIL 3090445 NIL) (-1266 3082418 3082503 3082677 "UPXSCCA-" 3082682 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1265 3071677 3078246 3078289 "UPXSCAT" 3078937 NIL UPXSCAT (NIL T) -9 NIL 3079546 NIL) (-1264 3071107 3071186 3071365 "UPXS2" 3071592 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1263 3069761 3070014 3070365 "UPSQFREE" 3070850 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1262 3062969 3066029 3066084 "UPSCAT" 3067164 NIL UPSCAT (NIL T T) -9 NIL 3067929 NIL) (-1261 3062173 3062380 3062707 "UPSCAT-" 3062712 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1260 3047536 3055394 3055437 "UPOLYC" 3057538 NIL UPOLYC (NIL T) -9 NIL 3058759 NIL) (-1259 3038864 3041290 3044437 "UPOLYC-" 3044442 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1258 3038491 3038534 3038667 "UPOLYC2" 3038815 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1257 3030213 3038174 3038303 "UP" 3038410 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1256 3029552 3029659 3029823 "UPMP" 3030102 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1255 3029105 3029186 3029325 "UPDIVP" 3029465 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1254 3027673 3027922 3028238 "UPDECOMP" 3028854 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1253 3026904 3027016 3027202 "UPCDEN" 3027557 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1252 3026423 3026492 3026641 "UP2" 3026829 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1251 3024890 3025627 3025904 "UNISEG" 3026181 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1250 3024105 3024232 3024437 "UNISEG2" 3024733 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1249 3023165 3023345 3023571 "UNIFACT" 3023921 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1248 3006926 3022342 3022593 "ULS" 3022972 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1247 2994789 3006830 3006902 "ULSCONS" 3006907 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1246 2976088 2988213 2988275 "ULSCCAT" 2988913 NIL ULSCCAT (NIL T T) -9 NIL 2989202 NIL) (-1245 2975138 2975383 2975771 "ULSCCAT-" 2975776 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1244 2964202 2970685 2970728 "ULSCAT" 2971591 NIL ULSCAT (NIL T) -9 NIL 2972322 NIL) (-1243 2963632 2963711 2963890 "ULS2" 2964117 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1242 2962751 2963261 2963368 "UINT8" 2963479 T UINT8 (NIL) -8 NIL NIL 2963564) (-1241 2961869 2962379 2962486 "UINT64" 2962597 T UINT64 (NIL) -8 NIL NIL 2962682) (-1240 2960987 2961497 2961604 "UINT32" 2961715 T UINT32 (NIL) -8 NIL NIL 2961800) (-1239 2960105 2960615 2960722 "UINT16" 2960833 T UINT16 (NIL) -8 NIL NIL 2960918) (-1238 2958408 2959365 2959395 "UFD" 2959607 T UFD (NIL) -9 NIL 2959721 NIL) (-1237 2958202 2958248 2958343 "UFD-" 2958348 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1236 2957284 2957467 2957683 "UDVO" 2958008 T UDVO (NIL) -7 NIL NIL NIL) (-1235 2955100 2955509 2955980 "UDPO" 2956848 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1234 2955033 2955038 2955068 "TYPE" 2955073 T TYPE (NIL) -9 NIL NIL NIL) (-1233 2954793 2954988 2955019 "TYPEAST" 2955024 T TYPEAST (NIL) -8 NIL NIL NIL) (-1232 2953764 2953966 2954206 "TWOFACT" 2954587 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1231 2952787 2953173 2953408 "TUPLE" 2953564 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1230 2950478 2950997 2951536 "TUBETOOL" 2952270 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1229 2949327 2949532 2949773 "TUBE" 2950271 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1228 2944056 2948299 2948582 "TS" 2949079 NIL TS (NIL T) -8 NIL NIL NIL) (-1227 2932696 2936815 2936912 "TSETCAT" 2942181 NIL TSETCAT (NIL T T T T) -9 NIL 2943712 NIL) (-1226 2927428 2929028 2930919 "TSETCAT-" 2930924 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1225 2922067 2922914 2923843 "TRMANIP" 2926564 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1224 2921508 2921571 2921734 "TRIMAT" 2921999 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1223 2919374 2919611 2919968 "TRIGMNIP" 2921257 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1222 2918894 2919007 2919037 "TRIGCAT" 2919250 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1221 2918563 2918642 2918783 "TRIGCAT-" 2918788 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1220 2915408 2917421 2917702 "TREE" 2918317 NIL TREE (NIL T) -8 NIL NIL NIL) (-1219 2914682 2915210 2915240 "TRANFUN" 2915275 T TRANFUN (NIL) -9 NIL 2915341 NIL) (-1218 2913961 2914152 2914432 "TRANFUN-" 2914437 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1217 2913765 2913797 2913858 "TOPSP" 2913922 T TOPSP (NIL) -7 NIL NIL NIL) (-1216 2913113 2913228 2913382 "TOOLSIGN" 2913646 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1215 2911747 2912290 2912529 "TEXTFILE" 2912896 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1214 2909659 2910200 2910629 "TEX" 2911340 T TEX (NIL) -8 NIL NIL NIL) (-1213 2909440 2909471 2909543 "TEX1" 2909622 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1212 2909088 2909151 2909241 "TEMUTL" 2909372 T TEMUTL (NIL) -7 NIL NIL NIL) (-1211 2907242 2907522 2907847 "TBCMPPK" 2908811 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1210 2899019 2905402 2905458 "TBAGG" 2905858 NIL TBAGG (NIL T T) -9 NIL 2906069 NIL) (-1209 2894089 2895577 2897331 "TBAGG-" 2897336 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1208 2893473 2893580 2893725 "TANEXP" 2893978 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1207 2892984 2893248 2893338 "TALGOP" 2893418 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1206 2886374 2892841 2892934 "TABLE" 2892939 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1205 2885786 2885885 2886023 "TABLEAU" 2886271 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1204 2880394 2881614 2882862 "TABLBUMP" 2884572 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1203 2879616 2879763 2879944 "SYSTEM" 2880235 T SYSTEM (NIL) -8 NIL NIL NIL) (-1202 2876075 2876774 2877557 "SYSSOLP" 2878867 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1201 2875873 2876030 2876061 "SYSPTR" 2876066 T SYSPTR (NIL) -8 NIL NIL NIL) (-1200 2874909 2875414 2875533 "SYSNNI" 2875719 NIL SYSNNI (NIL NIL) -8 NIL NIL 2875804) (-1199 2874208 2874667 2874746 "SYSINT" 2874806 NIL SYSINT (NIL NIL) -8 NIL NIL 2874851) (-1198 2870540 2871486 2872196 "SYNTAX" 2873520 T SYNTAX (NIL) -8 NIL NIL NIL) (-1197 2867698 2868300 2868932 "SYMTAB" 2869930 T SYMTAB (NIL) -8 NIL NIL NIL) (-1196 2862947 2863849 2864832 "SYMS" 2866737 T SYMS (NIL) -8 NIL NIL NIL) (-1195 2860182 2862405 2862635 "SYMPOLY" 2862752 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1194 2859699 2859774 2859897 "SYMFUNC" 2860094 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1193 2855719 2857011 2857824 "SYMBOL" 2858908 T SYMBOL (NIL) -8 NIL NIL NIL) (-1192 2849258 2850947 2852667 "SWITCH" 2854021 T SWITCH (NIL) -8 NIL NIL NIL) (-1191 2842492 2848079 2848382 "SUTS" 2849013 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1190 2834558 2841739 2842012 "SUPXS" 2842277 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1189 2826228 2834176 2834302 "SUP" 2834467 NIL SUP (NIL T) -8 NIL NIL NIL) (-1188 2825387 2825514 2825731 "SUPFRACF" 2826096 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1187 2825008 2825067 2825180 "SUP2" 2825322 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1186 2823456 2823730 2824086 "SUMRF" 2824707 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1185 2822791 2822857 2823049 "SUMFS" 2823377 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1184 2806587 2821968 2822219 "SULS" 2822598 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1183 2806189 2806409 2806479 "SUCHTAST" 2806539 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1182 2805484 2805714 2805854 "SUCH" 2806097 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1181 2799351 2800390 2801349 "SUBSPACE" 2804572 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1180 2798781 2798871 2799035 "SUBRESP" 2799239 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1179 2792149 2793446 2794757 "STTF" 2797517 NIL STTF (NIL T) -7 NIL NIL NIL) (-1178 2786322 2787442 2788589 "STTFNC" 2791049 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1177 2777635 2779504 2781298 "STTAYLOR" 2784563 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1176 2770765 2777499 2777582 "STRTBL" 2777587 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1175 2766129 2770720 2770751 "STRING" 2770756 T STRING (NIL) -8 NIL NIL NIL) (-1174 2760958 2765472 2765502 "STRICAT" 2765561 T STRICAT (NIL) -9 NIL 2765623 NIL) (-1173 2753711 2758577 2759188 "STREAM" 2760382 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1172 2753221 2753298 2753442 "STREAM3" 2753628 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1171 2752203 2752386 2752621 "STREAM2" 2753034 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1170 2751891 2751943 2752036 "STREAM1" 2752145 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1169 2750907 2751088 2751319 "STINPROD" 2751707 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1168 2750459 2750669 2750699 "STEP" 2750779 T STEP (NIL) -9 NIL 2750857 NIL) (-1167 2749646 2749948 2750096 "STEPAST" 2750333 T STEPAST (NIL) -8 NIL NIL NIL) (-1166 2743078 2749545 2749622 "STBL" 2749627 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1165 2738173 2742269 2742312 "STAGG" 2742465 NIL STAGG (NIL T) -9 NIL 2742554 NIL) (-1164 2735875 2736477 2737349 "STAGG-" 2737354 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1163 2734022 2735645 2735737 "STACK" 2735818 NIL STACK (NIL T) -8 NIL NIL NIL) (-1162 2726717 2732163 2732619 "SREGSET" 2733652 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1161 2719142 2720511 2722024 "SRDCMPK" 2725323 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1160 2712027 2716552 2716582 "SRAGG" 2717885 T SRAGG (NIL) -9 NIL 2718493 NIL) (-1159 2711044 2711299 2711678 "SRAGG-" 2711683 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1158 2705415 2709991 2710412 "SQMATRIX" 2710670 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1157 2699100 2702133 2702860 "SPLTREE" 2704760 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1156 2695063 2695756 2696402 "SPLNODE" 2698526 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1155 2694110 2694343 2694373 "SPFCAT" 2694817 T SPFCAT (NIL) -9 NIL NIL NIL) (-1154 2692847 2693057 2693321 "SPECOUT" 2693868 T SPECOUT (NIL) -7 NIL NIL NIL) (-1153 2683957 2685829 2685859 "SPADXPT" 2690535 T SPADXPT (NIL) -9 NIL 2692699 NIL) (-1152 2683718 2683758 2683827 "SPADPRSR" 2683910 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1151 2681767 2683673 2683704 "SPADAST" 2683709 T SPADAST (NIL) -8 NIL NIL NIL) (-1150 2673712 2675485 2675528 "SPACEC" 2679901 NIL SPACEC (NIL T) -9 NIL 2681717 NIL) (-1149 2671842 2673644 2673693 "SPACE3" 2673698 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1148 2670594 2670765 2671056 "SORTPAK" 2671647 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1147 2668686 2668989 2669401 "SOLVETRA" 2670258 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1146 2667736 2667958 2668219 "SOLVESER" 2668459 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1145 2663040 2663928 2664923 "SOLVERAD" 2666788 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1144 2658855 2659464 2660193 "SOLVEFOR" 2662407 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1143 2653125 2658204 2658301 "SNTSCAT" 2658306 NIL SNTSCAT (NIL T T T T) -9 NIL 2658376 NIL) (-1142 2647231 2651448 2651839 "SMTS" 2652815 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1141 2641827 2647119 2647196 "SMP" 2647201 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1140 2639986 2640287 2640685 "SMITH" 2641524 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1139 2632428 2636715 2636818 "SMATCAT" 2638169 NIL SMATCAT (NIL NIL T T T) -9 NIL 2638719 NIL) (-1138 2629146 2630031 2631289 "SMATCAT-" 2631294 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1137 2626812 2628382 2628425 "SKAGG" 2628686 NIL SKAGG (NIL T) -9 NIL 2628821 NIL) (-1136 2623088 2626285 2626469 "SINT" 2626621 T SINT (NIL) -8 NIL NIL 2626783) (-1135 2622860 2622898 2622964 "SIMPAN" 2623044 T SIMPAN (NIL) -7 NIL NIL NIL) (-1134 2622139 2622395 2622535 "SIG" 2622742 T SIG (NIL) -8 NIL NIL NIL) (-1133 2620977 2621198 2621473 "SIGNRF" 2621898 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1132 2619810 2619961 2620245 "SIGNEF" 2620806 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1131 2619116 2619393 2619517 "SIGAST" 2619708 T SIGAST (NIL) -8 NIL NIL NIL) (-1130 2616806 2617260 2617766 "SHP" 2618657 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1129 2610802 2616707 2616783 "SHDP" 2616788 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1128 2610375 2610567 2610597 "SGROUP" 2610690 T SGROUP (NIL) -9 NIL 2610752 NIL) (-1127 2610233 2610259 2610332 "SGROUP-" 2610337 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1126 2607024 2607722 2608445 "SGCF" 2609532 T SGCF (NIL) -7 NIL NIL NIL) (-1125 2601392 2606471 2606568 "SFRTCAT" 2606573 NIL SFRTCAT (NIL T T T T) -9 NIL 2606612 NIL) (-1124 2594813 2595831 2596967 "SFRGCD" 2600375 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1123 2587939 2589012 2590198 "SFQCMPK" 2593746 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1122 2587559 2587648 2587759 "SFORT" 2587880 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1121 2586677 2587399 2587520 "SEXOF" 2587525 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1120 2585784 2586558 2586626 "SEX" 2586631 T SEX (NIL) -8 NIL NIL NIL) (-1119 2581565 2582280 2582375 "SEXCAT" 2584997 NIL SEXCAT (NIL T T T T T) -9 NIL 2585557 NIL) (-1118 2578718 2581499 2581547 "SET" 2581552 NIL SET (NIL T) -8 NIL NIL NIL) (-1117 2576942 2577431 2577736 "SETMN" 2578459 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1116 2576438 2576590 2576620 "SETCAT" 2576796 T SETCAT (NIL) -9 NIL 2576906 NIL) (-1115 2576130 2576208 2576338 "SETCAT-" 2576343 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1114 2572491 2574591 2574634 "SETAGG" 2575504 NIL SETAGG (NIL T) -9 NIL 2575844 NIL) (-1113 2571949 2572065 2572302 "SETAGG-" 2572307 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1112 2571392 2571645 2571746 "SEQAST" 2571870 T SEQAST (NIL) -8 NIL NIL NIL) (-1111 2570591 2570885 2570946 "SEGXCAT" 2571232 NIL SEGXCAT (NIL T T) -9 NIL 2571352 NIL) (-1110 2569597 2570257 2570439 "SEG" 2570444 NIL SEG (NIL T) -8 NIL NIL NIL) (-1109 2568576 2568790 2568833 "SEGCAT" 2569355 NIL SEGCAT (NIL T) -9 NIL 2569576 NIL) (-1108 2567508 2567939 2568147 "SEGBIND" 2568403 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1107 2567129 2567188 2567301 "SEGBIND2" 2567443 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1106 2566702 2566930 2567007 "SEGAST" 2567074 T SEGAST (NIL) -8 NIL NIL NIL) (-1105 2565921 2566047 2566251 "SEG2" 2566546 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1104 2565292 2565856 2565903 "SDVAR" 2565908 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1103 2557730 2565062 2565192 "SDPOL" 2565197 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1102 2556323 2556589 2556908 "SCPKG" 2557445 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1101 2555487 2555659 2555851 "SCOPE" 2556153 T SCOPE (NIL) -8 NIL NIL NIL) (-1100 2554707 2554841 2555020 "SCACHE" 2555342 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1099 2554353 2554539 2554569 "SASTCAT" 2554574 T SASTCAT (NIL) -9 NIL 2554587 NIL) (-1098 2553840 2554188 2554264 "SAOS" 2554299 T SAOS (NIL) -8 NIL NIL NIL) (-1097 2553405 2553440 2553613 "SAERFFC" 2553799 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1096 2547255 2553302 2553382 "SAE" 2553387 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1095 2546848 2546883 2547042 "SAEFACT" 2547214 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1094 2545169 2545483 2545884 "RURPK" 2546514 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1093 2543806 2544112 2544417 "RULESET" 2545003 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1092 2541029 2541559 2542017 "RULE" 2543487 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1091 2540641 2540823 2540906 "RULECOLD" 2540981 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1090 2540431 2540459 2540530 "RTVALUE" 2540592 T RTVALUE (NIL) -8 NIL NIL NIL) (-1089 2539902 2540148 2540242 "RSTRCAST" 2540359 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1088 2534750 2535545 2536465 "RSETGCD" 2539101 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1087 2523980 2529059 2529156 "RSETCAT" 2533275 NIL RSETCAT (NIL T T T T) -9 NIL 2534372 NIL) (-1086 2521907 2522446 2523270 "RSETCAT-" 2523275 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1085 2514293 2515669 2517189 "RSDCMPK" 2520506 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1084 2512272 2512739 2512813 "RRCC" 2513899 NIL RRCC (NIL T T) -9 NIL 2514243 NIL) (-1083 2511623 2511797 2512076 "RRCC-" 2512081 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1082 2511066 2511319 2511420 "RPTAST" 2511544 T RPTAST (NIL) -8 NIL NIL NIL) (-1081 2484729 2494178 2494245 "RPOLCAT" 2504911 NIL RPOLCAT (NIL T T T) -9 NIL 2508071 NIL) (-1080 2476227 2478567 2481689 "RPOLCAT-" 2481694 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1079 2467158 2474438 2474920 "ROUTINE" 2475767 T ROUTINE (NIL) -8 NIL NIL NIL) (-1078 2463905 2466784 2466924 "ROMAN" 2467040 T ROMAN (NIL) -8 NIL NIL NIL) (-1077 2462149 2462765 2463025 "ROIRC" 2463710 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1076 2458381 2460665 2460695 "RNS" 2460999 T RNS (NIL) -9 NIL 2461273 NIL) (-1075 2456890 2457273 2457807 "RNS-" 2457882 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1074 2456293 2456701 2456731 "RNG" 2456736 T RNG (NIL) -9 NIL 2456757 NIL) (-1073 2455296 2455658 2455860 "RNGBIND" 2456144 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1072 2454695 2455083 2455126 "RMODULE" 2455131 NIL RMODULE (NIL T) -9 NIL 2455158 NIL) (-1071 2453531 2453625 2453961 "RMCAT2" 2454596 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1070 2450381 2452877 2453174 "RMATRIX" 2453293 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1069 2443208 2445468 2445583 "RMATCAT" 2448942 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2449924 NIL) (-1068 2442583 2442730 2443037 "RMATCAT-" 2443042 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1067 2441984 2442205 2442248 "RLINSET" 2442442 NIL RLINSET (NIL T) -9 NIL 2442533 NIL) (-1066 2441551 2441626 2441754 "RINTERP" 2441903 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1065 2440609 2441163 2441193 "RING" 2441249 T RING (NIL) -9 NIL 2441341 NIL) (-1064 2440401 2440445 2440542 "RING-" 2440547 NIL RING- (NIL T) -8 NIL NIL NIL) (-1063 2439242 2439479 2439737 "RIDIST" 2440165 T RIDIST (NIL) -7 NIL NIL NIL) (-1062 2430531 2438710 2438916 "RGCHAIN" 2439090 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1061 2429881 2430287 2430328 "RGBCSPC" 2430386 NIL RGBCSPC (NIL T) -9 NIL 2430438 NIL) (-1060 2429039 2429420 2429461 "RGBCMDL" 2429693 NIL RGBCMDL (NIL T) -9 NIL 2429807 NIL) (-1059 2426033 2426647 2427317 "RF" 2428403 NIL RF (NIL T) -7 NIL NIL NIL) (-1058 2425679 2425742 2425845 "RFFACTOR" 2425964 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1057 2425404 2425439 2425536 "RFFACT" 2425638 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1056 2423521 2423885 2424267 "RFDIST" 2425044 T RFDIST (NIL) -7 NIL NIL NIL) (-1055 2422974 2423066 2423229 "RETSOL" 2423423 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1054 2422610 2422690 2422733 "RETRACT" 2422866 NIL RETRACT (NIL T) -9 NIL 2422953 NIL) (-1053 2422459 2422484 2422571 "RETRACT-" 2422576 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1052 2422061 2422281 2422351 "RETAST" 2422411 T RETAST (NIL) -8 NIL NIL NIL) (-1051 2414799 2421714 2421841 "RESULT" 2421956 T RESULT (NIL) -8 NIL NIL NIL) (-1050 2413390 2414068 2414267 "RESRING" 2414702 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1049 2413026 2413075 2413173 "RESLATC" 2413327 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1048 2412731 2412766 2412873 "REPSQ" 2412985 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1047 2410153 2410733 2411335 "REP" 2412151 T REP (NIL) -7 NIL NIL NIL) (-1046 2409850 2409885 2409996 "REPDB" 2410112 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1045 2403750 2405139 2406362 "REP2" 2408662 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1044 2400127 2400808 2401616 "REP1" 2402977 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1043 2392823 2398268 2398724 "REGSET" 2399757 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1042 2391588 2391971 2392221 "REF" 2392608 NIL REF (NIL T) -8 NIL NIL NIL) (-1041 2390965 2391068 2391235 "REDORDER" 2391472 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1040 2386933 2390178 2390405 "RECLOS" 2390793 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1039 2385985 2386166 2386381 "REALSOLV" 2386740 T REALSOLV (NIL) -7 NIL NIL NIL) (-1038 2385831 2385872 2385902 "REAL" 2385907 T REAL (NIL) -9 NIL 2385942 NIL) (-1037 2382314 2383116 2384000 "REAL0Q" 2384996 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1036 2377915 2378903 2379964 "REAL0" 2381295 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1035 2377386 2377632 2377726 "RDUCEAST" 2377843 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1034 2376791 2376863 2377070 "RDIV" 2377308 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1033 2375859 2376033 2376246 "RDIST" 2376613 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1032 2374456 2374743 2375115 "RDETRS" 2375567 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1031 2372268 2372722 2373260 "RDETR" 2373998 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1030 2370893 2371171 2371568 "RDEEFS" 2371984 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1029 2369402 2369708 2370133 "RDEEF" 2370581 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1028 2363463 2366383 2366413 "RCFIELD" 2367708 T RCFIELD (NIL) -9 NIL 2368439 NIL) (-1027 2361527 2362031 2362727 "RCFIELD-" 2362802 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1026 2357796 2359628 2359671 "RCAGG" 2360755 NIL RCAGG (NIL T) -9 NIL 2361220 NIL) (-1025 2357424 2357518 2357681 "RCAGG-" 2357686 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1024 2356759 2356871 2357036 "RATRET" 2357308 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1023 2356312 2356379 2356500 "RATFACT" 2356687 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1022 2355620 2355740 2355892 "RANDSRC" 2356182 T RANDSRC (NIL) -7 NIL NIL NIL) (-1021 2355354 2355398 2355471 "RADUTIL" 2355569 T RADUTIL (NIL) -7 NIL NIL NIL) (-1020 2348375 2354185 2354496 "RADIX" 2355077 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1019 2339891 2348217 2348347 "RADFF" 2348352 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1018 2339538 2339613 2339643 "RADCAT" 2339803 T RADCAT (NIL) -9 NIL NIL NIL) (-1017 2339320 2339368 2339468 "RADCAT-" 2339473 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1016 2337418 2339090 2339182 "QUEUE" 2339263 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1015 2333866 2337351 2337399 "QUAT" 2337404 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1014 2333497 2333540 2333671 "QUATCT2" 2333817 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1013 2326581 2330017 2330059 "QUATCAT" 2330850 NIL QUATCAT (NIL T) -9 NIL 2331616 NIL) (-1012 2322720 2323757 2325147 "QUATCAT-" 2325243 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1011 2320185 2321796 2321839 "QUAGG" 2322220 NIL QUAGG (NIL T) -9 NIL 2322395 NIL) (-1010 2319787 2320007 2320077 "QQUTAST" 2320137 T QQUTAST (NIL) -8 NIL NIL NIL) (-1009 2318800 2319300 2319465 "QFORM" 2319668 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1008 2309524 2314852 2314894 "QFCAT" 2315562 NIL QFCAT (NIL T) -9 NIL 2316563 NIL) (-1007 2304869 2306132 2307806 "QFCAT-" 2307902 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1006 2304500 2304543 2304674 "QFCAT2" 2304820 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1005 2303955 2304065 2304197 "QEQUAT" 2304390 T QEQUAT (NIL) -8 NIL NIL NIL) (-1004 2297081 2298154 2299340 "QCMPACK" 2302888 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1003 2294619 2295067 2295497 "QALGSET" 2296736 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1002 2293854 2294030 2294266 "QALGSET2" 2294437 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1001 2292539 2292763 2293082 "PWFFINTB" 2293627 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1000 2290714 2290882 2291238 "PUSHVAR" 2292353 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-999 2286632 2287686 2287727 "PTRANFN" 2289611 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-998 2285034 2285325 2285647 "PTPACK" 2286343 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-997 2284666 2284723 2284832 "PTFUNC2" 2284971 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-996 2279111 2283508 2283549 "PTCAT" 2283845 NIL PTCAT (NIL T) -9 NIL 2283998 NIL) (-995 2278769 2278804 2278928 "PSQFR" 2279070 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-994 2277364 2277662 2277996 "PSEUDLIN" 2278467 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-993 2264127 2266498 2268822 "PSETPK" 2275124 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-992 2257145 2259885 2259981 "PSETCAT" 2263002 NIL PSETCAT (NIL T T T T) -9 NIL 2263816 NIL) (-991 2254981 2255615 2256436 "PSETCAT-" 2256441 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-990 2254330 2254495 2254523 "PSCURVE" 2254791 T PSCURVE (NIL) -9 NIL 2254958 NIL) (-989 2250328 2251844 2251909 "PSCAT" 2252753 NIL PSCAT (NIL T T T) -9 NIL 2252993 NIL) (-988 2249391 2249607 2250007 "PSCAT-" 2250012 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-987 2247750 2248460 2248723 "PRTITION" 2249148 T PRTITION (NIL) -8 NIL NIL NIL) (-986 2247225 2247471 2247563 "PRTDAST" 2247678 T PRTDAST (NIL) -8 NIL NIL NIL) (-985 2236315 2238529 2240717 "PRS" 2245087 NIL PRS (NIL T T) -7 NIL NIL NIL) (-984 2234126 2235665 2235705 "PRQAGG" 2235888 NIL PRQAGG (NIL T) -9 NIL 2235990 NIL) (-983 2233462 2233767 2233795 "PROPLOG" 2233934 T PROPLOG (NIL) -9 NIL 2234049 NIL) (-982 2233066 2233123 2233246 "PROPFUN2" 2233385 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-981 2232381 2232502 2232674 "PROPFUN1" 2232927 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-980 2230562 2231128 2231425 "PROPFRML" 2232117 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-979 2230031 2230138 2230266 "PROPERTY" 2230454 T PROPERTY (NIL) -8 NIL NIL NIL) (-978 2224089 2228197 2229017 "PRODUCT" 2229257 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-977 2221367 2223547 2223781 "PR" 2223900 NIL PR (NIL T T) -8 NIL NIL NIL) (-976 2221163 2221195 2221254 "PRINT" 2221328 T PRINT (NIL) -7 NIL NIL NIL) (-975 2220503 2220620 2220772 "PRIMES" 2221043 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-974 2218568 2218969 2219435 "PRIMELT" 2220082 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-973 2218297 2218346 2218374 "PRIMCAT" 2218498 T PRIMCAT (NIL) -9 NIL NIL NIL) (-972 2214412 2218235 2218280 "PRIMARR" 2218285 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-971 2213419 2213597 2213825 "PRIMARR2" 2214230 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-970 2213062 2213118 2213229 "PREASSOC" 2213357 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-969 2212537 2212670 2212698 "PPCURVE" 2212903 T PPCURVE (NIL) -9 NIL 2213039 NIL) (-968 2212132 2212332 2212415 "PORTNUM" 2212474 T PORTNUM (NIL) -8 NIL NIL NIL) (-967 2209491 2209890 2210482 "POLYROOT" 2211713 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-966 2203584 2209095 2209255 "POLY" 2209364 NIL POLY (NIL T) -8 NIL NIL NIL) (-965 2202967 2203025 2203259 "POLYLIFT" 2203520 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-964 2199242 2199691 2200320 "POLYCATQ" 2202512 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-963 2185771 2190989 2191054 "POLYCAT" 2194568 NIL POLYCAT (NIL T T T) -9 NIL 2196446 NIL) (-962 2178998 2180922 2183386 "POLYCAT-" 2183391 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-961 2178585 2178653 2178773 "POLY2UP" 2178924 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-960 2178217 2178274 2178383 "POLY2" 2178522 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-959 2176902 2177141 2177417 "POLUTIL" 2177991 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-958 2175257 2175534 2175865 "POLTOPOL" 2176624 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-957 2170722 2175193 2175239 "POINT" 2175244 NIL POINT (NIL T) -8 NIL NIL NIL) (-956 2168909 2169266 2169641 "PNTHEORY" 2170367 T PNTHEORY (NIL) -7 NIL NIL NIL) (-955 2167367 2167664 2168063 "PMTOOLS" 2168607 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-954 2166960 2167038 2167155 "PMSYM" 2167283 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-953 2166468 2166537 2166712 "PMQFCAT" 2166885 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-952 2165823 2165933 2166089 "PMPRED" 2166345 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-951 2165216 2165302 2165464 "PMPREDFS" 2165724 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-950 2163880 2164088 2164466 "PMPLCAT" 2164978 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-949 2163412 2163491 2163643 "PMLSAGG" 2163795 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-948 2162885 2162961 2163143 "PMKERNEL" 2163330 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-947 2162502 2162577 2162690 "PMINS" 2162804 NIL PMINS (NIL T) -7 NIL NIL NIL) (-946 2161944 2162013 2162222 "PMFS" 2162427 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-945 2161172 2161290 2161495 "PMDOWN" 2161821 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-944 2160339 2160497 2160678 "PMASS" 2161011 T PMASS (NIL) -7 NIL NIL NIL) (-943 2159612 2159722 2159885 "PMASSFS" 2160226 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-942 2159267 2159335 2159429 "PLOTTOOL" 2159538 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-941 2153874 2155078 2156226 "PLOT" 2158139 T PLOT (NIL) -8 NIL NIL NIL) (-940 2149678 2150722 2151643 "PLOT3D" 2152973 T PLOT3D (NIL) -8 NIL NIL NIL) (-939 2148590 2148767 2149002 "PLOT1" 2149482 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-938 2123981 2128656 2133507 "PLEQN" 2143856 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-937 2123299 2123421 2123601 "PINTERP" 2123846 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-936 2122992 2123039 2123142 "PINTERPA" 2123246 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-935 2122208 2122756 2122843 "PI" 2122883 T PI (NIL) -8 NIL NIL 2122950) (-934 2120505 2121480 2121508 "PID" 2121690 T PID (NIL) -9 NIL 2121824 NIL) (-933 2120256 2120293 2120368 "PICOERCE" 2120462 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-932 2119576 2119715 2119891 "PGROEB" 2120112 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-931 2115163 2115977 2116882 "PGE" 2118691 T PGE (NIL) -7 NIL NIL NIL) (-930 2113286 2113533 2113899 "PGCD" 2114880 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-929 2112624 2112727 2112888 "PFRPAC" 2113170 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-928 2109264 2111172 2111525 "PFR" 2112303 NIL PFR (NIL T) -8 NIL NIL NIL) (-927 2107653 2107897 2108222 "PFOTOOLS" 2109011 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-926 2106186 2106425 2106776 "PFOQ" 2107410 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-925 2104687 2104899 2105255 "PFO" 2105970 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-924 2101240 2104576 2104645 "PF" 2104650 NIL PF (NIL NIL) -8 NIL NIL NIL) (-923 2098574 2099845 2099873 "PFECAT" 2100458 T PFECAT (NIL) -9 NIL 2100842 NIL) (-922 2098019 2098173 2098387 "PFECAT-" 2098392 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-921 2096622 2096874 2097175 "PFBRU" 2097768 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-920 2094488 2094840 2095272 "PFBR" 2096273 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-919 2090534 2092000 2092647 "PERM" 2093874 NIL PERM (NIL T) -8 NIL NIL NIL) (-918 2085768 2086741 2087611 "PERMGRP" 2089697 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-917 2083887 2084847 2084888 "PERMCAT" 2085288 NIL PERMCAT (NIL T) -9 NIL 2085586 NIL) (-916 2083540 2083581 2083705 "PERMAN" 2083840 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-915 2081028 2083205 2083327 "PENDTREE" 2083451 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-914 2079957 2080172 2080213 "PDSPC" 2080746 NIL PDSPC (NIL T) -9 NIL 2080991 NIL) (-913 2079060 2079278 2079640 "PDSPC-" 2079645 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-912 2077942 2078710 2078751 "PDRING" 2078756 NIL PDRING (NIL T) -9 NIL 2078784 NIL) (-911 2075157 2075935 2076603 "PDEPROB" 2077294 T PDEPROB (NIL) -8 NIL NIL NIL) (-910 2072702 2073206 2073761 "PDEPACK" 2074622 T PDEPACK (NIL) -7 NIL NIL NIL) (-909 2071614 2071804 2072055 "PDECOMP" 2072501 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-908 2069193 2070036 2070064 "PDECAT" 2070851 T PDECAT (NIL) -9 NIL 2071564 NIL) (-907 2068822 2068877 2068931 "PDDOM" 2069096 NIL PDDOM (NIL T T) -9 NIL 2069176 NIL) (-906 2068641 2068671 2068778 "PDDOM-" 2068783 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-905 2068392 2068425 2068515 "PCOMP" 2068602 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-904 2066570 2067193 2067490 "PBWLB" 2068121 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-903 2059043 2060643 2061981 "PATTERN" 2065253 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-902 2058675 2058732 2058841 "PATTERN2" 2058980 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-901 2056432 2056820 2057277 "PATTERN1" 2058264 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-900 2053800 2054381 2054862 "PATRES" 2055997 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-899 2053364 2053431 2053563 "PATRES2" 2053727 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-898 2051247 2051652 2052059 "PATMATCH" 2053031 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-897 2050757 2050966 2051007 "PATMAB" 2051114 NIL PATMAB (NIL T) -9 NIL 2051197 NIL) (-896 2049275 2049611 2049869 "PATLRES" 2050562 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-895 2048821 2048944 2048985 "PATAB" 2048990 NIL PATAB (NIL T) -9 NIL 2049162 NIL) (-894 2047003 2047398 2047821 "PARTPERM" 2048418 T PARTPERM (NIL) -7 NIL NIL NIL) (-893 2046624 2046687 2046789 "PARSURF" 2046934 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-892 2046256 2046313 2046422 "PARSU2" 2046561 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-891 2046020 2046060 2046127 "PARSER" 2046209 T PARSER (NIL) -7 NIL NIL NIL) (-890 2045641 2045704 2045806 "PARSCURV" 2045951 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-889 2045273 2045330 2045439 "PARSC2" 2045578 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-888 2044912 2044970 2045067 "PARPCURV" 2045209 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-887 2044544 2044601 2044710 "PARPC2" 2044849 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-886 2043605 2043917 2044099 "PARAMAST" 2044382 T PARAMAST (NIL) -8 NIL NIL NIL) (-885 2043125 2043211 2043330 "PAN2EXPR" 2043506 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-884 2041902 2042246 2042474 "PALETTE" 2042917 T PALETTE (NIL) -8 NIL NIL NIL) (-883 2040295 2040907 2041267 "PAIR" 2041588 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-882 2034074 2039552 2039747 "PADICRC" 2040149 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-881 2027198 2033418 2033603 "PADICRAT" 2033921 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-880 2025513 2027135 2027180 "PADIC" 2027185 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-879 2022623 2024187 2024227 "PADICCT" 2024808 NIL PADICCT (NIL NIL) -9 NIL 2025090 NIL) (-878 2021580 2021780 2022048 "PADEPAC" 2022410 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-877 2020792 2020925 2021131 "PADE" 2021442 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-876 2019179 2020000 2020280 "OWP" 2020596 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-875 2018672 2018885 2018982 "OVERSET" 2019102 T OVERSET (NIL) -8 NIL NIL NIL) (-874 2017718 2018277 2018449 "OVAR" 2018540 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-873 2016982 2017103 2017264 "OUT" 2017577 T OUT (NIL) -7 NIL NIL NIL) (-872 2005854 2008091 2010291 "OUTFORM" 2014802 T OUTFORM (NIL) -8 NIL NIL NIL) (-871 2005190 2005451 2005578 "OUTBFILE" 2005747 T OUTBFILE (NIL) -8 NIL NIL NIL) (-870 2004497 2004662 2004690 "OUTBCON" 2005008 T OUTBCON (NIL) -9 NIL 2005174 NIL) (-869 2004098 2004210 2004367 "OUTBCON-" 2004372 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-868 2003478 2003827 2003916 "OSI" 2004029 T OSI (NIL) -8 NIL NIL NIL) (-867 2003008 2003346 2003374 "OSGROUP" 2003379 T OSGROUP (NIL) -9 NIL 2003401 NIL) (-866 2001753 2001980 2002265 "ORTHPOL" 2002755 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-865 1999304 2001588 2001709 "OREUP" 2001714 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-864 1996707 1998995 1999122 "ORESUP" 1999246 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-863 1994235 1994735 1995296 "OREPCTO" 1996196 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-862 1987921 1990122 1990163 "OREPCAT" 1992511 NIL OREPCAT (NIL T) -9 NIL 1993615 NIL) (-861 1985068 1985850 1986908 "OREPCAT-" 1986913 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-860 1984219 1984517 1984545 "ORDSET" 1984854 T ORDSET (NIL) -9 NIL 1985018 NIL) (-859 1983650 1983798 1984022 "ORDSET-" 1984027 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-858 1982215 1983006 1983034 "ORDRING" 1983236 T ORDRING (NIL) -9 NIL 1983361 NIL) (-857 1981860 1981954 1982098 "ORDRING-" 1982103 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-856 1981240 1981703 1981731 "ORDMON" 1981736 T ORDMON (NIL) -9 NIL 1981757 NIL) (-855 1980402 1980549 1980744 "ORDFUNS" 1981089 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-854 1979740 1980159 1980187 "ORDFIN" 1980252 T ORDFIN (NIL) -9 NIL 1980326 NIL) (-853 1976299 1978326 1978735 "ORDCOMP" 1979364 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-852 1975565 1975692 1975878 "ORDCOMP2" 1976159 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-851 1972146 1973056 1973870 "OPTPROB" 1974771 T OPTPROB (NIL) -8 NIL NIL NIL) (-850 1968948 1969587 1970291 "OPTPACK" 1971462 T OPTPACK (NIL) -7 NIL NIL NIL) (-849 1966635 1967401 1967429 "OPTCAT" 1968248 T OPTCAT (NIL) -9 NIL 1968898 NIL) (-848 1966019 1966312 1966417 "OPSIG" 1966550 T OPSIG (NIL) -8 NIL NIL NIL) (-847 1965787 1965826 1965892 "OPQUERY" 1965973 T OPQUERY (NIL) -7 NIL NIL NIL) (-846 1962918 1964098 1964602 "OP" 1965316 NIL OP (NIL T) -8 NIL NIL NIL) (-845 1962292 1962518 1962559 "OPERCAT" 1962771 NIL OPERCAT (NIL T) -9 NIL 1962868 NIL) (-844 1962047 1962103 1962220 "OPERCAT-" 1962225 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-843 1958860 1960844 1961213 "ONECOMP" 1961711 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-842 1958165 1958280 1958454 "ONECOMP2" 1958732 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-841 1957584 1957690 1957820 "OMSERVER" 1958055 T OMSERVER (NIL) -7 NIL NIL NIL) (-840 1954446 1957024 1957064 "OMSAGG" 1957125 NIL OMSAGG (NIL T) -9 NIL 1957189 NIL) (-839 1953069 1953332 1953614 "OMPKG" 1954184 T OMPKG (NIL) -7 NIL NIL NIL) (-838 1952499 1952602 1952630 "OM" 1952929 T OM (NIL) -9 NIL NIL NIL) (-837 1951046 1952048 1952217 "OMLO" 1952380 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-836 1950006 1950153 1950373 "OMEXPR" 1950872 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-835 1949297 1949552 1949688 "OMERR" 1949890 T OMERR (NIL) -8 NIL NIL NIL) (-834 1948448 1948718 1948878 "OMERRK" 1949157 T OMERRK (NIL) -8 NIL NIL NIL) (-833 1947899 1948125 1948233 "OMENC" 1948360 T OMENC (NIL) -8 NIL NIL NIL) (-832 1941794 1942979 1944150 "OMDEV" 1946748 T OMDEV (NIL) -8 NIL NIL NIL) (-831 1940863 1941034 1941228 "OMCONN" 1941620 T OMCONN (NIL) -8 NIL NIL NIL) (-830 1939384 1940360 1940388 "OINTDOM" 1940393 T OINTDOM (NIL) -9 NIL 1940414 NIL) (-829 1936722 1938072 1938409 "OFMONOID" 1939079 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-828 1936094 1936659 1936704 "ODVAR" 1936709 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-827 1933517 1935839 1935994 "ODR" 1935999 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-826 1926009 1933293 1933419 "ODPOL" 1933424 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-825 1919975 1925881 1925986 "ODP" 1925991 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-824 1918741 1918956 1919231 "ODETOOLS" 1919749 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-823 1915708 1916366 1917082 "ODESYS" 1918074 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-822 1910590 1911498 1912523 "ODERTRIC" 1914783 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-821 1910016 1910098 1910292 "ODERED" 1910502 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-820 1906904 1907452 1908129 "ODERAT" 1909439 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-819 1903863 1904328 1904925 "ODEPRRIC" 1906433 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-818 1901806 1902402 1902888 "ODEPROB" 1903397 T ODEPROB (NIL) -8 NIL NIL NIL) (-817 1898326 1898811 1899458 "ODEPRIM" 1901285 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-816 1897575 1897677 1897937 "ODEPAL" 1898218 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-815 1893737 1894528 1895392 "ODEPACK" 1896731 T ODEPACK (NIL) -7 NIL NIL NIL) (-814 1892798 1892905 1893127 "ODEINT" 1893626 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-813 1886899 1888324 1889771 "ODEIFTBL" 1891371 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-812 1882297 1883083 1884035 "ODEEF" 1886058 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-811 1881646 1881735 1881958 "ODECONST" 1882202 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-810 1879771 1880432 1880460 "ODECAT" 1881065 T ODECAT (NIL) -9 NIL 1881596 NIL) (-809 1876626 1879476 1879598 "OCT" 1879681 NIL OCT (NIL T) -8 NIL NIL NIL) (-808 1876264 1876307 1876434 "OCTCT2" 1876577 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-807 1870875 1873310 1873350 "OC" 1874447 NIL OC (NIL T) -9 NIL 1875305 NIL) (-806 1868102 1868850 1869840 "OC-" 1869934 NIL OC- (NIL T T) -8 NIL NIL NIL) (-805 1867454 1867922 1867950 "OCAMON" 1867955 T OCAMON (NIL) -9 NIL 1867976 NIL) (-804 1866985 1867326 1867354 "OASGP" 1867359 T OASGP (NIL) -9 NIL 1867379 NIL) (-803 1866246 1866735 1866763 "OAMONS" 1866803 T OAMONS (NIL) -9 NIL 1866846 NIL) (-802 1865660 1866093 1866121 "OAMON" 1866126 T OAMON (NIL) -9 NIL 1866146 NIL) (-801 1864918 1865436 1865464 "OAGROUP" 1865469 T OAGROUP (NIL) -9 NIL 1865489 NIL) (-800 1864608 1864658 1864746 "NUMTUBE" 1864862 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-799 1858181 1859699 1861235 "NUMQUAD" 1863092 T NUMQUAD (NIL) -7 NIL NIL NIL) (-798 1853937 1854925 1855950 "NUMODE" 1857176 T NUMODE (NIL) -7 NIL NIL NIL) (-797 1851292 1852172 1852200 "NUMINT" 1853123 T NUMINT (NIL) -9 NIL 1853887 NIL) (-796 1850240 1850437 1850655 "NUMFMT" 1851094 T NUMFMT (NIL) -7 NIL NIL NIL) (-795 1836599 1839544 1842076 "NUMERIC" 1847747 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-794 1830969 1836048 1836143 "NTSCAT" 1836148 NIL NTSCAT (NIL T T T T) -9 NIL 1836187 NIL) (-793 1830163 1830328 1830521 "NTPOLFN" 1830808 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-792 1818151 1826988 1827800 "NSUP" 1829384 NIL NSUP (NIL T) -8 NIL NIL NIL) (-791 1817783 1817840 1817949 "NSUP2" 1818088 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-790 1807920 1817557 1817690 "NSMP" 1817695 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-789 1806352 1806653 1807010 "NREP" 1807608 NIL NREP (NIL T) -7 NIL NIL NIL) (-788 1804943 1805195 1805553 "NPCOEF" 1806095 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-787 1804009 1804124 1804340 "NORMRETR" 1804824 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-786 1802050 1802340 1802749 "NORMPK" 1803717 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-785 1801735 1801763 1801887 "NORMMA" 1802016 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-784 1801535 1801692 1801721 "NONE" 1801726 T NONE (NIL) -8 NIL NIL NIL) (-783 1801324 1801353 1801422 "NONE1" 1801499 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-782 1800821 1800883 1801062 "NODE1" 1801256 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-781 1799102 1799953 1800208 "NNI" 1800555 T NNI (NIL) -8 NIL NIL 1800790) (-780 1797522 1797835 1798199 "NLINSOL" 1798770 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-779 1793763 1794758 1795657 "NIPROB" 1796643 T NIPROB (NIL) -8 NIL NIL NIL) (-778 1792520 1792754 1793056 "NFINTBAS" 1793525 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-777 1791694 1792170 1792211 "NETCLT" 1792383 NIL NETCLT (NIL T) -9 NIL 1792465 NIL) (-776 1790402 1790633 1790914 "NCODIV" 1791462 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-775 1790164 1790201 1790276 "NCNTFRAC" 1790359 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-774 1788344 1788708 1789128 "NCEP" 1789789 NIL NCEP (NIL T) -7 NIL NIL NIL) (-773 1787195 1787968 1787996 "NASRING" 1788106 T NASRING (NIL) -9 NIL 1788186 NIL) (-772 1786990 1787034 1787128 "NASRING-" 1787133 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-771 1786097 1786622 1786650 "NARNG" 1786767 T NARNG (NIL) -9 NIL 1786858 NIL) (-770 1785789 1785856 1785990 "NARNG-" 1785995 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-769 1784668 1784875 1785110 "NAGSP" 1785574 T NAGSP (NIL) -7 NIL NIL NIL) (-768 1775940 1777624 1779297 "NAGS" 1783015 T NAGS (NIL) -7 NIL NIL NIL) (-767 1774488 1774796 1775127 "NAGF07" 1775629 T NAGF07 (NIL) -7 NIL NIL NIL) (-766 1769026 1770317 1771624 "NAGF04" 1773201 T NAGF04 (NIL) -7 NIL NIL NIL) (-765 1761994 1763608 1765241 "NAGF02" 1767413 T NAGF02 (NIL) -7 NIL NIL NIL) (-764 1757218 1758318 1759435 "NAGF01" 1760897 T NAGF01 (NIL) -7 NIL NIL NIL) (-763 1750846 1752412 1753997 "NAGE04" 1755653 T NAGE04 (NIL) -7 NIL NIL NIL) (-762 1742015 1744136 1746266 "NAGE02" 1748736 T NAGE02 (NIL) -7 NIL NIL NIL) (-761 1737968 1738915 1739879 "NAGE01" 1741071 T NAGE01 (NIL) -7 NIL NIL NIL) (-760 1735763 1736297 1736855 "NAGD03" 1737430 T NAGD03 (NIL) -7 NIL NIL NIL) (-759 1727513 1729441 1731395 "NAGD02" 1733829 T NAGD02 (NIL) -7 NIL NIL NIL) (-758 1721324 1722749 1724189 "NAGD01" 1726093 T NAGD01 (NIL) -7 NIL NIL NIL) (-757 1717533 1718355 1719192 "NAGC06" 1720507 T NAGC06 (NIL) -7 NIL NIL NIL) (-756 1715998 1716330 1716686 "NAGC05" 1717197 T NAGC05 (NIL) -7 NIL NIL NIL) (-755 1715374 1715493 1715637 "NAGC02" 1715874 T NAGC02 (NIL) -7 NIL NIL NIL) (-754 1714333 1714916 1714956 "NAALG" 1715035 NIL NAALG (NIL T) -9 NIL 1715096 NIL) (-753 1714168 1714197 1714287 "NAALG-" 1714292 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-752 1708118 1709226 1710413 "MULTSQFR" 1713064 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-751 1707437 1707512 1707696 "MULTFACT" 1708030 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-750 1700108 1704022 1704075 "MTSCAT" 1705145 NIL MTSCAT (NIL T T) -9 NIL 1705660 NIL) (-749 1699820 1699874 1699966 "MTHING" 1700048 NIL MTHING (NIL T) -7 NIL NIL NIL) (-748 1699612 1699645 1699705 "MSYSCMD" 1699780 T MSYSCMD (NIL) -7 NIL NIL NIL) (-747 1695694 1698367 1698687 "MSET" 1699325 NIL MSET (NIL T) -8 NIL NIL NIL) (-746 1692763 1695255 1695296 "MSETAGG" 1695301 NIL MSETAGG (NIL T) -9 NIL 1695335 NIL) (-745 1688605 1690142 1690887 "MRING" 1692063 NIL MRING (NIL T T) -8 NIL NIL NIL) (-744 1688171 1688238 1688369 "MRF2" 1688532 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-743 1687789 1687824 1687968 "MRATFAC" 1688130 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-742 1685401 1685696 1686127 "MPRFF" 1687494 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-741 1679609 1685255 1685352 "MPOLY" 1685357 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-740 1679099 1679134 1679342 "MPCPF" 1679568 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-739 1678613 1678656 1678840 "MPC3" 1679050 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-738 1677808 1677889 1678110 "MPC2" 1678528 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-737 1676109 1676446 1676836 "MONOTOOL" 1677468 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-736 1675334 1675651 1675679 "MONOID" 1675898 T MONOID (NIL) -9 NIL 1676045 NIL) (-735 1674880 1674999 1675180 "MONOID-" 1675185 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-734 1664788 1670830 1670889 "MONOGEN" 1671563 NIL MONOGEN (NIL T T) -9 NIL 1672019 NIL) (-733 1662006 1662741 1663741 "MONOGEN-" 1663860 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-732 1660839 1661285 1661313 "MONADWU" 1661705 T MONADWU (NIL) -9 NIL 1661943 NIL) (-731 1660211 1660370 1660618 "MONADWU-" 1660623 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-730 1659570 1659814 1659842 "MONAD" 1660049 T MONAD (NIL) -9 NIL 1660161 NIL) (-729 1659255 1659333 1659465 "MONAD-" 1659470 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-728 1657544 1658168 1658447 "MOEBIUS" 1659008 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-727 1656822 1657226 1657266 "MODULE" 1657271 NIL MODULE (NIL T) -9 NIL 1657310 NIL) (-726 1656390 1656486 1656676 "MODULE-" 1656681 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-725 1654070 1654754 1655081 "MODRING" 1656214 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-724 1651014 1652175 1652696 "MODOP" 1653599 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-723 1649602 1650081 1650358 "MODMONOM" 1650877 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-722 1639557 1647893 1648307 "MODMON" 1649239 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-721 1636713 1638401 1638677 "MODFIELD" 1639432 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-720 1635690 1635994 1636184 "MMLFORM" 1636543 T MMLFORM (NIL) -8 NIL NIL NIL) (-719 1635216 1635259 1635438 "MMAP" 1635641 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-718 1633295 1634062 1634103 "MLO" 1634526 NIL MLO (NIL T) -9 NIL 1634768 NIL) (-717 1630661 1631177 1631779 "MLIFT" 1632776 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-716 1630052 1630136 1630290 "MKUCFUNC" 1630572 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-715 1629651 1629721 1629844 "MKRECORD" 1629975 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-714 1628698 1628860 1629088 "MKFUNC" 1629462 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-713 1628086 1628190 1628346 "MKFLCFN" 1628581 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-712 1627363 1627465 1627650 "MKBCFUNC" 1627979 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-711 1624038 1626917 1627053 "MINT" 1627247 T MINT (NIL) -8 NIL NIL NIL) (-710 1622850 1623093 1623370 "MHROWRED" 1623793 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-709 1618230 1621385 1621790 "MFLOAT" 1622465 T MFLOAT (NIL) -8 NIL NIL NIL) (-708 1617587 1617663 1617834 "MFINFACT" 1618142 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-707 1613902 1614750 1615634 "MESH" 1616723 T MESH (NIL) -7 NIL NIL NIL) (-706 1612292 1612604 1612957 "MDDFACT" 1613589 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-705 1609087 1611451 1611492 "MDAGG" 1611747 NIL MDAGG (NIL T) -9 NIL 1611890 NIL) (-704 1598734 1608380 1608587 "MCMPLX" 1608900 T MCMPLX (NIL) -8 NIL NIL NIL) (-703 1597871 1598017 1598218 "MCDEN" 1598583 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-702 1595761 1596031 1596411 "MCALCFN" 1597601 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-701 1594686 1594926 1595159 "MAYBE" 1595567 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-700 1592298 1592821 1593383 "MATSTOR" 1594157 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-699 1588255 1591670 1591918 "MATRIX" 1592083 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-698 1584021 1584728 1585464 "MATLIN" 1587612 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-697 1574127 1577313 1577390 "MATCAT" 1582270 NIL MATCAT (NIL T T T) -9 NIL 1583687 NIL) (-696 1570483 1571504 1572860 "MATCAT-" 1572865 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-695 1569077 1569230 1569563 "MATCAT2" 1570318 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-694 1567189 1567513 1567897 "MAPPKG3" 1568752 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-693 1566170 1566343 1566565 "MAPPKG2" 1567013 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-692 1564669 1564953 1565280 "MAPPKG1" 1565876 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-691 1563748 1564075 1564252 "MAPPAST" 1564512 T MAPPAST (NIL) -8 NIL NIL NIL) (-690 1563359 1563417 1563540 "MAPHACK3" 1563684 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-689 1562951 1563012 1563126 "MAPHACK2" 1563291 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-688 1562389 1562492 1562634 "MAPHACK1" 1562842 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-687 1560468 1561089 1561393 "MAGMA" 1562117 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-686 1559947 1560192 1560283 "MACROAST" 1560397 T MACROAST (NIL) -8 NIL NIL NIL) (-685 1556365 1558186 1558647 "M3D" 1559519 NIL M3D (NIL T) -8 NIL NIL NIL) (-684 1550440 1554704 1554745 "LZSTAGG" 1555527 NIL LZSTAGG (NIL T) -9 NIL 1555822 NIL) (-683 1546398 1547571 1549028 "LZSTAGG-" 1549033 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-682 1543485 1544289 1544776 "LWORD" 1545943 NIL LWORD (NIL T) -8 NIL NIL NIL) (-681 1543061 1543289 1543364 "LSTAST" 1543430 T LSTAST (NIL) -8 NIL NIL NIL) (-680 1536138 1542832 1542966 "LSQM" 1542971 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-679 1535362 1535501 1535729 "LSPP" 1535993 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-678 1533174 1533475 1533931 "LSMP" 1535051 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-677 1529953 1530627 1531357 "LSMP1" 1532476 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-676 1523799 1529090 1529131 "LSAGG" 1529193 NIL LSAGG (NIL T) -9 NIL 1529271 NIL) (-675 1520494 1521418 1522631 "LSAGG-" 1522636 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-674 1518093 1519638 1519887 "LPOLY" 1520289 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-673 1517675 1517760 1517883 "LPEFRAC" 1518002 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-672 1515996 1516769 1517022 "LO" 1517507 NIL LO (NIL T T T) -8 NIL NIL NIL) (-671 1515648 1515760 1515788 "LOGIC" 1515899 T LOGIC (NIL) -9 NIL 1515980 NIL) (-670 1515510 1515533 1515604 "LOGIC-" 1515609 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-669 1514703 1514843 1515036 "LODOOPS" 1515366 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-668 1512126 1514619 1514685 "LODO" 1514690 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-667 1510664 1510899 1511252 "LODOF" 1511873 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-666 1506868 1509299 1509340 "LODOCAT" 1509778 NIL LODOCAT (NIL T) -9 NIL 1509989 NIL) (-665 1506601 1506659 1506786 "LODOCAT-" 1506791 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-664 1503921 1506442 1506560 "LODO2" 1506565 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-663 1501356 1503858 1503903 "LODO1" 1503908 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-662 1500237 1500402 1500707 "LODEEF" 1501179 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-661 1495540 1498431 1498472 "LNAGG" 1499334 NIL LNAGG (NIL T) -9 NIL 1499769 NIL) (-660 1494687 1494901 1495243 "LNAGG-" 1495248 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-659 1490823 1491612 1492251 "LMOPS" 1494102 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-658 1490226 1490614 1490655 "LMODULE" 1490660 NIL LMODULE (NIL T) -9 NIL 1490686 NIL) (-657 1487424 1489871 1489994 "LMDICT" 1490136 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-656 1486830 1487051 1487092 "LLINSET" 1487283 NIL LLINSET (NIL T) -9 NIL 1487374 NIL) (-655 1486529 1486738 1486798 "LITERAL" 1486803 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-654 1479692 1485463 1485767 "LIST" 1486258 NIL LIST (NIL T) -8 NIL NIL NIL) (-653 1479217 1479291 1479430 "LIST3" 1479612 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-652 1478224 1478402 1478630 "LIST2" 1479035 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-651 1476358 1476670 1477069 "LIST2MAP" 1477871 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-650 1475954 1476191 1476232 "LINSET" 1476237 NIL LINSET (NIL T) -9 NIL 1476271 NIL) (-649 1474683 1475216 1475257 "LINEXP" 1475608 NIL LINEXP (NIL T) -9 NIL 1475799 NIL) (-648 1473260 1473520 1473831 "LINDEP" 1474435 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-647 1470027 1470746 1471523 "LIMITRF" 1472515 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-646 1468330 1468626 1469035 "LIMITPS" 1469722 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-645 1462758 1467841 1468069 "LIE" 1468151 NIL LIE (NIL T T) -8 NIL NIL NIL) (-644 1461706 1462175 1462215 "LIECAT" 1462355 NIL LIECAT (NIL T) -9 NIL 1462506 NIL) (-643 1461547 1461574 1461662 "LIECAT-" 1461667 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-642 1454134 1461087 1461243 "LIB" 1461411 T LIB (NIL) -8 NIL NIL NIL) (-641 1449769 1450652 1451587 "LGROBP" 1453251 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-640 1447767 1448041 1448391 "LF" 1449490 NIL LF (NIL T T) -7 NIL NIL NIL) (-639 1446607 1447299 1447327 "LFCAT" 1447534 T LFCAT (NIL) -9 NIL 1447673 NIL) (-638 1443509 1444139 1444827 "LEXTRIPK" 1445971 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-637 1440253 1441079 1441582 "LEXP" 1443089 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-636 1439729 1439974 1440066 "LETAST" 1440181 T LETAST (NIL) -8 NIL NIL NIL) (-635 1438127 1438440 1438841 "LEADCDET" 1439411 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-634 1437317 1437391 1437620 "LAZM3PK" 1438048 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-633 1432234 1435394 1435932 "LAUPOL" 1436829 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-632 1431813 1431857 1432018 "LAPLACE" 1432184 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-631 1429752 1430914 1431165 "LA" 1431646 NIL LA (NIL T T T) -8 NIL NIL NIL) (-630 1428746 1429330 1429371 "LALG" 1429433 NIL LALG (NIL T) -9 NIL 1429492 NIL) (-629 1428460 1428519 1428655 "LALG-" 1428660 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-628 1428295 1428319 1428360 "KVTFROM" 1428422 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-627 1427218 1427662 1427847 "KTVLOGIC" 1428130 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-626 1427053 1427077 1427118 "KRCFROM" 1427180 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-625 1425957 1426144 1426443 "KOVACIC" 1426853 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-624 1425792 1425816 1425857 "KONVERT" 1425919 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-623 1425627 1425651 1425692 "KOERCE" 1425754 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-622 1423458 1424220 1424597 "KERNEL" 1425283 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-621 1422954 1423035 1423167 "KERNEL2" 1423372 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-620 1416724 1421493 1421547 "KDAGG" 1421924 NIL KDAGG (NIL T T) -9 NIL 1422130 NIL) (-619 1416253 1416377 1416582 "KDAGG-" 1416587 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-618 1409401 1415914 1416069 "KAFILE" 1416131 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-617 1403829 1408912 1409140 "JORDAN" 1409222 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-616 1403208 1403478 1403599 "JOINAST" 1403728 T JOINAST (NIL) -8 NIL NIL NIL) (-615 1403054 1403113 1403168 "JAVACODE" 1403173 T JAVACODE (NIL) -8 NIL NIL NIL) (-614 1399306 1401259 1401313 "IXAGG" 1402242 NIL IXAGG (NIL T T) -9 NIL 1402701 NIL) (-613 1398225 1398531 1398950 "IXAGG-" 1398955 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-612 1393755 1398147 1398206 "IVECTOR" 1398211 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-611 1392521 1392758 1393024 "ITUPLE" 1393522 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-610 1391023 1391200 1391495 "ITRIGMNP" 1392343 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-609 1389768 1389972 1390255 "ITFUN3" 1390799 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-608 1389400 1389457 1389566 "ITFUN2" 1389705 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-607 1388559 1388880 1389054 "ITFORM" 1389246 T ITFORM (NIL) -8 NIL NIL NIL) (-606 1386520 1387579 1387857 "ITAYLOR" 1388314 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-605 1375465 1380657 1381820 "ISUPS" 1385390 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-604 1374569 1374709 1374945 "ISUMP" 1375312 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-603 1369944 1374514 1374555 "ISTRING" 1374560 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-602 1369420 1369665 1369757 "ISAST" 1369872 T ISAST (NIL) -8 NIL NIL NIL) (-601 1368629 1368711 1368927 "IRURPK" 1369334 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-600 1367565 1367766 1368006 "IRSN" 1368409 T IRSN (NIL) -7 NIL NIL NIL) (-599 1365636 1365991 1366420 "IRRF2F" 1367203 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-598 1365383 1365421 1365497 "IRREDFFX" 1365592 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-597 1363998 1364257 1364556 "IROOT" 1365116 NIL IROOT (NIL T) -7 NIL NIL NIL) (-596 1360602 1361682 1362374 "IR" 1363338 NIL IR (NIL T) -8 NIL NIL NIL) (-595 1359807 1360095 1360246 "IRFORM" 1360471 T IRFORM (NIL) -8 NIL NIL NIL) (-594 1357420 1357915 1358481 "IR2" 1359285 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-593 1356520 1356633 1356847 "IR2F" 1357303 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-592 1356311 1356345 1356405 "IPRNTPK" 1356480 T IPRNTPK (NIL) -7 NIL NIL NIL) (-591 1352892 1356200 1356269 "IPF" 1356274 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-590 1351219 1352817 1352874 "IPADIC" 1352879 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-589 1350531 1350779 1350909 "IP4ADDR" 1351109 T IP4ADDR (NIL) -8 NIL NIL NIL) (-588 1349905 1350160 1350292 "IOMODE" 1350419 T IOMODE (NIL) -8 NIL NIL NIL) (-587 1348978 1349502 1349629 "IOBFILE" 1349798 T IOBFILE (NIL) -8 NIL NIL NIL) (-586 1348466 1348882 1348910 "IOBCON" 1348915 T IOBCON (NIL) -9 NIL 1348936 NIL) (-585 1347977 1348035 1348218 "INVLAPLA" 1348402 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-584 1337625 1339979 1342365 "INTTR" 1345641 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-583 1333960 1334702 1335567 "INTTOOLS" 1336810 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-582 1333546 1333637 1333754 "INTSLPE" 1333863 T INTSLPE (NIL) -7 NIL NIL NIL) (-581 1331499 1333469 1333528 "INTRVL" 1333533 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-580 1329101 1329613 1330188 "INTRF" 1330984 NIL INTRF (NIL T) -7 NIL NIL NIL) (-579 1328512 1328609 1328751 "INTRET" 1328999 NIL INTRET (NIL T) -7 NIL NIL NIL) (-578 1326509 1326898 1327368 "INTRAT" 1328120 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-577 1323772 1324355 1324974 "INTPM" 1325994 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-576 1320517 1321116 1321854 "INTPAF" 1323158 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-575 1315696 1316658 1317709 "INTPACK" 1319486 T INTPACK (NIL) -7 NIL NIL NIL) (-574 1312594 1315493 1315602 "INT" 1315607 T INT (NIL) -8 NIL NIL NIL) (-573 1311846 1311998 1312206 "INTHERTR" 1312436 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-572 1311285 1311365 1311553 "INTHERAL" 1311760 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-571 1309131 1309574 1310031 "INTHEORY" 1310848 T INTHEORY (NIL) -7 NIL NIL NIL) (-570 1300537 1302158 1303930 "INTG0" 1307483 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-569 1281110 1285900 1290710 "INTFTBL" 1295747 T INTFTBL (NIL) -8 NIL NIL NIL) (-568 1280359 1280497 1280670 "INTFACT" 1280969 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-567 1277786 1278232 1278789 "INTEF" 1279913 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-566 1276153 1276892 1276920 "INTDOM" 1277221 T INTDOM (NIL) -9 NIL 1277428 NIL) (-565 1275522 1275696 1275938 "INTDOM-" 1275943 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-564 1271910 1273838 1273892 "INTCAT" 1274691 NIL INTCAT (NIL T) -9 NIL 1275012 NIL) (-563 1271382 1271485 1271613 "INTBIT" 1271802 T INTBIT (NIL) -7 NIL NIL NIL) (-562 1270081 1270235 1270542 "INTALG" 1271227 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-561 1269564 1269654 1269811 "INTAF" 1269985 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-560 1262907 1269374 1269514 "INTABL" 1269519 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-559 1262240 1262706 1262771 "INT8" 1262805 T INT8 (NIL) -8 NIL NIL 1262850) (-558 1261572 1262038 1262103 "INT64" 1262137 T INT64 (NIL) -8 NIL NIL 1262182) (-557 1260904 1261370 1261435 "INT32" 1261469 T INT32 (NIL) -8 NIL NIL 1261514) (-556 1260236 1260702 1260767 "INT16" 1260801 T INT16 (NIL) -8 NIL NIL 1260846) (-555 1255031 1257797 1257825 "INS" 1258759 T INS (NIL) -9 NIL 1259424 NIL) (-554 1252271 1253042 1254016 "INS-" 1254089 NIL INS- (NIL T) -8 NIL NIL NIL) (-553 1251046 1251273 1251571 "INPSIGN" 1252024 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-552 1250164 1250281 1250478 "INPRODPF" 1250926 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-551 1249058 1249175 1249412 "INPRODFF" 1250044 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-550 1248058 1248210 1248470 "INNMFACT" 1248894 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-549 1247255 1247352 1247540 "INMODGCD" 1247957 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-548 1245763 1246008 1246332 "INFSP" 1247000 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-547 1244947 1245064 1245247 "INFPROD0" 1245643 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-546 1241802 1243012 1243527 "INFORM" 1244440 T INFORM (NIL) -8 NIL NIL NIL) (-545 1241412 1241472 1241570 "INFORM1" 1241737 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-544 1240935 1241024 1241138 "INFINITY" 1241318 T INFINITY (NIL) -7 NIL NIL NIL) (-543 1240111 1240655 1240756 "INETCLTS" 1240854 T INETCLTS (NIL) -8 NIL NIL NIL) (-542 1238727 1238977 1239298 "INEP" 1239859 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-541 1237976 1238624 1238689 "INDE" 1238694 NIL INDE (NIL T) -8 NIL NIL NIL) (-540 1237540 1237608 1237725 "INCRMAPS" 1237903 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-539 1236358 1236809 1237015 "INBFILE" 1237354 T INBFILE (NIL) -8 NIL NIL NIL) (-538 1231657 1232594 1233538 "INBFF" 1235446 NIL INBFF (NIL T) -7 NIL NIL NIL) (-537 1230565 1230834 1230862 "INBCON" 1231375 T INBCON (NIL) -9 NIL 1231641 NIL) (-536 1229817 1230040 1230316 "INBCON-" 1230321 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-535 1229296 1229541 1229632 "INAST" 1229746 T INAST (NIL) -8 NIL NIL NIL) (-534 1228723 1228975 1229081 "IMPTAST" 1229210 T IMPTAST (NIL) -8 NIL NIL NIL) (-533 1225169 1228567 1228671 "IMATRIX" 1228676 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-532 1223877 1224000 1224316 "IMATQF" 1225025 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-531 1222097 1222324 1222661 "IMATLIN" 1223633 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-530 1216675 1222021 1222079 "ILIST" 1222084 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-529 1214580 1216535 1216648 "IIARRAY2" 1216653 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-528 1209978 1214491 1214555 "IFF" 1214560 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-527 1209325 1209595 1209711 "IFAST" 1209882 T IFAST (NIL) -8 NIL NIL NIL) (-526 1204320 1208617 1208805 "IFARRAY" 1209182 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-525 1203500 1204224 1204297 "IFAMON" 1204302 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-524 1203084 1203149 1203203 "IEVALAB" 1203410 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-523 1202759 1202827 1202987 "IEVALAB-" 1202992 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-522 1202390 1202673 1202736 "IDPO" 1202741 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-521 1201640 1202279 1202354 "IDPOAMS" 1202359 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-520 1200947 1201529 1201604 "IDPOAM" 1201609 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-519 1200006 1200282 1200335 "IDPC" 1200748 NIL IDPC (NIL T T) -9 NIL 1200897 NIL) (-518 1199475 1199898 1199971 "IDPAM" 1199976 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-517 1198851 1199367 1199440 "IDPAG" 1199445 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-516 1198496 1198687 1198762 "IDENT" 1198796 T IDENT (NIL) -8 NIL NIL NIL) (-515 1194751 1195599 1196494 "IDECOMP" 1197653 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-514 1187588 1188674 1189721 "IDEAL" 1193787 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-513 1186748 1186860 1187060 "ICDEN" 1187472 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-512 1185819 1186228 1186375 "ICARD" 1186621 T ICARD (NIL) -8 NIL NIL NIL) (-511 1183879 1184192 1184597 "IBPTOOLS" 1185496 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-510 1179486 1183499 1183612 "IBITS" 1183798 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-509 1176209 1176785 1177480 "IBATOOL" 1178903 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-508 1173988 1174450 1174983 "IBACHIN" 1175744 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-507 1171817 1173834 1173937 "IARRAY2" 1173942 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-506 1167923 1171743 1171800 "IARRAY1" 1171805 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-505 1161961 1166335 1166816 "IAN" 1167462 T IAN (NIL) -8 NIL NIL NIL) (-504 1161472 1161529 1161702 "IALGFACT" 1161898 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-503 1161000 1161113 1161141 "HYPCAT" 1161348 T HYPCAT (NIL) -9 NIL NIL NIL) (-502 1160538 1160655 1160841 "HYPCAT-" 1160846 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-501 1160133 1160333 1160416 "HOSTNAME" 1160475 T HOSTNAME (NIL) -8 NIL NIL NIL) (-500 1159978 1160015 1160056 "HOMOTOP" 1160061 NIL HOMOTOP (NIL T) -9 NIL 1160094 NIL) (-499 1156610 1157988 1158029 "HOAGG" 1159010 NIL HOAGG (NIL T) -9 NIL 1159689 NIL) (-498 1155204 1155603 1156129 "HOAGG-" 1156134 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-497 1149113 1154797 1154947 "HEXADEC" 1155074 T HEXADEC (NIL) -8 NIL NIL NIL) (-496 1147861 1148083 1148346 "HEUGCD" 1148890 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-495 1146937 1147698 1147828 "HELLFDIV" 1147833 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-494 1145116 1146714 1146802 "HEAP" 1146881 NIL HEAP (NIL T) -8 NIL NIL NIL) (-493 1144379 1144668 1144802 "HEADAST" 1145002 T HEADAST (NIL) -8 NIL NIL NIL) (-492 1138389 1144294 1144356 "HDP" 1144361 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-491 1132288 1138024 1138176 "HDMP" 1138290 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-490 1131612 1131752 1131916 "HB" 1132144 T HB (NIL) -7 NIL NIL NIL) (-489 1124998 1131458 1131562 "HASHTBL" 1131567 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-488 1124474 1124719 1124811 "HASAST" 1124926 T HASAST (NIL) -8 NIL NIL NIL) (-487 1122252 1124096 1124278 "HACKPI" 1124312 T HACKPI (NIL) -8 NIL NIL NIL) (-486 1117920 1122105 1122218 "GTSET" 1122223 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-485 1111335 1117798 1117896 "GSTBL" 1117901 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-484 1103613 1110366 1110631 "GSERIES" 1111126 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-483 1102754 1103171 1103199 "GROUP" 1103402 T GROUP (NIL) -9 NIL 1103536 NIL) (-482 1102120 1102279 1102530 "GROUP-" 1102535 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-481 1100487 1100808 1101195 "GROEBSOL" 1101797 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-480 1099401 1099689 1099740 "GRMOD" 1100269 NIL GRMOD (NIL T T) -9 NIL 1100437 NIL) (-479 1099169 1099205 1099333 "GRMOD-" 1099338 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-478 1094459 1095523 1096523 "GRIMAGE" 1098189 T GRIMAGE (NIL) -8 NIL NIL NIL) (-477 1092925 1093186 1093510 "GRDEF" 1094155 T GRDEF (NIL) -7 NIL NIL NIL) (-476 1092369 1092485 1092626 "GRAY" 1092804 T GRAY (NIL) -7 NIL NIL NIL) (-475 1091556 1091962 1092013 "GRALG" 1092166 NIL GRALG (NIL T T) -9 NIL 1092259 NIL) (-474 1091217 1091290 1091453 "GRALG-" 1091458 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-473 1087994 1090802 1090980 "GPOLSET" 1091124 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-472 1087348 1087405 1087663 "GOSPER" 1087931 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-471 1083080 1083786 1084312 "GMODPOL" 1087047 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-470 1082085 1082269 1082507 "GHENSEL" 1082892 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-469 1076241 1077084 1078104 "GENUPS" 1081169 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-468 1075938 1075989 1076078 "GENUFACT" 1076184 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-467 1075350 1075427 1075592 "GENPGCD" 1075856 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-466 1074824 1074859 1075072 "GENMFACT" 1075309 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-465 1073390 1073647 1073954 "GENEEZ" 1074567 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-464 1067449 1073001 1073163 "GDMP" 1073313 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-463 1056792 1061220 1062326 "GCNAALG" 1066432 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-462 1055119 1055981 1056009 "GCDDOM" 1056264 T GCDDOM (NIL) -9 NIL 1056421 NIL) (-461 1054589 1054716 1054931 "GCDDOM-" 1054936 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-460 1053261 1053446 1053750 "GB" 1054368 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-459 1041877 1044207 1046599 "GBINTERN" 1050952 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-458 1039714 1040006 1040427 "GBF" 1041552 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-457 1038495 1038660 1038927 "GBEUCLID" 1039530 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-456 1037844 1037969 1038118 "GAUSSFAC" 1038366 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-455 1036211 1036513 1036827 "GALUTIL" 1037563 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-454 1034519 1034793 1035117 "GALPOLYU" 1035938 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-453 1031884 1032174 1032581 "GALFACTU" 1034216 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-452 1023690 1025189 1026797 "GALFACT" 1030316 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-451 1021078 1021736 1021764 "FVFUN" 1022920 T FVFUN (NIL) -9 NIL 1023640 NIL) (-450 1020344 1020526 1020554 "FVC" 1020845 T FVC (NIL) -9 NIL 1021028 NIL) (-449 1019987 1020169 1020237 "FUNDESC" 1020296 T FUNDESC (NIL) -8 NIL NIL NIL) (-448 1019602 1019784 1019865 "FUNCTION" 1019939 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-447 1017346 1017924 1018390 "FT" 1019156 T FT (NIL) -8 NIL NIL NIL) (-446 1016137 1016647 1016850 "FTEM" 1017163 T FTEM (NIL) -8 NIL NIL NIL) (-445 1014428 1014717 1015114 "FSUPFACT" 1015828 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-444 1012825 1013114 1013446 "FST" 1014116 T FST (NIL) -8 NIL NIL NIL) (-443 1012024 1012130 1012318 "FSRED" 1012707 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-442 1010723 1010979 1011326 "FSPRMELT" 1011739 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-441 1008029 1008467 1008953 "FSPECF" 1010286 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-440 989331 997803 997844 "FS" 1001728 NIL FS (NIL T) -9 NIL 1004017 NIL) (-439 977974 980967 985024 "FS-" 985324 NIL FS- (NIL T T) -8 NIL NIL NIL) (-438 977502 977556 977726 "FSINT" 977915 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-437 975794 976495 976798 "FSERIES" 977281 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-436 974836 974952 975176 "FSCINT" 975674 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-435 971044 973780 973821 "FSAGG" 974191 NIL FSAGG (NIL T) -9 NIL 974450 NIL) (-434 968806 969407 970203 "FSAGG-" 970298 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-433 967848 967991 968218 "FSAGG2" 968659 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-432 965530 965810 966357 "FS2UPS" 967566 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-431 965164 965207 965336 "FS2" 965481 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-430 964042 964213 964515 "FS2EXPXP" 964989 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-429 963468 963583 963735 "FRUTIL" 963922 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-428 954881 958963 960321 "FR" 962142 NIL FR (NIL T) -8 NIL NIL NIL) (-427 949895 952570 952610 "FRNAALG" 953930 NIL FRNAALG (NIL T) -9 NIL 954528 NIL) (-426 945568 946644 947919 "FRNAALG-" 948669 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-425 945206 945249 945376 "FRNAAF2" 945519 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-424 943581 944055 944351 "FRMOD" 945018 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-423 941324 941956 942274 "FRIDEAL" 943372 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-422 940515 940602 940893 "FRIDEAL2" 941231 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-421 939648 940062 940103 "FRETRCT" 940108 NIL FRETRCT (NIL T) -9 NIL 940284 NIL) (-420 938760 938991 939342 "FRETRCT-" 939347 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-419 935848 937058 937117 "FRAMALG" 937999 NIL FRAMALG (NIL T T) -9 NIL 938291 NIL) (-418 933982 934437 935067 "FRAMALG-" 935290 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-417 927812 933455 933732 "FRAC" 933737 NIL FRAC (NIL T) -8 NIL NIL NIL) (-416 927448 927505 927612 "FRAC2" 927749 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-415 927084 927141 927248 "FR2" 927385 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-414 921597 924490 924518 "FPS" 925637 T FPS (NIL) -9 NIL 926194 NIL) (-413 921046 921155 921319 "FPS-" 921465 NIL FPS- (NIL T) -8 NIL NIL NIL) (-412 918348 920017 920045 "FPC" 920270 T FPC (NIL) -9 NIL 920412 NIL) (-411 918141 918181 918278 "FPC-" 918283 NIL FPC- (NIL T) -8 NIL NIL NIL) (-410 916931 917629 917670 "FPATMAB" 917675 NIL FPATMAB (NIL T) -9 NIL 917827 NIL) (-409 914604 915107 915533 "FPARFRAC" 916568 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-408 909998 910496 911178 "FORTRAN" 914036 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-407 907714 908214 908753 "FORT" 909479 T FORT (NIL) -7 NIL NIL NIL) (-406 905390 905952 905980 "FORTFN" 907040 T FORTFN (NIL) -9 NIL 907664 NIL) (-405 905154 905204 905232 "FORTCAT" 905291 T FORTCAT (NIL) -9 NIL 905353 NIL) (-404 903260 903770 904160 "FORMULA" 904784 T FORMULA (NIL) -8 NIL NIL NIL) (-403 903048 903078 903147 "FORMULA1" 903224 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-402 902571 902623 902796 "FORDER" 902990 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-401 901667 901831 902024 "FOP" 902398 T FOP (NIL) -7 NIL NIL NIL) (-400 900248 900947 901121 "FNLA" 901549 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-399 898977 899392 899420 "FNCAT" 899880 T FNCAT (NIL) -9 NIL 900140 NIL) (-398 898516 898936 898964 "FNAME" 898969 T FNAME (NIL) -8 NIL NIL NIL) (-397 897079 898042 898070 "FMTC" 898075 T FMTC (NIL) -9 NIL 898111 NIL) (-396 895825 897015 897061 "FMONOID" 897066 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-395 892653 893821 893862 "FMONCAT" 895079 NIL FMONCAT (NIL T) -9 NIL 895684 NIL) (-394 891845 892395 892544 "FM" 892549 NIL FM (NIL T T) -8 NIL NIL NIL) (-393 889269 889915 889943 "FMFUN" 891087 T FMFUN (NIL) -9 NIL 891795 NIL) (-392 888538 888719 888747 "FMC" 889037 T FMC (NIL) -9 NIL 889219 NIL) (-391 885617 886477 886531 "FMCAT" 887726 NIL FMCAT (NIL T T) -9 NIL 888221 NIL) (-390 884483 885383 885483 "FM1" 885562 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-389 882257 882673 883167 "FLOATRP" 884034 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-388 875835 879986 880607 "FLOAT" 881656 T FLOAT (NIL) -8 NIL NIL NIL) (-387 873273 873773 874351 "FLOATCP" 875302 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-386 872120 872879 872920 "FLINEXP" 872925 NIL FLINEXP (NIL T) -9 NIL 873018 NIL) (-385 871052 871349 871757 "FLINEXP-" 871762 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-384 870128 870272 870496 "FLASORT" 870904 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-383 867244 868112 868164 "FLALG" 869391 NIL FLALG (NIL T T) -9 NIL 869858 NIL) (-382 860948 864700 864741 "FLAGG" 866003 NIL FLAGG (NIL T) -9 NIL 866655 NIL) (-381 859674 860013 860503 "FLAGG-" 860508 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-380 858716 858859 859086 "FLAGG2" 859527 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-379 855567 856575 856634 "FINRALG" 857762 NIL FINRALG (NIL T T) -9 NIL 858270 NIL) (-378 854727 854956 855295 "FINRALG-" 855300 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-377 854107 854346 854374 "FINITE" 854570 T FINITE (NIL) -9 NIL 854677 NIL) (-376 846464 848651 848691 "FINAALG" 852358 NIL FINAALG (NIL T) -9 NIL 853811 NIL) (-375 841796 842846 843990 "FINAALG-" 845369 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-374 841164 841551 841654 "FILE" 841726 NIL FILE (NIL T) -8 NIL NIL NIL) (-373 839822 840160 840214 "FILECAT" 840898 NIL FILECAT (NIL T T) -9 NIL 841114 NIL) (-372 837538 839066 839094 "FIELD" 839134 T FIELD (NIL) -9 NIL 839214 NIL) (-371 836158 836543 837054 "FIELD-" 837059 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-370 834008 834793 835140 "FGROUP" 835844 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-369 833098 833262 833482 "FGLMICPK" 833840 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-368 828930 833023 833080 "FFX" 833085 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-367 828531 828592 828727 "FFSLPE" 828863 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-366 824521 825303 826099 "FFPOLY" 827767 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-365 824025 824061 824270 "FFPOLY2" 824479 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-364 819871 823944 824007 "FFP" 824012 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-363 815269 819782 819846 "FF" 819851 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-362 810395 814612 814802 "FFNBX" 815123 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-361 805323 809530 809788 "FFNBP" 810249 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-360 799956 804607 804818 "FFNB" 805156 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-359 798788 798986 799301 "FFINTBAS" 799753 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-358 794814 797035 797063 "FFIELDC" 797683 T FFIELDC (NIL) -9 NIL 798059 NIL) (-357 793476 793847 794344 "FFIELDC-" 794349 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-356 793045 793091 793215 "FFHOM" 793418 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-355 790740 791227 791744 "FFF" 792560 NIL FFF (NIL T) -7 NIL NIL NIL) (-354 786358 790482 790583 "FFCGX" 790683 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-353 781980 786090 786197 "FFCGP" 786301 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-352 777163 781707 781815 "FFCG" 781916 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-351 757866 767052 767138 "FFCAT" 772303 NIL FFCAT (NIL T T T) -9 NIL 773754 NIL) (-350 753063 754111 755425 "FFCAT-" 756655 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-349 752474 752517 752752 "FFCAT2" 753014 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-348 741797 745446 746666 "FEXPR" 751326 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-347 740759 741194 741235 "FEVALAB" 741319 NIL FEVALAB (NIL T) -9 NIL 741580 NIL) (-346 739918 740128 740466 "FEVALAB-" 740471 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-345 738484 739301 739504 "FDIV" 739817 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-344 735504 736245 736360 "FDIVCAT" 737928 NIL FDIVCAT (NIL T T T T) -9 NIL 738365 NIL) (-343 735266 735293 735463 "FDIVCAT-" 735468 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-342 734486 734573 734850 "FDIV2" 735173 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 733460 733781 733983 "FCTRDATA" 734304 T FCTRDATA (NIL) -8 NIL NIL NIL) (-340 732146 732405 732694 "FCPAK1" 733191 T FCPAK1 (NIL) -7 NIL NIL NIL) (-339 731245 731646 731787 "FCOMP" 732037 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-338 714950 718395 721933 "FC" 727727 T FC (NIL) -8 NIL NIL NIL) (-337 707229 711257 711297 "FAXF" 713099 NIL FAXF (NIL T) -9 NIL 713791 NIL) (-336 704506 705163 705988 "FAXF-" 706453 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-335 699558 703882 704058 "FARRAY" 704363 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-334 694452 696519 696572 "FAMR" 697595 NIL FAMR (NIL T T) -9 NIL 698055 NIL) (-333 693342 693644 694079 "FAMR-" 694084 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-332 692511 693264 693317 "FAMONOID" 693322 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-331 690297 691007 691060 "FAMONC" 692001 NIL FAMONC (NIL T T) -9 NIL 692387 NIL) (-330 688961 690051 690188 "FAGROUP" 690193 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-329 686756 687075 687478 "FACUTIL" 688642 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-328 685855 686040 686262 "FACTFUNC" 686566 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-327 678277 685158 685357 "EXPUPXS" 685711 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-326 675760 676300 676886 "EXPRTUBE" 677711 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-325 672031 672623 673353 "EXPRODE" 675099 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-324 657750 670680 671109 "EXPR" 671635 NIL EXPR (NIL T) -8 NIL NIL NIL) (-323 652304 652891 653697 "EXPR2UPS" 657048 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-322 651936 651993 652102 "EXPR2" 652241 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-321 643189 651087 651378 "EXPEXPAN" 651772 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-320 642989 643146 643175 "EXIT" 643180 T EXIT (NIL) -8 NIL NIL NIL) (-319 642469 642713 642804 "EXITAST" 642918 T EXITAST (NIL) -8 NIL NIL NIL) (-318 642096 642158 642271 "EVALCYC" 642401 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-317 641637 641755 641796 "EVALAB" 641966 NIL EVALAB (NIL T) -9 NIL 642070 NIL) (-316 641118 641240 641461 "EVALAB-" 641466 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-315 638486 639788 639816 "EUCDOM" 640371 T EUCDOM (NIL) -9 NIL 640721 NIL) (-314 636891 637333 637923 "EUCDOM-" 637928 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-313 624430 627189 629939 "ESTOOLS" 634161 T ESTOOLS (NIL) -7 NIL NIL NIL) (-312 624062 624119 624228 "ESTOOLS2" 624367 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-311 623813 623855 623935 "ESTOOLS1" 624014 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-310 617850 619458 619486 "ES" 622254 T ES (NIL) -9 NIL 623664 NIL) (-309 612797 614084 615901 "ES-" 616065 NIL ES- (NIL T) -8 NIL NIL NIL) (-308 609171 609932 610712 "ESCONT" 612037 T ESCONT (NIL) -7 NIL NIL NIL) (-307 608916 608948 609030 "ESCONT1" 609133 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-306 608591 608641 608741 "ES2" 608860 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-305 608221 608279 608388 "ES1" 608527 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-304 607437 607566 607742 "ERROR" 608065 T ERROR (NIL) -7 NIL NIL NIL) (-303 600829 607296 607387 "EQTBL" 607392 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-302 593332 596143 597592 "EQ" 599413 NIL -2085 (NIL T) -8 NIL NIL NIL) (-301 592964 593021 593130 "EQ2" 593269 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-300 588255 589302 590395 "EP" 591903 NIL EP (NIL T) -7 NIL NIL NIL) (-299 586855 587146 587452 "ENV" 587969 T ENV (NIL) -8 NIL NIL NIL) (-298 585949 586503 586531 "ENTIRER" 586536 T ENTIRER (NIL) -9 NIL 586582 NIL) (-297 582643 584131 584492 "EMR" 585757 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-296 581773 581958 582012 "ELTAGG" 582392 NIL ELTAGG (NIL T T) -9 NIL 582603 NIL) (-295 581492 581554 581695 "ELTAGG-" 581700 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-294 581256 581285 581339 "ELTAB" 581423 NIL ELTAB (NIL T T) -9 NIL 581475 NIL) (-293 580382 580528 580727 "ELFUTS" 581107 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-292 580124 580180 580208 "ELEMFUN" 580313 T ELEMFUN (NIL) -9 NIL NIL NIL) (-291 579994 580015 580083 "ELEMFUN-" 580088 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-290 574808 578064 578105 "ELAGG" 579045 NIL ELAGG (NIL T) -9 NIL 579508 NIL) (-289 573093 573527 574190 "ELAGG-" 574195 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-288 572405 572542 572698 "ELABOR" 572957 T ELABOR (NIL) -8 NIL NIL NIL) (-287 571066 571345 571639 "ELABEXPR" 572131 T ELABEXPR (NIL) -8 NIL NIL NIL) (-286 563930 565733 566560 "EFUPXS" 570342 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-285 557380 559181 559991 "EFULS" 563206 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-284 554865 555223 555695 "EFSTRUC" 557012 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-283 544656 546222 547770 "EF" 553380 NIL EF (NIL T T) -7 NIL NIL NIL) (-282 543730 544141 544290 "EAB" 544527 T EAB (NIL) -8 NIL NIL NIL) (-281 542912 543689 543717 "E04UCFA" 543722 T E04UCFA (NIL) -8 NIL NIL NIL) (-280 542094 542871 542899 "E04NAFA" 542904 T E04NAFA (NIL) -8 NIL NIL NIL) (-279 541276 542053 542081 "E04MBFA" 542086 T E04MBFA (NIL) -8 NIL NIL NIL) (-278 540458 541235 541263 "E04JAFA" 541268 T E04JAFA (NIL) -8 NIL NIL NIL) (-277 539642 540417 540445 "E04GCFA" 540450 T E04GCFA (NIL) -8 NIL NIL NIL) (-276 538826 539601 539629 "E04FDFA" 539634 T E04FDFA (NIL) -8 NIL NIL NIL) (-275 538008 538785 538813 "E04DGFA" 538818 T E04DGFA (NIL) -8 NIL NIL NIL) (-274 532181 533533 534897 "E04AGNT" 536664 T E04AGNT (NIL) -7 NIL NIL NIL) (-273 530952 531495 531535 "DVARCAT" 531876 NIL DVARCAT (NIL T) -9 NIL 532039 NIL) (-272 530156 530368 530682 "DVARCAT-" 530687 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-271 523204 529955 530084 "DSMP" 530089 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-270 517985 519149 520217 "DROPT" 522156 T DROPT (NIL) -8 NIL NIL NIL) (-269 517650 517709 517807 "DROPT1" 517920 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 512765 513891 515028 "DROPT0" 516533 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 511110 511435 511821 "DRAWPT" 512399 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 505697 506620 507699 "DRAW" 510084 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 505330 505383 505501 "DRAWHACK" 505638 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 504061 504330 504621 "DRAWCX" 505059 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 503576 503645 503796 "DRAWCURV" 503987 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 494044 496006 498121 "DRAWCFUN" 501481 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 490808 492737 492778 "DQAGG" 493407 NIL DQAGG (NIL T) -9 NIL 493681 NIL) (-260 478610 485169 485252 "DPOLCAT" 487104 NIL DPOLCAT (NIL T T T T) -9 NIL 487649 NIL) (-259 473447 474795 476753 "DPOLCAT-" 476758 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 467753 473308 473406 "DPMO" 473411 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 461962 467533 467700 "DPMM" 467705 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 461532 461746 461835 "DOMTMPLT" 461893 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 460965 461334 461414 "DOMCTOR" 461472 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 460177 460445 460596 "DOMAIN" 460834 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 454076 459812 459964 "DMP" 460078 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 453676 453732 453876 "DLP" 454014 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 447498 453003 453193 "DLIST" 453518 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 444295 446351 446392 "DLAGG" 446942 NIL DLAGG (NIL T) -9 NIL 447172 NIL) (-249 442971 443635 443663 "DIVRING" 443755 T DIVRING (NIL) -9 NIL 443838 NIL) (-248 442208 442398 442698 "DIVRING-" 442703 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 440310 440667 441073 "DISPLAY" 441822 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 434340 440224 440287 "DIRPROD" 440292 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 433188 433391 433656 "DIRPROD2" 434133 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 422340 428206 428259 "DIRPCAT" 428517 NIL DIRPCAT (NIL NIL T) -9 NIL 429315 NIL) (-243 419444 420148 421109 "DIRPCAT-" 421446 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 418731 418891 419077 "DIOSP" 419278 T DIOSP (NIL) -7 NIL NIL NIL) (-241 415386 417643 417684 "DIOPS" 418118 NIL DIOPS (NIL T) -9 NIL 418347 NIL) (-240 414935 415049 415240 "DIOPS-" 415245 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 413986 414614 414642 "DIFRING" 414647 T DIFRING (NIL) -9 NIL 414669 NIL) (-238 413658 413732 413760 "DIFFSPC" 413879 T DIFFSPC (NIL) -9 NIL 413954 NIL) (-237 413303 413381 413533 "DIFFSPC-" 413538 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-236 412459 412937 412977 "DIFFMOD" 412982 NIL DIFFMOD (NIL T) -9 NIL 413009 NIL) (-235 412167 412212 412253 "DIFFDOM" 412374 NIL DIFFDOM (NIL T) -9 NIL 412442 NIL) (-234 412020 412044 412128 "DIFFDOM-" 412133 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 409553 410825 410866 "DIFEXT" 411229 NIL DIFEXT (NIL T) -9 NIL 411523 NIL) (-232 407838 408266 408932 "DIFEXT-" 408937 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 405113 407370 407411 "DIAGG" 407416 NIL DIAGG (NIL T) -9 NIL 407436 NIL) (-230 404497 404654 404906 "DIAGG-" 404911 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 399914 403456 403733 "DHMATRIX" 404266 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 395526 396435 397445 "DFSFUN" 398924 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 390606 394457 394769 "DFLOAT" 395234 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 388869 389150 389539 "DFINTTLS" 390314 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 385898 386890 387290 "DERHAM" 388535 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 383699 385673 385762 "DEQUEUE" 385842 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 382953 383086 383269 "DEGRED" 383561 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 379383 380128 380974 "DEFINTRF" 382181 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 376938 377407 377999 "DEFINTEF" 378902 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 376288 376558 376673 "DEFAST" 376843 T DEFAST (NIL) -8 NIL NIL NIL) (-219 370197 375881 376031 "DECIMAL" 376158 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 367709 368167 368673 "DDFACT" 369741 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 367305 367348 367499 "DBLRESP" 367660 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 365173 365535 365896 "DBASE" 367071 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 364415 364653 364799 "DATAARY" 365072 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 363521 364374 364402 "D03FAFA" 364407 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 362628 363480 363508 "D03EEFA" 363513 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 360578 361044 361533 "D03AGNT" 362159 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 359867 360537 360565 "D02EJFA" 360570 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 359156 359826 359854 "D02CJFA" 359859 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 358445 359115 359143 "D02BHFA" 359148 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 357734 358404 358432 "D02BBFA" 358437 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 350931 352520 354126 "D02AGNT" 356148 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 348699 349222 349768 "D01WGTS" 350405 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 347766 348658 348686 "D01TRNS" 348691 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 346834 347725 347753 "D01GBFA" 347758 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 345902 346793 346821 "D01FCFA" 346826 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 344970 345861 345889 "D01ASFA" 345894 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 344038 344929 344957 "D01AQFA" 344962 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 343106 343997 344025 "D01APFA" 344030 T D01APFA (NIL) -8 NIL NIL NIL) (-199 342174 343065 343093 "D01ANFA" 343098 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 341242 342133 342161 "D01AMFA" 342166 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 340310 341201 341229 "D01ALFA" 341234 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 339378 340269 340297 "D01AKFA" 340302 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 338446 339337 339365 "D01AJFA" 339370 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 331741 333294 334855 "D01AGNT" 336905 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 331078 331206 331358 "CYCLOTOM" 331609 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 327811 328526 329253 "CYCLES" 330371 T CYCLES (NIL) -7 NIL NIL NIL) (-191 327123 327257 327428 "CVMP" 327672 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 324964 325222 325591 "CTRIGMNP" 326851 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 324400 324758 324831 "CTOR" 324911 T CTOR (NIL) -8 NIL NIL NIL) (-188 323909 324131 324232 "CTORKIND" 324319 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 323200 323516 323544 "CTORCAT" 323726 T CTORCAT (NIL) -9 NIL 323839 NIL) (-186 322798 322909 323068 "CTORCAT-" 323073 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 322260 322472 322580 "CTORCALL" 322722 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 321634 321733 321886 "CSTTOOLS" 322157 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 317433 318090 318848 "CRFP" 320946 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 316908 317154 317246 "CRCEAST" 317361 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 315955 316140 316368 "CRAPACK" 316712 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 315339 315440 315644 "CPMATCH" 315831 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 315064 315092 315198 "CPIMA" 315305 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 311412 312084 312803 "COORDSYS" 314399 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 310824 310945 311087 "CONTOUR" 311290 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 306715 308827 309319 "CONTFRAC" 310364 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 306595 306616 306644 "CONDUIT" 306681 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 305683 306237 306265 "COMRING" 306270 T COMRING (NIL) -9 NIL 306322 NIL) (-173 304737 305041 305225 "COMPPROP" 305519 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 304398 304433 304561 "COMPLPAT" 304696 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 294600 304207 304316 "COMPLEX" 304321 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 294236 294293 294400 "COMPLEX2" 294537 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 293575 293696 293856 "COMPILER" 294096 T COMPILER (NIL) -8 NIL NIL NIL) (-168 293293 293328 293426 "COMPFACT" 293534 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 277046 287131 287171 "COMPCAT" 288175 NIL COMPCAT (NIL T) -9 NIL 289523 NIL) (-166 266336 269325 273032 "COMPCAT-" 273388 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 266065 266093 266196 "COMMUPC" 266302 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265859 265893 265952 "COMMONOP" 266026 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 265415 265610 265697 "COMM" 265792 T COMM (NIL) -8 NIL NIL NIL) (-162 264991 265219 265294 "COMMAAST" 265360 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 264240 264434 264462 "COMBOPC" 264800 T COMBOPC (NIL) -9 NIL 264975 NIL) (-160 263136 263346 263588 "COMBINAT" 264030 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 259593 260167 260794 "COMBF" 262558 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 258351 258709 258944 "COLOR" 259378 T COLOR (NIL) -8 NIL NIL NIL) (-157 257827 258072 258164 "COLONAST" 258279 T COLONAST (NIL) -8 NIL NIL NIL) (-156 257467 257514 257639 "CMPLXRT" 257774 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256915 257167 257266 "CLLCTAST" 257388 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 252417 253445 254525 "CLIP" 255855 T CLIP (NIL) -7 NIL NIL NIL) (-153 250758 251518 251758 "CLIF" 252244 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246933 248904 248945 "CLAGG" 249874 NIL CLAGG (NIL T) -9 NIL 250410 NIL) (-151 245355 245812 246395 "CLAGG-" 246400 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244899 244984 245124 "CINTSLPE" 245264 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 242400 242871 243419 "CHVAR" 244427 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 241574 242128 242156 "CHARZ" 242161 T CHARZ (NIL) -9 NIL 242176 NIL) (-147 241328 241368 241446 "CHARPOL" 241528 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 240386 240973 241001 "CHARNZ" 241048 T CHARNZ (NIL) -9 NIL 241104 NIL) (-145 238292 239040 239393 "CHAR" 240053 T CHAR (NIL) -8 NIL NIL NIL) (-144 238018 238079 238107 "CFCAT" 238218 T CFCAT (NIL) -9 NIL NIL NIL) (-143 237259 237370 237553 "CDEN" 237902 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 233224 236412 236692 "CCLASS" 236999 T CCLASS (NIL) -8 NIL NIL NIL) (-141 232475 232632 232809 "CATEGORY" 233067 T -10 (NIL) -8 NIL NIL NIL) (-140 232048 232394 232442 "CATCTOR" 232447 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 231499 231751 231849 "CATAST" 231970 T CATAST (NIL) -8 NIL NIL NIL) (-138 230975 231220 231312 "CASEAST" 231427 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226113 227132 227876 "CARTEN" 230287 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225221 225369 225590 "CARTEN2" 225960 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223537 224371 224628 "CARD" 224984 T CARD (NIL) -8 NIL NIL NIL) (-134 223113 223341 223416 "CAPSLAST" 223482 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 222617 222825 222853 "CACHSET" 222985 T CACHSET (NIL) -9 NIL 223063 NIL) (-132 222087 222409 222437 "CABMON" 222487 T CABMON (NIL) -9 NIL 222543 NIL) (-131 221560 221791 221901 "BYTEORD" 221997 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 220537 221089 221231 "BYTE" 221394 T BYTE (NIL) -8 NIL NIL 221516) (-129 215887 220042 220214 "BYTEBUF" 220385 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 213396 215579 215686 "BTREE" 215813 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210845 213044 213166 "BTOURN" 213306 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 208215 210315 210356 "BTCAT" 210424 NIL BTCAT (NIL T) -9 NIL 210501 NIL) (-125 207882 207962 208111 "BTCAT-" 208116 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 203261 207141 207169 "BTAGG" 207283 T BTAGG (NIL) -9 NIL 207393 NIL) (-123 202751 202876 203082 "BTAGG-" 203087 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 199746 202029 202244 "BSTREE" 202568 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198884 199010 199194 "BRILL" 199602 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 195536 197610 197651 "BRAGG" 198300 NIL BRAGG (NIL T) -9 NIL 198558 NIL) (-119 194065 194471 195026 "BRAGG-" 195031 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 187189 193409 193594 "BPADICRT" 193912 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 185504 187126 187171 "BPADIC" 187176 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 185202 185232 185346 "BOUNDZRO" 185468 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 180430 181628 182540 "BOP" 184310 T BOP (NIL) -8 NIL NIL NIL) (-114 178211 178615 179090 "BOP1" 179988 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177912 177973 178001 "BOOLE" 178112 T BOOLE (NIL) -9 NIL 178194 NIL) (-112 176737 177486 177635 "BOOLEAN" 177783 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 176016 176420 176474 "BMODULE" 176479 NIL BMODULE (NIL T T) -9 NIL 176544 NIL) (-110 171817 175814 175887 "BITS" 175963 T BITS (NIL) -8 NIL NIL NIL) (-109 171238 171357 171497 "BINDING" 171697 T BINDING (NIL) -8 NIL NIL NIL) (-108 165150 170833 170982 "BINARY" 171109 T BINARY (NIL) -8 NIL NIL NIL) (-107 162930 164405 164446 "BGAGG" 164706 NIL BGAGG (NIL T) -9 NIL 164843 NIL) (-106 162761 162793 162884 "BGAGG-" 162889 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161832 162145 162350 "BFUNCT" 162576 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160522 160700 160988 "BEZOUT" 161656 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156991 159374 159704 "BBTREE" 160225 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156725 156778 156806 "BASTYPE" 156925 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156577 156606 156679 "BASTYPE-" 156684 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 156011 156087 156239 "BALFACT" 156488 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154867 155426 155612 "AUTOMOR" 155856 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154593 154598 154624 "ATTREG" 154629 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152845 153290 153642 "ATTRBUT" 154259 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152453 152673 152739 "ATTRAST" 152797 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151989 152102 152128 "ATRIG" 152329 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151798 151839 151926 "ATRIG-" 151931 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151443 151629 151655 "ASTCAT" 151660 T ASTCAT (NIL) -9 NIL 151690 NIL) (-92 151170 151229 151348 "ASTCAT-" 151353 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149319 150946 151034 "ASTACK" 151113 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147824 148121 148486 "ASSOCEQ" 149001 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146856 147483 147607 "ASP9" 147731 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146619 146804 146843 "ASP8" 146848 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145487 146224 146366 "ASP80" 146508 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144385 145122 145254 "ASP7" 145386 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143339 144062 144180 "ASP78" 144298 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142308 143019 143136 "ASP77" 143253 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141220 141946 142077 "ASP74" 142208 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140120 140855 140987 "ASP73" 141119 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139224 139946 140046 "ASP6" 140051 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138171 138901 139019 "ASP55" 139137 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137120 137845 137964 "ASP50" 138083 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136208 136821 136931 "ASP4" 137041 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135296 135909 136019 "ASP49" 136129 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134080 134835 135003 "ASP42" 135185 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132857 133613 133783 "ASP41" 133967 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131807 132534 132652 "ASP35" 132770 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131572 131755 131794 "ASP34" 131799 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131309 131376 131452 "ASP33" 131527 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130203 130944 131076 "ASP31" 131208 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129968 130151 130190 "ASP30" 130195 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129703 129772 129848 "ASP29" 129923 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129468 129651 129690 "ASP28" 129695 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129233 129416 129455 "ASP27" 129460 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128317 128931 129042 "ASP24" 129153 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127394 128119 128231 "ASP20" 128236 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126482 127095 127205 "ASP1" 127315 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125425 126156 126275 "ASP19" 126394 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125162 125229 125305 "ASP12" 125380 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 124014 124761 124905 "ASP10" 125049 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121865 123858 123949 "ARRAY2" 123954 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117630 121513 121627 "ARRAY1" 121782 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116662 116835 117056 "ARRAY12" 117453 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110974 112892 112967 "ARR2CAT" 115597 NIL ARR2CAT (NIL T T T) -9 NIL 116355 NIL) (-56 108408 109152 110106 "ARR2CAT-" 110111 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107725 108035 108160 "ARITY" 108301 T ARITY (NIL) -8 NIL NIL NIL) (-54 106501 106653 106952 "APPRULE" 107561 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106152 106200 106319 "APPLYORE" 106447 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 105506 105745 105865 "ANY" 106050 T ANY (NIL) -8 NIL NIL NIL) (-51 104784 104907 105064 "ANY1" 105380 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 102314 103221 103548 "ANTISYM" 104508 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101806 102021 102117 "ANON" 102236 T ANON (NIL) -8 NIL NIL NIL) (-48 95984 100345 100799 "AN" 101370 T AN (NIL) -8 NIL NIL NIL) (-47 91882 93270 93321 "AMR" 94069 NIL AMR (NIL T T) -9 NIL 94669 NIL) (-46 90994 91215 91578 "AMR-" 91583 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 75433 90911 90972 "ALIST" 90977 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 72238 75027 75196 "ALGSC" 75351 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68794 69348 69955 "ALGPKG" 71678 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68071 68172 68356 "ALGMFACT" 68680 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64106 64685 65279 "ALGMANIP" 67655 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55373 63732 63882 "ALGFF" 64039 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54569 54700 54879 "ALGFACT" 55231 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53510 54110 54148 "ALGEBRA" 54153 NIL ALGEBRA (NIL T) -9 NIL 54194 NIL) (-37 53228 53287 53419 "ALGEBRA-" 53424 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35291 51200 51252 "ALAGG" 51388 NIL ALAGG (NIL T T) -9 NIL 51549 NIL) (-35 34827 34940 34966 "AHYP" 35167 T AHYP (NIL) -9 NIL NIL NIL) (-34 33758 34006 34032 "AGG" 34531 T AGG (NIL) -9 NIL 34810 NIL) (-33 33192 33354 33568 "AGG-" 33573 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30998 31421 31826 "AF" 32834 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30478 30723 30813 "ADDAST" 30926 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29746 30005 30161 "ACPLOT" 30340 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 883bac25..7a3a1c4b 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,1284 +1,1066 @@ -(732575 . 3485733146) +(732466 . 3485743642) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) + (-4 *5 (-13 (-440 *4) (-1018) (-1219))) + (-4 *3 (-13 (-440 (-171 *4)) (-1018) (-1219)))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1189 (-966 *4))) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) + (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) + (-5 *2 (-1189 (-966 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1050)) (-5 *1 (-762))))) -(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1227 *5 *6 *7 *8)) (-4 *5 (-566)) + (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1026 *2)) (-4 *2 (-1234))))) (((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-956 *4))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) - (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) - (-5 *2 (-2 (|:| -3533 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) (((*1 *2 *3) - (-12 (-5 *2 (-428 (-1188 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1188 *1)) - (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1115)))) + (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) + (-4 *3 (-382 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1))))) -(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1283 *1)) (-4 *1 (-376 *3))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) - (-5 *2 (-1188 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) - (-5 *2 (-1188 *3))))) + (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 *5)) (-4 *5 (-1008 *4)) (-4 *4 (-566)) + (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4))) + (-5 *1 (-703 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) + (-4 *6 (-1260 *5)) + (-5 *2 (-2 (|:| -4094 *7) (|:| |rh| (-654 (-417 *6))))) + (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6))) + (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1253 *4 *5 *3)) + (-4 *3 (-1260 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-832))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) + ((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) + (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) - (-4 *3 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-4 *3 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) - (-5 *5 (-1250 (-417 (-574)))) (-5 *6 (-417 (-574))) - (-4 *8 (-13 (-27) (-1218) (-440 *7))) - (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *5 (-1251 (-417 (-574)))) (-5 *6 (-417 (-574))) + (-4 *8 (-13 (-27) (-1219) (-440 *7))) + (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-417 (-574)))) - (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *8))) - (-4 *8 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-417 (-574)))) + (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *8))) + (-4 *8 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1064)) (-4 *1 (-1266 *4 *3)) - (-4 *3 (-1243 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)))) + (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1065)) (-4 *1 (-1267 *4 *3)) + (-4 *3 (-1244 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234)))) ((*1 *2 *2) - (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3)))) + (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1) (-5 *1 (-833)))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1618 *4)))) - (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-478)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) - (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-574))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *4 (-1192)) - (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-759))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063))))) +(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-796))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *2 *1) - (-12 (-4 *3 (-1233)) (-5 *2 (-654 *1)) (-4 *1 (-1025 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) - (-14 *3 (-934)) (-4 *4 (-1064))))) + (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338))))) +(((*1 *2 *1) + (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) + (-4 *3 (-1116))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372)) + (-5 *2 (-781)) (-5 *1 (-959 *5 *6)) (-4 *6 (-1260 *5))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) + (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1053 *4) (-649 *4))) + (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1054 *4) (-649 *4))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *5))))) + (-4 *3 (-13 (-27) (-1219) (-440 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-462) (-1053 *5) (-649 *5))) (-5 *5 (-574)) + (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-462) (-1054 *5) (-649 *5))) (-5 *5 (-574)) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-574))) - (-4 *7 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-574))) + (-4 *7 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-574))) - (-4 *3 (-13 (-27) (-1218) (-440 *7))) - (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-574))) + (-4 *3 (-13 (-27) (-1219) (-440 *7))) + (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-574)) (-4 *4 (-1064)) (-4 *1 (-1245 *4 *3)) - (-4 *3 (-1274 *4)))) + (-12 (-5 *2 (-574)) (-4 *4 (-1065)) (-4 *1 (-1246 *4 *3)) + (-4 *3 (-1275 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1243 *3))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) - (-5 *2 (-1050)) (-5 *1 (-764))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-4 *3 (-13 (-27) (-1218) (-440 *6) (-10 -8 (-15 -2950 ($ *7))))) - (-4 *7 (-858)) - (-4 *8 - (-13 (-1261 *3 *7) (-372) (-1218) - (-10 -8 (-15 -3878 ($ $)) (-15 -1578 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) - (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1174)) (-4 *9 (-998 *8)) - (-14 *10 (-1192))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-388)) (-5 *1 (-1078))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-247))))) + (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1244 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1235)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1235))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) + (-12 (-4 *1 (-934)) (-5 *2 (-2 (|:| -1866 (-654 *1)) (|:| -2975 *1))) + (-5 *3 (-654 *1))))) +(((*1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) + (-5 *2 (-1051)) (-5 *1 (-756))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *3) + (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1140 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1115)) - (-4 *6 (-1115)) (-4 *2 (-1115)) (-5 *1 (-690 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) - (-4 *3 (-1115))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1116)) + (-4 *6 (-1116)) (-4 *2 (-1116)) (-5 *1 (-690 *5 *6 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) - (-5 *2 (-2 (|:| |num| (-1283 *4)) (|:| |den| *4)))))) + (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566)) + (-4 *3 (-1234))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) + (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *5))))) + (-4 *3 (-13 (-27) (-1219) (-440 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-781)) - (-4 *3 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-4 *3 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) - (-4 *6 (-13 (-27) (-1218) (-440 *5))) - (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-4 *6 (-13 (-27) (-1219) (-440 *5))) + (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) + (-4 *3 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-781))) - (-4 *7 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-781))) + (-4 *7 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-781))) - (-4 *3 (-13 (-27) (-1218) (-440 *7))) - (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-781))) + (-4 *3 (-13 (-27) (-1219) (-440 *7))) + (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1274 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-984 *4 *3)) - (-4 *3 (-1259 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1283 *4)) - (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1174)) (-5 *2 (-216 (-512))) (-5 *1 (-847))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338)))) - ((*1 *1) (-5 *1 (-338)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6)))) - (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1274 *5)) (-5 *2 (-654 *6)) - (-5 *1 (-1276 *5 *6))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-654 (-1256 *5 *4))) - (-5 *1 (-1129 *4 *5)) (-5 *3 (-1256 *5 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-516)) (-5 *3 (-654 (-978))) (-5 *1 (-109))))) + (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1275 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) -(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-589))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-372)) (-5 *1 (-909 *2 *3)) - (-4 *2 (-1259 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227)))) - (-5 *2 (-1050)) (-5 *1 (-765))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-227)) - (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-956 *4)))) - (|:| |xValues| (-1109 *4)) (|:| |yValues| (-1109 *4)))) - (-5 *1 (-154)) (-5 *3 (-654 (-654 (-956 *4))))))) + (-12 (-4 *1 (-1139 *3 *4 *2 *5)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4)) + (-4 *2 (-244 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) (-4 *4 (-462)) (-4 *4 (-1116)) + (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-574)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) + (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1018)) + (-4 *2 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-624 (-903 (-574)))) + (-4 *5 (-897 (-574))) + (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) + (-4 *3 (-13 (-27) (-1219) (-440 *5)))))) +(((*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -2939 (-654 *3)) (|:| -3470 (-654 *3)))) + (-5 *1 (-1235 *3)) (-4 *3 (-1116))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) + (-5 *2 (-1051)) (-5 *1 (-766))))) (((*1 *2 *3) - (-12 (-4 *4 (-462)) - (-5 *2 - (-654 - (-2 (|:| |eigval| (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4)))) - (|:| |eigmult| (-781)) - (|:| |eigvec| (-654 (-699 (-417 (-965 *4)))))))) - (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-965 *4))))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-781)) - (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574)))))) - (-5 *1 (-252 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1154)))) + (-12 (-4 *4 (-1065)) (-4 *5 (-1260 *4)) (-5 *2 (-1 *6 (-654 *6))) + (-5 *1 (-1278 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1275 *4))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574))))) +(((*1 *2 *1) + (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1065))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) - (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1064))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1307 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-829 *3)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1064)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-142))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *2 (-1050)) (-5 *1 (-764))))) + (-12 (-5 *4 (-1 (-654 *5) *6)) + (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) + (-5 *2 (-654 (-2 (|:| -1714 *5) (|:| -4094 *3)))) + (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) + (-4 *7 (-666 (-417 *6)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1251 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1234))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1115)) (-4 *3 (-913 *5)) (-5 *2 (-699 *3)) - (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458))))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2011 (-654 *7)))) - (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) - (-15 -2981 ((-1140 *3 (-622 $)) $)) - (-15 -2950 ($ (-1140 *3 (-622 $)))))))))) + (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1173 *4))) (-5 *1 (-293 *4 *5)) + (-5 *3 (-1173 *4)) (-4 *5 (-1275 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) + (-5 *1 (-1088 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) + (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))) +(((*1 *1) + (-12 (-4 *1 (-414)) (-2084 (|has| *1 (-6 -4450))) + (-2084 (|has| *1 (-6 -4442))))) + ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-860)))) + ((*1 *1) (-4 *1 (-854))) ((*1 *1 *1 *1) (-4 *1 (-860))) + ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1172 *3))) (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1050)) (-5 *1 (-763))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1115)) - (-5 *1 (-583 *3 *4)))) + (-12 (-4 *3 (-1054 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-440 *3)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1189 *4)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1065)) (-4 *1 (-310)))) + ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1189 *3)))) + ((*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *2)) (-4 *3 (-13 (-858) (-372))) + (-4 *2 (-1260 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219)))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-622 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193))) (-5 *5 (-1189 *2)) + (-4 *2 (-13 (-440 *6) (-27) (-1219))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1116)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-622 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193))) + (-5 *5 (-417 (-1189 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1219))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1116))))) +(((*1 *1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1065)) + (-4 *3 (-1116))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 (-417 *2))) + (-4 *2 (-1260 *4)) (-5 *1 (-350 *3 *4 *2 *5)) + (-4 *3 (-351 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1238)) + (-4 *4 (-1260 (-417 *2))) (-4 *2 (-1260 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)) + (-4 *3 (-566)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) -(((*1 *1 *1) (-5 *1 (-1078)))) + (|partial| -12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) + (-5 *2 + (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4)) + (|:| |genIdeal| (-514 *4 *5 *6 *7)))) + (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1116)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-395 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1283 *5)) (-4 *5 (-13 (-1064) (-649 *4))) - (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5))))) + (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1260 (-574)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) - (-5 *2 (-654 (-1192))) (-5 *1 (-274)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1188 *7)) (-4 *7 (-962 *6 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1064)) (-5 *2 (-654 *5)) - (-5 *1 (-329 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-397)))) - ((*1 *2 *1) - (-12 (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-5 *2 (-654 (-1192))))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) - ((*1 *2 *1) - (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-654 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) - (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *5)) - (-5 *1 (-963 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) - ((*1 *2 *1) - (-12 (-4 *1 (-988 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-802)) - (-4 *5 (-860)) (-5 *2 (-654 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1192))) - (-5 *1 (-1058 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *5)) (-4 *5 (-1259 *3)) (-4 *3 (-315)) - (-5 *2 (-112)) (-5 *1 (-465 *3 *5))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1192)) - (-4 *2 (-13 (-27) (-1218) (-440 *5))) - (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-284 *5 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *1 (-270)))) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1284 (-709))) (-5 *1 (-313))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) + (-4 *4 (-13 (-1116) (-34)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *2) + (-12 (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) + (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) + (-4 *4 (-1260 *3)) + (-5 *2 + (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1260 (-574))) + (-5 *2 + (-2 (|:| -2391 (-699 (-574))) (|:| |basisDen| (-574)) + (|:| |basisInv| (-699 (-574))))) + (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3)))) + ((*1 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 *4)) + (-5 *2 + (-2 (|:| -2391 (-699 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-699 *4)))) + (-5 *1 (-1001 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 *4)) + (-5 *2 + (-2 (|:| -2391 (-699 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-699 *4)))) + (-5 *1 (-1293 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1116)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2)) + (-4 *3 (-566))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1309))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-132)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-370 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1116)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-659 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388))))) +(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-566) (-148))) + (-5 *2 (-2 (|:| -3865 *3) (|:| -3878 *3))) (-5 *1 (-1254 *4 *3)) + (-4 *3 (-1260 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1116)) + (-5 *1 (-583 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) + (-5 *2 (-654 (-1193))) (-5 *1 (-274)))) ((*1 *2 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372)) - (-5 *2 (-699 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1283 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-1283 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1259 *4)) (-5 *2 (-1283 *4)))) + (-12 (-5 *3 (-1189 *7)) (-4 *7 (-963 *6 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1065)) (-5 *2 (-654 *5)) + (-5 *1 (-329 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-397)))) + ((*1 *2 *1) + (-12 (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-5 *2 (-654 (-1193))))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1) + (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-654 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) + (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *5)) + (-5 *1 (-964 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $))))))) + ((*1 *2 *1) + (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-802)) + (-4 *5 (-860)) (-5 *2 (-654 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) - (-5 *2 (-1283 *3)))) + (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372)) - (-5 *2 (-1283 *5)) (-5 *1 (-1101 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1064)) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1259 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-372)) (-4 *3 (-1064)) - (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-862 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) - (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-863 *5 *3)) - (-4 *3 (-862 *5))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-654 (-965 *3))) (-4 *3 (-462)) - (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1192))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) - (-14 *4 (-654 (-1192))) (-5 *1 (-638 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1050)) (-5 *1 (-850)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) - (-5 *2 (-1050)) (-5 *1 (-850))))) + (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1193))) + (-5 *1 (-1059 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-860)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-447)) (-5 *1 (-1197))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) + (-4 *3 (-1260 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1175)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1051)) + (-5 *1 (-760))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) + (-4 *2 (-666 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1188 (-417 (-1188 *2)))) (-5 *4 (-622 *2)) - (-4 *2 (-13 (-440 *5) (-27) (-1218))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1115)))) + (-12 (-5 *3 (-1189 (-417 (-1189 *2)))) (-5 *4 (-622 *2)) + (-4 *2 (-13 (-440 *5) (-27) (-1219))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1116)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1188 *1)) (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) + (-12 (-5 *2 (-1189 *1)) (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1188 *4)) (-4 *4 (-1064)) (-4 *1 (-962 *4 *5 *3)) + (-12 (-5 *2 (-1189 *4)) (-4 *4 (-1065)) (-4 *1 (-963 *4 *5 *3)) (-4 *5 (-803)) (-4 *3 (-860)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-1188 *2))) (-4 *5 (-803)) (-4 *4 (-860)) - (-4 *6 (-1064)) + (-12 (-5 *3 (-417 (-1189 *2))) (-4 *5 (-803)) (-4 *4 (-860)) + (-4 *6 (-1065)) (-4 *2 (-13 (-372) - (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))) - (-5 *1 (-963 *5 *4 *6 *7 *2)) (-4 *7 (-962 *6 *5 *4)))) + (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $))))) + (-5 *1 (-964 *5 *4 *6 *7 *2)) (-4 *7 (-963 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-1188 (-417 (-965 *5))))) (-5 *4 (-1192)) - (-5 *2 (-417 (-965 *5))) (-5 *1 (-1058 *5)) (-4 *5 (-566))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-833)) (-5 *1 (-832))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1241)))))) -(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + (-12 (-5 *3 (-417 (-1189 (-417 (-966 *5))))) (-5 *4 (-1193)) + (-5 *2 (-417 (-966 *5))) (-5 *1 (-1059 *5)) (-4 *5 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-546))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1173 (-987))) (-5 *1 (-987))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1028)) (-5 *2 (-872))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313))))) +(((*1 *1) (-5 *1 (-145))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8)) - (-4 *7 (-860)) (-4 *8 (-1064)) (-4 *9 (-962 *8 *6 *7)) - (-4 *6 (-803)) (-5 *2 (-1188 *8)) (-5 *1 (-329 *6 *7 *8 *9))))) + (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-270))))) +(((*1 *2 *3) + (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) - (-4 *7 (-1007 *4)) (-4 *2 (-697 *7 *8 *9)) - (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) - (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) - (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) - (-4 *2 (-697 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1064)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1138 *2 *3 *4 *5)) (-4 *3 (-1064)) - (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1203 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1283 (-654 *3))) (-4 *4 (-315)) - (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-382 *3)) (-4 *3 (-1233)) (-4 *3 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1233)) - (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1226 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *5 (-1080 *2 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) - (-4 *3 (-13 (-1218) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)) (-148))) - (-5 *2 (-596 (-417 (-965 *5)))) (-5 *1 (-580 *5)) - (-5 *3 (-417 (-965 *5)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1050)) (-5 *1 (-762))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-654 (-934))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-934)) - (-4 *2 (-372)) (-14 *5 (-1008 *4 *2)))) + (-12 (-5 *3 (-654 (-935))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-935)) + (-4 *2 (-372)) (-14 *5 (-1009 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-723 *5 *6 *7)) (-4 *5 (-860)) - (-4 *6 (-244 (-2876 *4) (-781))) + (-4 *6 (-244 (-2877 *4) (-781))) (-14 *7 - (-1 (-112) (-2 (|:| -2590 *5) (|:| -2017 *6)) - (-2 (|:| -2590 *5) (|:| -2017 *6)))) - (-14 *4 (-654 (-1192))) (-4 *2 (-174)) - (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-962 *2 *6 (-874 *4))))) + (-1 (-112) (-2 (|:| -2591 *5) (|:| -3139 *6)) + (-2 (|:| -2591 *5) (|:| -3139 *6)))) + (-14 *4 (-654 (-1193))) (-4 *2 (-174)) + (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-963 *2 *6 (-874 *4))))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-860)))) + (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-860)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) - (-4 *4 (-1259 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1064)))) + (-4 *4 (-1260 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1065)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-736)))) + (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-736)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) - (-4 *4 (-1064)) (-4 *5 (-860)))) + (-4 *4 (-1065)) (-4 *5 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1064)) + (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1065)) (-4 *2 (-860)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1064)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1065)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-962 *4 *5 *6)) - (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)))) + (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-963 *4 *5 *6)) + (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-962 *4 *5 *2)) (-4 *4 (-1064)) + (-12 (-5 *3 (-781)) (-4 *1 (-963 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *2 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-988 *4 *5 *6)) - (-4 *4 (-1064)) (-4 *5 (-802)) (-4 *6 (-860)))) + (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-989 *4 *5 *6)) + (-4 *4 (-1065)) (-4 *5 (-802)) (-4 *6 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-988 *4 *3 *2)) (-4 *4 (-1064)) (-4 *3 (-802)) + (-12 (-4 *1 (-989 *4 *3 *2)) (-4 *4 (-1065)) (-4 *3 (-802)) (-4 *2 (-860))))) +(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065))))) +(((*1 *1) (-5 *1 (-131)))) (((*1 *2 *1) - (-12 (-4 *3 (-1064)) (-5 *2 (-1283 *3)) (-5 *1 (-722 *3 *4)) - (-4 *4 (-1259 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1064)) (-4 *2 (-697 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1259 *4)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-566)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-784)) (-5 *1 (-115))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1243 *3))))) + (-12 (-5 *2 (-701 (-980 *3))) (-5 *1 (-980 *3)) (-4 *3 (-1116))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-833)))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-935)) (-4 *3 (-372)) + (-14 *4 (-1009 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *1 *1) (|partial| -4 *1 (-732))) + ((*1 *1 *1) (|partial| -4 *1 (-736))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1084 *3 *2)) (-4 *3 (-13 (-858) (-372))) + (-4 *2 (-1260 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1053 (-574))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) + (-12 (-5 *2 (-957 *4)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-761))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -4116 *4))) (-5 *1 (-985 *4 *3)) + (-4 *3 (-1260 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1017)) - (-4 *2 (-1064))))) -(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) - ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319)))) - ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) + (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1081 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1053 (-574))) - (-4 *4 (-566)) (-5 *2 (-1188 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-622 *1)) (-4 *1 (-1064)) (-4 *1 (-310)) - (-5 *2 (-1188 *1))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *1) (-5 *1 (-1100)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1172 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1064)) - (-5 *3 (-417 (-574))) (-5 *1 (-1176 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-918 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1080 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-813)))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1050)) (-5 *1 (-765))))) + (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) + (-4 *3 (-1260 *4)) + (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292)))))) (((*1 *2 *3) - (-12 (-5 *3 (-965 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1275 *4)) + (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1173 *4) (-1173 *4))) + (-5 *1 (-1277 *4 *5))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) - (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) + (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-428 *4)) (-4 *4 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319)))) ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) - (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-372)) (-4 *3 (-1064)) - (-5 *1 (-1176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1192)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-654 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3766 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1218) (-27) (-440 *8))) - (-4 *8 (-13 (-462) (-148) (-1053 *3) (-649 *3))) (-5 *3 (-574)) - (-5 *2 (-654 *4)) (-5 *1 (-1029 *8 *4))))) + (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6))) + (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1116)) + (-4 *8 (-13 (-1065) (-624 (-903 *6)) (-1054 *7))) + (-5 *2 (-900 *6 *8)) (-4 *7 (-1065)) (-5 *1 (-955 *6 *7 *8))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *2 (-1051)) (-5 *1 (-764))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-388)) (-5 *1 (-207))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)) (-4 *2 (-860)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) - (-14 *3 (-934)) (-4 *4 (-1064)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064))))) -(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-417 (-574))) - (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-757))))) -(((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-5 *2 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1233)) (-5 *2 (-781))))) + (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1189 (-1189 *4)))) + (-5 *1 (-1232 *4)) (-5 *3 (-1189 (-1189 *4)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-963 *4 *6 *5)) (-4 *4 (-462)) + (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1003 *4 *5 *6 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1079)) (-5 *3 (-1175))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-802))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-654 (-1189 *11))) (-5 *3 (-1189 *11)) + (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781))) + (-5 *7 (-1284 (-654 (-1189 *8)))) (-4 *10 (-860)) + (-4 *8 (-315)) (-4 *11 (-963 *8 *9 *10)) (-4 *9 (-803)) + (-5 *1 (-717 *9 *10 *8 *11))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) - (-4 *2 (-174))))) + (-12 + (-5 *2 + (-654 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-803)) (-4 *6 (-963 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860)) + (-5 *1 (-459 *4 *3 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1189 *3)) (-4 *3 (-1065)) (-4 *1 (-1260 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5))))) +(((*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1189 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) + (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-966 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) + (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1234)) (-5 *2 (-781))))) +(((*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) - (-4 *5 (-1259 *4)) - (-5 *2 (-2 (|:| -3766 (-417 *5)) (|:| |coeff| (-417 *5)))) - (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) - (-5 *3 (-654 (-574))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) - (-5 *3 (-654 (-574)))))) + (-12 (-5 *3 (-1189 *6)) (-4 *6 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-1189 *7)) (-5 *1 (-329 *4 *5 *6 *7)) + (-4 *7 (-963 *6 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-247))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) (((*1 *1 *2) - (-12 (-4 *3 (-1064)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) - ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) - (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-762))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 *4)))) - (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) - (-4 *7 (-1115)) (-5 *2 (-654 *1)) (-4 *1 (-1118 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-971 (-185 (-140)))) (-5 *1 (-341)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-616))))) + (-12 (-4 *3 (-1065)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-765))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1618 (-574))))) - (-5 *1 (-370 *3)) (-4 *3 (-1115)))) + (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 *4)))) + (-5 *1 (-900 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) ((*1 *2 *1) - (-12 (-4 *1 (-395 *3)) (-4 *3 (-1115)) - (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1618 (-781))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| -4200 *3) (|:| -2017 (-574))))) - (-5 *1 (-428 *3)) (-4 *3 (-566))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1174)) (-5 *1 (-1214))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1192)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1115)) - (-4 *2 (-1233))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97))))) + (-12 (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) + (-4 *7 (-1116)) (-5 *2 (-654 *1)) (-4 *1 (-1119 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-972 (-185 (-140)))) (-5 *1 (-341)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-616))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1051)) (-5 *1 (-762))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) (((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-270)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *2 (-1288)) (-5 *1 (-1285)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3387 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-1285)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-986))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) - (-4 *4 (-174)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-440 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1107 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-174))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1050)) (-5 *1 (-762))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-1285))))) + (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-112)) + (-5 *1 (-900 *4 *5)) (-4 *5 (-1116)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-5 *2 (-112)) + (-5 *1 (-901 *5 *3)) (-4 *3 (-1234)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) + (-4 *6 (-1234)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1065)) (-4 *7 (-1065)) + (-4 *6 (-1260 *5)) (-5 *2 (-1189 (-1189 *7))) + (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1260 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) + (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) (((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) (((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) ((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-1113 *3)))) - ((*1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-934)) (-4 *5 (-566)) (-5 *2 (-699 *5)) - (-5 *1 (-969 *5 *3)) (-4 *3 (-666 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-372) (-148))) - (-5 *2 (-654 (-2 (|:| -2017 (-781)) (|:| -3332 *4) (|:| |num| *4)))) - (-5 *1 (-409 *3 *4)) (-4 *4 (-1259 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-1147 *4 *2)) - (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4458) (-6 -4459)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-860)) (-4 *3 (-1233)) (-5 *1 (-1147 *3 *2)) - (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4458) (-6 -4459))))))) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-1114 *3)))) + ((*1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) + (-4 *2 + (-13 (-412) + (-10 -7 (-15 -2951 (*2 *4)) (-15 -3383 ((-935) *2)) + (-15 -2391 ((-1284 *2) (-935))) (-15 -2656 (*2 *2))))) + (-5 *1 (-365 *2 *4))))) (((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) - ((*1 *1 *2) (-12 (-5 *1 (-1250 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2) (-12 (-5 *1 (-1251 *2)) (-4 *2 (-1234))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) + (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) + (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-699 *3)) + (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) + (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1051)) (-5 *1 (-763))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-884)) (-5 *2 (-1288)) (-5 *1 (-1284)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *3) - (-12 (-5 *3 (-779)) - (-5 *2 - (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) - (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) - (-5 *1 (-575)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-779)) (-5 *4 (-1078)) - (-5 *2 - (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) - (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) - (-5 *1 (-575)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-797)) (-5 *3 (-1078)) - (-5 *4 - (-2 (|:| |fn| (-324 (-227))) - (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) - (|:| |extra| (-1050)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-797)) (-5 *3 (-1078)) - (-5 *4 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) + (-12 (-5 *2 - (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)) - (|:| |extra| (-1050)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-810)) (-5 *3 (-1078)) - (-5 *4 + (-654 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-803)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) + (-5 *1 (-459 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3) + (-12 + (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-818)) - (-5 *2 - (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) - (|:| |explanations| (-654 (-1174))))) - (-5 *1 (-815)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-818)) (-5 *4 (-1078)) - (-5 *2 - (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) - (|:| |explanations| (-654 (-1174))))) - (-5 *1 (-815)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-849)) (-5 *3 (-1078)) - (-5 *4 - (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) - (-5 *2 (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-849)) (-5 *3 (-1078)) - (-5 *4 - (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) - (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) - (|:| |ub| (-654 (-853 (-227)))))) - (-5 *2 (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-851)) - (-5 *2 - (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) - (|:| |explanations| (-654 (-1174))))) - (-5 *1 (-850)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-851)) (-5 *4 (-1078)) - (-5 *2 - (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) - (|:| |explanations| (-654 (-1174))))) - (-5 *1 (-850)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-908)) (-5 *3 (-1078)) - (-5 *4 - (-2 (|:| |pde| (-654 (-324 (-227)))) - (|:| |constraints| - (-654 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-781)) (|:| |boundaryType| (-574)) - (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) - (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) - (|:| |tol| (-227)))) - (-5 *2 (-2 (|:| -4260 (-388)) (|:| |explanations| (-1174)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-911)) - (-5 *2 - (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) - (|:| |explanations| (-654 (-1174))))) - (-5 *1 (-910)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-911)) (-5 *4 (-1078)) - (-5 *2 - (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) - (|:| |explanations| (-654 (-1174))))) - (-5 *1 (-910))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1100))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1))) - (-4 *1 (-1086 *4 *5 *6 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-4 *1 (-916 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274))))) -(((*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1195))))) + (-5 *2 (-388)) (-5 *1 (-207))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1189 *1)) (-4 *1 (-1028))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1065)) + (-5 *1 (-724 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-846 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-1136)) (-5 *2 (-112)) (-5 *1 (-831))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315)) + (-4 *9 (-963 *8 *6 *7)) + (-5 *2 (-2 (|:| -3374 (-1189 *9)) (|:| |polval| (-1189 *8)))) + (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1189 *9)) (-5 *4 (-1189 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313))))) + (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193)) + (-5 *2 (-574)) (-5 *1 (-1130 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-835))))) (((*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-2 (|:| |f1| (-654 *4)) (|:| |f2| (-654 (-654 (-654 *4)))) (|:| |f3| (-654 (-654 *4))) (|:| |f4| (-654 (-654 (-654 *4)))))) - (-5 *1 (-1203 *4)) (-5 *3 (-654 (-654 (-654 *4))))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574))) - (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1218) (-1017)))))) + (-5 *1 (-1204 *4)) (-5 *3 (-654 (-654 (-654 *4))))))) +(((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-711)))) + ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-711))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-935)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1285))))) +(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-654 (-1189 *13))) (-5 *3 (-1189 *13)) + (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13)) + (-5 *7 (-654 (-654 (-2 (|:| -3407 (-781)) (|:| |pcoef| *13))))) + (-5 *8 (-654 (-781))) (-5 *9 (-1284 (-654 (-1189 *10)))) + (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-963 *10 *11 *12)) + (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) + (-5 *1 (-765))))) (((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1233)) (-4 *1 (-244 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115))))) + (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1234)) (-4 *1 (-244 *3 *4))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-884)) + (-5 *5 (-935)) (-5 *6 (-654 (-270))) (-5 *2 (-1285)) + (-5 *1 (-1288)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-654 (-270))) + (-5 *2 (-1285)) (-5 *1 (-1288))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3319 *3) (|:| |coef2| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065))))) (((*1 *2 *3) - (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) + (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) + (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) - (-5 *2 (-112))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-428 *2)) (-4 *2 (-566))))) + (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-1081 *3 *4 *2)) (-4 *2 (-860)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860))))) (((*1 *1) (-5 *1 (-338)))) -(((*1 *1) (-5 *1 (-607)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1064)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1064))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-173)))))) +(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1192)) (-5 *1 (-546))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-965 (-171 (-574)))))) - (-5 *2 (-654 (-654 (-302 (-965 (-171 *4)))))) (-5 *1 (-387 *4)) - (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-302 (-417 (-965 (-171 (-574))))))) - (-5 *2 (-654 (-654 (-302 (-965 (-171 *4)))))) (-5 *1 (-387 *4)) - (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 (-171 (-574))))) - (-5 *2 (-654 (-302 (-965 (-171 *4))))) (-5 *1 (-387 *4)) - (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-302 (-417 (-965 (-171 (-574)))))) - (-5 *2 (-654 (-302 (-965 (-171 *4))))) (-5 *1 (-387 *4)) - (-4 *4 (-13 (-372) (-858)))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *2 (-654 *3)) (-5 *1 (-993 *4 *5 *6 *3)) + (-4 *3 (-1081 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-324 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-1222 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4)))))) -(((*1 *2) - (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) - (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) - (-5 *2 (-1050)) (-5 *1 (-766))))) + (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1115))))) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2394 *4))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1021))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1180 *4 *5)) - (-14 *4 (-934)) (-4 *5 (-1064))))) + (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1193)) (-5 *1 (-546))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-324 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) + (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-324 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3)))))) + (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) - (-4 *3 (-13 (-1115) (-34)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-831))))) -(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720))))) -(((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-711))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) - (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-962 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1064)) (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) - (-4 *1 (-1259 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1055))))) -(((*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-407))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1233)) - (-4 *5 (-1233)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781)) - (-4 *7 (-1233)) (-4 *5 (-1233)) (-5 *2 (-246 *6 *5)) - (-5 *1 (-245 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1233)) (-4 *5 (-1233)) - (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1115)) (-4 *5 (-1115)) - (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1233)) - (-4 *5 (-1233)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-971 *6)) (-4 *6 (-1233)) - (-4 *5 (-1233)) (-5 *2 (-971 *5)) (-5 *1 (-970 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1172 *6)) (-4 *6 (-1233)) - (-4 *3 (-1233)) (-5 *2 (-1172 *3)) (-5 *1 (-1170 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1283 *6)) (-4 *6 (-1233)) - (-4 *5 (-1233)) (-5 *2 (-1283 *5)) (-5 *1 (-1282 *6 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372)) - (-4 *5 (-1064)) (-5 *2 (-112)) (-5 *1 (-1044 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1064)) - (-5 *2 (-112)) (-5 *1 (-1044 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) - ((*1 *1 *1) (-4 *1 (-1017))) - ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1027)))) - ((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1027)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-934)))) - ((*1 *1 *1) (-4 *1 (-1027)))) -(((*1 *1 *1) - (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) - ((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) - ((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1) (-4 *1 (-879 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-802)) - (-4 *4 (-860))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) - (-4 *3 (-566))))) + (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-338))))) (((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-440 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) - (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4)))) + (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3)) + (-4 *3 (-382 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) - (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1017))))) + (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3)) + (-4 *5 (-382 *2)) (-4 *3 (-382 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310)))) - ((*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) + (-12 (-5 *3 (-699 *4)) (-4 *4 (-1008 *2)) (-4 *2 (-566)) + (-5 *1 (-703 *2 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1115)) (-5 *2 (-112)) - (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5)))) + (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-1253 *2 *4 *3)) + (-4 *3 (-1260 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1) (-5 *1 (-299)))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-654 *3)) (-5 *5 (-935)) (-4 *3 (-1260 *4)) + (-4 *4 (-315)) (-5 *1 (-470 *4 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-555)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-417 *6)) (-4 *5 (-1238)) (-4 *6 (-1260 *5)) + (-5 *2 (-2 (|:| -3139 (-781)) (|:| -1866 *3) (|:| |radicand| *6))) + (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1260 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) + (-5 *1 (-1254 *4 *2)) (-4 *2 (-1260 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) - (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4)))) + (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-324 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) + (-5 *2 (-428 (-1189 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3)) + (-4 *3 (-1260 *5))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) + (-4 *4 (-174))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-654 (-1193))) (-4 *2 (-174)) + (-4 *3 (-244 (-2877 *4) (-781))) + (-14 *6 + (-1 (-112) (-2 (|:| -2591 *5) (|:| -3139 *3)) + (-2 (|:| -2591 *5) (|:| -3139 *3)))) + (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) + (-4 *7 (-963 *2 *3 (-874 *4)))))) +(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-923)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-428 (-1189 *7))) + (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) - (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1017) (-1218)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-654 *7) *7 (-1188 *7))) (-5 *5 (-1 (-428 *7) *7)) - (-4 *7 (-1259 *6)) (-4 *6 (-13 (-372) (-148) (-1053 (-417 (-574))))) - (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4095 *3)))) - (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7)) - (-4 *8 (-666 (-417 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5))) + (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-654 (-966 *4))) (-5 *3 (-654 (-1193))) (-4 *4 (-462)) + (-5 *1 (-932 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *8)) (-4 *8 (-963 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) + (-4 *7 (-803)) (-5 *2 - (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4095 (-664 *6 (-417 *6)))))) - (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6)))))) + (-654 + (-2 (|:| -3558 (-781)) + (|:| |eqns| + (-654 + (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) + (|:| |cols| (-654 (-574)))))) + (|:| |fgb| (-654 *8))))) + (-5 *1 (-938 *5 *6 *7 *8)) (-5 *4 (-781))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1175)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) + (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274))))) +(((*1 *1 *1) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) + ((*1 *1 *1) (-4 *1 (-1018))) + ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1028)))) + ((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1028)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-935)))) + ((*1 *1 *1) (-4 *1 (-1028)))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1063))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-918 *3)) (-4 *3 (-1116))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-839))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) + (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) - (-5 *2 (-654 (-2 (|:| -1389 *1) (|:| -1684 (-654 *7))))) - (-5 *3 (-654 *7)) (-4 *1 (-1226 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) - (-5 *2 (-1050)) (-5 *1 (-766))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130))))) -(((*1 *1) (-5 *1 (-833)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1288)) (-5 *1 (-832))))) + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1193)) + (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *1 (-1196))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1259 (-48))))) + (-4 *3 (-1260 (-48))))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48))))) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) - (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-962 (-48) *6 *5)))) + (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-963 (-48) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) - (-4 *7 (-962 (-48) *6 *5)) (-5 *2 (-428 (-1188 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1188 *7)))) + (-4 *7 (-963 (-48) *6 *5)) (-5 *2 (-428 (-1189 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1189 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1259 (-171 *4))))) + (-4 *3 (-1260 (-171 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1259 *4)))) + (-4 *3 (-1260 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1259 (-574))))) + (-4 *3 (-1260 (-574))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1259 (-574))))) + (-4 *3 (-1260 (-574))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) - (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) + (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1259 (-574))))) + (-4 *3 (-1260 (-574))))) ((*1 *2 *3) (-12 (-5 *2 (-428 (-171 (-574)))) (-5 *1 (-456)) (-5 *3 (-171 (-574))))) @@ -1286,3550 +1068,3718 @@ (-12 (-4 *4 (-13 (-860) - (-10 -8 (-15 -1845 ((-1192) $)) - (-15 -1497 ((-3 $ "failed") (-1192)))))) + (-10 -8 (-15 -1844 ((-1193) $)) + (-15 -1498 ((-3 $ "failed") (-1193)))))) (-4 *5 (-803)) (-4 *7 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-466 *4 *5 *6 *7 *3)) (-4 *6 (-566)) - (-4 *3 (-962 *7 *5 *4)))) + (-4 *3 (-963 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1188 *4))) (-5 *1 (-468 *4)) - (-5 *3 (-1188 *4)))) + (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1189 *4))) (-5 *1 (-468 *4)) + (-5 *3 (-1189 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) + (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-4 *7 (-13 (-372) (-148) (-734 *5 *6))) (-5 *2 (-428 *3)) - (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1259 *7)))) + (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1260 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-428 (-1188 *7)) (-1188 *7))) + (-12 (-5 *4 (-1 (-428 (-1189 *7)) (-1189 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-550 *5 *6 *7 *3)) - (-4 *3 (-962 *7 *6 *5)))) + (-4 *3 (-963 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-428 (-1188 *7)) (-1188 *7))) + (-12 (-5 *4 (-1 (-428 (-1189 *7)) (-1189 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) - (-4 *8 (-962 *7 *6 *5)) (-5 *2 (-428 (-1188 *8))) - (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1188 *8)))) + (-4 *8 (-963 *7 *6 *5)) (-5 *2 (-428 (-1189 *8))) + (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1189 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-4 *6 (-1259 *5)) (-5 *2 (-654 (-663 (-417 *6)))) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-4 *6 (-1260 *5)) (-5 *2 (-654 (-663 (-417 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-663 (-417 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-4 *5 (-1259 *4)) (-5 *2 (-654 (-663 (-417 *5)))) + (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-4 *5 (-1260 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-682 *4))) (-5 *1 (-682 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 *3)) (-5 *1 (-706 *3)) - (-4 *3 (-1259 *4)))) + (-4 *3 (-1260 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-5 *2 (-428 *3)) - (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-962 *6 *5 *4)))) + (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-963 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) - (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-428 (-1188 *7))) - (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) + (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-428 (-1189 *7))) + (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) - (-10 -8 (-15 -1845 ((-1192) $)) - (-15 -1497 ((-3 $ "failed") (-1192)))))) + (-10 -8 (-15 -1844 ((-1193) $)) + (-15 -1498 ((-3 $ "failed") (-1193)))))) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-740 *4 *5 *6 *3)) - (-4 *3 (-962 (-965 *6) *4 *5)))) + (-4 *3 (-963 (-966 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-803)) - (-4 *5 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))) (-4 *6 (-566)) + (-4 *5 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *6 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-742 *4 *5 *6 *3)) - (-4 *3 (-962 (-417 (-965 *6)) *4 *5)))) + (-4 *3 (-963 (-417 (-966 *6)) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-743 *4 *5 *6 *3)) - (-4 *3 (-962 (-417 *6) *4 *5)))) + (-4 *3 (-963 (-417 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-751 *4 *5 *6 *3)) - (-4 *3 (-962 *6 *5 *4)))) + (-4 *3 (-963 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) - (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-428 (-1188 *7))) - (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) + (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-428 (-1189 *7))) + (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-1022 *3)) - (-4 *3 (-1259 (-417 (-574)))))) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-1023 *3)) + (-4 *3 (-1260 (-417 (-574)))))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-1056 *3)) - (-4 *3 (-1259 (-417 (-965 (-574))))))) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-1057 *3)) + (-4 *3 (-1260 (-417 (-966 (-574))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1259 (-417 (-574)))) + (-12 (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-574)) *4))) - (-5 *2 (-428 *3)) (-5 *1 (-1094 *4 *5 *3)) (-4 *3 (-1259 *5)))) + (-5 *2 (-428 *3)) (-5 *1 (-1095 *4 *5 *3)) (-4 *3 (-1260 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1259 (-417 (-965 (-574))))) - (-4 *5 (-13 (-372) (-148) (-734 (-417 (-965 (-574))) *4))) - (-5 *2 (-428 *3)) (-5 *1 (-1096 *4 *5 *3)) (-4 *3 (-1259 *5)))) + (-12 (-4 *4 (-1260 (-417 (-966 (-574))))) + (-4 *5 (-13 (-372) (-148) (-734 (-417 (-966 (-574))) *4))) + (-5 *2 (-428 *3)) (-5 *1 (-1097 *4 *5 *3)) (-4 *3 (-1260 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) - (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 (-417 *7)))) - (-5 *1 (-1187 *4 *5 *6 *7)) (-5 *3 (-1188 (-417 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1237)))) + (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 (-417 *7)))) + (-5 *1 (-1188 *4 *5 *6 *7)) (-5 *3 (-1189 (-417 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1238)))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1115)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5)) - (-4 *3 (-1115)) (-4 *5 (-676 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1115))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574)))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2886 (-792 *3)) (|:| |coef2| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| -2886 *1) (|:| |coef2| *1))) - (-4 *1 (-1080 *3 *4 *5))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) - (-4 *4 (-174))))) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) +(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-757))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219)))))) (((*1 *2 *1) - (-12 (-4 *3 (-239)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) - (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) - (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574))))) - (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) - (-5 *1 (-515 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) - (-4 *3 (-566)))) - ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) - (-4 *3 (-1115)))) - ((*1 *2 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) - (-4 *3 (-1115)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1023 *3)) (-4 *3 (-1053 *2))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5)) - (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7)) - (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) - (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8)) - (-5 *6 (-654 *8)) (-4 *8 (-440 *7)) - (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) - (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8))) - (-4 *8 (-440 *7)) (-5 *5 (-302 *8)) - (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6)) - (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) - (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) - (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3)) - (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1064)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3)) - (-4 *3 (-1259 *4)))) + (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) + (-4 *3 (-1116))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1116)) + (-5 *1 (-688 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1116)) (-5 *1 (-692 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-940))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) ((*1 *2 *1) - (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-956 (-227))) (-5 *4 (-884)) (-5 *5 (-934)) - (-5 *2 (-1288)) (-5 *1 (-478)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-956 (-227))) (-5 *2 (-1288)) (-5 *1 (-478)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *4 (-884)) (-5 *5 (-934)) - (-5 *2 (-1288)) (-5 *1 (-478))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-372)) (-4 *3 (-1064)) - (-5 *1 (-1176 *3))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574)) - (-5 *2 (-699 *6)) (-5 *1 (-1044 *6)) (-4 *6 (-372)) (-4 *6 (-1064)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1044 *4)) - (-4 *4 (-372)) (-4 *4 (-1064)))) + (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4)) + (-5 *1 (-274))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1234)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1116)) (-5 *2 (-622 *5)) + (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-757))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6)) + (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1275 *5)) (-4 *6 (-1260 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-372)) + (-14 *6 (-1193)) (-14 *7 *5) (-5 *2 (-417 (-1257 *6 *5))) + (-5 *1 (-878 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5)) - (-5 *1 (-1044 *5)) (-4 *5 (-372)) (-4 *5 (-1064))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-574)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-803)) (-4 *4 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) - (-5 *1 (-459 *5 *6 *7 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) - (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) - (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) - (-5 *1 (-939)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) - (-5 *1 (-939)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) - (-5 *1 (-940)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) - (-5 *1 (-940)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1109 (-227))) - (-5 *1 (-940)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1109 (-227))) - (-5 *1 (-940)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) - (-5 *1 (-940)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) - (-5 *1 (-940))))) -(((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) - ((*1 *2 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2886 *3))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) + (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-372)) + (-14 *6 (-1193)) (-14 *7 *5) (-5 *2 (-417 (-1257 *6 *5))) + (-5 *1 (-878 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1260 *5)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) + (-5 *1 (-820 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1260 *5)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-5 *2 (-2 (|:| -2391 (-654 (-417 *6))) (|:| -3082 (-699 *5)))) + (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1260 *5)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) + (-5 *1 (-820 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1260 *5)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-5 *2 (-2 (|:| -2391 (-654 (-417 *6))) (|:| -3082 (-699 *5)))) + (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))) + (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-284 *4 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *1) (-5 *1 (-1101)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1065)) + (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) + (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-935)) (-4 *5 (-1065)) + (-4 *2 (-13 (-414) (-1054 *5) (-372) (-1219) (-292))) + (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1260 *5))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1115)) - (-4 *4 (-566)) (-5 *2 (-417 (-1188 *1))))) + (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1116)) + (-4 *4 (-566)) (-5 *2 (-417 (-1189 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1218))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-1188 (-417 (-1188 *3)))) (-5 *1 (-570 *6 *3 *7)) - (-5 *5 (-1188 *3)) (-4 *7 (-1115)))) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1219))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-1189 (-417 (-1189 *3)))) (-5 *1 (-570 *6 *3 *7)) + (-5 *5 (-1189 *3)) (-4 *7 (-1116)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1279 *5)) (-14 *5 (-1192)) (-4 *6 (-1064)) - (-5 *2 (-1256 *5 (-965 *6))) (-5 *1 (-960 *5 *6)) (-5 *3 (-965 *6)))) + (-12 (-5 *4 (-1280 *5)) (-14 *5 (-1193)) (-4 *6 (-1065)) + (-5 *2 (-1257 *5 (-966 *6))) (-5 *1 (-961 *5 *6)) (-5 *3 (-966 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-1188 *3)))) + (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-1189 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1188 *1)) - (-4 *1 (-962 *4 *5 *3)))) + (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1189 *1)) + (-4 *1 (-963 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1064)) - (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-417 (-1188 *3))) - (-5 *1 (-963 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1065)) + (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-417 (-1189 *3))) + (-5 *1 (-964 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-372) - (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) + (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1188 *3)) + (-12 (-5 *2 (-1189 *3)) (-4 *3 (-13 (-372) - (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))) - (-4 *7 (-962 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860)) - (-4 *6 (-1064)) (-5 *1 (-963 *5 *4 *6 *7 *3)))) + (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $))))) + (-4 *7 (-963 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860)) + (-4 *6 (-1065)) (-5 *1 (-964 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) (-4 *5 (-566)) - (-5 *2 (-417 (-1188 (-417 (-965 *5))))) (-5 *1 (-1058 *5)) - (-5 *3 (-417 (-965 *5)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1192))))) - (-5 *6 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1119)) - (-5 *1 (-407)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1192))))) - (-5 *6 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1119)) - (-5 *1 (-407)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-654 (-1192))) (-5 *5 (-1195)) (-5 *3 (-1192)) - (-5 *2 (-1119)) (-5 *1 (-407))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1115)) (-5 *2 (-781))))) -(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1080 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1080 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1160 *6 *7 *8 *3 *4)) (-4 *4 (-1124 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-965 *5)) (-4 *5 (-1064)) (-5 *2 (-253 *4 *5)) - (-5 *1 (-957 *4 *5)) (-14 *4 (-654 (-1192)))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) + (-12 (-5 *4 (-1193)) (-4 *5 (-566)) + (-5 *2 (-417 (-1189 (-417 (-966 *5))))) (-5 *1 (-1059 *5)) + (-5 *3 (-417 (-966 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1188 *1)) (-5 *4 (-1192)) (-4 *1 (-27)) - (-5 *2 (-654 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1188 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *2 (-654 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) - (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) - (-4 *3 (-1259 *4)) - (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1064)) (-14 *3 (-654 (-1192))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) - (-14 *3 (-654 (-1192)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-699 *5)) (-4 *5 (-1064)) (-5 *1 (-1069 *3 *4 *5)) - (-14 *3 (-781)) (-14 *4 (-781))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781)))) - ((*1 *1 *1) (-4 *1 (-412)))) + (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-574)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-803)) (-4 *4 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) + (-5 *1 (-459 *5 *6 *7 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) + ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1189 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1210 *4 *5)) - (-4 *4 (-1115)) (-4 *5 (-1115))))) + (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) + (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *5)) + (-4 *5 (-1260 (-417 *4)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1065))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1065)) (-5 *1 (-1256 *3 *2)) (-4 *2 (-1260 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1618 *4)))) - (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1014 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3))))) + (-12 (-4 *2 (-963 *3 *5 *4)) (-5 *1 (-1003 *3 *4 *5 *2)) + (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) - (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4)))) - (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) + (-12 (-4 *3 (-1234)) (-5 *2 (-654 *1)) (-4 *1 (-1026 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-766))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-132)) - (-4 *3 (-802))))) -(((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) - ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286))))) + (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4)) + (-14 *3 (-935)) (-4 *4 (-1065))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *2 (-1116)) (-4 *3 (-1116)) + (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-654 + (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 *2)) + (|:| |logand| (-1189 *2))))) + (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-372)) (-5 *1 (-596 *2))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1116)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-1215))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-446))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1234))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-315) (-148))) + (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) + (-5 *2 + (-654 + (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) + (|:| |wcond| (-654 (-966 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *4)))))))))) + (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1065)) (-5 *1 (-605 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1244 *3)) (-4 *3 (-1065)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1275 *3)) (-4 *3 (-1065))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1260 *5)) + (-5 *1 (-817 *5 *2 *3 *6)) + (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) + (-4 *3 (-666 *2)) (-4 *6 (-666 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1260 *5)) + (-5 *1 (-817 *5 *2 *3 *6)) + (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2)) + (-4 *6 (-666 (-417 *2)))))) (((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-32 *3 *4)) (-4 *4 (-440 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-115)))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-159 *3 *4)) (-4 *4 (-440 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-115)) (-5 *1 (-164)))) + ((*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-115)) (-5 *1 (-164)))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-283 *3 *4)) - (-4 *4 (-13 (-440 *3) (-1017))))) + (-4 *4 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) ((*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1115)) (-5 *1 (-439 *3 *4)) + (-12 (-5 *2 (-115)) (-4 *4 (-1116)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-441 *3 *4)) (-4 *4 (-440 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-640 *3 *4)) - (-4 *4 (-13 (-440 *3) (-1017) (-1218))))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1034)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1206 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-440 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192)))) - ((*1 *1 *1) (-4 *1 (-161)))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-884)) - (-5 *5 (-934)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1287)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *2 (-478)) - (-5 *1 (-1287)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-654 (-270))) - (-5 *2 (-478)) (-5 *1 (-1287))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1288)) (-5 *1 (-841))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) - (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-710 *3)) - (-4 *3 (-315))))) + (-4 *4 (-13 (-440 *3) (-1018) (-1219))))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1035)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1207 *2)) (-4 *2 (-1116))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1160)))) (((*1 *2 *1) - (-12 (-5 *2 (-956 *4)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) -(((*1 *1) (-5 *1 (-1078)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) + (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) + (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4)))) + (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860))))) +(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831))))) +(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) + ((*1 *2 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315)))) + ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) + ((*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-574))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1189 *3)) + (-4 *3 (-13 (-440 *7) (-27) (-1219))) + (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1116)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) + (-5 *6 (-417 (-1189 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1219))) + (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1116))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) - (-5 *2 - (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6)) - (|:| |polypart| *6))) - (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1188 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3)) - (-4 *3 (-372))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313))))) + (-12 (-5 *3 (-1189 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6)) + (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1219)))) + ((*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-781))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-382 *2)) (-4 *2 (-1234)) + (-4 *2 (-860)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4460)) + (-4 *1 (-382 *3)) (-4 *3 (-1234))))) (((*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310))))) (((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2) - (-12 (-5 *2 (-699 (-923 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) - (-14 *4 (-934)))) - ((*1 *2) - (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) - (-14 *4 - (-3 (-1188 *3) - (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135))))))))) - ((*1 *2) - (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) - (-14 *4 (-934))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-1283 *5))) (-5 *4 (-574)) (-5 *2 (-1283 *5)) - (-5 *1 (-1044 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-315)) - (-5 *2 (-781)) (-5 *1 (-465 *5 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1050)) (-5 *1 (-313)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1050))) (-5 *2 (-1050)) (-5 *1 (-313)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1 *1) (-5 *1 (-1078))) - ((*1 *2 *3) - (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1169 *4)) - (-4 *4 (-1233)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 (-966 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) + (-14 *4 (-654 (-1193))))) + ((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-460 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-460 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) + (-14 *4 (-654 (-1193))) (-5 *1 (-638 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1218) (-972)))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *2 (-1288)) - (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) - (-4 *3 (-1115))))) -(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-388)))) -(((*1 *2 *1) - (-12 + (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *2 - (-654 - (-654 - (-3 (|:| -2040 (-1192)) - (|:| -3260 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574)))))))))) - (-5 *1 (-1196))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) - (-5 *3 (-654 (-574)))))) -(((*1 *2) - (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1115))))) -(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) + (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) + (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574)))) + (-5 *1 (-313))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1156 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1116) (-34))) (-4 *6 (-13 (-1116) (-34))) + (-5 *2 (-112)) (-5 *1 (-1157 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) + (-4 *3 (-1116)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-112)) + (-5 *1 (-918 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-935)) (-5 *2 (-112)) (-5 *1 (-1117 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1051)) (-5 *1 (-313)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-1051))) (-5 *2 (-1051)) (-5 *1 (-313)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1 *1) (-5 *1 (-1079))) + ((*1 *2 *3) + (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1170 *4)) + (-4 *4 (-1234)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1260 *4)) (-5 *2 (-1289)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1260 (-417 *5))) (-14 *7 *6)))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1260 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -3191 (-654 (-872))) (|:| -2620 (-654 (-872))) - (|:| |presup| (-654 (-872))) (|:| -3073 (-654 (-872))) + (-2 (|:| -2357 (-654 (-872))) (|:| -1968 (-654 (-872))) + (|:| |presup| (-654 (-872))) (|:| -3677 (-654 (-872))) (|:| |args| (-654 (-872))))) - (-5 *1 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1166))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1283 (-1283 (-574)))) (-5 *3 (-934)) (-5 *1 (-476))))) -(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) + (-5 *1 (-1193))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1167))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-985 *2 *3)) + (-4 *3 (-1260 *2))))) (((*1 *2 *3) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-934)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) + (-12 (-5 *4 (-935)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) ((*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-934)) (-4 *5 (-174)) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-935)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) + (-12 (-5 *3 (-966 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-174)) + (-12 (-5 *3 (-966 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 (-388))) + (-12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) + (-12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) + (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) + (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-417 (-965 (-171 *4)))) (-4 *4 (-566)) + (-12 (-5 *3 (-417 (-966 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 (-171 *5)))) (-5 *4 (-934)) (-4 *5 (-566)) + (-12 (-5 *3 (-417 (-966 (-171 *5)))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) + (-12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-566)) + (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-1064)) (-5 *1 (-1255 *4 *2)) - (-4 *2 (-1259 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860)) - (-4 *5 (-803)) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1188 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) - (-4 *3 (-962 *7 *5 *6)) + (-12 (-4 *6 (-566)) (-4 *2 (-963 *3 *5 *4)) + (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-966 *6))) (-4 *5 (-803)) + (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)))))))) +(((*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1196))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) + (-5 *2 (-829 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-856)) (-5 *1 (-1307 *3 *2)) (-4 *3 (-1065))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-622 *4)) (-5 *6 (-1189 *4)) + (-4 *4 (-13 (-440 *7) (-27) (-1219))) + (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 - (-2 (|:| -2017 (-781)) (|:| -1867 *3) (|:| |radicand| (-654 *3)))) - (-5 *1 (-966 *5 *6 *7 *3 *8)) (-5 *4 (-781)) - (-4 *8 - (-13 (-372) - (-10 -8 (-15 -2950 ($ *3)) (-15 -2970 (*3 $)) (-15 -2981 (*3 $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1192))) - (-4 *5 (-462)) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) + (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1189 *4))) + (-4 *4 (-13 (-440 *7) (-27) (-1219))) + (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 - (-2 (|:| |gblist| (-654 (-253 *4 *5))) - (|:| |gvlist| (-654 (-574))))) - (-5 *1 (-641 *4 *5))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) + (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858))) + (-5 *2 (-654 (-2 (|:| -3314 (-654 *3)) (|:| -2693 *5)))) + (-5 *1 (-183 *5 *3)) (-4 *3 (-1260 (-171 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-372) (-858))) + (-5 *2 (-654 (-2 (|:| -3314 (-654 *3)) (|:| -2693 *4)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1064)) - (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) - (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) + (-12 (-4 *4 (-1065)) + (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) + (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) ((*1 *1 *1) (-4 *1 (-555))) - ((*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1230 *3)) (-4 *3 (-1233)))) + ((*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1231 *3)) (-4 *3 (-1234)))) ((*1 *2 *1) - (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1017)) - (-4 *2 (-1064))))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1274 *4)) - (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1172 *4) (-1172 *4))) - (-5 *1 (-1276 *4 *5))))) + (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1018)) + (-4 *2 (-1065))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1260 (-171 *2)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285))))) (((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-766))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1115)) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1116)) (-5 *1 (-688 *2))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-569))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1119))) (-5 *1 (-299))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) - ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1259 *5)) - (-5 *1 (-817 *5 *2 *3 *6)) - (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) - (-4 *3 (-666 *2)) (-4 *6 (-666 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1259 *5)) - (-5 *1 (-817 *5 *2 *3 *6)) - (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) - (-4 *6 (-666 (-417 *2)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1138 *3 *4 *2 *5)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) - (-4 *2 (-244 *3 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1064)) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1259 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1089)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3163 (-654 *3)) (|:| -3701 (-654 *3)))) - (-5 *1 (-1234 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) - (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) - (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-765))))) -(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-965 (-574))))) - (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-965 *4))) (-5 *3 (-654 (-1192))) (-4 *4 (-462)) - (-5 *1 (-931 *4))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860)) - (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8)) - (-4 *8 (-962 *3 *7 *6))))) +(((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-388)) (-5 *1 (-194))))) -(((*1 *1) (-5 *1 (-1097)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1115)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) + (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) + (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-871)))) + ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871))))) +(((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234))))) +(((*1 *1 *1 *1) (-4 *1 (-771)))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-174)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-174)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) + (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-934))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1090)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) + (-5 *2 (-1051)) (-5 *1 (-758))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1284 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372)) + (-5 *1 (-677 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-372)) + (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4460)))) + (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460)))) + (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372)) + (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1004 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-417 (-965 (-171 *4)))) (-4 *4 (-566)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1123 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1193)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7)) + (-4 *3 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234)) + (-4 *7 (-1234)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-417 (-965 (-171 *5)))) (-5 *4 (-934)) - (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) - (-5 *1 (-795 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + (-12 (-5 *4 (-1193)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6)) + (-4 *3 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-957 (-227)) (-227) (-227))) + (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-766))))) +(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189 *7)) (-4 *7 (-963 *6 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1065)) (-5 *2 (-1189 *6)) + (-5 *1 (-329 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-654 (-1193))) (|:| |pred| (-52)))) + (-5 *1 (-903 *3)) (-4 *3 (-1116))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-754 *3)) (-4 *3 (-174))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1193)) + (-4 *5 (-13 (-566) (-1054 (-574)) (-148))) + (-5 *2 + (-2 (|:| -3852 (-417 (-966 *5))) (|:| |coeff| (-417 (-966 *5))))) + (-5 *1 (-580 *5)) (-5 *3 (-417 (-966 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) + (-4 *3 (-13 (-1219) (-29 *5)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) + (-4 *3 (-167 *6)) (-4 (-966 *6) (-897 *5)) + (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4)) + (-4 *4 (-1116)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) + (-4 *6 (-13 (-1116) (-1054 *3))) (-4 *3 (-897 *5)) + (-5 *1 (-945 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116)) + (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1054 (-622 $)))) + (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5))) + (-5 *1 (-946 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555)) + (-5 *1 (-947 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1116)) + (-4 *6 (-13 (-1116) (-1054 (-622 $)) (-624 *4) (-897 *5))) + (-5 *4 (-903 *5)) (-5 *1 (-948 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) + (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-949 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3))) + (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6)) + (-4 *6 (-1116)) (-4 *3 (-13 (-963 *9 *7 *8) (-624 *4))) + (-4 *7 (-803)) (-4 *9 (-13 (-1065) (-897 *6))) + (-5 *1 (-950 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116)) + (-4 *3 (-13 (-963 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5)) + (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *8 (-13 (-1065) (-897 *5))) (-5 *1 (-950 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116)) (-4 *3 (-1008 *6)) + (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5)) + (-5 *1 (-953 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 (-1193))) (-5 *3 (-1193)) (-5 *4 (-903 *5)) + (-4 *5 (-1116)) (-5 *1 (-954 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9))) + (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1116)) + (-4 *9 (-13 (-1065) (-624 (-903 *7)) (-1054 *8))) + (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1065)) + (-5 *1 (-955 *7 *8 *9))))) +(((*1 *1 *1) (-4 *1 (-879 *2)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) + (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-654 (-1040 (-417 *4))))) + (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) + (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) - (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) - (-5 *1 (-795 *5)))) + (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) + (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-566)) - (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) - (-5 *1 (-795 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) - (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) (-5 *2 (-940)) (-5 *1 (-938 *3)) - (-4 *3 (-624 (-546))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-940)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) - (-5 *1 (-940))))) + (-12 (-5 *3 (-654 (-966 *4))) + (-4 *4 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6)) + (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193)))))) (((*1 *2 *3) - (-12 (-4 *4 (-922)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-428 (-1188 *7))) - (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) - (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1076 *4 *3)) - (-4 *3 (-1259 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1259 *5)) - (-5 *1 (-737 *5 *2)) (-4 *5 (-372))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *1 *1) (-12 (-5 *1 (-1219 *2)) (-4 *2 (-1115))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-872)))) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) + (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) + ((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) + ((*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414)))) + ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) + ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1173 (-574)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-1297 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1297 *5 *6 *7 *8))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3852 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-372)) (-4 *7 (-1260 *6)) + (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) + (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1308 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-829 *3)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1065)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1163 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) + (-5 *2 (-1051)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-212))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-1054 (-417 *2)))) (-5 *2 (-574)) + (-5 *1 (-116 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-935)) (-5 *2 (-1284 (-1284 (-574)))) (-5 *1 (-476))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-962 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) - (-4 *7 (-803)) + (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) + (-5 *1 (-816 *5 *6 *7 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 - (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) - (|:| |cols| (-654 (-574)))))) - (-5 *1 (-937 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) - (-5 *1 (-758))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1115)) (-5 *2 (-781)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5)) - (-4 *4 (-1115)) (-14 *5 *2)))) + (-2 + (|:| -3667 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -1916 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1173 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3798 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-569))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) - (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1162 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1259 *4)) - (-5 *1 (-935 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1218) (-440 *5))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-12 (-5 *2 - (-3 (-853 *3) - (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) - (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) - "failed")) - (-5 *1 (-646 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1174)) - (-4 *3 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 (-853 (-965 *5)))) (-4 *5 (-462)) + (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *4))))))) + (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148))) + (-4 *7 (-963 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1193)))) + (-4 *6 (-803)) (-5 *1 (-938 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) + (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-963 *8 *6 *7)) (-5 *2 - (-3 (-853 (-417 (-965 *5))) - (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-853 (-417 (-965 *5))) "failed"))) - "failed")) - (-5 *1 (-647 *5)) (-5 *3 (-417 (-965 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) - (-4 *5 (-462)) + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-654 (-2 (|:| -4202 (-1189 *9)) (|:| -3139 (-574))))))) + (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1189 *9))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-1116)) (-4 *3 (-912 *6)) + (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3)) + (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4459))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-372)) (-5 *2 - (-3 (-853 *3) - (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) - (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) - "failed")) - (-5 *1 (-647 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-302 (-417 (-965 *6)))) (-5 *5 (-1174)) - (-5 *3 (-417 (-965 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3)) - (-5 *1 (-647 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-501))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *3) - (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1064))) (-5 *2 (-1174)) - (-5 *1 (-836 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1064))) - (-5 *2 (-1174)) (-5 *1 (-836 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1064))) - (-5 *2 (-1288)) (-5 *1 (-836 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-838) (-1064))) (-5 *2 (-1288)) (-5 *1 (-836 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1174)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1174)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1288)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1288))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-884)) - (-5 *5 (-934)) (-5 *6 (-654 (-270))) (-5 *2 (-1284)) - (-5 *1 (-1287)))) + (-2 (|:| A (-699 *5)) + (|:| |eqs| + (-654 + (-2 (|:| C (-699 *5)) (|:| |g| (-1284 *5)) (|:| -4094 *6) + (|:| |rh| *5)))))) + (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)) + (-4 *6 (-666 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-654 (-270))) - (-5 *2 (-1284)) (-5 *1 (-1287))))) -(((*1 *2 *3) - (-12 (-5 *2 (-428 (-1188 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1188 *1)) - (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1115)))) - ((*1 *2 *3) - (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-4 *4 (-1115)) - (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4))))) + (-12 (-4 *5 (-372)) (-4 *6 (-666 *5)) + (-5 *2 (-2 (|:| -3082 (-699 *6)) (|:| |vec| (-1284 *5)))) + (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1284 *5))))) (((*1 *1 *1) (-4 *1 (-639))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-596 *3) *3 (-1192))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1192))) - (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1053 *4)) (-4 *3 (-440 *7)) - (-5 *4 (-1192)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462)) - (-4 *7 (-897 (-574))) (-4 *7 (-1115)) (-5 *2 (-596 *3)) - (-5 *1 (-583 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) + (-4 *2 (-13 (-440 *3) (-1018) (-1219)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) + ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) - (-5 *1 (-313))))) + (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) - (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1115) (-34))) - (-4 *4 (-13 (-1115) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1050)) - (-5 *1 (-764))))) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1177 *4)) (-4 *4 (-1065)) + (-5 *3 (-574))))) +(((*1 *2 *3) + (-12 (-5 *3 (-699 (-417 (-966 (-574))))) (-5 *2 (-654 (-324 (-574)))) + (-5 *1 (-1047))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) + (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1116) (-34))) + (-4 *4 (-13 (-1116) (-34)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) + ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1196))))) (((*1 *1 *1) (-4 *1 (-639))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) - (-14 *4 (-654 (-1192))))) + (-4 *2 (-13 (-440 *3) (-1018) (-1219)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) + (-14 *4 *2)))) +(((*1 *1) (-5 *1 (-1079)))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-388))) + ((*1 *1) (-5 *1 (-388)))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574))))) +(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154)))) ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1233)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) - (-14 *4 (-654 (-1192))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-781)) - (-4 *5 (-13 (-462) (-1053 (-574)))) (-4 *5 (-566)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2970 ((-1140 *5 (-622 $)) $)) - (-15 -2981 ((-1140 *5 (-622 $)) $)) - (-15 -2950 ($ (-1140 *5 (-622 $)))))))))) -(((*1 *1 *1) (-5 *1 (-1078)))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-765))))) -(((*1 *2 *3) - (-12 (-5 *3 (-934)) - (-5 *2 - (-3 (-1188 *4) - (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135))))))) - (-5 *1 (-355 *4)) (-4 *4 (-358))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-115))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1117 (-781))) (-5 *6 (-781)) - (-5 *2 - (-2 (|:| |contp| (-574)) - (|:| -4279 (-654 (-2 (|:| |irr| *3) (|:| -2265 (-574))))))) - (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| -4200 (-1188 *6)) (|:| -2017 (-574))))) - (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) - (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5))))) + (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1116)) (-4 *2 (-912 *4)) (-5 *1 (-702 *4 *2 *5 *3)) + (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4459))))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-574)) (|has| *1 (-6 -4460)) (-4 *1 (-382 *3)) + (-4 *3 (-1234))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-923)) + (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-963 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-923)) + (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-923)) (-5 *1 (-921 *2 *3)) (-4 *3 (-1260 *2))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-781)) (-4 *5 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) + (-4 *4 (-174)))) + ((*1 *1 *1) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1065)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3)) + (-4 *4 (-382 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1065))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-1220 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1116))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1259 *4)) (-5 *1 (-817 *4 *2 *3 *5)) - (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) - (-4 *5 (-666 (-417 *2))))) + (-12 (-5 *3 (-654 (-935))) (-5 *4 (-919 (-574))) + (-5 *2 (-699 (-574))) (-5 *1 (-600)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-935))) (-5 *2 (-654 (-699 (-574)))) + (-5 *1 (-600)))) ((*1 *2 *3 *4) - (-12 (-4 *2 (-1259 *4)) (-5 *1 (-817 *4 *2 *5 *3)) - (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-666 *2)) - (-4 *3 (-666 (-417 *2)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-428 (-1188 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) -(((*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-979 *3)) (-4 *3 (-1115))))) -(((*1 *1 *1) (-5 *1 (-1078)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1190 *4 *5 *6)) - (-4 *4 (-1064)) (-14 *5 (-1192)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1275 *4 *5 *6)) - (-4 *4 (-1064)) (-14 *5 (-1192)) (-14 *6 *4)))) + (-12 (-5 *3 (-654 (-935))) (-5 *4 (-654 (-919 (-574)))) + (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600))))) +(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1175)) (-5 *1 (-796))))) +(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) - (-4 *5 (-860)) (-5 *2 (-965 *4)))) + (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065)) + (-4 *5 (-860)) (-5 *2 (-966 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) - (-4 *5 (-860)) (-5 *2 (-965 *4)))) + (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065)) + (-4 *5 (-860)) (-5 *2 (-966 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-1274 *4)) (-4 *4 (-1064)) - (-5 *2 (-965 *4)))) + (-12 (-5 *3 (-781)) (-4 *1 (-1275 *4)) (-4 *4 (-1065)) + (-5 *2 (-966 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-1274 *4)) (-4 *4 (-1064)) - (-5 *2 (-965 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-417 (-574))) - (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5)) - (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-1188 (-417 (-574)))) - (-5 *1 (-443 *5 *3))))) + (-12 (-5 *3 (-781)) (-4 *1 (-1275 *4)) (-4 *4 (-1065)) + (-5 *2 (-966 *4))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1193)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-654 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3852 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1219) (-27) (-440 *8))) + (-4 *8 (-13 (-462) (-148) (-1054 *3) (-649 *3))) (-5 *3 (-574)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3878 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1029 *8 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) (((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1115))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-3 (|:| |%expansion| (-321 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) - (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) - (-14 *6 (-1192)) (-14 *7 *3)))) + (-654 + (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 *3)) + (|:| |logand| (-1189 *3))))) + (-5 *1 (-596 *3)) (-4 *3 (-372))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1189 *4)) (-5 *1 (-538 *4)) + (-4 *4 (-358))))) +(((*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-978 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) + (-15 -2981 ((-1141 *3 (-622 $)) $)) + (-15 -2951 ($ (-1141 *3 (-622 $)))))))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1015 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1189 *1)) (-5 *3 (-1193)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-966 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1116)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1116)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559)))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1233)) (-5 *2 (-781)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1115)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4)) - (-4 *3 (-440 *4)))) - ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555)))) - ((*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4)) - (-4 *3 (-807 *4)))) - ((*1 *2) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1006 *3 *4)) - (-4 *3 (-1007 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1011 *3 *4)) - (-4 *3 (-1012 *4)))) - ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1026 *3)) (-4 *3 (-1027)))) - ((*1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-781)))) - ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1074 *3)) (-4 *3 (-1075))))) -(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) - ((*1 *2 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315)))) - ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) - ((*1 *2 *1) (-12 (-4 *1 (-1075)) (-5 *2 (-574))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) - (-4 *3 (-1259 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3)) - (-4 *5 (-666 (-417 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-417 *5)) - (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) - (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1050)) (-5 *1 (-763))))) -(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1192))) (-4 *6 (-372)) - (-5 *2 (-654 (-302 (-965 *6)))) (-5 *1 (-548 *5 *6 *7)) - (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1192)) - (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *1 (-1195))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-654 *6)) (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) - (-4 *3 (-566))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 (-956 *4))) (-4 *1 (-1149 *4)) (-4 *4 (-1064)) - (-5 *2 (-781))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-771)))) +(((*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189))))) (((*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) + (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) - (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) - (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) - (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) - ((*1 *2 *3) (-12 (-5 *3 (-986)) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1053 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *2 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115))))) + (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *2 (-1116)) (-4 *3 (-1116)) + (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-574)) (-5 *5 (-1175)) (-5 *6 (-699 (-227))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-1223 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-654 *3)) (-5 *5 (-934)) (-4 *3 (-1259 *4)) - (-4 *4 (-315)) (-5 *1 (-470 *4 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) - (-5 *2 (-965 *5)) (-5 *1 (-957 *4 *5))))) -(((*1 *2 *1) - (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) - (-14 *6 - (-1 (-112) (-2 (|:| -2590 *5) (|:| -2017 *2)) - (-2 (|:| -2590 *5) (|:| -2017 *2)))) - (-4 *2 (-244 (-2876 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-860)) (-4 *7 (-962 *4 *2 (-874 *3)))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1188 *3) (-1188 *3))) - (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3)) - (-5 *1 (-561 *6 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) - (-5 *2 (-1050)) (-5 *1 (-757))))) + (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884))) + (-5 *1 (-478))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2391 (-654 *1)))) + (-4 *1 (-376 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-463 *3 *4 *5 *6)) + (|:| -2391 (-654 (-463 *3 *4 *5 *6))))) + (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) + (-14 *4 *2)))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) + (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) + ((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) + (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781)))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-803)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) + (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1054 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1119 *3 *4 *2 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116))))) +(((*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555))))) +(((*1 *1 *2) + (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3)) + (-4 *3 (-13 (-414) (-1219))))) + ((*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219)))))) +(((*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) + (-4 *2 (-1260 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) - (-5 *1 (-207))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1172 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-319)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-985)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1009)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1051)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1088))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 *2)) - (-5 *2 (-388)) (-5 *1 (-795 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) - (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574))))) + (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112)) + (-5 *1 (-515 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-446))))) +(((*1 *2 *1) + (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-319)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-986)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1010)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1052)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1089))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-935)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1189 *1)) + (-4 *1 (-337 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1189 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372)) + (-4 *2 (-1260 *3)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) - (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-1189 *4)) + (-5 *1 (-538 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) + (-4 *4 (-358)) (-5 *2 (-1289)) (-5 *1 (-538 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-417 (-966 (-574))))) + (-5 *2 (-654 (-654 (-302 (-966 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-858) (-372))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) - (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) - (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-654 (-302 (-417 (-966 (-574)))))) + (-5 *2 (-654 (-654 (-302 (-966 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-858) (-372))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) - (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) - (-5 *1 (-795 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-757))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) - (-4 *3 (-13 (-372) (-148) (-1053 (-574)))) (-5 *1 (-578 *3 *4))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-699 (-324 (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) - (-5 *1 (-207))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) - (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574)))) - (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-962 *4 *6 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *2 *4 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3)))) - (-5 *1 (-918 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1192)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7)) - (-4 *3 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233)) - (-4 *7 (-1233)))) + (-12 (-5 *3 (-417 (-966 (-574)))) (-5 *2 (-654 (-302 (-966 *4)))) + (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6)) - (-4 *3 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233))))) -(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) -(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372))))) -(((*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288))))) -(((*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-654 (-654 (-956 (-227))))))) - ((*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-654 (-654 (-956 (-227)))))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-417 (-965 *4))) (-5 *3 (-1192)) - (-4 *4 (-13 (-566) (-1053 (-574)) (-148))) (-5 *1 (-580 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) - (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1050)) (-5 *1 (-759)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-398)) (-5 *2 (-1050)) (-5 *1 (-759))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1188 (-965 *6))) (-4 *6 (-566)) - (-4 *2 (-962 (-417 (-965 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) - (-4 *5 (-803)) - (-4 *4 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)))))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-1310 *5 *6 *7)) - (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-1310 *5 *6 *7)) - (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-965 *4))) - (-4 *4 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-654 (-1061 *4 *5))) (-5 *1 (-1310 *4 *5 *6)) - (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| -1867 *4) (|:| -4415 *3) (|:| -1484 *3))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-1080 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1064)) - (-5 *2 (-2 (|:| -1867 *3) (|:| -4415 *1) (|:| -1484 *1))) - (-4 *1 (-1259 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-446))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1188 *7)) (-4 *5 (-1064)) - (-4 *7 (-1064)) (-4 *2 (-1259 *5)) (-5 *1 (-511 *5 *2 *6 *7)) - (-4 *6 (-1259 *2)))) + (-12 (-5 *3 (-302 (-417 (-966 (-574))))) + (-5 *2 (-654 (-302 (-966 *4)))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-858) (-372))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1193)) + (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-4 *4 (-13 (-29 *6) (-1219) (-973))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2391 (-654 *4)))) + (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 *2)) + (-4 *2 (-13 (-29 *6) (-1219) (-973))) + (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1064)) (-4 *7 (-1064)) - (-4 *4 (-1259 *5)) (-5 *2 (-1188 *7)) (-5 *1 (-511 *5 *4 *6 *7)) - (-4 *6 (-1259 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) - (-5 *2 (-829 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-856)) (-5 *1 (-1306 *3 *2)) (-4 *3 (-1064))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3766 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-372)) (-4 *7 (-1259 *6)) + (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 - (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) - (-2 (|:| -3766 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) - (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) -(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) + (-2 (|:| |particular| (-3 (-1284 *5) "failed")) + (|:| -2391 (-654 (-1284 *5))))) + (-5 *1 (-677 *5)) (-5 *4 (-1284 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1284 *5) "failed")) + (|:| -2391 (-654 (-1284 *5))))) + (-5 *1 (-677 *5)) (-5 *4 (-1284 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) + (-5 *2 + (-654 + (-2 (|:| |particular| (-3 (-1284 *5) "failed")) + (|:| -2391 (-654 (-1284 *5)))))) + (-5 *1 (-677 *5)) (-5 *4 (-654 (-1284 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) + (-5 *2 + (-654 + (-2 (|:| |particular| (-3 (-1284 *5) "failed")) + (|:| -2391 (-654 (-1284 *5)))))) + (-5 *1 (-677 *5)) (-5 *4 (-654 (-1284 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) + (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) + (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4460)))) + (-5 *2 + (-654 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2391 (-654 *7))))) + (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7)) + (-4 *3 (-697 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193))) (-4 *5 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-780 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) - (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-962 *6 *4 *5)))) + (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-780 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1219) (-973))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1193)) + (-4 *7 (-13 (-29 *6) (-1219) (-973))) + (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1284 *7)) (|:| -2391 (-654 (-1284 *7))))) + (-5 *1 (-812 *6 *7)) (-5 *4 (-1284 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1193)) + (-4 *6 (-13 (-29 *5) (-1219) (-973))) + (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-1284 *6))) (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) + (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973))) + (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1284 *7)) (|:| -2391 (-654 (-1284 *7))))) + (-5 *1 (-812 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) + (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973))) + (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1284 *7)) (|:| -2391 (-654 (-1284 *7))))) + (-5 *1 (-812 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1193)) + (-4 *7 (-13 (-29 *6) (-1219) (-973))) + (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -2391 (-654 *7))) *7 "failed")) + (-5 *1 (-812 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-1193)) + (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -2391 (-654 *3))) *3 "failed")) + (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1219) (-973))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2)) + (-4 *2 (-13 (-29 *6) (-1219) (-973))) (-5 *1 (-812 *6 *2)) + (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2)) + (-4 *2 (-13 (-29 *6) (-1219) (-973))) + (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *1 (-812 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1051)) (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-818)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) + (-5 *2 (-1051)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) + (-5 *2 (-1051)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388))) + (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) + (-5 *2 (-1051)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388))) + (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388))) + (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -2391 (-654 *6))) "failed") + *7 *6)) + (-4 *6 (-372)) (-4 *7 (-666 *6)) + (-5 *2 (-2 (|:| |particular| (-1284 *6)) (|:| -2391 (-699 *6)))) + (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1284 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1051)) (-5 *1 (-910)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-911)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-910)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1175)) + (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) + (-5 *2 (-1051)) (-5 *1 (-910)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1175)) + (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1051)) + (-5 *1 (-910)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *2 (-654 (-388))) + (-5 *1 (-1039)) (-5 *4 (-388)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-966 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1039)) + (-5 *4 (-388)))) ((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) - (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 *7))) - (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-462)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-428 *1)) (-4 *1 (-962 *3 *4 *5)))) + (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3)) - (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-962 *6 *5 *4)))) + (-12 (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1147 *4)) + (-5 *3 (-324 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) - (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 (-417 *7)))) - (-5 *1 (-1187 *4 *5 *6 *7)) (-5 *3 (-1188 (-417 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1237)))) + (-12 (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1147 *4)) + (-5 *3 (-302 (-324 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1147 *5)) + (-5 *3 (-302 (-324 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1147 *5)) + (-5 *3 (-324 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-1193))) + (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1147 *5)) + (-5 *3 (-654 (-302 (-324 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) + (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) + (-5 *1 (-1202 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-1193))) (-4 *5 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-1202 *5)) + (-5 *3 (-654 (-302 (-417 (-966 *5))))))) ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1262 *4 *3)) - (-4 *3 (-13 (-1259 *4) (-566) (-10 -8 (-15 -2886 ($ $ $))))))) + (-12 (-5 *3 (-654 (-417 (-966 *4)))) (-4 *4 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-1202 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) - (-14 *5 (-654 (-1192))) - (-5 *2 - (-654 (-1161 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))) - (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192)))))) + (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) + (-5 *1 (-1202 *4)) (-5 *3 (-654 (-302 (-417 (-966 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) (-4 *5 (-566)) + (-5 *2 (-654 (-302 (-417 (-966 *5))))) (-5 *1 (-1202 *5)) + (-5 *3 (-417 (-966 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) (-4 *5 (-566)) + (-5 *2 (-654 (-302 (-417 (-966 *5))))) (-5 *1 (-1202 *5)) + (-5 *3 (-302 (-417 (-966 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *4))))) + (-5 *1 (-1202 *4)) (-5 *3 (-417 (-966 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *4))))) + (-5 *1 (-1202 *4)) (-5 *3 (-302 (-417 (-966 *4))))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34))) + (-4 *3 (-13 (-1116) (-34)))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) +(((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) (((*1 *2 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-654 (-966 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-654 (-966 *4))) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) + (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-966 *3))))) + ((*1 *2) + (-12 (-5 *2 (-654 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1284 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-966 *4))) + (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174)) + (-14 *5 (-935)) (-14 *6 (-654 (-1193))) (-14 *7 (-1284 (-699 *4)))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-1065)) (-5 *1 (-1256 *4 *2)) + (-4 *2 (-1260 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) + (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-781))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-194)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-308)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-313))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1119 *3 *2 *4 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116))))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456)))) + ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-112)) (-5 *1 (-308))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-112)) (-5 *1 (-839))))) + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574))))) + (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112)) + (-5 *1 (-515 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-975 *3)) (-4 *3 (-555)))) + ((*1 *2 *1) (-12 (-4 *1 (-1238)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1042 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1065))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-984 *4 *2)) - (-4 *2 (-1259 *4))))) + (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1219) (-1018)))))) +(((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4461 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) + (-4 *2 (-1065)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1260 *2)) + (-4 *4 (-697 *2 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) - (-4 *3 (-1115)) (-5 *2 (-781)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) - (-4 *4 (-1233)) (-5 *2 (-781))))) + (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-654 (-781))) + (-5 *1 (-918 *4))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1268 *4 *5 *6)) - (|:| |%expon| (-327 *4 *5 *6)) - (|:| |%expTerms| - (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))))) - (|:| |%type| (-1174)))) - (-5 *1 (-1269 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) - (-14 *5 (-1192)) (-14 *6 *4)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1160 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1174))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *3 (-227)) - (-5 *2 (-1050)) (-5 *1 (-758))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1050)) (-5 *1 (-762))))) + (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) + (-4 *3 (-1116))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-935)) (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-802)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1265 *3)) (-4 *3 (-1065))))) +(((*1 *2 *1) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720))))) +(((*1 *2) + (-12 (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) + (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) + (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) + (-5 *1 (-798))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))) + (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6)) - (-4 *4 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-965 (-574))) (-5 *3 (-1192)) - (-5 *4 (-1109 (-417 (-574)))) (-5 *1 (-30))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1135))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) - ((*1 *2 *1) - (-12 (-4 *1 (-988 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-802)) - (-4 *5 (-860)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *3 (-784)) (-5 *1 (-52))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1115) (-34))) - (-5 *2 (-112)) (-5 *1 (-1155 *4 *5)) (-4 *4 (-13 (-1115) (-34)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) - (-5 *2 (-1050)) (-5 *1 (-758))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) - ((*1 *1 *1 *1) (-4 *1 (-555))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781))))) + (-12 (-5 *3 (-654 (-935))) (-5 *2 (-1195 (-417 (-574)))) + (-5 *1 (-192))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-762))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3)) + (-4 *3 (-624 (-546))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1193)) (-5 *2 (-1 (-227) (-227) (-227))) + (-5 *1 (-713 *3)) (-4 *3 (-624 (-546)))))) +(((*1 *1 *1 *1) (-4 *1 (-483))) ((*1 *1 *1 *1) (-4 *1 (-771)))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) - (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759))))) +(((*1 *2) + (-12 (-4 *3 (-1065)) (-5 *2 (-972 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) + (-4 *4 (-1260 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) - (-5 *2 - (-2 (|:| -2817 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6))))) + (-12 (-4 *4 (-1116)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5)) + (-4 *3 (-1116)) (-4 *5 (-676 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1116))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) + (-4 *3 (-1116)) (-5 *2 (-781)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4)) + (-4 *4 (-1234)) (-5 *2 (-781))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-654 *7) *7 (-1189 *7))) (-5 *5 (-1 (-428 *7) *7)) + (-4 *7 (-1260 *6)) (-4 *6 (-13 (-372) (-148) (-1054 (-417 (-574))))) + (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4094 *3)))) + (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7)) + (-4 *8 (-666 (-417 *7))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -1366 (-417 *6)) - (|:| |special| (-417 *6)))) - (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-909 *3 *4)) - (-4 *3 (-1259 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372)) - (-5 *2 (-2 (|:| -3864 *3) (|:| -3877 *3))) (-5 *1 (-909 *3 *5)) - (-4 *3 (-1259 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) - (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) - (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) - (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1160 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) - (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1160 *5 *6 *7 *8 *9))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-622 *4)) (-5 *6 (-1188 *4)) - (-4 *4 (-13 (-440 *7) (-27) (-1218))) - (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) - (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1188 *4))) - (-4 *4 (-13 (-440 *7) (-27) (-1218))) - (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4094 (-664 *6 (-417 *6)))))) + (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6)))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2391 (-654 *1)))) + (-4 *1 (-376 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-463 *3 *4 *5 *6)) + (|:| -2391 (-654 (-463 *3 *4 *5 *6))))) + (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227))) + (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141))))) +(((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1136))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-132)) + (-4 *3 (-802))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1120)) (-5 *3 (-784)) (-5 *1 (-52))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) + (-4 *4 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-440 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1108 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-174))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1076)))) + ((*1 *1 *1) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1076)))) + ((*1 *1 *1) (-4 *1 (-858))) + ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)) (-4 *2 (-1076)))) + ((*1 *1 *1) (-4 *1 (-1076))) ((*1 *1 *1) (-4 *1 (-1155)))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1101))) (-5 *1 (-299))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) + ((*1 *1 *1 *1) (-4 *1 (-555))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) + (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) - (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) + (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3))) + (|:| |vals| (-654 *3)))) + (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5)))))) (((*1 *2 *2) - (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) + (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6)) - (|:| -2151 *6))) - (-5 *1 (-1030 *5 *6)) (-5 *3 (-417 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-1205 *3))))) (((*1 *2) - (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) - ((*1 *2 *2) - (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-654 (-1192))) (-4 *2 (-174)) - (-4 *3 (-244 (-2876 *4) (-781))) - (-14 *6 - (-1 (-112) (-2 (|:| -2590 *5) (|:| -2017 *3)) - (-2 (|:| -2590 *5) (|:| -2017 *3)))) - (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) - (-4 *7 (-962 *2 *3 (-874 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *5 *6)) (-4 *6 (-624 (-1192))) - (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *2 (-1181 (-654 (-965 *4)) (-654 (-302 (-965 *4))))) - (-5 *1 (-514 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-5 *2 + (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) (((*1 *2 *3) - (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) - (-4 *3 (-13 (-1115) (-34)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1107 (-965 (-574)))) (-5 *3 (-965 (-574))) - (-5 *1 (-338)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1107 (-965 (-574)))) (-5 *1 (-338))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-417 (-965 (-574))))) (-5 *4 (-654 (-1192))) - (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5)) - (-4 *5 (-13 (-858) (-372))))) + (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1065))) (-5 *2 (-1175)) + (-5 *1 (-836 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-858) (-372)))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-934)) (-4 *3 (-372)) - (-14 *4 (-1008 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *1 *1) (|partial| -4 *1 (-732))) - ((*1 *1 *1) (|partial| -4 *1 (-736))) + (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1065))) + (-5 *2 (-1175)) (-5 *1 (-836 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1083 *3 *2)) (-4 *3 (-13 (-858) (-372))) - (-4 *2 (-1259 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1283 (-699 *4))) (-4 *4 (-174)) - (-5 *2 (-1283 (-699 (-965 *4)))) (-5 *1 (-191 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) - (-5 *1 (-1203 *4)) (-4 *4 (-860))))) -(((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-962 *7 *5 *6)) - (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-315))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1025 *2)) (-4 *2 (-1233))))) + (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1065))) + (-5 *2 (-1289)) (-5 *1 (-836 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-838) (-1065))) (-5 *2 (-1289)) (-5 *1 (-836 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1175)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1175)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1289)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1289))))) +(((*1 *1 *1 *1) (-5 *1 (-163))) + ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163))))) +(((*1 *2) + (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) + (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6)) + (-4 *3 (-351 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *2 (-1115)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) - (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1233)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) (-14 *4 *2)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) - (-5 *1 (-1144 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-13 (-315) (-148))) - (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-302 (-417 (-965 *5)))) (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) - (-5 *1 (-1144 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-302 (-417 (-965 *4)))) (-4 *4 (-13 (-315) (-148))) - (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)))) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) + (-5 *2 (-654 (-654 (-654 (-781)))))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-765))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1219) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) - (-5 *1 (-1144 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-417 (-965 *4)))) (-4 *4 (-13 (-315) (-148))) - (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1144 *4)))) + (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-148)) + (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-324 *5)) + (-5 *1 (-599 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1234)) (-4 *2 (-1065)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) + ((*1 *1 *1) (-5 *1 (-872))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-957 (-227))) (-5 *2 (-227)) (-5 *1 (-1230)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1065))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) + (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-654 *9)))) + (-5 *3 (-654 *9)) (-4 *1 (-1227 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-302 (-417 (-965 *5))))) (-5 *4 (-654 (-1192))) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) - (-5 *1 (-1144 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-302 (-417 (-965 *4))))) - (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) - (-5 *1 (-1144 *4))))) -(((*1 *1 *1) (-4 *1 (-639))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1259 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) - ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-654 *8)))) + (-5 *3 (-654 *8)) (-4 *1 (-1227 *5 *6 *7 *8))))) (((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) - (-5 *1 (-1003 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) - (-5 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *1 *1) (-4 *1 (-175))) - ((*1 *1 *1) - (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) -(((*1 *1 *1) (-4 *1 (-1075)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4)) - (-4 *4 (-879 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-574)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-1274 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1274 *2))))) + (-12 (-5 *2 (-1284 (-1117 *3 *4))) (-5 *1 (-1117 *3 *4)) + (-14 *3 (-935)) (-14 *4 (-935))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) + (-15 -2981 ((-1141 *3 (-622 $)) $)) + (-15 -2951 ($ (-1141 *3 (-622 $)))))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1227 *4 *5 *6 *7)) + (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1116) (-34))) (-4 *6 (-13 (-1116) (-34))) + (-5 *2 (-112)) (-5 *1 (-1156 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-923)) (-4 *6 (-803)) + (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-428 (-1189 *8))) + (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-1189 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5))) + (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1051)) (-5 *1 (-758))))) (((*1 *2 *2 *2) - (-12 + (-12 (-4 *3 (-1065)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1260 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3))))) +(((*1 *1) (-5 *1 (-569)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *8)) (-4 *8 (-963 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) + (-4 *7 (-803)) (-5 *2 (-654 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-803)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) - (-5 *1 (-459 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-4 *5 (-1259 *4)) (-5 *2 (-654 (-663 (-417 *5)))) - (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5)))))) -(((*1 *2 *1 *1) - (-12 + (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) + (|:| |wcond| (-654 (-966 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *5)))))))))) + (-5 *1 (-938 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1193))) (-4 *8 (-963 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) + (-4 *7 (-803)) (-5 *2 - (-2 (|:| -1867 *3) (|:| |gap| (-781)) (|:| -4415 (-792 *3)) - (|:| -1484 (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-1064)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) + (-654 + (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) + (|:| |wcond| (-654 (-966 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *5)))))))))) + (-5 *1 (-938 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 *7)) (-4 *7 (-963 *4 *6 *5)) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) + (-4 *6 (-803)) (-5 *2 - (-2 (|:| -1867 *1) (|:| |gap| (-781)) (|:| -4415 *1) - (|:| -1484 *1))) - (-4 *1 (-1080 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-654 + (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) + (|:| |wcond| (-654 (-966 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *4)))))))))) + (-5 *1 (-938 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *9)) (-5 *5 (-935)) (-4 *9 (-963 *6 *8 *7)) + (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193)))) + (-4 *8 (-803)) (-5 *2 - (-2 (|:| -1867 *1) (|:| |gap| (-781)) (|:| -4415 *1) - (|:| -1484 *1))) - (-4 *1 (-1080 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064)))) - ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) -(((*1 *1 *2) - (-12 (-5 *2 (-934)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-372)) (-14 *5 (-1008 *3 *4))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1192)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-654 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3766 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1218) (-27) (-440 *8))) - (-4 *8 (-13 (-462) (-148) (-1053 *3) (-649 *3))) (-5 *3 (-574)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3877 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1028 *8 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1192)) (-5 *6 (-112)) - (-4 *7 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-4 *3 (-13 (-1218) (-972) (-29 *7))) + (-654 + (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) + (|:| |wcond| (-654 (-966 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1284 (-417 (-966 *6)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *6)))))))))) + (-5 *1 (-938 *6 *7 *8 *9)) (-5 *4 (-654 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1193))) (-5 *5 (-935)) + (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) + (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 - (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064)))) - ((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) - (-4 *4 (-1064)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1064)))) - ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) - (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) - (-4 *4 (-1259 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) - (-4 *3 (-1259 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-372)) (-4 *2 (-913 *3)) (-5 *1 (-596 *2)) - (-5 *3 (-1192)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372)))) + (-654 + (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) + (|:| |wcond| (-654 (-966 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1284 (-417 (-966 *6)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *6)))))))))) + (-5 *1 (-938 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *8)) (-5 *4 (-935)) (-4 *8 (-963 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) + (-4 *7 (-803)) + (-5 *2 + (-654 + (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) + (|:| |wcond| (-654 (-966 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *5)))))))))) + (-5 *1 (-938 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1175)) + (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) + (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574)) + (-5 *1 (-938 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1193))) (-5 *5 (-1175)) + (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) + (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574)) + (-5 *1 (-938 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *8)) (-5 *4 (-1175)) (-4 *8 (-963 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) + (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-935)) + (-5 *6 (-1175)) (-4 *10 (-963 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) + (-4 *8 (-13 (-860) (-624 (-1193)))) (-4 *9 (-803)) (-5 *2 (-574)) + (-5 *1 (-938 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1193))) (-5 *5 (-935)) + (-5 *6 (-1175)) (-4 *10 (-963 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) + (-4 *8 (-13 (-860) (-624 (-1193)))) (-4 *9 (-803)) (-5 *2 (-574)) + (-5 *1 (-938 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *9)) (-5 *4 (-935)) (-5 *5 (-1175)) + (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) + (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574)) + (-5 *1 (-938 *6 *7 *8 *9))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1116))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) + ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063)) + (-5 *3 (-574))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781)) + (-5 *1 (-959 *4 *5)) (-4 *5 (-1260 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1116)) (-4 *4 (-1116)) + (-4 *6 (-1116)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) + (-4 *1 (-1087 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) + (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-963 *6 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-935)) (-5 *4 (-428 *6)) (-4 *6 (-1260 *5)) + (-4 *5 (-1065)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) + (-4 *6 (-803)) (-5 *2 (-417 (-966 *4))) (-5 *1 (-938 *4 *5 *6 *3)) + (-4 *3 (-963 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 *7)) (-4 *7 (-963 *4 *6 *5)) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) + (-4 *6 (-803)) (-5 *2 (-699 (-417 (-966 *4)))) + (-5 *1 (-938 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5)) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) + (-4 *6 (-803)) (-5 *2 (-654 (-417 (-966 *4)))) + (-5 *1 (-938 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) + (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) + (-4 *1 (-1087 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) + (-5 *2 + (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6)) + (|:| |polypart| *6))) + (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1193))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-935)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-372)) (-14 *5 (-1009 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1175)) (-5 *1 (-313))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1177 *4)) (-4 *4 (-1065)) + (-5 *3 (-574))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4))) + (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6)) + (-4 *6 (-462))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-919 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) + (-4 *4 (-1065)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1065)))) + ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) + (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) + (-4 *4 (-1260 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) + (-4 *3 (-1260 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-372)) (-4 *2 (-912 *3)) (-5 *1 (-596 *2)) + (-5 *3 (-1193)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1233)))) + (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1234)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-913 *4)) - (-4 *4 (-1115)))) + (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-914 *4)) + (-4 *4 (-1116)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-913 *2)) (-4 *2 (-1115)))) + (-12 (-5 *3 (-781)) (-4 *1 (-914 *2)) (-4 *2 (-1116)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *1 (-913 *3)) (-4 *3 (-1115)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1115)))) + (-12 (-5 *2 (-654 *3)) (-4 *1 (-914 *3)) (-4 *3 (-1116)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3))) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1189 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3))) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1190 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3))) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3))) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1268 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3))) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1269 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1233)))) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1234)))) ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) ((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) - (-4 *3 (-1259 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) -(((*1 *2 *1) - (-12 (-4 *1 (-705 *3)) (-4 *3 (-1115)) - (-5 *2 (-654 (-2 (|:| -1917 *3) (|:| -3948 (-781)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1259 *5)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) - (-5 *1 (-820 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1259 *5)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-5 *2 (-2 (|:| -2191 (-654 (-417 *6))) (|:| -4047 (-699 *5)))) - (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1259 *5)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) - (-5 *1 (-820 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1259 *5)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-5 *2 (-2 (|:| -2191 (-654 (-417 *6))) (|:| -4047 (-699 *5)))) - (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6)))))) -(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-112)) - (-5 *1 (-366 *4))))) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) + (-4 *3 (-1260 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-761))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1281 *3)) (-4 *3 (-1233)) (-4 *3 (-1064)) + (-12 (-4 *1 (-1282 *3)) (-4 *3 (-1234)) (-4 *3 (-1065)) (-5 *2 (-699 *3))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1065)) + (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1260 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1065)) + (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1260 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1065)) + (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1155 *4 *5)) (-4 *4 (-13 (-1115) (-34))) - (-4 *5 (-13 (-1115) (-34))) (-5 *2 (-112)) (-5 *1 (-1156 *4 *5))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 (-417 (-965 *6)))) - (-5 *3 (-417 (-965 *6))) - (-4 *6 (-13 (-566) (-1053 (-574)) (-148))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-580 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-535))))) -(((*1 *2 *1) - (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) - (-5 *2 (-1188 *3))))) + (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *1 (-849)) + (-5 *3 + (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) + (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) + (|:| |ub| (-654 (-853 (-227)))))) + (-5 *2 (-1051)))) + ((*1 *2 *3) + (-12 (-4 *1 (-849)) + (-5 *3 + (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) + (-5 *2 (-1051))))) +(((*1 *2) + (-12 (-4 *3 (-1065)) (-5 *2 (-972 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) + (-4 *4 (-1260 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-832))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1283 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1233)))) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1284 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1234)))) ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) ((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) - (-4 *3 (-1259 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1080 *5 *6 *7)) - (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) - (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) -(((*1 *1) (-5 *1 (-447)))) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) + (-4 *3 (-1260 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-2 (|:| -4202 (-1189 *6)) (|:| -3139 (-574))))) + (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) + (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-382 *3)) (-4 *3 (-1234)) (-4 *3 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1234)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3319 *4))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1275 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4)) + (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1031 *4 *5)) (-5 *3 (-417 *5))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1260 *4)) (-5 *1 (-819 *4 *2 *3 *5)) + (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2)) + (-4 *5 (-666 (-417 *2)))))) +(((*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860)) + (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-935)))) + ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) + (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-938 *4 *5 *6 *3)) + (-4 *3 (-963 *4 *6 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860)) - (-4 *9 (-962 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315)) - (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1064))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1298 (-1192) *3)) (-4 *3 (-1064)) (-5 *1 (-1305 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) - (-5 *1 (-1307 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1050)) - (-5 *1 (-766))))) -(((*1 *2) - (-12 - (-5 *2 - (-1283 (-654 (-2 (|:| -3078 (-923 *3)) (|:| -2590 (-1135)))))) - (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) - ((*1 *2) - (-12 (-5 *2 (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135)))))) - (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1188 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135)))))) - (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-934))))) + (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860)) + (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8)) + (-4 *8 (-963 *3 *7 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1175)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-270)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-781)) (-5 *1 (-600))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |h| *6) (|:| |c1| (-417 *6)) (|:| |c2| (-417 *6)) (|:| -2151 *6))) - (-5 *1 (-1031 *5 *6)) (-5 *3 (-417 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1154)))) + (-5 *1 (-1032 *5 *6)) (-5 *3 (-417 *6))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-633 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3878 *4) (|:| |sol?| (-112))) + (-574) *4)) + (-4 *4 (-372)) (-4 *5 (-1260 *4)) (-5 *1 (-584 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3)) - (-4 *3 (-624 (-546))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) + (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-654 *3)) + (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1125 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) + (-5 *2 + (-654 (-2 (|:| -1718 (-1189 *5)) (|:| -1385 (-654 (-966 *5)))))) + (-5 *1 (-1094 *5 *6)) (-5 *3 (-654 (-966 *5))) + (-14 *6 (-654 (-1193))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-315) (-148))) + (-5 *2 + (-654 (-2 (|:| -1718 (-1189 *4)) (|:| -1385 (-654 (-966 *4)))))) + (-5 *1 (-1094 *4 *5)) (-5 *3 (-654 (-966 *4))) + (-14 *5 (-654 (-1193))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1192)) (-5 *2 (-1 (-227) (-227) (-227))) - (-5 *1 (-713 *3)) (-4 *3 (-624 (-546)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1174)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-270)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1080 *5 *6 *7)) - (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) - (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-992 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1253 *3 *2)) - (-4 *2 (-1259 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) - (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4)))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-764))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) - (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) -(((*1 *1 *1) (-4 *1 (-1075))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1233)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) - (-14 *4 (-574))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-574)))) - (-4 *4 (-13 (-1259 *3) (-566) (-10 -8 (-15 -2886 ($ $ $))))) - (-4 *3 (-566)) (-5 *1 (-1262 *3 *4))))) + (-654 (-2 (|:| -1718 (-1189 *5)) (|:| -1385 (-654 (-966 *5)))))) + (-5 *1 (-1094 *5 *6)) (-5 *3 (-654 (-966 *5))) + (-14 *6 (-654 (-1193)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *3 (-654 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *1 (-270)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6)) + (-14 *5 (-654 (-1193))) (-4 *6 (-462)) (-5 *2 (-1284 *6)) + (-5 *1 (-641 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1065)) + (-5 *1 (-1045 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-699 *4)) (-5 *3 (-935)) (|has| *4 (-6 (-4461 "*"))) + (-4 *4 (-1065)) (-5 *1 (-1044 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-935)) + (|has| *4 (-6 (-4461 "*"))) (-4 *4 (-1065)) (-5 *1 (-1044 *4))))) +(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) + ((*1 *2 *3) + (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4)) + (-4 *4 (-358))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -3191 (-654 (-872))) (|:| -2620 (-654 (-872))) - (|:| |presup| (-654 (-872))) (|:| -3073 (-654 (-872))) + (-2 (|:| -2357 (-654 (-872))) (|:| -1968 (-654 (-872))) + (|:| |presup| (-654 (-872))) (|:| -3677 (-654 (-872))) (|:| |args| (-654 (-872))))) - (-5 *1 (-1192)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1192))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112))))) + (-5 *1 (-1193)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1193))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) + ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1024 *3)) (-4 *3 (-1054 (-417 (-574))))))) +(((*1 *1) (-5 *1 (-607)))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-372)) + (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1284 *5))))) + (-5 *1 (-994 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1284 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-654 - (-2 (|:| -3557 (-781)) - (|:| |eqns| - (-654 - (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) - (|:| |cols| (-654 (-574)))))) - (|:| |fgb| (-654 *7))))) - (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) - (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-781)) - (-5 *1 (-937 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-762))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-934)) (-5 *1 (-1116 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) - (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) - (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-112)) - (-5 *1 (-937 *5 *6 *7 *8))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-934)) - (-5 *2 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) - (-5 *1 (-355 *4)) (-4 *4 (-358))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1293))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-130))) - ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) - (-4 *4 (-174)))) - ((*1 *1) (-5 *1 (-556))) ((*1 *1) (-5 *1 (-557))) - ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) - ((*1 *1) (-4 *1 (-736))) ((*1 *1) (-5 *1 (-1192))) - ((*1 *1) (-12 (-5 *1 (-1198 *2)) (-14 *2 (-934)))) - ((*1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934)))) - ((*1 *1) (-5 *1 (-1238))) ((*1 *1) (-5 *1 (-1239))) - ((*1 *1) (-5 *1 (-1240))) ((*1 *1) (-5 *1 (-1241)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1192)) (-5 *1 (-338))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1241))) (-5 *3 (-1241))))) -(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1077)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1077))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-699 (-417 (-965 (-574))))) - (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046)) - (-5 *3 (-324 (-574)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) -(((*1 *2 *2) - (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) - (-5 *1 (-178 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) -(((*1 *2) - (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-352 *3 *4)) (-14 *3 (-934)) - (-14 *4 (-934)))) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) ((*1 *2) - (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358)) - (-14 *4 (-1188 *3)))) + (-12 (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)) + (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5)))) ((*1 *2) - (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358)) - (-14 *4 (-934))))) + (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) + (-5 *2 (-699 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1193)) (-5 *1 (-338))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574)))) + (-5 *2 (-112)) (-5 *1 (-1312 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) + (-5 *2 (-1189 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-315)) (-4 *3 (-1007 *2)) (-4 *4 (-1259 *3)) - (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1053 *3)))))) -(((*1 *2) - (-12 (-5 *2 (-1283 (-1116 *3 *4))) (-5 *1 (-1116 *3 *4)) - (-14 *3 (-934)) (-14 *4 (-934))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) + (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-539))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) + (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1260 (-171 *3)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-5 *2 + (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1116)) (-5 *2 (-654 *1)) + (-4 *1 (-440 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) + (-4 *3 (-1116)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) + (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *3)) + (-5 *1 (-964 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) + (-15 -2981 (*7 $)))))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-765))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-5 *2 + (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) +(((*1 *2 *3) + (-12 (-4 *4 (-462)) + (-5 *2 + (-654 + (-2 (|:| |eigval| (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4)))) + (|:| |eigmult| (-781)) + (|:| |eigvec| (-654 (-699 (-417 (-966 *4)))))))) + (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-966 *4))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-1065)) + (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-1260 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *2 (-654 (-227))) + (-5 *1 (-478))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-372)) (-5 *1 (-909 *2 *3)) + (-4 *2 (-1260 *3))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-227)) + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-957 *4)))) + (|:| |xValues| (-1110 *4)) (|:| |yValues| (-1110 *4)))) + (-5 *1 (-154)) (-5 *3 (-654 (-654 (-957 *4))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-1115)) - (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-1091 *4 *5 *2)) + (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-1116)) + (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-1092 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) - (-5 *1 (-1091 *3 *4 *2)) + (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) + (-5 *1 (-1092 *3 *4 *2)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) - (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) - ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3)) - (-5 *1 (-1253 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1075)) (-4 *3 (-1218)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) - (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) - (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-654 (-227))) (-5 *1 (-206))))) -(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-247))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1115)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1284 (-1284 (-574)))) (-5 *3 (-935)) (-5 *1 (-476))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1189 *1)) (-5 *3 (-1193)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-966 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-574)) (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) - (-4 *3 (-1064)))) + (-12 (-5 *3 (-1189 *2)) (-5 *4 (-1193)) (-4 *2 (-440 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-566)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1300 *4 *3)) - (-4 *3 (-1064))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1283 (-574))) (-5 *3 (-574)) (-5 *1 (-1125)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1283 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574)) - (-5 *1 (-1125))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-654 (-1192))) (|:| |pred| (-52)))) - (-5 *1 (-903 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112))))) + (|partial| -12 (-5 *2 (-1189 *1)) (-5 *3 (-935)) (-4 *1 (-1028)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1189 *1)) (-5 *3 (-935)) (-5 *4 (-872)) + (-4 *1 (-1028)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-935)) (-4 *4 (-13 (-858) (-372))) + (-4 *1 (-1084 *4 *2)) (-4 *2 (-1260 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-839))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) + (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) + (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) + (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) + (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) + (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) + (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) - (-4 *3 (-1115))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48)))))) -(((*1 *1 *1) (-4 *1 (-1159)))) + (-12 (-4 *3 (-566)) (-4 *4 (-1008 *3)) (-5 *1 (-143 *3 *4 *2)) + (-4 *2 (-382 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) (-4 *2 (-382 *4)) + (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 *5)) (-4 *5 (-1008 *4)) (-4 *4 (-566)) + (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-4 *4 (-1008 *3)) (-5 *1 (-1253 *3 *4 *2)) + (-4 *2 (-1260 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-253 *3 *4)) - (-14 *3 (-654 (-1192))) (-4 *4 (-1064)))) + (-14 *3 (-654 (-1193))) (-4 *4 (-1065)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1192))) - (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1064)) - (-4 *5 (-244 (-2876 *3) (-781))))) + (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1193))) + (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1065)) + (-4 *5 (-244 (-2877 *3) (-781))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-491 *3 *4)) - (-14 *3 (-654 (-1192))) (-4 *4 (-1064))))) + (-14 *3 (-654 (-1193))) (-4 *4 (-1065))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1116)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-574)) (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) + (-4 *3 (-1065)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1301 *4 *3)) + (-4 *3 (-1065))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-388)) (-5 *1 (-207))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1193)) (-5 *1 (-685 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) - ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -3038 *4))) (-5 *5 (-781)) - (-4 *4 (-962 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1193))) + (-4 *5 (-462)) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-459 *6 *7 *8 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1157 *3 *4)) (-14 *3 (-934)) (-4 *4 (-372)) - (-5 *1 (-1008 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) - ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388))))) + (-2 (|:| |gblist| (-654 (-253 *4 *5))) + (|:| |gvlist| (-654 (-574))))) + (-5 *1 (-641 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-417 (-574))))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1257 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1193)) + (-4 *5 (-372)) (-5 *1 (-937 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1189 *5)) + (-5 *1 (-937 *4 *5)) (-14 *4 (-1193)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372)) + (-5 *2 (-417 (-966 *6))) (-5 *1 (-1066 *5 *6)) (-14 *5 (-1193))))) +(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1260 *4)) (-4 *4 (-1238)) + (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1260 (-417 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1173 (-966 *4)) (-1173 (-966 *4)))) + (-5 *1 (-1292 *4)) (-4 *4 (-372))))) (((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) - ((*1 *1) (-4 *1 (-1167)))) + ((*1 *1) (-4 *1 (-1168)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1115)) (-4 *3 (-913 *5)) (-5 *2 (-1283 *3)) - (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458))))))) -(((*1 *2 *1) (-12 (-5 *2 (-986)) (-5 *1 (-1308))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-958 *4 *3)) - (-4 *3 (-1259 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) - (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)) - (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1618 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| -1867 *3) (|:| -3805 *4)))) - (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) - (-5 *2 (-1172 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1211))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *4 (-654 (-1193))) + (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1116)) (-4 *6 (-912 *5)) (-5 *2 (-699 *6)) + (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6)) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-535))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-654 *11)) + (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4068 *11)))))) + (-5 *6 (-781)) + (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4068 *11)))) + (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1081 *7 *8 *9)) + (-4 *11 (-1087 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) + (-4 *9 (-860)) (-5 *1 (-1085 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-654 *11)) + (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4068 *11)))))) + (-5 *6 (-781)) + (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4068 *11)))) + (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1081 *7 *8 *9)) + (-4 *11 (-1125 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) + (-4 *9 (-860)) (-5 *1 (-1161 *7 *8 *9 *10 *11))))) +(((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-832))))) (((*1 *1 *1) (-4 *1 (-555)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-574)) (-5 *1 (-247)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-574)) (-5 *1 (-247))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3319 *4))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-957 (-227))) (-5 *2 (-1289)) (-5 *1 (-478))))) (((*1 *1 *1) (-5 *1 (-546)))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) - (-15 -2981 ((-1140 *3 (-622 $)) $)) - (-15 -2950 ($ (-1140 *3 (-622 $)))))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) - (-5 *1 (-178 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1115)))) - ((*1 *1 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)) + (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574)))) + (-5 *1 (-313))))) +(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1078)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1078))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-1189 *4))) (-5 *3 (-1189 *4)) + (-4 *4 (-923)) (-5 *1 (-673 *4))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-763))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1116)))) + ((*1 *1 *2) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1116))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-956 *5)) (-5 *3 (-781)) (-4 *5 (-1064)) - (-5 *1 (-1180 *4 *5)) (-14 *4 (-934))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1080 *6 *7 *8)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) - (-5 *1 (-1123 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4064 *9)))) - (-5 *5 (-112)) (-4 *8 (-1080 *6 *7 *4)) (-4 *9 (-1086 *6 *7 *4 *8)) - (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) - (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4064 *9)))) - (-5 *1 (-1123 *6 *7 *4 *8 *9))))) -(((*1 *1 *1 *1) (-4 *1 (-555)))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-747 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1115)))) - ((*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) + (-5 *1 (-765))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1196)) (-5 *3 (-1193))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1260 (-417 (-574)))) (-5 *1 (-927 *3 *2)) + (-4 *2 (-1260 (-417 *3)))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1110 (-227))) + (-5 *5 (-112)) (-5 *2 (-1286)) (-5 *1 (-264))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) (((*1 *2 *3) - (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860))))) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) + ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931))))) +(((*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-781)) (-4 *3 (-1233)) (-4 *1 (-57 *3 *4 *5)) + (-12 (-5 *2 (-781)) (-4 *3 (-1234)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1) (-5 *1 (-173))) - ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1115)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1174)) (-4 *1 (-399)))) + ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1116)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-399)))) ((*1 *1) (-5 *1 (-404))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) ((*1 *1) - (-12 (-4 *3 (-1115)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1115)) + (-12 (-4 *3 (-1116)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1116)) (-4 *4 (-676 *3)))) - ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) + ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) ((*1 *1 *2) - (-12 (-5 *1 (-1157 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1064)))) - ((*1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) - ((*1 *1 *1) (-5 *1 (-1192))) ((*1 *1) (-5 *1 (-1192))) - ((*1 *1) (-5 *1 (-1213)))) + (-12 (-5 *1 (-1158 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1065)))) + ((*1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) + ((*1 *1 *1) (-5 *1 (-1193))) ((*1 *1) (-5 *1 (-1193))) + ((*1 *1) (-5 *1 (-1214)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-1198))) (-5 *1 (-891))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1065)) + (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5) + (|:| |f4| (-654 *5)))) + (-5 *1 (-1204 *6)) (-5 *4 (-654 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414)))) + ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) + ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709)))) + ((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-839))))) +(((*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-860))))) +(((*1 *1 *2) + (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1065) (-860))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1193)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) + (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-935)) + (-5 *2 + (-3 (-1189 *4) + (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136))))))) + (-5 *1 (-355 *4)) (-4 *4 (-358))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-2 (|:| -3667 *3) (|:| -1916 *4)))) + (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *1 (-1210 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1210 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-5 *2 + (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-624 (-903 (-574)))) + (-4 *5 (-897 (-574))) + (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) + (-4 *3 (-13 (-27) (-1219) (-440 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1193)) (-5 *4 (-853 *2)) (-4 *2 (-1155)) + (-4 *2 (-13 (-27) (-1219) (-440 *5))) + (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) + (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) + (-5 *1 (-577 *5 *2))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) + (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1064)) - (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566)) - (-4 *3 (-1064))))) -(((*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) - ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) - ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709)))) - ((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-962 *5 *6 *7)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-459 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1115))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1172 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3362 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1050)) (-5 *1 (-313))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-2 (|:| -3666 *3) (|:| -1917 *4)))) - (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *1 (-1209 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1209 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1042 *5 *6 *7 *3))) (-5 *1 (-1042 *5 *6 *7 *3)) - (-4 *3 (-1080 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-654 *6)) (-4 *1 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1161 *5 *6 *7 *3))) (-5 *1 (-1161 *5 *6 *7 *3)) - (-4 *3 (-1080 *5 *6 *7))))) + (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) - (-5 *1 (-122 *3)) (-4 *3 (-860)))) - ((*1 *2 *2) - (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1218))) - (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-593 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-596 (-417 (-965 *3)))) - (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-599 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) - (-5 *2 (-2 (|:| -1366 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1283 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) - (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) - (-5 *3 (-654 (-699 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1283 (-1283 *5))) (-4 *5 (-372)) (-4 *5 (-1064)) - (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) - (-5 *3 (-654 (-699 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1159)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1159))))) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-112)) + (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1219) (-29 *4)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) + (-5 *2 (-1189 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) + (-5 *2 (-1189 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1259 *4)))) + (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1054 (-574))) + (-4 *4 (-566)) (-5 *2 (-1189 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1259 (-574))))) + (-12 (-5 *3 (-622 *1)) (-4 *1 (-1065)) (-4 *1 (-310)) + (-5 *2 (-1189 *1))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-1197)) (-5 *1 (-1196))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-62 *3)) (-14 *3 (-1193)))) + ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-69 *3)) (-14 *3 (-1193)))) + ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-72 *3)) (-14 *3 (-1193)))) + ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1289)))) + ((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1289)) (-5 *1 (-407)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1259 (-574))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) - (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1259 (-574))))) - ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-1022 *3)) - (-4 *3 (-1259 (-417 (-574)))))) + (-12 (-5 *3 (-1175)) (-5 *4 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154)))) + ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154)))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574)))))) + (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1259 *4)) - (-5 *2 (-1283 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6))))) -(((*1 *1) (-5 *1 (-447)))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1115))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192)) (-4 *5 (-372)) (-5 *2 (-654 (-1227 *5))) - (-5 *1 (-1291 *5)) (-5 *4 (-1227 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-112)) - (-5 *1 (-366 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-112)) - (-5 *1 (-538 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-62 *3)) (-14 *3 (-1192)))) - ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-69 *3)) (-14 *3 (-1192)))) - ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-72 *3)) (-14 *3 (-1192)))) - ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1288)))) - ((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1288)) (-5 *1 (-407)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1174)) (-5 *4 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) - ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1218) (-972)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-440 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1107 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192))))) -(((*1 *2 *1) - (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3775 *1) (|:| -4445 *1) (|:| |associate| *1))) - (-4 *1 (-566))))) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-4 *3 (-13 (-27) (-1219) (-440 *6) (-10 -8 (-15 -2951 ($ *7))))) + (-4 *7 (-858)) + (-4 *8 + (-13 (-1262 *3 *7) (-372) (-1219) + (-10 -8 (-15 -3879 ($ $)) (-15 -3342 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175)))))) + (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1175)) (-4 *9 (-999 *8)) + (-14 *10 (-1193))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) -(((*1 *2 *1) - (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) - (-14 *4 (-781)) (-4 *5 (-174))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) - (-5 *2 (-1283 (-417 (-574)))) (-5 *1 (-1311 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) - (-5 *2 (-1050)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1192)) (-5 *6 (-654 (-622 *3))) - (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *7))) - (-4 *7 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 (-2 (|:| -3766 *3) (|:| |coeff| *3))) - (-5 *1 (-567 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-401))))) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574))))) +(((*1 *1) (-5 *1 (-588)))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-928 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-929 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-428 (-966 *6))) (-5 *5 (-1193)) (-5 *3 (-966 *6)) + (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-929 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-549 *4 *2 *5 *6)) + (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1051)) (-5 *1 (-760))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-247))))) +(((*1 *2 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-401))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574))))) +(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *2 (-1115)) (-4 *3 (-1115)) - (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115))))) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1116)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1116)) (-5 *1 (-103 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527))))) (((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-598 *4)) - (-4 *4 (-358))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1116)) + (-4 *3 (-1116))))) (((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) - (-4 *2 (-13 (-860) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-566)) - (-5 *2 (-2 (|:| -4047 (-699 *5)) (|:| |vec| (-1283 (-654 (-934)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-934)) (-4 *3 (-666 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566))))) -(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-654 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-803)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) - (-5 *1 (-459 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1288)) (-5 *1 (-401)))) - ((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-401))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1192))) (-5 *1 (-835))))) + (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) + (-5 *2 (-1051)) (-5 *1 (-763))))) +(((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1289)) (-5 *1 (-401)))) + ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-401))))) +(((*1 *2 *1) + (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) + (-5 *2 (-112))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-685 *2)) (-4 *2 (-1064)) (-4 *2 (-1115))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1180 *4 *5)) - (-14 *4 (-934)) (-4 *5 (-1064))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) - (-4 *3 (-1115))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-1115)) (-4 *7 (-913 *6)) - (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7)) - (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4458))))))) + (-12 (-5 *1 (-685 *2)) (-4 *2 (-1065)) (-4 *2 (-1116))))) (((*1 *2 *3) - (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) - (-4 *2 - (-13 (-412) - (-10 -7 (-15 -2950 (*2 *4)) (-15 -3271 ((-934) *2)) - (-15 -2191 ((-1283 *2) (-934))) (-15 -2893 (*2 *2))))) - (-5 *1 (-365 *2 *4))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1192)) (-5 *3 (-444)) (-4 *5 (-1115)) - (-5 *1 (-1121 *5 *4)) (-4 *4 (-440 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) + (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1230))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *3 (-227)) + (-5 *2 (-1051)) (-5 *1 (-758))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1064)) - (-5 *1 (-1176 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-1197))) (-5 *1 (-1151))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-5 *2 (-1188 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-112))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *6)))) - (-5 *4 (-1041 (-853 (-574)))) (-5 *5 (-1192)) (-5 *7 (-417 (-574))) - (-4 *6 (-1064)) (-5 *2 (-872)) (-5 *1 (-605 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3496 *4))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2)) + (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460))))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-574)) (-5 *1 (-206))))) -(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255))))) -(((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) - (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) - (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1202))))) + (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1193)) (-5 *3 (-444)) (-4 *5 (-1116)) + (-5 *1 (-1122 *5 *4)) (-4 *4 (-440 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) + (-5 *2 (-2 (|:| -1866 (-417 *5)) (|:| |poly| *3))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-358)) + (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -1374 *3)))) + (-5 *1 (-218 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1065)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1065))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-417 (-966 (-171 (-574)))))) + (-5 *2 (-654 (-654 (-302 (-966 (-171 *4)))))) (-5 *1 (-387 *4)) + (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-302 (-417 (-966 (-171 (-574))))))) + (-5 *2 (-654 (-654 (-302 (-966 (-171 *4)))))) (-5 *1 (-387 *4)) + (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-966 (-171 (-574))))) + (-5 *2 (-654 (-302 (-966 (-171 *4))))) (-5 *1 (-387 *4)) + (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-302 (-417 (-966 (-171 (-574)))))) + (-5 *2 (-654 (-302 (-966 (-171 *4))))) (-5 *1 (-387 *4)) + (-4 *4 (-13 (-372) (-858)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-1198))) (-5 *1 (-1152))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1287))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1081 *5 *6 *7)) + (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) + (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 (-2 (|:| -4202 (-1189 *6)) (|:| -3139 (-574))))) + (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) + (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) + (-5 *1 (-798))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) + (-5 *7 (-699 (-574))) + (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1116)) + (-4 *2 (-132))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1203))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 (-447))))) - (-5 *1 (-1196))))) + (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-447))))) + (-5 *1 (-1197))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1228 *3)) - (-5 *1 (-800 *3)) (-4 *3 (-989)))) + (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1229 *3)) + (-5 *1 (-800 *3)) (-4 *3 (-990)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-112)) - (-5 *1 (-1228 *2)) (-4 *2 (-989))))) + (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-112)) + (-5 *1 (-1229 *2)) (-4 *2 (-990))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1053 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227))) - (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1050)) - (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559)))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) - (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) - (-4 *2 (-697 *3 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| -3078 *4) (|:| -2102 (-574))))) - (-4 *4 (-1115)) (-5 *2 (-1 *4)) (-5 *1 (-1032 *4))))) + (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-762))))) (((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1283 (-3 (-478) "undefined"))) (-5 *1 (-1284))))) -(((*1 *1) (-5 *1 (-569)))) + (-12 (-5 *3 (-574)) (|has| *1 (-6 -4450)) (-4 *1 (-414)) + (-5 *2 (-935))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-1284 *5))) (-5 *4 (-574)) (-5 *2 (-1284 *5)) + (-5 *1 (-1045 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-757))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1174)) (-4 *1 (-399))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) - (-4 *4 (-860)) (-5 *1 (-1203 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1283 *4)) (-4 *4 (-1064)) (-4 *2 (-1259 *4)) - (-5 *1 (-454 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-417 (-1188 (-324 *5)))) (-5 *3 (-1283 (-324 *5))) - (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1145 *5))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1174)) - (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) + (-5 *2 (-2 (|:| -3852 (-417 *6)) (|:| |coeff| (-417 *6)))) + (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-993 *3 *4 *5 *6))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-399))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1065)) (-4 *3 (-372)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) + (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1126))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1173 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-860)) + (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-803)) (-4 *2 (-273 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-1276 *4 *2)) - (-4 *4 (-38 (-417 (-574))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-935)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884)) + (-5 *2 (-1289)) (-5 *1 (-1285))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) - (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1172 (-965 *4)) (-1172 (-965 *4)))) - (-5 *1 (-1291 *4)) (-4 *4 (-372))))) + (-12 (-5 *2 (-1118 (-1118 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) +(((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1294))))) +(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4)))) + (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-338))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1193))) + (-4 *4 (-462)) (-5 *1 (-641 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3496 *3) (|:| |coef2| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-757))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *4 (-654 (-1192))) - (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1115)) (-4 *6 (-913 *5)) (-5 *2 (-699 *6)) - (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6)) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) - (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-1117 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1115)) (-5 *2 (-1117 (-654 *4))) (-5 *1 (-917 *4)) - (-5 *3 (-654 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1115)) (-5 *2 (-1117 (-1117 *4))) (-5 *1 (-917 *4)) - (-5 *3 (-1117 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1117 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1196))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-241 *3)))) - ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1115))))) + (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1116)) (-4 *2 (-1116)) + (-5 *1 (-621 *2 *4))))) (((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1284)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1285))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1226 *5 *6 *7 *8)) (-4 *5 (-566)) - (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-574)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1188 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1285)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1286))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) + (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-574)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4)) + (-4 *4 (-879 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-574)) (-4 *1 (-1246 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-1275 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1246 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1275 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-810)) - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-1050))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) + (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *2 (-1289)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) (((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-769))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3877 *7) (|:| |sol?| (-112))) - (-574) *7)) - (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1259 *7)) - (-5 *3 (-417 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-584 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-335 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-526 *3 *4)) - (-14 *4 (-574))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-574)) - (-5 *6 - (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388)))) - (-5 *7 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) - (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) - (-5 *1 (-798)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-574)) - (-5 *6 - (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388)))) - (-5 *7 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) - (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) - (-5 *1 (-798))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1218) (-1017)))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-1254 *4 *3)) - (-4 *3 (-1259 *4))))) -(((*1 *2 *3 *2) - (-12 +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-935)) (-5 *1 (-1117 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10)) + (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1087 *5 *6 *7 *8)) + (-4 *10 (-1125 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) + (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6))) + (-5 *1 (-638 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) + (-14 *6 (-654 (-1193))) (-5 *2 - (-654 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-803)) (-4 *3 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) - (-5 *1 (-459 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-1219 *3))) (-5 *1 (-1219 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-853 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377)) - (-4 *6 (-1064)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1044 *6)) - (-5 *3 (-654 (-699 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1064)) - (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1044 *4)) - (-5 *3 (-654 (-699 *4))))) + (-654 (-1162 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) + (-5 *1 (-638 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) + (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6))) + (-5 *1 (-1062 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064)) - (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) - (-5 *3 (-654 (-699 *5))))) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1087 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1227 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1234)) + (-4 *5 (-382 *4)) (-4 *3 (-382 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-372)) (-5 *1 (-1041 *3 *2)) (-4 *2 (-666 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-934)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064)) - (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) - (-5 *3 (-654 (-699 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493))))) -(((*1 *1 *1) (-4 *1 (-566)))) -(((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) - (-5 *2 (-423 *4 (-417 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *6)) (-4 *6 (-13 (-419 *4 *5) (-1053 *4))) - (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-4 *3 (-315)) - (-5 *1 (-423 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-566)) (-4 *8 (-962 *7 *5 *6)) - (-5 *2 (-2 (|:| -2017 (-781)) (|:| -1867 *9) (|:| |radicand| *9))) - (-5 *1 (-966 *5 *6 *7 *8 *9)) (-5 *4 (-781)) - (-4 *9 - (-13 (-372) - (-10 -8 (-15 -2950 ($ *8)) (-15 -2970 (*8 $)) (-15 -2981 (*8 $)))))))) + (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4094 *3) (|:| -4285 (-654 *5)))) + (-5 *1 (-1041 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-802)) (-4 *3 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)) - (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) - (-5 *2 (-699 *3))))) -(((*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1286)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1286))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4064 *9)))) - (-5 *4 (-781)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1288)) - (-5 *1 (-1084 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4064 *9)))) - (-5 *4 (-781)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1288)) - (-5 *1 (-1160 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) - (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) + (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7)) - (-4 *4 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233)) - (-4 *7 (-1233))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) - (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) + (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2010 (-654 *7)))) + (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) - ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2191 (-654 *1)))) - (-4 *1 (-376 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-463 *3 *4 *5 *6)) - (|:| -2191 (-654 (-463 *3 *4 *5 *6))))) - (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1159)))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-148) (-27) (-1053 (-574)) (-1053 (-417 (-574))))) - (-4 *5 (-1259 *4)) (-5 *2 (-1188 (-417 *5))) (-5 *1 (-625 *4 *5)) - (-5 *3 (-417 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) - (-4 *5 (-13 (-148) (-27) (-1053 (-574)) (-1053 (-417 (-574))))) - (-5 *2 (-1188 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1188 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315))))) + (-12 (-5 *3 (-1284 *5)) (-4 *5 (-13 (-1065) (-649 *4))) + (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1116))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-112)) (-5 *1 (-831))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) + (-4 *2 (-1275 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3)) + (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) + (-4 *2 (-1275 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148))) + (-5 *1 (-1169 *3))))) +(((*1 *1) (-5 *1 (-299)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) + (-5 *4 (-781)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1289)) + (-5 *1 (-1085 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) + (-5 *4 (-781)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1289)) + (-5 *1 (-1161 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1065)) + (-5 *2 (-1284 (-1284 *5))) (-5 *1 (-1045 *5)) (-5 *4 (-1284 *5))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1116))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) + (-14 *6 (-654 (-1193))) + (-5 *2 + (-654 (-1162 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) + (-5 *1 (-638 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1018) (-1219))) + (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1018) (-1219))) + (-5 *1 (-610 *4 *5 *2))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-935)) (-4 *5 (-566)) (-5 *2 (-699 *5)) + (-5 *1 (-970 *5 *3)) (-4 *3 (-666 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192))))) (((*1 *1) - (-12 (-4 *1 (-414)) (-2085 (|has| *1 (-6 -4449))) - (-2085 (|has| *1 (-6 -4441))))) - ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-860)))) + (-12 (-4 *1 (-414)) (-2084 (|has| *1 (-6 -4450))) + (-2084 (|has| *1 (-6 -4442))))) + ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-860)))) ((*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-860)))) ((*1 *1) (-4 *1 (-854))) ((*1 *1 *1 *1) (-4 *1 (-860)))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1260 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315)) + (-4 *10 (-963 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-654 (-1189 *10))) + (|:| |dterm| + (-654 (-654 (-2 (|:| -3407 (-781)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10)))) + (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1189 *10)) (-5 *4 (-654 *6)) + (-5 *5 (-654 *10))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-417 (-966 *4))) (-5 *3 (-1193)) + (-4 *4 (-13 (-566) (-1054 (-574)) (-148))) (-5 *1 (-580 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-501)) (-5 *4 (-968)) (-5 *2 (-701 (-543))) + (-5 *1 (-543)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-968)) (-4 *3 (-1116)) (-5 *2 (-701 *1)) + (-4 *1 (-777 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1189 *6)) (-1189 *6))) + (-4 *6 (-372)) + (-5 *2 + (-654 + (-2 (|:| |outval| *7) (|:| |outmult| (-574)) + (|:| |outvect| (-654 (-699 *7)))))) + (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858)))))) (((*1 *2 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)) - (-4 *2 (-462)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-1259 (-574))) (-5 *2 (-654 (-574))) - (-5 *1 (-496 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-462)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *3 (-462))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-872))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 (-417 *2))) - (-4 *2 (-1259 *4)) (-5 *1 (-350 *3 *4 *2 *5)) - (-4 *3 (-351 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1237)) - (-4 *4 (-1259 (-417 *2))) (-4 *2 (-1259 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1115)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5)) - (-4 *3 (-1115)) (-4 *5 (-676 *4))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1115)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1115)) (-5 *2 (-112)) - (-5 *1 (-1234 *3))))) + (-12 (-4 *4 (-1116)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5)) + (-4 *3 (-1116)) (-4 *5 (-676 *4))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1236))))) (((*1 *1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *3) - (-12 (-5 *3 (-1174)) (-5 *2 (-574)) (-5 *1 (-1215 *4)) - (-4 *4 (-1064))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1064))))) -(((*1 *1) (-5 *1 (-833)))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1064)) (-4 *3 (-860)) - (-4 *4 (-273 *3)) (-4 *5 (-803))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-992 *3 *4 *5 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-388)) (-5 *1 (-1078))))) + (-12 (-5 *3 (-1189 (-574))) (-5 *2 (-574)) (-5 *1 (-956))))) (((*1 *2 *3) - (-12 (-5 *3 (-965 *5)) (-4 *5 (-1064)) (-5 *2 (-491 *4 *5)) - (-5 *1 (-957 *4 *5)) (-14 *4 (-654 (-1192)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1064)) (-5 *2 (-654 *1)) (-4 *1 (-1149 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-654 (-781))) - (-5 *1 (-917 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1050)) - (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1197) (-781)))) (-5 *1 (-341))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-797)) (-5 *2 (-1050)) - (-5 *3 - (-2 (|:| |fn| (-324 (-227))) - (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-797)) (-5 *2 (-1050)) + (-12 (-5 *3 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) + (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) + (|:| |expense| (-388)) (|:| |accuracy| (-388)) + (|:| |intermediateResults| (-388)))) + (-5 *2 (-1051)) (-5 *1 (-313))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-142))))) (((*1 *1 *1) - (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4))))) + (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)) + (-4 *2 (-462)))) + ((*1 *1 *1) + (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-1260 *2)) + (-4 *4 (-1260 (-417 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-462)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *3 (-462)))) + ((*1 *1 *1) + (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-1260 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *1 *1 *1) (-4 *1 (-483))) + ((*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-894)))) + ((*1 *1 *1) (-5 *1 (-987))) + ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4202 *3) (|:| -3580 *4)))) + (-5 *1 (-706 *3)) (-4 *3 (-1260 *4))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-372)) (-4 *3 (-1064)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) - (-4 *1 (-862 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3877 *6) (|:| |sol?| (-112))) (-574) - *6)) - (-4 *6 (-372)) (-4 *7 (-1259 *6)) - (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) - (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1115)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1195)))) - ((*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-574))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-4 *1 (-1260 *4)) (-4 *4 (-1065)) + (-5 *2 (-1284 *4))))) (((*1 *2) - (-12 (-4 *1 (-358)) - (-5 *2 (-654 (-2 (|:| -4200 (-574)) (|:| -2017 (-574)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1259 (-417 *2))) - (-4 *2 (-1259 *5)) (-5 *1 (-217 *5 *2 *6 *3)) - (-4 *3 (-351 *5 *2 *6))))) -(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) - ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1188 *1)) (-5 *4 (-1192)) (-4 *1 (-27)) - (-5 *2 (-654 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1188 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *2 (-654 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1192))) - (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308))))) + (-12 + (-5 *2 + (-1284 (-654 (-2 (|:| -3079 (-924 *3)) (|:| -2591 (-1136)))))) + (-5 *1 (-360 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))) + ((*1 *2) + (-12 (-5 *2 (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136)))))) + (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1189 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136)))))) + (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-935))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574))))) +(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1284 *1)) (-4 *1 (-376 *3))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *2 (-1051)) (-5 *1 (-767))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6)) + (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1275 *5)) (-4 *6 (-1260 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1260 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1260 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781))) + (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1260 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-549 *4 *2 *5 *6)) + (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1242)))))) +(((*1 *1) (-4 *1 (-358)))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1106))))) +(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-622 *4)) (-5 *6 (-1193)) + (-4 *4 (-13 (-440 *7) (-27) (-1219))) + (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) + (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) + (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) - (-4 *3 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-4 *3 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) - (-4 *6 (-13 (-27) (-1218) (-440 *5))) - (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-4 *6 (-13 (-27) (-1219) (-440 *5))) + (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) + (-4 *3 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-574))) - (-4 *7 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-574))) + (-4 *7 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-574))) - (-4 *3 (-13 (-27) (-1218) (-440 *7))) - (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-574))) + (-4 *3 (-13 (-27) (-1219) (-440 *7))) + (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) - (-5 *5 (-1250 (-417 (-574)))) (-5 *6 (-417 (-574))) - (-4 *8 (-13 (-27) (-1218) (-440 *7))) - (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *5 (-1251 (-417 (-574)))) (-5 *6 (-417 (-574))) + (-4 *8 (-13 (-27) (-1219) (-440 *7))) + (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-417 (-574)))) - (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *8))) - (-4 *8 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-417 (-574)))) + (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *8))) + (-4 *8 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) - (-4 *3 (-1064)) (-5 *1 (-605 *3)))) + (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3)))) + (-4 *3 (-1065)) (-5 *1 (-605 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-606 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-606 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) - (-4 *3 (-1064)) (-4 *1 (-1243 *3)))) + (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3)))) + (-4 *3 (-1065)) (-4 *1 (-1244 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-781)) - (-5 *3 (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))) - (-4 *4 (-1064)) (-4 *1 (-1264 *4)))) + (-5 *3 (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))) + (-4 *4 (-1065)) (-4 *1 (-1265 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-4 *1 (-1274 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-4 *1 (-1275 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1172 (-2 (|:| |k| (-781)) (|:| |c| *3)))) - (-4 *3 (-1064)) (-4 *1 (-1274 *3))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1192))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-654 - (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 *2)) - (|:| |logand| (-1188 *2))))) - (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-372)) (-5 *1 (-596 *2))))) + (-12 (-5 *2 (-1173 (-2 (|:| |k| (-781)) (|:| |c| *3)))) + (-4 *3 (-1065)) (-4 *1 (-1275 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1193)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1) (-4 *1 (-1154))) ((*1 *1 *1 *1) (-4 *1 (-1154)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1288))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) - (-5 *2 (-1050)) (-5 *1 (-764))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1259 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1234 *2)) - (-4 *2 (-1115)))) + (-12 (-4 *4 (-13 (-372) (-858))) + (-5 *2 (-2 (|:| |start| *3) (|:| -3314 (-428 *3)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4)))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-860)) - (-5 *1 (-1234 *2))))) + (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) + (-4 *7 (-1008 *4)) (-4 *2 (-697 *7 *8 *9)) + (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) + (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) + (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) + (-4 *2 (-697 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1065)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1139 *2 *3 *4 *5)) (-4 *3 (-1065)) + (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1204 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2)) + (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2394 *4))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1218) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-148)) - (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-324 *5)) - (-5 *1 (-599 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) + (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-158))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-966 (-574))) (-5 *3 (-1193)) + (-5 *4 (-1110 (-417 (-574)))) (-5 *1 (-30))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-654 (-1257 *5 *4))) + (-5 *1 (-1130 *4 *5)) (-5 *3 (-1257 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1197))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) + (-4 *4 (-1065)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1065)))) + ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) + (-4 *4 (-1260 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) + (-4 *3 (-1260 *2)))) + ((*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1234)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-914 *4)) + (-4 *4 (-1116)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-781)) (-4 *1 (-914 *2)) (-4 *2 (-1116)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *1 (-914 *3)) (-4 *3 (-1116))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1065)) (-14 *3 (-654 (-1193))))) + ((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860))) + (-14 *3 (-654 (-1193)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) - (-14 *4 (-654 (-1192))))) + (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) + (-14 *4 (-654 (-1193))))) ((*1 *2 *1) - (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) - (-14 *4 (-654 (-1192))))) + (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) + (-14 *4 (-654 (-1193))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-282)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1188 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860)) - (-4 *8 (-962 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1064)) + (-12 (-5 *3 (-1189 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860)) + (-4 *8 (-963 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1065)) (-5 *2 (-654 (-781))) (-5 *1 (-329 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-934)))) + ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-935)))) ((*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-781)))) ((*1 *2 *1) (-12 (-4 *1 (-480 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) - (-4 *4 (-1259 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) + (-4 *4 (-1260 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) + (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) + (-12 (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) ((*1 *2 *1) - (-12 (-4 *1 (-988 *3 *2 *4)) (-4 *3 (-1064)) (-4 *4 (-860)) + (-12 (-4 *1 (-989 *3 *2 *4)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *2 (-802)))) ((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-781)))) + (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-781)))) ((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1274 *3)) + (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1275 *3)) (-5 *2 (-574)))) ((*1 *2 *1) - (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1243 *3)) + (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1244 *3)) (-5 *2 (-417 (-574))))) ((*1 *2 *1) - (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-934))))) + (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-935))))) ((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-781))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) - (-4 *4 (-1064)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1064)))) - ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) - (-4 *4 (-1259 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) - (-4 *3 (-1259 *2)))) - ((*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1233)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-913 *4)) - (-4 *4 (-1115)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-913 *2)) (-4 *2 (-1115)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *1 (-913 *3)) (-4 *3 (-1115)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1115))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) - (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-937 *4 *5 *6 *3)) - (-4 *3 (-962 *4 *6 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) - (-5 *1 (-929 *3 *4 *5 *2)) (-4 *2 (-962 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *6 *4 *5)) - (-5 *1 (-929 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-315))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-417 (-574)))) - (-5 *2 (-2 (|:| -2357 (-1172 *4)) (|:| -2367 (-1172 *4)))) - (-5 *1 (-1178 *4)) (-5 *3 (-1172 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *4)))) - (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-462)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *5 (-922)) (-5 *1 (-467 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-922))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-781))))) + (-12 (-4 *5 (-372)) (-4 *5 (-566)) + (-5 *2 + (-2 (|:| |minor| (-654 (-935))) (|:| -4094 *3) + (|:| |minors| (-654 (-654 (-935)))) (|:| |ops| (-654 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-935)) (-4 *3 (-666 *5))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) + (-4 *3 (-566)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) + (-4 *3 (-1116)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) + (-4 *3 (-1116)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1024 *3)) + (-4 *3 (-1054 *2))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1193)) (-5 *6 (-112)) + (-4 *7 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-4 *3 (-13 (-1219) (-973) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3))))) (((*1 *1) - (-12 (-4 *3 (-1115)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1115)) + (-12 (-4 *3 (-1116)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1116)) (-4 *4 (-676 *3)))) - ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-761))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1192)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1192)) (-5 *2 (-112)) (-5 *1 (-622 *4)) - (-4 *4 (-1115)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1115)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1115)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1115)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4)) - (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1115)) - (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))) - (-4 *3 (-13 (-1115) (-34)))))) -(((*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-839))))) + ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-622 *3)) (-5 *5 (-1189 *3)) + (-4 *3 (-13 (-440 *6) (-27) (-1219))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1189 *3))) + (-4 *3 (-13 (-440 *6) (-27) (-1219))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1284 *5)) (-4 *5 (-13 (-1065) (-649 *4))) + (-4 *4 (-566)) (-5 *2 (-1284 *4)) (-5 *1 (-648 *4 *5))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193))) (-4 *6 (-462)) + (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372)) + (-4 *5 (-13 (-372) (-858)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-832))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3))))) -(((*1 *2) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-105))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-382 *2)) (-4 *2 (-1233)) - (-4 *2 (-860)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4459)) - (-4 *1 (-382 *3)) (-4 *3 (-1233))))) + (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 (-957 *4))) (-4 *1 (-1150 *4)) (-4 *4 (-1065)) + (-5 *2 (-781))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) + (-14 *4 (-654 (-1193))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1234)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) + (-14 *4 (-654 (-1193))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-956 (-227))) (-5 *4 (-884)) (-5 *2 (-1288)) + (-12 (-5 *3 (-957 (-227))) (-5 *4 (-884)) (-5 *2 (-1289)) (-5 *1 (-478)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1064)) (-4 *1 (-995 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1065)) (-4 *1 (-996 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-956 *3)))) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-957 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-956 *3)) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) + (-12 (-5 *2 (-957 *3)) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) + (-12 (-5 *2 (-781)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) + (-12 (-5 *2 (-654 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-956 *3)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) + (-12 (-5 *2 (-957 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)) (-5 *3 (-227))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1174)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) - (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-1124 *5 *6 *7 *8)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-601 *5 *6 *7 *8 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) - (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) + (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)) (-5 *3 (-227))))) +(((*1 *2 *1) + (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) + (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-872))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-417 (-966 (-574))))) (-5 *4 (-654 (-1193))) + (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5)) + (-4 *5 (-13 (-858) (-372))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) - (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) - (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-566)) (-4 *2 (-962 *3 *5 *4)) - (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-965 *6))) (-4 *5 (-803)) - (-4 *4 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $)))))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-802))))) + (-12 (-5 *3 (-417 (-966 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-858) (-372)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-227)) (-5 *2 (-1051)) (-5 *1 (-762))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193)) + (-5 *2 + (-2 (|:| |zeros| (-1173 (-227))) (|:| |ones| (-1173 (-227))) + (|:| |singularities| (-1173 (-227))))) + (-5 *1 (-105))))) (((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 *2) (-4 *5 (-174)))) ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-934)) (-5 *1 (-166 *3 *4)) + (-12 (-4 *4 (-174)) (-5 *2 (-935)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-934)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-935)))) ((*1 *2) - (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) - (-5 *2 (-934)))) + (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) + (-5 *2 (-935)))) ((*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-372)) + (-12 (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-677 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-781)) + (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-781)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) ((*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) - (-5 *2 (-699 *3))))) -(((*1 *2 *3) - (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) - (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1116)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6))) + (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1116)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4)) + (-4 *3 (-1054 (-1193))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1116)) (-5 *2 (-654 (-302 (-966 *3)))) + (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1065)) + (-2084 (-4 *3 (-1054 (-1193)))) (-4 *3 (-897 *5)) + (-4 *4 (-624 (-903 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1116)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4)) + (-2084 (-4 *3 (-1054 (-1193)))) (-2084 (-4 *3 (-1065))) + (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))) +(((*1 *1) (-4 *1 (-358))) ((*1 *2 *3) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-372)) (-4 *3 (-1064)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) - (-4 *1 (-862 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) - (-4 *3 (-167 *6)) (-4 (-965 *6) (-897 *5)) - (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4)) - (-4 *4 (-1115)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) - (-4 *6 (-13 (-1115) (-1053 *3))) (-4 *3 (-897 *5)) - (-5 *1 (-944 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) - (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1053 (-622 $)))) - (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5))) - (-5 *1 (-945 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555)) - (-5 *1 (-946 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1115)) - (-4 *6 (-13 (-1115) (-1053 (-622 $)) (-624 *4) (-897 *5))) - (-5 *4 (-903 *5)) (-5 *1 (-947 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) - (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-948 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3))) - (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6)) - (-4 *6 (-1115)) (-4 *3 (-13 (-962 *9 *7 *8) (-624 *4))) - (-4 *7 (-803)) (-4 *9 (-13 (-1064) (-897 *6))) - (-5 *1 (-949 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) - (-4 *3 (-13 (-962 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5)) - (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *8 (-13 (-1064) (-897 *5))) (-5 *1 (-949 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) (-4 *3 (-1007 *6)) - (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5)) - (-5 *1 (-952 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 (-1192))) (-5 *3 (-1192)) (-5 *4 (-903 *5)) - (-4 *5 (-1115)) (-5 *1 (-953 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9))) - (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1115)) - (-4 *9 (-13 (-1064) (-624 (-903 *7)) (-1053 *8))) - (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1064)) - (-5 *1 (-954 *7 *8 *9))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-934)) (-5 *1 (-452 *2)) - (-4 *2 (-1259 (-574))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-934)) (-5 *4 (-781)) (-5 *1 (-452 *2)) - (-4 *2 (-1259 (-574))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2)) - (-4 *2 (-1259 (-574))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) - (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) - (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) + (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1189 *5))) + (|:| |prim| (-1189 *5)))) + (-5 *1 (-442 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-566) (-148))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1189 *3)) + (|:| |pol2| (-1189 *3)) (|:| |prim| (-1189 *3)))) + (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-966 *5)) (-5 *4 (-1193)) (-4 *5 (-13 (-372) (-148))) + (-5 *2 + (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) + (|:| |prim| (-1189 *5)))) + (-5 *1 (-974 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-428 *2)) (-4 *2 (-1259 *5)) - (-5 *1 (-454 *5 *2)) (-4 *5 (-1064))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) + (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193))) + (-4 *5 (-13 (-372) (-148))) + (-5 *2 + (-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 *5))) + (|:| |prim| (-1189 *5)))) + (-5 *1 (-974 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193))) (-5 *5 (-1193)) + (-4 *6 (-13 (-372) (-148))) + (-5 *2 + (-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 *6))) + (|:| |prim| (-1189 *6)))) + (-5 *1 (-974 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-52)) (-5 *1 (-903 *4)) - (-4 *4 (-1115))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-654 (-227))) (-5 *1 (-206))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *2 (-1125 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) + (-4 *3 (-13 (-1116) (-34)))))) +(((*1 *1) (-5 *1 (-588)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1234)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234)) + (-14 *4 (-574))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1284 *4)) + (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) + (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) + (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-935)))) + ((*1 *2 *3) + (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372))) + (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-4 *7 (-351 *4 *5 *6)) + (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-935))))) + ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) + ((*1 *2 *1) + (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) + (-4 *4 (-1260 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1065)) + (-4 *3 (-860)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1065)) (-4 *3 (-860)) + (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) + (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) + (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1054 (-574)))) + (-5 *2 (-781)) (-5 *1 (-925 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) + (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4))) + (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781)) + (-5 *1 (-926 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372)) + (-4 *7 (-1260 *6)) (-4 *4 (-1260 (-417 *7))) (-4 *8 (-351 *6 *7 *4)) + (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781)) + (-5 *1 (-1034 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-4 *3 (-566)) + (-5 *2 (-781)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3852 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-372)) (-4 *7 (-1260 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) + (-2 (|:| -3852 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) + (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6)) - (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) + (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) + (-4 *3 (-963 *7 *5 *6)) + (-5 *2 + (-2 (|:| -3139 (-781)) (|:| -1866 *3) (|:| |radicand| (-654 *3)))) + (-5 *1 (-967 *5 *6 *7 *3 *8)) (-5 *4 (-781)) + (-4 *8 + (-13 (-372) + (-10 -8 (-15 -2951 ($ *3)) (-15 -2971 (*3 $)) (-15 -2981 (*3 $)))))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *3) + (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4)))) + (-5 *1 (-1204 *4)) (-5 *3 (-654 (-654 *4)))))) +(((*1 *2) (-12 (-5 *2 (-1163 (-1175))) (-5 *1 (-401))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1275 *4)) + (-4 *4 (-38 (-417 (-574)))) + (-5 *2 (-1 (-1173 *4) (-654 (-1173 *4)))) (-5 *1 (-1277 *4 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 *3)) + (-4 *3 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-578 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -4301 (-781)))) - (-5 *1 (-792 *3)) (-4 *3 (-1064)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4301 (-781)))) - (-4 *1 (-1080 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1115)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1174)) (-5 *1 (-1214))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064))))) -(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-1064)))) - ((*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566))))) + (-5 *1 (-567 *6 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1175)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1116))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-1284 (-699 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-699 *4)) (-4 *5 (-666 *4))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1109 *3)) (-4 *3 (-962 *7 *6 *4)) (-4 *6 (-803)) + (-12 (-5 *5 (-1110 *3)) (-4 *3 (-963 *7 *6 *4)) (-4 *6 (-803)) (-4 *4 (-860)) (-4 *7 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *6 *4 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) - (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-962 *6 *5 *4)))) + (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-963 *6 *5 *4)))) ((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1) (-5 *1 (-872))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1218))))) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-1185 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1219))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1107 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1218))) - (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-1184 *4 *2)))) + (-12 (-5 *3 (-1108 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1219))) + (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-1185 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)))) - (-5 *2 (-417 (-965 *5))) (-5 *1 (-1185 *5)) (-5 *3 (-965 *5)))) + (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)))) + (-5 *2 (-417 (-966 *5))) (-5 *1 (-1186 *5)) (-5 *3 (-966 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)))) - (-5 *2 (-3 (-417 (-965 *5)) (-324 *5))) (-5 *1 (-1185 *5)) - (-5 *3 (-417 (-965 *5))))) + (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)))) + (-5 *2 (-3 (-417 (-966 *5)) (-324 *5))) (-5 *1 (-1186 *5)) + (-5 *3 (-417 (-966 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1107 (-965 *5))) (-5 *3 (-965 *5)) - (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-417 *3)) - (-5 *1 (-1185 *5)))) + (-12 (-5 *4 (-1108 (-966 *5))) (-5 *3 (-966 *5)) + (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-417 *3)) + (-5 *1 (-1186 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1107 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) - (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-3 *3 (-324 *5))) - (-5 *1 (-1185 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1115)) - (-4 *3 (-1115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1188 (-574))) (-5 *2 (-574)) (-5 *1 (-955))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-831))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) - (-5 *1 (-758))))) -(((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) - (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) + (-12 (-5 *4 (-1108 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5))) + (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-3 *3 (-324 *5))) + (-5 *1 (-1186 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) (((*1 *2 *3) - (-12 (-5 *3 (-1174)) - (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-112)) - (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1218) (-29 *4)))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-308)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-313))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1211 *4 *5)) + (-4 *4 (-1116)) (-4 *5 (-1116))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-428 *5)) (-4 *5 (-566)) + (-5 *2 + (-2 (|:| -3139 (-781)) (|:| -1866 *5) (|:| |radicand| (-654 *5)))) + (-5 *1 (-328 *5)) (-5 *4 (-781)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-574))))) +(((*1 *2) + (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) + (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112))))) (((*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-574)))) @@ -4840,1808 +4790,2299 @@ ((*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-417 (-574))) (-5 *1 (-882 *4 *5)) (-5 *3 (-574)) (-4 *5 (-879 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-417 (-574))))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1028)) (-5 *2 (-417 (-574))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1083 *2 *3)) (-4 *2 (-13 (-858) (-372))) - (-4 *3 (-1259 *2)))) + (-12 (-4 *1 (-1084 *2 *3)) (-4 *2 (-13 (-858) (-372))) + (-4 *3 (-1260 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1261 *2 *3)) (-4 *3 (-802)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2950 (*2 (-1192)))) - (-4 *2 (-1064))))) -(((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1155 *3 *2)) (-4 *3 (-13 (-1115) (-34))) - (-4 *2 (-13 (-1115) (-34)))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1127)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1127)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) - (-4 *3 (-1259 *4)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1262 *2 *3)) (-4 *3 (-802)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2951 (*2 (-1193)))) + (-4 *2 (-1065))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1193))))) + (-5 *6 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1120)) + (-5 *1 (-407)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1193))))) + (-5 *6 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1120)) + (-5 *1 (-407)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-654 (-1193))) (-5 *5 (-1196)) (-5 *3 (-1193)) + (-5 *2 (-1120)) (-5 *1 (-407))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-872))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1172 *4))) (-4 *4 (-372)) - (-4 *4 (-1064)) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-754 *3)) (-4 *3 (-174))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) - (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1030 *4 *5)) (-5 *3 (-417 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) - (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) - (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-417 (-574))) - (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) - (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) - (-5 *1 (-154))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1218) (-29 *6))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-226 *6 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1053 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) - (-5 *2 (-1050)) (-5 *1 (-757))))) -(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) - ((*1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177))))) + (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 (-417 (-966 *6)))) + (-5 *3 (-417 (-966 *6))) + (-4 *6 (-13 (-566) (-1054 (-574)) (-148))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-580 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1188 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) - (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) - (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) + (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1289)) (-5 *1 (-841))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-1064)) (-4 *3 (-1259 *4)) (-4 *2 (-1274 *4)) - (-5 *1 (-1277 *4 *3 *5 *2)) (-4 *5 (-666 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) + (-12 (-5 *3 (-1193)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6)) + (-4 *4 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-1173 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1193))) + (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *4 (-654 (-1193))) + (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-987))))) (((*1 *2 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) + (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7)) + (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *7))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-516)) (-5 *3 (-654 (-979))) (-5 *1 (-299))))) +(((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *1) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-966 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) - (-4 *7 (-1007 *4)) (-4 *2 (-697 *7 *8 *9)) - (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) - (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)) (-4 *2 (-315)))) + (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) + ((*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-1028)) (-5 *2 (-654 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1189 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1189 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1189 *1)) (-4 *1 (-1028)) (-5 *2 (-654 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-654 *1)) + (-4 *1 (-1084 *4 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) + (-4 *2 (-174))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-417 (-1189 (-324 *3)))) (-4 *3 (-566)) + (-5 *1 (-1146 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5))) + (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574))))) + (-14 *6 (-935))))) +(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1227 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *3 (-860)) (-4 *6 (-1081 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-607)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-985 *4 *3)) + (-4 *3 (-1260 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-587)))) + ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-299)) (-5 *1 (-169))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) + (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-761))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-963 *4 *3 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) + (-5 *1 (-1004 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) - (-4 *2 (-697 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4 *5 *6)) (-4 *4 (-1064)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315))))) + (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) + (-5 *1 (-1123 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *2 (-1051)) (-5 *1 (-767))))) +(((*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) - (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-299)) (-5 *1 (-169))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) - (-4 *5 (-1259 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1031 *4 *5)) - (-5 *3 (-417 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *3 (-174)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-174))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574))))) -(((*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1243 *4)) (-4 *4 (-1064)) (-4 *4 (-566)) - (-5 *2 (-417 (-965 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1243 *4)) (-4 *4 (-1064)) (-4 *4 (-566)) - (-5 *2 (-417 (-965 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *4)))) - (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-483))) ((*1 *1 *1 *1) (-4 *1 (-771)))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) + (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214))))) (((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1050)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1062))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |contp| (-574)) - (|:| -4279 (-654 (-2 (|:| |irr| *3) (|:| -2265 (-574))))))) - (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-654 + (-654 + (-3 (|:| -2039 (-1193)) + (|:| -3602 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574)))))))))) + (-5 *1 (-1197))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |contp| (-574)) - (|:| -4279 (-654 (-2 (|:| |irr| *3) (|:| -2265 (-574))))))) - (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574)))))) + (-654 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-574))))) + (-5 *1 (-428 *3)) (-4 *3 (-566)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1260 *3)) + (-5 *2 (-654 (-1189 *3))) (-5 *1 (-508 *3 *5 *6)) + (-4 *6 (-1260 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4116 *4))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1284 *4)) (-4 *4 (-1065)) (-4 *2 (-1260 *4)) + (-5 *1 (-454 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-417 (-1189 (-324 *5)))) (-5 *3 (-1284 (-324 *5))) + (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1146 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-654 *3))))) -(((*1 *2) - (-12 (-14 *4 (-781)) (-4 *5 (-1233)) (-5 *2 (-135)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) - (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1064)) (-5 *2 (-934)))) - ((*1 *2) (-12 (-4 *1 (-1290 *3)) (-4 *3 (-372)) (-5 *2 (-135))))) + (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-654 *3))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) + (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-762))))) +(((*1 *2 *1) + (-12 (-5 *2 (-872)) (-5 *1 (-1173 *3)) (-4 *3 (-1116)) + (-4 *3 (-1234))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) + (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4094 (-654 *9)) (|:| -4068 *4) (|:| |ineq| (-654 *9)))) + (-5 *1 (-1004 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) + (-4 *4 (-1087 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) + (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4094 (-654 *9)) (|:| -4068 *4) (|:| |ineq| (-654 *9)))) + (-5 *1 (-1123 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) + (-4 *4 (-1087 *6 *7 *8 *9))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1065)) + (-5 *1 (-700 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4)) - (-4 *4 (-13 (-372) (-858)))))) -(((*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1064))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1115)) (-4 *2 (-913 *4)) (-5 *1 (-702 *4 *2 *5 *3)) - (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4458))))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-446))))) + (-12 (-4 *5 (-372)) (-4 *7 (-1260 *5)) (-4 *4 (-734 *5 *7)) + (-5 *2 (-2 (|:| -3082 (-699 *6)) (|:| |vec| (-1284 *5)))) + (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -1374 *5)))) + (-4 *5 (-1260 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5)) + (-5 *1 (-218 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-2 (|:| -4202 *5) (|:| -3580 (-574))))) + (-5 *4 (-574)) (-4 *5 (-1260 *4)) (-5 *2 (-654 *5)) + (-5 *1 (-706 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) - (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1064)) (-4 *1 (-1259 *3))))) + (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-781))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) + ((*1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3319 *4))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) + ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286))))) +(((*1 *1) (-5 *1 (-1079)))) +(((*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) + (-5 *2 (-1051)) (-5 *1 (-765)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398)) + (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-372)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3))) + (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1260 *2)) + (-4 *5 (-1260 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6)) + (-4 *6 (-351 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-372)) (-4 *3 (-1260 *2)) (-4 *4 (-1260 (-417 *3))) + (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) + (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372)) + (-4 *1 (-344 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1234)) + (-4 *5 (-1234)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781)) + (-4 *7 (-1234)) (-4 *5 (-1234)) (-5 *2 (-246 *6 *5)) + (-5 *1 (-245 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1234)) (-4 *5 (-1234)) + (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1116)) (-4 *5 (-1116)) + (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1234)) + (-4 *5 (-1234)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-972 *6)) (-4 *6 (-1234)) + (-4 *5 (-1234)) (-5 *2 (-972 *5)) (-5 *1 (-971 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1173 *6)) (-4 *6 (-1234)) + (-4 *3 (-1234)) (-5 *2 (-1173 *3)) (-5 *1 (-1171 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1284 *6)) (-4 *6 (-1234)) + (-4 *5 (-1234)) (-5 *2 (-1284 *5)) (-5 *1 (-1283 *6 *5))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-574)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-803)) (-4 *4 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) + (-5 *1 (-459 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574)) - (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) - ((*1 *1 *1) (-4 *1 (-1075)))) + (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) + (-5 *2 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) + (-5 *1 (-355 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860)) + (-4 *5 (-803)) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4))))) +(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) + ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-417 (-574)))) - (-5 *2 (-2 (|:| -2237 (-1172 *4)) (|:| -2248 (-1172 *4)))) - (-5 *1 (-1178 *4)) (-5 *3 (-1172 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1064)) - (-5 *2 (-1283 (-1283 *5))) (-5 *1 (-1044 *5)) (-5 *4 (-1283 *5))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-584 *5 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *1)) (-5 *4 (-1283 *1)) (-4 *1 (-649 *5)) - (-4 *5 (-1064)) - (-5 *2 (-2 (|:| -4047 (-699 *5)) (|:| |vec| (-1283 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1064)) - (-5 *2 (-699 *4)))) + (-12 (-4 *3 (-1260 (-417 (-574)))) + (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))) + (-5 *1 (-927 *3 *4)) (-4 *4 (-1260 (-417 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1064)) - (-5 *2 (-699 *4))))) + (-12 (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *3)) + (-4 *3 (-1260 (-417 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1110 (-853 (-227)))) (-5 *1 (-313))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1110 (-853 (-388)))) (-5 *2 (-1110 (-853 (-227)))) + (-5 *1 (-313))))) (((*1 *2 *2) - (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4064 *7)))) - (-4 *6 (-1080 *3 *4 *5)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1003 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4068 *7)))) + (-4 *6 (-1081 *3 *4 *5)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1004 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4064 *7)))) - (-4 *6 (-1080 *3 *4 *5)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1122 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-971 (-1188 *4))) (-5 *1 (-366 *4)) - (-5 *3 (-1188 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1192)) - (-5 *2 - (-2 (|:| |zeros| (-1172 (-227))) (|:| |ones| (-1172 (-227))) - (|:| |singularities| (-1172 (-227))))) - (-5 *1 (-105))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-765))))) + (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4068 *7)))) + (-4 *6 (-1081 *3 *4 *5)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1123 *3 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-596 *3)) (-4 *3 (-372))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3)) + (-4 *3 (-1116))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4)) + (-4 *4 (-1234)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574))))) +(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341))))) (((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) - (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-962 *6 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) + (-12 (-5 *3 (-1118 *4)) (-4 *4 (-1116)) (-5 *2 (-1 *4)) + (-5 *1 (-1033 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388)))) ((*1 *2 *3) - (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574))))) + (-12 (-5 *3 (-1110 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1063))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-574)) (-5 *5 (-1175)) (-5 *6 (-699 (-227))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-1148 *4 *2)) + (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4459) (-6 -4460)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-860)) (-4 *3 (-1234)) (-5 *1 (-1148 *3 *2)) + (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4459) (-6 -4460))))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1189 *1)) (-5 *4 (-1193)) (-4 *1 (-27)) + (-5 *2 (-654 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1189 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *2 (-654 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1193))) + (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308))))) +(((*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1196))))) +(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832))))) +(((*1 *2 *1) + (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) + (-14 *4 (-781)) (-4 *5 (-174))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065)) + (-5 *1 (-1177 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) + (-14 *4 (-1193)) (-14 *5 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) + (-15 -2981 ((-1141 *3 (-622 $)) $)) + (-15 -2951 ($ (-1141 *3 (-622 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) + (-15 -2981 ((-1141 *3 (-622 $)) $)) + (-15 -2951 ($ (-1141 *3 (-622 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *2)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2971 ((-1141 *4 (-622 $)) $)) + (-15 -2981 ((-1141 *4 (-622 $)) $)) + (-15 -2951 ($ (-1141 *4 (-622 $))))))) + (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-654 (-622 *2))) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2971 ((-1141 *4 (-622 $)) $)) + (-15 -2981 ((-1141 *4 (-622 $)) $)) + (-15 -2951 ($ (-1141 *4 (-622 $))))))) + (-4 *4 (-566)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-781)) + (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) + (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-959 *4 *3)) + (-4 *3 (-1260 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) +(((*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1116))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-654 (-324 (-227)))) - (|:| |constraints| - (-654 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-781)) (|:| |boundaryType| (-574)) - (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) - (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) - (|:| |tol| (-227)))) - (-5 *2 (-112)) (-5 *1 (-212))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856))))) + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112)) + (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) (((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) + (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1116)) + (-4 *2 (-860))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-158)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1116)) (-5 *1 (-981 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-417 (-574)))) - (-5 *2 - (-654 - (-2 (|:| |outval| *4) (|:| |outmult| (-574)) - (|:| |outvect| (-654 (-699 *4)))))) - (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858)))))) -(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-103 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860)) - (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-934)))) - ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) - ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566))))) -(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-546))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1284)))) - ((*1 *1 *1) (-5 *1 (-1284)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1080 *4 *5 *6)) - (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-992 *4 *5 *6 *7))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-934))) (-5 *4 (-112)) - (-5 *1 (-1125))))) + (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) + (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-358))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-923))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-315)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1115)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4415 (-781)) (|:| -1484 (-781)))) - (-5 *1 (-781)))) + (-12 (-4 *3 (-372)) (-4 *3 (-1065)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) + (-4 *1 (-862 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065)) + (-4 *2 (-1275 *3))))) +(((*1 *1) (-5 *1 (-1286)))) +(((*1 *1 *2) + (-12 (-5 *2 (-699 *4)) (-4 *4 (-1065)) (-5 *1 (-1158 *3 *4)) + (-14 *3 (-781))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-833)) (-5 *1 (-832))))) +(((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1174)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) - (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1188 *9))) - (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781))) - (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-962 *9 *10 *11)) - (-4 *10 (-803)) (-5 *2 (-654 (-1188 *12))) - (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1188 *12))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1274 *4)) - (-4 *4 (-38 (-417 (-574)))) - (-5 *2 (-1 (-1172 *4) (-654 (-1172 *4)))) (-5 *1 (-1276 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-1211))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1017) (-1218))) - (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1017) (-1218)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-699 (-965 *4))) (-5 *1 (-1043 *4)) - (-4 *4 (-1064))))) -(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) + (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))) + ((*1 *1 *1 *1) (-4 *1 (-1155)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1193)) (-4 *5 (-440 *4)) + (-4 *4 (-1116)) (-5 *1 (-583 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-372)) (-4 *3 (-1065)) + (-5 *1 (-1177 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) ((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) - (-4 *4 (-358))))) + (-12 (-5 *2 (-2 (|:| -2644 *3) (|:| -3139 (-781)))) (-5 *1 (-597 *3)) + (-4 *3 (-555))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-833)) (-5 *1 (-832))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574))))) + (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) + (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) + (-5 *2 (-853 *4)) (-5 *1 (-1270 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193)) + (-14 *6 *4)))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-4 *1 (-917 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) + (-4 *3 (-1260 *4)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-935)) (-5 *1 (-1048 *2)) + (-4 *2 (-13 (-1116) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-654 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) + (-4 *3 (-566))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) - (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *5)) - (-4 *5 (-1259 (-417 *4)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527))))) -(((*1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1286)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1286))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) (-4 *4 (-462)) (-4 *4 (-1115)) - (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) - (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) - (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) - (-5 *2 (-1050)) (-5 *1 (-757))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) - (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234)) (-4 *2 (-860)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1234)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4)) + (-14 *3 (-935)) (-4 *4 (-1065)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1260 (-171 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1260 (-171 *2)))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1181 3 *3)) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) + ((*1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065))))) +(((*1 *2 *1) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 - (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) + (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-308)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) + (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) + (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) + (-5 *4 (-324 (-388))) (-5 *1 (-338)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) + (-5 *4 (-324 (-574))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-171 (-388))))) + (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-388)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-574)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-171 (-388))))) + (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-388))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-574))) (-5 *1 (-338)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) + (-5 *4 (-324 (-704))) (-5 *1 (-338)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) + (-5 *4 (-324 (-709))) (-5 *1 (-338)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) + (-5 *4 (-324 (-711))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-704)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-709)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-711)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-704))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-709))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-711))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-704))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-709))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-711))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-704))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-709))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-711))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1175)) (-5 *1 (-338)))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-1260 (-417 *3))) (-5 *2 (-935)) + (-5 *1 (-927 *4 *5)) (-4 *5 (-1260 (-417 *4)))))) +(((*1 *1 *1 *1) (-4 *1 (-555)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1116))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) + (-12 (-4 *4 (-803)) + (-4 *5 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *6 (-566)) + (-5 *2 (-2 (|:| -1968 (-966 *6)) (|:| -4378 (-966 *6)))) + (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-963 (-417 (-966 *6)) *4 *5))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) + (-4 *3 (-13 (-440 *6) (-27) (-1219))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1116))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-963 *3 *5 *4)) + (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1193)))) + (-4 *5 (-803)) (-5 *1 (-938 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-935)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-935)) + (-5 *1 (-538 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1167))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-315)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1192)) - (-4 *5 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 (-2 (|:| -3766 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) - (-14 *5 (-654 (-1192))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) - (-4 *6 (-462)))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1260 *5)) + (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1054 (-574)))) + (-4 *7 (-1260 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2)) + (-4 *2 (-351 *5 *6 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-919 *3))) (-4 *3 (-1116)) (-5 *1 (-918 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-781)) + (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574)))))) + (-5 *1 (-252 *3))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-372)) (-4 *3 (-1065)) + (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-862 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1065)) + (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-863 *5 *3)) + (-4 *3 (-862 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-1189 *4)) + (-5 *1 (-538 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1287)))) + ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1287))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) + (-5 *2 (-1051)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-966 (-574)))) (-5 *1 (-447)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) - (-14 *5 (-654 (-1192))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) - (-4 *6 (-462))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-781))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-372)) (-5 *1 (-1040 *3 *2)) (-4 *2 (-666 *3)))) + (-12 (-5 *3 (-1193)) (-5 *4 (-699 (-227))) (-5 *2 (-1120)) + (-5 *1 (-769)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4095 *3) (|:| -4284 (-654 *5)))) - (-5 *1 (-1040 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5))))) + (-12 (-5 *3 (-1193)) (-5 *4 (-699 (-574))) (-5 *2 (-1120)) + (-5 *1 (-769))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-574)) (-5 *1 (-1173 *3)) (-4 *3 (-1234)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1308 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-829 *3)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1065)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) - ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1115)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5)) - (-4 *3 (-1115)) (-4 *5 (-676 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-979 *4)) (-4 *4 (-1115)) (-5 *2 (-1117 *4)) - (-5 *1 (-980 *4))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1188 *3)) - (-4 *3 (-13 (-440 *6) (-27) (-1218))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-2 (|:| -3766 *3) (|:| |coeff| *3))) - (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1188 *3))) - (-4 *3 (-13 (-440 *6) (-27) (-1218))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-2 (|:| -3766 *3) (|:| |coeff| *3))) - (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) - (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459))))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-803)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) - (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) + (-5 *2 + (-2 (|:| -1866 *3) (|:| |gap| (-781)) (|:| -3901 (-792 *3)) + (|:| -1880 (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-1065)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) + (-5 *2 + (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3901 *1) + (|:| -1880 *1))) + (-4 *1 (-1081 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 + (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3901 *1) + (|:| -1880 *1))) + (-4 *1 (-1081 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-959 *4 *3)) + (-4 *3 (-1260 *4))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1051)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) + (-12 (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-372)) + (-5 *2 (-112)) (-5 *1 (-677 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-112)) + (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1054 (-48))) + (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) + (-5 *2 (-428 (-1189 (-48)))) (-5 *1 (-445 *4 *5 *3)) + (-4 *3 (-1260 *5))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234))))) (((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *1 *1) (-4 *1 (-1076)))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-534))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-699 (-324 (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) + (-5 *1 (-207))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-103 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1192)) (-4 *4 (-1064)) (-4 *4 (-1115)) - (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2017 (-574)))) - (-4 *1 (-440 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1064)) (-4 *4 (-1115)) - (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2017 (-574)))) - (-4 *1 (-440 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1127)) (-4 *3 (-1115)) - (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2017 (-574)))) - (-4 *1 (-440 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2017 (-781)))) - (-5 *1 (-903 *3)) (-4 *3 (-1115)))) + (-12 (-5 *3 (-957 *5)) (-4 *5 (-1065)) (-5 *2 (-781)) + (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1181 *4 *5)) + (-14 *4 (-935)) (-4 *5 (-1065)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-957 *5)) (-4 *5 (-1065)) + (-5 *1 (-1181 *4 *5)) (-14 *4 (-935))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-574)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -2017 (-781)))))) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) + (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) + (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) + (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-407))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1155)))) +(((*1 *1 *2) + (-12 (-5 *2 (-699 *5)) (-4 *5 (-1065)) (-5 *1 (-1070 *3 *4 *5)) + (-14 *3 (-781)) (-14 *4 (-781))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-5 *2 (-2 (|:| -3667 *3) (|:| -1916 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1108 (-853 *3))) (-4 *3 (-13 (-1219) (-973) (-29 *5))) + (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1108 (-853 *3))) (-5 *5 (-1175)) + (-4 *3 (-13 (-1219) (-973) (-29 *6))) + (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1108 (-853 (-324 *5)))) + (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-417 (-966 *6))) (-5 *4 (-1108 (-853 (-324 *6)))) + (-5 *5 (-1175)) + (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1108 (-853 (-417 (-966 *5))))) (-5 *3 (-417 (-966 *5))) + (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1108 (-853 (-417 (-966 *6))))) (-5 *5 (-1175)) + (-5 *3 (-417 (-966 *6))) + (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3)) + (-4 *3 (-13 (-1219) (-973) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) + (-5 *5 (-388)) (-5 *6 (-1079)) (-5 *2 (-1051)) (-5 *1 (-575)))) + ((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1051)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) + (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) + (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) + (-5 *2 (-1051)) (-5 *1 (-575)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) + (-5 *2 (-1051)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) + (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) + (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) + (-5 *5 (-388)) (-5 *6 (-1079)) (-5 *2 (-1051)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1108 (-853 (-388)))) + (-5 *5 (-1175)) (-5 *2 (-1051)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1108 (-853 (-388)))) + (-5 *5 (-1193)) (-5 *2 (-1051)) (-5 *1 (-575)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) - (-4 *7 (-962 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -2017 (-574)))) - (-5 *1 (-963 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) - (-15 -2981 (*7 $)))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4)) + (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-148)) + (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) - (-14 *4 *2)))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1188 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1115)))) - ((*1 *1 *1) (-5 *1 (-642)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-1080 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) - (-4 *5 (-13 (-440 *4) (-1017) (-1218))) - (-4 *3 (-13 (-440 (-171 *4)) (-1017) (-1218)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) -(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) - (-5 *2 (-1050)) (-5 *1 (-758))))) -(((*1 *2) - (-12 (-4 *1 (-358)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220)))) - ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686)))) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-860)) + (-4 *3 (-38 (-417 (-574)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1193)) (-5 *1 (-966 *3)) (-4 *3 (-38 (-417 (-574)))) + (-4 *3 (-1065)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-4 *2 (-860)) + (-5 *1 (-1142 *3 *2 *4)) (-4 *4 (-963 *3 (-541 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) + (-5 *1 (-1177 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1190 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *1 (-1228 *3)) (-4 *3 (-38 (-417 (-574)))) + (-4 *3 (-1065)))) + ((*1 *1 *1 *2) + (-2833 + (-12 (-5 *2 (-1193)) (-4 *1 (-1244 *3)) (-4 *3 (-1065)) + (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219)) + (-4 *3 (-38 (-417 (-574)))))) + (-12 (-5 *2 (-1193)) (-4 *1 (-1244 *3)) (-4 *3 (-1065)) + (-12 (|has| *3 (-15 -4350 ((-654 *2) *3))) + (|has| *3 (-15 -3342 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *2 (-654 *3)) (-5 *1 (-992 *4 *5 *6 *3)) - (-4 *3 (-1080 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1284))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2))))) + (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574)))))) + ((*1 *1 *1 *2) + (-2833 + (-12 (-5 *2 (-1193)) (-4 *1 (-1265 *3)) (-4 *3 (-1065)) + (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219)) + (-4 *3 (-38 (-417 (-574)))))) + (-12 (-5 *2 (-1193)) (-4 *1 (-1265 *3)) (-4 *3 (-1065)) + (-12 (|has| *3 (-15 -4350 ((-654 *2) *3))) + (|has| *3 (-15 -3342 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1269 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2833 + (-12 (-5 *2 (-1193)) (-4 *1 (-1275 *3)) (-4 *3 (-1065)) + (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219)) + (-4 *3 (-38 (-417 (-574)))))) + (-12 (-5 *2 (-1193)) (-4 *1 (-1275 *3)) (-4 *3 (-1065)) + (-12 (|has| *3 (-15 -4350 ((-654 *2) *3))) + (|has| *3 (-15 -3342 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-4 *2 (-1260 *3)) (-5 *1 (-409 *3 *2)) + (-4 *3 (-13 (-372) (-148)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) + (-4 *3 (-1116))))) +(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-299))) + ((*1 *1) (-5 *1 (-872))) + ((*1 *1) + (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) + (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1101))) + ((*1 *1) + (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) + (-4 *3 (-13 (-1116) (-34))))) + ((*1 *1) (-5 *1 (-1196))) ((*1 *1) (-5 *1 (-1197)))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) - ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *2 *2) - (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) - (-5 *1 (-178 *3))))) + (-12 (-5 *2 (-428 (-1189 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1189 *1)) + (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1116)))) + ((*1 *2 *3) + (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1))))) +(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1112)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) + ((*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-247)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-654 (-1175))) (-5 *3 (-574)) (-5 *4 (-1175)) + (-5 *1 (-247)))) + ((*1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1262 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065))))) +(((*1 *1 *1) (-4 *1 (-1076))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-5 *2 (-1288)) (-5 *1 (-1195)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192)) - (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *2 (-1288)) - (-5 *1 (-1195)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1192)) - (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *2 (-1288)) - (-5 *1 (-1195))))) -(((*1 *1 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1218))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1115))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) - (-5 *1 (-1253 *4 *2)) (-4 *2 (-1259 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) -(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *1) (-5 *1 (-447)))) + (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313))))) +(((*1 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) + (-5 *1 (-1088 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) + (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1022))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-171 (-417 (-574))))) + (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6)) + (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-578 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-4 *3 (-13 (-27) (-1219) (-440 *6) (-10 -8 (-15 -2951 ($ *7))))) + (-4 *7 (-858)) + (-4 *8 + (-13 (-1262 *3 *7) (-372) (-1219) + (-10 -8 (-15 -3879 ($ $)) (-15 -3342 ($ $))))) (-5 *2 - (-654 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574)) - (|:| |outvect| (-654 (-699 (-171 *4))))))) - (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1050)) (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1226 *5 *6 *7 *3)) - (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) - ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175)))))) + (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1175)) (-4 *9 (-999 *8)) + (-14 *10 (-1193))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388)))) + ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) - (-5 *1 (-340))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -4196 (-781)) (|:| |period| (-781)))) - (-5 *1 (-1172 *4)) (-4 *4 (-1233)) (-5 *3 (-781))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781))))) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) + (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) + (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-963 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) + (-4 *1 (-1260 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *3 (-174)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-174))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1284 (-654 *3))) (-4 *4 (-315)) + (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234))))) (((*1 *2 *1) - (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) - (-5 *2 (-1188 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-417 (-574))))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-839))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-654 (-1188 *11))) (-5 *3 (-1188 *11)) - (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781))) - (-5 *7 (-1283 (-654 (-1188 *8)))) (-4 *10 (-860)) - (-4 *8 (-315)) (-4 *11 (-962 *8 *9 *10)) (-4 *9 (-803)) - (-5 *1 (-717 *9 *10 *8 *11))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-4 *4 (-1007 *3)) (-5 *1 (-143 *3 *4 *2)) - (-4 *2 (-382 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) (-4 *2 (-382 *4)) - (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 *5)) (-4 *5 (-1007 *4)) (-4 *4 (-566)) - (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-4 *4 (-1007 *3)) (-5 *1 (-1252 *3 *4 *2)) - (-4 *2 (-1259 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1188 *1)) (-5 *3 (-1192)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1188 *2)) (-5 *4 (-1192)) (-4 *2 (-440 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-566)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1188 *1)) (-5 *3 (-934)) (-4 *1 (-1027)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1188 *1)) (-5 *3 (-934)) (-5 *4 (-872)) - (-4 *1 (-1027)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-934)) (-4 *4 (-13 (-858) (-372))) - (-4 *1 (-1083 *4 *2)) (-4 *2 (-1259 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1286))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-956 *4)) (-4 *4 (-1064)) (-5 *1 (-1180 *3 *4)) - (-14 *3 (-934))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) + (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 (-574))))) + (-5 *1 (-370 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1) + (-12 (-4 *1 (-395 *3)) (-4 *3 (-1116)) + (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 (-781))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| -4202 *3) (|:| -3139 (-574))))) + (-5 *1 (-428 *3)) (-4 *3 (-566))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) - ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *1) (-5 *1 (-607)))) + (-12 (-5 *3 (-654 (-2 (|:| -3079 *4) (|:| -1540 (-574))))) + (-4 *4 (-1116)) (-5 *2 (-1 *4)) (-5 *1 (-1033 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227))) - (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1050)) (-5 *1 (-764))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-5 *2 (-2 (|:| -3666 *3) (|:| -1917 *4)))))) + (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1260 (-171 *3)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-132)))) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)) + (-4 *2 (-1116)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-370 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *3)) + (-4 *3 (-1234)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1115)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1234)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1116)) + (-5 *1 (-747 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1116)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-659 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358))))) + (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) + (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-762))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3878 *7) (|:| |sol?| (-112))) + (-574) *7)) + (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1260 *7)) + (-5 *3 (-417 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-584 *7 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-764))))) +(((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1284 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) + (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1260 *5)) + (-5 *2 (-699 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) - (-5 *2 (-1283 (-574))) (-5 *1 (-1311 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -3038 *3)))) - (-5 *4 (-781)) (-4 *3 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3))))) + (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-315)) + (-5 *2 (-417 (-428 (-966 *4)))) (-5 *1 (-1058 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1051)) (-5 *1 (-850)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) + (-5 *2 (-1051)) (-5 *1 (-850))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1051)) + (-5 *1 (-756))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1051))))) +(((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-440 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193)))) + ((*1 *1 *1) (-4 *1 (-161)))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5)) + (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7)) + (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) + (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8)) + (-5 *6 (-654 *8)) (-4 *8 (-440 *7)) + (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) + (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8))) + (-4 *8 (-440 *7)) (-5 *5 (-302 *8)) + (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6)) + (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) + (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) + (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3)) + (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *7 *3))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1051)) (-5 *1 (-762))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6)))) + (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1275 *5)) (-5 *2 (-654 *6)) + (-5 *1 (-1277 *5 *6))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1115)) - (-5 *2 (-2 (|:| -1867 (-574)) (|:| |var| (-622 *1)))) - (-4 *1 (-440 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) + (-14 *4 (-654 (-1193))))) ((*1 *2 *1) - (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-781))))) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) + (-14 *4 (-654 (-1193)))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1188 *4)) (-5 *1 (-538 *4)) - (-4 *4 (-358))))) -(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1111)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) - ((*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-247)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-654 (-1174))) (-5 *3 (-574)) (-5 *4 (-1174)) - (-5 *1 (-247)))) - ((*1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1261 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064))))) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) + (-5 *2 (-491 *4 *5)) (-5 *1 (-958 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1218))) - (-5 *1 (-593 *4 *2)) - (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))))) + (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) + (-4 *3 (-1260 *4)) + (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292)))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -3667 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -1916 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1173 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3798 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-569)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1116)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -3667 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (|:| -1916 + (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) + (|:| |expense| (-388)) (|:| |accuracy| (-388)) + (|:| |intermediateResults| (-388)))))) + (-5 *1 (-813)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1116))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1065)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1260 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1116)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1116)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1116)) + (-5 *1 (-114 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-596 (-417 (-965 *4)))) - (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-324 *4)) - (-5 *1 (-599 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-446))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1064)) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4))) + (-5 *1 (-114 *4)) (-4 *4 (-1116)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1065)) (-5 *1 (-724 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-846 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574))))) -(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-302 (-843 *3))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 (-843 (-965 *5)))) (-4 *5 (-462)) - (-5 *2 (-843 (-417 (-965 *5)))) (-5 *1 (-647 *5)) - (-5 *3 (-417 (-965 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) - (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-194)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-308)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-313))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-846 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-856))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) + (-5 *2 (-1051)) (-5 *1 (-758))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-315)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) + (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-457 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) + (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-457 *4 *5 *6 *7))))) (((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-922)) (-4 *6 (-803)) - (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-428 (-1188 *8))) - (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-1188 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) - (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5))))) -(((*1 *2 *3) - (-12 (-14 *4 (-654 (-1192))) (-4 *5 (-462)) - (-5 *2 - (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574))))) - (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5)))))) + (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1065)) (-4 *3 (-860)) + (-4 *4 (-273 *3)) (-4 *5 (-803))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) - (-5 *1 (-340))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1260 *6)) + (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)))) + (-4 *8 (-1260 (-417 *7))) (-5 *2 (-596 *3)) + (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1051)) (-5 *1 (-762))))) +(((*1 *1 *1) (-4 *1 (-639))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018) (-1219)))))) +(((*1 *1 *1) (-4 *1 (-639))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018) (-1219)))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *2 (-1289)) + (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-1219 *3))) (-5 *1 (-1219 *3)) (-4 *3 (-1115))))) -(((*1 *1) (-5 *1 (-145)))) + (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-112)) + (-5 *1 (-366 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-112)) + (-5 *1 (-538 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193)) (-4 *5 (-372)) (-5 *2 (-654 (-1228 *5))) + (-5 *1 (-1292 *5)) (-5 *4 (-1228 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-1064)) (-5 *2 (-1283 *4)) - (-5 *1 (-1193 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-934)) (-5 *2 (-1283 *3)) (-5 *1 (-1193 *3)) - (-4 *3 (-1064))))) -(((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-965 (-574))))) (-5 *2 (-654 (-324 (-574)))) - (-5 *1 (-1046))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-574)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1237)) - (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) - (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5)))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)) - (-4 *2 (-1115)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *3)) - (-4 *3 (-1233)))) + (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) + (-5 *1 (-178 *3))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1043 *5 *6 *7 *3))) (-5 *1 (-1043 *5 *6 *7 *3)) + (-4 *3 (-1081 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1115)) - (-5 *1 (-747 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1115)))) + (-12 (-5 *2 (-654 *6)) (-4 *1 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) - (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -3701 (-654 (-1192))) (|:| -3163 (-654 (-1192))))) - (-5 *1 (-1235))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) - ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) - ((*1 *1 *1) (-4 *1 (-858))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) - ((*1 *1 *1) (-4 *1 (-1075))) ((*1 *1 *1) (-4 *1 (-1154)))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-962 *4 *3 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) - (-5 *2 (-2 (|:| |num| (-1283 *4)) (|:| |den| *4)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-984 *4 *2)) - (-4 *2 (-1259 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) - (-5 *2 (-417 (-574))) (-5 *1 (-1035 *4)) (-4 *4 (-1259 (-574)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-120 *2)) (-4 *2 (-1233))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1064)) (-4 *4 (-174)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)) - (-4 *3 (-174))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) - (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-962 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1080 *4 *5 *6)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *1)))) - (-4 *1 (-1086 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1237))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-1262 *3 *2)) - (-4 *2 (-13 (-1259 *3) (-566) (-10 -8 (-15 -2886 ($ $ $)))))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1172 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) + (-12 (-4 *1 (-1087 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1162 *5 *6 *7 *3))) (-5 *1 (-1162 *5 *6 *7 *3)) + (-4 *3 (-1081 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) + (-5 *1 (-758))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-462)) (-5 *2 (-112)) - (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1192))))) + (|partial| -12 (-5 *3 (-966 (-171 *4))) (-4 *4 (-174)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-966 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-174)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462)) - (-14 *5 (-654 (-1192))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1100))))) -(((*1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1233)) (-5 *2 (-1288))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2886 (-792 *3)) (|:| |coef1| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| -2886 *1) (|:| |coef1| *1))) - (-4 *1 (-1080 *3 *4 *5))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4459)) (-4 *4 (-372)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3)) - (-4 *3 (-697 *4 *5 *6)))) + (|partial| -12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -4459)) (-4 *4 (-566)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-4 *7 (-1007 *4)) (-4 *8 (-382 *7)) - (-4 *9 (-382 *7)) (-5 *2 (-654 *6)) - (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6)) - (-4 *10 (-697 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5)))) + (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3)) - (-4 *3 (-697 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) - (-5 *2 (-654 *7))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1) (-5 *1 (-872)))) + (|partial| -12 (-5 *3 (-417 (-966 (-171 *4)))) (-4 *4 (-566)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-417 (-966 (-171 *5)))) (-5 *4 (-935)) + (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) + (-5 *1 (-795 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) + (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) + (-5 *1 (-795 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-566)) + (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) + (-5 *1 (-795 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-654 (-1193))) (-4 *2 (-174)) + (-4 *4 (-244 (-2877 *5) (-781))) + (-14 *6 + (-1 (-112) (-2 (|:| -2591 *3) (|:| -3139 *4)) + (-2 (|:| -2591 *3) (|:| -3139 *4)))) + (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) + (-4 *7 (-963 *2 *4 (-874 *5)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1134)) (-5 *1 (-1131))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1051))))) +(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1203))))) +(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-574)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6))))) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) + (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-654 (-1233))) (-5 *3 (-1233)) (-5 *1 (-691))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) + (-5 *1 (-940)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) + (-5 *1 (-940)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) + (-5 *1 (-941)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) + (-5 *1 (-941))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-455 *3)) (-4 *3 (-1065))))) (((*1 *2 *1) - (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1259 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1053 (-48))) - (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) - (-5 *2 (-428 (-1188 (-48)))) (-5 *1 (-445 *4 *5 *3)) - (-4 *3 (-1259 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *2) - (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) - ((*1 *2 *2) - (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) (-4 *6 (-462)) - (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372)) - (-4 *5 (-13 (-372) (-858)))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-934)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-934)) - (-5 *1 (-538 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1115))))) + (-12 (-4 *2 (-1116)) (-5 *1 (-978 *3 *2)) (-4 *3 (-1116))))) +(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1175)) (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288))))) +(((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1109 (-853 (-388)))) (-5 *2 (-1109 (-853 (-227)))) - (-5 *1 (-313))))) + (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-130))) + ((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) + (-4 *4 (-174)))) + ((*1 *1) (-5 *1 (-556))) ((*1 *1) (-5 *1 (-557))) + ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) + ((*1 *1) (-4 *1 (-736))) ((*1 *1) (-5 *1 (-1193))) + ((*1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-935)))) + ((*1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935)))) + ((*1 *1) (-5 *1 (-1239))) ((*1 *1) (-5 *1 (-1240))) + ((*1 *1) (-5 *1 (-1241))) ((*1 *1) (-5 *1 (-1242)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1219) (-1018)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1064)) (-4 *3 (-1115)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2017 (-574)))) (-4 *1 (-440 *3)))) - ((*1 *2 *1) (|partial| -12 - (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2017 (-903 *3)))) - (-5 *1 (-903 *3)) (-4 *3 (-1115)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) - (-4 *7 (-962 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -2017 (-574)))) - (-5 *1 (-963 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) - (-15 -2981 (*7 $)))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1041 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1064))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274))))) + (-5 *2 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 (-903 *3))))) + (-5 *1 (-903 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4))) + (-5 *1 (-903 *4)) (-4 *4 (-1116))))) (((*1 *1 *2) - (-12 (-5 *2 (-699 *4)) (-4 *4 (-1064)) (-5 *1 (-1157 *3 *4)) - (-14 *3 (-781))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1105))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-927 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-928 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-428 (-965 *6))) (-5 *5 (-1192)) (-5 *3 (-965 *6)) - (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-928 *6))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1064)))) - ((*1 *2 *1) - (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4)) - (-4 *4 (-1259 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-736)))) + (|partial| -12 (-5 *2 (-1299 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) + (-5 *1 (-674 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1214)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1214))))) -(((*1 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-112)) - (-5 *1 (-900 *4 *5)) (-4 *5 (-1115)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-5 *2 (-112)) - (-5 *1 (-901 *5 *3)) (-4 *3 (-1233)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) - (-4 *6 (-1233)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6))))) + (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1304 *3 *4)) + (-4 *3 (-860)) (-4 *4 (-174))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) + ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-315)) - (-5 *2 (-417 (-428 (-965 *4)))) (-5 *1 (-1057 *4))))) + (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-1224 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1218) (-1017)))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) -(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-338))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-358))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-922))))) -(((*1 *2 *2) (-12 (-5 *2 (-1172 (-654 (-934)))) (-5 *1 (-894))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) - (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) - (-5 *1 (-798))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1115)) - (-5 *1 (-688 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1115)) (-5 *1 (-692 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1076 (-1039 *4) (-1188 (-1039 *4)))) (-5 *3 (-872)) - (-5 *1 (-1039 *4)) (-4 *4 (-13 (-858) (-372) (-1037)))))) + (-12 (-5 *3 (-966 *5)) (-4 *5 (-1065)) (-5 *2 (-491 *4 *5)) + (-5 *1 (-958 *4 *5)) (-14 *4 (-654 (-1193)))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-909 *2 *4)) + (-4 *2 (-1260 *4))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))) +(((*1 *1) (-5 *1 (-131)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) - (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3))) - (|:| |vals| (-654 *3)))) - (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) - (-5 *2 (-781)))) - ((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) - (-5 *2 (-781)))) - ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-736))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1218) (-972) (-29 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1) (-4 *1 (-1154)))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1738 *4))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1159)))) + (-12 (-5 *3 (-1205 (-654 *4))) (-4 *4 (-860)) + (-5 *2 (-654 (-654 *4))) (-5 *1 (-1204 *4))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-872))))) (((*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-158)))) (((*1 *1 *1) (-5 *1 (-872))) ((*1 *2 *1) - (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) - ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1192))))) + (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))) + ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1193))))) (((*1 *1) (-5 *1 (-588))) - ((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-873)))) - ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-873)))) + ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-873)))) + ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-873)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1174)) (-5 *4 (-872)) (-5 *2 (-1288)) (-5 *1 (-873)))) + (-12 (-5 *3 (-1175)) (-5 *4 (-872)) (-5 *2 (-1289)) (-5 *1 (-873)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1172 *4)) - (-4 *4 (-1115)) (-4 *4 (-1233))))) -(((*1 *1) (-5 *1 (-607)))) + (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1173 *4)) + (-4 *4 (-1116)) (-4 *4 (-1234))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112)) + (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *1) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) + (-14 *4 (-1193)) (-14 *5 *3)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1193)) + (-4 *2 (-13 (-27) (-1219) (-440 *5))) + (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-284 *5 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) - (-5 *2 (-654 *3))))) + (-12 (-4 *2 (-1109 *3)) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1234)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1110 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1234)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2) (-12 (-5 *1 (-1251 *2)) (-4 *2 (-1234))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1173 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315))))) (((*1 *2 *3) - (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1109 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-313)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5))))) + (-12 + (-5 *3 + (-2 (|:| -3082 (-699 (-417 (-966 *4)))) + (|:| |vec| (-654 (-417 (-966 *4)))) (|:| -3558 (-781)) + (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) + (-4 *6 (-803)) + (-5 *2 + (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *4))))))) + (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-358)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -3314 (-654 (-2 (|:| |irr| *3) (|:| -3868 (-574))))))) + (-5 *1 (-218 *5 *3)) (-4 *3 (-1260 *5))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-654 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-574))))) + (-4 *2 (-566)) (-5 *1 (-428 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-574)) + (|:| -3314 (-654 (-2 (|:| |irr| *4) (|:| -3868 (-574))))))) + (-4 *4 (-1260 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *1) - (-12 (-4 *2 (-1108 *3)) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1233)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1109 *3)) (-5 *1 (-1107 *3)) (-4 *3 (-1233)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) - ((*1 *1 *2) (-12 (-5 *1 (-1250 *2)) (-4 *2 (-1233))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1174) (-784))) (-5 *1 (-115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-315) (-148))) - (-4 *2 (-962 *4 *6 *5)) (-5 *1 (-937 *4 *5 *6 *2)) - (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) - (-4 *2 (-666 *4))))) + (-12 (-4 *3 (-1065)) (-4 *4 (-1260 *3)) (-5 *1 (-165 *3 *4 *2)) + (-4 *2 (-1260 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064))))) -(((*1 *2 *3) - (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-839)) (-5 *3 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-1064)) (-4 *2 (-1259 *5)) - (-5 *1 (-1277 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1274 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1233))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1050)) (-5 *1 (-758))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) - (-4 *3 (-1259 *4)) - (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292)))))) -(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535)))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1166))))) + (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193))) + (-4 *6 (-13 (-566) (-1054 *5))) (-4 *5 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-966 *6)))))) (-5 *1 (-1055 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1208 *2)) (-4 *2 (-372))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860)) + (-5 *1 (-1204 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-1053 (-417 *2)))) (-5 *2 (-574)) - (-5 *1 (-116 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781))))) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2887 *3))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1175)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1175)) (-5 *1 (-97))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1218) (-1017)))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *1) - (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) - (-5 *2 (-1188 *3))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116)) + (-4 *6 (-1116)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1017) (-1218))) - (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1017) (-1218))) - (-5 *1 (-610 *4 *5 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1174)) (-5 *1 (-313))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1284)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1284)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6))))) + (-12 (-5 *3 (-574)) (|has| *1 (-6 -4450)) (-4 *1 (-414)) + (-5 *2 (-935))))) (((*1 *1 *2) - (-12 (-5 *2 (-934)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1064)) - (-4 *4 (-1233)))) - ((*1 *1 *2) - (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) - (-4 *5 (-244 (-2876 *3) (-781))) - (-14 *6 - (-1 (-112) (-2 (|:| -2590 *2) (|:| -2017 *5)) - (-2 (|:| -2590 *2) (|:| -2017 *5)))) - (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) - (-4 *7 (-962 *4 *5 (-874 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229))))) -(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-539)))) - ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-622 *4)) (-5 *6 (-1192)) - (-4 *4 (-13 (-440 *7) (-27) (-1218))) - (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1117 *3 *4)) (-14 *3 (-935)) + (-14 *4 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388)))) + ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1284 (-1284 *4))) (-4 *4 (-1065)) (-5 *2 (-699 *4)) + (-5 *1 (-1045 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) - (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) - (-4 *2 (-1274 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) - (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) - (-4 *2 (-1274 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) - (-5 *1 (-1168 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-372)) + (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-831))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-194)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1286)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1286))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1110 (-227))) (-5 *6 (-574)) (-5 *2 (-1229 (-940))) + (-5 *1 (-326)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1110 (-227))) (-5 *6 (-574)) (-5 *7 (-1175)) + (-5 *2 (-1229 (-940))) (-5 *1 (-326)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1110 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) + (-5 *2 (-1229 (-940))) (-5 *1 (-326)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1110 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1175)) + (-5 *2 (-1229 (-940))) (-5 *1 (-326))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-839))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-460 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372)) - (-5 *2 - (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6)))) - (-5 *1 (-993 *6)) (-5 *3 (-699 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1064)) (-5 *1 (-724 *4 *2)) - (-4 *2 (-658 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1064))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574)))) - (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) - (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064))))) + (-5 *1 (-459 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1285)))) + ((*1 *1 *1) (-5 *1 (-1285)))) +(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) + ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) + (-4 *3 (-860)) (-5 *2 (-781))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1188 *7)) - (-4 *5 (-1064)) (-4 *7 (-1064)) (-4 *2 (-1259 *5)) - (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1259 *2))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) - (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) - (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) - (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) - (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-965 *4))) - (-4 *4 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) - (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192)))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-835))))) + (-12 + (-5 *3 + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574))))) + (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112)) + (-5 *1 (-515 *4 *5))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-148) (-27) (-1054 (-574)) (-1054 (-417 (-574))))) + (-4 *5 (-1260 *4)) (-5 *2 (-1189 (-417 *5))) (-5 *1 (-625 *4 *5)) + (-5 *3 (-417 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) + (-4 *5 (-13 (-148) (-27) (-1054 (-574)) (-1054 (-417 (-574))))) + (-5 *2 (-1189 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1219) (-1018)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1156 *3 *2)) (-4 *3 (-13 (-1116) (-34))) + (-4 *2 (-13 (-1116) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) + (-5 *2 (-1051)) (-5 *1 (-759))))) +(((*1 *2 *3) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) + (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1260 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) + (-4 *3 (-1260 *4)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-2 (|:| -4202 *4) (|:| -3580 (-574))))) + (-4 *4 (-1260 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-428 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-1065)) + (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5)) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) - (-5 *1 (-1139 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-107 *3))))) + (-2 (|:| |solns| (-654 *5)) + (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1144 *3 *5)) (-4 *3 (-1260 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219))))) -(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315)) - (-4 *9 (-962 *8 *6 *7)) - (-5 *2 (-2 (|:| -3038 (-1188 *9)) (|:| |polval| (-1188 *8)))) - (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1188 *9)) (-5 *4 (-1188 *8))))) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1100 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1100 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) (((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-251 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-934))) (-5 *4 (-654 (-574))) - (-5 *2 (-699 (-574))) (-5 *1 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) - (-14 *4 *2)))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) (((*1 *2 *3) - (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1203 *4)) - (-5 *3 (-654 *4))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-574)) (-5 *1 (-1172 *3)) (-4 *3 (-1233)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3)) + (-12 (-5 *3 (-779)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5) - (|:| |f4| (-654 *5)))) - (-5 *1 (-1203 *6)) (-5 *4 (-654 *5))))) -(((*1 *2 *2) - (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) - (-4 *3 (-658 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -1710 *4))) (-5 *1 (-984 *4 *3)) - (-4 *3 (-1259 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-546))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-1296 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1296 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) (-4 *1 (-771)))) + (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) + (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051)))) + (-5 *1 (-575)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-779)) (-5 *4 (-1079)) + (-5 *2 + (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) + (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051)))) + (-5 *1 (-575)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-797)) (-5 *3 (-1079)) + (-5 *4 + (-2 (|:| |fn| (-324 (-227))) + (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) + (|:| |extra| (-1051)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-797)) (-5 *3 (-1079)) + (-5 *4 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)) + (|:| |extra| (-1051)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-810)) (-5 *3 (-1079)) + (-5 *4 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-818)) + (-5 *2 + (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) + (|:| |explanations| (-654 (-1175))))) + (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-818)) (-5 *4 (-1079)) + (-5 *2 + (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) + (|:| |explanations| (-654 (-1175))))) + (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-849)) (-5 *3 (-1079)) + (-5 *4 + (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) + (-5 *2 (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-849)) (-5 *3 (-1079)) + (-5 *4 + (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) + (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) + (|:| |ub| (-654 (-853 (-227)))))) + (-5 *2 (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-851)) + (-5 *2 + (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) + (|:| |explanations| (-654 (-1175))))) + (-5 *1 (-850)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-851)) (-5 *4 (-1079)) + (-5 *2 + (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) + (|:| |explanations| (-654 (-1175))))) + (-5 *1 (-850)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-908)) (-5 *3 (-1079)) + (-5 *4 + (-2 (|:| |pde| (-654 (-324 (-227)))) + (|:| |constraints| + (-654 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-781)) (|:| |boundaryType| (-574)) + (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) + (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) + (|:| |tol| (-227)))) + (-5 *2 (-2 (|:| -3175 (-388)) (|:| |explanations| (-1175)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-911)) + (-5 *2 + (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) + (|:| |explanations| (-654 (-1175))))) + (-5 *1 (-910)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-911)) (-5 *4 (-1079)) + (-5 *2 + (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) + (|:| |explanations| (-654 (-1175))))) + (-5 *1 (-910))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1175)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-270))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -3852 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1260 *4))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372)) + (-4 *7 (-1260 *6)) + (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) + (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) + (-5 *2 (-1051)) (-5 *1 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) + (-4 *5 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3)) + (-4 *3 (-13 (-27) (-1219) (-440 *5)))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-4 *2 (-1116)) + (-5 *1 (-900 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566)) + (-5 *2 (-872)) (-5 *1 (-32 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-241 *3)))) + ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1116))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *5 *3 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) + (-4 *3 (-860)) (-4 *6 (-1081 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1286)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4)))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-555))) - ((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) - ((*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) + ((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) + ((*1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))) ((*1 *1 *1) - (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) - (-4 *3 (-13 (-1115) (-34)))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) - (-4 *8 (-860)) (-5 *1 (-992 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1710 *4))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-876 *4 *5 *6 *7)) - (-4 *4 (-1064)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-1064)) (-4 *5 (-860)) (-4 *6 (-803)) - (-14 *8 (-654 *5)) (-5 *2 (-1288)) - (-5 *1 (-1295 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-962 *4 *6 *5)) - (-14 *9 (-654 *3)) (-14 *10 *3)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) - (-15 -2981 ((-1140 *3 (-622 $)) $)) - (-15 -2950 ($ (-1140 *3 (-622 $)))))))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1188 (-965 *4))) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) - ((*1 *2) - (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) - (-5 *2 (-1188 (-965 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) + (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) + (-4 *3 (-13 (-1116) (-34)))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-765))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) + (-5 *2 (-1051)) (-5 *1 (-757))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-1116)) (-4 *7 (-912 *6)) + (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7)) + (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4459))))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1116)) (-4 *2 (-912 *5)) (-5 *1 (-702 *5 *2 *3 *4)) + (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459))))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227))) + (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112)) + (-5 *2 (-1051)) (-5 *1 (-764))))) (((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) + (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1192))) (-5 *4 (-1192)) - (-5 *1 (-1195)))) + (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1193))) (-5 *4 (-1193)) + (-5 *1 (-1196)))) ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) + (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1196)))) + (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1197)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1192))) (-5 *1 (-1196))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3496 *4))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) + (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1193))) (-5 *1 (-1197))))) (((*1 *2 *3) - (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) - ((*1 *2 *2) - (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-1139 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-5 *1 (-447))))) + (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) + ((*1 *1 *1) (|partial| -4 *1 (-732)))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) - (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5))))) + (-12 (-5 *3 (-1175)) (-5 *2 (-216 (-512))) (-5 *1 (-847))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1218) (-1017)))))) -(((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) - (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) - (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))) (((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -4284 (-115)) (|:| |arg| (-654 (-903 *3))))) - (-5 *1 (-903 *3)) (-4 *3 (-1115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4))) - (-5 *1 (-903 *4)) (-4 *4 (-1115))))) -(((*1 *1 *1) (-4 *1 (-639))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *3 (-654 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-478))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1192)) (-4 *5 (-440 *4)) - (-4 *4 (-1115)) (-5 *1 (-583 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1210 *4 *5)) - (-4 *4 (-1115)) (-4 *5 (-1115))))) + (-12 (-5 *2 (-1269 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) + (-14 *4 (-1193)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1116)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860)) + (-14 *4 + (-1 (-112) (-2 (|:| -2591 *3) (|:| -3139 *2)) + (-2 (|:| -2591 *3) (|:| -3139 *2))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) (((*1 *2 *3) - (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1259 *5)) - (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) - (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-112)) - (-5 *1 (-924 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) + (-14 *5 (-654 (-1193))) + (-5 *2 + (-654 (-2 (|:| -1718 (-1189 *4)) (|:| -1385 (-654 (-966 *4)))))) + (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 + (-654 (-2 (|:| -1718 (-1189 *5)) (|:| -1385 (-654 (-966 *5)))))) + (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5))) + (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 + (-654 (-2 (|:| -1718 (-1189 *5)) (|:| -1385 (-654 (-966 *5)))))) + (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5))) + (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 + (-654 (-2 (|:| -1718 (-1189 *5)) (|:| -1385 (-654 (-966 *5)))))) + (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5))) + (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) ((*1 *2 *3) - (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) - (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) - (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-925 *4 *5 *6))))) + (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 + (-654 (-2 (|:| -1718 (-1189 *4)) (|:| -1385 (-654 (-966 *4)))))) + (-5 *1 (-1311 *4 *5 *6)) (-5 *3 (-654 (-966 *4))) + (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-1116)) + (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4459)) (-4 *1 (-120 *3)) - (-4 *3 (-1233)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4460)) (-4 *1 (-120 *3)) + (-4 *3 (-1234)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4459)) (-4 *1 (-120 *3)) - (-4 *3 (-1233)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4460)) (-4 *1 (-120 *3)) + (-4 *3 (-1234)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) - (-4 *2 (-1233)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1192)) (-5 *1 (-642)))) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) + (-4 *2 (-1234)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1193)) (-5 *1 (-642)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1250 (-574))) (|has| *1 (-6 -4459)) (-4 *1 (-661 *2)) - (-4 *2 (-1233)))) + (-12 (-5 *3 (-1251 (-574))) (|has| *1 (-6 -4460)) (-4 *1 (-661 *2)) + (-4 *2 (-1234)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4459)) (-4 *1 (-1025 *2)) - (-4 *2 (-1233)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4460)) (-4 *1 (-1026 *2)) + (-4 *2 (-1234)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) + (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) - (-4 *2 (-1233)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) + (-4 *2 (-1234)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *3)) - (-4 *3 (-1233)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *3)) + (-4 *3 (-1234)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) - (-4 *2 (-1233))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) - (-4 *3 (-658 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) - (-4 *3 (-658 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064)))) - ((*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064))))) -(((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-449)))) - ((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-1130)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1197))) (-5 *3 (-1197)) (-5 *1 (-1133))))) -(((*1 *1) (-5 *1 (-588)))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) + (-4 *2 (-1234))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1196)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1289)) + (-5 *1 (-1196)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1289)) + (-5 *1 (-1196))))) (((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1203 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) - (-5 *2 (-654 (-1192))) (-5 *1 (-1091 *3 *4 *5)) - (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) - (-5 *2 (-1050)) (-5 *1 (-758))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-449)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-848)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1131)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-654 (-1198))) (-5 *3 (-1198)) (-5 *1 (-1134))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1286)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-1175)) (-5 *1 (-1286)))) + ((*1 *1 *1) (-5 *1 (-1286)))) (((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3496 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1050)) - (-5 *1 (-759))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) - (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) - (|:| |ub| (-654 (-853 (-227)))))) - (-5 *1 (-274))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) - (-5 *1 (-1176 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) - (-14 *4 (-1192)) (-14 *5 *3)))) + (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-654 *1)) (-4 *1 (-1081 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1259 (-574)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-654 (-1188 *7))) (-5 *3 (-1188 *7)) - (-4 *7 (-962 *5 *6 *4)) (-4 *5 (-922)) (-4 *6 (-803)) - (-4 *4 (-860)) (-5 *1 (-919 *5 *6 *4 *7))))) -(((*1 *1) (-5 *1 (-447)))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1116 *3 *4)) (-14 *3 (-934)) - (-14 *4 (-934))))) + (-12 (-5 *3 (-417 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-566)) + (-4 *4 (-1065)) (-4 *2 (-1275 *4)) (-5 *1 (-1278 *4 *5 *6 *2)) + (-4 *6 (-666 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1244 *3)) + (-5 *2 (-417 (-574)))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1289))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5)) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) + (-4 *6 (-803)) (-5 *1 (-938 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) + (-4 *5 (-1260 *4)) (-5 *2 (-654 (-2 (|:| -3333 *5) (|:| -2707 *5)))) + (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5)) + (-4 *6 (-666 (-417 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) + (-4 *4 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -3333 *4) (|:| -2707 *4)))) + (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4)) + (-4 *6 (-666 (-417 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) + (-4 *5 (-1260 *4)) (-5 *2 (-654 (-2 (|:| -3333 *5) (|:| -2707 *5)))) + (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5)) + (-4 *3 (-666 (-417 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) + (-4 *4 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -3333 *4) (|:| -2707 *4)))) + (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4)) + (-4 *3 (-666 (-417 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-681)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1117 *3 *4)) (-14 *3 (-935)) + (-14 *4 (-935))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) - (-5 *2 (-654 (-2 (|:| -1715 *5) (|:| -4095 *3)))) - (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) - (-4 *7 (-666 (-417 *6)))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-654 (-1192))) (-4 *2 (-174)) - (-4 *4 (-244 (-2876 *5) (-781))) - (-14 *6 - (-1 (-112) (-2 (|:| -2590 *3) (|:| -2017 *4)) - (-2 (|:| -2590 *3) (|:| -2017 *4)))) - (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) - (-4 *7 (-962 *2 *4 (-874 *5)))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1116)) + (-5 *2 (-2 (|:| -1866 (-574)) (|:| |var| (-622 *1)))) + (-4 *1 (-440 *3))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) + (-4 *3 (-1260 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3)) + (-4 *5 (-666 (-417 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-417 *5)) + (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) + (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) + (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1173 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1065)) + (-5 *1 (-1177 *4))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1193)) + (-4 *5 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 (-2 (|:| -3852 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3)) + (-4 *3 (-13 (-27) (-1219) (-440 *5)))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *1) (-4 *1 (-292))) ((*1 *2 *3) (-12 (-5 *3 (-428 *4)) (-4 *4 (-566)) - (-5 *2 (-654 (-2 (|:| -1867 (-781)) (|:| |logand| *4)))) + (-5 *2 (-654 (-2 (|:| -1866 (-781)) (|:| |logand| *4)))) (-5 *1 (-328 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) ((*1 *2 *1) (-12 (-5 *2 (-674 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) - (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4)))) + (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574))))) + (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) - (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) - (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) - (-5 *4 (-324 (-388))) (-5 *1 (-338)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) - (-5 *4 (-324 (-574))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-171 (-388))))) - (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-388)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-574)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-171 (-388))))) - (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-388))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-574))) (-5 *1 (-338)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) - (-5 *4 (-324 (-704))) (-5 *1 (-338)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) - (-5 *4 (-324 (-709))) (-5 *1 (-338)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) - (-5 *4 (-324 (-711))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-704)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-709)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-711)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-704))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-709))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-711))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-704))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-709))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-711))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-704))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-709))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-711))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1174)) (-5 *1 (-338)))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-872))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-699 *2)) (-5 *4 (-781)) - (-4 *2 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) - (-4 *5 (-1259 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-781)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1064)) (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2))))) + (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) + (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-957 (-227))) (-5 *4 (-884)) (-5 *5 (-935)) + (-5 *2 (-1289)) (-5 *1 (-478)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-957 (-227))) (-5 *2 (-1289)) (-5 *1 (-478)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *4 (-884)) (-5 *5 (-935)) + (-5 *2 (-1289)) (-5 *1 (-478))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-91 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214))))) +(((*1 *1) (-5 *1 (-813)))) (((*1 *2 *1) - (-12 (-5 *2 (-1117 (-1117 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) -(((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1218) (-1017)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-971 *3)) (-5 *1 (-1179 *4 *3)) - (-4 *3 (-1259 *4))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-992 *5 *6 *7 *8))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) + (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132)) + (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| -1866 *3) (|:| -3806 *4)))) + (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) + (-5 *2 (-1173 (-2 (|:| |k| *4) (|:| |c| *3))))))) (((*1 *2 *2) - (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-555)))) +(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-853 *3)) (-4 *3 (-1116))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574)))) + (-4 *2 (-174))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *2 (-372)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-227)))) ((*1 *1 *1 *1) - (-2832 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1233))) - (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1233))))) + (-2833 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1234))) + (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1234))))) ((*1 *1 *1 *1) (-4 *1 (-372))) ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1140 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1115)) + (-12 (-5 *2 (-1141 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) ((*1 *1 *1 *1) (-4 *1 (-483))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) + (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) ((*1 *1 *1 *1) (-5 *1 (-546))) ((*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-631 *2 *4 *3)) (-4 *2 (-38 *4)) @@ -6657,684 +7098,738 @@ (-12 (-4 *4 (-174)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) ((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-876 *2 *3 *4 *5)) (-4 *2 (-372)) - (-4 *2 (-1064)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-781))) + (-4 *2 (-1065)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-781))) (-14 *5 (-781)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1068 *3 *4 *2 *5 *6)) (-4 *2 (-1064)) + (-12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *2 (-1065)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-372)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-372)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1291 *2)) (-4 *2 (-372)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1064)) (-4 *3 (-860)) + (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1065)) (-4 *3 (-860)) (-4 *4 (-803)) (-14 *6 (-654 *3)) - (-5 *1 (-1295 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-962 *2 *4 *3)) + (-5 *1 (-1296 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-963 *2 *4 *3)) (-14 *7 (-654 (-781))) (-14 *8 (-781)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1064)) + (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1065)) (-4 *3 (-856))))) -(((*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4)))) + (-5 *1 (-1204 *6)) (-5 *5 (-654 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) + (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) (((*1 *2 *2) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *4 (-781)) (-874 *3) (-253 *3 (-417 (-574))))) - (-14 *3 (-654 (-1192))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) - (-4 *5 (-566)) (-5 *2 (-654 (-654 (-965 *5)))) (-5 *1 (-1201 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *2 (-1050)) (-5 *1 (-767))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1125))))) + (-14 *3 (-654 (-1193))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) - (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4))))) + (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1219) (-1018)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-963 *7 *5 *6)) + (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-315))))) (((*1 *2 *1) - (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-979 *2)) (-4 *2 (-1115))))) + (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) + (-5 *2 (-1284 *6)) (-5 *1 (-345 *3 *4 *5 *6)) + (-4 *6 (-351 *3 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-1079)))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-980 *2)) (-4 *2 (-1116))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-302 (-417 (-966 *5)))) (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-148))) + (-5 *2 (-1182 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) + (-5 *1 (-1145 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-148))) + (-5 *2 (-1182 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) + (-5 *1 (-1145 *5))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) - (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) - (-15 -3060 ((-1288) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) + (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) + (-15 -3055 ((-1289) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) ((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-21))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) - (-14 *4 (-1192)) (-14 *5 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-21))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1284 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-923)) + (-5 *2 (-1284 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-972 (-781))) (-5 *1 (-341))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1218) (-972))))) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1219) (-973))))) ((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1) (-5 *1 (-872))) ((*1 *2 *3) - (-12 (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1064))))) -(((*1 *1) (-5 *1 (-55)))) + (-12 (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-1065))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1120))) (-5 *1 (-299))))) (((*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-934)) (-5 *2 (-388)) (-5 *1 (-795 *3)) + (-12 (-5 *4 (-935)) (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 *2)) + (-12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) + (-12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) + (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) + (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) + (-12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-112)) + (-5 *1 (-366 *4))))) +(((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) + ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) - (-5 *2 (-2 (|:| -1366 (-428 *3)) (|:| |special| (-428 *3)))) - (-5 *1 (-737 *5 *3))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-991 *4 *5 *6 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1099 *3)) (-4 *3 (-133))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1076 (-1039 *3) (-1188 (-1039 *3)))) - (-5 *1 (-1039 *3)) (-4 *3 (-13 (-858) (-372) (-1037)))))) + (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) + (-5 *1 (-313))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1100 *3)) (-4 *3 (-133))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941))))) (((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) - ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-978)))) - ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1004)))) - ((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-979)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1005)))) + ((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1234)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1115) (-34))) (-5 *1 (-1155 *2 *3)) - (-4 *3 (-13 (-1115) (-34)))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1064)) (-5 *1 (-722 *3 *4)) - (-4 *4 (-1259 *3))))) -(((*1 *1 *1) (-5 *1 (-1078)))) + (-12 (-4 *2 (-13 (-1116) (-34))) (-5 *1 (-1156 *2 *3)) + (-4 *3 (-13 (-1116) (-34)))))) +(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-4 *1 (-310)))) +(((*1 *2 *3) + (-12 (-5 *3 (-966 *5)) (-4 *5 (-1065)) (-5 *2 (-253 *4 *5)) + (-5 *1 (-958 *4 *5)) (-14 *4 (-654 (-1193)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))) + ((*1 *2 *2) + (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-1140 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-1101)))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) - (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) - (-15 -3060 ((-1288) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1233)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1233)))) + (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) + (-15 -3055 ((-1289) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1234)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1234)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-132)))) + (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-132)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-1259 *3)))) + (-4 *2 (-1260 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-546))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-25))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) - (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1259 *4))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-25))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1219) (-973)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1259 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-13 (-462) (-148))) - (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1125))))) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1234)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) + (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))) - (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-284 *4 *2))))) + (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) + (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-933)) (-5 *2 (-2 (|:| -1867 (-654 *1)) (|:| -2975 *1))) - (-5 *3 (-654 *1))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1197)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1197))) (-5 *1 (-1197))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1285)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) + (-12 (-5 *3 (-654 (-654 (-957 (-227))))) + (-5 *2 (-654 (-1110 (-227)))) (-5 *1 (-942))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154))))) +(((*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) + ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1108 (-966 (-574)))) (-5 *3 (-966 (-574))) + (-5 *1 (-338)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1108 (-966 (-574)))) (-5 *1 (-338))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065)) + (-5 *1 (-1177 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) + (-14 *4 (-1193)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1101))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-654 (-173))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193))) (-4 *5 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-780 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2391 (-654 *6))) + *7 *6)) + (-4 *6 (-372)) (-4 *7 (-666 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1284 *6) "failed")) + (|:| -2391 (-654 (-1284 *6))))) + (-5 *1 (-823 *6 *7)) (-5 *4 (-1284 *6))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-216 *4)) + (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) - (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) - (-15 -3060 (*2 $))))))) + (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $)) + (-15 -3055 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1288)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1289)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) - (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) - (-15 -3060 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-512))))) -(((*1 *1) (-5 *1 (-299)))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) - (-5 *1 (-707)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-227))) - (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-707)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-1 (-956 (-227)) (-227) (-227))) - (-5 *4 (-1109 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1064)) - (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) - (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1283 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372)) - (-5 *1 (-677 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-372)) - (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4459)))) - (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459)))) - (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372)) - (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-796))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1003 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1122 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1174)) (-4 *4 (-13 (-315) (-148))) - (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) - (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) - (|:| |wcond| (-654 (-965 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *4)))))))))) - (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) + (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $)) + (-15 -3055 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-512))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *1) + (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) + (-4 *5 (-244 (-2877 *3) (-781))) + (-14 *6 + (-1 (-112) (-2 (|:| -2591 *2) (|:| -3139 *5)) + (-2 (|:| -2591 *2) (|:| -3139 *5)))) + (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-963 *4 *5 (-874 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2 *3) (-12 (-5 *3 (-966 (-227))) (-5 *2 (-227)) (-5 *1 (-313))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) - (-5 *2 (-388)) (-5 *1 (-274)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 (-171 (-574))))) (-5 *2 (-654 (-171 *4))) - (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-417 (-965 (-171 (-574)))))) - (-5 *4 (-654 (-1192))) (-5 *2 (-654 (-654 (-171 *5)))) - (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858)))))) -(((*1 *2 *1) (-12 (-5 *2 (-971 (-781))) (-5 *1 (-341))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1283 *4))) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) - (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) - (-5 *2 (-654 (-1283 *3)))))) + (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) + (-5 *2 (-966 *5)) (-5 *1 (-958 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1064)) (-4 *7 (-1064)) - (-4 *6 (-1259 *5)) (-5 *2 (-1188 (-1188 *7))) - (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1259 *6))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1174) (-1197))) - (-5 *1 (-1197))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1064)) - (-5 *1 (-1044 *4))))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-935)) (-4 *5 (-860)) + (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-5 *1 (-447))))) +(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941)) + (-5 *1 (-939 *3)) (-4 *3 (-624 (-546))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941)) + (-5 *1 (-939 *3)) (-4 *3 (-624 (-546))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) + (-5 *1 (-940)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) + (-5 *1 (-940)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) + (-5 *1 (-941)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) + (-5 *1 (-941)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1110 (-227))) + (-5 *1 (-941)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1110 (-227))) + (-5 *1 (-941)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) + (-5 *1 (-941)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) + (-5 *1 (-941))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-762))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-1188 *4)) - (-5 *1 (-538 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-781)) - (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) - (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1233)) (-4 *2 (-1064)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) - ((*1 *1 *1) (-5 *1 (-872))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-956 (-227))) (-5 *2 (-227)) (-5 *1 (-1229)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1064))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4064 *8))) - (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1003 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4064 *8))) - (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1122 *4 *5 *6 *7 *8))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781)) + (-5 *2 (-699 (-227))) (-5 *1 (-274))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) - (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) - (-14 *6 *4))) + (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) + (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198))))) +(((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) + (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) - (-5 *2 (-853 *4)) (-5 *1 (-1269 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) - (-14 *6 *4)))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-440 *4) (-1017))) (-4 *4 (-566)) - (-5 *1 (-283 *4 *2))))) -(((*1 *2 *2 *3) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-781)) (-4 *5 (-1065)) (-4 *2 (-1260 *5)) + (-5 *1 (-1278 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1275 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1193)) (-5 *1 (-596 *2)) (-4 *2 (-1054 *3)) + (-4 *2 (-372)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)) + (-4 *2 (-13 (-440 *4) (-1018) (-1219))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1108 *2)) (-4 *2 (-13 (-440 *4) (-1018) (-1219))) + (-4 *4 (-566)) (-5 *1 (-640 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-1193)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-973))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1116))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *2 (-1080 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3)) - (-4 *3 (-1086 *4 *5 *6 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-982)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2643 *3) (|:| -2017 (-781)))) (-5 *1 (-597 *3)) - (-4 *3 (-555))))) -(((*1 *2) - (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-120 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) - (-5 *1 (-766))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1109 (-227))) - (-5 *2 (-1285)) (-5 *1 (-264))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1188 *4)) - (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-765))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) - (-4 *2 (-697 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) + (-4 *3 (-1081 *4 *5 *6)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *1)))) + (-4 *1 (-1087 *4 *5 *6 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1234)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1234)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1260 *4)) + (-5 *2 (-1284 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) + (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) + (-5 *2 (-781)))) + ((*1 *2 *1) + (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) + (-5 *2 (-781)))) + ((*1 *2 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-736))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-839))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-428 *4)) (-4 *4 (-566))))) -(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) +(((*1 *1) (-5 *1 (-607)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) + (-5 *2 (-1051)) (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) + (-12 + (-5 *3 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 - (-3 (|:| |overq| (-1188 (-417 (-574)))) - (|:| |overan| (-1188 (-48))) (|:| -3574 (-112)))) - (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) - (-4 *3 (-1259 *4)) (-5 *2 (-574)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-566) (-1053 *2) (-649 *2) (-462))) - (-5 *2 (-574)) (-5 *1 (-1131 *4 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-853 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-566) (-1053 *2) (-649 *2) (-462))) (-5 *2 (-574)) - (-5 *1 (-1131 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-1174)) - (-4 *6 (-13 (-566) (-1053 *2) (-649 *2) (-462))) (-5 *2 (-574)) - (-5 *1 (-1131 *6 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-462)) (-5 *2 (-574)) - (-5 *1 (-1132 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-853 (-417 (-965 *6)))) - (-5 *3 (-417 (-965 *6))) (-4 *6 (-462)) (-5 *2 (-574)) - (-5 *1 (-1132 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-417 (-965 *6))) (-5 *4 (-1192)) - (-5 *5 (-1174)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1132 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1215 *3)) (-4 *3 (-1064))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1233))))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-654 + (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) + (|:| |wcond| (-654 (-966 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *5)))))))))) + (-5 *4 (-1175)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-963 *5 *7 *6)) + (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-574)) + (-5 *1 (-938 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1151)) (-5 *2 (-701 (-288))) (-5 *1 (-169))))) +(((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065))))) +(((*1 *2 *1) + (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) + ((*1 *2 *3) (-12 (-5 *3 (-987)) (-5 *2 (-918 (-574))) (-5 *1 (-931))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1116))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1051)) (-5 *1 (-762))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) + (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-710 *3)) + (-4 *3 (-315))))) (((*1 *2 *1) - (-12 (-4 *3 (-1064)) (-5 *2 (-1283 *3)) (-5 *1 (-722 *3 *4)) - (-4 *4 (-1259 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-982)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1173 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315))))) (((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-130))))) (((*1 *2) - (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) + (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) ((*1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) - ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-4 *1 (-1218)))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1050)) (-5 *1 (-763))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-762))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218)))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) - (-5 *2 (-1050)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1192))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1188 *7))) (-5 *3 (-1188 *7)) - (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-922)) (-4 *5 (-803)) - (-4 *6 (-860)) (-5 *1 (-919 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1188 *5))) (-5 *3 (-1188 *5)) - (-4 *5 (-1259 *4)) (-4 *4 (-922)) (-5 *1 (-920 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-91 *3))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-934)) (-5 *1 (-1116 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) + ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-4 *1 (-1219)))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-757))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *7 (-1259 *5)) (-4 *4 (-734 *5 *7)) - (-5 *2 (-2 (|:| -4047 (-699 *6)) (|:| |vec| (-1283 *5)))) - (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-1197))) (-5 *1 (-891))))) -(((*1 *1) (-5 *1 (-447)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1204 (-654 *4))) (-4 *4 (-860)) - (-5 *2 (-654 (-654 *4))) (-5 *1 (-1203 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) - (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4)))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) + (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) + (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-963 *6 *5 *4))))) +(((*1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1287)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1287))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2)) + (-4 *2 (-697 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2)) + (-4 *3 (-566))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1065)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-977 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566)) + (-4 *3 (-1065)) (-4 *2 (-802)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-1189 *3)) (-4 *3 (-1065)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-987)) (-4 *2 (-132)) (-5 *1 (-1195 *3)) (-4 *3 (-566)) + (-4 *3 (-1065)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-1257 *4 *3)) (-14 *4 (-1193)) + (-4 *3 (-1065))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-622 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193))) + (-4 *2 (-13 (-440 *5) (-27) (-1219))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1116))))) +(((*1 *2) + (-12 (-14 *4 (-781)) (-4 *5 (-1234)) (-5 *2 (-135)) + (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4)) + (-4 *3 (-337 *4)))) + ((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *2 *1) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) + (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-996 *3)) (-4 *3 (-1065)) (-5 *2 (-935)))) + ((*1 *2) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-372)) (-5 *2 (-135))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -3314 (-654 (-2 (|:| |irr| *10) (|:| -3868 (-574))))))) + (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315)) + (-4 *10 (-963 *3 *9 *8)) (-4 *9 (-803)) + (-5 *2 + (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3) + (|:| |corrfact| (-654 (-1189 *3))))) + (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1189 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1260 *6)) + (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)))) + (-4 *8 (-1260 (-417 *7))) (-5 *2 (-596 *3)) + (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1240)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1081 *4 *5 *6)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *1)))) + (-4 *1 (-1087 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1238))) ((*1 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) + (-12 (-4 *3 (-566)) (-5 *1 (-1263 *3 *2)) + (-4 *2 (-13 (-1260 *3) (-566) (-10 -8 (-15 -2887 ($ $ $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884)))) + ((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2) - (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1064)) (-5 *1 (-1043 *3))))) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1) (-4 *1 (-1155))) ((*1 *1 *1 *1) (-4 *1 (-1155)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) ((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1041 *3)) (-4 *3 (-1233))))) -(((*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-860))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) + (-12 (-5 *2 (-112)) (-5 *1 (-1042 *3)) (-4 *3 (-1234))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1234)) (-5 *2 (-1289))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) + (-5 *2 (-423 *4 (-417 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1284 *6)) (-4 *6 (-13 (-419 *4 *5) (-1054 *4))) + (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-4 *3 (-315)) + (-5 *1 (-423 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-315)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) - (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-457 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) - (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-457 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) +(((*1 *2 *3) + (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) + (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-1007 *2)) (-4 *4 (-1259 *3)) (-4 *2 (-315)) - (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1053 *3))))) + (-12 (-4 *3 (-1008 *2)) (-4 *4 (-1260 *3)) (-4 *2 (-315)) + (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1054 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1115)) (-5 *2 (-1140 *3 (-622 *1))) + (-12 (-4 *3 (-566)) (-4 *3 (-1116)) (-5 *2 (-1141 *3 (-622 *1))) (-4 *1 (-440 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) + ((*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505)))) ((*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) - (-4 *4 (-1233)) (-5 *2 (-112))))) + ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) + (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4)) + (-4 *4 (-1065))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-956 (-227))) (-5 *2 (-1288)) (-5 *1 (-478))))) -(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-401))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-985 *4 *2)) + (-4 *2 (-1260 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) (((*1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) - (-14 *4 (-654 (-1192))))) + (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) + (-14 *4 (-654 (-1193))))) ((*1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) - (-14 *4 (-654 (-1192))))) + (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) + (-14 *4 (-654 (-1193))))) ((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-344 *3 *4 *5 *2)) (-4 *3 (-372)) - (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) + (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *2 (-351 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) - ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1259 *2))))) + ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1260 *2))))) +(((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) + ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287))))) +(((*1 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-654 - (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 *3)) - (|:| |logand| (-1188 *3))))) - (-5 *1 (-596 *3)) (-4 *3 (-372))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1064)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1080 *4 *5 *6)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *1)))) - (-4 *1 (-1086 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) - (-5 *2 (-1283 *6)) (-5 *1 (-423 *3 *4 *5 *6)) - (-4 *6 (-13 (-419 *4 *5) (-1053 *4))))) + (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) + (-5 *2 (-1284 *6)) (-5 *1 (-423 *3 *4 *5 *6)) + (-4 *6 (-13 (-419 *4 *5) (-1054 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1064)) (-4 *3 (-1115)) (-5 *2 (-1140 *3 (-622 *1))) + (-12 (-4 *3 (-1065)) (-4 *3 (-1116)) (-5 *2 (-1141 *3 (-622 *1))) (-4 *1 (-440 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) + ((*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505)))) ((*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-631 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) ((*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-727 *3)) (-5 *1 (-672 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1115))))) + ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566))))) (((*1 *2 *1) - (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-1080 *3 *4 *2)) (-4 *2 (-860)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860))))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1) (-4 *1 (-1154)))) -(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) - (-14 *3 (-654 (-1192)))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-152 *3)))) + (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-315)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1116)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3901 (-781)) (|:| -1880 (-781)))) + (-5 *1 (-781)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-1065)))) + ((*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-1016 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) + (-4 *2 (-174))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-152 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-654 (-2 (|:| -2017 (-781)) (|:| -3332 *4) (|:| |num| *4)))) - (-4 *4 (-1259 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) + (-5 *2 (-654 (-2 (|:| -3139 (-781)) (|:| -3333 *4) (|:| |num| *4)))) + (-4 *4 (-1260 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-112)) (-5 *1 (-447)))) + (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-112)) (-5 *1 (-447)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-5 *3 (-654 (-1192))) (-5 *4 (-112)) (-5 *1 (-447)))) + (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-5 *3 (-654 (-1193))) (-5 *4 (-112)) (-5 *1 (-447)))) ((*1 *2 *1) - (-12 (-5 *2 (-1172 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1233)))) + (-12 (-5 *2 (-1173 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1234)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) @@ -7346,266 +7841,243 @@ (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1115)) + (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1116)) (-5 *1 (-685 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1115)) + (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1116)) (-14 *4 - (-1 (-112) (-2 (|:| -2590 *2) (|:| -2017 *3)) - (-2 (|:| -2590 *2) (|:| -2017 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1133)) (-5 *1 (-848)))) + (-1 (-112) (-2 (|:| -2591 *2) (|:| -3139 *3)) + (-2 (|:| -2591 *2) (|:| -3139 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1134)) (-5 *1 (-848)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1233)) (-4 *3 (-1233)))) + (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1234)) (-4 *3 (-1234)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1917 *4)))) - (-4 *4 (-1115)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)))) + (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 *4)))) + (-4 *4 (-1116)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1116)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1115) (-34))) - (-5 *2 (-654 (-1155 *3 *5))) (-5 *1 (-1155 *3 *5)) - (-4 *3 (-13 (-1115) (-34))))) + (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1116) (-34))) + (-5 *2 (-654 (-1156 *3 *5))) (-5 *1 (-1156 *3 *5)) + (-4 *3 (-13 (-1116) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4064 *5)))) - (-4 *4 (-13 (-1115) (-34))) (-4 *5 (-13 (-1115) (-34))) - (-5 *2 (-654 (-1155 *4 *5))) (-5 *1 (-1155 *4 *5)))) + (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4068 *5)))) + (-4 *4 (-13 (-1116) (-34))) (-4 *5 (-13 (-1116) (-34))) + (-5 *2 (-654 (-1156 *4 *5))) (-5 *1 (-1156 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4064 *4))) - (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) - (-5 *1 (-1155 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4068 *4))) + (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))) + (-5 *1 (-1156 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) - (-4 *3 (-13 (-1115) (-34))))) + (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) + (-4 *3 (-13 (-1116) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) - (-4 *3 (-13 (-1115) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) + (-4 *3 (-13 (-1116) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1115) (-34))) - (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))))) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1116) (-34))) + (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1155 *2 *3))) (-4 *2 (-13 (-1115) (-34))) - (-4 *3 (-13 (-1115) (-34))) (-5 *1 (-1156 *2 *3)))) + (-12 (-5 *4 (-654 (-1156 *2 *3))) (-4 *2 (-13 (-1116) (-34))) + (-4 *3 (-13 (-1116) (-34))) (-5 *1 (-1157 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1156 *2 *3))) (-5 *1 (-1156 *2 *3)) - (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) + (-12 (-5 *4 (-654 (-1157 *2 *3))) (-5 *1 (-1157 *2 *3)) + (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) - (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4)))) + (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) + (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1181 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3496 *4))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) + (-12 (-5 *1 (-1182 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-956 (-227)) (-227) (-227))) - (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-1081 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4)) + (-4 *4 (-174))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1126))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) - ((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-372)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) - (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1259 *2)) - (-4 *5 (-1259 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6)) - (-4 *6 (-351 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-372)) (-4 *3 (-1259 *2)) (-4 *4 (-1259 (-417 *3))) - (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) - (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372)) - (-4 *1 (-344 *3 *4 *5 *6))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) + (-12 (-5 *2 (-428 (-1189 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) + (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) + (-4 *2 (-697 *3 *5 *6))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *1 (-974 *2)) (-4 *2 (-555))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858))) - (-5 *2 (-654 (-2 (|:| -4279 (-654 *3)) (|:| -2692 *5)))) - (-5 *1 (-183 *5 *3)) (-4 *3 (-1259 (-171 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-372) (-858))) - (-5 *2 (-654 (-2 (|:| -4279 (-654 *3)) (|:| -2692 *4)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) -(((*1 *1 *1 *1) (-4 *1 (-555)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-858))) - (-5 *2 (-2 (|:| |start| *3) (|:| -4279 (-428 *3)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) + (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) + ((*1 *2 *2) + (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1110 (-227))) + (-5 *2 (-1286)) (-5 *1 (-264))))) (((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-781)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-934)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-935)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-158)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-158)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218))) + (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219))) (-5 *1 (-229 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-302 *2)) (-4 *2 (-1127)) (-4 *2 (-1233)))) + (-12 (-5 *1 (-302 *2)) (-4 *2 (-1128)) (-4 *2 (-1234)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-302 *2)) (-4 *2 (-1127)) (-4 *2 (-1233)))) + (-12 (-5 *1 (-302 *2)) (-4 *2 (-1128)) (-4 *2 (-1234)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1115)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1115)))) + (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1116)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1116)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-860)))) + (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-860)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1115)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) + (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1116)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) - (-4 *6 (-244 (-2876 *3) (-781))) + (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) + (-4 *6 (-244 (-2877 *3) (-781))) (-14 *7 - (-1 (-112) (-2 (|:| -2590 *5) (|:| -2017 *6)) - (-2 (|:| -2590 *5) (|:| -2017 *6)))) + (-1 (-112) (-2 (|:| -2591 *5) (|:| -3139 *6)) + (-2 (|:| -2591 *5) (|:| -3139 *6)))) (-5 *1 (-471 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860)) - (-4 *2 (-962 *4 *6 (-874 *3))))) + (-4 *2 (-963 *4 *6 (-874 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) + (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) ((*1 *1 *1 *1) (-5 *1 (-546))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1127)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1128)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1115)) - (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-1 *7 *5)) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1116)) + (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-1 *7 *5)) (-5 *1 (-694 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1064)) (-4 *2 (-382 *3)) + (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1065)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) + (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) ((*1 *1 *1 *1) (-4 *1 (-730))) ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-566)) - (-5 *1 (-984 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1 *1) (-4 *1 (-1127))) + (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-566)) + (-5 *1 (-985 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1 *1) (-4 *1 (-1128))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1138 *3 *4 *2 *5)) (-4 *4 (-1064)) (-4 *2 (-244 *3 *4)) + (-12 (-4 *1 (-1139 *3 *4 *2 *5)) (-4 *4 (-1065)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1138 *3 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) + (-12 (-4 *1 (-1139 *3 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1064)) (-4 *4 (-860)) (-5 *1 (-1141 *3 *4 *2)) - (-4 *2 (-962 *3 (-541 *4) *4)))) + (-12 (-4 *3 (-1065)) (-4 *4 (-860)) (-5 *1 (-1142 *3 *4 *2)) + (-4 *2 (-963 *3 (-541 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-956 (-227))) (-5 *3 (-227)) (-5 *1 (-1229)))) + (-12 (-5 *2 (-957 (-227))) (-5 *3 (-227)) (-5 *1 (-1230)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-736)))) + (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-736)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-736)))) + (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-736)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-574)) (-4 *1 (-1281 *3)) (-4 *3 (-1233)) (-4 *3 (-21)))) + (-12 (-5 *2 (-574)) (-4 *1 (-1282 *3)) (-4 *3 (-1234)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) + (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) + (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856))))) + (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856))))) (((*1 *1 *2) - (-12 (-5 *2 (-1283 *3)) (-4 *3 (-372)) (-14 *6 (-1283 (-699 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))))) - ((*1 *1 *2) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1233)))) + (-12 (-5 *2 (-1284 *3)) (-4 *3 (-372)) (-14 *6 (-1284 (-699 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))))) + ((*1 *1 *2) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1234)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-348 (-2962 'JINT 'X 'ELAM) (-2962) (-709)))) - (-5 *1 (-61 *3)) (-14 *3 (-1192)))) + (-12 (-5 *2 (-1284 (-348 (-2963 'JINT 'X 'ELAM) (-2963) (-709)))) + (-5 *1 (-61 *3)) (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 'XC) (-709)))) - (-5 *1 (-63 *3)) (-14 *3 (-1192)))) + (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 'XC) (-709)))) + (-5 *1 (-63 *3)) (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 (-2962 'X) (-2962) (-709))) (-5 *1 (-64 *3)) - (-14 *3 (-1192)))) + (-12 (-5 *2 (-348 (-2963 'X) (-2963) (-709))) (-5 *1 (-64 *3)) + (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 (-2962) (-2962 'XC) (-709))) (-5 *1 (-66 *3)) - (-14 *3 (-1192)))) + (-12 (-5 *2 (-348 (-2963) (-2963 'XC) (-709))) (-5 *1 (-66 *3)) + (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-348 (-2962 'X) (-2962 '-1890) (-709)))) - (-5 *1 (-71 *3)) (-14 *3 (-1192)))) + (-12 (-5 *2 (-1284 (-348 (-2963 'X) (-2963 '-1889) (-709)))) + (-5 *1 (-71 *3)) (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 'X) (-709)))) - (-5 *1 (-74 *3)) (-14 *3 (-1192)))) + (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 'X) (-709)))) + (-5 *1 (-74 *3)) (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-348 (-2962 'X 'EPS) (-2962 '-1890) (-709)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1192)) (-14 *4 (-1192)) - (-14 *5 (-1192)))) + (-12 (-5 *2 (-1284 (-348 (-2963 'X 'EPS) (-2963 '-1889) (-709)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1193)) (-14 *4 (-1193)) + (-14 *5 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-348 (-2962 'EPS) (-2962 'YA 'YB) (-709)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1192)) (-14 *4 (-1192)) - (-14 *5 (-1192)))) + (-12 (-5 *2 (-1284 (-348 (-2963 'EPS) (-2963 'YA 'YB) (-709)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1193)) (-14 *4 (-1193)) + (-14 *5 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 (-2962) (-2962 'X) (-709))) (-5 *1 (-77 *3)) - (-14 *3 (-1192)))) + (-12 (-5 *2 (-348 (-2963) (-2963 'X) (-709))) (-5 *1 (-77 *3)) + (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 (-2962) (-2962 'X) (-709))) (-5 *1 (-78 *3)) - (-14 *3 (-1192)))) + (-12 (-5 *2 (-348 (-2963) (-2963 'X) (-709))) (-5 *1 (-78 *3)) + (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 'XC) (-709)))) - (-5 *1 (-79 *3)) (-14 *3 (-1192)))) + (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 'XC) (-709)))) + (-5 *1 (-79 *3)) (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 'X) (-709)))) - (-5 *1 (-80 *3)) (-14 *3 (-1192)))) + (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 'X) (-709)))) + (-5 *1 (-80 *3)) (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-348 (-2962 'X '-1890) (-2962) (-709)))) - (-5 *1 (-82 *3)) (-14 *3 (-1192)))) + (-12 (-5 *2 (-1284 (-348 (-2963 'X '-1889) (-2963) (-709)))) + (-5 *1 (-82 *3)) (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-699 (-348 (-2962 'X '-1890) (-2962) (-709)))) - (-5 *1 (-83 *3)) (-14 *3 (-1192)))) + (-12 (-5 *2 (-699 (-348 (-2963 'X '-1889) (-2963) (-709)))) + (-5 *1 (-83 *3)) (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-699 (-348 (-2962 'X) (-2962) (-709)))) (-5 *1 (-84 *3)) - (-14 *3 (-1192)))) + (-12 (-5 *2 (-699 (-348 (-2963 'X) (-2963) (-709)))) (-5 *1 (-84 *3)) + (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-348 (-2962 'X) (-2962) (-709)))) - (-5 *1 (-85 *3)) (-14 *3 (-1192)))) + (-12 (-5 *2 (-1284 (-348 (-2963 'X) (-2963) (-709)))) + (-5 *1 (-85 *3)) (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-348 (-2962 'X) (-2962 '-1890) (-709)))) - (-5 *1 (-86 *3)) (-14 *3 (-1192)))) + (-12 (-5 *2 (-1284 (-348 (-2963 'X) (-2963 '-1889) (-709)))) + (-5 *1 (-86 *3)) (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-699 (-348 (-2962 'XL 'XR 'ELAM) (-2962) (-709)))) - (-5 *1 (-87 *3)) (-14 *3 (-1192)))) + (-12 (-5 *2 (-699 (-348 (-2963 'XL 'XR 'ELAM) (-2963) (-709)))) + (-5 *1 (-87 *3)) (-14 *3 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 (-2962 'X) (-2962 '-1890) (-709))) (-5 *1 (-89 *3)) - (-14 *3 (-1192)))) + (-12 (-5 *2 (-348 (-2963 'X) (-2963 '-1889) (-709))) (-5 *1 (-89 *3)) + (-14 *3 (-1193)))) ((*1 *1 *2) (-12 (-5 *2 (-654 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) @@ -7613,33 +8085,33 @@ (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) ((*1 *1 *2) - (-12 (-5 *2 (-1157 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) + (-12 (-5 *2 (-1158 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) ((*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) ((*1 *2 *3) - (-12 (-5 *3 (-1283 (-699 *4))) (-4 *4 (-174)) - (-5 *2 (-1283 (-699 (-417 (-965 *4))))) (-5 *1 (-191 *4)))) + (-12 (-5 *3 (-1284 (-699 *4))) (-4 *4 (-174)) + (-5 *2 (-1284 (-699 (-417 (-966 *4))))) (-5 *1 (-191 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1107 (-324 *4))) - (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1107 (-388))) + (-12 (-5 *3 (-1108 (-324 *4))) + (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1108 (-388))) (-5 *1 (-265 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) ((*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) ((*1 *2 *1) - (-12 (-4 *2 (-1259 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1260 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1268 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) - (-14 *5 (-1192)) (-14 *6 *4) - (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) + (-12 (-5 *2 (-1269 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3))) + (-14 *5 (-1193)) (-14 *6 *4) + (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) (-5 *1 (-321 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-324 *5)) (-5 *1 (-348 *3 *4 *5)) - (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *3 *4 *2)) (-4 *3 (-337 *4)))) @@ -7648,93 +8120,93 @@ (-4 *3 (-337 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) - (-5 *2 (-1307 *3 *4)))) + (-5 *2 (-1308 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) - (-5 *2 (-1298 *3 *4)))) + (-5 *2 (-1299 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) + (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-699 (-709))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) + (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-393)))) ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-393)))) ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-393)))) - ((*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1115)))) + ((*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1116)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) + (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-406)))) ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-406)))) ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-406)))) ((*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-171 (-388))))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-574)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-704)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-709)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-711)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) - (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) - (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) + (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) + (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) - (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) - (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) + (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) + (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-339 *4)) (-4 *4 (-13 (-860) (-21))) (-5 *1 (-437 *3 *4)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))))) @@ -7742,80 +8214,80 @@ (-12 (-5 *1 (-437 *2 *3)) (-4 *2 (-13 (-174) (-38 (-417 (-574))))) (-4 *3 (-13 (-860) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-417 (-965 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1115)) + (-12 (-5 *2 (-417 (-966 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-965 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1115)) + (-12 (-5 *2 (-966 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1115)) + (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1140 *3 (-622 *1))) (-4 *3 (-1064)) (-4 *3 (-1115)) + (-12 (-5 *2 (-1141 *3 (-622 *1))) (-4 *3 (-1065)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-444)))) - ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-444)))) + ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-444)))) + ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-444)))) ((*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-447)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) + (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-450)))) ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-450)))) ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-450)))) - ((*1 *1 *2) (-12 (-5 *2 (-1283 (-709))) (-4 *1 (-450)))) + ((*1 *1 *2) (-12 (-5 *2 (-1284 (-709))) (-4 *1 (-450)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2058 (-654 (-338))))) + (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-451)))) ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-451)))) ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-451)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-417 (-965 *3)))) (-4 *3 (-174)) - (-14 *6 (-1283 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-14 *4 (-934)) (-14 *5 (-654 (-1192))))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478)))) + (-12 (-5 *2 (-1284 (-417 (-966 *3)))) (-4 *3 (-174)) + (-14 *6 (-1284 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-14 *4 (-935)) (-14 *5 (-654 (-1193))))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478)))) ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-478)))) ((*1 *1 *2) - (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-1192)) + (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3) (-5 *1 (-484 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) - ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-512)))) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-512)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-534)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-616)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-534)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-616)))) ((*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-617 *3 *2)) (-4 *2 (-754 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1233)))) - ((*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1233)))) - ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1064)))) + ((*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1065)))) ((*1 *2 *1) - (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) + (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) ((*1 *2 *1) - (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) + (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) ((*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-645 *3 *2)) (-4 *2 (-754 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) ((*1 *2 *1) - (-12 (-5 *2 (-971 (-971 (-971 *3)))) (-5 *1 (-685 *3)) - (-4 *3 (-1115)))) + (-12 (-5 *2 (-972 (-972 (-972 *3)))) (-5 *1 (-685 *3)) + (-4 *3 (-1116)))) ((*1 *1 *2) - (-12 (-5 *2 (-971 (-971 (-971 *3)))) (-4 *3 (-1115)) + (-12 (-5 *2 (-972 (-972 (-972 *3)))) (-4 *3 (-1116)) (-5 *1 (-685 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) - ((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-691)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-691)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1116)))) ((*1 *1 *2) - (-12 (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3)) + (-12 (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))) ((*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-704)))) @@ -7826,7 +8298,7 @@ ((*1 *2 *1) (-12 (-5 *2 (-388)) (-5 *1 (-709)))) ((*1 *2 *3) (-12 (-5 *3 (-324 (-574))) (-5 *2 (-324 (-711))) (-5 *1 (-711)))) - ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720)))) + ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))) ((*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) @@ -7836,46 +8308,46 @@ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-2 (|:| -1867 *3) (|:| -3805 *4)))) - (-4 *3 (-1064)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4)))) + (-12 (-5 *2 (-654 (-2 (|:| -1866 *3) (|:| -3806 *4)))) + (-4 *3 (-1065)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-773)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) - (|:| -3362 (-654 (-1109 (-853 (-227))))) + (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) - (|:| -3362 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) + (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) - ((*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1233)))) + ((*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1234)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-834)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-834)))) ((*1 *1 *2) (-12 (-5 *2 @@ -7904,9 +8376,9 @@ ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) ((*1 *2 *3) - (-12 (-5 *3 (-965 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))) + (-12 (-5 *3 (-966 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))) ((*1 *2 *3) - (-12 (-5 *3 (-417 (-965 (-48)))) (-5 *2 (-324 (-574))) + (-12 (-5 *3 (-417 (-966 (-48)))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))) ((*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) @@ -7919,483 +8391,542 @@ (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) - (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) + (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *1 (-911)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-918 *3))) (-4 *3 (-1115)) (-5 *1 (-917 *3)))) + (-12 (-5 *2 (-654 (-919 *3))) (-4 *3 (-1116)) (-5 *1 (-918 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) + (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-919 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-927 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) + (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-928 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315)))) ((*1 *2 *3) - (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-932 *4)) + (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-933 *4)) (-4 *4 (-566)))) - ((*1 *2 *3) (-12 (-5 *2 (-1288)) (-5 *1 (-1048 *3)) (-4 *3 (-1233)))) - ((*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1048 *2)) (-4 *2 (-1233)))) + ((*1 *2 *3) (-12 (-5 *2 (-1289)) (-5 *1 (-1049 *3)) (-4 *3 (-1234)))) + ((*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1049 *2)) (-4 *2 (-1234)))) ((*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-1049 *3 *4 *5 *2 *6)) (-4 *2 (-962 *3 *4 *5)) + (-5 *1 (-1050 *3 *4 *5 *2 *6)) (-4 *2 (-963 *3 *4 *5)) (-14 *6 (-654 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-1058 *3)) (-4 *3 (-566)))) + (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-1059 *3)) (-4 *3 (-566)))) ((*1 *1 *2) - (-12 (-4 *3 (-1064)) (-4 *4 (-860)) (-5 *1 (-1141 *3 *4 *2)) - (-4 *2 (-962 *3 (-541 *4) *4)))) + (-12 (-4 *3 (-1065)) (-4 *4 (-860)) (-5 *1 (-1142 *3 *4 *2)) + (-4 *2 (-963 *3 (-541 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1064)) (-4 *2 (-860)) (-5 *1 (-1141 *3 *2 *4)) - (-4 *4 (-962 *3 (-541 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1159)))) + (-12 (-4 *3 (-1065)) (-4 *2 (-860)) (-5 *1 (-1142 *3 *2 *4)) + (-4 *4 (-963 *3 (-541 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-872)))) + ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1160)))) ((*1 *2 *3) - (-12 (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1064)))) + (-12 (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-1065)))) ((*1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3))) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3))) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1064)) (-14 *4 (-1192)) - (-14 *5 *3) (-5 *1 (-1190 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1191)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205 (-1192) (-447))) (-5 *1 (-1196)))) - ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1197)))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1197)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1197)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1197)))) - ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1204 *3)) (-4 *3 (-1115)))) - ((*1 *2 *3) (-12 (-5 *2 (-1213)) (-5 *1 (-1212 *3)) (-4 *3 (-1115)))) + (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1065)) (-14 *4 (-1193)) + (-14 *5 *3) (-5 *1 (-1191 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1192)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206 (-1193) (-447))) (-5 *1 (-1197)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1198)))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1198)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1198)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1198)))) + ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1205 *3)) (-4 *3 (-1116)))) + ((*1 *2 *3) (-12 (-5 *2 (-1214)) (-5 *1 (-1213 *3)) (-4 *3 (-1116)))) ((*1 *1 *2) - (-12 (-5 *2 (-965 *3)) (-4 *3 (-1064)) (-5 *1 (-1227 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1227 *3)) (-4 *3 (-1064)))) + (-12 (-5 *2 (-966 *3)) (-4 *3 (-1065)) (-5 *1 (-1228 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1228 *3)) (-4 *3 (-1065)))) ((*1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3))) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1109 *3)) (-4 *3 (-1233)) (-5 *1 (-1250 *3)))) + (-12 (-5 *2 (-1110 *3)) (-4 *3 (-1234)) (-5 *1 (-1251 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) - (-4 *3 (-1064)) (-14 *5 *3))) + (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5)) + (-4 *3 (-1065)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1064)) (-14 *4 (-1192)) - (-14 *5 *3) (-5 *1 (-1275 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1279 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1284)))) - ((*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1284)) (-5 *1 (-1287)))) + (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1065)) (-14 *4 (-1193)) + (-14 *5 *3) (-5 *1 (-1276 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1280 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1285)))) + ((*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1285)) (-5 *1 (-1288)))) ((*1 *1 *2) - (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) + (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) ((*1 *2 *1) - (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) + (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) ((*1 *2 *1) - (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) + (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) ((*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) - (-5 *1 (-1303 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1050)) (-5 *1 (-758))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4)) - (-5 *1 (-429 *4)))) - ((*1 *1 *1) (-5 *1 (-939))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) - ((*1 *1 *1) (-5 *1 (-940))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) - (-5 *4 (-417 (-574))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) - (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) - (-5 *4 (-417 (-574))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) - (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) - (-4 *3 (-1259 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1283 (-324 (-227)))) - (-5 *2 - (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) - (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574)))) - (-5 *1 (-313))))) + (-5 *1 (-1304 *3 *4))))) +(((*1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1219))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-839))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) + (-5 *2 (-1289)) (-5 *1 (-1196)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1193)) + (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *2 (-1289)) + (-5 *1 (-1196)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1193)) + (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *2 (-1289)) + (-5 *1 (-1196))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-417 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-566)) - (-4 *4 (-1064)) (-4 *2 (-1274 *4)) (-5 *1 (-1277 *4 *5 *6 *2)) - (-4 *6 (-666 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) - (-5 *2 (-654 (-654 (-654 (-956 *3)))))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589))))) + (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1260 *4)) (-5 *1 (-820 *4 *2)) + (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1260 *4)) + (-5 *1 (-820 *4 *2)) + (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) + (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6))) + (-5 *1 (-638 *5 *6))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) + (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) + (-4 *2 (-697 *3 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-992 *3 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064))))) + (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) + (-5 *1 (-178 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-1259 (-417 *3))) (-5 *2 (-934)) - (-5 *1 (-926 *4 *5)) (-4 *5 (-1259 (-417 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-417 (-966 *6)) (-1182 (-1193) (-966 *6)))) + (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *6))))) + (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-966 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-417 (-966 *5)) (-1182 (-1193) (-966 *5)))) + (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4)))) + (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *5))))) + (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-966 *5))))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-935)) (-5 *4 (-884)) (-5 *2 (-1289)) (-5 *1 (-1285)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-1193)) (-4 *6 (-440 *5)) + (-4 *5 (-1116)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6))))) (((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) ((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1226 *2 *3 *4 *5)) (-4 *2 (-566)) - (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1080 *2 *3 *4)))) + (|partial| -12 (-4 *1 (-1227 *2 *3 *4 *5)) (-4 *2 (-566)) + (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1081 *2 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) - ((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) + (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) + ((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) (((*1 *1 *1 *1) (-4 *1 (-671)))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-934) (-934)))) (-5 *1 (-986))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1064)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1192))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-654 (-934))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5)) - (-14 *4 (-934)) (-14 *5 (-1008 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-132)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1064)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) - (-4 *4 (-1259 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1064)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1064)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) - (-4 *4 (-1064)) (-4 *5 (-860)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1064)) - (-4 *2 (-860)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1064)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-962 *4 *5 *6)) - (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-962 *4 *5 *2)) (-4 *4 (-1064)) - (-4 *5 (-803)) (-4 *2 (-860)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *2 (-962 *4 (-541 *5) *5)) - (-5 *1 (-1141 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-860)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-965 *4)) (-5 *1 (-1227 *4)) - (-4 *4 (-1064))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) - (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4095 (-654 *9)) (|:| -4064 *4) (|:| |ineq| (-654 *9)))) - (-5 *1 (-1003 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) - (-4 *4 (-1086 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) - (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4095 (-654 *9)) (|:| -4064 *4) (|:| |ineq| (-654 *9)))) - (-5 *1 (-1122 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) - (-4 *4 (-1086 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4200 *3) (|:| -3584 *4)))) - (-5 *1 (-706 *3)) (-4 *3 (-1259 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-596 *3) *3 (-1193))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1193))) + (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1054 *4)) (-4 *3 (-440 *7)) + (-5 *4 (-1193)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462)) + (-4 *7 (-897 (-574))) (-4 *7 (-1116)) (-5 *2 (-596 *3)) + (-5 *1 (-583 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1081 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1081 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1161 *6 *7 *8 *3 *4)) (-4 *4 (-1125 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1198))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *2 (-1051)) (-5 *1 (-764))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-574)) (-5 *1 (-247)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-574)) (-5 *1 (-247))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1234)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-59 *3))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3)) + (-4 *3 (-1116))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1065)) (-4 *2 (-697 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1260 *4)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1115)) (-4 *3 (-860)) - (-4 *2 (-1233)))) + (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1116)) (-4 *3 (-860)) + (-4 *2 (-1234)))) ((*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) ((*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) ((*1 *2 *1) - (-12 (-4 *2 (-1233)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1233)))) + (-12 (-4 *2 (-1234)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1234)))) ((*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) - ((*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) + (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) + ((*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-872)))) ((*1 *2 *1) - (-12 (-5 *2 (-1157 *3 *4)) (-5 *1 (-1008 *3 *4)) (-14 *3 (-934)) + (-12 (-5 *2 (-1158 *3 *4)) (-5 *1 (-1009 *3 *4)) (-14 *3 (-935)) (-4 *4 (-372)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1064)) - (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) + (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1065)) + (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) (((*1 *1 *1 *1) (-4 *1 (-671)))) -(((*1 *1 *2) - (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3)) - (-4 *3 (-13 (-414) (-1218))))) - ((*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) - (-5 *2 (-428 (-1188 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3)) - (-4 *3 (-1259 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1259 *4)) (-4 *4 (-1237)) - (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1259 (-417 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1283 *1)) (-4 *4 (-174)) - (-4 *1 (-376 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1283 *1)) (-4 *4 (-174)) - (-4 *1 (-379 *4 *5)) (-4 *5 (-1259 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) - (-4 *4 (-1259 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-1296 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1296 *5 *6 *7 *8))))) -(((*1 *2) - (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-922)) - (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-962 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-922)) - (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-922)) (-5 *1 (-920 *2 *3)) (-4 *3 (-1259 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-624 (-903 (-574)))) - (-4 *5 (-897 (-574))) - (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) - (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) + (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-699 (-417 (-966 *4)))) (-4 *4 (-462)) + (-5 *2 (-654 (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4))))) + (-5 *1 (-300 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-428 *6)) (-4 *6 (-1259 *5)) - (-4 *5 (-1064)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6))))) + (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1193))) (-4 *6 (-462)) + (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7)) + (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) + ((*1 *2 *3) + (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) + ((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1) (-4 *1 (-879 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-802)) + (-4 *4 (-860))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1218) (-1017)))))) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)) + (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372)) + (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1260 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1064)) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1065)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-862 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-699 *3)) (-4 *1 (-427 *3)) (-4 *3 (-174)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1064)) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1065)) (-5 *1 (-863 *2 *3)) (-4 *3 (-862 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1192)) (-5 *2 (-622 *6)) - (-4 *6 (-440 *5)) (-4 *5 (-1115)) (-5 *1 (-583 *5 *6))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1115) (-34))) (-4 *6 (-13 (-1115) (-34))) - (-5 *2 (-112)) (-5 *1 (-1155 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-516)) (-5 *2 (-654 (-978))) (-5 *1 (-299))))) +(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) + ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287))))) (((*1 *2 *3) - (-12 (-14 *4 (-654 (-1192))) (-14 *5 (-781)) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) + (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) + (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) + (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1161 *5 *6 *7 *8 *9))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-1224 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1116))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1219) (-440 *5))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 - (-654 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574)))))) - (-5 *1 (-515 *4 *5)) - (-5 *3 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574)))))))) + (-3 (-853 *3) + (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) + (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) + "failed")) + (-5 *1 (-646 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1175)) + (-4 *3 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-302 (-853 (-966 *5)))) (-4 *5 (-462)) + (-5 *2 + (-3 (-853 (-417 (-966 *5))) + (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-853 (-417 (-966 *5))) "failed"))) + "failed")) + (-5 *1 (-647 *5)) (-5 *3 (-417 (-966 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-302 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5))) + (-4 *5 (-462)) + (-5 *2 + (-3 (-853 *3) + (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) + (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) + "failed")) + (-5 *1 (-647 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-302 (-417 (-966 *6)))) (-5 *5 (-1175)) + (-5 *3 (-417 (-966 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3)) + (-5 *1 (-647 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1238)) (-4 *5 (-1260 *3)) (-4 *6 (-1260 (-417 *5))) + (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-1064)) - (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) - (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4))))) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) + (-5 *2 (-966 *5)) (-5 *1 (-958 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1115)) (-4 *5 (-1115)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) - ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559))))) + (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-171 (-324 *4))) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *2 (-171 *3)) (-5 *1 (-1223 *4 *3)) + (-4 *3 (-13 (-27) (-1219) (-440 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-654 *5) *6)) + (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) + (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4094 *3)))) + (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) + (-4 *7 (-666 (-417 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-654 *5) *6)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-4 *6 (-1260 *5)) + (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4094 (-664 *6 (-417 *6)))))) + (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1054 (-574))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1234)) (-5 *2 (-781)) + (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1116)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4)) + (-4 *3 (-440 *4)))) + ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555)))) + ((*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4)) + (-4 *3 (-807 *4)))) + ((*1 *2) + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1007 *3 *4)) + (-4 *3 (-1008 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1012 *3 *4)) + (-4 *3 (-1013 *4)))) + ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1027 *3)) (-4 *3 (-1028)))) + ((*1 *2) (-12 (-4 *1 (-1065)) (-5 *2 (-781)))) + ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1075 *3)) (-4 *3 (-1076))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1198)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1198))) (-5 *1 (-1198))))) +(((*1 *1) (-4 *1 (-983)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1289)) (-5 *1 (-841))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-1283 (-699 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-699 *4)) (-4 *5 (-666 *4))))) + (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1260 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) + (-4 *3 (-1260 (-574))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) + (-4 *3 (-1260 (-574))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) + (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) + (-4 *3 (-1260 (-574))))) + ((*1 *2 *3) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-1023 *3)) + (-4 *3 (-1260 (-417 (-574)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574)))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1288)) - (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1233)) (-5 *2 (-654 *1)) (-4 *1 (-1025 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270))))) -(((*1 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23))))) -(((*1 *1) (-4 *1 (-982)))) -(((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1259 *4)) - (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1259 *5)) (-14 *6 (-934)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) - ((*1 *1 *1) (-12 (-4 *1 (-1302 *2)) (-4 *2 (-372)) (-4 *2 (-377))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1064)) - (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-862 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1064)) - (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-863 *5 *3)) - (-4 *3 (-862 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-757))))) + (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) + (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) + (-4 *3 (-697 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) + (-5 *2 (-781))))) +(((*1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1217))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) (((*1 *1 *1) (-4 *1 (-671)))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1115))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566)) - (-4 *7 (-962 *3 *5 *6)) - (-5 *2 (-2 (|:| -2017 (-781)) (|:| -1867 *8) (|:| |radicand| *8))) - (-5 *1 (-966 *5 *6 *3 *7 *8)) (-5 *4 (-781)) - (-4 *8 - (-13 (-372) - (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $)))))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1116))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941)) + (-5 *1 (-939 *3)) (-4 *3 (-624 (-546))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) (-5 *2 (-941)) (-5 *1 (-939 *3)) + (-4 *3 (-624 (-546))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-941)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) + (-5 *1 (-941))))) (((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) ((*1 *1 *1 *1) (-4 *1 (-462))) ((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1259 (-574))))) + (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1260 (-574))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3)))) + (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3)))) ((*1 *1 *1 *1) (-5 *1 (-781))) ((*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) - (-5 *1 (-929 *3 *4 *5 *2)) (-4 *2 (-962 *5 *3 *4)))) + (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-963 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *6 *4 *5)) - (-5 *1 (-929 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *6 *4 *5)) + (-5 *1 (-930 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1188 *7))) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-315)) (-5 *2 (-1188 *7)) (-5 *1 (-929 *4 *5 *6 *7)) - (-4 *7 (-962 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-934))) + (-12 (-5 *3 (-654 (-1189 *7))) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-315)) (-5 *2 (-1189 *7)) (-5 *1 (-930 *4 *5 *6 *7)) + (-4 *7 (-963 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-935))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) - (-4 *2 (-1259 *3)))) + (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) + (-4 *2 (-1260 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) -(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) + (-4 *5 (-1260 *4)) + (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4094 *5)))) + (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5)) + (-4 *6 (-666 (-417 *5)))))) +(((*1 *1 *1) (-4 *1 (-566)))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1076)) (-4 *3 (-1219)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1233)) - (-4 *2 (-1233)) (-5 *1 (-58 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1234)) + (-4 *2 (-1234)) (-5 *1 (-58 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1115)) (|has| *1 (-6 -4458)) - (-4 *1 (-152 *2)) (-4 *2 (-1233)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1116)) (|has| *1 (-6 -4459)) + (-4 *1 (-152 *2)) (-4 *2 (-1234)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) - (-4 *2 (-1233)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) + (-4 *2 (-1234)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) - (-4 *2 (-1233)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) + (-4 *2 (-1234)))) ((*1 *2 *3) - (-12 (-4 *4 (-1064)) - (-5 *2 (-2 (|:| -3038 (-1188 *4)) (|:| |deg| (-934)))) - (-5 *1 (-223 *4 *5)) (-5 *3 (-1188 *4)) (-4 *5 (-566)))) + (-12 (-4 *4 (-1065)) + (-5 *2 (-2 (|:| -3374 (-1189 *4)) (|:| |deg| (-935)))) + (-5 *1 (-223 *4 *5)) (-5 *3 (-1189 *4)) (-4 *5 (-566)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) - (-4 *6 (-1233)) (-4 *2 (-1233)) (-5 *1 (-245 *5 *6 *2)))) + (-4 *6 (-1234)) (-4 *2 (-1234)) (-5 *1 (-245 *5 *6 *2)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-297 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1259 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-4 *2 (-1260 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1115)))) + ((*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1116)))) ((*1 *1 *1) - (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1259 *2)) - (-4 *4 (-1259 (-417 *3))) (-4 *5 (-351 *2 *3 *4)))) + (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1260 *2)) + (-4 *4 (-1260 (-417 *3))) (-4 *5 (-351 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1233)) (-4 *2 (-1233)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-380 *5 *4 *2 *6)) (-4 *4 (-382 *5)) (-4 *6 (-382 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1115)) (-4 *2 (-1115)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1116)) (-4 *2 (-1116)) (-5 *1 (-433 *5 *4 *2 *6)) (-4 *4 (-435 *5)) (-4 *6 (-435 *2)))) ((*1 *1 *1) (-5 *1 (-505))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1233)) - (-4 *2 (-1233)) (-5 *1 (-652 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1234)) + (-4 *2 (-1234)) (-5 *1 (-652 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1064)) (-4 *2 (-1064)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1065)) (-4 *2 (-1065)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *8 (-382 *2)) (-4 *9 (-382 *2)) (-5 *1 (-695 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-697 *5 *6 *7)) (-4 *10 (-697 *2 *8 *9)))) @@ -8404,985 +8935,1106 @@ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1064)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1259 *3)))) + (-12 (-4 *3 (-1065)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1260 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-372)) + (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-372)) (-4 *3 (-174)) (-4 *1 (-734 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1259 *3)))) + (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1260 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-971 *5)) (-4 *5 (-1233)) - (-4 *2 (-1233)) (-5 *1 (-970 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-972 *5)) (-4 *5 (-1234)) + (-4 *2 (-1234)) (-5 *1 (-971 *5 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-1049 *3 *4 *5 *2 *6)) (-4 *2 (-962 *3 *4 *5)) + (-5 *1 (-1050 *3 *4 *5 *2 *6)) (-4 *2 (-963 *3 *4 *5)) (-14 *6 (-654 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1064)) (-4 *2 (-1064)) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1065)) (-4 *2 (-1065)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) - (-5 *1 (-1070 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1068 *5 *6 *7 *8 *9)) (-4 *12 (-1068 *5 *6 *2 *10 *11)))) + (-5 *1 (-1071 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1069 *5 *6 *7 *8 *9)) (-4 *12 (-1069 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1172 *5)) (-4 *5 (-1233)) - (-4 *2 (-1233)) (-5 *1 (-1170 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1173 *5)) (-4 *5 (-1234)) + (-4 *2 (-1234)) (-5 *1 (-1171 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1226 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803)) - (-4 *7 (-860)) (-4 *2 (-1080 *5 *6 *7)))) + (-4 *1 (-1227 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803)) + (-4 *7 (-860)) (-4 *2 (-1081 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1283 *5)) (-4 *5 (-1233)) - (-4 *2 (-1233)) (-5 *1 (-1282 *5 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) - (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) - (-4 *4 (-13 (-1115) (-34)))))) -(((*1 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) - (-5 *2 (-1050)) (-5 *1 (-755))))) -(((*1 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-34)) (-5 *2 (-781)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1284 *5)) (-4 *5 (-1234)) + (-4 *2 (-1234)) (-5 *1 (-1283 *5 *2))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1196)))) + ((*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) + (-5 *2 (-1051)) (-5 *1 (-764))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) + (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-767))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-765))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-34)) (-5 *2 (-781)))) ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-256)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-986)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-987)))) ((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-574)))) + (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-574)))) ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) + (-12 (-5 *2 (-781)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-856))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1233)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1233)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1283 (-709))) (-5 *1 (-313))))) -(((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-965 (-574))))) - (-5 *2 - (-654 - (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) - (|:| |radvect| (-654 (-699 (-324 (-574)))))))) - (-5 *1 (-1046))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))) + (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1116)) (-5 *2 (-55))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-315)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-654 (-956 (-227))))) - (-5 *2 (-654 (-1109 (-227)))) (-5 *1 (-941))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-1284)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1192)) - (-4 *5 (-13 (-566) (-1053 (-574)) (-148))) - (-5 *2 - (-2 (|:| -3766 (-417 (-965 *5))) (|:| |coeff| (-417 (-965 *5))))) - (-5 *1 (-580 *5)) (-5 *3 (-417 (-965 *5)))))) + (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-972 (-1136))) + (-5 *1 (-355 *4))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1218))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-1188 (-417 (-1188 *6)))) (-5 *1 (-570 *5 *6 *7)) - (-5 *3 (-1188 *6)) (-4 *7 (-1115)))) + (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1219))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-1189 (-417 (-1189 *6)))) (-5 *1 (-570 *5 *6 *7)) + (-5 *3 (-1189 *6)) (-4 *7 (-1116)))) ((*1 *2 *1) - (-12 (-4 *2 (-1259 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1064)))) + (-12 (-4 *2 (-1260 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1065)))) ((*1 *2 *1) - (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) + (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1188 *11)) (-5 *6 (-654 *10)) + (|partial| -12 (-5 *4 (-1189 *11)) (-5 *6 (-654 *10)) (-5 *7 (-654 (-781))) (-5 *8 (-654 *11)) (-4 *10 (-860)) - (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-962 *11 *9 *10)) - (-5 *2 (-654 (-1188 *5))) (-5 *1 (-752 *9 *10 *11 *5)) - (-5 *3 (-1188 *5)))) + (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-963 *11 *9 *10)) + (-5 *2 (-654 (-1189 *5))) (-5 *1 (-752 *9 *10 *11 *5)) + (-5 *3 (-1189 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-962 *3 *4 *5)) (-5 *1 (-1049 *3 *4 *5 *2 *6)) + (-12 (-4 *2 (-963 *3 *4 *5)) (-5 *1 (-1050 *3 *4 *5 *2 *6)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-14 *6 (-654 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1154)))) -(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174))))) -(((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) - ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1065)) (-5 *1 (-1256 *3 *2)) (-4 *2 (-1260 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) + ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-757))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1233)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1233)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-935)) (-5 *1 (-796))))) (((*1 *2 *3) - (-12 (-4 *4 (-358)) - (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -3281 *3)))) - (-5 *1 (-218 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) - (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-927 *3)) (-4 *3 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-860)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860))))) -(((*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872))))) -(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227))) - (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112)) - (-5 *2 (-1050)) (-5 *1 (-764))))) + (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| -1866 *4) (|:| -3901 *3) (|:| -1880 *3))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-1081 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-566)) (-4 *3 (-1065)) + (-5 *2 (-2 (|:| -1866 *3) (|:| -3901 *1) (|:| -1880 *1))) + (-4 *1 (-1260 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193)) (-4 *5 (-372)) (-5 *2 (-1173 (-1173 (-966 *5)))) + (-5 *1 (-1292 *5)) (-5 *4 (-1173 (-966 *5)))))) +(((*1 *1) (-5 *1 (-833)))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1234)) (-5 *1 (-184 *3 *2)) + (-4 *2 (-684 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1233))))) + (-12 (-5 *2 (-1251 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1234))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1065))))) (((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) + (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *2 (-566)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-566))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) + (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-566)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-781))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-566)))) + (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))) ((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-566)) - (-5 *1 (-984 *3 *4)))) + (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-566)) + (-5 *1 (-985 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1068 *3 *4 *2 *5 *6)) (-4 *2 (-1064)) + (|partial| -12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *2 (-1065)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-566)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1050)) (-5 *3 (-1192)) (-5 *1 (-194))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1155 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1115) (-34))) (-4 *5 (-13 (-1115) (-34))) - (-5 *1 (-1156 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-654 (-1155 *3 *4))) (-4 *3 (-13 (-1115) (-34))) - (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4))))) + (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1284 *5)) (-5 *3 (-781)) (-5 *4 (-1136)) (-4 *5 (-358)) + (-5 *1 (-538 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-478)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-654 (-1189 *7))) (-5 *3 (-1189 *7)) + (-4 *7 (-963 *5 *6 *4)) (-4 *5 (-923)) (-4 *6 (-803)) + (-4 *4 (-860)) (-5 *1 (-920 *5 *6 *4 *7))))) (((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) ((*1 *1 *1 *1) (-4 *1 (-462)))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1050)) (-5 *1 (-762))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2191 (-654 *1)))) - (-4 *1 (-376 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-463 *3 *4 *5 *6)) - (|:| -2191 (-654 (-463 *3 *4 *5 *6))))) - (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-813))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) - (-5 *1 (-1191))))) -(((*1 *2) - (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) - (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6)) - (-4 *3 (-351 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-781)) (-5 *3 (-956 *4)) (-4 *1 (-1149 *4)) - (-4 *4 (-1064)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-956 (-227))) (-5 *2 (-1288)) - (-5 *1 (-1285))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315)) - (-5 *1 (-181 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 *8)) - (-5 *4 - (-654 - (-2 (|:| -2191 (-699 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-699 *7))))) - (-5 *5 (-781)) (-4 *8 (-1259 *7)) (-4 *7 (-1259 *6)) (-4 *6 (-358)) - (-5 *2 - (-2 (|:| -2191 (-699 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-699 *7)))) - (-5 *1 (-508 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-158)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3)))) - (-5 *1 (-829 *3)) (-4 *3 (-860)))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1174)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-270))))) + (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) + (-5 *1 (-1192))))) +(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574)))) + (-5 *2 (-1284 (-574))) (-5 *1 (-1312 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1116))))) (((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) - (-5 *2 (-654 *3)))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) ((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) - (-5 *2 (-654 *3)))) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) + (-4 *3 (-566)))) + ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) ((*1 *2 *1) - (-12 (-5 *2 (-1172 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) + (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) ((*1 *2 *1) - (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-736)))) - ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-654 *3)))) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) + (-4 *3 (-1116)))) ((*1 *2 *1) - (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1064)) (-5 *2 (-1172 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1218) (-440 *3))) - (-14 *4 (-1192)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-4 *2 (-13 (-27) (-1218) (-440 *3) (-10 -8 (-15 -2950 ($ *4))))) - (-4 *4 (-858)) - (-4 *5 - (-13 (-1261 *2 *4) (-372) (-1218) - (-10 -8 (-15 -3878 ($ $)) (-15 -1578 ($ $))))) - (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-998 *5)) (-14 *7 (-1192))))) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) + (-4 *3 (-1116)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1024 *3)) (-4 *3 (-1054 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3)))) + (-5 *1 (-829 *3)) (-4 *3 (-860)))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1065)) + (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) + (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) + (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) + (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) ((*1 *1) (-4 *1 (-377))) ((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) + (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) ((*1 *1 *1) (-4 *1 (-555))) ((*1 *1) (-4 *1 (-555))) ((*1 *1 *1) (-5 *1 (-781))) - ((*1 *2 *1) (-12 (-5 *2 (-918 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) (-12 (-5 *2 (-919 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-918 *4)) (-5 *1 (-917 *4)) - (-4 *4 (-1115)))) - ((*1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-555)) (-4 *2 (-566))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-299))) - ((*1 *1) (-5 *1 (-872))) - ((*1 *1) - (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) - (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1100))) - ((*1 *1) - (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) - (-4 *3 (-13 (-1115) (-34))))) - ((*1 *1) (-5 *1 (-1195))) ((*1 *1) (-5 *1 (-1196)))) + (-12 (-5 *3 (-574)) (-5 *2 (-919 *4)) (-5 *1 (-918 *4)) + (-4 *4 (-1116)))) + ((*1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-555)) (-4 *2 (-566))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) + (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) - (-5 *1 (-1191))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-444)) - (-5 *2 - (-654 - (-3 (|:| -2040 (-1192)) - (|:| -3260 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574))))))))) - (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-5 *2 (-986)) (-5 *1 (-918 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218)))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3) - (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-958 *2 *3)) - (-4 *3 (-1259 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-979 *3)) (-4 *3 (-1115)) (-5 *1 (-980 *3))))) + (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) + (-5 *1 (-1192))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) + (-5 *2 (-2 (|:| -1390 (-654 *6)) (|:| -1684 (-654 *6))))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-107 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-993 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1081 *4 *5 *6)) + (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-993 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-174)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1065))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)))) + ((*1 *2 *1) + (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-781))))) (((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1284)))) + (-12 (-5 *3 (-935)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1285)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) - (-5 *2 (-2 (|:| -1867 *1) (|:| |gap| (-781)) (|:| -1484 *1))) - (-4 *1 (-1080 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| -1867 *1) (|:| |gap| (-781)) (|:| -1484 *1))) - (-4 *1 (-1080 *3 *4 *5))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) -(((*1 *1 *1) (-5 *1 (-1191))) + (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *1 *1) (-5 *1 (-1192))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) - (-5 *1 (-1191))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1115))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-934))) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) + (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) + (-5 *1 (-1192))))) (((*1 *2 *2) - (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) + (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1192)) - (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-4 *4 (-13 (-29 *6) (-1218) (-972))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2191 (-654 *4)))) - (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1116))))) +(((*1 *2 *3) + (-12 (-4 *4 (-860)) (-5 *2 (-1205 (-654 *4))) (-5 *1 (-1204 *4)) + (-5 *3 (-654 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-993 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1219) (-973)))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315))))) +(((*1 *1 *1 *1) (-4 *1 (-315))) ((*1 *1 *1 *1) (-5 *1 (-781))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) + (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3319 *4))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1136)) (-4 *4 (-358)) + (-5 *1 (-538 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-566)))) + ((*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-979))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1175) (-784))) (-5 *1 (-115))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)) + (-4 *2 (-1116))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7)) + (-4 *4 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234)) + (-4 *7 (-1234))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) (((*1 *1 *1 *1) (-4 *1 (-315))) ((*1 *1 *1 *1) (-5 *1 (-781))) ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-592))))) +(((*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872))))) +(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1115)) (-4 *4 (-1115)) - (-4 *6 (-1115)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) - (-4 *2 (-1243 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-962 *4 *3 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1192)) - (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1192)) - (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-978))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1174) (-784))) (-5 *1 (-115))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) + (|partial| -12 (-4 *2 (-1116)) (-5 *1 (-1211 *3 *2)) (-4 *3 (-1116))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) - (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-372)) (-4 *3 (-1064)) - (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-862 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) - (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-863 *5 *3)) - (-4 *3 (-862 *5))))) + (-12 (-4 *3 (-13 (-566) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1176 *4)) (-4 *4 (-1064)) - (-5 *3 (-574))))) -(((*1 *1 *1 *1) (-4 *1 (-315))) ((*1 *1 *1 *1) (-5 *1 (-781))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) + (-12 (-5 *2 (-2 (|:| -2621 (-574)) (|:| -3314 (-654 *3)))) + (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1189 *7)) (-5 *3 (-574)) (-4 *7 (-963 *6 *4 *5)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) + (-5 *1 (-329 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1284 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1116))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4)) + (-5 *1 (-429 *4)))) + ((*1 *1 *1) (-5 *1 (-940))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) + ((*1 *1 *1) (-5 *1 (-941))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) + (-5 *4 (-417 (-574))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) + (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) + (-5 *4 (-417 (-574))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) + (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) + (-4 *3 (-1260 *2))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-1297 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1297 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535)))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1167))))) +(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234)) (-4 *2 (-860)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1234)))) + ((*1 *2 *2) + (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) + (-4 *6 (-1081 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -2260 *1) (|:| |upper| *1))) + (-4 *1 (-992 *4 *5 *3 *6))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-120 *2)) (-4 *2 (-1234))))) (((*1 *2 *3) - (-12 + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-876 *4 *5 *6 *7)) + (-4 *4 (-1065)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-1065)) (-4 *5 (-860)) (-4 *6 (-803)) + (-14 *8 (-654 *5)) (-5 *2 (-1289)) + (-5 *1 (-1296 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-963 *4 *6 *5)) + (-14 *9 (-654 *3)) (-14 *10 *3)))) +(((*1 *2 *3) + (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-388)) (-5 *1 (-207))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) (-5 *2 (-112)) - (-5 *1 (-270))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-174)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1064))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-979 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1154)))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1050)) (-5 *1 (-762))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) + (-5 *2 (-1051))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-1251 (-574)))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) - ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055)))) - ((*1 *1 *1 *1) (-4 *1 (-1154)))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-1204 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) - (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)) (-4 *2 (-860)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) - ((*1 *2 *2) - (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) + (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1110 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-313)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1193)) (-4 *4 (-1065)) (-4 *4 (-1116)) + (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3139 (-574)))) + (-4 *1 (-440 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) - (-4 *6 (-1080 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3471 *1) (|:| |upper| *1))) - (-4 *1 (-991 *4 *5 *3 *6))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *4))))))) - (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148))) - (-4 *7 (-962 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1192)))) - (-4 *6 (-803)) (-5 *1 (-937 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-1115)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-395 *3))))) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1065)) (-4 *4 (-1116)) + (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3139 (-574)))) + (-4 *1 (-440 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1128)) (-4 *3 (-1116)) + (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3139 (-574)))) + (-4 *1 (-440 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3139 (-781)))) + (-5 *1 (-903 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -3139 (-781)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) + (-4 *7 (-963 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -3139 (-574)))) + (-5 *1 (-964 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) + (-15 -2981 (*7 $)))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1173 *4))) (-4 *4 (-372)) + (-4 *4 (-1065)) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) + (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-935))) (-5 *2 (-654 (-699 (-574)))) + (-5 *1 (-1126))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-699 (-417 (-966 (-574))))) + (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1047))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) + (-5 *2 (-654 (-1193))) (-5 *1 (-1092 *3 *4 *5)) + (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-315)) + (-5 *2 (-781)) (-5 *1 (-465 *5 *3))))) (((*1 *1 *2 *3 *4) (-12 (-5 *2 (-595)) (-5 *3 (-607)) (-5 *4 (-299)) (-5 *1 (-288))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)) - (-4 *6 (-1115)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) - (-5 *1 (-758))))) -(((*1 *1 *2) - (-12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-13 (-372) (-148))) - (-5 *1 (-409 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-872))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) + (-12 + (-5 *3 + (-2 (|:| |pde| (-654 (-324 (-227)))) + (|:| |constraints| + (-654 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-781)) (|:| |boundaryType| (-574)) + (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) + (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) + (|:| |tol| (-227)))) + (-5 *2 (-112)) (-5 *1 (-212))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-569))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-417 (-574))) + (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3)))) + (-5 *1 (-919 *3)) (-4 *3 (-1116))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-566)) (-4 *8 (-963 *7 *5 *6)) + (-5 *2 (-2 (|:| -3139 (-781)) (|:| -1866 *9) (|:| |radicand| *9))) + (-5 *1 (-967 *5 *6 *7 *8 *9)) (-5 *4 (-781)) + (-4 *9 + (-13 (-372) + (-10 -8 (-15 -2951 ($ *8)) (-15 -2971 (*8 $)) (-15 -2981 (*8 $)))))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5))) + (-5 *1 (-1145 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5)))) + (-5 *1 (-1145 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) + (-5 *2 (-654 (-227))) (-5 *1 (-313))))) +(((*1 *2) + (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) + (-4 *3 (-337 *4)))) + ((*1 *2) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-781))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) + (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) + (-4 *4 (-13 (-1116) (-34)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1181 *4 *5)) + (-14 *4 (-935)) (-4 *5 (-1065))))) +(((*1 *2 *3) + (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-4 *4 (-1234)) (-5 *2 (-112)) + (-5 *1 (-1173 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) + (-4 *9 (-860)) (-4 *3 (-1081 *7 *8 *9)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5)) - (|:| |c2| (-417 *5)) (|:| |deg| (-781)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462)) - (-5 *1 (-1224 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3)) - (-4 *2 (-13 (-440 *3) (-1218)))))) + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1085 *7 *8 *9 *3 *4)) (-4 *4 (-1087 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1081 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) + (-4 *9 (-860)) (-4 *3 (-1081 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1161 *7 *8 *9 *3 *4)) (-4 *4 (-1125 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1081 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1161 *6 *7 *8 *3 *4)) (-4 *4 (-1125 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) - (-4 *3 (-1115))))) + (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-1118 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1118 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-574)) (-4 *1 (-1109 *3)) (-4 *3 (-1234))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *2 *3) - (-12 (-4 *3 (-1259 *2)) (-4 *2 (-1259 *4)) - (-5 *1 (-1000 *4 *2 *3 *5)) (-4 *4 (-358)) (-4 *5 (-734 *2 *3))))) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1242))) (-5 *3 (-1242))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1051)) (-5 *1 (-763))))) +(((*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-839))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1193)) + (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1193)) + (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1283 *5)) (-4 *5 (-13 (-1064) (-649 *4))) - (-4 *4 (-566)) (-5 *2 (-1283 *4)) (-5 *1 (-648 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286))))) + (-12 + (-5 *3 + (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) + (|:| |explanations| (-654 (-1175))))) + (-5 *2 (-1051)) (-5 *1 (-313)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -3175 (-388)) (|:| -2039 (-1175)) + (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051)))) + (-5 *2 (-1051)) (-5 *1 (-313))))) (((*1 *2 *1) - (-12 (-5 *2 (-1172 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1194 (-417 (-574)))) - (-5 *1 (-192))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1188 *2)) (-4 *2 (-962 (-417 (-965 *6)) *5 *4)) - (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) - (-4 *4 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))) - (-4 *6 (-566))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))) -(((*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4458)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1115)) - (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-338))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *5 (-566)) + (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1269 *4 *5 *6)) + (|:| |%expon| (-327 *4 *5 *6)) + (|:| |%expTerms| + (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))))) + (|:| |%type| (-1175)))) + (-5 *1 (-1270 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3))) + (-14 *5 (-1193)) (-14 *6 *4)))) +(((*1 *2 *1) + (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1116)) (-4 *5 (-1116)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-781)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-781)) (-4 *5 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 - (-2 (|:| |minor| (-654 (-934))) (|:| -4095 *3) - (|:| |minors| (-654 (-654 (-934)))) (|:| |ops| (-654 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-934)) (-4 *3 (-666 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1283 *5)) (-4 *5 (-315)) - (-4 *5 (-1064)) (-5 *2 (-699 *5)) (-5 *1 (-1044 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1188 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) - (-5 *1 (-32 *4 *2))))) + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574))))) + (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1193))) (-14 *5 (-781)) + (-5 *1 (-515 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *1) + (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) + (-5 *2 (-1284 *6)) (-5 *1 (-345 *3 *4 *5 *6)) + (-4 *6 (-351 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-922)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-428 (-1188 *7))) - (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) - (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5))))) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-1065)) (-5 *2 (-1284 *4)) + (-5 *1 (-1194 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-935)) (-5 *2 (-1284 *3)) (-5 *1 (-1194 *3)) + (-4 *3 (-1065))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) + (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) + (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-388)) (-5 *1 (-207))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) - ((*1 *1 *1) (-4 *1 (-1075)))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3)) - (-4 *3 (-13 (-440 *4) (-1017)))))) -(((*1 *1) (-5 *1 (-1195)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192))))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-1108 *3)) (-4 *3 (-1233))))) -(((*1 *2 *1) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1233)) (-5 *2 (-781))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) - (-5 *1 (-939)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) - (-5 *1 (-939)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) - (-5 *1 (-940)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) - (-5 *1 (-940))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3) - (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046))))) -(((*1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1064)) - (-4 *3 (-1115))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803)) - (-4 *6 (-566)) (-4 *7 (-962 *6 *5 *3)) - (-5 *1 (-472 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1053 (-417 (-574))) (-372) - (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) - (-15 -2981 (*7 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-856))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-934)) (-5 *1 (-1047 *2)) - (-4 *2 (-13 (-1115) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1115)) - (-4 *2 (-132))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-934)) (-5 *1 (-796))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-833)) (-5 *1 (-832))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-501)) (-5 *4 (-967)) (-5 *2 (-701 (-543))) - (-5 *1 (-543)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-967)) (-4 *3 (-1115)) (-5 *2 (-701 *1)) - (-4 *1 (-777 *3))))) -(((*1 *1) (-5 *1 (-478)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) + (-5 *1 (-207))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-851)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-850)))) - ((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1050)) (-5 *1 (-850)))) + (-12 (-5 *3 (-851)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-850)))) + ((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1051)) (-5 *1 (-850)))) ((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) - (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1050)) + (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1051)) (-5 *1 (-850)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) - (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1050)) (-5 *1 (-850)))) + (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1051)) (-5 *1 (-850)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1050)) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1051)) (-5 *1 (-850)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) - (-5 *2 (-1050)) (-5 *1 (-850))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) - (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) - (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-934)))) - ((*1 *2 *3) - (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372))) - (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-4 *7 (-351 *4 *5 *6)) - (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-934))))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) - ((*1 *2 *1) - (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) - (-4 *4 (-1259 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1064)) - (-4 *3 (-860)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1064)) (-4 *3 (-860)) - (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) - (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) - (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1053 (-574)))) - (-5 *2 (-781)) (-5 *1 (-924 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) - (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) - (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781)) - (-5 *1 (-925 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372)) - (-4 *7 (-1259 *6)) (-4 *4 (-1259 (-417 *7))) (-4 *8 (-351 *6 *7 *4)) - (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781)) - (-5 *1 (-1033 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-4 *3 (-566)) - (-5 *2 (-781)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802))))) + (-5 *2 (-1051)) (-5 *1 (-850))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -4285 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-935))) (-5 *4 (-654 (-574))) + (-5 *2 (-699 (-574))) (-5 *1 (-1126))))) +(((*1 *2 *3) + (-12 (-5 *3 (-699 (-417 (-966 (-574))))) + (-5 *2 + (-654 + (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) + (|:| |radvect| (-654 (-699 (-324 (-574)))))))) + (-5 *1 (-1047))))) +(((*1 *2) + (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) + (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-781))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-1192)) (-5 *1 (-546)))) + (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-1193)) (-5 *1 (-546)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) + (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) + (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) + (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-654 (-1192))) (-5 *2 (-1192)) (-5 *1 (-714 *3)) + (-12 (-5 *4 (-654 (-1193))) (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546)))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1064))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884)))) - ((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) +(((*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) + (-5 *1 (-340)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1193)) (-5 *4 (-1108 (-966 (-574)))) (-5 *2 (-338)) + (-5 *1 (-340)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1065)) + (-4 *3 (-1116))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) + (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) + (|:| |ub| (-654 (-853 (-227)))))) + (-5 *1 (-274))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1116)) (-5 *2 (-781)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5)) + (-4 *4 (-1116)) (-14 *5 *2)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1284 *4))) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) + (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) + (-5 *2 (-654 (-1284 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860)) + (-4 *9 (-963 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315)) + (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1116)) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-639))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018) (-1219)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -3374 *3)))) + (-5 *4 (-781)) (-4 *3 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-784)) (-5 *1 (-115))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1175)) (-5 *1 (-1005)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-4 *4 (-1234)) (-5 *1 (-1073 *3 *4)) + (-4 *3 (-1109 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-1110 *4)) (-4 *4 (-1234)) + (-5 *1 (-1108 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1065)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1193))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-654 (-935))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5)) + (-14 *4 (-935)) (-14 *5 (-1009 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-132)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1065)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) + (-4 *4 (-1260 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1065)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1065)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) + (-4 *4 (-1065)) (-4 *5 (-860)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1065)) + (-4 *2 (-860)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1065)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-963 *4 *5 *6)) + (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-781)) (-4 *1 (-963 *4 *5 *2)) (-4 *4 (-1065)) + (-4 *5 (-803)) (-4 *2 (-860)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-4 *2 (-963 *4 (-541 *5) *5)) + (-5 *1 (-1142 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-860)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-966 *4)) (-5 *1 (-1228 *4)) + (-4 *4 (-1065))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) - (-4 *4 (-13 (-1115) (-34)))))) + (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4460)) (-4 *1 (-1026 *3)) + (-4 *3 (-1234))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2887 (-792 *3)) (|:| |coef2| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -2887 *1) (|:| |coef2| *1))) + (-4 *1 (-1081 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-516)) (-5 *3 (-1120)) (-5 *1 (-299))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) + (-5 *1 (-1088 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) + (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1283 (-1192))) (-5 *3 (-1283 (-463 *4 *5 *6 *7))) - (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-934)) - (-14 *6 (-654 (-1192))) (-14 *7 (-1283 (-699 *4))))) + (-12 (-5 *2 (-1284 (-1193))) (-5 *3 (-1284 (-463 *4 *5 *6 *7))) + (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-935)) + (-14 *6 (-654 (-1193))) (-14 *7 (-1284 (-699 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-463 *4 *5 *6 *7))) - (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-934)) - (-14 *6 (-654 *2)) (-14 *7 (-1283 (-699 *4))))) + (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-463 *4 *5 *6 *7))) + (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-935)) + (-14 *6 (-654 *2)) (-14 *7 (-1284 (-699 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) - (-14 *6 (-1283 (-699 *3))))) + (-12 (-5 *2 (-1284 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) + (-14 *6 (-1284 (-699 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 (-1192))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) - (-14 *6 (-1283 (-699 *3))))) + (-12 (-5 *2 (-1284 (-1193))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) + (-14 *6 (-1284 (-699 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1192)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-934)) (-14 *5 (-654 *2)) (-14 *6 (-1283 (-699 *3))))) + (-12 (-5 *2 (-1193)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-935)) (-14 *5 (-654 *2)) (-14 *6 (-1284 (-699 *3))))) ((*1 *1) - (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-934)) - (-14 *4 (-654 (-1192))) (-14 *5 (-1283 (-699 *2)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) - (-5 *1 (-707))))) -(((*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-224 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-261 *3)))) - ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1197))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574))))) - (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) - (-5 *1 (-515 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *1) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-989))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1174)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1050)) - (-5 *1 (-760))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) - (-4 *3 (-566))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3496 *4))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-549 *4 *2 *5 *6)) - (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *5 (-377)) - (-5 *2 (-781))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) - (-5 *2 (-574)) (-5 *1 (-1129 *4 *5))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1174)) (-5 *1 (-1004)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-4 *4 (-1233)) (-5 *1 (-1072 *3 *4)) - (-4 *3 (-1108 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1109 *4)) (-4 *4 (-1233)) - (-5 *1 (-1107 *4))))) -(((*1 *2) - (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) - (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-781))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) - (-5 *2 (-1050)) (-5 *1 (-755))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1050)) (-5 *1 (-760))))) + (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-935)) + (-14 *4 (-654 (-1193))) (-14 *5 (-1284 (-699 *2)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1115)) - (-4 *6 (-1233)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6)))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1116)) + (-4 *6 (-1234)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1115)) - (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1116)) + (-4 *2 (-1234)) (-5 *1 (-651 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1115)) - (-4 *5 (-1233)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5)))) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1116)) + (-4 *5 (-1234)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1115)) - (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1116)) + (-4 *2 (-1234)) (-5 *1 (-651 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) - (-4 *5 (-1115)) (-4 *6 (-1233)) (-5 *1 (-651 *5 *6)))) + (-4 *5 (-1116)) (-4 *6 (-1234)) (-5 *1 (-651 *5 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1115)) (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-145)) (-5 *2 (-781))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1174)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1115))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) + (-4 *5 (-1116)) (-4 *2 (-1234)) (-5 *1 (-651 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-145)) (-5 *2 (-781))))) +(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227))) + (-5 *1 (-707))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) - (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) - (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1053 (-574)))) - (-5 *2 (-2 (|:| -2725 (-781)) (|:| -2724 *8))) - (-5 *1 (-924 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1251 *3)) (-4 *3 (-1234))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-304)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) - (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) - (-4 *6 (-351 (-417 (-574)) *4 *5)) - (-5 *2 (-2 (|:| -2725 (-781)) (|:| -2724 *6))) - (-5 *1 (-925 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-304)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-320)) (-5 *1 (-304)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-304)))) + (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-320)) (-5 *1 (-304)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-304)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1174))) (-5 *3 (-1174)) (-5 *2 (-320)) + (-12 (-5 *4 (-654 (-1175))) (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-304))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) - ((*1 *1 *1) (|partial| -4 *1 (-732)))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1285)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-1174)) (-5 *1 (-1285)))) - ((*1 *1 *1) (-5 *1 (-1285)))) -(((*1 *2 *3) - (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1139 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-1180 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1285)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1285))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 *4)) (-5 *1 (-1156 *3 *4)) - (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1166))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-574)) (-14 *4 (-781))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-965 *4))) (-5 *3 (-654 (-1192))) (-4 *4 (-462)) - (-5 *1 (-931 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) - (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-962 *8 *6 *7)) (-4 *6 (-803)) - (-5 *2 - (-2 (|:| |upol| (-1188 *8)) (|:| |Lval| (-654 *8)) - (|:| |Lfact| - (-654 (-2 (|:| -4200 (-1188 *8)) (|:| -2017 (-574))))) - (|:| |ctpol| *8))) - (-5 *1 (-752 *6 *7 *8 *9))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *2 (-1124 *3 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1077 (-1040 *4) (-1189 (-1040 *4)))) (-5 *3 (-872)) + (-5 *1 (-1040 *4)) (-4 *4 (-13 (-858) (-372) (-1038)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) - (-5 *2 (-112)) (-5 *1 (-1311 *4))))) + (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574))) + (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-763))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062))))) -(((*1 *1 *1) (-5 *1 (-1078)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-966 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-574)) + (|:| -3314 (-654 (-2 (|:| |irr| *3) (|:| -3868 (-574))))))) + (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-574)) + (|:| -3314 (-654 (-2 (|:| |irr| *3) (|:| -3868 (-574))))))) + (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1234)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 *4)) (-5 *1 (-1157 *3 *4)) + (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1051)) (-5 *1 (-766))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) + (-14 *4 (-781)) (-4 *5 (-174))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 - (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) + (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557)))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1080 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1115)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574)) - (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1115))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-539))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1233)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) - (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-767))))) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) + ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462)) + (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1193))) (-5 *1 (-641 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1260 *4)) + (-5 *1 (-936 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) + (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1036 *4)) + (-4 *4 (-1260 (-574)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-1125 *5 *6 *7 *8)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-601 *5 *6 *7 *8 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1243 *3)) - (-5 *2 (-417 (-574)))))) -(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218)))))) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) + (-5 *2 (-2 (|:| |num| (-1284 *4)) (|:| |den| *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) (((*1 *2 *3 *2) - (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) - (-5 *2 (-574)) (-5 *1 (-1129 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) - (-5 *2 (-112))))) + (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116))))) +(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *3)) + (-4 *3 (-1260 (-417 *4)))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-417 *5)) (-4 *4 (-1237)) (-4 *5 (-1259 *4)) - (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1259 *3)))) + (-12 (-5 *3 (-417 *5)) (-4 *4 (-1238)) (-4 *5 (-1260 *4)) + (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1260 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1194 (-417 (-574)))) (-5 *2 (-417 (-574))) + (-12 (-5 *3 (-1195 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1192))) - (-5 *4 (-1283 (-324 (-227)))) (-5 *1 (-207)))) + (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1193))) + (-5 *4 (-1284 (-324 (-227)))) (-5 *1 (-207)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1115)) - (-4 *3 (-1233)) (-5 *1 (-302 *3)))) + (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1116)) + (-4 *3 (-1234)) (-5 *1 (-302 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-317 *2)) (-4 *2 (-1115)) (-4 *2 (-1233)) + (-12 (-4 *2 (-317 *2)) (-4 *2 (-1116)) (-4 *2 (-1234)) (-5 *1 (-302 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) @@ -9394,20 +10046,20 @@ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) + (-12 (-5 *2 (-1193)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-1193)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-1 *1 (-654 *1)))) + (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1115)))) + (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1116)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1115)))) + (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1116)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1194 (-417 (-574)))) + (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1195 (-417 (-574)))) (-5 *1 (-318 *2)) (-4 *2 (-38 (-417 (-574)))))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *1)) (-4 *1 (-383 *4 *5)) @@ -9415,2561 +10067,2291 @@ ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) + (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1))) - (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) + (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1))) + (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-781))) - (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1115)) - (-4 *5 (-1064)))) + (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-781))) + (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1116)) + (-4 *5 (-1065)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-781))) - (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1115)) - (-4 *5 (-1064)))) + (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-781))) + (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1116)) + (-4 *5 (-1065)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1192)) - (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-624 (-546))))) + (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1193)) + (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-624 (-546))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1192)) (-4 *1 (-440 *4)) (-4 *4 (-1115)) + (-12 (-5 *2 (-115)) (-5 *3 (-1193)) (-4 *1 (-440 *4)) (-4 *4 (-1116)) (-4 *4 (-624 (-546))))) ((*1 *1 *1) - (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-624 (-546))))) + (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-624 (-546))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-1192))) (-4 *1 (-440 *3)) (-4 *3 (-1115)) + (-12 (-5 *2 (-654 (-1193))) (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-4 *3 (-624 (-546))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)) + (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-4 *3 (-624 (-546))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1233)))) + (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1234)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *5)) (-4 *1 (-524 *4 *5)) - (-4 *4 (-1115)) (-4 *5 (-1233)))) + (-4 *4 (-1116)) (-4 *5 (-1234)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *3 (-372)) (-5 *1 (-728 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-417 (-965 *4))) (-5 *3 (-1192)) (-4 *4 (-566)) - (-5 *1 (-1058 *4)))) + (-12 (-5 *2 (-417 (-966 *4))) (-5 *3 (-1193)) (-4 *4 (-566)) + (-5 *1 (-1059 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-654 (-1192))) (-5 *4 (-654 (-417 (-965 *5)))) - (-5 *2 (-417 (-965 *5))) (-4 *5 (-566)) (-5 *1 (-1058 *5)))) + (-12 (-5 *3 (-654 (-1193))) (-5 *4 (-654 (-417 (-966 *5)))) + (-5 *2 (-417 (-966 *5))) (-4 *5 (-566)) (-5 *1 (-1059 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-302 (-417 (-965 *4)))) (-5 *2 (-417 (-965 *4))) - (-4 *4 (-566)) (-5 *1 (-1058 *4)))) + (-12 (-5 *3 (-302 (-417 (-966 *4)))) (-5 *2 (-417 (-966 *4))) + (-4 *4 (-566)) (-5 *1 (-1059 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-302 (-417 (-965 *4))))) (-5 *2 (-417 (-965 *4))) - (-4 *4 (-566)) (-5 *1 (-1058 *4)))) + (-12 (-5 *3 (-654 (-302 (-417 (-966 *4))))) (-5 *2 (-417 (-966 *4))) + (-4 *4 (-566)) (-5 *1 (-1059 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1172 *3))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1080 *6 *7 *8)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) - (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4064 *9)))) - (-5 *5 (-112)) (-4 *8 (-1080 *6 *7 *4)) (-4 *9 (-1086 *6 *7 *4 *8)) - (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) - (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4064 *9)))) - (-5 *1 (-1087 *6 *7 *4 *8 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1050))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1207 *2)) (-4 *2 (-372))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) -(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1233)) - (-4 *3 (-382 *4)) (-4 *5 (-382 *4))))) + (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1173 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1))) + (-4 *1 (-1087 *4 *5 *6 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *2 (-654 (-1189 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) +(((*1 *2 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1260 *4)) + (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1260 *5)) (-14 *6 (-935)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) + ((*1 *1 *1) (-12 (-4 *1 (-1303 *2)) (-4 *2 (-372)) (-4 *2 (-377))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1116) (-34))) + (-5 *2 (-112)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-13 (-1116) (-34)))))) (((*1 *2 *2 *3) - (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2))))) -(((*1 *1) (-5 *1 (-447)))) + (-12 (-5 *2 (-1189 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-574)))) + (-4 *4 (-13 (-1260 *3) (-566) (-10 -8 (-15 -2887 ($ $ $))))) + (-4 *3 (-566)) (-5 *1 (-1263 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358))))) +(((*1 *2 *1) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-174)) (-4 *2 (-1260 *4)) (-5 *1 (-179 *4 *2 *3)) + (-4 *3 (-734 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 (-417 (-966 *5)))) (-5 *4 (-1193)) + (-5 *2 (-966 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 (-417 (-966 *4)))) (-5 *2 (-966 *4)) + (-5 *1 (-300 *4)) (-4 *4 (-462)))) + ((*1 *2 *1) + (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 (-171 (-417 (-574))))) + (-5 *2 (-966 (-171 (-417 (-574))))) (-5 *1 (-774 *4)) + (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1193)) + (-5 *2 (-966 (-171 (-417 (-574))))) (-5 *1 (-774 *5)) + (-4 *5 (-13 (-372) (-858))))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-966 (-417 (-574)))) + (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1193)) + (-5 *2 (-966 (-417 (-574)))) (-5 *1 (-789 *5)) + (-4 *5 (-13 (-372) (-858)))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) + (-5 *2 (-1051)) (-5 *1 (-764))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) + (-5 *1 (-1204 *4)) (-4 *4 (-860))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) ((*1 *1) (-4 *1 (-555))) + ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-757))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145))))) -(((*1 *2 *3) - (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-958 *4 *3)) - (-4 *3 (-1259 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) ((*1 *1) (-4 *1 (-555))) - ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2))))) + (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) + (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *5 *6 *7 *8))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1173 *3))) (-5 *1 (-1173 *3)) (-4 *3 (-1234))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) + (-5 *2 (-699 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-654 (-516))) (-5 *1 (-49)))) ((*1 *2 *1) (-12 (-5 *2 (-654 (-886))) (-5 *1 (-493))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1203 *5))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-566)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-1223 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4)))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574)) + (-5 *2 (-699 *6)) (-5 *1 (-1045 *6)) (-4 *6 (-372)) (-4 *6 (-1065)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1045 *4)) + (-4 *4 (-372)) (-4 *4 (-1065)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5)) + (-5 *1 (-1045 *5)) (-4 *5 (-372)) (-4 *5 (-1065))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1175) (-1198))) + (-5 *1 (-1198))))) (((*1 *2 *3) - (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-247)) (-5 *3 (-1174)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-247)))) + (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-247)) (-5 *3 (-1175)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-247)))) ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) - (-4 *2 (-1274 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-566)) (-4 *3 (-1065)) + (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-862 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1065)) + (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-863 *5 *3)) + (-4 *3 (-862 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1189 *7)) (-4 *5 (-1065)) + (-4 *7 (-1065)) (-4 *2 (-1260 *5)) (-5 *1 (-511 *5 *2 *6 *7)) + (-4 *6 (-1260 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1065)) (-4 *7 (-1065)) + (-4 *4 (-1260 *5)) (-5 *2 (-1189 *7)) (-5 *1 (-511 *5 *4 *6 *7)) + (-4 *6 (-1260 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145))))) +(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-1189 *5))) (-5 *3 (-1189 *5)) + (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1260 *5)) + (-4 *5 (-1260 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-1189 (-574)))) (-5 *3 (-1189 (-574))) + (-5 *1 (-582)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-1189 *1))) (-5 *3 (-1189 *1)) + (-4 *1 (-923))))) (((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 - (-2 (|:| -4012 (-781)) (|:| |curves| (-781)) + (-2 (|:| -1851 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-574)) (-5 *5 (-1174)) (-5 *6 (-699 (-227))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1259 *6)) - (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)))) - (-4 *8 (-1259 (-417 *7))) (-5 *2 (-596 *3)) - (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1259 *5)) - (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1053 (-574)))) - (-4 *7 (-1259 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2)) - (-4 *2 (-351 *5 *6 *7))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-781)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-781)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1116)) + (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1189 (-966 *4))) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) + (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) + (-5 *2 (-1189 (-966 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1233)) (-4 *3 (-1233))))) + (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1234)) (-4 *3 (-1234))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1065)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1081 *4 *5 *6)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *1)))) + (-4 *1 (-1087 *4 *5 *6 *3))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1259 (-417 (-574)))) (-5 *1 (-926 *3 *2)) - (-4 *2 (-1259 (-417 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) - ((*1 *1 *1 *1) (-4 *1 (-803)))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) - (-5 *1 (-758))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-654 *11)) - (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4064 *11)))))) - (-5 *6 (-781)) - (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4064 *11)))) - (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1080 *7 *8 *9)) - (-4 *11 (-1086 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) - (-4 *9 (-860)) (-5 *1 (-1084 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-654 *11)) - (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4064 *11)))))) - (-5 *6 (-781)) - (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4064 *11)))) - (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1080 *7 *8 *9)) - (-4 *11 (-1124 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) - (-4 *9 (-860)) (-5 *1 (-1160 *7 *8 *9 *10 *11))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-622 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-939))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1308))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) + (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) + (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) + ((*1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1189 *7)) + (-4 *5 (-1065)) (-4 *7 (-1065)) (-4 *2 (-1260 *5)) + (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1260 *2))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574)) + (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-767))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-781)) (-4 *1 (-998 *2)) (-4 *2 (-1218))))) + (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116))))) (((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-965 *4)))) (-4 *4 (-462)) - (-5 *2 (-654 (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4))))) - (-5 *1 (-300 *4))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1233)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -3666 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -1917 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1172 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3362 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-569)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1115)))) - ((*1 *1 *2) + (-12 (-5 *3 (-1193)) (-5 *2 (-546)) (-5 *1 (-545 *4)) + (-4 *4 (-1234))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-654 (-1092 *4 *5 *2))) (-4 *4 (-1116)) + (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) + (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-654 (-1092 *5 *6 *2))) (-5 *4 (-935)) (-4 *5 (-1116)) + (-4 *6 (-13 (-1065) (-897 *5) (-624 (-903 *5)))) + (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193)) + (-5 *2 (-574)) (-5 *1 (-1130 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1142 *4 *3 *5))) (-4 *4 (-38 (-417 (-574)))) + (-4 *4 (-1065)) (-4 *3 (-860)) (-5 *1 (-1142 *4 *3 *5)) + (-4 *5 (-963 *4 (-541 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1228 *4))) (-5 *3 (-1193)) (-5 *1 (-1228 *4)) + (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1065))))) +(((*1 *1 *1) (-5 *1 (-1079)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) + (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) + (-4 *3 (-1116))))) +(((*1 *2 *2) (-12 (-5 *2 - (-2 - (|:| -3666 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -1917 - (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) - (|:| |expense| (-388)) (|:| |accuracy| (-388)) - (|:| |intermediateResults| (-388)))))) - (-5 *1 (-813)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1115))))) -(((*1 *2 *1) - (-12 (-5 *2 (-701 (-979 *3))) (-5 *1 (-979 *3)) (-4 *3 (-1115))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)) - (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372)) - (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5))))) + (-1003 (-417 (-574)) (-874 *3) (-246 *4 (-781)) + (-253 *3 (-417 (-574))))) + (-14 *3 (-654 (-1193))) (-14 *4 (-781)) (-5 *1 (-1002 *3 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-5 *2 + (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) (((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1064)) (-4 *3 (-860)) + (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1065)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803))))) -(((*1 *2 *1) (-12 (-5 *2 (-701 (-1150))) (-5 *1 (-1166))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) - (-5 *1 (-768))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1192)) - (-4 *4 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1154)))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-534))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) - ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064))))) + (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5)) + (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1275 *5)) + (-5 *1 (-1277 *5 *2))))) +(((*1 *1 *1 *1) (-4 *1 (-983)))) (((*1 *2 *3) - (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-193)) (-5 *3 (-574)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-761))))) + (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4)) + (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1065))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1174)) (|:| -2040 (-1174)))) - (-5 *1 (-832))))) + (-12 (-4 *3 (-1065)) (-5 *2 (-1284 *3)) (-5 *1 (-722 *3 *4)) + (-4 *4 (-1260 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-654 *3)) (-5 *1 (-975 *3)) (-4 *3 (-555))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1215)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1215))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4)))) + (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-377)))) + (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2391 (-654 *4)))) + (-5 *1 (-1140 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-377)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) + (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) ((*1 *2 *1) - (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1115)) + (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1116)) (-14 *4 - (-1 (-112) (-2 (|:| -2590 *2) (|:| -2017 *3)) - (-2 (|:| -2590 *2) (|:| -2017 *3))))))) -(((*1 *1 *2) (-12 (-5 *1 (-1219 *2)) (-4 *2 (-1115)))) + (-1 (-112) (-2 (|:| -2591 *2) (|:| -3139 *3)) + (-2 (|:| -2591 *2) (|:| -3139 *3))))))) +(((*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1116)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-1219 *3)))) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-1220 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-654 (-1219 *2))) (-5 *1 (-1219 *2)) (-4 *2 (-1115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-1283 (-699 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1283 (-699 *4))) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) - ((*1 *2) - (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 (-699 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-1192))) (-4 *5 (-372)) - (-5 *2 (-1283 (-699 (-417 (-965 *5))))) (-5 *1 (-1101 *5)) - (-5 *4 (-699 (-417 (-965 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-1192))) (-4 *5 (-372)) - (-5 *2 (-1283 (-699 (-965 *5)))) (-5 *1 (-1101 *5)) - (-5 *4 (-699 (-965 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) - (-5 *2 (-1283 (-699 *4))) (-5 *1 (-1101 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-918 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4)) - (-5 *1 (-1043 *5)) (-4 *5 (-1064)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1043 *4)) - (-4 *4 (-1064)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-918 (-574)))) (-5 *4 (-574)) - (-5 *2 (-654 (-699 *4))) (-5 *1 (-1043 *5)) (-4 *5 (-1064)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574)))) - (-5 *1 (-1043 *4)) (-4 *4 (-1064))))) -(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274))))) + (-12 (-5 *3 (-654 (-1220 *2))) (-5 *1 (-1220 *2)) (-4 *2 (-1116))))) +(((*1 *1) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1115)) - (-4 *5 (-1233)) (-5 *1 (-901 *4 *5)))) + (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1116)) + (-4 *5 (-1234)) (-5 *1 (-901 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1115)) - (-4 *5 (-1233)) (-5 *1 (-901 *4 *5)))) + (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1116)) + (-4 *5 (-1234)) (-5 *1 (-901 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1192))) - (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1115)) (-4 *6 (-1233)) + (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1193))) + (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1116)) (-4 *6 (-1234)) (-5 *1 (-901 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1233)) (-4 *4 (-1115)) - (-5 *1 (-950 *4 *2 *5)) (-4 *2 (-440 *4)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1234)) (-4 *4 (-1116)) + (-5 *1 (-951 *4 *2 *5)) (-4 *2 (-440 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1233)) (-4 *4 (-1115)) - (-5 *1 (-950 *4 *2 *5)) (-4 *2 (-440 *4)))) + (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1234)) (-4 *4 (-1116)) + (-5 *1 (-951 *4 *2 *5)) (-4 *2 (-440 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1233)) - (-5 *2 (-324 (-574))) (-5 *1 (-951 *5)))) + (-12 (-5 *3 (-1193)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1234)) + (-5 *2 (-324 (-574))) (-5 *1 (-952 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1233)) - (-5 *2 (-324 (-574))) (-5 *1 (-951 *5)))) + (-12 (-5 *3 (-1193)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1234)) + (-5 *2 (-324 (-574))) (-5 *1 (-952 *5)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-1 (-112) (-654 *6))) - (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1115)) - (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-1091 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *4)) (-5 *3 (-934)) (-4 *4 (-1064)) - (-5 *1 (-1043 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-934)) (-4 *4 (-1064)) - (-5 *1 (-1043 *4))))) + (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-1 (-112) (-654 *6))) + (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1116)) + (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-1092 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-993 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1259 (-171 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1080 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064)))) + (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) + (-15 -2981 ((-1141 *3 (-622 $)) $)) + (-15 -2951 ($ (-1141 *3 (-622 $)))))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) - (-5 *1 (-605 *3)) (-4 *3 (-1064))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-13 (-315) (-148))) - (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) - (-5 *2 (-654 (-417 (-965 *4)))) (-5 *1 (-937 *4 *5 *6 *7)) - (-4 *7 (-962 *4 *6 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781)) - (-5 *2 (-699 (-227))) (-5 *1 (-274))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-574)) (-5 *5 (-1174)) (-5 *6 (-699 (-227))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1259 *3)) (-5 *1 (-409 *3 *2)) - (-4 *3 (-13 (-372) (-148)))))) -(((*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1233)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-684 *4))))) + (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) +(((*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1260 *4)) (-4 *4 (-1238)) + (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1260 (-417 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1284 *1)) (-4 *4 (-174)) + (-4 *1 (-376 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1284 *1)) (-4 *4 (-174)) + (-4 *1 (-379 *4 *5)) (-4 *5 (-1260 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) + (-4 *4 (-1260 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1079))))) (((*1 *2 *3) - (-12 (-5 *3 (-699 *2)) (-4 *4 (-1259 *2)) - (-4 *2 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) - (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (-4 *2 (-1064))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-654 - (-2 - (|:| -3666 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) - (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) - (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -1917 - (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) - (|:| |expense| (-388)) (|:| |accuracy| (-388)) - (|:| |intermediateResults| (-388))))))) - (-5 *1 (-813))))) + (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-928 *3)) (-4 *3 (-315))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-4 *4 (-1116)) + (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1053 *2))))) + (-12 (-4 *4 (-566)) (-5 *2 (-1189 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-372) (-310) + (-10 -8 (-15 -2971 ((-1141 *4 (-622 $)) $)) + (-15 -2981 ((-1141 *4 (-622 $)) $)) + (-15 -2951 ($ (-1141 *4 (-622 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4459)) (-4 *1 (-1025 *3)) - (-4 *3 (-1233))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-917 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *5 *6)) (-4 *6 (-624 (-1193))) + (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *2 (-1182 (-654 (-966 *4)) (-654 (-302 (-966 *4))))) + (-5 *1 (-514 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) + (-5 *3 (-654 (-574)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2191 (-654 *6))) - *7 *6)) - (-4 *6 (-372)) (-4 *7 (-666 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1283 *6) "failed")) - (|:| -2191 (-654 (-1283 *6))))) - (-5 *1 (-823 *6 *7)) (-5 *4 (-1283 *6))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-803)) - (-4 *3 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))) (-4 *5 (-566)) - (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-962 (-417 (-965 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1064)) (-4 *5 (-803)) - (-4 *3 - (-13 (-860) - (-10 -8 (-15 -1845 ((-1192) $)) - (-15 -1497 ((-3 $ "failed") (-1192)))))) - (-5 *1 (-999 *4 *5 *3 *2)) (-4 *2 (-962 (-965 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *6)) - (-4 *6 - (-13 (-860) - (-10 -8 (-15 -1845 ((-1192) $)) - (-15 -1497 ((-3 $ "failed") (-1192)))))) - (-4 *4 (-1064)) (-4 *5 (-803)) (-5 *1 (-999 *4 *5 *6 *2)) - (-4 *2 (-962 (-965 *4) *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) - (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459))))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)) - (-4 *2 (-1115))))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-935)) (-4 *5 (-860)) + (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414)))) + ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-956 *5)) (-4 *5 (-1064)) (-5 *2 (-781)) - (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1180 *4 *5)) - (-14 *4 (-934)) (-4 *5 (-1064)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-956 *5)) (-4 *5 (-1064)) - (-5 *1 (-1180 *4 *5)) (-14 *4 (-934))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1233)))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-1238)) + (-4 *6 (-1260 (-417 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-351 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-654 *5)) + (-5 *1 (-901 *4 *5)) (-4 *5 (-1234))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1234)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-622 *1))) (-5 *3 (-654 *1)) (-4 *1 (-310)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-302 *1)) (-4 *1 (-310))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -3766 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1259 *7)) - (-5 *3 (-417 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-584 *7 *8))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1180 3 *3)) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) - ((*1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) +(((*1 *2 *1) + (-12 (-4 *3 (-239)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) + (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *3 (-654 (-574))) - (-5 *1 (-894))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1188 *6)) (-1188 *6))) - (-4 *6 (-372)) - (-5 *2 - (-654 - (-2 (|:| |outval| *7) (|:| |outmult| (-574)) - (|:| |outvect| (-654 (-699 *7)))))) - (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-241 *3)) - (-4 *3 (-1115)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) + (-12 (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) + (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) + (-5 *2 (-1051)) (-5 *1 (-759))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116))))) +(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) + ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287))))) +(((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) + (-14 *5 (-654 (-1193))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) + (-4 *6 (-462)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) + (-14 *5 (-654 (-1193))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) + (-4 *6 (-462))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 (-1091 *3 *4 *5))) (-4 *3 (-1115)) - (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) - (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) - (-5 *1 (-1092 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-388)) (-5 *1 (-1078))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1115)) (-5 *1 (-977 *3 *2)) (-4 *3 (-1115))))) -(((*1 *2 *3 *2) (-12 (-5 *2 - (-654 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-803)) (-4 *6 (-962 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860)) - (-5 *1 (-459 *4 *3 *5 *6))))) + (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3)) + (|:| |genIdeal| (-514 *3 *4 *5 *6)))) + (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-1092 *3 *4 *5))) (-4 *3 (-1116)) + (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) + (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) + (-5 *1 (-1093 *3 *4 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-699 (-417 (-965 (-574))))) - (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1046))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-654 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-574))))) - (-4 *2 (-566)) (-5 *1 (-428 *2)))) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) + ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-699 (-1189 *8))) (-4 *5 (-1065)) (-4 *8 (-1065)) + (-4 *6 (-1260 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8)) + (-4 *7 (-1260 *6))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1189 *1)) (-5 *4 (-1193)) (-4 *1 (-27)) + (-5 *2 (-654 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1189 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *2 (-654 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) + ((*1 *1 *1) (-4 *1 (-1076)))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -4197 (-781)) (|:| |period| (-781)))) + (-5 *1 (-1173 *4)) (-4 *4 (-1234)) (-5 *3 (-781))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1065)) (-4 *3 (-1116)) + (-5 *2 (-2 (|:| |val| *1) (|:| -3139 (-574)))) (-4 *1 (-440 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3139 (-903 *3)))) + (-5 *1 (-903 *3)) (-4 *3 (-1116)))) ((*1 *2 *3) + (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) + (-4 *7 (-963 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -3139 (-574)))) + (-5 *1 (-964 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) + (-15 -2981 (*7 $)))))))) +(((*1 *2 *1) (-12 - (-5 *3 - (-2 (|:| |contp| (-574)) - (|:| -4279 (-654 (-2 (|:| |irr| *4) (|:| -2265 (-574))))))) - (-4 *4 (-1259 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4))))) -(((*1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3) - (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1205 (-934) (-781)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *1) (-5 *1 (-607)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1115)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1115)) (-5 *1 (-103 *2))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) + (-5 *2 + (-1284 + (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1851 (-574)) + (|:| -3890 (-574)) (|:| |spline| (-574)) (|:| -2937 (-574)) + (|:| |axesColor| (-884)) (|:| -2005 (-574)) + (|:| |unitsColor| (-884)) (|:| |showing| (-574))))) + (-5 *1 (-1285))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1065)) (-5 *1 (-1044 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227))) + (-5 *2 (-1051)) (-5 *1 (-765))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) - (-4 *1 (-1086 *4 *5 *6 *3))))) + (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1175)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *4 (-1081 *6 *7 *8)) (-5 *2 (-1289)) + (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1087 *6 *7 *8 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) - (-5 *1 (-1191))))) -(((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1115)) (-5 *2 (-55))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1064)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1259 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) - (|:| |expense| (-388)) (|:| |accuracy| (-388)) - (|:| |intermediateResults| (-388)))) - (-5 *2 (-1050)) (-5 *1 (-313))))) + (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) + (-5 *1 (-1192))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1173 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1065)) + (-5 *3 (-417 (-574))) (-5 *1 (-1177 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-985 *4 *2)) + (-4 *2 (-1260 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) (((*1 *2 *3) - (-12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-901 *4 *5)) (-4 *5 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1182))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274))))) -(((*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3))))) + (-12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-901 *4 *5)) (-4 *5 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1183))))) +(((*1 *2 *2) + (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462)) + (-5 *1 (-1225 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-372)) (-4 *3 (-1065)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) + (-4 *1 (-862 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1064)) - (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) - (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-934)) (-4 *5 (-1064)) - (-4 *2 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))) - (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1259 *5))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) - (-5 *2 (-1050)) (-5 *1 (-765)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398)) - (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-624 (-903 (-574)))) - (-4 *5 (-897 (-574))) - (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) - (-4 *3 (-13 (-27) (-1218) (-440 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1192)) (-5 *4 (-853 *2)) (-4 *2 (-1154)) - (-4 *2 (-13 (-27) (-1218) (-440 *5))) - (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) - (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) - (-5 *1 (-577 *5 *2))))) + (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1051)) (-5 *1 (-762))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) - (-5 *1 (-1191))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) - (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-227)) (-5 *2 (-1050)) (-5 *1 (-762))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1053 *4)) (-4 *3 (-566))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) - (-5 *1 (-1253 *4 *2)) (-4 *2 (-1259 *4))))) + (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) + (-5 *1 (-1192))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) + (-5 *2 (-1051)) (-5 *1 (-766))))) +(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1116)))) + ((*1 *1 *1) (-5 *1 (-642)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-985 *2 *4)) + (-4 *4 (-1260 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-965 (-574))))) - (-5 *2 (-654 (-654 (-302 (-965 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-858) (-372))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-302 (-417 (-965 (-574)))))) - (-5 *2 (-654 (-654 (-302 (-965 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-858) (-372))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 (-574)))) (-5 *2 (-654 (-302 (-965 *4)))) - (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-302 (-417 (-965 (-574))))) - (-5 *2 (-654 (-302 (-965 *4)))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-858) (-372))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1192)) - (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-4 *4 (-13 (-29 *6) (-1218) (-972))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2191 (-654 *4)))) - (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 *2)) - (-4 *2 (-13 (-29 *6) (-1218) (-972))) - (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1283 *5) "failed")) - (|:| -2191 (-654 (-1283 *5))))) - (-5 *1 (-677 *5)) (-5 *4 (-1283 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1283 *5) "failed")) - (|:| -2191 (-654 (-1283 *5))))) - (-5 *1 (-677 *5)) (-5 *4 (-1283 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) - (-5 *2 - (-654 - (-2 (|:| |particular| (-3 (-1283 *5) "failed")) - (|:| -2191 (-654 (-1283 *5)))))) - (-5 *1 (-677 *5)) (-5 *4 (-654 (-1283 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) - (-5 *2 - (-654 - (-2 (|:| |particular| (-3 (-1283 *5) "failed")) - (|:| -2191 (-654 (-1283 *5)))))) - (-5 *1 (-677 *5)) (-5 *4 (-654 (-1283 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) - (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) - (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4459)))) - (-5 *2 - (-654 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2191 (-654 *7))))) - (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7)) - (-4 *3 (-697 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-780 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1218) (-972))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1192)) - (-4 *7 (-13 (-29 *6) (-1218) (-972))) - (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1283 *7)) (|:| -2191 (-654 (-1283 *7))))) - (-5 *1 (-812 *6 *7)) (-5 *4 (-1283 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1192)) - (-4 *6 (-13 (-29 *5) (-1218) (-972))) - (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-1283 *6))) (-5 *1 (-812 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) - (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) - (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1283 *7)) (|:| -2191 (-654 (-1283 *7))))) - (-5 *1 (-812 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) - (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) - (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1283 *7)) (|:| -2191 (-654 (-1283 *7))))) - (-5 *1 (-812 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1192)) - (-4 *7 (-13 (-29 *6) (-1218) (-972))) - (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2191 (-654 *7))) *7 "failed")) - (-5 *1 (-812 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1192)) - (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2191 (-654 *3))) *3 "failed")) - (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1218) (-972))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2)) - (-4 *2 (-13 (-29 *6) (-1218) (-972))) (-5 *1 (-812 *6 *2)) - (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2)) - (-4 *2 (-13 (-29 *6) (-1218) (-972))) - (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *1 (-812 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1050)) (-5 *1 (-815)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-818)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) - (-5 *2 (-1050)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) - (-5 *2 (-1050)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) - (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) - (-5 *2 (-1050)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) - (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) - (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2191 (-654 *6))) "failed") - *7 *6)) - (-4 *6 (-372)) (-4 *7 (-666 *6)) - (-5 *2 (-2 (|:| |particular| (-1283 *6)) (|:| -2191 (-699 *6)))) - (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1283 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1050)) (-5 *1 (-910)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-911)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-910)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1174)) - (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) - (-5 *2 (-1050)) (-5 *1 (-910)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1174)) - (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1050)) - (-5 *1 (-910)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *2 (-654 (-388))) - (-5 *1 (-1038)) (-5 *4 (-388)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1038)) - (-5 *4 (-388)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1146 *4)) - (-5 *3 (-324 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1146 *4)) - (-5 *3 (-302 (-324 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1146 *5)) - (-5 *3 (-302 (-324 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1146 *5)) - (-5 *3 (-324 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1192))) - (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1146 *5)) - (-5 *3 (-654 (-302 (-324 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) - (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) - (-5 *1 (-1201 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1192))) (-4 *5 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-1201 *5)) - (-5 *3 (-654 (-302 (-417 (-965 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-417 (-965 *4)))) (-4 *4 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-1201 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) - (-5 *1 (-1201 *4)) (-5 *3 (-654 (-302 (-417 (-965 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) (-4 *5 (-566)) - (-5 *2 (-654 (-302 (-417 (-965 *5))))) (-5 *1 (-1201 *5)) - (-5 *3 (-417 (-965 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) (-4 *5 (-566)) - (-5 *2 (-654 (-302 (-417 (-965 *5))))) (-5 *1 (-1201 *5)) - (-5 *3 (-302 (-417 (-965 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *4))))) - (-5 *1 (-1201 *4)) (-5 *3 (-417 (-965 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *4))))) - (-5 *1 (-1201 *4)) (-5 *3 (-302 (-417 (-965 *4))))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) - ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720))))) +(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-546))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4)) - (-4 *4 (-1115)))) + (-12 (-5 *2 (-1193)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4)) + (-4 *4 (-1116)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) + (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))) ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) + (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) + (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3) - (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) - (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) - (-5 *1 (-1191))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1174)) (-5 *1 (-796))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) + (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116))))) (((*1 *2 *3) - (-12 (-5 *3 (-1150)) (-5 *2 (-701 (-288))) (-5 *1 (-169))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) - (-14 *4 (-781)) (-4 *5 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) + (-12 (-5 *3 (-1193)) (-4 *5 (-1238)) (-4 *6 (-1260 *5)) + (-4 *7 (-1260 (-417 *6))) (-5 *2 (-654 (-966 *5))) + (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2) - (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-781))))) + (-12 (-5 *3 (-1193)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1238)) + (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-4 *4 (-372)) + (-5 *2 (-654 (-966 *4)))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) - (-5 *1 (-1191))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) - (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4)))))) + (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) + (-5 *1 (-1192))))) +(((*1 *2 *2) (-12 (-5 *1 (-975 *2)) (-4 *2 (-555))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) - (-4 *4 (-358)) (-5 *2 (-1288)) (-5 *1 (-538 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1238)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1188 *3)) - (-4 *3 (-13 (-440 *7) (-27) (-1218))) - (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1115)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) - (-5 *6 (-417 (-1188 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1218))) - (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1115))))) -(((*1 *2 *1) - (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) - (-4 *3 (-1115))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))) - (-4 *3 (-13 (-1115) (-34)))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) -(((*1 *1) (-5 *1 (-1285)))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) - ((*1 *1 *1) (|partial| -4 *1 (-732)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3496 *3) (|:| |coef1| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) (((*1 *2 *3) - (-12 (-5 *3 (-940)) - (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) - (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-417 (-574))) - (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) - (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) - (-5 *1 (-154)))) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) + ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4)) + (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-516)) (-5 *3 (-654 (-979))) (-5 *1 (-109))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1193)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-654 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3852 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1219) (-27) (-440 *8))) + (-4 *8 (-13 (-462) (-148) (-1054 *3) (-649 *3))) (-5 *3 (-574)) + (-5 *2 (-654 *4)) (-5 *1 (-1030 *8 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3)))) + (-5 *1 (-605 *3)) (-4 *3 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) + ((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3)))) ((*1 *2 *3) + (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1228 *6)) + (-5 *2 (-1 (-1173 *4) (-1173 *4))) (-5 *1 (-1292 *6)) + (-5 *5 (-1173 *4))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) - (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) - (-5 *1 (-154)) (-5 *3 (-654 (-956 (-227)))))) - ((*1 *2 *3) + (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) + (-5 *1 (-1192))))) +(((*1 *1) (-5 *1 (-1098)))) +(((*1 *1 *1) + (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34))) + (-4 *3 (-13 (-1116) (-34)))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-766))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) + (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-654 (-574))) + (|:| |cols| (-654 (-574))))) + (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-966 *9)))) + (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574)) + (-4 *9 (-13 (-315) (-148))) (-4 *12 (-963 *9 *11 *10)) + (-4 *10 (-13 (-860) (-624 (-1193)))) (-4 *11 (-803)) (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) - (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) - (-5 *1 (-154)) (-5 *3 (-654 (-654 (-956 (-227))))))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) - (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) + (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12)) + (|:| |wcond| (-654 (-966 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1284 (-417 (-966 *9)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *9))))))))) + (-5 *1 (-938 *9 *10 *11 *12))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1120)) (-5 *1 (-287))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-699 (-966 *4))) (-5 *1 (-1044 *4)) + (-4 *4 (-1065))))) +(((*1 *2 *3) + (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1189 (-1189 *4)))) + (-5 *1 (-1232 *4)) (-5 *3 (-1189 (-1189 *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-428 (-1189 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1189 *1)) + (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1116)))) + ((*1 *2 *3) + (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1))))) +(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-589))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) - (-5 *2 - (-2 (|:| A (-699 *5)) - (|:| |eqs| - (-654 - (-2 (|:| C (-699 *5)) (|:| |g| (-1283 *5)) (|:| -4095 *6) - (|:| |rh| *5)))))) - (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) - (-4 *6 (-666 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *6 (-666 *5)) - (-5 *2 (-2 (|:| -4047 (-699 *6)) (|:| |vec| (-1283 *5)))) - (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1283 *5))))) + (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1235 *2)) + (-4 *2 (-1116)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-860)) + (-5 *1 (-1235 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1193))) (-5 *1 (-835))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) + (-5 *2 (-654 (-654 (-957 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-654 (-654 (-957 *4)))) (-5 *3 (-112)) (-4 *4 (-1065)) + (-4 *1 (-1150 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 (-654 (-957 *3)))) (-4 *3 (-1065)) + (-4 *1 (-1150 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112)) + (-4 *1 (-1150 *4)) (-4 *4 (-1065)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-654 (-654 (-957 *4)))) (-5 *3 (-112)) + (-4 *1 (-1150 *4)) (-4 *4 (-1065)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173))) + (-5 *4 (-173)) (-4 *1 (-1150 *5)) (-4 *5 (-1065)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-654 (-654 (-957 *5)))) (-5 *3 (-654 (-173))) + (-5 *4 (-173)) (-4 *1 (-1150 *5)) (-4 *5 (-1065))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-112)) (-5 *1 (-903 *4)) + (-4 *4 (-1116))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-935))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) - (-4 *2 (-174))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) - (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7)) - (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-1162 (-1174))) (-5 *1 (-401))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860)) + (-4 *8 (-963 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1284 (-417 *8)) "failed")) + (|:| -2391 (-654 (-1284 (-417 *8)))))) + (-5 *1 (-679 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1193)) + (-14 *5 *3) (-5 *1 (-327 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) + (-5 *1 (-340))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1173 *3))) (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) - (-4 *2 (-1233))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1283 *6)) (-5 *4 (-1283 (-574))) (-5 *5 (-574)) - (-4 *6 (-1115)) (-5 *2 (-1 *6)) (-5 *1 (-1032 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-965 (-574)))) (-5 *1 (-447)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192)) (-5 *4 (-699 (-227))) (-5 *2 (-1119)) - (-5 *1 (-769)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192)) (-5 *4 (-699 (-574))) (-5 *2 (-1119)) - (-5 *1 (-769))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-654 (-1256 *5 *4))) - (-5 *1 (-1129 *4 *5)) (-5 *3 (-1256 *5 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *4)) (-5 *3 (-934)) (|has| *4 (-6 (-4460 "*"))) - (-4 *4 (-1064)) (-5 *1 (-1043 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-934)) - (|has| *4 (-6 (-4460 "*"))) (-4 *4 (-1064)) (-5 *1 (-1043 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) - ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285))))) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) + (-4 *2 (-1234))))) +(((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) + (-4 *3 (-1260 *4)) (-5 *2 (-574)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-566) (-1054 *2) (-649 *2) (-462))) + (-5 *2 (-574)) (-5 *1 (-1132 *4 *3)) + (-4 *3 (-13 (-27) (-1219) (-440 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-853 *3)) + (-4 *3 (-13 (-27) (-1219) (-440 *6))) + (-4 *6 (-13 (-566) (-1054 *2) (-649 *2) (-462))) (-5 *2 (-574)) + (-5 *1 (-1132 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-1175)) + (-4 *6 (-13 (-566) (-1054 *2) (-649 *2) (-462))) (-5 *2 (-574)) + (-5 *1 (-1132 *6 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-462)) (-5 *2 (-574)) + (-5 *1 (-1133 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-853 (-417 (-966 *6)))) + (-5 *3 (-417 (-966 *6))) (-4 *6 (-462)) (-5 *2 (-574)) + (-5 *1 (-1133 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-417 (-966 *6))) (-5 *4 (-1193)) + (-5 *5 (-1175)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1133 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1216 *3)) (-4 *3 (-1065))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) + (-4 *5 (-1260 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1032 *4 *5)) + (-5 *3 (-417 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) + (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-923)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-428 (-1189 *7))) + (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5))) + (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) - (-15 -2981 ((-1140 *3 (-622 $)) $)) - (-15 -2950 ($ (-1140 *3 (-622 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) - (-15 -2981 ((-1140 *3 (-622 $)) $)) - (-15 -2950 ($ (-1140 *3 (-622 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) - (-15 -2981 ((-1140 *4 (-622 $)) $)) - (-15 -2950 ($ (-1140 *4 (-622 $))))))) - (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-622 *2))) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) - (-15 -2981 ((-1140 *4 (-622 $)) $)) - (-15 -2950 ($ (-1140 *4 (-622 $))))))) - (-4 *4 (-566)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) - (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-654 *3)) - (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1124 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) - (-5 *2 - (-654 (-2 (|:| -3048 (-1188 *5)) (|:| -4346 (-654 (-965 *5)))))) - (-5 *1 (-1093 *5 *6)) (-5 *3 (-654 (-965 *5))) - (-14 *6 (-654 (-1192))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-148))) - (-5 *2 - (-654 (-2 (|:| -3048 (-1188 *4)) (|:| -4346 (-654 (-965 *4)))))) - (-5 *1 (-1093 *4 *5)) (-5 *3 (-654 (-965 *4))) - (-14 *5 (-654 (-1192))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) - (-5 *2 - (-654 (-2 (|:| -3048 (-1188 *5)) (|:| -4346 (-654 (-965 *5)))))) - (-5 *1 (-1093 *5 *6)) (-5 *3 (-654 (-965 *5))) - (-14 *6 (-654 (-1192)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) - (-5 *2 (-1050)) (-5 *1 (-764))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *4)))) - (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) + (-12 (-5 *3 (-1189 (-966 *6))) (-4 *6 (-566)) + (-4 *2 (-963 (-417 (-966 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) + (-4 *5 (-803)) + (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-574)) (-5 *1 (-1216 *4)) + (-4 *4 (-1065))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-769))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227))) + (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1051)) + (-5 *1 (-764))))) +(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) + ((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) - (-4 *3 (-1233))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2) - (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) - (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-781))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) - (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) - (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4460)) (-4 *1 (-499 *3)) + (-4 *3 (-1234))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) + (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574)))) + (-5 *1 (-938 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-963 *4 *6 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1188 *4))) (-5 *3 (-1188 *4)) - (-4 *4 (-922)) (-5 *1 (-673 *4))))) + (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574)) + (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-1078))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227)))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-935)) (-5 *2 (-478)) (-5 *1 (-1285))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1051)) (-5 *1 (-759)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-398)) (-5 *2 (-1051)) (-5 *1 (-759))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) +(((*1 *1) (-5 *1 (-1196)))) (((*1 *2 *1) - (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) - (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) -(((*1 *2) - (-12 (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) - (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1064)) (-4 *5 (-1259 *4)) (-5 *2 (-1 *6 (-654 *6))) - (-5 *1 (-1277 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1274 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-1015 *3))))) + (-12 (-4 *1 (-705 *3)) (-4 *3 (-1116)) + (-5 *2 (-654 (-2 (|:| -1916 *3) (|:| -3949 (-781)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1193)) + (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) + (-4 *4 (-13 (-29 *6) (-1219) (-973))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2391 (-654 *4)))) + (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233))))) -(((*1 *1) (-5 *1 (-1288)))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) -(((*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-1109 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-654 (-173))))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1) (-5 *1 (-1289)))) +(((*1 *2 *3) + (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112)) + (-5 *1 (-682 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1110 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227)))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-935))) (-5 *4 (-112)) + (-5 *1 (-1126))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-546))) (-5 *1 (-546))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-372)) - (-5 *2 (-112)) (-5 *1 (-677 *5)))) + (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4)) + (-4 *3 (-1260 (-171 (-574)))) (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-112)) - (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-546))) (-5 *1 (-546))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1259 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1259 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781))) - (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1259 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2886 *3))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1115)) - (-4 *2 (-860))))) -(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) - ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286))))) + (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1234)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-860)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *1 (-996 *3)) (-4 *3 (-1065)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) + (-4 *1 (-1087 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-765))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1284 *5)) (-4 *5 (-315)) + (-4 *5 (-1065)) (-5 *2 (-699 *5)) (-5 *1 (-1045 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566))))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1110 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227)))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-762))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-241 *3)) + (-4 *3 (-1116)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-241 *2)) (-4 *2 (-1116)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-1116)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1116)) + (-5 *1 (-747 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1116)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) + (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) + (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-132))))) +(((*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-194)))) + (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-440 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) + (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) + (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1018))))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-308)))) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310)))) + ((*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-313))))) -(((*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-1109 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227)))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) - ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1195))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1027)) (-5 *2 (-872))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338))))) -(((*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1174)) (-5 *2 (-784)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1119)) (-5 *1 (-978))))) -(((*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1195))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) - (-5 *7 (-699 (-574))) - (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-763))))) + (-12 (-5 *3 (-115)) (-4 *5 (-1116)) (-5 *2 (-112)) + (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) + (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) + (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1018) (-1219)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) + (-5 *1 (-1254 *4 *2)) (-4 *2 (-1260 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-781)) (-4 *1 (-999 *2)) (-4 *2 (-1219))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *1) (-4 *1 (-503))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860))))) +(((*1 *1 *1) (|partial| -4 *1 (-1168)))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781)) - (-5 *1 (-958 *4 *5)) (-4 *5 (-1259 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-916 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) + (-12 (-4 *4 (-38 (-417 (-574)))) + (-5 *2 (-2 (|:| -2358 (-1173 *4)) (|:| -2368 (-1173 *4)))) + (-5 *1 (-1179 *4)) (-5 *3 (-1173 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-382 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) + (-4 *3 (-13 (-1219) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)) (-148))) + (-5 *2 (-596 (-417 (-966 *5)))) (-5 *1 (-580 *5)) + (-5 *3 (-417 (-966 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-934)) - (-4 *2 (-1115))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) - (-5 *2 (-1050)) (-5 *1 (-766))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163))))) + (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-935)) + (-4 *2 (-1116))))) (((*1 *2 *1) - (-12 (-4 *2 (-1233)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1233)))) - ((*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1192)) (-5 *2 (-546)) (-5 *1 (-545 *4)) - (-4 *4 (-1233))))) -(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-388))) - ((*1 *1) (-5 *1 (-388)))) + (-12 (-4 *2 (-1234)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1234)))) + ((*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-699 (-417 (-966 (-574))))) + (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047)) + (-5 *3 (-324 (-574)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) + (-4 *7 (-1260 (-417 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -4022 *3))) + (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) + (-5 *2 + (-2 (|:| |answer| (-417 *6)) (|:| -4022 (-417 *6)) + (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) + (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1118 (-781))) (-5 *6 (-781)) + (-5 *2 + (-2 (|:| |contp| (-574)) + (|:| -3314 (-654 (-2 (|:| |irr| *3) (|:| -3868 (-574))))))) + (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *1) (-4 *1 (-503))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-757))))) -(((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-901 *4 *3)) + (-4 *3 (-1234)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) +(((*1 *1) (-5 *1 (-142)))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) + (-12 (-5 *2 (-781)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1065)) (-4 *4 (-174)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)) + (-4 *3 (-174))))) (((*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) - (-4 *5 (-382 *2)) (-4 *2 (-1233)))) + (-4 *5 (-382 *2)) (-4 *2 (-1234)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *2 (-1115)) (-5 *1 (-215 *4 *2)) - (-14 *4 (-934)))) + (-12 (-5 *3 (-781)) (-4 *2 (-1116)) (-5 *1 (-215 *4 *2)) + (-14 *4 (-935)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) + (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1064))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1196))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-934)) (-4 *1 (-414)))) + (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7)) + (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1065))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-935)) (-4 *1 (-414)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-414)))) ((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *2 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1141 *4 *3 *5))) (-4 *4 (-38 (-417 (-574)))) - (-4 *4 (-1064)) (-4 *3 (-860)) (-5 *1 (-1141 *4 *3 *5)) - (-4 *5 (-962 *4 (-541 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1227 *4))) (-5 *3 (-1192)) (-5 *1 (-1227 *4)) - (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1064))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1259 *6)) - (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)))) - (-4 *8 (-1259 (-417 *7))) (-5 *2 (-596 *3)) - (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) + (-12 (-4 *1 (-1119 *3 *4 *5 *2 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-574)))) + (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) + (-5 *2 (-112)) (-5 *1 (-1003 *3 *4 *5 *6)) + (-4 *6 (-963 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) -(((*1 *1 *2) - (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1064) (-860))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1192)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) + (-4 *4 (-13 (-1116) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1116)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574)) + (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1116))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-417 (-574))) + (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5)) + (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-1189 (-417 (-574)))) + (-5 *1 (-443 *5 *3))))) +(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1260 *2)) + (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-1260 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4)) + (-4 *3 (-419 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *3 (-1260 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4)) + (-4 *4 (-419 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *3 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-174))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1189 *3)) + (-4 *3 (-13 (-440 *6) (-27) (-1219))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-2 (|:| -3852 *3) (|:| |coeff| *3))) + (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1189 *3))) + (-4 *3 (-13 (-440 *6) (-27) (-1219))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-2 (|:| -3852 *3) (|:| |coeff| *3))) + (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1197))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1284 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315)) + (-4 *3 (-566)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-935)) (-4 *4 (-372)) (-5 *2 (-1284 *1)) + (-4 *1 (-337 *4)))) + ((*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1284 *1)) (-4 *1 (-337 *3)))) + ((*1 *2) + (-12 (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-1284 *1)) + (-4 *1 (-419 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) + (-5 *2 (-1284 *6)) (-5 *1 (-423 *3 *4 *5 *6)) + (-4 *6 (-13 (-419 *4 *5) (-1054 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) + (-5 *2 (-1284 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)) + (-4 *6 (-419 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1284 *1)) (-4 *1 (-427 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-935)) (-5 *2 (-1284 (-1284 *4))) (-5 *1 (-538 *4)) + (-4 *4 (-358))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *1) (-4 *1 (-503))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1017) (-1218))) - (-5 *1 (-610 *4 *2 *3)) - (-4 *3 (-13 (-440 (-171 *4)) (-1017) (-1218)))))) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5)) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) + (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-938 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-13 (-315) (-148))) + (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-112)) + (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1215 *3)) (-4 *3 (-1064))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-633 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3877 *4) (|:| |sol?| (-112))) - (-574) *4)) - (-4 *4 (-372)) (-4 *5 (-1259 *4)) (-5 *1 (-584 *4 *5))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) - (-4 *2 (-1259 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571))))) -(((*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1288)) (-5 *1 (-873))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132)) - (-4 *2 (-1115)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1115)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1115)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-1115)) (-5 *1 (-659 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1216 *3)) (-4 *3 (-1065))))) (((*1 *2 *3) - (-12 (-5 *2 (-654 (-1188 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) + (-12 (-4 *1 (-908)) + (-5 *3 + (-2 (|:| |pde| (-654 (-324 (-227)))) + (|:| |constraints| + (-654 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-781)) (|:| |boundaryType| (-574)) + (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) + (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) + (|:| |tol| (-227)))) + (-5 *2 (-1051))))) +(((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1289)) (-5 *1 (-873))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-654 - (-2 - (|:| -3666 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -1917 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1172 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3362 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-569)))) - ((*1 *2 *1) - (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) - (-5 *2 (-654 *4))))) + (-12 (-5 *2 (-1189 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) ((*1 *1 *1) (-4 *1 (-503))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1283 *4)) (-5 *3 (-574)) (-4 *4 (-358)) - (-5 *1 (-538 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-287))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-831))))) +(((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-287))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) + (-5 *2 (-1051)) (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574)))) + (-5 *2 (-1284 (-417 (-574)))) (-5 *1 (-1312 *4))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3319 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065))))) (((*1 *2 *1) - (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6)) - (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-622 *3)) - (-4 *3 (-13 (-440 *5) (-27) (-1218))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-2 (|:| -3766 *3) (|:| |coeff| *3))) - (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1115))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) + (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)) + (-4 *2 (-462)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-1260 (-574))) (-5 *2 (-654 (-574))) + (-5 *1 (-496 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-462)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *3 (-462))))) +(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1116))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-654 *3)) (-5 *1 (-974 *3)) (-4 *3 (-555))))) -(((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-832))))) -(((*1 *2 *1) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) + (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193)) + (-5 *2 (-654 *4)) (-5 *1 (-1130 *4 *5))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) ((*1 *1 *1) (-4 *1 (-503))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-358)) (-4 *2 (-1065)) (-5 *1 (-722 *2 *3)) + (-4 *3 (-1260 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3)) - (-4 *3 (-382 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3)) - (-4 *5 (-382 *2)) (-4 *3 (-382 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 *4)) (-4 *4 (-1007 *2)) (-4 *2 (-566)) - (-5 *1 (-703 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-1252 *2 *4 *3)) - (-4 *3 (-1259 *4))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527))))) + (-12 (-5 *3 (-699 *2)) (-4 *4 (-1260 *2)) + (-4 *2 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) + (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (-4 *2 (-1065))))) (((*1 *2 *3) - (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555))))) -(((*1 *1) (-5 *1 (-299)))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-992 *3 *4 *5 *6))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-516)) (-5 *3 (-654 (-978))) (-5 *1 (-299))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) - ((*1 *1 *1) (-4 *1 (-503))) - ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) - (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-937 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-13 (-315) (-148))) - (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-112)) - (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) - ((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) - ((*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) - ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) - ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1172 (-574)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1172 *7))) (-4 *6 (-860)) - (-4 *7 (-962 *5 (-541 *6) *6)) (-4 *5 (-1064)) - (-5 *2 (-1 (-1172 *7) *7)) (-5 *1 (-1141 *5 *6 *7))))) + (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1018) (-1219))) + (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1018) (-1219)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1188 *5))) (-5 *3 (-1188 *5)) - (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1259 *5)) - (-4 *5 (-1259 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1188 (-574)))) (-5 *3 (-1188 (-574))) - (-5 *1 (-582)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1188 *1))) (-5 *3 (-1188 *1)) - (-4 *1 (-922))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) - (-5 *2 (-829 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-856)) (-5 *1 (-1306 *3 *2)) (-4 *3 (-1064))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-691)))) - ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-985)))) - ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1088)))) - ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1133))))) + (-12 (-5 *2 (-654 (-966 *4))) (-5 *3 (-654 (-1193))) (-4 *4 (-462)) + (-5 *1 (-932 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) + ((*1 *1 *1) (-4 *1 (-503))) + ((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-761))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-759))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1 *1) + (-12 (-4 *2 (-315)) (-4 *3 (-1008 *2)) (-4 *4 (-1260 *3)) + (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1054 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-691)))) + ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-986)))) + ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1089)))) + ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1134))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1237)) (-4 *5 (-1259 *3)) (-4 *6 (-1259 (-417 *5))) - (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6)) - (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1274 *5)) (-4 *6 (-1259 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1275 *5 *6 *7)) (-4 *5 (-372)) - (-14 *6 (-1192)) (-14 *7 *5) (-5 *2 (-417 (-1256 *6 *5))) - (-5 *1 (-878 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1275 *5 *6 *7)) (-4 *5 (-372)) - (-14 *6 (-1192)) (-14 *7 *5) (-5 *2 (-417 (-1256 *6 *5))) - (-5 *1 (-878 *5 *6 *7))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566)) - (-5 *2 (-872)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1115)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1115))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) - (-4 *2 (-697 *3 *4 *5))))) + (-12 (-14 *4 (-654 (-1193))) (-14 *5 (-781)) + (-5 *2 + (-654 + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574)))))) + (-5 *1 (-515 *4 *5)) + (-5 *3 + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574)))))))) +(((*1 *1 *1) (-5 *1 (-1079)))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) + (-5 *2 (-1189 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1193)) (-5 *2 (-622 *6)) + (-4 *6 (-440 *5)) (-4 *5 (-1116)) (-5 *1 (-583 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) + (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-212))))) + (-12 (-5 *4 (-781)) (-4 *5 (-566)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-1118 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1116)) (-5 *2 (-1118 (-654 *4))) (-5 *1 (-918 *4)) + (-5 *3 (-654 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1116)) (-5 *2 (-1118 (-1118 *4))) (-5 *1 (-918 *4)) + (-5 *3 (-1118 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1118 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372)) - (-5 *2 (-781)) (-5 *1 (-958 *5 *6)) (-4 *6 (-1259 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-4 *4 (-1233)) (-5 *2 (-112)) - (-5 *1 (-1172 *4))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) - (-4 *3 (-1115))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1100))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-145)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-796))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) + (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-372)) (-4 *3 (-1065)) + (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-862 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1065)) + (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-863 *5 *3)) + (-4 *3 (-862 *5))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1175)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) + (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234))))) +(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-145)))) ((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-145))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-1 (-227) (-227) (-227) (-227))) - (-5 *2 (-1 (-956 (-227)) (-227) (-227))) (-5 *1 (-707))))) +(((*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-980 *3)) (-4 *3 (-1116))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23))))) (((*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) - ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1115))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-831))))) + ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1116))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) + (-12 (-5 *4 (-781)) (-4 *5 (-1065)) (-5 *2 (-574)) + (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1260 *5)) + (-4 *6 (-13 (-414) (-1054 *5) (-372) (-1219) (-292))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) + (-4 *3 (-1260 *4)) + (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292)))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) + (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1051)) (-5 *1 (-766))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1064)) - (-5 *1 (-700 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-112)) (-5 *1 (-839))))) -(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-871)))) - ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871))))) + (-12 (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-654 (-1257 *5 *4))) + (-5 *1 (-1130 *4 *5)) (-5 *3 (-1257 *5 *4))))) (((*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) - ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1115))))) + ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1116))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) ((*1 *1 *1 *1) (-5 *1 (-388))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-315)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) - (-4 *1 (-315))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227))) - (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-760))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-574)) (|has| *1 (-6 -4459)) (-4 *1 (-382 *3)) - (-4 *3 (-1233))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) - (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1219) (-29 *6))) + (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-226 *6 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1116))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-781)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1065)) (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-654 + (-2 + (|:| -3667 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -1916 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1173 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3798 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-569)))) + ((*1 *2 *1) + (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234)) + (-5 *2 (-654 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-781))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -4098 *1) (|:| -4446 *1) (|:| |associate| *1))) + (-4 *1 (-566))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) (((*1 *1 *1) (-4 *1 (-555)))) -(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-934)) (-5 *1 (-709)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-372)) (-5 *1 (-993 *5))))) -(((*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2886 *3))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-781)) (-5 *4 (-1284 *2)) (-4 *5 (-315)) + (-4 *6 (-1008 *5)) (-4 *2 (-13 (-419 *6 *7) (-1054 *6))) + (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1260 *6))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) - (-5 *1 (-758))))) + (-12 (-4 *3 (-1260 *2)) (-4 *2 (-1260 *4)) + (-5 *1 (-1001 *4 *2 *3 *5)) (-4 *4 (-358)) (-4 *5 (-734 *2 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) - (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4)))) - ((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) - (-14 *4 (-934)))) - ((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) - (-14 *4 - (-3 (-1188 *3) - (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135))))))))) - ((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) - (-14 *4 (-934))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1250 *3)) (-4 *3 (-1233))))) + (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *2 (-1284 (-324 (-388)))) + (-5 *1 (-313))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1289)) + (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-377))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1101))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1065))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1211 *4 *5)) + (-4 *4 (-1116)) (-4 *5 (-1116))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1178 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-691)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1133))))) -(((*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) - (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1188 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6)) - (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) - (-4 *2 (-1233))))) + (-12 (-5 *2 (-654 (-2 (|:| |k| (-1193)) (|:| |c| (-1306 *3))))) + (-5 *1 (-1306 *3)) (-4 *3 (-1065)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1308 *3 *4))))) + (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-691)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1134))))) (((*1 *2 *3) - (-12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-654 *5)) - (-5 *1 (-901 *4 *5)) (-4 *5 (-1233))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-781)) (-4 *5 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) - (-4 *4 (-174)))) - ((*1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1064)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3)) - (-4 *4 (-382 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1064))))) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) + (-5 *2 (-654 (-2 (|:| -1390 *1) (|:| -1684 (-654 *7))))) + (-5 *3 (-654 *7)) (-4 *1 (-1227 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-935)) (-5 *1 (-452 *2)) + (-4 *2 (-1260 (-574))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-935)) (-5 *4 (-781)) (-5 *1 (-452 *2)) + (-4 *2 (-1260 (-574))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2)) + (-4 *2 (-1260 (-574))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) + (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) + (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-935)) (-5 *4 (-428 *2)) (-4 *2 (-1260 *5)) + (-5 *1 (-454 *5 *2)) (-4 *5 (-1065))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-622 *3)) + (-4 *3 (-13 (-440 *5) (-27) (-1219))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-2 (|:| -3852 *3) (|:| |coeff| *3))) + (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1116))))) (((*1 *2 *3) - (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1176 *4)) (-4 *4 (-1064)) - (-5 *3 (-574))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1053 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-440 *3)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1188 *4)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1064)) (-4 *1 (-310)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1188 *3)))) - ((*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *2)) (-4 *3 (-13 (-858) (-372))) - (-4 *2 (-1259 *3))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1238)) + (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) + (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5)))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-654 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-803)) (-4 *3 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) + (-5 *1 (-459 *4 *5 *6 *3))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-417 (-574)))) + (-5 *2 (-2 (|:| -2235 (-1173 *4)) (|:| -2247 (-1173 *4)))) + (-5 *1 (-1179 *4)) (-5 *3 (-1173 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) - ((*1 *1 *1) (-4 *1 (-1221)))) -(((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) - (-5 *2 (-1283 *6)) (-5 *1 (-345 *3 *4 *5 *6)) - (-4 *6 (-351 *3 *4 *5))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3)))) + ((*1 *1 *1) (-4 *1 (-1222)))) +(((*1 *1) (-5 *1 (-607)))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941))))) (((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1283 (-1283 (-574)))) (-5 *1 (-476))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1259 (-171 *2)))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-1002 (-417 (-574)) (-874 *3) (-246 *4 (-781)) - (-253 *3 (-417 (-574))))) - (-14 *3 (-654 (-1192))) (-14 *4 (-781)) (-5 *1 (-1001 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) + (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-598 *4)) + (-4 *4 (-358))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| -4200 *4) (|:| -3584 (-574))))) - (-4 *4 (-1259 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *2 (-1050)) (-5 *1 (-764))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 - (-2 (|:| |solns| (-654 *5)) - (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1143 *3 *5)) (-4 *3 (-1259 *5))))) + (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1065)) (-4 *6 (-963 *5 *4 *2)) + (-4 *2 (-860)) (-5 *1 (-964 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2951 ($ *6)) (-15 -2971 (*6 $)) + (-15 -2981 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) + (-5 *2 (-1193)) (-5 *1 (-1059 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1175) (-784))) (-5 *1 (-115))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1234)))) + ((*1 *2 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234)) + (-14 *4 (-574))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) - ((*1 *1 *1) (-4 *1 (-1221)))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1250 (-574)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3)))) + ((*1 *1 *1) (-4 *1 (-1222)))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-747 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1116)))) + ((*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1115) (-34))) (-5 *1 (-1155 *3 *2)) - (-4 *3 (-13 (-1115) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1294))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-566) (-148))) - (-5 *2 (-2 (|:| -3864 *3) (|:| -3877 *3))) (-5 *1 (-1253 *4 *3)) - (-4 *3 (-1259 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574)) - (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 (-2 (|:| -4200 (-1188 *6)) (|:| -2017 (-574))))) - (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064))))) -(((*1 *2 *3) - (-12 (-4 *4 (-462)) - (-5 *2 - (-654 - (-2 (|:| |eigval| (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4)))) - (|:| |geneigvec| (-654 (-699 (-417 (-965 *4)))))))) - (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-965 *4))))))) + (-12 (-4 *2 (-13 (-1116) (-34))) (-5 *1 (-1156 *3 *2)) + (-4 *3 (-13 (-1116) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1295))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1191 *4 *5 *6)) + (-4 *4 (-1065)) (-14 *5 (-1193)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1276 *4 *5 *6)) + (-4 *4 (-1065)) (-14 *5 (-1193)) (-14 *6 *4)))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769))))) +(((*1 *1 *1) (-5 *1 (-1079)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-803)) + (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *5 (-566)) + (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-963 (-417 (-966 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1065)) (-4 *5 (-803)) + (-4 *3 + (-13 (-860) + (-10 -8 (-15 -1844 ((-1193) $)) + (-15 -1498 ((-3 $ "failed") (-1193)))))) + (-5 *1 (-1000 *4 *5 *3 *2)) (-4 *2 (-963 (-966 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *6)) + (-4 *6 + (-13 (-860) + (-10 -8 (-15 -1844 ((-1193) $)) + (-15 -1498 ((-3 $ "failed") (-1193)))))) + (-4 *4 (-1065)) (-4 *5 (-803)) (-5 *1 (-1000 *4 *5 *6 *2)) + (-4 *2 (-963 (-966 *4) *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-965 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) - ((*1 *2 *3) - (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) - ((*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-1027)) (-5 *2 (-654 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1188 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1188 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1188 *1)) (-4 *1 (-1027)) (-5 *2 (-654 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-654 *1)) - (-4 *1 (-1083 *4 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-765))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) - (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2011 (-654 *9)))) - (-5 *3 (-654 *9)) (-4 *1 (-1226 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2011 (-654 *8)))) - (-5 *3 (-654 *8)) (-4 *1 (-1226 *5 *6 *7 *8))))) + (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) + (-5 *1 (-340))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) + (-5 *2 (-829 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-856)) (-5 *1 (-1307 *3 *2)) (-4 *3 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) - ((*1 *1 *1) (-4 *1 (-1221)))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3)))) + ((*1 *1 *1) (-4 *1 (-1222)))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) (((*1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) - ((*1 *1 *1) (-5 *1 (-1135)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1192)) - (-14 *5 *3) (-5 *1 (-327 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388))))) -(((*1 *2) - (-12 (-4 *3 (-1064)) (-5 *2 (-971 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) - (-4 *4 (-1259 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3496 *4))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1115)) (-5 *2 (-622 *5)) - (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-757))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1227 *6)) - (-5 *2 (-1 (-1172 *4) (-1172 *4))) (-5 *1 (-1291 *6)) - (-5 *5 (-1172 *4))))) + ((*1 *1 *1) (-5 *1 (-1136)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1116)) (-4 *3 (-912 *5)) (-5 *2 (-699 *3)) + (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459))))))) +(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-446))))) (((*1 *2 *3) - (-12 (-5 *3 (-574)) (|has| *1 (-6 -4449)) (-4 *1 (-414)) - (-5 *2 (-934))))) + (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1116))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174))))) +(((*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) + ((*1 *1 *1) (-4 *1 (-1076)))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) - ((*1 *1 *1) (-4 *1 (-1221)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1064)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1259 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3)))) + ((*1 *1 *1) (-4 *1 (-1222)))) (((*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) - ((*1 *1 *1 *1) (-5 *1 (-1135)))) + ((*1 *1 *1 *1) (-5 *1 (-1136)))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))) (((*1 *2 *3) - (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313))))) + (-12 (-5 *3 (-1284 (-699 *4))) (-4 *4 (-174)) + (-5 *2 (-1284 (-699 (-966 *4)))) (-5 *1 (-191 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-388)) (-5 *1 (-194))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-5 *2 (-1288)) - (-5 *1 (-1234 *4)))) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-5 *2 (-1289)) + (-5 *1 (-1235 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-5 *2 (-1288)) - (-5 *1 (-1234 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1080 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-781))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1285))))) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-5 *2 (-1289)) + (-5 *1 (-1235 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-584 *5 *3))))) (((*1 *2) - (-12 (-4 *3 (-1064)) (-5 *2 (-971 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) - (-4 *4 (-1259 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227)))) + (-5 *2 (-1051)) (-5 *1 (-765))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) - ((*1 *1 *1) (-4 *1 (-1221)))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) - (-5 *2 (-654 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1115)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1283 - (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4012 (-574)) - (|:| -2760 (-574)) (|:| |spline| (-574)) (|:| -4261 (-574)) - (|:| |axesColor| (-884)) (|:| -2006 (-574)) - (|:| |unitsColor| (-884)) (|:| |showing| (-574))))) - (-5 *1 (-1284))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3)))) + ((*1 *1 *1) (-4 *1 (-1222)))) +(((*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) (((*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) - ((*1 *1 *1 *1) (-5 *1 (-1135)))) -(((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))) - ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))) - ((*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) - ((*1 *2 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) - ((*1 *1 *1) (-4 *1 (-1075)))) + ((*1 *1 *1 *1) (-5 *1 (-1136)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1065)) (-5 *2 (-1284 *3)) (-5 *1 (-722 *3 *4)) + (-4 *4 (-1260 *3))))) (((*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) - (-5 *1 (-340)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1192)) (-5 *4 (-1107 (-965 (-574)))) (-5 *2 (-338)) - (-5 *1 (-340)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1064)) - (-4 *3 (-1115))))) + (-12 (-4 *4 (-1234)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-684 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) + (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1051)) (-5 *3 (-1193)) (-5 *1 (-274))))) +(((*1 *1) (-5 *1 (-145)))) (((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-715 *3 *4)) (-4 *3 (-1233)) (-4 *4 (-1233))))) + (-5 *1 (-715 *3 *4)) (-4 *3 (-1234)) (-4 *4 (-1234))))) +(((*1 *2 *3) + (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1284 (-3 (-478) "undefined"))) (-5 *1 (-1285))))) (((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) - ((*1 *1 *1) (-4 *1 (-1221)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-992 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) - (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1233))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064))))) -(((*1 *1 *1) (-4 *1 (-639))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) - (-4 *3 (-1115)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-112)) - (-5 *1 (-917 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-934)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3)))) + ((*1 *1 *1) (-4 *1 (-1222)))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1173 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7))) + (-4 *7 (-1260 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-584 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) + (-4 *4 (-1260 *3)) (-5 *2 - (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4)) - (|:| |genIdeal| (-514 *4 *5 *6 *7)))) - (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)) - (-4 *3 (-566)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) + (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-1260 *3)) + (-5 *2 + (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-358)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 *3)) + (-5 *2 + (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-5 *1 (-1001 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-358)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 *3)) + (-5 *2 + (-2 (|:| -2391 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-5 *1 (-1293 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193)) (-5 *2 (-1 (-1189 (-966 *4)) (-966 *4))) + (-5 *1 (-1292 *4)) (-4 *4 (-372))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-372)) (-4 *3 (-1065)) + (-5 *1 (-1177 *3))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-781)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) + (-12 (-5 *2 (-781)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1281 *3)) (-4 *3 (-23)) (-4 *3 (-1233))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1064)) (-4 *3 (-372)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) - (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-860)) - (-4 *3 (-1115))))) + (-12 (-5 *2 (-781)) (-4 *1 (-1282 *3)) (-4 *3 (-23)) (-4 *3 (-1234))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1051)) (-5 *1 (-763))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *1 *1) (-4 *1 (-639))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3766 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-372)) (-4 *7 (-1259 *6)) - (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) - (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1738 *4))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1192)) (-5 *3 (-112)) (-5 *1 (-903 *4)) - (-4 *4 (-1115))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-977 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1174)) (-5 *4 (-1135)) (-5 *2 (-112)) (-5 *1 (-831))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1233)))) + (-4 *2 (-13 (-440 *3) (-1018) (-1219)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1204 *5))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-963 *4 *3 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-574)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372)) + (-4 *5 (-1065)) (-5 *2 (-112)) (-5 *1 (-1045 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1065)) + (-5 *2 (-112)) (-5 *1 (-1045 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990))))) +(((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220)))) + ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1118 *3)) (-5 *1 (-919 *3)) (-4 *3 (-377)) + (-4 *3 (-1116))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1234)))) ((*1 *1 *2) - (-12 (-5 *2 (-965 (-388))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (-12 (-5 *2 (-966 (-388))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-417 (-965 (-388)))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (-12 (-5 *2 (-417 (-966 (-388)))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-965 (-574))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (-12 (-5 *2 (-966 (-574))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-417 (-965 (-574)))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (-12 (-5 *2 (-417 (-966 (-574)))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-1192)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) + (-12 (-5 *2 (-1193)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) ((*1 *1 *2) (-12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) - (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))))) - ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-965 (-574))))) (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-965 (-388))))) (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-699 (-965 (-574)))) (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-699 (-965 (-388)))) (-4 *1 (-393)))) + (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))))) + ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-966 (-574))))) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-966 (-388))))) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-699 (-966 (-574)))) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-699 (-966 (-388)))) (-4 *1 (-393)))) ((*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) ((*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-574)))) (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-388)))) (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-965 (-574))) (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-965 (-388))) (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-574)))) (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-388)))) (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-966 (-574))) (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-966 (-388))) (-4 *1 (-406)))) ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-1283 (-417 (-965 (-574))))) (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-1283 (-417 (-965 (-388))))) (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-1283 (-965 (-574)))) (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-1283 (-965 (-388)))) (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-1283 (-324 (-574)))) (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-1283 (-324 (-388)))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1284 (-417 (-966 (-574))))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1284 (-417 (-966 (-388))))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1284 (-966 (-574)))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1284 (-966 (-388)))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1284 (-324 (-574)))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1284 (-324 (-388)))) (-4 *1 (-451)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) - (|:| -3362 (-654 (-1109 (-853 (-227))))) + (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818)))) @@ -11995,73 +12377,61 @@ (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) - (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) + (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *1 (-911)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-1064)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-991 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1233)))) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-1065)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-992 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1234)))) ((*1 *1 *2) - (-2832 - (-12 (-5 *2 (-965 *3)) - (-12 (-2085 (-4 *3 (-38 (-417 (-574))))) - (-2085 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) + (-2833 + (-12 (-5 *2 (-966 *3)) + (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) + (-2084 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) - (-12 (-5 *2 (-965 *3)) - (-12 (-2085 (-4 *3 (-555))) (-2085 (-4 *3 (-38 (-417 (-574))))) - (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) + (-12 (-5 *2 (-966 *3)) + (-12 (-2084 (-4 *3 (-555))) (-2084 (-4 *3 (-38 (-417 (-574))))) + (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) - (-12 (-5 *2 (-965 *3)) - (-12 (-2085 (-4 *3 (-1007 (-574)))) (-4 *3 (-38 (-417 (-574)))) - (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) + (-12 (-5 *2 (-966 *3)) + (-12 (-2084 (-4 *3 (-1008 (-574)))) (-4 *3 (-38 (-417 (-574)))) + (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) ((*1 *1 *2) - (-2832 - (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) - (-12 (-2085 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) - (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) - (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) - ((*1 *1 *2) - (-12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) (-4 *3 (-1064)) - (-4 *4 (-803)) (-4 *5 (-860))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4)))) - (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4))) - (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6)) - (-4 *6 (-462))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1188 *1)) (-4 *1 (-1027))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1115))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-654 (-1188 *13))) (-5 *3 (-1188 *13)) - (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13)) - (-5 *7 (-654 (-654 (-2 (|:| -2735 (-781)) (|:| |pcoef| *13))))) - (-5 *8 (-654 (-781))) (-5 *9 (-1283 (-654 (-1188 *10)))) - (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-962 *10 *11 *12)) - (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1100))) (-5 *1 (-299))))) + (-2833 + (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) + (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) + (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))) + (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))))) + ((*1 *1 *2) + (-12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))) (-4 *3 (-1065)) + (-4 *4 (-803)) (-4 *5 (-860))))) +(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) - (-4 *5 (-382 *2)) (-4 *2 (-1233)))) + (-4 *5 (-382 *2)) (-4 *2 (-1234)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1233)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1233)))) + (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1234)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1234)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-654 (-574))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-574)) (-14 *5 (-781)))) @@ -12078,1086 +12448,1038 @@ (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-574)) (-14 *4 (-781)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1192)) (-5 *2 (-251 (-1174))) (-5 *1 (-216 *4)) + (-12 (-5 *3 (-1193)) (-5 *2 (-251 (-1175))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) - (-10 -8 (-15 -2208 ((-1174) $ *3)) (-15 -1413 ((-1288) $)) - (-15 -3060 ((-1288) $))))))) + (-10 -8 (-15 -2207 ((-1175) $ *3)) (-15 -1414 ((-1289) $)) + (-15 -3055 ((-1289) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1004)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1005)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) - (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) - (-15 -3060 ((-1288) $))))))) + (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) + (-15 -3055 ((-1289) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-781)) (-5 *1 (-251 *4)) (-4 *4 (-860)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-860)))) ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-860)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1233)) (-4 *2 (-1233)))) + (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1234)) (-4 *2 (-1234)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) + (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-1259 *2)) - (-4 *4 (-1259 (-417 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1174)) (-5 *1 (-512)))) + (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-1260 *2)) + (-4 *4 (-1260 (-417 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1175)) (-5 *1 (-512)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1115)))) + (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1116)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-903 *4))) (-5 *1 (-903 *4)) - (-4 *4 (-1115)))) + (-4 *4 (-1116)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-918 *4)) (-5 *1 (-917 *4)) - (-4 *4 (-1115)))) + (-12 (-5 *3 (-781)) (-5 *2 (-919 *4)) (-5 *1 (-918 *4)) + (-4 *4 (-1116)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1025 *2)) (-4 *2 (-1233)))) - ((*1 *2 *1) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) + (-12 (-5 *3 "value") (-4 *1 (-1026 *2)) (-4 *2 (-1234)))) + ((*1 *2 *1) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) (-4 *2 (-1064)) + (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7)) (-4 *2 (-1065)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1064)))) + (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7)) + (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1065)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-934)) (-4 *4 (-1115)) - (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-1091 *4 *5 *2)) + (-12 (-5 *3 (-935)) (-4 *4 (-1116)) + (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-1092 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-934)) (-4 *4 (-1115)) - (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-1092 *4 *5 *2)) + (-12 (-5 *3 (-935)) (-4 *4 (-1116)) + (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-1093 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1159))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192)))) + ((*1 *1 *1 *1) (-4 *1 (-1160))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-417 *1)) (-4 *1 (-1259 *2)) (-4 *2 (-1064)) + (-12 (-5 *3 (-417 *1)) (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-417 *1)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)) + (-12 (-5 *2 (-417 *1)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-4 *3 (-566)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) + (-12 (-5 *3 "last") (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) + (-12 (-5 *2 "rest") (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-781)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)) - (-4 *6 (-1115)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-934)) (-5 *2 (-478)) (-5 *1 (-1284))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1115)) (-4 *5 (-1115)) - (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *1 *1 *1) (-4 *1 (-483))) - ((*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-894)))) - ((*1 *1 *1) (-5 *1 (-986))) - ((*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *3 (-654 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *1 (-270)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6)) - (-14 *5 (-654 (-1192))) (-4 *6 (-462)) (-5 *2 (-1283 *6)) - (-5 *1 (-641 *5 *6))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) + (-12 (-5 *3 "first") (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781))))) -(((*1 *2 *1) - (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) -(((*1 *1 *1) (-5 *1 (-1078)))) +(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1175)) (-5 *1 (-796))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))) (((*1 *2 *3) - (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) - (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1283 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315)) - (-4 *3 (-566)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-934)) (-4 *4 (-372)) (-5 *2 (-1283 *1)) - (-4 *1 (-337 *4)))) - ((*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1283 *1)) (-4 *1 (-337 *3)))) - ((*1 *2) - (-12 (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-1283 *1)) - (-4 *1 (-419 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) - (-5 *2 (-1283 *6)) (-5 *1 (-423 *3 *4 *5 *6)) - (-4 *6 (-13 (-419 *4 *5) (-1053 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) - (-5 *2 (-1283 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)) - (-4 *6 (-419 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1283 *1)) (-4 *1 (-427 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1283 (-1283 *4))) (-5 *1 (-538 *4)) - (-4 *4 (-358))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-933))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1064)) (-5 *1 (-724 *2 *4)) - (-4 *4 (-658 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1064))))) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-993 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) + (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1054 *2))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -4047 (-699 (-417 (-965 *4)))) - (|:| |vec| (-654 (-417 (-965 *4)))) (|:| -3557 (-781)) - (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) - (-4 *6 (-803)) - (-5 *2 - (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *4))))))) - (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *2 (-1050)) (-5 *1 (-767))))) + (-654 + (-2 (|:| -3558 (-781)) + (|:| |eqns| + (-654 + (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) + (|:| |cols| (-654 (-574)))))) + (|:| |fgb| (-654 *7))))) + (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) + (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-781)) + (-5 *1 (-938 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) + (-14 *4 *2)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-781)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) + (-5 *2 (-112))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-1079))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1188 (-1188 *5)))) - (-5 *1 (-1231 *5)) (-5 *3 (-1188 (-1188 *5)))))) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) + (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) + (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-781)) (-5 *3 (-957 *5)) (-4 *5 (-1065)) + (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1181 *4 *5)) + (-14 *4 (-935)) (-4 *5 (-1065)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-957 *5)) (-4 *5 (-1065)) + (-5 *1 (-1181 *4 *5)) (-14 *4 (-935))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8)) + (-4 *7 (-860)) (-4 *8 (-1065)) (-4 *9 (-963 *8 *6 *7)) + (-4 *6 (-803)) (-5 *2 (-1189 *8)) (-5 *1 (-329 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1259 *4)) (-5 *2 (-1288)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1259 (-417 *5))) (-14 *7 *6)))) -(((*1 *2 *1) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) - ((*1 *2 *1) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) - (-4 *6 (-803)) (-5 *1 (-937 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1081 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) + (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) - (|:| |explanations| (-654 (-1174))))) - (-5 *2 (-1050)) (-5 *1 (-313)))) + (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-839)) (-5 *3 (-1175))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-860)) + (-4 *3 (-1116))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1260 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-13 (-462) (-148))) + (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065)) + (-5 *1 (-1177 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) + (-14 *4 (-1193)) (-14 *5 *3)))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) +(((*1 *1 *1) (-5 *1 (-1079)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) + (-4 *2 (-1234))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-1277 *4 *2)) + (-4 *4 (-38 (-417 (-574))))))) +(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4260 (-388)) (|:| -2040 (-1174)) - (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) - (-5 *2 (-1050)) (-5 *1 (-313))))) -(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781))))) -(((*1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1216))))) + (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3)) + (-4 *3 (-658 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3)) + (-4 *3 (-658 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065)))) + ((*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-1277 *4 *2)) + (-4 *4 (-38 (-417 (-574))))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065)) + (-4 *2 (-1244 *3))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227))) + (-5 *1 (-707)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-227))) + (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-707)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-1 (-957 (-227)) (-227) (-227))) + (-5 *4 (-1110 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707))))) +(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872))))) +(((*1 *2 *1) + (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) + (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-1147 *4 *2)) - (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4458) (-6 -4459)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-860)) (-4 *3 (-1233)) (-5 *1 (-1147 *3 *2)) - (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4458) (-6 -4459))))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270))))) +(((*1 *2 *1) + (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1173 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414)))) + ((*1 *2 *1) + (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574)))) + ((*1 *2 *1) + (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574)))) + (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *3)) - (-4 *3 (-1233)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *3)) + (-4 *3 (-1234)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1234)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1226 *4 *5 *3 *2)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1080 *4 *5 *3)))) + (|partial| -12 (-4 *1 (-1227 *4 *5 *3 *2)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1081 *4 *5 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *1 (-1230 *2)) (-4 *2 (-1233))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-813))))) + (-12 (-5 *3 (-781)) (-5 *1 (-1231 *2)) (-4 *2 (-1234))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) -(((*1 *1 *2) - (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4)) - (-4 *4 (-174))))) -(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) - (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-962 *6 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1064)) (-4 *2 (-697 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1259 *4)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-546))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-1276 *4 *2)) - (-4 *4 (-38 (-417 (-574))))))) -(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-382 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-934))) (-5 *4 (-918 (-574))) - (-5 *2 (-699 (-574))) (-5 *1 (-600)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-934))) (-5 *2 (-654 (-699 (-574)))) - (-5 *1 (-600)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-934))) (-5 *4 (-654 (-918 (-574)))) - (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) - (-5 *1 (-1003 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) - (-5 *1 (-1122 *3 *4 *5 *6 *7))))) + (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1051)) (-5 *1 (-762))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-401))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1227 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *5 (-1081 *2 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-546))))) +(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-501))))) +(((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))) + ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))) + ((*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) + ((*1 *2 *1) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) + ((*1 *1 *1) (-4 *1 (-1076)))) +(((*1 *1) (-5 *1 (-833)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) + (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1018) (-1219))) + (-5 *1 (-610 *4 *2 *3)) + (-4 *3 (-13 (-440 (-171 *4)) (-1018) (-1219)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) - (-4 *2 (-1274 *3)))) + (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) + (-5 *1 (-1004 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) - (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) - (-4 *2 (-1274 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) - (-5 *1 (-1168 *3))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1115))))) + (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) + (-5 *1 (-1123 *3 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1193)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1193)) (-5 *2 (-112)) (-5 *1 (-622 *4)) + (-4 *4 (-1116)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1116)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1116)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4)) + (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1116)) + (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5)))))) (((*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-4 *1 (-732))) ((*1 *1) (-4 *1 (-736))) - ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) + ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) ((*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872)) - (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1115)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1064)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-872)) (-5 *1 (-1188 *3)) (-4 *3 (-1064))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1116)) (-5 *2 (-781))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-1115)) - (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-934)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884)) - (-5 *2 (-1288)) (-5 *1 (-1284))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) - (-14 *6 (-654 (-1192))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) +(((*1 *1 *2) + (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1054 *4)) (-4 *3 (-315)) + (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-4 *6 (-419 *4 *5)) + (-14 *7 (-1284 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1284 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1008 *3)) + (-4 *5 (-1260 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) + (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-963 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 - (-654 (-1161 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) - (-5 *1 (-638 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) + (-2 (|:| |upol| (-1189 *8)) (|:| |Lval| (-654 *8)) + (|:| |Lfact| + (-654 (-2 (|:| -4202 (-1189 *8)) (|:| -3139 (-574))))) + (|:| |ctpol| *8))) + (-5 *1 (-752 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-1212))))) +(((*1 *2 *3) + (-12 (-14 *4 (-654 (-1193))) (-4 *5 (-462)) + (-5 *2 + (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574))))) + (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) + ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282))))) + (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4))) + (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-546))) - ((*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1127)))) - ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) - ((*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1127))))) -(((*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1050)) (-5 *1 (-761))))) + ((*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1128)))) + ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) + ((*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-1223 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) + ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1197))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-934)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6))) - (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1064)))) + (-12 (-5 *4 (-935)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6))) + (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1065)))) ((*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) ((*1 *2 *3) - (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1218))) - (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-654 *5)) + (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1219))) + (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-654 *5)) (-5 *1 (-593 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-596 (-417 (-965 *4)))) - (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-12 (-5 *3 (-596 (-417 (-966 *4)))) + (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-654 (-324 *4))) (-5 *1 (-599 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1110 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1164 *3)))) + (-12 (-4 *1 (-1111 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1165 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 *1)) (-4 *1 (-1110 *4 *2)) (-4 *4 (-858)) - (-4 *2 (-1164 *4)))) + (-12 (-5 *3 (-654 *1)) (-4 *1 (-1111 *4 *2)) (-4 *4 (-858)) + (-4 *2 (-1165 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219))))) ((*1 *2 *1) - (-12 (-5 *2 (-1298 (-1192) *3)) (-5 *1 (-1305 *3)) (-4 *3 (-1064)))) + (-12 (-5 *2 (-1299 (-1193) *3)) (-5 *1 (-1306 *3)) (-4 *3 (-1065)))) ((*1 *2 *1) - (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1064))))) + (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1065))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-757))))) +(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) + ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *2 *3) - (-12 (-5 *3 (-302 (-965 (-574)))) - (-5 *2 - (-2 (|:| |varOrder| (-654 (-1192))) - (|:| |inhom| (-3 (-654 (-1283 (-781))) "failed")) - (|:| |hom| (-654 (-1283 (-781)))))) - (-5 *1 (-242))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) - (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1115))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) - (-4 *5 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) - (-4 *1 (-1086 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-428 *5)) (-4 *5 (-566)) - (-5 *2 - (-2 (|:| -2017 (-781)) (|:| -1867 *5) (|:| |radicand| (-654 *5)))) - (-5 *1 (-328 *5)) (-5 *4 (-781)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-574))))) + (-12 (-5 *3 (-699 (-417 (-966 (-574))))) + (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1571)) (-5 *2 (-112)) (-5 *1 (-627)))) + (-12 (-5 *3 (|[\|\|]| -1570)) (-5 *2 (-112)) (-5 *1 (-627)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2042)) (-5 *2 (-112)) (-5 *1 (-627)))) + (-12 (-5 *3 (|[\|\|]| -2041)) (-5 *2 (-112)) (-5 *1 (-627)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2895)) (-5 *2 (-112)) (-5 *1 (-627)))) + (-12 (-5 *3 (|[\|\|]| -2896)) (-5 *2 (-112)) (-5 *1 (-627)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2243)) (-5 *2 (-112)) (-5 *1 (-701 *4)) + (-12 (-5 *3 (|[\|\|]| -2242)) (-5 *2 (-112)) (-5 *1 (-701 *4)) (-4 *4 (-623 (-872))))) ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-623 (-872))) (-5 *2 (-112)) (-5 *1 (-701 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)) (-5 *1 (-886)))) + (-12 (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)) (-5 *1 (-886)))) ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-886)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1182))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1051))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1052))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1294))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1295))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1130))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1293))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1294))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)) (-5 *1 (-1197)))) + (-12 (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)) (-5 *1 (-1198)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1197)))) + (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1198)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1197)))) + (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1198)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1197))))) + (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1198))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 *2))) + (-5 *2 (-903 *3)) (-5 *1 (-1092 *3 *4 *5)) + (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2)))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1116)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5)) + (-4 *3 (-1116)) (-4 *5 (-676 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-980 *4)) (-4 *4 (-1116)) (-5 *2 (-1118 *4)) + (-5 *1 (-981 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) + (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 *2))) - (-5 *2 (-903 *3)) (-5 *1 (-1091 *3 *4 *5)) - (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2)))))) -(((*1 *1 *1) (-5 *1 (-1078)))) -(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-967))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-549 *4 *2 *5 *6)) - (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-962 *4 *6 *5)) (-4 *4 (-462)) - (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1002 *4 *5 *6 *3))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-574)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-968))))) (((*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-1237)) - (-4 *6 (-1259 (-417 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-351 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-934)) (-5 *1 (-796))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-992 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-566)))) - ((*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) + (-5 *2 (-1189 *3))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-516)) (-4 *4 (-1115)) (-5 *1 (-942 *4 *2)) + (-12 (-5 *3 (-516)) (-4 *4 (-1116)) (-5 *1 (-943 *4 *2)) (-4 *2 (-440 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192)) (-5 *4 (-516)) (-5 *2 (-324 (-574))) - (-5 *1 (-943))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) - ((*1 *1 *1 *1) (-5 *1 (-1135)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) - ((*1 *1 *1) (-4 *1 (-310))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) - ((*1 *1 *1) (-5 *1 (-872)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-860)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *1 (-995 *3)) (-4 *3 (-1064)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) - (-4 *1 (-1086 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) - (-5 *1 (-765))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) - (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-762))))) + (-12 (-5 *3 (-1193)) (-5 *4 (-516)) (-5 *2 (-324 (-574))) + (-5 *1 (-944))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1054 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1116))))) (((*1 *2 *3) - (-12 (-4 *3 (-1259 (-417 (-574)))) - (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))) - (-5 *1 (-926 *3 *4)) (-4 *4 (-1259 (-417 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *3)) - (-4 *3 (-1259 (-417 *4)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1039 *3)) - (-4 *3 (-13 (-858) (-372) (-1037))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) - (-4 *3 (-1259 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1083 *2 *3)) (-4 *2 (-13 (-858) (-372))) - (-4 *3 (-1259 *2))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) - (-4 *5 (-1259 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2704 *5)))) - (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5)) - (-4 *6 (-666 (-417 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) - (-4 *4 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2704 *4)))) - (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4)) - (-4 *6 (-666 (-417 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) - (-4 *5 (-1259 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2704 *5)))) - (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5)) - (-4 *3 (-666 (-417 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) - (-4 *4 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2704 *4)))) - (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4)) - (-4 *3 (-666 (-417 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) - (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4095 *3)))) - (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) - (-4 *7 (-666 (-417 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-4 *6 (-1259 *5)) - (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4095 (-664 *6 (-417 *6)))))) - (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6)))))) + (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-13 (-315) (-148))) + (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) + (-5 *2 (-654 (-417 (-966 *4)))) (-5 *1 (-938 *4 *5 *6 *7)) + (-4 *7 (-963 *4 *6 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) + ((*1 *1 *1 *1) (-5 *1 (-1136)))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1193))) + (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-105))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-352 *3 *4)) (-14 *3 (-935)) + (-14 *4 (-935)))) + ((*1 *2) + (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358)) + (-14 *4 (-1189 *3)))) + ((*1 *2) + (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358)) + (-14 *4 (-935))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1238)) (-5 *1 (-149 *2 *4 *3)) + (-4 *3 (-1260 (-417 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1065)) (-5 *1 (-722 *3 *4)) + (-4 *4 (-1260 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1155)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1042 (-853 (-574)))) + (-5 *3 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1065)) + (-5 *1 (-605 *4))))) (((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *4)))) - (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4)) - (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *5 (-377)) + (-5 *2 (-781))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-388)) (-5 *1 (-207))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1283 (-654 (-574)))) (-5 *1 (-490)))) + (-12 (-5 *3 (-781)) (-5 *2 (-1284 (-654 (-574)))) (-5 *1 (-490)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) - (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) - ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) - (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) -(((*1 *2 *3) - (-12 (-4 *4 (-803)) - (-4 *5 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))) (-4 *6 (-566)) - (-5 *2 (-2 (|:| -2620 (-965 *6)) (|:| -2664 (-965 *6)))) - (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-962 (-417 (-965 *6)) *4 *5))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1192))) - (-4 *2 (-13 (-440 (-171 *5)) (-1017) (-1218))) (-4 *5 (-566)) - (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1017) (-1218)))))) -(((*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-1115)))) - ((*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1115))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-132))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1051)) + (-5 *1 (-766))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1081 *4 *5 *6)) + (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-993 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116)) + (-4 *6 (-1116)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1192))) (-4 *6 (-462)) - (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7)) - (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1115)) (-5 *1 (-1210 *3 *2)) (-4 *3 (-1115))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) + (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) + (-5 *2 + (-3 (|:| |overq| (-1189 (-417 (-574)))) + (|:| |overan| (-1189 (-48))) (|:| -3575 (-112)))) + (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) + (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4)))) + ((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-935)) + (-14 *4 (-935)))) + ((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) + (-14 *4 + (-3 (-1189 *3) + (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136))))))))) + ((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) + (-14 *4 (-935))))) +(((*1 *2 *3) + (-12 (-5 *3 (-941)) + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) + (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-417 (-574))) + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) + (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) + (-5 *1 (-154))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1260 (-574))) (-5 *1 (-496 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1219) (-1018))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 (-417 *2))) + (-4 *2 (-1260 *4)) (-5 *1 (-350 *3 *4 *2 *5)) + (-4 *3 (-351 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1238)) + (-4 *4 (-1260 (-417 *2))) (-4 *2 (-1260 *3))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-1116)))) + ((*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1116))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1288)) (-5 *1 (-841))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-771)))) + (|partial| -12 (-5 *4 (-302 (-843 *3))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3)) + (-4 *3 (-13 (-27) (-1219) (-440 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-302 (-843 (-966 *5)))) (-4 *5 (-462)) + (-5 *2 (-843 (-417 (-966 *5)))) (-5 *1 (-647 *5)) + (-5 *3 (-417 (-966 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-302 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5))) + (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) - (-5 *1 (-1191))))) + (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) + (-5 *1 (-1192))))) (((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-781)) (-5 *1 (-1116 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-935)) (-5 *2 (-781)) (-5 *1 (-1117 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *2 (-1283 (-324 (-388)))) - (-5 *1 (-313))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1233))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-991 *4 *5 *3 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) - (-4 *3 (-860)) (-4 *6 (-1080 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-5 *2 (-1175))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1215))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1116)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1116)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1116))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) + (-5 *1 (-1145 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-13 (-315) (-148))) + (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1145 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-302 (-417 (-966 *5)))) (-5 *4 (-1193)) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) + (-5 *1 (-1145 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-302 (-417 (-966 *4)))) (-4 *4 (-13 (-315) (-148))) + (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1145 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) + (-5 *1 (-1145 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-417 (-966 *4)))) (-4 *4 (-13 (-315) (-148))) + (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1145 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-302 (-417 (-966 *5))))) (-5 *4 (-654 (-1193))) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) + (-5 *1 (-1145 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-302 (-417 (-966 *4))))) + (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) + (-5 *1 (-1145 *4))))) (((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1259 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1259 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1064)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7))) - (-4 *7 (-1259 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-584 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1188 (-1188 *4)))) - (-5 *1 (-1231 *4)) (-5 *3 (-1188 (-1188 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-654 (-965 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-654 (-965 *4))) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) - ((*1 *2) - (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-965 *3))))) - ((*1 *2) - (-12 (-5 *2 (-654 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) + (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-5 *2 (-1189 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) + (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-963 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-1283 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-965 *4))) - (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174)) - (-14 *5 (-934)) (-14 *6 (-654 (-1192))) (-14 *7 (-1283 (-699 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1233))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4)) - (-4 *4 (-1064))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) - (-5 *2 (-1050)) (-5 *1 (-756))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-971 (-1135))) - (-5 *1 (-355 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287))))) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *6 *4 *5)) + (-5 *1 (-930 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-315))))) (((*1 *2 *3) - (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) - (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-927 *3)) (-4 *3 (-315))))) -(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860)) - (-5 *1 (-1203 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-1228 *3)) - (-4 *3 (-989))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-803)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) + (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1116))))) +(((*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1234))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-171 (-324 *4))) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *2 (-171 *3)) (-5 *1 (-1222 *4 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *4)))))) -(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1202))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) - (-4 *9 (-860)) (-4 *3 (-1080 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1084 *7 *8 *9 *3 *4)) (-4 *4 (-1086 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1080 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) + (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3)) + (-4 *3 (-13 (-440 *4) (-1018)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-462)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *5 (-923)) (-5 *1 (-467 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-923))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1051)) (-5 *1 (-763))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) + (-4 *4 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-4 *6 (-1260 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) + (-5 *5 (-1 (-428 *7) *7)) + (-4 *6 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-4 *7 (-1260 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) - (-4 *9 (-860)) (-4 *3 (-1080 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1160 *7 *8 *9 *3 *4)) (-4 *4 (-1124 *7 *8 *9 *3)))) + (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-4 *6 (-1260 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1080 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1160 *6 *7 *8 *3 *4)) (-4 *4 (-1124 *6 *7 *8 *3)))) + (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) + (-5 *5 (-1 (-428 *7) *7)) + (-4 *6 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-4 *7 (-1260 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1260 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))))) - (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3))))) + (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) + (-4 *6 (-1260 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1260 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) + (-4 *6 (-1260 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))) +(((*1 *2) + (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) + ((*1 *2 *2) + (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) + (-4 *2 (-13 (-860) (-21)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227))))) +(((*1 *2 *3) + (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1204 *4)) + (-5 *3 (-654 *4))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1192)) - (|:| |arrayIndex| (-654 (-965 (-574)))) + (-2 (|:| |var| (-1193)) + (|:| |arrayIndex| (-654 (-966 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1192)) (|:| |rand| (-872)) + (-2 (|:| |var| (-1193)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1191)) (|:| |thenClause| (-338)) + (-2 (|:| |switch| (-1192)) (|:| |thenClause| (-338)) (|:| |elseClause| (-338)))) (|:| |returnBranch| - (-2 (|:| -2880 (-112)) - (|:| -3078 + (-2 (|:| -2754 (-112)) + (|:| -3079 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 (-338))) - (|:| |commentBranch| (-654 (-1174))) (|:| |callBranch| (-1174)) + (|:| |commentBranch| (-654 (-1175))) (|:| |callBranch| (-1175)) (|:| |forBranch| - (-2 (|:| -3362 (-1107 (-965 (-574)))) - (|:| |span| (-965 (-574))) (|:| -2051 (-338)))) - (|:| |labelBranch| (-1135)) - (|:| |loopBranch| (-2 (|:| |switch| (-1191)) (|:| -2051 (-338)))) + (-2 (|:| -3798 (-1108 (-966 (-574)))) + (|:| |span| (-966 (-574))) (|:| -2050 (-338)))) + (|:| |labelBranch| (-1136)) + (|:| |loopBranch| (-2 (|:| |switch| (-1192)) (|:| -2050 (-338)))) (|:| |commonBranch| - (-2 (|:| -2040 (-1192)) (|:| |contents| (-654 (-1192))))) + (-2 (|:| -2039 (-1193)) (|:| |contents| (-654 (-1193))))) (|:| |printBranch| (-654 (-872))))) (-5 *1 (-338))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-934)) (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-802)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1264 *3)) (-4 *3 (-1064))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-1192)) (-4 *6 (-440 *5)) - (-4 *5 (-1115)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1133)) (-5 *1 (-1130))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) - (-5 *2 (-654 (-654 (-956 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-654 (-654 (-956 *4)))) (-5 *3 (-112)) (-4 *4 (-1064)) - (-4 *1 (-1149 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 (-956 *3)))) (-4 *3 (-1064)) - (-4 *1 (-1149 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112)) - (-4 *1 (-1149 *4)) (-4 *4 (-1064)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-654 (-654 (-956 *4)))) (-5 *3 (-112)) - (-4 *1 (-1149 *4)) (-4 *4 (-1064)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173))) - (-5 *4 (-173)) (-4 *1 (-1149 *5)) (-4 *5 (-1064)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-654 (-654 (-956 *5)))) (-5 *3 (-654 (-173))) - (-5 *4 (-173)) (-4 *1 (-1149 *5)) (-4 *5 (-1064))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-686)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1034)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1081)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1111))))) +(((*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1287)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1287))))) +(((*1 *2 *3) + (-12 (-4 *4 (-358)) (-5 *2 (-972 (-1189 *4))) (-5 *1 (-366 *4)) + (-5 *3 (-1189 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1116))))) (((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-338))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-654 (-1091 *4 *5 *2))) (-4 *4 (-1115)) - (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) - (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-654 (-1091 *5 *6 *2))) (-5 *4 (-934)) (-4 *5 (-1115)) - (-4 *6 (-13 (-1064) (-897 *5) (-624 (-903 *5)))) - (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-302 (-417 (-965 *5)))) (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-148))) - (-5 *2 (-1181 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) - (-5 *1 (-1144 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-148))) - (-5 *2 (-1181 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) - (-5 *1 (-1144 *5))))) -(((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-622 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) (-5 *5 (-1188 *2)) - (-4 *2 (-13 (-440 *6) (-27) (-1218))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1115)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-622 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) - (-5 *5 (-417 (-1188 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1218))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1115))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97))))) -(((*1 *1) (-5 *1 (-627)))) + (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3)) + (-4 *3 (-658 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065))))) (((*1 *2 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1259 (-574))) (-5 *1 (-496 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-96)))) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1236)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1236))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-686)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1035)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1112))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227))) + (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1051)) (-5 *1 (-764))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-338))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-516)) (-5 *2 (-654 (-979))) (-5 *1 (-299))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-440 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1108 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1181 *4 *5)) + (-14 *4 (-935)) (-4 *5 (-1065))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-388)) (-5 *1 (-1079))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) +(((*1 *1) (-5 *1 (-627)))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-96)))) ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-109)))) ((*1 *2 *1) - (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1115)))) - ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174)))) - ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-448 *3)) (-14 *3 *2))) + (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1116)))) + ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-448 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-493)))) - ((*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1115)))) + ((*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1116)))) ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-875)))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-978)))) - ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1090 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1130)))) - ((*1 *1 *1) (-5 *1 (-1192)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1232))) (-5 *3 (-1232)) (-5 *1 (-691))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) - ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-979)))) + ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1091 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1131)))) + ((*1 *1 *1) (-5 *1 (-1193)))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-802)) (-4 *3 (-174))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) - (-5 *1 (-1003 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) - (-5 *1 (-1122 *3 *4 *5 *6 *7))))) + (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-388)) (-5 *1 (-1079))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) - (-5 *2 (-112)) (-5 *1 (-1002 *3 *4 *5 *6)) - (-4 *6 (-962 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) - (-4 *4 (-13 (-1115) (-34)))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) -(((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) - ((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-965 *8)))) - (-5 *5 (-781)) (-5 *6 (-1174)) (-4 *8 (-13 (-315) (-148))) - (-4 *11 (-962 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1192)))) - (-4 *10 (-803)) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) + (-5 *2 (-654 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-120 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) + (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1004 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) + (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1123 *4 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-993 *3 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) + (-4 *6 (-803)) (-4 *7 (-963 *4 *6 *5)) (-5 *2 - (-2 - (|:| |rgl| - (-654 - (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11)) - (|:| |wcond| (-654 (-965 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1283 (-417 (-965 *8)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *8)))))))))) - (|:| |rgsz| (-574)))) - (-5 *1 (-937 *8 *9 *10 *11)) (-5 *7 (-574))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) - ((*1 *1 *1) (-5 *1 (-872)))) + (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7)))) + (-5 *1 (-938 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) + (-14 *4 (-781)) (-4 *5 (-174))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-173)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4))))) +(((*1 *2) + (-12 (-4 *4 (-372)) (-5 *2 (-935)) (-5 *1 (-336 *3 *4)) + (-4 *3 (-337 *4)))) + ((*1 *2) + (-12 (-4 *4 (-372)) (-5 *2 (-843 (-935))) (-5 *1 (-336 *3 *4)) + (-4 *3 (-337 *4)))) + ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-935)))) + ((*1 *2) + (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-935)))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1189 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-1244 *4)) (-4 *4 (-1065)) (-4 *4 (-566)) + (-5 *2 (-417 (-966 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-1244 *4)) (-4 *4 (-1065)) (-4 *4 (-566)) + (-5 *2 (-417 (-966 *4)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-428 *2)) (-4 *2 (-566))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 *5))) - (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1283 *5)) - (-5 *1 (-648 *5 *4)))) + (-12 (-4 *2 (-1260 *4)) (-5 *1 (-817 *4 *2 *3 *5)) + (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2)) + (-4 *5 (-666 (-417 *2))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 *5))) - (-2085 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1283 (-417 *5))) - (-5 *1 (-648 *5 *4))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462)) - (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1192))) (-5 *1 (-641 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1192)) (-5 *1 (-596 *2)) (-4 *2 (-1053 *3)) - (-4 *2 (-372)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)) - (-4 *2 (-13 (-440 *4) (-1017) (-1218))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1107 *2)) (-4 *2 (-13 (-440 *4) (-1017) (-1218))) - (-4 *4 (-566)) (-5 *1 (-640 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-972)) (-5 *2 (-1192)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-972))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1064)) (-5 *2 (-654 *1)) (-4 *1 (-1149 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) - ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1259 (-171 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1259 (-171 *2)))))) + (-12 (-4 *2 (-1260 *4)) (-5 *1 (-817 *4 *2 *5 *3)) + (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-666 *2)) + (-4 *3 (-666 (-417 *2)))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1260 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4)) + (-4 *4 (-1234)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1197))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-767))))) (((*1 *2 *3) - (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1139 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1050)) (-5 *1 (-761))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-516)) (-5 *3 (-1119)) (-5 *1 (-299))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1283 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1268 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) - (-14 *4 (-1192)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) + (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1260 *4)) + (-5 *2 (-2 (|:| -3341 (-633 *4 *5)) (|:| -1840 (-417 *5)))) + (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-1115)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860)) - (-14 *4 - (-1 (-112) (-2 (|:| -2590 *3) (|:| -2017 *2)) - (-2 (|:| -2590 *3) (|:| -2017 *2))))))) + (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4)) + (-14 *3 (-935)) (-4 *4 (-1065)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-462)) (-4 *3 (-1065)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1260 *3))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 @@ -13172,10 +13494,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1172 (-227))) + (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3362 + (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -13183,510 +13505,365 @@ "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1064)) - (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-862 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1064)) - (-5 *2 (-2 (|:| -4415 *3) (|:| -1484 *3))) (-5 *1 (-863 *5 *3)) - (-4 *3 (-862 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264))))) +(((*1 *2 *1) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1116))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-993 *5 *6 *7 *8))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022))))) +(((*1 *2 *3) + (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -3470 (-654 (-1193))) (|:| -2939 (-654 (-1193))))) + (-5 *1 (-1236))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-934)) (-4 *5 (-860)) - (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197))))) -(((*1 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-962 *3 *5 *4)) - (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1192)))) - (-4 *5 (-803)) (-5 *1 (-937 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1259 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315)) - (-4 *10 (-962 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-654 (-1188 *10))) - (|:| |dterm| - (-654 (-654 (-2 (|:| -2735 (-781)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10)))) - (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1188 *10)) (-5 *4 (-654 *6)) - (-5 *5 (-654 *10))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-934)) (-4 *5 (-315)) (-4 *3 (-1259 *5)) - (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5))) - (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2))))) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-963 *5 *6 *7)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-459 *5 *6 *7 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1189 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1081 *3 *4 *5))))) (((*1 *2 *3 *2) (-12 (-5 *2 (-654 (-388))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) ((*1 *2 *1) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-884)) (-5 *2 (-1288)) (-5 *1 (-1284)))) + (-12 (-5 *3 (-935)) (-5 *4 (-884)) (-5 *2 (-1289)) (-5 *1 (-1285)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284))))) + (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285))))) (((*1 *2 *1) - (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) - (-5 *2 (-654 (-1091 *3 *4 *5))) (-5 *1 (-1092 *3 *4 *5)) + (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) + (-5 *2 (-654 (-1092 *3 *4 *5))) (-5 *1 (-1093 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1235))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4064 *4)))) - (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-4 *6 (-1259 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) - (-5 *5 (-1 (-428 *7) *7)) - (-4 *6 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-4 *7 (-1259 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2887 *3))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1156 *4 *5)) (-4 *4 (-13 (-1116) (-34))) + (-4 *5 (-13 (-1116) (-34))) (-5 *2 (-112)) (-5 *1 (-1157 *4 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 *2)) + (-5 *2 (-388)) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-4 *6 (-1259 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) - (-5 *5 (-1 (-428 *7) *7)) - (-4 *6 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-4 *7 (-1259 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) + (|partial| -12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) + (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1259 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) + (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) + (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) - (-4 *6 (-1259 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) + (|partial| -12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) + (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1259 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) + (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) + (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) - (-4 *6 (-1259 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) - (-4 *4 (-1233)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1115))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *1)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1064)) (-5 *1 (-699 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 *4)) (-4 *4 (-1064)) (-4 *1 (-1138 *3 *4 *5 *6)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *1 (-974 *2)) (-4 *2 (-555))))) + (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) + (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) + (-5 *1 (-795 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-762))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *4 (-1193)) + (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-701 (-1151))) (-5 *1 (-1167))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-761))))) +(((*1 *1) (-5 *1 (-516)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781)))) + ((*1 *1 *1) (-4 *1 (-412)))) (((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-254))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4460 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) - (-4 *2 (-1064)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1259 *2)) - (-4 *4 (-697 *2 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4))) - (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) - (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7))))) + (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-254))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-781)) (-4 *5 (-566)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) + (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) - (-5 *1 (-269 *2)) (-4 *2 (-1233)))) + (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1193)) + (-5 *1 (-269 *2)) (-4 *2 (-1234)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) (-5 *2 (-52)) + (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1193)) (-5 *2 (-52)) (-5 *1 (-270))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1064)) (-5 *1 (-605 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1243 *3)) (-4 *3 (-1064)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1274 *3)) (-4 *3 (-1064))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-781)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-781)) (-4 *5 (-174)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574))))) - (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1192))) (-14 *5 (-781)) - (-5 *1 (-515 *4 *5))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-622 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) - (-4 *2 (-13 (-440 *5) (-27) (-1218))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1115))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2)) - (-4 *2 (-697 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-758))))) -(((*1 *2 *3) - (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) - (-5 *2 (-253 *4 *5)) (-5 *1 (-957 *4 *5))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1234))))) +(((*1 *1) (-5 *1 (-1285)))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1115)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1115)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1115)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4))) - (-5 *1 (-114 *4)) (-4 *4 (-1115)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1064)) - (-5 *1 (-724 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-846 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)))) - ((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1293))))) + (-12 (-5 *3 (-3 (-417 (-966 *5)) (-1182 (-1193) (-966 *5)))) + (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *5))))) + (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-966 *5))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1189 (-1189 *5)))) + (-5 *1 (-1232 *5)) (-5 *3 (-1189 (-1189 *5)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566)) + (-4 *7 (-963 *3 *5 *6)) + (-5 *2 (-2 (|:| -3139 (-781)) (|:| -1866 *8) (|:| |radicand| *8))) + (-5 *1 (-967 *5 *6 *3 *7 *8)) (-5 *4 (-781)) + (-4 *8 + (-13 (-372) + (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) (-15 -2981 (*7 $)))))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) + (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-762))))) +(((*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-112)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) + (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-112)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-112)) - (-5 *1 (-1222 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1174)) (-5 *1 (-313))))) + (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-112)) + (-5 *1 (-1223 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566))))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)))) + ((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1189 *9))) + (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781))) + (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-963 *9 *10 *11)) + (-4 *10 (-803)) (-5 *2 (-654 (-1189 *12))) + (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1189 *12))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) + (-4 *1 (-1087 *4 *5 *6 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) + (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) + (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-112)) + (-5 *1 (-938 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1193)) (-5 *6 (-654 (-622 *3))) + (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *7))) + (-4 *7 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *2 (-2 (|:| -3852 *3) (|:| |coeff| *3))) + (-5 *1 (-567 *7 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2) - (-12 (-4 *4 (-372)) (-5 *2 (-934)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) - (-12 (-4 *4 (-372)) (-5 *2 (-843 (-934))) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-934)))) - ((*1 *2) - (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-934)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1064)) (-4 *4 (-1259 *3)) (-5 *1 (-165 *3 *4 *2)) - (-4 *2 (-1259 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1259 *6)) - (-4 *6 (-13 (-372) (-148) (-1053 *4))) (-5 *4 (-574)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -4095 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1030 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1157 *4 *2)) (-14 *4 (-934)) - (-4 *2 (-13 (-1064) (-10 -7 (-6 (-4460 "*"))))) - (-5 *1 (-915 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1283 *5)) (-5 *3 (-781)) (-5 *4 (-1135)) (-4 *5 (-358)) - (-5 *1 (-538 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1108 *3)) (-4 *3 (-1233)) (-5 *2 (-574))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-762))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1283 *4)) (-5 *3 (-781)) (-4 *4 (-358)) - (-5 *1 (-538 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5))) - (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574))))) - (-14 *6 (-934))))) -(((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-158))))) -(((*1 *2 *2) - (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-1139 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372)) - (-4 *7 (-1259 *6)) - (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) - (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) + ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286))))) +(((*1 *1 *1) (-5 *1 (-1079)))) +(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) + ((*1 *1 *1 *1) (-4 *1 (-803)))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1234)) + (-4 *3 (-382 *4)) (-4 *5 (-382 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3319 *3) (|:| |coef1| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-987)) (-5 *1 (-1309))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) - (-4 *3 (-566)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) - (-4 *3 (-1115)))) + (-12 (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-654 *1)) + (-4 *1 (-391 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) - (-4 *3 (-1115)))) + (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-736)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1023 *3)) - (-4 *3 (-1053 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195))))) -(((*1 *2 *1) - (-12 (-5 *2 (-872)) (-5 *1 (-1172 *3)) (-4 *3 (-1115)) - (-4 *3 (-1233))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556)))))) -(((*1 *1 *1) (-4 *1 (-1159)))) + (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-963 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-957 *4)) (-4 *4 (-1065)) (-5 *1 (-1181 *3 *4)) + (-14 *3 (-935))))) +(((*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1234)) (-5 *2 (-574))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-934)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1188 *1)) - (-4 *1 (-337 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1188 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372)) - (-4 *2 (-1259 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-1188 *4)) - (-5 *1 (-538 *4))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) - (-4 *4 (-1259 *3)) - (-5 *2 - (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-1259 *3)) - (-5 *2 - (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 *3)) - (-5 *2 - (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-5 *1 (-1000 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 *3)) - (-5 *2 - (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-5 *1 (-1292 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) - (-5 *1 (-707))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1115)))) - ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-417 (-1188 (-324 *3)))) (-4 *3 (-566)) - (-5 *1 (-1145 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1207 *2)) (-4 *2 (-372))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-934)) (-4 *5 (-860)) - (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-241 *3)) - (-4 *3 (-1115)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4458)) (-4 *1 (-241 *2)) (-4 *2 (-1115)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-1115)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1115)) - (-5 *1 (-747 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1115)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) - (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1125))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1109 (-227))) (-5 *6 (-574)) (-5 *2 (-1228 (-939))) - (-5 *1 (-326)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1109 (-227))) (-5 *6 (-574)) (-5 *7 (-1174)) - (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1109 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) - (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1109 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1174)) - (-5 *2 (-1228 (-939))) (-5 *1 (-326))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-654 (-1192))) - (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1038)) (-5 *5 (-388)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) - (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) - (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) - (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) - (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) - (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-965 *4))) - (-4 *4 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) - (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1234)) + (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *6 *2 *7)) (-4 *6 (-1065)) + (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6))))) +(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) (((*1 *2 *1) - (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) - (-4 *5 (-244 (-2876 *3) (-781))) - (-14 *6 - (-1 (-112) (-2 (|:| -2590 *2) (|:| -2017 *5)) - (-2 (|:| -2590 *2) (|:| -2017 *5)))) - (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-962 *4 *5 (-874 *3)))))) -(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-447)) (-5 *1 (-1196))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) - (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -4284 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) -(((*1 *2 *3) - (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372)) - (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) - (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) - ((*1 *2 *3) - (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) - (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064))))) + (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) + (-4 *2 (-666 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-765))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) + (-4 *2 (-1275 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3)) + (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) + (-4 *2 (-1275 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148))) + (-5 *1 (-1169 *3))))) +(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1260 (-574))) (-5 *1 (-496 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-699 *4)) (-5 *3 (-935)) (-4 *4 (-1065)) + (-5 *1 (-1044 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-935)) (-4 *4 (-1065)) + (-5 *1 (-1044 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-832))))) +(((*1 *2 *2) + (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-1140 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-803)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) - (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227))) - (-5 *2 (-1050)) (-5 *1 (-765))))) + (-654 + (-2 (|:| -3558 (-781)) + (|:| |eqns| + (-654 + (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) + (|:| |cols| (-654 (-574)))))) + (|:| |fgb| (-654 *7))))) + (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) + (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-781)) + (-5 *1 (-938 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) + ((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1234)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1173 (-966 *4)) (-1173 (-966 *4)))) + (-5 *1 (-1292 *4)) (-4 *4 (-372))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1158 *3 *4)) (-14 *3 (-935)) (-4 *4 (-372)) + (-5 *1 (-1009 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1116)) (-4 *6 (-1116)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1116))))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) - (-4 *2 (-1274 *3)))) + (-4 *2 (-1275 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) - (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5)))) + (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3)) + (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) - (-4 *2 (-1274 *3)))) + (-4 *2 (-1275 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) - (-5 *1 (-1168 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1283 (-1283 *4))) (-4 *4 (-1064)) (-5 *2 (-699 *4)) - (-5 *1 (-1044 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1172 *4))) (-5 *1 (-293 *4 *5)) - (-5 *3 (-1172 *4)) (-4 *5 (-1274 *4))))) -(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) - ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286))))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148))) + (-5 *1 (-1169 *3))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-935)) (-4 *5 (-315)) (-4 *3 (-1260 *5)) + (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5))) + (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1195 (-417 (-574)))) (-5 *2 (-417 (-574))) + (-5 *1 (-192))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-115))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1115)) (-4 *2 (-913 *5)) (-5 *1 (-702 *5 *2 *3 *4)) - (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458))))))) + (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1054 *4)) (-4 *3 (-566))))) +(((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))) +(((*1 *2) + (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1116))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-654 (-781))) + (-5 *1 (-918 *4))))) +(((*1 *2 *3) + (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1206 (-935) (-781)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1189 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3)) + (-4 *3 (-372))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2971 ((-1141 *3 (-622 $)) $)) + (-15 -2981 ((-1141 *3 (-622 $)) $)) + (-15 -2951 ($ (-1141 *3 (-622 $)))))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1275 *4)) + (-4 *4 (-38 (-417 (-574)))) + (-5 *2 (-1 (-1173 *4) (-1173 *4) (-1173 *4))) (-5 *1 (-1277 *4 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-241 *3)) + (-4 *3 (-1116)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) + (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1175)) (-5 *2 (-784)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1120)) (-5 *1 (-979))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4)) + (-4 *4 (-1260 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-856))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1116)) (-5 *2 (-112))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 @@ -13701,10 +13878,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1172 (-227))) + (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3362 + (|:| -3798 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -13712,331 +13889,179 @@ "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *3 (-654 (-574))) + (-5 *1 (-894))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-588)))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1) - (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) - (-4 *3 (-1259 *4)) (-5 *2 (-112))))) -(((*1 *1) (-4 *1 (-358))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1188 *5))) - (|:| |prim| (-1188 *5)))) - (-5 *1 (-442 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-566) (-148))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1188 *3)) - (|:| |pol2| (-1188 *3)) (|:| |prim| (-1188 *3)))) - (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-965 *5)) (-5 *4 (-1192)) (-4 *5 (-13 (-372) (-148))) - (-5 *2 - (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) - (|:| |prim| (-1188 *5)))) - (-5 *1 (-973 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) - (-4 *5 (-13 (-372) (-148))) - (-5 *2 - (-2 (|:| -1867 (-654 (-574))) (|:| |poly| (-654 (-1188 *5))) - (|:| |prim| (-1188 *5)))) - (-5 *1 (-973 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) (-5 *5 (-1192)) - (-4 *6 (-13 (-372) (-148))) - (-5 *2 - (-2 (|:| -1867 (-654 (-574))) (|:| |poly| (-654 (-1188 *6))) - (|:| |prim| (-1188 *6)))) - (-5 *1 (-973 *6))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 *3)) - (-4 *3 (-13 (-27) (-1218) (-440 *6))) - (-4 *6 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-567 *6 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) - (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) - (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) - (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) - (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) - (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) - (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4)) - (-4 *4 (-1259 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) - (-14 *4 (-654 (-1192))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) - (-14 *4 (-654 (-1192)))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1274 *4)) - (-4 *4 (-38 (-417 (-574)))) - (-5 *2 (-1 (-1172 *4) (-1172 *4) (-1172 *4))) (-5 *1 (-1276 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1296 *4 *5 *6 *7))) - (-5 *1 (-1296 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) - (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1296 *6 *7 *8 *9))) - (-5 *1 (-1296 *6 *7 *8 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1099 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1099 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-654 *1)) (-4 *1 (-1080 *3 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) - (-4 *2 (-13 (-860) (-21)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) - (-5 *1 (-178 *3))))) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1162 (-1174))) (-5 *1 (-401))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) + (-12 (-5 *3 (-1284 *6)) (-5 *4 (-1284 (-574))) (-5 *5 (-574)) + (-4 *6 (-1116)) (-5 *2 (-1 *6)) (-5 *1 (-1033 *6))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) + (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-762))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1172 *4) (-1172 *4))) (-5 *2 (-1172 *4)) - (-5 *1 (-1309 *4)) (-4 *4 (-1233)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-654 (-1172 *5)) (-654 (-1172 *5)))) (-5 *4 (-574)) - (-5 *2 (-654 (-1172 *5))) (-5 *1 (-1309 *5)) (-4 *5 (-1233))))) -(((*1 *2 *2) (-12 (-5 *2 (-979 *3)) (-4 *3 (-1115)) (-5 *1 (-980 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860)) - (-4 *4 (-803)) (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1134)))) - ((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) + (-12 (-5 *3 (-1158 *4 *2)) (-14 *4 (-935)) + (-4 *2 (-13 (-1065) (-10 -7 (-6 (-4461 "*"))))) + (-5 *1 (-916 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) - (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7)) - (-4 *3 (-1259 *6)) (-4 *7 (-962 *6 *4 *5))))) + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) - (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1259 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-956 (-227)))) (-5 *1 (-1284))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1080 *4 *5 *6)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4064 *1)))) - (-4 *1 (-1086 *4 *5 *6 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-377))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) + (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-959 *2 *3)) + (-4 *3 (-1260 *2))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1086 *6 *7 *8 *9)) - (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *9 (-1080 *6 *7 *8)) - (-5 *2 - (-654 - (-2 (|:| -4095 (-654 *9)) (|:| -4064 *10) (|:| |ineq| (-654 *9))))) - (-5 *1 (-1003 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1086 *6 *7 *8 *9)) - (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *9 (-1080 *6 *7 *8)) - (-5 *2 - (-654 - (-2 (|:| -4095 (-654 *9)) (|:| -4064 *10) (|:| |ineq| (-654 *9))))) - (-5 *1 (-1122 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1192)) - (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-585 *4 *2)) - (-4 *2 (-13 (-1218) (-972) (-1154) (-29 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-52))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-856))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-654 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) - (-5 *2 (-654 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-986))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3))))) -(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202))))) + (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1126))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) - (-5 *2 (-112))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -3766 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1259 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1259 *5)) + (-12 (-5 *2 - (-654 - (-2 (|:| -2191 (-699 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-699 *6))))) - (-5 *1 (-508 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2191 (-699 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-699 *6)))) - (-4 *7 (-1259 *6))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1307 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-174)))) + (-2 (|:| -2887 (-792 *3)) (|:| |coef1| (-792 *3)) + (|:| |coef2| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-829 *4)) (-4 *1 (-1300 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-1064)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1064)) (-5 *1 (-1306 *2 *3)) (-4 *3 (-856))))) + (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -2887 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1081 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1))) + (-4 *1 (-1087 *4 *5 *6 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) - (-15 -2981 ((-1140 *3 (-622 $)) $)) - (-15 -2950 ($ (-1140 *3 (-622 $)))))))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) - (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1283 *5))))) - (-5 *1 (-993 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1283 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1172 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414)))) - ((*1 *2 *1) - (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574)))) - ((*1 *2 *1) - (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574)))) - (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) - (-4 *3 (-13 (-440 *6) (-27) (-1218))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1115))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1233)) - (-4 *5 (-382 *4)) (-4 *3 (-382 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1233)) - (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *6 *2 *7)) (-4 *6 (-1064)) - (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) - (-14 *4 (-781)) (-4 *5 (-174))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) (((*1 *2 *3) - (-12 - (-5 *2 - (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) - (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) - (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))) - (-5 *4 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1116) (-1054 *5))) + (-4 *5 (-897 *4)) (-4 *4 (-1116)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-945 *4 *5 *6))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1116))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557)))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) + (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) + (-5 *1 (-798)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) + (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) + (-5 *1 (-798))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1173 *4) (-1173 *4))) (-5 *2 (-1173 *4)) + (-5 *1 (-1310 *4)) (-4 *4 (-1234)))) ((*1 *2 *3 *4) - (-12 + (-12 (-5 *3 (-1 (-654 (-1173 *5)) (-654 (-1173 *5)))) (-5 *4 (-574)) + (-5 *2 (-654 (-1173 *5))) (-5 *1 (-1310 *5)) (-4 *5 (-1234))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372)) + (-5 *2 (-2 (|:| -1367 (-428 *3)) (|:| |special| (-428 *3)))) + (-5 *1 (-737 *5 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) + (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-963 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) + (-5 *1 (-178 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1081 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-302 (-966 (-574)))) (-5 *2 - (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) - (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))) (-5 *4 (-417 (-574))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-417 (-574))) - (-5 *2 (-654 (-2 (|:| -3864 *5) (|:| -3877 *5)))) (-5 *1 (-1035 *3)) - (-4 *3 (-1259 (-574))) (-5 *4 (-2 (|:| -3864 *5) (|:| -3877 *5))))) + (-2 (|:| |varOrder| (-654 (-1193))) + (|:| |inhom| (-3 (-654 (-1284 (-781))) "failed")) + (|:| |hom| (-654 (-1284 (-781)))))) + (-5 *1 (-242))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1244 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6)) + (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) + (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) + (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1054 (-574)))) + (-5 *2 (-2 (|:| -3547 (-781)) (|:| -2722 *8))) + (-5 *1 (-925 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) - (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) - (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574)))) - (-5 *4 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-417 (-574))) - (-5 *2 (-654 (-2 (|:| -3864 *4) (|:| -3877 *4)))) (-5 *1 (-1036 *3)) - (-4 *3 (-1259 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-417 (-574))) - (-5 *2 (-654 (-2 (|:| -3864 *5) (|:| -3877 *5)))) (-5 *1 (-1036 *3)) - (-4 *3 (-1259 *5)) (-5 *4 (-2 (|:| -3864 *5) (|:| -3877 *5)))))) + (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) + (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4))) + (-4 *6 (-351 (-417 (-574)) *4 *5)) + (-5 *2 (-2 (|:| -3547 (-781)) (|:| -2722 *6))) + (-5 *1 (-926 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-52))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1294))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1204 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) + (-4 *4 (-860)) (-5 *1 (-1204 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-654 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) + (-5 *2 (-654 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-987))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) + ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) + (-4 *8 (-963 *7 *5 *6)) + (-5 *2 (-2 (|:| -3139 (-781)) (|:| -1866 *3) (|:| |radicand| *3))) + (-5 *1 (-967 *5 *6 *7 *8 *3)) (-5 *4 (-781)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2951 ($ *8)) (-15 -2971 (*8 $)) (-15 -2981 (*8 $)))))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) + (-5 *2 (-1051)) (-5 *1 (-766))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-699 *2)) (-5 *4 (-781)) + (-4 *2 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) + (-4 *5 (-1260 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1308 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860)) + (-4 *2 (-174)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-829 *4)) (-4 *1 (-1301 *4 *2)) (-4 *4 (-860)) + (-4 *2 (-1065)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1065)) (-5 *1 (-1307 *2 *3)) (-4 *3 (-856))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *2 *3) (-12 (-5 *3 @@ -14049,576 +14074,587 @@ (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) - (-5 *2 (-654 (-1174))) (-5 *1 (-274))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) + (-5 *2 (-654 (-1175))) (-5 *1 (-274))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-781)) (-4 *5 (-566)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) + (-5 *2 (-253 *4 *5)) (-5 *1 (-958 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1065))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1227 *5 *6 *7 *3)) + (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112)) + (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-654 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) + (-4 *3 (-566))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) - (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) + (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) - (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) + (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) - (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) + (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) - (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) + (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) - (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) + (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) - (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) + (-12 (-5 *3 (-890 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) + (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 *5)) (-5 *4 (-1107 (-388))) - (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) + (-12 (-5 *3 (-890 *5)) (-5 *4 (-1108 (-388))) + (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) - (-5 *2 (-1148 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-624 (-546)) (-1115))))) + (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) + (-5 *2 (-1149 (-227))) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-624 (-546)) (-1116))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-624 (-546)) (-1115))))) + (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-624 (-546)) (-1116))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-893 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) - (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) + (-12 (-5 *3 (-893 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) + (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-893 *5)) (-5 *4 (-1107 (-388))) - (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) + (-12 (-5 *3 (-893 *5)) (-5 *4 (-1108 (-388))) + (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-654 *1)) - (-4 *1 (-391 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-736)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-962 *3 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1195)) (-5 *3 (-1192))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) - (-4 *6 (-803)) (-4 *7 (-962 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7)))) - (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-803)) - (-4 *3 (-13 (-860) (-10 -8 (-15 -1845 ((-1192) $))))) (-4 *5 (-566)) - (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-962 (-417 (-965 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1064)) (-4 *5 (-803)) - (-4 *3 - (-13 (-860) - (-10 -8 (-15 -1845 ((-1192) $)) - (-15 -1497 ((-3 $ "failed") (-1192)))))) - (-5 *1 (-999 *4 *5 *3 *2)) (-4 *2 (-962 (-965 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *6)) - (-4 *6 - (-13 (-860) - (-10 -8 (-15 -1845 ((-1192) $)) - (-15 -1497 ((-3 $ "failed") (-1192)))))) - (-4 *4 (-1064)) (-4 *5 (-803)) (-5 *1 (-999 *4 *5 *6 *2)) - (-4 *2 (-962 (-965 *4) *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-1222 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) +(((*1 *1) (-5 *1 (-478)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-654 *5)) (-4 *5 (-1260 *3)) (-4 *3 (-315)) + (-5 *2 (-112)) (-5 *1 (-465 *3 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) + (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1161 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))) ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-781)))) ((*1 *2 *3) - (-12 (-4 *4 (-1064)) - (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) - (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) + (-12 (-4 *4 (-1065)) + (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) + (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-980 *2)) (-4 *2 (-1116))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1116)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1116))))) (((*1 *2 *3) (-12 (-4 *5 (-13 (-624 *2) (-174))) (-5 *2 (-903 *4)) - (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1115)) (-4 *3 (-167 *5)))) + (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1116)) (-4 *3 (-167 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1109 (-853 (-388))))) - (-5 *2 (-654 (-1109 (-853 (-227))))) (-5 *1 (-313)))) + (-12 (-5 *3 (-654 (-1110 (-853 (-388))))) + (-5 *2 (-654 (-1110 (-853 (-227))))) (-5 *1 (-313)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-404)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) - (-4 *4 (-1259 *3)))) + (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) + (-4 *4 (-1260 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) - (-5 *2 (-1283 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 *3)))) + (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) + (-5 *2 (-1284 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-428 *1)) (-4 *1 (-440 *3)) (-4 *3 (-566)) - (-4 *3 (-1115)))) + (-4 *3 (-1116)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-1064)) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-473 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-546)))) - ((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1233)))) - ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-546)))) + ((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1234)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1259 *3)))) + (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1260 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) + (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) ((*1 *1 *2) - (-12 (-5 *2 (-965 *3)) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) - (-4 *5 (-624 (-1192))) (-4 *4 (-803)) (-4 *5 (-860)))) + (-12 (-5 *2 (-966 *3)) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) + (-4 *5 (-624 (-1193))) (-4 *4 (-803)) (-4 *5 (-860)))) ((*1 *1 *2) - (-2832 - (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) - (-12 (-2085 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) - (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) - (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) + (-2833 + (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) + (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) + (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))) + (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))))) ((*1 *1 *2) - (-12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) (-4 *3 (-1064)) + (-12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4064 *8))) - (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1174)) - (-5 *1 (-1084 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) + (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1175)) + (-5 *1 (-1085 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4064 *8))) - (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1124 *4 *5 *6 *7)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1174)) - (-5 *1 (-1160 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1197)))) - ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1197)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1213)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1213)))) + (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) + (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1125 *4 *5 *6 *7)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1175)) + (-5 *1 (-1161 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-1198)))) + ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1198)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1214)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1214)))) ((*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *5))) - (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) - (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1310 *4 *5 *6)) - (-14 *6 (-654 (-1192))))) + (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193))) + (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1311 *4 *5 *6)) + (-14 *6 (-654 (-1193))))) ((*1 *2 *3) - (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-965 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) - (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) + (-12 (-5 *3 (-966 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-966 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6)) + (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) ((*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *6))) - (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *6 (-654 (-1192))) - (-5 *2 (-965 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) - (-14 *5 (-654 (-1192))))) + (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *6 (-654 (-1193))) + (-5 *2 (-966 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6)) + (-14 *5 (-654 (-1193))))) ((*1 *2 *3) - (-12 (-5 *3 (-1188 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 (-1188 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) - (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) + (-12 (-5 *3 (-1189 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-1189 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6)) + (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) ((*1 *2 *3) (-12 - (-5 *3 (-1161 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))) - (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *6 (-654 (-1192))) - (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1310 *4 *5 *6)) - (-14 *5 (-654 (-1192)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-934))) (-5 *2 (-1194 (-417 (-574)))) - (-5 *1 (-192))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) - (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) + (-5 *3 (-1162 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))) + (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *6 (-654 (-1193))) + (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1311 *4 *5 *6)) + (-14 *5 (-654 (-1193)))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-574)) + (-5 *6 + (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3954 (-388)))) + (-5 *7 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) + (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) + (-5 *1 (-798)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-574)) + (-5 *6 + (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3954 (-388)))) + (-5 *7 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) + (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) + (-5 *1 (-798))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884))) + (-5 *4 (-654 (-935))) (-5 *5 (-654 (-270))) (-5 *1 (-478)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884))) + (-5 *4 (-654 (-935))) (-5 *1 (-478)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478)))) + ((*1 *1 *1) (-5 *1 (-478)))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-372) (-148))) + (-5 *2 (-654 (-2 (|:| -3139 (-781)) (|:| -3333 *4) (|:| |num| *4)))) + (-5 *1 (-409 *3 *4)) (-4 *4 (-1260 *3))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-622 *3)) (-4 *3 (-1116))))) +(((*1 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) + (-5 *1 (-1088 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) + (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1283 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) - (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1259 *5)) - (-5 *2 (-699 *5))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1192)) (-5 *1 (-685 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1188 *7)) (-4 *7 (-962 *6 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1064)) (-5 *2 (-1188 *6)) - (-5 *1 (-329 *4 *5 *6 *7))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |%expansion| (-321 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175)))))) + (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) + (-14 *6 (-1193)) (-14 *7 *3)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-115)) (-4 *4 (-1065)) (-5 *1 (-724 *4 *2)) + (-4 *2 (-658 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1065))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1160 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-1193)) + (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) + (-5 *2 (-2 (|:| -3725 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3)) + (-4 *3 (-13 (-27) (-1219) (-440 *5)))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3))))) (((*1 *1) (-5 *1 (-299)))) -(((*1 *2 *3) - (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) - (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) - (-4 *3 (-697 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) - (-5 *2 (-781))))) -(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-4 *1 (-310)))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-97))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) - ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062)) - (-5 *3 (-574))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1115))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4)) - (-4 *3 (-1259 (-171 (-574)))) (-4 *4 (-13 (-372) (-858))))) + (-12 (-5 *3 (-699 *1)) (-5 *4 (-1284 *1)) (-4 *1 (-649 *5)) + (-4 *5 (-1065)) + (-5 *2 (-2 (|:| -3082 (-699 *5)) (|:| |vec| (-1284 *5)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) + (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1065)) + (-5 *2 (-699 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1065)) + (-5 *2 (-699 *4))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-797)) (-5 *2 (-1051)) + (-5 *3 + (-2 (|:| |fn| (-324 (-227))) + (|:| -3798 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-797)) (-5 *2 (-1051)) + (-5 *3 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1289)) + (-5 *1 (-459 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-4 *8 (-962 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) - (-4 *7 (-803)) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1056))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1054 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1116))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1116)) + (-4 *2 (-1234))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *8 (-1081 *5 *6 *7)) (-5 *2 - (-654 - (-2 (|:| -3557 (-781)) - (|:| |eqns| - (-654 - (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) - (|:| |cols| (-654 (-574)))))) - (|:| |fgb| (-654 *8))))) - (-5 *1 (-937 *5 *6 *7 *8)) (-5 *4 (-781))))) -(((*1 *1) (-5 *1 (-833)))) -(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) - (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) - (-5 *1 (-638 *5 *6))))) + (-2 (|:| |val| (-654 *8)) + (|:| |towers| (-654 (-1043 *5 *6 *7 *8))))) + (-5 *1 (-1043 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *8 (-1081 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-654 *8)) + (|:| |towers| (-654 (-1162 *5 *6 *7 *8))))) + (-5 *1 (-1162 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) +(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-338))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-440 *4) (-1018))) (-4 *4 (-566)) + (-5 *1 (-283 *4 *2))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) + (-5 *1 (-758))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) - (-4 *6 (-13 (-566) (-1053 *5))) (-4 *5 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-965 *6)))))) (-5 *1 (-1054 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-488)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-602)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-636)))) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1173 *7))) (-4 *6 (-860)) + (-4 *7 (-963 *5 (-541 *6) *6)) (-4 *5 (-1065)) + (-5 *2 (-1 (-1173 *7) *7)) (-5 *1 (-1142 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-1220 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1116))))) +(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-488)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-602)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-636)))) ((*1 *2 *1) - (-12 (-4 *3 (-1115)) + (-12 (-4 *3 (-1116)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) - (-5 *1 (-1091 *3 *4 *2)) - (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))))) + (-5 *1 (-1092 *3 *4 *2)) + (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1115)) (-5 *1 (-1181 *3 *2)) (-4 *3 (-1115))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) - (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1050)) (-5 *1 (-766))))) -(((*1 *1) (-5 *1 (-1100)))) + (-12 (-4 *2 (-1116)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1116))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-1 (-227) (-227) (-227) (-227))) + (-5 *2 (-1 (-957 (-227)) (-227) (-227))) (-5 *1 (-707))))) (((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701 (-589))) (-5 *1 (-589))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-587)))) - ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-965 *6)) (-5 *4 (-1192)) - (-5 *5 (-853 *7)) - (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-4 *7 (-13 (-1218) (-29 *6))) (-5 *1 (-226 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1188 *6)) (-5 *4 (-853 *6)) - (-4 *6 (-13 (-1218) (-29 *5))) - (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-226 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1260 (-417 *2))) + (-4 *2 (-1260 *5)) (-5 *1 (-217 *5 *2 *6 *3)) + (-4 *3 (-351 *5 *2 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1127)) (-4 *3 (-1115)) (-5 *2 (-654 *1)) - (-4 *1 (-440 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) - (-4 *3 (-1115)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) - (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *3)) - (-5 *1 (-963 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) - (-15 -2981 (*7 $)))))))) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1109 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1109 (-388))) - (-5 *2 (-1284)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) - (-5 *2 (-1284)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) + (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) + (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) + (-5 *2 (-1286)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) + (-5 *2 (-1286)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) - (-5 *2 (-1285)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) + (-5 *2 (-1286)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) - (-5 *2 (-1285)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) + (-5 *2 (-1286)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) + (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) - (-5 *2 (-1285)) (-5 *1 (-262)))) + (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) + (-5 *2 (-1286)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-302 *7)) (-5 *4 (-1192)) (-5 *5 (-654 (-270))) - (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1053 (-574)))) - (-5 *2 (-1284)) (-5 *1 (-263 *6 *7)))) + (-12 (-5 *3 (-302 *7)) (-5 *4 (-1193)) (-5 *5 (-654 (-270))) + (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1054 (-574)))) + (-5 *2 (-1285)) (-5 *1 (-263 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1284)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) + (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) + (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1284)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-624 (-546)) (-1115))))) + (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1285)) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-624 (-546)) (-1116))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-888 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) - (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1284)) + (-12 (-5 *3 (-888 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) + (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1285)) (-5 *1 (-266 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-888 *5)) (-5 *4 (-1107 (-388))) - (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1284)) + (-12 (-5 *3 (-888 *5)) (-5 *4 (-1108 (-388))) + (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1285)) (-5 *1 (-266 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) - (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) + (-12 (-5 *3 (-890 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) + (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 *5)) (-5 *4 (-1107 (-388))) - (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) + (-12 (-5 *3 (-890 *5)) (-5 *4 (-1108 (-388))) + (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) + (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) + (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1285)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-624 (-546)) (-1115))))) + (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1286)) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-624 (-546)) (-1116))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-893 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) - (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) + (-12 (-5 *3 (-893 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) + (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-893 *5)) (-5 *4 (-1107 (-388))) - (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) + (-12 (-5 *3 (-893 *5)) (-5 *4 (-1108 (-388))) + (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1284)) (-5 *1 (-267)))) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1285)) (-5 *1 (-267)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1284)) + (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-267)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *2 (-1284)) (-5 *1 (-267)))) + (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *2 (-1285)) (-5 *1 (-267)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *4 (-654 (-270))) - (-5 *2 (-1284)) (-5 *1 (-267)))) + (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *4 (-654 (-270))) + (-5 *2 (-1285)) (-5 *1 (-267)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1285)) (-5 *1 (-267)))) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1286)) (-5 *1 (-267)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1285)) + (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-267))))) -(((*1 *2 *1) - (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) - (-4 *3 (-1259 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1115))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-654 - (-2 (|:| -3557 (-781)) - (|:| |eqns| - (-654 - (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) - (|:| |cols| (-654 (-574)))))) - (|:| |fgb| (-654 *7))))) - (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) - (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-781)) - (-5 *1 (-937 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-488)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-602)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-636)))) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1297 *4 *5 *6 *7))) + (-5 *1 (-1297 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566)) + (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1297 *6 *7 *8 *9))) + (-5 *1 (-1297 *6 *7 *8 *9))))) +(((*1 *2 *2) + (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) + (-5 *1 (-178 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1260 *5)) + (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) + (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-112)) + (-5 *1 (-925 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) + (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4))) + (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-926 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-488)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-602)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-636)))) ((*1 *2 *1) - (-12 (-4 *3 (-1115)) + (-12 (-4 *3 (-1116)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) - (-5 *1 (-1091 *3 *4 *2)) - (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))))) + (-5 *1 (-1092 *3 *4 *2)) + (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1115)) (-5 *1 (-1181 *2 *3)) (-4 *3 (-1115))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1064)) (-4 *6 (-962 *5 *4 *2)) - (-4 *2 (-860)) (-5 *1 (-963 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2950 ($ *6)) (-15 -2970 (*6 $)) - (-15 -2981 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) - (-5 *2 (-1192)) (-5 *1 (-1058 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-872)))) - ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-975))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1192))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566))))) + (-12 (-4 *2 (-1116)) (-5 *1 (-1182 *2 *3)) (-4 *3 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-872)))) + ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-976))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1) (-4 *1 (-1155)))) +(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -3852 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1260 *7)) + (-5 *3 (-417 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-584 *7 *8))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-654 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-803)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) + (-5 *1 (-459 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *1 (-849)) - (-5 *3 - (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) - (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) - (|:| |ub| (-654 (-853 (-227)))))) - (-5 *2 (-1050)))) - ((*1 *2 *3) - (-12 (-4 *1 (-849)) - (-5 *3 - (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) - (-5 *2 (-1050))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1115)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1115)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1115))))) + (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1115)) (-4 *2 (-1115)) - (-5 *1 (-621 *2 *4))))) -(((*1 *1) (-5 *1 (-1284)))) -(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1286)))) - ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1286))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-917 *4)) - (-4 *4 (-1115)))) - ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) + (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1219) (-1018)))))) +(((*1 *2) + (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1116))))) +(((*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1193))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) + ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931))))) +(((*1 *2 *3) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) + (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7)) + (-4 *3 (-1260 *6)) (-4 *7 (-963 *6 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4)))) + (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-781)) (-4 *5 (-566)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))) (((*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-313)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3)))) - (-5 *1 (-903 *3)) (-4 *3 (-1115))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192)) (-4 *5 (-372)) (-5 *2 (-1172 (-1172 (-965 *5)))) - (-5 *1 (-1291 *5)) (-5 *4 (-1172 (-965 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1274 *3))))) + (-5 *1 (-903 *3)) (-4 *3 (-1116))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1064)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-654 (-1192))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-654 (-1193))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) @@ -14627,51 +14663,51 @@ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1064) (-860))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1192))))) + (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1065) (-860))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1193))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) - (-4 *6 (-1233)) (-4 *7 (-1233)) (-5 *2 (-246 *5 *7)) + (-4 *6 (-1234)) (-4 *7 (-1234)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-302 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-302 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1174)) (-5 *5 (-622 *6)) - (-4 *6 (-310)) (-4 *2 (-1233)) (-5 *1 (-305 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1175)) (-5 *5 (-622 *6)) + (-4 *6 (-310)) (-4 *2 (-1234)) (-5 *1 (-305 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-622 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-306 *5 *2)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-622 *1)) (-4 *1 (-310)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1064)) - (-4 *6 (-1064)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1065)) + (-4 *6 (-1065)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1115)) - (-4 *6 (-1115)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1116)) + (-4 *6 (-1116)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-345 *5 *6 *7 *8)) (-4 *5 (-372)) - (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) - (-4 *9 (-372)) (-4 *10 (-1259 *9)) (-4 *11 (-1259 (-417 *10))) + (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) + (-4 *9 (-372)) (-4 *10 (-1260 *9)) (-4 *11 (-1260 (-417 *10))) (-5 *2 (-345 *9 *10 *11 *12)) (-5 *1 (-342 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-351 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1115)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1116)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1237)) (-4 *8 (-1237)) - (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *9 (-1259 *8)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1238)) (-4 *8 (-1238)) + (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *9 (-1260 *8)) (-4 *2 (-351 *8 *9 *10)) (-5 *1 (-349 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1259 (-417 *9))))) + (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1260 (-417 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-4 *2 (-382 *6)) (-5 *1 (-380 *5 *4 *6 *2)) (-4 *4 (-382 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) - (-4 *4 (-1115)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-1116)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-428 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-428 *6)) (-5 *1 (-415 *5 *6)))) @@ -14680,36 +14716,36 @@ (-4 *6 (-566)) (-5 *2 (-417 *6)) (-5 *1 (-416 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-423 *5 *6 *7 *8)) (-4 *5 (-315)) - (-4 *6 (-1007 *5)) (-4 *7 (-1259 *6)) - (-4 *8 (-13 (-419 *6 *7) (-1053 *6))) (-4 *9 (-315)) - (-4 *10 (-1007 *9)) (-4 *11 (-1259 *10)) + (-4 *6 (-1008 *5)) (-4 *7 (-1260 *6)) + (-4 *8 (-13 (-419 *6 *7) (-1054 *6))) (-4 *9 (-315)) + (-4 *10 (-1008 *9)) (-4 *11 (-1260 *10)) (-5 *2 (-423 *9 *10 *11 *12)) (-5 *1 (-422 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-419 *10 *11) (-1053 *10))))) + (-4 *12 (-13 (-419 *10 *11) (-1054 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-427 *6)) (-5 *1 (-425 *4 *5 *2 *6)) (-4 *4 (-427 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-566)) (-5 *1 (-428 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-4 *2 (-440 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-440 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-435 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-435 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1233)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1234)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1115)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-860)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-596 *6)) (-5 *1 (-594 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -3766 *5) (|:| |coeff| *5)) "failed")) + (-5 *4 (-3 (-2 (|:| -3852 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) - (-5 *2 (-2 (|:| -3766 *6) (|:| |coeff| *6))) + (-5 *2 (-2 (|:| -3852 *6) (|:| |coeff| *6))) (-5 *1 (-594 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) @@ -14729,1979 +14765,1849 @@ (-654 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-594 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7)) - (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-611 *8)) + (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-611 *8)) (-5 *1 (-609 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1172 *6)) (-5 *5 (-611 *7)) - (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1173 *6)) (-5 *5 (-611 *7)) + (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8)) (-5 *1 (-609 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1172 *7)) - (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1173 *7)) + (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8)) (-5 *1 (-609 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-654 *6)) (-5 *5 (-654 *7)) - (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-654 *8)) + (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-654 *8)) (-5 *1 (-653 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1064)) (-4 *8 (-1064)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1065)) (-4 *8 (-1065)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1064)) - (-4 *8 (-1064)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1065)) + (-4 *8 (-1065)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-566)) (-4 *7 (-566)) - (-4 *6 (-1259 *5)) (-4 *2 (-1259 (-417 *8))) - (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1259 (-417 *6))) - (-4 *8 (-1259 *7)))) + (-4 *6 (-1260 *5)) (-4 *2 (-1260 (-417 *8))) + (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1260 (-417 *6))) + (-4 *8 (-1260 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1064)) (-4 *9 (-1064)) - (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-962 *9 *7 *5)) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1065)) (-4 *9 (-1065)) + (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-963 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) - (-4 *4 (-962 *8 *6 *5)))) + (-4 *4 (-963 *8 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-803)) - (-4 *9 (-1064)) (-4 *2 (-962 *9 *8 *6)) + (-4 *9 (-1065)) (-4 *2 (-963 *9 *8 *6)) (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-803)) - (-4 *4 (-962 *9 *7 *5)))) + (-4 *4 (-963 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1064)) - (-4 *6 (-1064)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1065)) + (-4 *6 (-1065)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7)) (-5 *1 (-744 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-745 *3 *4)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-745 *3 *4)) (-4 *4 (-736)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1064)) - (-4 *6 (-1064)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1065)) + (-4 *6 (-1065)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-807 *6)) (-5 *1 (-808 *4 *5 *2 *6)) (-4 *4 (-807 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1115)) - (-4 *6 (-1115)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1116)) + (-4 *6 (-1116)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *1 (-842 *5 *6)))) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *1 (-842 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1115)) - (-4 *6 (-1115)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1116)) + (-4 *6 (-1116)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))) ((*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *1 (-852 *5 *6)))) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *1 (-852 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1115)) - (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-900 *5 *7)) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1116)) + (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-900 *5 *7)) (-5 *1 (-899 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) - (-4 *6 (-1115)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) + (-4 *6 (-1116)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-965 *5)) (-4 *5 (-1064)) - (-4 *6 (-1064)) (-5 *2 (-965 *6)) (-5 *1 (-959 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-966 *5)) (-4 *5 (-1065)) + (-4 *6 (-1065)) (-5 *2 (-966 *6)) (-5 *1 (-960 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860)) - (-4 *8 (-1064)) (-4 *6 (-803)) + (-4 *8 (-1065)) (-4 *6 (-803)) (-4 *2 - (-13 (-1115) + (-13 (-1116) (-10 -8 (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) - (-5 *1 (-964 *6 *7 *8 *5 *2)) (-4 *5 (-962 *8 *6 *7)))) + (-5 *1 (-965 *6 *7 *8 *5 *2)) (-4 *5 (-963 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-971 *6)) (-5 *1 (-970 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-972 *6)) (-5 *1 (-971 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-979 *5)) (-4 *5 (-1115)) - (-4 *6 (-1115)) (-5 *2 (-979 *6)) (-5 *1 (-981 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-980 *5)) (-4 *5 (-1116)) + (-4 *6 (-1116)) (-5 *2 (-980 *6)) (-5 *1 (-982 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-956 *5)) (-4 *5 (-1064)) - (-4 *6 (-1064)) (-5 *2 (-956 *6)) (-5 *1 (-996 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-957 *5)) (-4 *5 (-1065)) + (-4 *6 (-1065)) (-5 *2 (-957 *6)) (-5 *1 (-997 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-965 *4))) (-4 *4 (-1064)) - (-4 *2 (-962 (-965 *4) *5 *6)) (-4 *5 (-803)) + (-12 (-5 *3 (-1 *2 (-966 *4))) (-4 *4 (-1065)) + (-4 *2 (-963 (-966 *4) *5 *6)) (-4 *5 (-803)) (-4 *6 (-13 (-860) - (-10 -8 (-15 -1845 ((-1192) $)) - (-15 -1497 ((-3 $ "failed") (-1192)))))) - (-5 *1 (-999 *4 *5 *6 *2)))) + (-10 -8 (-15 -1844 ((-1193) $)) + (-15 -1498 ((-3 $ "failed") (-1193)))))) + (-5 *1 (-1000 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-566)) (-4 *6 (-566)) - (-4 *2 (-1007 *6)) (-5 *1 (-1005 *5 *6 *4 *2)) (-4 *4 (-1007 *5)))) + (-4 *2 (-1008 *6)) (-5 *1 (-1006 *5 *6 *4 *2)) (-4 *4 (-1008 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-1012 *6)) (-5 *1 (-1013 *4 *5 *2 *6)) (-4 *4 (-1012 *5)))) + (-4 *2 (-1013 *6)) (-5 *1 (-1014 *4 *5 *2 *6)) (-4 *4 (-1013 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1068 *3 *4 *5 *6 *7)) - (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) + (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1068 *3 *4 *5 *6 *7)) - (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) + (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1064)) (-4 *10 (-1064)) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1065)) (-4 *10 (-1065)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) - (-4 *9 (-244 *5 *7)) (-4 *2 (-1068 *5 *6 *10 *11 *12)) - (-5 *1 (-1070 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1068 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) + (-4 *9 (-244 *5 *7)) (-4 *2 (-1069 *5 *6 *10 *11 *12)) + (-5 *1 (-1071 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1069 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-1109 *6)) (-5 *1 (-1104 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-1110 *6)) (-5 *1 (-1105 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-858)) - (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-654 *6)) - (-5 *1 (-1104 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-858)) + (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-654 *6)) + (-5 *1 (-1105 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-1107 *6)) (-5 *1 (-1106 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1108 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-1108 *6)) (-5 *1 (-1107 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1110 *4 *2)) (-4 *4 (-858)) - (-4 *2 (-1164 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1111 *4 *2)) (-4 *4 (-858)) + (-4 *2 (-1165 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-1173 *6)) (-5 *1 (-1171 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1172 *6)) (-5 *5 (-1172 *7)) - (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) - (-5 *1 (-1171 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1173 *6)) (-5 *5 (-1173 *7)) + (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8)) + (-5 *1 (-1172 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1188 *5)) (-4 *5 (-1064)) - (-4 *6 (-1064)) (-5 *2 (-1188 *6)) (-5 *1 (-1186 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1189 *5)) (-4 *5 (-1065)) + (-4 *6 (-1065)) (-5 *2 (-1189 *6)) (-5 *1 (-1187 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1209 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1115)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1116)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5 *7 *9)) (-4 *5 (-1064)) - (-4 *6 (-1064)) (-14 *7 (-1192)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1247 *6 *8 *10)) (-5 *1 (-1242 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1192)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5 *7 *9)) (-4 *5 (-1065)) + (-4 *6 (-1065)) (-14 *7 (-1193)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1248 *6 *8 *10)) (-5 *1 (-1243 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1193)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-1250 *6)) (-5 *1 (-1249 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-1251 *6)) (-5 *1 (-1250 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5)) (-4 *5 (-858)) - (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1172 *6)) - (-5 *1 (-1249 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5)) (-4 *5 (-858)) + (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1173 *6)) + (-5 *1 (-1250 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1256 *5 *6)) (-14 *5 (-1192)) - (-4 *6 (-1064)) (-4 *8 (-1064)) (-5 *2 (-1256 *7 *8)) - (-5 *1 (-1251 *5 *6 *7 *8)) (-14 *7 (-1192)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1257 *5 *6)) (-14 *5 (-1193)) + (-4 *6 (-1065)) (-4 *8 (-1065)) (-5 *2 (-1257 *7 *8)) + (-5 *1 (-1252 *5 *6 *7 *8)) (-14 *7 (-1193)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) - (-4 *2 (-1259 *6)) (-5 *1 (-1257 *5 *4 *6 *2)) (-4 *4 (-1259 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) + (-4 *2 (-1260 *6)) (-5 *1 (-1258 *5 *4 *6 *2)) (-4 *4 (-1260 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1268 *5 *7 *9)) (-4 *5 (-1064)) - (-4 *6 (-1064)) (-14 *7 (-1192)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1268 *6 *8 *10)) (-5 *1 (-1263 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1192)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5 *7 *9)) (-4 *5 (-1065)) + (-4 *6 (-1065)) (-14 *7 (-1193)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1269 *6 *8 *10)) (-5 *1 (-1264 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1193)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) - (-4 *2 (-1274 *6)) (-5 *1 (-1272 *5 *6 *4 *2)) (-4 *4 (-1274 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) + (-4 *2 (-1275 *6)) (-5 *1 (-1273 *5 *6 *4 *2)) (-4 *4 (-1275 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-1233)) - (-4 *6 (-1233)) (-5 *2 (-1283 *6)) (-5 *1 (-1282 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-1234)) + (-4 *6 (-1234)) (-5 *2 (-1284 *6)) (-5 *1 (-1283 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1283 *5)) - (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1283 *6)) - (-5 *1 (-1282 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1284 *5)) + (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1284 *6)) + (-5 *1 (-1283 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1064)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1065)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-1306 *3 *4)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-856))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-984 *2 *4)) - (-4 *4 (-1259 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1126))))) (((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1115)) + (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1116)) (-5 *1 (-622 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574))))) - (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) - (-5 *1 (-515 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-974 *3)) (-4 *3 (-555)))) - ((*1 *2 *1) (-12 (-4 *1 (-1237)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5))) - (-5 *1 (-1144 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5)))) - (-5 *1 (-1144 *5))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-761))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1208 *2)) (-4 *2 (-372))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1116)))) + ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2)) + (-4 *2 (-1275 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) + (-4 *5 (-1260 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2)) + (-4 *2 (-1275 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) + (-5 *1 (-552 *4 *2)) (-4 *2 (-1275 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) + (-5 *1 (-1169 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-1172 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1192))) - (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *4 (-654 (-1192))) - (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308))))) -(((*1 *2 *1) - (-12 (-4 *2 (-962 *3 *5 *4)) (-5 *1 (-1002 *3 *4 *5 *2)) - (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803))))) + (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) + (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1218) (-1017))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 (-417 *2))) - (-4 *2 (-1259 *4)) (-5 *1 (-350 *3 *4 *2 *5)) - (-4 *3 (-351 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1237)) - (-4 *4 (-1259 (-417 *2))) (-4 *2 (-1259 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-986))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) + (-4 *5 (-1260 *4)) (-5 *2 (-654 (-663 (-417 *5)))) + (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-654 (-966 *3))) (-4 *3 (-462)) + (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1193))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) + (-14 *4 (-654 (-1193))) (-5 *1 (-638 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-444)) + (-5 *2 + (-654 + (-3 (|:| -2039 (-1193)) + (|:| -3602 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574))))))))) + (-5 *1 (-1197))))) (((*1 *2 *1) (-12 (-5 *2 (-654 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-569)))) ((*1 *2 *1) - (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-5 *2 (-654 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-813))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) - (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-962 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-654 (-2 (|:| -4200 (-1188 *9)) (|:| -2017 (-574))))))) - (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1188 *9))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1284 *4)) (-5 *3 (-781)) (-4 *4 (-358)) + (-5 *1 (-538 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388)))) + ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2) + (-12 (-5 *2 (-699 (-924 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-935)) + (-14 *4 (-935)))) + ((*1 *2) + (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) + (-14 *4 + (-3 (-1189 *3) + (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136))))))))) + ((*1 *2) + (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) + (-14 *4 (-935))))) +(((*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338)))) + ((*1 *1) (-5 *1 (-338)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1193)) (-5 *3 (-388)) (-5 *1 (-1079))))) (((*1 *2 *3) - (-12 (-5 *3 (-1188 *6)) (-4 *6 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-1188 *7)) (-5 *1 (-329 *4 *5 *6 *7)) - (-4 *7 (-962 *6 *4 *5))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-574)) (-5 *1 (-206))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) + (-12 (-5 *4 (-935)) (-5 *2 (-1189 *3)) (-5 *1 (-1208 *3)) + (-4 *3 (-372))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935)))) + ((*1 *1 *1 *1) (-5 *1 (-1239))) ((*1 *1 *1 *1) (-5 *1 (-1240))) + ((*1 *1 *1 *1) (-5 *1 (-1241))) ((*1 *1 *1 *1) (-5 *1 (-1242)))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *1)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1065)) (-5 *1 (-699 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 *4)) (-4 *4 (-1065)) (-4 *1 (-1139 *3 *4 *5 *6)) + (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1115)) (-4 *6 (-1115)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1115))))) + (-12 (-4 *4 (-1065)) (-4 *3 (-1260 *4)) (-4 *2 (-1275 *4)) + (-5 *1 (-1278 *4 *3 *5 *2)) (-4 *5 (-666 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1065)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3)) + (-4 *3 (-1260 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -2226 (-781)))) + (-5 *1 (-792 *3)) (-4 *3 (-1065)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2226 (-781)))) + (-4 *1 (-1081 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1115)) - (-4 *2 (-860))))) -(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-781)) (-5 *1 (-600))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 (-965 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) - (-14 *4 (-654 (-1192))))) - ((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-460 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-460 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) - (-14 *4 (-654 (-1192))) (-5 *1 (-638 *3 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934)))) - ((*1 *1 *1 *1) (-5 *1 (-1238))) ((*1 *1 *1 *1) (-5 *1 (-1239))) - ((*1 *1 *1 *1) (-5 *1 (-1240))) ((*1 *1 *1 *1) (-5 *1 (-1241)))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1218)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) - ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388))))) -(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-1181 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1286)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1286))))) (((*1 *2 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1229))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1041 (-853 (-574)))) - (-5 *3 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1064)) - (-5 *1 (-605 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) - ((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) - (-4 *3 (-13 (-1218) (-29 *5)))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) + (|:| |expense| (-388)) (|:| |accuracy| (-388)) + (|:| |intermediateResults| (-388)))) + (-5 *1 (-813))))) +(((*1 *1 *2) + (-12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-13 (-372) (-148))) + (-5 *1 (-409 *3 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1173 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3798 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1051)) (-5 *1 (-313))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1081 *6 *7 *8)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) + (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) + (-5 *5 (-112)) (-4 *8 (-1081 *6 *7 *4)) (-4 *9 (-1087 *6 *7 *4 *8)) + (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) + (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4068 *9)))) + (-5 *1 (-1088 *6 *7 *4 *8 *9))))) (((*1 *2) (-12 (-5 *2 (-843 (-574))) (-5 *1 (-544)))) - ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1115))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) - (-5 *1 (-765))))) + ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1116))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065))))) (((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934)))) - ((*1 *1 *1 *1) (-5 *1 (-1238))) ((*1 *1 *1 *1) (-5 *1 (-1239))) - ((*1 *1 *1 *1) (-5 *1 (-1240))) ((*1 *1 *1 *1) (-5 *1 (-1241)))) -(((*1 *2 *1) - (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-1117 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1117 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1259 *4)) (-5 *1 (-819 *4 *2 *3 *5)) - (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) - (-4 *5 (-666 (-417 *2)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1053 *4)) (-4 *3 (-315)) - (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-4 *6 (-419 *4 *5)) - (-14 *7 (-1283 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1007 *3)) - (-4 *5 (-1259 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935)))) + ((*1 *1 *1 *1) (-5 *1 (-1239))) ((*1 *1 *1 *1) (-5 *1 (-1240))) + ((*1 *1 *1 *1) (-5 *1 (-1241))) ((*1 *1 *1 *1) (-5 *1 (-1242)))) +(((*1 *1 *1) (-4 *1 (-1160)))) (((*1 *2 *3 *4) + (-12 (-5 *3 (-1189 *2)) (-4 *2 (-963 (-417 (-966 *6)) *5 *4)) + (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) + (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) + (-4 *6 (-566))))) +(((*1 *2 *3) + (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-1234)) (-5 *2 (-781))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) + (-4 *2 (-697 *3 *4 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-1189 *7))) (-5 *3 (-1189 *7)) + (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-923)) (-4 *5 (-803)) + (-4 *6 (-860)) (-5 *1 (-920 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-1189 *5))) (-5 *3 (-1189 *5)) + (-4 *5 (-1260 *4)) (-4 *4 (-923)) (-5 *1 (-921 *4 *5))))) +(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-388)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1081 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3))))) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) + (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3319 *4))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) (((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) ((*1 *1 *1) (-5 *1 (-388))) ((*1 *1) (-5 *1 (-388)))) (((*1 *2 *3) - (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) -(((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1188 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4))))) -(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1259 *2)) - (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-1259 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4)) - (-4 *3 (-419 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *3 (-1259 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4)) - (-4 *4 (-419 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *3 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) - (-5 *2 (-965 *5)) (-5 *1 (-957 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574))))) + (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))) -(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *1) (-5 *1 (-1078)))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) + (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1219) (-440 *3))) + (-14 *4 (-1193)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-4 *2 (-13 (-27) (-1219) (-440 *3) (-10 -8 (-15 -2951 ($ *4))))) + (-4 *4 (-858)) + (-4 *5 + (-13 (-1262 *2 *4) (-372) (-1219) + (-10 -8 (-15 -3879 ($ $)) (-15 -3342 ($ $))))) + (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-999 *5)) (-14 *7 (-1193))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315)) + (-5 *1 (-181 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 *8)) + (-5 *4 + (-654 + (-2 (|:| -2391 (-699 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-699 *7))))) + (-5 *5 (-781)) (-4 *8 (-1260 *7)) (-4 *7 (-1260 *6)) (-4 *6 (-358)) + (-5 *2 + (-2 (|:| -2391 (-699 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-699 *7)))) + (-5 *1 (-508 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) (((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1172 (-965 *4)) (-1172 (-965 *4)))) - (-5 *1 (-1291 *4)) (-4 *4 (-372))))) + (-12 (-4 *4 (-462)) + (-5 *2 + (-654 + (-2 (|:| |eigval| (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4)))) + (|:| |geneigvec| (-654 (-699 (-417 (-966 *4)))))))) + (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-966 *4))))))) (((*1 *2) - (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1188 *1)) (-4 *1 (-1027))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1174)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *4 (-1080 *6 *7 *8)) (-5 *2 (-1288)) - (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1086 *6 *7 *8 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6))) - (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1115)) - (-4 *8 (-13 (-1064) (-624 (-903 *6)) (-1053 *7))) - (-5 *2 (-900 *6 *8)) (-4 *7 (-1064)) (-5 *1 (-954 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) - (-5 *1 (-340))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875)))))) -(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055))))) -(((*1 *2 *2) (-12 (-5 *2 (-1109 (-853 (-227)))) (-5 *1 (-313))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) + (-4 *4 (-1116))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10)) - (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1086 *5 *6 *7 *8)) - (-4 *10 (-1124 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) - (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) - (-5 *1 (-638 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) - (-14 *6 (-654 (-1192))) + (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-963 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) + (-4 *7 (-803)) (-5 *2 - (-654 (-1161 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) - (-5 *1 (-638 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) - (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) - (-5 *1 (-1061 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1086 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1226 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1259 *4)) - (-5 *2 (-2 (|:| -2573 (-633 *4 *5)) (|:| -4266 (-417 *5)))) - (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5)))) + (-654 + (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) + (|:| |cols| (-654 (-574)))))) + (-5 *1 (-938 *5 *6 *7 *8))))) +(((*1 *1 *1) (-4 *1 (-175))) + ((*1 *1 *1) + (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) + (-5 *2 (-1051)) (-5 *1 (-755))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-935)) (-5 *1 (-796))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1193)) + (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-585 *4 *2)) + (-4 *2 (-13 (-1219) (-973) (-1155) (-29 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1175)) (|:| -2039 (-1175)))) + (-5 *1 (-832))))) +(((*1 *2 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))) + ((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1128)) (-4 *3 (-1116)) (-5 *2 (-654 *1)) + (-4 *1 (-440 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) - (-14 *3 (-934)) (-4 *4 (-1064)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-462)) (-4 *3 (-1064)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1259 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-901 *4 *3)) - (-4 *3 (-1233)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) -(((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-566)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) - (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-762))))) + (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) + (-4 *3 (-1116)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) + (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *3)) + (-5 *1 (-964 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) + (-15 -2981 (*7 $)))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132)) + (-4 *2 (-1116)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1116)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1116)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *2 (-1116)) (-5 *1 (-659 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-966 (-171 (-574))))) (-5 *2 (-654 (-171 *4))) + (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-417 (-966 (-171 (-574)))))) + (-5 *4 (-654 (-1193))) (-5 *2 (-654 (-654 (-171 *5)))) + (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858)))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-539)))) + ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1115)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-693 *4 *5)) (-4 *4 (-1115)))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1116)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-693 *4 *5)) (-4 *4 (-1116)))) ((*1 *2 *2) - (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) + (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943)))) + (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944)))) ((*1 *2 *1) - (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) + (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065)))) ((*1 *2 *1) - (-12 (-4 *2 (-1064)) (-5 *1 (-1306 *2 *3)) (-4 *3 (-856))))) -(((*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1099 *3)) (-4 *3 (-133))))) + (-12 (-4 *2 (-1065)) (-5 *1 (-1307 *2 *3)) (-4 *3 (-856))))) +(((*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-133))))) +(((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) + (-4 *5 (-566)) (-5 *2 (-654 (-654 (-966 *5)))) (-5 *1 (-1202 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) - (-4 *6 (-803)) (-5 *2 (-417 (-965 *4))) (-5 *1 (-937 *4 *5 *6 *3)) - (-4 *3 (-962 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 *7)) (-4 *7 (-962 *4 *6 *5)) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) - (-4 *6 (-803)) (-5 *2 (-699 (-417 (-965 *4)))) - (-5 *1 (-937 *4 *5 *6 *7)))) + (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-462)) (-5 *2 (-112)) + (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1193))))) ((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) - (-4 *6 (-803)) (-5 *2 (-654 (-417 (-965 *4)))) - (-5 *1 (-937 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-1188 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-372) (-310) - (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) - (-15 -2981 ((-1140 *4 (-622 $)) $)) - (-15 -2950 ($ (-1140 *4 (-622 $)))))))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-984 *2 *3)) - (-4 *3 (-1259 *2))))) + (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462)) + (-14 *5 (-654 (-1193))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-934)) (-5 *1 (-1045 *2)) - (-4 *2 (-13 (-1115) (-10 -8 (-15 -3074 ($ $ $)))))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) - ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934))))) + (-12 (-5 *3 (-935)) (-5 *1 (-1046 *2)) + (-4 *2 (-13 (-1116) (-10 -8 (-15 -3074 ($ $ $)))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *1) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) + (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))) + ((*1 *2 *3) + (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) + (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) - (-5 *1 (-478))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4)) - (-5 *1 (-274))))) + (-12 (-4 *4 (-803)) + (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *5 (-566)) + (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-963 (-417 (-966 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1065)) (-4 *5 (-803)) + (-4 *3 + (-13 (-860) + (-10 -8 (-15 -1844 ((-1193) $)) + (-15 -1498 ((-3 $ "failed") (-1193)))))) + (-5 *1 (-1000 *4 *5 *3 *2)) (-4 *2 (-963 (-966 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *6)) + (-4 *6 + (-13 (-860) + (-10 -8 (-15 -1844 ((-1193) $)) + (-15 -1498 ((-3 $ "failed") (-1193)))))) + (-4 *4 (-1065)) (-4 *5 (-803)) (-5 *1 (-1000 *4 *5 *6 *2)) + (-4 *2 (-963 (-966 *4) *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1233)))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1234)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-965 (-388))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (|partial| -12 (-5 *2 (-966 (-388))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-417 (-965 (-388)))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (|partial| -12 (-5 *2 (-417 (-966 (-388)))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-965 (-574))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (|partial| -12 (-5 *2 (-966 (-574))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-417 (-965 (-574)))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (|partial| -12 (-5 *2 (-417 (-966 (-574)))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-348 *3 *4 *5)) + (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 *5)) (-4 *5 (-397)) - (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) - (-14 *4 (-654 (-1192))))) + (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) + (-14 *4 (-654 (-1193))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-699 (-417 (-965 (-574))))) (-4 *1 (-393)))) + (|partial| -12 (-5 *2 (-699 (-417 (-966 (-574))))) (-4 *1 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-699 (-417 (-965 (-388))))) (-4 *1 (-393)))) + (|partial| -12 (-5 *2 (-699 (-417 (-966 (-388))))) (-4 *1 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-699 (-965 (-574)))) (-4 *1 (-393)))) + (|partial| -12 (-5 *2 (-699 (-966 (-574)))) (-4 *1 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-699 (-965 (-388)))) (-4 *1 (-393)))) + (|partial| -12 (-5 *2 (-699 (-966 (-388)))) (-4 *1 (-393)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-417 (-965 (-574)))) (-4 *1 (-406)))) + (|partial| -12 (-5 *2 (-417 (-966 (-574)))) (-4 *1 (-406)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-417 (-965 (-388)))) (-4 *1 (-406)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-574))) (-4 *1 (-406)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-388))) (-4 *1 (-406)))) + (|partial| -12 (-5 *2 (-417 (-966 (-388)))) (-4 *1 (-406)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-574))) (-4 *1 (-406)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-388))) (-4 *1 (-406)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1283 (-417 (-965 (-574))))) (-4 *1 (-451)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1283 (-417 (-965 (-388))))) (-4 *1 (-451)))) + (|partial| -12 (-5 *2 (-1284 (-417 (-966 (-574))))) (-4 *1 (-451)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1283 (-965 (-574)))) (-4 *1 (-451)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1283 (-965 (-388)))) (-4 *1 (-451)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1283 (-324 (-574)))) (-4 *1 (-451)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1283 (-324 (-388)))) (-4 *1 (-451)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1259 *5)) - (-5 *2 (-1188 (-1188 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7)) - (-4 *3 (-1259 *6)) (-14 *7 (-934)))) + (|partial| -12 (-5 *2 (-1284 (-417 (-966 (-388))))) (-4 *1 (-451)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) - (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *1 (-991 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1053 *2)) (-4 *2 (-1233)))) + (|partial| -12 (-5 *2 (-1284 (-966 (-574)))) (-4 *1 (-451)))) ((*1 *1 *2) - (|partial| -2832 - (-12 (-5 *2 (-965 *3)) - (-12 (-2085 (-4 *3 (-38 (-417 (-574))))) - (-2085 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860))) - (-12 (-5 *2 (-965 *3)) - (-12 (-2085 (-4 *3 (-555))) (-2085 (-4 *3 (-38 (-417 (-574))))) - (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860))) - (-12 (-5 *2 (-965 *3)) - (-12 (-2085 (-4 *3 (-1007 (-574)))) (-4 *3 (-38 (-417 (-574)))) - (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860))))) + (|partial| -12 (-5 *2 (-1284 (-966 (-388)))) (-4 *1 (-451)))) ((*1 *1 *2) - (|partial| -2832 - (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) - (-12 (-2085 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) - (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) - (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) - (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) + (|partial| -12 (-5 *2 (-1284 (-324 (-574)))) (-4 *1 (-451)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) - (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) -(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-832))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) - (-4 *3 (-1115))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1109 (-227))) - (-5 *5 (-112)) (-5 *2 (-1285)) (-5 *1 (-264))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) - (-4 *3 (-382 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 *5)) (-4 *5 (-1007 *4)) (-4 *4 (-566)) - (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4))) - (-5 *1 (-703 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) - (-4 *6 (-1259 *5)) - (-5 *2 (-2 (|:| -4095 *7) (|:| |rh| (-654 (-417 *6))))) - (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6))) - (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1252 *4 *5 *3)) - (-4 *3 (-1259 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-173)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) - (-4 *4 (-1064))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1192)) (-4 *5 (-1237)) (-4 *6 (-1259 *5)) - (-4 *7 (-1259 (-417 *6))) (-5 *2 (-654 (-965 *5))) - (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1237)) - (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-4 *4 (-372)) - (-5 *2 (-654 (-965 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-4 *8 (-962 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) - (-4 *7 (-803)) - (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) - (|:| |wcond| (-654 (-965 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *5)))))))))) - (-5 *1 (-937 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1192))) (-4 *8 (-962 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) - (-4 *7 (-803)) - (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) - (|:| |wcond| (-654 (-965 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *5)))))))))) - (-5 *1 (-937 *5 *6 *7 *8)))) + (|partial| -12 (-5 *2 (-1284 (-324 (-388)))) (-4 *1 (-451)))) ((*1 *2 *3) - (-12 (-5 *3 (-699 *7)) (-4 *7 (-962 *4 *6 *5)) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) - (-4 *6 (-803)) - (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) - (|:| |wcond| (-654 (-965 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *4)))))))))) - (-5 *1 (-937 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *9)) (-5 *5 (-934)) (-4 *9 (-962 *6 *8 *7)) - (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) - (-4 *8 (-803)) - (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) - (|:| |wcond| (-654 (-965 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1283 (-417 (-965 *6)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *6)))))))))) - (-5 *1 (-937 *6 *7 *8 *9)) (-5 *4 (-654 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1192))) (-5 *5 (-934)) - (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) - (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) - (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) - (|:| |wcond| (-654 (-965 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1283 (-417 (-965 *6)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *6)))))))))) - (-5 *1 (-937 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-5 *4 (-934)) (-4 *8 (-962 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) - (-4 *7 (-803)) - (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) - (|:| |wcond| (-654 (-965 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *5)))))))))) - (-5 *1 (-937 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1174)) - (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) - (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) - (-5 *1 (-937 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1192))) (-5 *5 (-1174)) - (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) - (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) - (-5 *1 (-937 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-5 *4 (-1174)) (-4 *8 (-962 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) - (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-934)) - (-5 *6 (-1174)) (-4 *10 (-962 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) - (-4 *8 (-13 (-860) (-624 (-1192)))) (-4 *9 (-803)) (-5 *2 (-574)) - (-5 *1 (-937 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1192))) (-5 *5 (-934)) - (-5 *6 (-1174)) (-4 *10 (-962 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) - (-4 *8 (-13 (-860) (-624 (-1192)))) (-4 *9 (-803)) (-5 *2 (-574)) - (-5 *1 (-937 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *9)) (-5 *4 (-934)) (-5 *5 (-1174)) - (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) - (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) - (-5 *1 (-937 *6 *7 *8 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1078))))) + (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1260 *5)) + (-5 *2 (-1189 (-1189 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7)) + (-4 *3 (-1260 *6)) (-14 *7 (-935)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) + (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *1 (-992 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1054 *2)) (-4 *2 (-1234)))) + ((*1 *1 *2) + (|partial| -2833 + (-12 (-5 *2 (-966 *3)) + (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) + (-2084 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860))) + (-12 (-5 *2 (-966 *3)) + (-12 (-2084 (-4 *3 (-555))) (-2084 (-4 *3 (-38 (-417 (-574))))) + (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860))) + (-12 (-5 *2 (-966 *3)) + (-12 (-2084 (-4 *3 (-1008 (-574)))) (-4 *3 (-38 (-417 (-574)))) + (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860))))) + ((*1 *1 *2) + (|partial| -2833 + (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) + (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) + (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))) + (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) + (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))) + (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))))) +(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) - (-5 *2 (-491 *4 *5)) (-5 *1 (-957 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) - (-5 *2 (-654 (-227))) (-5 *1 (-313))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1064)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-976 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566)) - (-4 *3 (-1064)) (-4 *2 (-802)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1188 *3)) (-4 *3 (-1064)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-986)) (-4 *2 (-132)) (-5 *1 (-1194 *3)) (-4 *3 (-566)) - (-4 *3 (-1064)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1256 *4 *3)) (-14 *4 (-1192)) - (-4 *3 (-1064))))) -(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) + (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) + (-4 *5 (-13 (-372) (-148) (-1054 (-574)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6)) + (|:| -2151 *6))) + (-5 *1 (-1031 *5 *6)) (-5 *3 (-417 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-935) (-935)))) (-5 *1 (-987))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607))))) +(((*1 *2 *1) + (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1116)) + (-4 *2 (-860))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-115)) (-5 *4 (-781)) + (-4 *5 (-13 (-462) (-1054 (-574)))) (-4 *5 (-566)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2971 ((-1141 *5 (-622 $)) $)) + (-15 -2981 ((-1141 *5 (-622 $)) $)) + (-15 -2951 ($ (-1141 *5 (-622 $)))))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-574)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) +(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) +(((*1 *1 *1 *1) (-4 *1 (-983)))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-987))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1284 (-574))) (-5 *3 (-574)) (-5 *1 (-1126)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1284 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574)) + (-5 *1 (-1126))))) +(((*1 *1 *1) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1116))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) + (-4 *5 (-1260 *4)) + (-5 *2 (-2 (|:| -3852 (-417 *5)) (|:| |coeff| (-417 *5)))) + (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-985 *4 *3)) + (-4 *3 (-1260 *4))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1189 *3) (-1189 *3))) + (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3)) + (-5 *1 (-561 *6 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1174)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1115)) - (-4 *4 (-1115)))) + (-12 (-5 *3 (-1175)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1116)) + (-4 *4 (-1116)))) ((*1 *1 *2) - (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1214))))) -(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) - (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) + (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1189 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1189 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) - (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) + (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1260 (-171 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-935)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) + ((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) ((*1 *2 *1) - (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-417 (-965 *6)) (-1181 (-1192) (-965 *6)))) - (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *6))))) - (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-965 *6)))))) + (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1008 *3)) (-5 *1 (-423 *3 *2 *4 *5)) + (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1054 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1008 *3)) + (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4)) + (-14 *6 (-1284 *5)))) ((*1 *2 *3 *4) + (-12 (-5 *4 (-935)) (-4 *5 (-1065)) + (-4 *2 (-13 (-414) (-1054 *5) (-372) (-1219) (-292))) + (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1260 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1189 (-505))) (-5 *3 (-654 (-622 (-505)))) + (-5 *1 (-505)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1189 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1284 *4)) (-5 *3 (-935)) (-4 *4 (-358)) + (-5 *1 (-538 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1260 *4)) + (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1260 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) + ((*1 *1 *1) (-4 *1 (-1076)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872)) + (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1116)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1065)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-872)))) + ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-872)) (-5 *1 (-1189 *3)) (-4 *3 (-1065))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-417 (-965 *5)) (-1181 (-1192) (-965 *5)))) - (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4)))) - (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *5))))) - (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-965 *5))))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1194 (-417 (-574)))) (-5 *2 (-417 (-574))) - (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -3281 *5)))) - (-4 *5 (-1259 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5)) - (-5 *1 (-218 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-2 (|:| -4200 *5) (|:| -3584 (-574))))) - (-5 *4 (-574)) (-4 *5 (-1259 *4)) (-5 *2 (-654 *5)) - (-5 *1 (-706 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *1 *1 *1) (-4 *1 (-555)))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1050)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-762))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) + (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) + (|:| -3798 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-112)) (-5 *1 (-308))))) +(((*1 *1 *1) (-5 *1 (-1079)))) +(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234))))) +(((*1 *1 *1) (-5 *1 (-1079)))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1) (-4 *1 (-1155)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1116))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1051)) (-5 *1 (-761))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) + (-5 *1 (-758))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |k| (-1192)) (|:| |c| (-1305 *3))))) - (-5 *1 (-1305 *3)) (-4 *3 (-1064)))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1307 *3 *4))))) - (-5 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-699 (-1188 *8))) (-4 *5 (-1064)) (-4 *8 (-1064)) - (-4 *6 (-1259 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8)) - (-4 *7 (-1259 *6))))) -(((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-762))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) - (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) - (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-699 *3)) - (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) - (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1233))))) + (|partial| -12 (-5 *2 (-1077 (-1040 *3) (-1189 (-1040 *3)))) + (-5 *1 (-1040 *3)) (-4 *3 (-13 (-858) (-372) (-1038)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1192))) (-5 *1 (-212)) - (-5 *3 (-1192)))) + (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1193))) (-5 *1 (-212)) + (-5 *3 (-1193)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1192))) + (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1193))) (-5 *1 (-274)))) ((*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-654 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) ((*1 *2 *1) - (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) + (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-654 *3))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) - (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) - (-5 *1 (-798))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) - (-4 *2 (-666 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1256 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1192)) - (-4 *5 (-372)) (-5 *1 (-936 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1188 *5)) - (-5 *1 (-936 *4 *5)) (-14 *4 (-1192)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372)) - (-5 *2 (-417 (-965 *6))) (-5 *1 (-1065 *5 *6)) (-14 *5 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-338))))) -(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) - (-5 *2 (-1050)) (-5 *1 (-766))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1193))) + (-4 *2 (-13 (-440 (-171 *5)) (-1018) (-1219))) (-4 *5 (-566)) + (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1018) (-1219)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-417 (-965 *5)) (-1181 (-1192) (-965 *5)))) - (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *5))))) - (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-965 *5))))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-654 (-574))) - (|:| |cols| (-654 (-574))))) - (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-965 *9)))) - (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574)) - (-4 *9 (-13 (-315) (-148))) (-4 *12 (-962 *9 *11 *10)) - (-4 *10 (-13 (-860) (-624 (-1192)))) (-4 *11 (-803)) + (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1193)) (-5 *2 (-112)) + (-5 *1 (-270))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1051)) + (-5 *1 (-764))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) + ((*1 *1 *1) (|partial| -4 *1 (-732)))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227))) + (-5 *1 (-707))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-935)) + (-5 *2 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) + (-5 *1 (-355 *4)) (-4 *4 (-358))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-935)) (-5 *1 (-709)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-372)) (-5 *1 (-994 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1116)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1116)) (-5 *2 (-112)) + (-5 *1 (-1235 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-574)) (|has| *1 (-6 -4460)) (-4 *1 (-1272 *3)) + (-4 *3 (-1234))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3878 *6) (|:| |sol?| (-112))) (-574) + *6)) + (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-5 *2 - (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12)) - (|:| |wcond| (-654 (-965 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1283 (-417 (-965 *9)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *9))))))))) - (-5 *1 (-937 *9 *10 *11 *12))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1117 *3)) (-5 *1 (-918 *3)) (-4 *3 (-377)) - (-4 *3 (-1115))))) + (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) + (-2 (|:| -3852 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) + (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115)))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) + (-12 (-5 *3 (-966 *4)) (-4 *4 (-13 (-315) (-148))) + (-4 *2 (-963 *4 *6 *5)) (-5 *1 (-938 *4 *5 *6 *2)) + (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1172 (-986))) (-5 *1 (-986))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1195)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1288)) - (-5 *1 (-1195)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1288)) - (-5 *1 (-1195))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1233)))) - ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) - (-14 *4 (-574))))) -(((*1 *2 *3) - (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358))))) + (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-52)) (-5 *1 (-903 *4)) + (-4 *4 (-1116))))) +(((*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))) + ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-934)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) + (-12 (-5 *2 (-935)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) ((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) ((*1 *2 *1) - (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) + (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1283 *4)) (-5 *3 (-934)) (-4 *4 (-358)) + (-12 (-5 *2 (-1284 *4)) (-5 *3 (-935)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (-4 *2 (-1064))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1188 (-965 *4))) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) - ((*1 *2) - (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) - (-5 *2 (-1188 (-965 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-654 (-781))) - (-5 *1 (-917 *4))))) + (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (-4 *2 (-1065))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-966 *8)))) + (-5 *5 (-781)) (-5 *6 (-1175)) (-4 *8 (-13 (-315) (-148))) + (-4 *11 (-963 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1193)))) + (-4 *10 (-803)) + (-5 *2 + (-2 + (|:| |rgl| + (-654 + (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11)) + (|:| |wcond| (-654 (-966 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1284 (-417 (-966 *8)))) + (|:| -2391 (-654 (-1284 (-417 (-966 *8)))))))))) + (|:| |rgsz| (-574)))) + (-5 *1 (-938 *8 *9 *10 *11)) (-5 *7 (-574))))) (((*1 *2 *1) - (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1174)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1174)) (-5 *1 (-97))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1135)) (-4 *4 (-358)) - (-5 *1 (-538 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-417 *6)) (-4 *5 (-1237)) (-4 *6 (-1259 *5)) - (-5 *2 (-2 (|:| -2017 (-781)) (|:| -1867 *3) (|:| |radicand| *6))) - (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1259 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) + (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2)) + (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192)) (-5 *2 (-1 (-1188 (-965 *4)) (-965 *4))) - (-5 *1 (-1291 *4)) (-4 *4 (-372))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1115)) - (-4 *3 (-1233))))) + (-12 (-5 *3 (-941)) + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) + (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-417 (-574))) + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) + (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) + (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) + (-5 *1 (-154)) (-5 *3 (-654 (-957 (-227)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) + (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) + (-5 *1 (-154)) (-5 *3 (-654 (-654 (-957 (-227))))))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) - (-4 *5 (-1259 *4)) - (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4095 *5)))) - (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5)) - (-4 *6 (-666 (-417 *5)))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -4279 (-654 (-2 (|:| |irr| *10) (|:| -2265 (-574))))))) - (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315)) - (-4 *10 (-962 *3 *9 *8)) (-4 *9 (-803)) - (-5 *2 - (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3) - (|:| |corrfact| (-654 (-1188 *3))))) - (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1188 *3)))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) - (-5 *1 (-1176 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) - (-14 *4 (-1192)) (-14 *5 *3)))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6)) - (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1274 *5)) (-4 *6 (-1259 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) - (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459))))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284))))) + (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1219) (-1018)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1040 *3)) + (-4 *3 (-13 (-858) (-372) (-1038))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) + (-4 *3 (-1260 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1084 *2 *3)) (-4 *2 (-13 (-858) (-372))) + (-4 *3 (-1260 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1254 *3 *2)) + (-4 *2 (-1260 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3))))) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) + (-5 *2 (-654 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) + (-5 *2 (-654 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5))))) + (-12 (-5 *2 (-1173 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-736)))) + ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-654 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1115))))) + (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1065)) (-5 *2 (-1173 *3))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1051)) (-5 *1 (-758))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1260 *5)) + (-5 *1 (-737 *5 *2)) (-4 *5 (-372))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1175)) + (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4)))) - (-5 *1 (-1203 *4)) (-5 *3 (-654 (-654 *4)))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) - (-5 *2 (-2 (|:| -3766 (-417 *6)) (|:| |coeff| (-417 *6)))) - (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) + (-12 + (-5 *2 + (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) + (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) + (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))) + (-5 *4 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) + (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))) (-5 *4 (-417 (-574))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-417 (-574))) + (-5 *2 (-654 (-2 (|:| -3865 *5) (|:| -3878 *5)))) (-5 *1 (-1036 *3)) + (-4 *3 (-1260 (-574))) (-5 *4 (-2 (|:| -3865 *5) (|:| -3878 *5))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) + (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) + (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574)))) + (-5 *4 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-417 (-574))) + (-5 *2 (-654 (-2 (|:| -3865 *4) (|:| -3878 *4)))) (-5 *1 (-1037 *3)) + (-4 *3 (-1260 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-417 (-574))) + (-5 *2 (-654 (-2 (|:| -3865 *5) (|:| -3878 *5)))) (-5 *1 (-1037 *3)) + (-4 *3 (-1260 *5)) (-5 *4 (-2 (|:| -3865 *5) (|:| -3878 *5)))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1051)) + (-5 *1 (-756))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-919 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4)) + (-5 *1 (-1044 *5)) (-4 *5 (-1065)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1044 *4)) + (-4 *4 (-1065)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-919 (-574)))) (-5 *4 (-574)) + (-5 *2 (-654 (-699 *4))) (-5 *1 (-1044 *5)) (-4 *5 (-1065)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574)))) + (-5 *1 (-1044 *4)) (-4 *4 (-1065))))) +(((*1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1116)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1116))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-5 *2 + (-2 (|:| -3079 *4) (|:| -2693 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) (((*1 *1) (-5 *1 (-338)))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264))))) -(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-315)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) + (-4 *1 (-315))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *6)))) + (-5 *4 (-1042 (-853 (-574)))) (-5 *5 (-1193)) (-5 *7 (-417 (-574))) + (-4 *6 (-1065)) (-5 *2 (-872)) (-5 *1 (-605 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) - (-14 *4 (-654 (-1192))))) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) + (-14 *4 (-654 (-1193))))) ((*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017))))) + (-4 *2 (-13 (-440 *3) (-1018))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) ((*1 *1 *1) (-4 *1 (-292))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) - (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) + (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) ((*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-5 *1 (-637 *3 *4 *5)) - (-14 *5 (-934)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) + (-14 *5 (-935)))) ((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) - (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4)))) + (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574))))) + (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) + (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174))))) -(((*1 *1 *1) (-5 *1 (-1078)))) -(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) +(((*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1065))))) (((*1 *1 *1) (-4 *1 (-555)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1050))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52)) - (-5 *1 (-1020))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-1284)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1284)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1284)))) + (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-1285)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1285)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1285)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-1285)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1285)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1285))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2)) - (-4 *2 (-1274 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) - (-4 *5 (-1259 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2)) - (-4 *2 (-1274 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) - (-5 *1 (-552 *4 *2)) (-4 *2 (-1274 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) - (-5 *1 (-1168 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-112)))) + (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-1286)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1286)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1286))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1189 *1)) (-4 *1 (-1028))))) +(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) + ((*1 *2 *3) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) + (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-963 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) + (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 *7))) + (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3) - (-12 (-4 *1 (-908)) + (-12 (-4 *3 (-462)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-428 *1)) (-4 *1 (-963 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3)) + (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-963 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) + (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 (-417 *7)))) + (-5 *1 (-1188 *4 *5 *6 *7)) (-5 *3 (-1189 (-417 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1238)))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1263 *4 *3)) + (-4 *3 (-13 (-1260 *4) (-566) (-10 -8 (-15 -2887 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) + (-14 *5 (-654 (-1193))) + (-5 *2 + (-654 (-1162 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))) + (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193)))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) + (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1260 *5)) + (-5 *2 + (-654 + (-2 (|:| -2391 (-699 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-699 *6))))) + (-5 *1 (-508 *5 *6 *7)) (-5 *3 - (-2 (|:| |pde| (-654 (-324 (-227)))) - (|:| |constraints| - (-654 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-781)) (|:| |boundaryType| (-574)) - (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) - (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) - (|:| |tol| (-227)))) - (-5 *2 (-1050))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-1196)) (-5 *1 (-1195))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-765))))) + (-2 (|:| -2391 (-699 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-699 *6)))) + (-4 *7 (-1260 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -3374 *4))) (-5 *5 (-781)) + (-4 *4 (-963 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-459 *6 *7 *8 *4))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1116)) (-4 *3 (-912 *5)) (-5 *2 (-1284 *3)) + (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) + (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) - (-5 *2 (-654 *4)) (-5 *1 (-1129 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) -(((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) - (-5 *2 (-1283 *6)) (-5 *1 (-345 *3 *4 *5 *6)) - (-4 *6 (-351 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1017)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *1) (-5 *1 (-447)))) + (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1234))))) (((*1 *2 *1) - (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) - (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4)))))) -(((*1 *1) - (-12 (-4 *1 (-414)) (-2085 (|has| *1 (-6 -4449))) - (-2085 (|has| *1 (-6 -4441))))) - ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-860)))) - ((*1 *1) (-4 *1 (-854))) ((*1 *1 *1 *1) (-4 *1 (-860))) - ((*1 *2 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860))))) + (-12 (-5 *2 (-173)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5)) - (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1274 *5)) - (-5 *1 (-1276 *5 *2))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1115))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) - (-5 *2 (-654 (-654 (-654 (-781)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1284)))) - ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1226 *4 *5 *6 *7)) - (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *3 (-654 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-478))))) +(((*1 *2 *3) + (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) + (-5 *2 (-388)) (-5 *1 (-274)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1116))))) (((*1 *1) (-5 *1 (-188)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1192))) (-4 *6 (-462)) - (-5 *2 - (-2 (|:| |dpolys| (-654 (-253 *5 *6))) - (|:| |coords| (-654 (-574))))) - (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *8 (-1080 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-654 *8)) - (|:| |towers| (-654 (-1042 *5 *6 *7 *8))))) - (-5 *1 (-1042 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *8 (-1080 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-654 *8)) - (|:| |towers| (-654 (-1161 *5 *6 *7 *8))))) - (-5 *1 (-1161 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1107 (-853 *3))) (-4 *3 (-13 (-1218) (-972) (-29 *5))) - (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1107 (-853 *3))) (-5 *5 (-1174)) - (-4 *3 (-13 (-1218) (-972) (-29 *6))) - (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1107 (-853 (-324 *5)))) - (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-417 (-965 *6))) (-5 *4 (-1107 (-853 (-324 *6)))) - (-5 *5 (-1174)) - (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1107 (-853 (-417 (-965 *5))))) (-5 *3 (-417 (-965 *5))) - (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1107 (-853 (-417 (-965 *6))))) (-5 *5 (-1174)) - (-5 *3 (-417 (-965 *6))) - (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1192)) - (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) - (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1218) (-972) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) - (-5 *5 (-388)) (-5 *6 (-1078)) (-5 *2 (-1050)) (-5 *1 (-575)))) - ((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1050)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) - (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) - (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) - (-5 *2 (-1050)) (-5 *1 (-575)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) - (-5 *2 (-1050)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) - (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) - (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) - (-5 *5 (-388)) (-5 *6 (-1078)) (-5 *2 (-1050)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) - (-5 *5 (-1174)) (-5 *2 (-1050)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) - (-5 *5 (-1192)) (-5 *2 (-1050)) (-5 *1 (-575)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) - (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-148)) - (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-860)) - (-4 *3 (-38 (-417 (-574)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1192)) (-5 *1 (-965 *3)) (-4 *3 (-38 (-417 (-574)))) - (-4 *3 (-1064)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-4 *2 (-860)) - (-5 *1 (-1141 *3 *2 *4)) (-4 *4 (-962 *3 (-541 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) - (-5 *1 (-1176 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1189 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1192)) (-5 *1 (-1227 *3)) (-4 *3 (-38 (-417 (-574)))) - (-4 *3 (-1064)))) - ((*1 *1 *1 *2) - (-2832 - (-12 (-5 *2 (-1192)) (-4 *1 (-1243 *3)) (-4 *3 (-1064)) - (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) - (-4 *3 (-38 (-417 (-574)))))) - (-12 (-5 *2 (-1192)) (-4 *1 (-1243 *3)) (-4 *3 (-1064)) - (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) - (|has| *3 (-15 -1578 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) - ((*1 *1 *1 *2) - (-2832 - (-12 (-5 *2 (-1192)) (-4 *1 (-1264 *3)) (-4 *3 (-1064)) - (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) - (-4 *3 (-38 (-417 (-574)))))) - (-12 (-5 *2 (-1192)) (-4 *1 (-1264 *3)) (-4 *3 (-1064)) - (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) - (|has| *3 (-15 -1578 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1268 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-2832 - (-12 (-5 *2 (-1192)) (-4 *1 (-1274 *3)) (-4 *3 (-1064)) - (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) - (-4 *3 (-38 (-417 (-574)))))) - (-12 (-5 *2 (-1192)) (-4 *1 (-1274 *3)) (-4 *3 (-1064)) - (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) - (|has| *3 (-15 -1578 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1116)) (-4 *5 (-1116)) + (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1047))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1234)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) + (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234)) (-14 *4 *2)))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1116))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1115)) (-5 *2 (-654 *1)) - (-4 *1 (-440 *3)))) - ((*1 *2 *1) + (-12 (-4 *3 (-1065)) (-5 *2 (-654 *1)) (-4 *1 (-1150 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1285)))) + ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-1156 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1116) (-34))) (-4 *5 (-13 (-1116) (-34))) + (-5 *1 (-1157 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-654 (-1156 *3 *4))) (-4 *3 (-13 (-1116) (-34))) + (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) - (-4 *3 (-1115)))) + (-4 *3 (-1116))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1193)) + (-4 *4 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4)))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1193))) (-4 *6 (-462)) + (-5 *2 + (-2 (|:| |dpolys| (-654 (-253 *5 *6))) + (|:| |coords| (-654 (-574))))) + (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) +(((*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) - (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *3)) - (-5 *1 (-963 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) - (-15 -2981 (*7 $)))))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1195 (-417 (-574)))) + (-5 *1 (-192))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52)) + (-5 *1 (-1021))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) + (-5 *1 (-766))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(((*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1196))))) -(((*1 *1) (-4 *1 (-982)))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1050)) (-5 *3 (-1192)) (-5 *1 (-274))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-247)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1288)) (-5 *1 (-247))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3878 *6) (|:| |sol?| (-112))) (-574) + *6)) + (-4 *6 (-372)) (-4 *7 (-1260 *6)) + (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) + (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-984 *4 *3)) - (-4 *3 (-1259 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-803)) (-4 *2 (-962 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2)) - (-4 *4 (-462)) (-4 *6 (-860))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) + (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-1215))))) +(((*1 *1) (-4 *1 (-983)))) +(((*1 *2 *1) (-12 (-5 *2 (-987)) (-5 *1 (-919 *3)) (-4 *3 (-1116))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117 *4)) (-4 *4 (-1115)) (-5 *2 (-1 *4)) - (-5 *1 (-1032 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388)))) + (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) + (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-1109 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1062))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1198) (-781)))) (-5 *1 (-341))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-247)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1289)) (-5 *1 (-247))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-972 *3)) (-5 *1 (-1180 *4 *3)) + (-4 *3 (-1260 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) + (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1192))) - (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) - (-5 *2 (-1050)) (-5 *1 (-757))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-992 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-1115)) (-4 *3 (-913 *6)) - (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3)) - (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4458))))))) + (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1260 *5)) + (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1260 *6)) + (-14 *7 (-935))))) (((*1 *2) - (-12 (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) - (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) - (-4 *4 (-1259 *3)) - (-5 *2 - (-2 (|:| -2191 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1259 (-574))) - (-5 *2 - (-2 (|:| -2191 (-699 (-574))) (|:| |basisDen| (-574)) - (|:| |basisInv| (-699 (-574))))) - (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3)))) - ((*1 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 *4)) - (-5 *2 - (-2 (|:| -2191 (-699 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-699 *4)))) - (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 *4)) + (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-566)) + (-5 *2 (-2 (|:| -3082 (-699 *5)) (|:| |vec| (-1284 (-654 (-935)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-935)) (-4 *3 (-666 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 - (-2 (|:| -2191 (-699 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-699 *4)))) - (-5 *1 (-1292 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-194)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) -(((*1 *2) - (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) - (-4 *4 (-1115))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-596 *3)) (-4 *3 (-372))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1064))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *2 (-1115)) (-4 *3 (-1115)) - (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115))))) -(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-681)))) + (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1065)))) ((*1 *2 *1) - (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1116 *3 *4)) (-14 *3 (-934)) - (-14 *4 (-934))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1192)))) - (-4 *5 (-803)) (-5 *1 (-937 *3 *4 *5 *2)) (-4 *2 (-962 *3 *5 *4))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2886 (-792 *3)) (|:| |coef1| (-792 *3)) - (|:| |coef2| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| -2886 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1080 *3 *4 *5))))) -(((*1 *1 *2) - (-12 + (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4)) + (-4 *4 (-1260 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) + (-4 *4 (-736)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) + (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1116)) + (-4 *3 (-1234))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-990))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-2 (|:| -4202 *4) (|:| -3580 (-574))))) + (-4 *4 (-1260 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-957 *5)) (-5 *3 (-781)) (-4 *5 (-1065)) + (-5 *1 (-1181 *4 *5)) (-14 *4 (-935))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1193))) (-4 *6 (-372)) + (-5 *2 (-654 (-302 (-966 *6)))) (-5 *1 (-548 *5 *6 *7)) + (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) + (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1173 (-654 (-935)))) (-5 *1 (-894))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3)) + (-4 *3 (-1116))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 - (-2 - (|:| -3666 - (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) - (|:| -3362 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -1917 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1172 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3362 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-569))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1078)) (-5 *3 (-1174))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1188 (-1188 *4)))) - (-5 *1 (-1231 *4)) (-5 *3 (-1188 (-1188 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-174)) (-4 *2 (-1259 *4)) (-5 *1 (-179 *4 *2 *3)) - (-4 *3 (-734 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-417 (-965 *5)))) (-5 *4 (-1192)) - (-5 *2 (-965 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462)))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-965 *4)))) (-5 *2 (-965 *4)) - (-5 *1 (-300 *4)) (-4 *4 (-462)))) + (-2 (|:| |outval| *4) (|:| |outmult| (-574)) + (|:| |outvect| (-654 (-699 *4)))))) + (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858)))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1051)) (-5 *3 (-1193)) (-5 *1 (-194))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1065)) (-4 *2 (-697 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1260 *4)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) + (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) ((*1 *2 *1) - (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 (-171 (-417 (-574))))) - (-5 *2 (-965 (-171 (-417 (-574))))) (-5 *1 (-774 *4)) - (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1192)) - (-5 *2 (-965 (-171 (-417 (-574))))) (-5 *1 (-774 *5)) - (-4 *5 (-13 (-372) (-858))))) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) + (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781))))) +(((*1 *2 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1116)) (-5 *1 (-981 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860)) + (-4 *4 (-803)) (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1135)))) + ((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1065)) (-5 *2 (-654 *1)) (-4 *1 (-1150 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556)))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-884)) + (-5 *5 (-935)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1288)))) ((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-965 (-417 (-574)))) - (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) + (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *2 (-478)) + (-5 *1 (-1288)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1192)) - (-5 *2 (-965 (-417 (-574)))) (-5 *1 (-789 *5)) - (-4 *5 (-13 (-372) (-858)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *3 *1) + (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-654 (-270))) + (-5 *2 (-478)) (-5 *1 (-1288))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-966 *6)) (-5 *4 (-1193)) + (-5 *5 (-853 *7)) + (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-4 *7 (-13 (-1219) (-29 *6))) (-5 *1 (-226 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1189 *6)) (-5 *4 (-853 *6)) + (-4 *6 (-13 (-1219) (-29 *5))) + (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-226 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-574)) (-14 *4 (-781))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1))) - (-4 *1 (-1086 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-654 - (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) - (|:| |wcond| (-654 (-965 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) - (|:| -2191 (-654 (-1283 (-417 (-965 *5)))))))))) - (-5 *4 (-1174)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-962 *5 *7 *6)) - (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-574)) - (-5 *1 (-937 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) -(((*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313))))) + (-4 *2 (-1081 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3)) + (-4 *3 (-1087 *4 *5 *6 *2))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1283 *1)))) + (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1140 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) + (-5 *1 (-758))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) + (-5 *3 (-654 (-574))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-922)) - (-5 *2 (-1283 *1))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) + (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) + (-5 *3 (-654 (-574)))))) (((*1 *2 *3) - (-12 (-4 *4 (-860)) (-5 *2 (-1204 (-654 *4))) (-5 *1 (-1203 *4)) - (-5 *3 (-654 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-4 *2 (-1115)) - (-5 *1 (-900 *4 *2))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3877 *6) (|:| |sol?| (-112))) (-574) - *6)) - (-4 *6 (-372)) (-4 *7 (-1259 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) - (-2 (|:| -3766 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) - (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835))))) -(((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064))))) + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1064)) - (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-962 *2 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) - (-4 *4 (-174))))) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) +(((*1 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) + (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) + (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-762))))) (((*1 *2 *3) - (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112)) - (-5 *1 (-682 *4))))) + (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-1114 *3)))) + ((*1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116))))) +(((*1 *2) + (-12 (-4 *1 (-358)) + (-5 *2 (-654 (-2 (|:| -4202 (-574)) (|:| -3139 (-574)))))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1260 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-781)) (-5 *3 (-957 *4)) (-4 *1 (-1150 *4)) + (-4 *4 (-1065)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-781)) (-5 *4 (-957 (-227))) (-5 *2 (-1289)) + (-5 *1 (-1286))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-918 *4)) + (-4 *4 (-1116)))) + ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-918 *3)) (-4 *3 (-1116))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) - ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) + (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1260 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) + (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1260 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1065)))) ((*1 *2 *1) - (-12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1053 (-417 (-574))))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) - (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-1113 *3)))) - ((*1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1046))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) + (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1155)))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1082))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-765))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234)) + (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1237)) (-5 *1 (-149 *2 *4 *3)) - (-4 *3 (-1259 (-417 *4)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) - (-4 *2 (-462)))) - ((*1 *1 *1) - (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-1259 *2)) - (-4 *4 (-1259 (-417 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-462)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *3 (-462)))) - ((*1 *1 *1) - (-12 (-4 *1 (-962 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1179 *3 *2)) - (-4 *2 (-1259 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1081))))) -(((*1 *2 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) - ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) - (-4 *3 (-860)) (-5 *2 (-781))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) -(((*1 *2 *3) (-12 (-5 *3 (-965 (-227))) (-5 *2 (-227)) (-5 *1 (-313))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-574)) + (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5)) + (|:| |c2| (-417 *5)) (|:| |deg| (-781)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-1311 *5 *6 *7)) + (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-1311 *5 *6 *7)) + (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-966 *4))) + (-4 *4 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-654 (-1062 *4 *5))) (-5 *1 (-1311 *4 *5 *6)) + (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-957 *4))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-1148 *4 *2)) + (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4459) (-6 -4460)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-860)) (-4 *3 (-1234)) (-5 *1 (-1148 *3 *2)) + (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4459) (-6 -4460))))))) +(((*1 *2 *3) + (-12 (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-803)) (-4 *4 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) - (-5 *1 (-459 *5 *6 *7 *4))))) + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-388)) (-5 *1 (-207))))) (((*1 *2 *3) - (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-308)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-313))))) -(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-803)) (-4 *2 (-963 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2)) + (-4 *4 (-462)) (-4 *6 (-860))))) (((*1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1004)))) + (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1005)))) ((*1 *2 *1) - (-12 (-4 *4 (-1233)) (-5 *2 (-1192)) (-5 *1 (-1072 *3 *4)) - (-4 *3 (-1108 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1107 *3)) (-4 *3 (-1233)))) + (-12 (-4 *4 (-1234)) (-5 *2 (-1193)) (-5 *1 (-1073 *3 *4)) + (-4 *3 (-1109 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1108 *3)) (-4 *3 (-1234)))) ((*1 *2 *1) - (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) - (-5 *2 (-1192)))) - ((*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1279 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) + (-5 *2 (-1193)))) + ((*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1280 *3)) (-14 *3 *2)))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-1229 *3)) + (-4 *3 (-990))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1233)) (-5 *2 (-781)) + (-12 (-14 *4 *2) (-4 *5 (-1234)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)) + (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132)) (-5 *2 (-781)))) ((*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1116)))) ((*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1115)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1116)) (-5 *2 (-781)))) ((*1 *2) - (-12 (-4 *4 (-1115)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4)) + (-12 (-4 *4 (-1116)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) + (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-781)) + (-12 (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-781)) (-5 *1 (-733 *3 *4 *5)) (-4 *3 (-734 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021)))) + ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) - (-4 *3 (-1259 *2))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) + (-4 *3 (-1260 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1193)))) + (-4 *5 (-803)) (-5 *1 (-938 *3 *4 *5 *2)) (-4 *2 (-963 *3 *5 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1065)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-99 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-372)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-460 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372)) + (-5 *2 + (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6)))) + (-5 *1 (-994 *6)) (-5 *3 (-699 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-335 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-526 *3 *4)) + (-14 *4 (-574))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493))))) +(((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1175))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377)) + (-4 *6 (-1065)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1045 *6)) + (-5 *3 (-654 (-699 *6))))) ((*1 *2 *3) - (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-781)) (-5 *3 (-956 *5)) (-4 *5 (-1064)) - (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1180 *4 *5)) - (-14 *4 (-934)) (-4 *5 (-1064)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-956 *5)) (-4 *5 (-1064)) - (-5 *1 (-1180 *4 *5)) (-14 *4 (-934))))) + (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1065)) + (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1045 *4)) + (-5 *3 (-654 (-699 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065)) + (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) + (-5 *3 (-654 (-699 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-935)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065)) + (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) + (-5 *3 (-654 (-699 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) (((*1 *1 *1) - (-12 (-4 *2 (-358)) (-4 *2 (-1064)) (-5 *1 (-722 *2 *3)) - (-4 *3 (-1259 *2))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1064)) - (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1259 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1064)) - (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1259 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1064)) - (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1259 *4))))) -(((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1233)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-59 *3))))) -(((*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23))))) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) + (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6))))) (((*1 *2 *1) + (-12 (-4 *3 (-1234)) (-5 *2 (-654 *1)) (-4 *1 (-1026 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803)) + (-4 *6 (-566)) (-4 *7 (-963 *6 *5 *3)) + (-5 *1 (-472 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1054 (-417 (-574))) (-372) + (-10 -8 (-15 -2951 ($ *7)) (-15 -2971 (*7 $)) + (-15 -2981 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935))))) +(((*1 *2 *2) (-12 (-5 *1 (-975 *2)) (-4 *2 (-555))))) +(((*1 *2 *3) + (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1189 *4)) + (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-654 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-574))))) - (-5 *1 (-428 *3)) (-4 *3 (-566)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1259 *3)) - (-5 *2 (-654 (-1188 *3))) (-5 *1 (-508 *3 *5 *6)) - (-4 *6 (-1259 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *2 (-1288)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-991 *4 *5 *6 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) - (-5 *1 (-674 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1303 *3 *4)) - (-4 *3 (-860)) (-4 *4 (-174))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1233)) - (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-270)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *6 *7 *2)) (-4 *6 (-1064)) - (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1155 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1115) (-34))) (-4 *6 (-13 (-1115) (-34))) - (-5 *2 (-112)) (-5 *1 (-1156 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566)) - (-4 *3 (-1233))))) -(((*1 *2 *3) (-12 (-5 *3 - (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) - (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1035 *4)) - (-4 *4 (-1259 (-574)))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-766))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) -(((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227)) - (-5 *2 (-654 (-956 *4))) (-5 *1 (-1229)) (-5 *3 (-956 *4))))) + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *2 (-1289)) (-5 *1 (-1286)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4251 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-1286)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))) (((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-642))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-934)) (-5 *2 (-1188 *3)) (-5 *1 (-1207 *3)) - (-4 *3 (-372))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1050)) (-5 *1 (-762))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1226 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *3 (-860)) (-4 *6 (-1080 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1101))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) + (-4 *2 (-13 (-860) (-21)))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490))))) +(((*1 *2 *1) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) + (-5 *2 (-2 (|:| |num| (-1284 *4)) (|:| |den| *4)))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1081 *6 *7 *8)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) + (-5 *1 (-1124 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) + (-5 *5 (-112)) (-4 *8 (-1081 *6 *7 *4)) (-4 *9 (-1087 *6 *7 *4 *8)) + (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) + (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4068 *9)))) + (-5 *1 (-1124 *6 *7 *4 *8 *9))))) (((*1 *2 *1) (-12 (-5 *2 @@ -16714,15 +16620,16 @@ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-338))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-796))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-1064)) - (-5 *2 (-2 (|:| -4415 *1) (|:| -1484 *1))) (-4 *1 (-1259 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-839))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1299 (-1193) *3)) (-4 *3 (-1065)) (-5 *1 (-1306 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1299 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) + (-5 *1 (-1308 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-1163 (-1175))) (-5 *1 (-401))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1053 (-574))) (-4 *4 (-566)) + (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1054 (-574))) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)) (-4 *2 (-440 *4)))) ((*1 *1 *1 *1) (-5 *1 (-135))) ((*1 *2 *2 *2) @@ -16731,1587 +16638,1679 @@ ((*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-574)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) - (-4 *5 (-1274 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1245 *4 *5)))) + (-4 *5 (-1275 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1246 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) - (-4 *5 (-1243 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1266 *4 *5)) - (-4 *6 (-998 *5)))) + (-4 *5 (-1244 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1267 *4 *5)) + (-4 *6 (-999 *5)))) ((*1 *1 *1 *1) (-4 *1 (-292))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1115)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1116)))) ((*1 *1 *1 *1) (-5 *1 (-388))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1115)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1116)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1115)) - (-4 *3 (-1127)))) + (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1116)) + (-4 *3 (-1128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-483)) (-5 *2 (-574)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1283 *4)) (-5 *3 (-574)) (-4 *4 (-358)) + (-12 (-5 *2 (-1284 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-546)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-546)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1115)) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1116)) (-5 *1 (-692 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-372)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1064)) + (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1065)) (-5 *1 (-700 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *3 (-1064)) (-5 *1 (-724 *3 *4)) + (-12 (-5 *2 (-574)) (-4 *3 (-1065)) (-5 *1 (-724 *3 *4)) (-4 *4 (-658 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1064)) + (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1065)) (-5 *1 (-724 *4 *5)) (-4 *5 (-658 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-781)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1064)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1065)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1064)))) + (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1065)))) ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-417 (-574))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1127)) (-5 *2 (-934)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-417 (-574))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1128)) (-5 *2 (-935)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-1138 *3 *4 *5 *6)) (-4 *4 (-1064)) + (-12 (-5 *2 (-574)) (-4 *1 (-1139 *3 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-372)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1177 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1179 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) + (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))) (((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) ((*1 *1) (-5 *1 (-588)))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-592))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| -4200 *4) (|:| -3584 (-574))))) - (-4 *4 (-1259 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-428 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-1064)) - (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-909 *2 *4)) - (-4 *2 (-1259 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1259 *5)) - (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1259 *6)) - (-14 *7 (-934))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1260 *6)) + (-4 *6 (-13 (-372) (-148) (-1054 *4))) (-5 *4 (-574)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -4094 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1031 *6 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1) (-4 *1 (-1155)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1115) (-1053 *5))) - (-4 *5 (-897 *4)) (-4 *4 (-1115)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-944 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-1064)) (-5 *2 (-574)) - (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1259 *5)) - (-4 *6 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) - (-4 *3 (-1259 *4)) - (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292)))))) + (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227)) + (-5 *2 (-654 (-957 *4))) (-5 *1 (-1230)) (-5 *3 (-957 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) + (-14 *4 *2)))) (((*1 *2 *1) - (-12 (-4 *1 (-1118 *3 *4 *5 *6 *2)) (-4 *3 (-1115)) (-4 *4 (-1115)) - (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1080 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1086 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) - (-4 *1 (-1086 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1218)))) - ((*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1115))))) -(((*1 *1) (-5 *1 (-145))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-270))))) + (-12 (-4 *1 (-1119 *3 *4 *5 *6 *2)) (-4 *3 (-1116)) (-4 *4 (-1116)) + (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) + (-5 *2 (-1051)) (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) (((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-781)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1233)) - (-4 *3 (-1115)))) + (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1234)) + (-4 *3 (-1116)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-382 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) + (-12 (-4 *1 (-382 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-574)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1233)) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1234)) (-5 *2 (-574)))) - ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-539)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-574)) (-5 *3 (-142)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-574))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1259 (-171 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112))))) + ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-539)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-574)) (-5 *3 (-142)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-574))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1259 (-574))) (-5 *1 (-496 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) - (-5 *2 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) - (-5 *1 (-355 *4))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-622 *3)) (-5 *5 (-1188 *3)) - (-4 *3 (-13 (-440 *6) (-27) (-1218))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1188 *3))) - (-4 *3 (-13 (-440 *6) (-27) (-1218))) - (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) - (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4)) - (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1064))))) -(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1174)) (-5 *1 (-796))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4)))) - (-5 *1 (-1203 *6)) (-5 *5 (-654 *4))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-654 *6)) (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) - (-4 *3 (-566))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1018)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) - (|:| |expense| (-388)) (|:| |accuracy| (-388)) - (|:| |intermediateResults| (-388)))) - (-5 *1 (-813))))) + (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) + (-5 *2 (-654 (-654 (-654 (-957 *3)))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) - (-14 *5 (-654 (-1192))) - (-5 *2 - (-654 (-2 (|:| -3048 (-1188 *4)) (|:| -4346 (-654 (-965 *4)))))) - (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 - (-654 (-2 (|:| -3048 (-1188 *5)) (|:| -4346 (-654 (-965 *5)))))) - (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) - (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 - (-654 (-2 (|:| -3048 (-1188 *5)) (|:| -4346 (-654 (-965 *5)))))) - (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) - (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) - (-5 *2 - (-654 (-2 (|:| -3048 (-1188 *5)) (|:| -4346 (-654 (-965 *5)))))) - (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) - (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1037))) + (-12 (-5 *3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) + (-5 *2 (-417 (-574))) (-5 *1 (-1036 *4)) (-4 *4 (-1260 (-574)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) + (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1155)))) +(((*1 *2) + (-12 (-4 *1 (-358)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-699 *2)) (-5 *4 (-574)) + (-4 *2 (-13 (-315) (-10 -8 (-15 -1610 ((-428 $) $))))) + (-4 *5 (-1260 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) + (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -1880 *1))) + (-4 *1 (-1081 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -1880 *1))) + (-4 *1 (-1081 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1284 *4)) (-5 *3 (-574)) (-4 *4 (-358)) + (-5 *1 (-538 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-566)) (-4 *3 (-1065)) + (-5 *2 (-2 (|:| -3901 *1) (|:| -1880 *1))) (-4 *1 (-862 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1065)) + (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-863 *5 *3)) + (-4 *3 (-862 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) + (-4 *8 (-860)) (-5 *1 (-993 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) + (-5 *1 (-758))))) +(((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860))) + (-14 *3 (-654 (-1193)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1051)) (-5 *1 (-762))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1087 *6 *7 *8 *9)) + (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *9 (-1081 *6 *7 *8)) (-5 *2 - (-654 (-2 (|:| -3048 (-1188 *4)) (|:| -4346 (-654 (-965 *4)))))) - (-5 *1 (-1310 *4 *5 *6)) (-5 *3 (-654 (-965 *4))) - (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-832))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) - (-5 *1 (-761))))) -(((*1 *1 *2) - (-12 + (-654 + (-2 (|:| -4094 (-654 *9)) (|:| -4068 *10) (|:| |ineq| (-654 *9))))) + (-5 *1 (-1004 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1087 *6 *7 *8 *9)) + (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *9 (-1081 *6 *7 *8)) (-5 *2 - (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3)) - (|:| |genIdeal| (-514 *3 *4 *5 *6)))) - (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)) - (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) -(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341))))) + (-654 + (-2 (|:| -4094 (-654 *9)) (|:| -4068 *10) (|:| |ineq| (-654 *9))))) + (-5 *1 (-1123 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1128)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1128)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) + (-4 *3 (-1260 *4)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1192)) - (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) - (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) - ((*1 *1 *1) (-5 *1 (-388))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) - (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) - (-5 *2 (-2 (|:| -1389 (-654 *6)) (|:| -1684 (-654 *6))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) + (-4 *7 (-1008 *4)) (-4 *2 (-697 *7 *8 *9)) + (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) + (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)) (-4 *2 (-315)))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1) (-4 *1 (-1154)))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-566)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5))))) -(((*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1115))))) + (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) + (-4 *2 (-697 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *4 (-1065)) + (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-993 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| -3901 *3) (|:| -1880 *3))) (-5 *1 (-1255 *4 *3)) + (-4 *3 (-1260 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1277 *3 *2)) + (-4 *2 (-1275 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-1259 *4)) (-4 *4 (-1064)) - (-5 *2 (-1283 *4))))) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1234)) + (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *6 *7 *2)) (-4 *6 (-1065)) + (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566)) + (-4 *3 (-1065))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1051)) (-5 *1 (-761))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1065)) (-5 *1 (-724 *2 *4)) + (-4 *4 (-658 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1065))))) +(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-388)) (-5 *1 (-207))))) + (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1219) (-1018)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1077 *4 *3)) + (-4 *3 (-1260 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2887 (-792 *3)) (|:| |coef1| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -2887 *1) (|:| |coef1| *1))) + (-4 *1 (-1081 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) - (-14 *4 *2)))) -(((*1 *1) (-4 *1 (-358)))) -(((*1 *2 *1) - (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) - (-4 *3 (-1115))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) - (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) - (-4 *2 (-697 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) + (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3)) + (-4 *3 (-13 (-372) (-148) (-1054 (-574)))) (-5 *1 (-578 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-993 *3 *4 *5 *6))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-872))) (-5 *1 (-115)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) ((*1 *2 *1) - (-12 (-5 *2 (-1288)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1289)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) - (-10 -8 (-15 -2208 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) - (-15 -3060 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-404)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-404)))) - ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-512)))) - ((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-720)))) - ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1213)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1213))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1307 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-829 *3)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1064)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) - (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-962 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) - (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) - (-5 *1 (-1176 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) - (-14 *4 (-1192)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) - (-4 *3 (-1259 *2))))) + (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $)) + (-15 -3055 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-404)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-404)))) + ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-512)))) + ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-720)))) + ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1214)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1214))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-654 (-1193))) + (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1039)) (-5 *5 (-388)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) + (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-654 (-1040 (-417 *4))))) + (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) + (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) + (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) + (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-966 *4))) + (-4 *4 (-13 (-858) (-315) (-148) (-1038))) + (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6)) + (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) + ((*1 *2 *1) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7)) - (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) - (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2191 (-654 *4)))) - (-5 *1 (-816 *5 *6 *7 *4))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-941))))) +(((*1 *2 *3) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) + (-5 *1 (-122 *3)) (-4 *3 (-860)))) + ((*1 *2 *2) + (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1219))) + (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-593 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-596 (-417 (-966 *3)))) + (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-599 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372)) + (-5 *2 (-2 (|:| -1367 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1284 *5)) (-4 *5 (-372)) (-4 *5 (-1065)) + (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) + (-5 *3 (-654 (-699 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1284 (-1284 *5))) (-4 *5 (-372)) (-4 *5 (-1065)) + (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) + (-5 *3 (-654 (-699 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1160)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1160))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) + (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4)))))) +(((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))) + ((*1 *2 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574)))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-935)) (-5 *1 (-1117 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-478)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) + (-12 (-5 *3 (-478)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))) ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1064)) (-14 *3 (-654 (-1192))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1065)) (-14 *3 (-654 (-1193))))) ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) - (-14 *3 (-654 (-1192))))) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860))) + (-14 *3 (-654 (-1193))))) ((*1 *1 *1) - (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1115)))) + (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1116)))) ((*1 *1 *1) - (-12 (-14 *2 (-654 (-1192))) (-4 *3 (-174)) - (-4 *5 (-244 (-2876 *2) (-781))) + (-12 (-14 *2 (-654 (-1193))) (-4 *3 (-174)) + (-4 *5 (-244 (-2877 *2) (-781))) (-14 *6 - (-1 (-112) (-2 (|:| -2590 *4) (|:| -2017 *5)) - (-2 (|:| -2590 *4) (|:| -2017 *5)))) + (-1 (-112) (-2 (|:| -2591 *4) (|:| -3139 *5)) + (-2 (|:| -2591 *4) (|:| -3139 *5)))) (-5 *1 (-471 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860)) - (-4 *7 (-962 *3 *5 (-874 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-860)))) + (-4 *7 (-963 *3 *5 (-874 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-860)))) ((*1 *1 *1) - (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1064)))) + (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1065)))) ((*1 *1 *1) - (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1064)) + (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1065)) (-4 *3 (-736)))) - ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) + ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) ((*1 *1 *1) - (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1080 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4064 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-699 *2)) (-5 *4 (-574)) - (-4 *2 (-13 (-315) (-10 -8 (-15 -3954 ((-428 $) $))))) - (-4 *5 (-1259 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1188 *1)) (-5 *3 (-1192)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-358)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -4279 (-654 (-2 (|:| |irr| *3) (|:| -2265 (-574))))))) - (-5 *1 (-218 *5 *3)) (-4 *3 (-1259 *5))))) + (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3)) + (-5 *1 (-1254 *4 *3)) (-4 *3 (-1260 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-928 *3)) (-4 *3 (-315))))) +(((*1 *1 *2) + (-12 (-5 *2 (-935)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1065)) + (-4 *4 (-1234)))) + ((*1 *1 *2) + (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) + (-4 *5 (-244 (-2877 *3) (-781))) + (-14 *6 + (-1 (-112) (-2 (|:| -2591 *2) (|:| -3139 *5)) + (-2 (|:| -2591 *2) (|:| -3139 *5)))) + (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) + (-4 *7 (-963 *4 *5 (-874 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) + (-5 *1 (-757))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055))))) + (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056))))) +(((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-654 (-654 (-957 (-227))))))) + ((*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-654 (-654 (-957 (-227)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-934))) (-5 *2 (-654 (-699 (-574)))) - (-5 *1 (-1125))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) - (-5 *2 (-1050)) (-5 *1 (-759))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1284)))) - ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1285))))) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) (((*1 *2 *1) - (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-962 *3 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1276 *3 *2)) - (-4 *2 (-1274 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1188 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1188 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1259 (-171 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-934)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) - ((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) + (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234)) + (-5 *2 (-654 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) + ((*1 *1 *1) (-4 *1 (-310))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) + ((*1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1285)))) + ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-963 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1065)) + (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) + (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4461 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) + (-4 *2 (-1065)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1260 *2)) + (-4 *4 (-697 *2 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372)) + (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) + (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))) + ((*1 *2 *3) + (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) + (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1007 *3)) (-5 *1 (-423 *3 *2 *4 *5)) - (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1053 *2))))) + (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *1 (-270)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372)) + (-5 *2 (-699 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1284 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-1284 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1260 *4)) (-5 *2 (-1284 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1007 *3)) - (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4)) - (-14 *6 (-1283 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-934)) (-4 *5 (-1064)) - (-4 *2 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))) - (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1259 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1188 (-505))) (-5 *3 (-654 (-622 (-505)))) - (-5 *1 (-505)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1188 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1283 *4)) (-5 *3 (-934)) (-4 *4 (-358)) - (-5 *1 (-538 *4)))) + (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) + (-5 *2 (-1284 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1259 *4)) - (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1259 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) - ((*1 *1 *1) (-4 *1 (-1075)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1119)) (-5 *1 (-287))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) - (-5 *2 (-2 (|:| -1867 (-417 *5)) (|:| |poly| *3))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5)))))) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372)) + (-5 *2 (-1284 *5)) (-5 *1 (-1102 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) + (-4 *4 (-1065))))) +(((*1 *1) (-5 *1 (-833)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1115))))) + (-12 (|has| *6 (-6 -4460)) (-4 *4 (-372)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3)) + (-4 *3 (-697 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4460)) (-4 *4 (-566)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-4 *7 (-1008 *4)) (-4 *8 (-382 *7)) + (-4 *9 (-382 *7)) (-5 *2 (-654 *6)) + (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6)) + (-4 *10 (-697 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3)) + (-4 *3 (-697 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) + (-5 *2 (-654 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) + (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1188 *7)) (-5 *3 (-574)) (-4 *7 (-962 *6 *4 *5)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) - (-5 *1 (-329 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1233)) (-5 *1 (-184 *3 *2)) - (-4 *2 (-684 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-1284 (-699 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1284 (-699 *4))) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) + (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 (-699 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-1193))) (-4 *5 (-372)) + (-5 *2 (-1284 (-699 (-417 (-966 *5))))) (-5 *1 (-1102 *5)) + (-5 *4 (-699 (-417 (-966 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-1193))) (-4 *5 (-372)) + (-5 *2 (-1284 (-699 (-966 *5)))) (-5 *1 (-1102 *5)) + (-5 *4 (-699 (-966 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) + (-5 *2 (-1284 (-699 *4))) (-5 *1 (-1102 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))) ((*1 *2 *1) - (-12 (-4 *2 (-1064)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1192))))) + (-12 (-4 *2 (-1065)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1193))))) ((*1 *2 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) + (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) ((*1 *2 *1) - (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1064)))) + (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1065)))) ((*1 *2 *1) - (-12 (-14 *3 (-654 (-1192))) (-4 *5 (-244 (-2876 *3) (-781))) + (-12 (-14 *3 (-654 (-1193))) (-4 *5 (-244 (-2877 *3) (-781))) (-14 *6 - (-1 (-112) (-2 (|:| -2590 *4) (|:| -2017 *5)) - (-2 (|:| -2590 *4) (|:| -2017 *5)))) + (-1 (-112) (-2 (|:| -2591 *4) (|:| -3139 *5)) + (-2 (|:| -2591 *4) (|:| -3139 *5)))) (-4 *2 (-174)) (-5 *1 (-471 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860)) - (-4 *7 (-962 *2 *5 (-874 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1115)))) + (-4 *7 (-963 *2 *5 (-874 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1116)))) ((*1 *2 *1) - (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1064)))) + (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1065)))) ((*1 *2 *1) - (-12 (-4 *2 (-1064)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) + (-12 (-4 *2 (-1065)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *3 (-736)))) - ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) + ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)))) ((*1 *2 *1) - (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860)) - (-4 *2 (-1064)))) + (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860)) + (-4 *2 (-1065)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) - ((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) -(((*1 *2 *3) - (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574)))) - (-5 *1 (-313))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-962 *4 *5 *6)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3509 (-574)) (|:| -4279 (-654 *3)))) - (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-992 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1080 *4 *5 *6)) - (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-992 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3)) + (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) + (-5 *2 + (-2 (|:| -2818 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -1367 (-417 *6)) + (|:| |special| (-417 *6)))) + (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-909 *3 *4)) + (-4 *3 (-1260 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372)) + (-5 *2 (-2 (|:| -3865 *3) (|:| -3878 *3))) (-5 *1 (-909 *3 *5)) + (-4 *3 (-1260 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) + (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) + (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) + (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) + (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1161 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1081 *5 *6 *7)) + (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) + (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1259 *4)) (-5 *1 (-820 *4 *2)) - (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))))) + (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-193)) (-5 *3 (-574)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1259 *4)) - (-5 *1 (-820 *4 *2)) - (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574)))))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-769))))) + (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-1285)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-1286))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860)) - (-4 *8 (-962 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1283 (-417 *8)) "failed")) - (|:| -2191 (-654 (-1283 (-417 *8)))))) - (-5 *1 (-679 *5 *6 *7 *8))))) + (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4)) + (-4 *4 (-13 (-372) (-858)))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) + (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))) ((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1115)))) + (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1116)))) ((*1 *2 *1) - (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) - (-4 *6 (-244 (-2876 *3) (-781))) + (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) + (-4 *6 (-244 (-2877 *3) (-781))) (-14 *7 - (-1 (-112) (-2 (|:| -2590 *5) (|:| -2017 *6)) - (-2 (|:| -2590 *5) (|:| -2017 *6)))) + (-1 (-112) (-2 (|:| -2591 *5) (|:| -3139 *6)) + (-2 (|:| -2591 *5) (|:| -3139 *6)))) (-5 *2 (-723 *5 *6 *7)) (-5 *1 (-471 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-860)) (-4 *8 (-962 *4 *6 (-874 *3))))) + (-4 *5 (-860)) (-4 *8 (-963 *4 *6 (-874 *3))))) ((*1 *2 *1) (-12 (-4 *2 (-736)) (-4 *2 (-860)) (-5 *1 (-745 *3 *2)) - (-4 *3 (-1064)))) + (-4 *3 (-1065)))) ((*1 *1 *1) - (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-802)) + (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *4 (-860))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) - (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) - (-5 *4 (-654 (-934))) (-5 *5 (-654 (-270))) (-5 *1 (-478)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) - (-5 *4 (-654 (-934))) (-5 *1 (-478)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478)))) - ((*1 *1 *1) (-5 *1 (-478)))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))) +(((*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1212))))) +(((*1 *1 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315))))) (((*1 *2 *3) - (-12 (-5 *3 (-574)) (|has| *1 (-6 -4449)) (-4 *1 (-414)) - (-5 *2 (-934))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) - (-4 *8 (-962 *7 *5 *6)) - (-5 *2 (-2 (|:| -2017 (-781)) (|:| -1867 *3) (|:| |radicand| *3))) - (-5 *1 (-966 *5 *6 *7 *8 *3)) (-5 *4 (-781)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2950 ($ *8)) (-15 -2970 (*8 $)) (-15 -2981 (*8 $)))))))) + (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1065)) + (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-963 *2 *4 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 (-918 *3))) (-4 *3 (-1115)) (-5 *1 (-917 *3))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1050)) - (-5 *1 (-756))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) - ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115))))) -(((*1 *1 *1) (|partial| -4 *1 (-1167)))) + (-12 + (-5 *2 + (-654 + (-2 + (|:| -3667 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1284 (-324 (-227)))) + (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) + (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -1916 + (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) + (|:| |expense| (-388)) (|:| |accuracy| (-388)) + (|:| |intermediateResults| (-388))))))) + (-5 *1 (-813))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1155)))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *2 (-654 (-227))) - (-5 *1 (-478))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) + (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1219))) + (-5 *1 (-593 *4 *2)) + (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-596 (-417 (-966 *4)))) + (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-324 *4)) + (-5 *1 (-599 *4))))) +(((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))) + ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2887 *3))) + (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-1223 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1115)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6))) - (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1115)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4)) - (-4 *3 (-1053 (-1192))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1115)) (-5 *2 (-654 (-302 (-965 *3)))) - (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1064)) - (-2085 (-4 *3 (-1053 (-1192)))) (-4 *3 (-897 *5)) - (-4 *4 (-624 (-903 *5))))) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3))))) +(((*1 *2 *1) + (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) + (-14 *6 + (-1 (-112) (-2 (|:| -2591 *5) (|:| -3139 *2)) + (-2 (|:| -2591 *5) (|:| -3139 *2)))) + (-4 *2 (-244 (-2877 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-860)) (-4 *7 (-963 *4 *2 (-874 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) + (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-566) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) + ((*1 *1 *1) (-5 *1 (-388))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1115)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4)) - (-2085 (-4 *3 (-1053 (-1192)))) (-2085 (-4 *3 (-1064))) - (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) - (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-1283 *2)) (-4 *5 (-315)) - (-4 *6 (-1007 *5)) (-4 *2 (-13 (-419 *6 *7) (-1053 *6))) - (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1259 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (|has| *1 (-6 -4459)) (-4 *1 (-1271 *3)) - (-4 *3 (-1233))))) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1081 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) + (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) + (-4 *2 (-697 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) + (-5 *2 (-1051)) (-5 *1 (-755))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *9)) (-4 *9 (-1064)) (-4 *5 (-860)) (-4 *6 (-803)) - (-4 *8 (-1064)) (-4 *2 (-962 *9 *7 *5)) + (-12 (-5 *3 (-654 *9)) (-4 *9 (-1065)) (-4 *5 (-860)) (-4 *6 (-803)) + (-4 *8 (-1065)) (-4 *2 (-963 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) - (-4 *4 (-962 *8 *6 *5))))) + (-4 *4 (-963 *8 *6 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) - (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) - (-5 *1 (-798)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) - (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) - (-5 *1 (-798))))) -(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-455 *3)) (-4 *3 (-1064))))) + ((*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1051)) (-5 *1 (-765))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-224 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-261 *3)))) + ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-957 (-227)))) (-5 *1 (-1285))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) + (-5 *1 (-340))))) (((*1 *2 *2) - (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1192))) - (-4 *4 (-462)) (-5 *1 (-641 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218)))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1219)))))) (((*1 *2 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) - ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-886)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-886)))) ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-886)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-574)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-516)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-602)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-488)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-636)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1105)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1088)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-985)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1051)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-319)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-681)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1166)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-535)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1294)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1081)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-527)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-691)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1130)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-616)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1293)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-686)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-220)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-534)))) - ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1197)))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1197)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1197)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1197))))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-574)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-516)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-602)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-488)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1183)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-636)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1106)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1089)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-986)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1052)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-319)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-681)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1167)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-535)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1295)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1082)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-527)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-691)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1131)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-616)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1294)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-686)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-534)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1198)))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1198)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1198)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1198))))) +(((*1 *2 *3) + (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) - (-4 *7 (-1259 (-417 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -2974 *3))) - (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1051)) + (-5 *1 (-759))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 - (-2 (|:| |answer| (-417 *6)) (|:| -2974 (-417 *6)) - (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) - (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6))))) -(((*1 *1) (-5 *1 (-516)))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1259 *4)) (-4 *4 (-1237)) - (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1259 (-417 *3)))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1288)) - (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *3)) - (-4 *3 (-1259 (-417 *4)))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-145)) (-5 *2 (-112))))) + (-654 + (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574)) + (|:| |outvect| (-654 (-699 (-171 *4))))))) + (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) + (-5 *1 (-178 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-993 *3 *4 *5 *6))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-145)) (-5 *2 (-112))))) (((*1 *2 *1) (-12 (-5 *2 (-654 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174))))) (((*1 *1 *1) (-4 *1 (-249))) ((*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-2832 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1233))) - (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1233))))) + (-2833 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1234))) + (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1234))))) ((*1 *1 *1) (-4 *1 (-483))) - ((*1 *2 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-372))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-748))))) -(((*1 *1 *1) (-4 *1 (-879 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) - (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4460 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) - (-4 *2 (-1064)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1259 *2)) - (-4 *4 (-697 *2 *5 *6))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) - (-4 *3 (-13 (-27) (-1218) (-440 *6) (-10 -8 (-15 -2950 ($ *7))))) - (-4 *7 (-858)) - (-4 *8 - (-13 (-1261 *3 *7) (-372) (-1218) - (-10 -8 (-15 -3878 ($ $)) (-15 -1578 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) - (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1174)) (-4 *9 (-998 *8)) - (-14 *10 (-1192))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1064)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-99 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-748))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) + (-4 *3 (-13 (-1116) (-34)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 *5))) + (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1284 *5)) + (-5 *1 (-648 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 *5))) + (-2084 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1284 (-417 *5))) + (-5 *1 (-648 *5 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1193)) + (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) + (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1219) (-973) (-29 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-992 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1233))))) -((-1317 . 732419) (-1318 . 732259) (-1319 . 732027) (-1320 . 731545) - (-1321 . 731459) (-1322 . 731276) (-1323 . 731120) (-1324 . 731054) - (-1325 . 731020) (-1326 . 730951) (-1327 . 730215) (-1328 . 730099) - (-1329 . 730025) (-1330 . 729910) (-1331 . 729771) (-1332 . 729689) - (-1333 . 729555) (-1334 . 729474) (-1335 . 729446) (-1336 . 728995) - (-1337 . 726934) (-1338 . 726865) (-1339 . 726750) (-1340 . 726681) - (-1341 . 726319) (-1342 . 726156) (-1343 . 725755) (-1344 . 725653) - (-1345 . 725468) (-1346 . 725332) (-1347 . 724622) (-1348 . 724489) - (-1349 . 724403) (-1350 . 724351) (-1351 . 724277) (-1352 . 724177) - (-1353 . 724135) (-1354 . 724007) (-1355 . 723849) (-1356 . 723797) - (-1357 . 723741) (-1358 . 723561) (-1359 . 723478) (-1360 . 723147) - (-1361 . 723053) (-1362 . 722668) (-1363 . 722486) (-1364 . 722437) - (-1365 . 721793) (-1366 . 721715) (-1367 . 721437) (-1368 . 721387) - (-1369 . 721069) (-1370 . 720983) (-1371 . 720925) (-1372 . 720589) - (-1373 . 720467) (-1374 . 720302) (-1375 . 720209) (-1376 . 720035) - (-1377 . 718863) (-1378 . 718799) (-1379 . 718704) (-1380 . 718655) - (-1381 . 718491) (-1382 . 718352) (-1383 . 718269) (-1384 . 718103) - (-1385 . 718040) (-1386 . 716254) (-1387 . 716155) (-1388 . 716040) - (-1389 . 715881) (-1390 . 715636) (-1391 . 715548) (-1392 . 715496) - (-1393 . 715468) (-1394 . 715374) (-1395 . 715296) (-1396 . 715097) - (-1397 . 714795) (-1398 . 714758) (-1399 . 714567) (-1400 . 714349) - (-1401 . 713212) (-1402 . 713120) (-1403 . 712827) (-1404 . 712731) - (-1405 . 712513) (-1406 . 712485) (-1407 . 712351) (-1408 . 712222) - (-1409 . 712126) (-1410 . 712073) (-1411 . 711802) (-1412 . 711311) - (-1413 . 710557) (-1414 . 710505) (-1415 . 710349) (-1416 . 710246) - (-1417 . 710218) (-1418 . 710045) (-1419 . 709753) (-1420 . 709654) - (-1421 . 709586) (-1422 . 709405) (-1423 . 709190) (-1424 . 709137) - (-1425 . 709065) (-1426 . 708880) (-1427 . 708347) (-1428 . 708295) - (-1429 . 708214) (-1430 . 708076) (-1431 . 707840) (-1432 . 707736) - (-1433 . 707486) (-1434 . 707433) (-1435 . 706131) (-1436 . 705652) - (-1437 . 705509) (-1438 . 705345) (-1439 . 705147) (-1440 . 705079) - (-1441 . 704943) (-1442 . 704810) (-1443 . 704681) (-1444 . 704203) - (-1445 . 704058) (-1446 . 703975) (-1447 . 703886) (-1448 . 703834) - (-1449 . 703732) (-1450 . 703680) (-1451 . 703159) (-1452 . 702991) - (-1453 . 702795) (-1454 . 701835) (-1455 . 701697) (-1456 . 701365) - (-1457 . 701198) (-1458 . 701033) (-1459 . 700933) (-1460 . 700668) - (-1461 . 700599) (-1462 . 700418) (** . 697424) (-1464 . 697352) - (-1465 . 697281) (-1466 . 697158) (-1467 . 697078) (-1468 . 696563) - (-1469 . 696351) (-1470 . 696190) (-1471 . 696138) (-1472 . 696019) - (-1473 . 695921) (-1474 . 695869) (-1475 . 695727) (-1476 . 695670) - (-1477 . 695598) (-1478 . 695488) (-1479 . 695308) (-1480 . 695207) - (-1481 . 695030) (-1482 . 694778) (-1483 . 694554) (-1484 . 694346) - (-1485 . 694192) (-1486 . 693857) (-1487 . 693805) (-1488 . 693661) - (-1489 . 693609) (-1490 . 693549) (-1491 . 693481) (-1492 . 693020) - (-1493 . 692922) (-1494 . 692555) (-1495 . 692418) (-1496 . 691482) - (-1497 . 690963) (-1498 . 690892) (-1499 . 690641) (-1500 . 690385) - (-1501 . 690311) (-1502 . 690245) (-1503 . 689782) (-1504 . 689710) - (-1505 . 689630) (-1506 . 689549) (-1507 . 689420) (-1508 . 689301) - (-1509 . 688706) (-1510 . 688591) (-1511 . 688505) (-1512 . 688419) - (-1513 . 688352) (-1514 . 688228) (-1515 . 688086) (-1516 . 687957) - (-1517 . 687812) (-1518 . 687703) (-1519 . 687052) (-1520 . 686959) - (-1521 . 686864) (-1522 . 686745) (-1523 . 686606) (-1524 . 686549) - (-1525 . 686497) (-1526 . 686372) (-1527 . 686320) (-1528 . 685970) - (-1529 . 685856) (-1530 . 685751) (-1531 . 685656) (-1532 . 685600) - (-1533 . 685409) (-1534 . 685335) (-1535 . 685254) (-1536 . 684806) - (-1537 . 684645) (-1538 . 684547) (-1539 . 683462) (-1540 . 683340) - (-1541 . 683267) (-1542 . 683212) (-1543 . 683130) (-1544 . 681684) - (-1545 . 681331) (-1546 . 681174) (-1547 . 681013) (-1548 . 680486) - (-1549 . 680419) (-1550 . 680281) (-1551 . 680190) (-1552 . 680071) - (-1553 . 679977) (-1554 . 679842) (-1555 . 678843) (-1556 . 678651) - (-1557 . 678488) (-1558 . 678362) (-1559 . 678219) (-1560 . 678000) - (-1561 . 677746) (-1562 . 677647) (-1563 . 677424) (-1564 . 677317) - (-1565 . 677204) (-1566 . 676923) (-1567 . 676778) (-1568 . 676683) - (-1569 . 676611) (-1570 . 676525) (-1571 . 676497) (-1572 . 676375) - (-1573 . 676295) (-1574 . 676221) (-1575 . 676111) (-1576 . 675884) - (-1577 . 675276) (-1578 . 668333) (-1579 . 667823) (-1580 . 667573) - (-1581 . 667485) (-1582 . 667274) (-9 . 667246) (-1584 . 667088) - (-1585 . 666862) (-1586 . 666803) (-1587 . 666624) (-1588 . 666550) - (-1589 . 666444) (-1590 . 666346) (-1591 . 666284) (-1592 . 666138) - (-1593 . 665860) (-1594 . 665734) (-1595 . 665706) (-8 . 665678) - (-1597 . 665634) (-1598 . 665575) (-1599 . 665480) (-1600 . 665320) - (-1601 . 665221) (-1602 . 665097) (-1603 . 664941) (-1604 . 664825) - (-1605 . 664752) (-1606 . 664323) (-7 . 664295) (-1608 . 664245) - (-1609 . 663998) (-1610 . 663473) (-1611 . 663079) (-1612 . 662982) - (-1613 . 662929) (-1614 . 662898) (-1615 . 662745) (-1616 . 662678) - (-1617 . 662646) (-1618 . 661446) (-1619 . 661394) (-1620 . 661342) - (-1621 . 661314) (-1622 . 661228) (-1623 . 661162) (-1624 . 660959) - (-1625 . 660841) (-1626 . 660492) (-1627 . 660399) (-1628 . 660262) - (-1629 . 660103) (-1630 . 659885) (-1631 . 659434) (-1632 . 659205) - (-1633 . 659115) (-1634 . 658962) (-1635 . 658844) (-1636 . 658788) - (-1637 . 658577) (-1638 . 658518) (-1639 . 658417) (-1640 . 658322) - (-1641 . 658181) (-1642 . 657994) (-1643 . 657890) (-1644 . 657508) - (-1645 . 657082) (-1646 . 656988) (-1647 . 656824) (-1648 . 656544) - (-1649 . 656492) (-1650 . 656415) (-1651 . 656272) (-1652 . 656174) - (-1653 . 656079) (-1654 . 655445) (-1655 . 655252) (-1656 . 655174) - (-1657 . 654971) (-1658 . 654816) (-1659 . 654763) (-1660 . 654373) - (-1661 . 654299) (-1662 . 654121) (-1663 . 653942) (-1664 . 653126) - (-1665 . 653043) (-1666 . 652702) (-1667 . 652574) (-1668 . 652518) - (-1669 . 652289) (-1670 . 652033) (-1671 . 651951) (-1672 . 651847) - (-1673 . 651676) (-1674 . 651642) (-1675 . 651569) (-1676 . 651498) - (-1677 . 651186) (-1678 . 651089) (-1679 . 650604) (-1680 . 650207) - (-1681 . 650154) (-1682 . 650080) (-1683 . 650026) (-1684 . 649852) - (-1685 . 649724) (-1686 . 649672) (-1687 . 649175) (-1688 . 649032) - (-1689 . 648904) (-1690 . 648774) (-1691 . 648676) (-1692 . 648599) - (-1693 . 648542) (-1694 . 648489) (-1695 . 648416) (-1696 . 644256) - (-1697 . 643904) (-1698 . 643808) (-1699 . 642934) (-1700 . 642788) - (-1701 . 642702) (-1702 . 642595) (-1703 . 642542) (-1704 . 642491) - (-1705 . 637948) (-1706 . 637841) (-1707 . 637738) (-1708 . 637549) - (-1709 . 637434) (-1710 . 637334) (-1711 . 637087) (-1712 . 637015) - (-1713 . 636408) (-1714 . 636337) (-1715 . 635920) (-1716 . 635721) - (-1717 . 635561) (-1718 . 635491) (-1719 . 635319) (-1720 . 634896) - (-1721 . 632928) (-1722 . 632861) (-1723 . 632811) (-1724 . 632752) - (-1725 . 632654) (-1726 . 632390) (-1727 . 632318) (-1728 . 632119) - (-1729 . 632052) (-1730 . 631876) (-1731 . 631751) (-1732 . 631677) - (-1733 . 631648) (-1734 . 631596) (-1735 . 631518) (-1736 . 631384) - (-1737 . 631257) (-1738 . 630554) (-1739 . 630411) (-1740 . 630312) - (-1741 . 630224) (-1742 . 630027) (-1743 . 629954) (-1744 . 629888) - (-1745 . 629708) (-1746 . 629345) (-1747 . 629176) (-1748 . 629120) - (-1749 . 629021) (-1750 . 628908) (-1751 . 628756) (-1752 . 628534) - (-1753 . 628427) (-1754 . 628320) (-1755 . 628141) (-1756 . 628017) - (-1757 . 627869) (-1758 . 627785) (-1759 . 627726) (-1760 . 627610) - (-1761 . 627527) (-1762 . 627431) (-1763 . 627209) (-1764 . 626392) - (-1765 . 626318) (-1766 . 626247) (-1767 . 626152) (-1768 . 626012) - (-1769 . 625924) (-1770 . 625759) (-1771 . 625441) (-1772 . 624846) - (-1773 . 624794) (-1774 . 624682) (-1775 . 624294) (-1776 . 624170) - (-1777 . 623656) (-1778 . 623498) (-1779 . 623385) (-1780 . 623074) - (-1781 . 623022) (-1782 . 622633) (-1783 . 622324) (-1784 . 622221) - (-1785 . 622144) (-1786 . 607913) (-1787 . 607832) (-1788 . 607692) - (-1789 . 607488) (-1790 . 607320) (-1791 . 607204) (-1792 . 607175) - (-1793 . 607064) (-1794 . 606736) (-1795 . 606366) (-1796 . 606232) - (-1797 . 606117) (-1798 . 606089) (-1799 . 605999) (-1800 . 605893) - (-1801 . 605840) (-1802 . 605721) (-1803 . 605243) (-1804 . 604684) - (-1805 . 604291) (-1806 . 604206) (-1807 . 604097) (-1808 . 603849) - (-1809 . 599786) (-1810 . 599176) (-1811 . 599092) (-1812 . 598646) - (-1813 . 598543) (-1814 . 598477) (-1815 . 598403) (-1816 . 598374) - (-1817 . 598101) (-1818 . 597542) (-1819 . 597462) (-1820 . 597385) - (-1821 . 597289) (-1822 . 597219) (-1823 . 597166) (-1824 . 596970) - (-1825 . 596798) (-1826 . 596748) (-1827 . 596720) (-1828 . 596306) - (-1829 . 596204) (-1830 . 595817) (-1831 . 595740) (-1832 . 595435) - (-1833 . 595386) (-1834 . 595324) (-1835 . 594742) (-1836 . 594714) - (-1837 . 594290) (-1838 . 594125) (-1839 . 594045) (-1840 . 593886) - (-1841 . 593640) (-1842 . 593585) (-1843 . 593507) (-1844 . 593413) - (-1845 . 589746) (-1846 . 589676) (-1847 . 589248) (-1848 . 589197) - (-1849 . 588630) (-1850 . 587973) (-1851 . 587709) (-1852 . 587627) - (-1853 . 587569) (-1854 . 587253) (-1855 . 584908) (-1856 . 584842) - (-1857 . 584443) (-1858 . 583011) (-1859 . 582898) (-1860 . 582646) - (-1861 . 582523) (-1862 . 582157) (-1863 . 581648) (-1864 . 581486) - (-1865 . 581377) (-1866 . 581092) (-1867 . 580734) (-1868 . 580405) - (-1869 . 580224) (-1870 . 580128) (-1871 . 580077) (-1872 . 579994) - (-1873 . 579718) (-1874 . 579662) (-1875 . 579610) (-1876 . 579452) - (-1877 . 579264) (-1878 . 579212) (-1879 . 579014) (-1880 . 578380) - (-1881 . 578281) (-1882 . 578210) (-1883 . 578139) (-1884 . 577810) - (-1885 . 577722) (-1886 . 577655) (-1887 . 577542) (-1888 . 577372) - (-1889 . 576980) (-1890 . 576711) (-1891 . 576632) (-1892 . 576574) - (-1893 . 576312) (-1894 . 576212) (-1895 . 576093) (-1896 . 575959) - (-1897 . 575875) (-1898 . 575712) (-1899 . 575543) (-1900 . 575470) - (-1901 . 575390) (-1902 . 575320) (-1903 . 574903) (-1904 . 574829) - (-1905 . 574662) (-1906 . 574560) (-1907 . 574526) (-1908 . 574310) - (-1909 . 574209) (-1910 . 573445) (-1911 . 573103) (-1912 . 571955) - (-1913 . 571707) (-1914 . 571679) (-1915 . 571651) (-1916 . 571493) - (-1917 . 570291) (-1918 . 570138) (-1919 . 570037) (-1920 . 569907) - (-1921 . 569800) (-1922 . 569734) (-1923 . 569288) (-1924 . 569145) - (-1925 . 568992) (-1926 . 568751) (-1927 . 568656) (-1928 . 568132) - (-1929 . 568073) (-1930 . 568001) (-1931 . 567732) (-1932 . 567590) - (-1933 . 567518) (-1934 . 567467) (-1935 . 567180) (-1936 . 567143) - (-1937 . 565881) (-1938 . 565127) (-1939 . 565037) (-1940 . 564815) - (-1941 . 564072) (-1942 . 564013) (-1943 . 563892) (-1944 . 563818) - (-1945 . 563718) (-1946 . 563602) (-1947 . 563382) (-1948 . 563287) - (-1949 . 562407) (-1950 . 562032) (-1951 . 562000) (-1952 . 561941) - (-1953 . 561848) (-1954 . 561778) (-1955 . 560960) (-1956 . 560895) - (-1957 . 560652) (-1958 . 560522) (-1959 . 560473) (-1960 . 560300) - (-1961 . 560203) (-1962 . 560081) (-1963 . 560009) (-1964 . 559893) - (-1965 . 559822) (-1966 . 559680) (-1967 . 559493) (-1968 . 559356) - (-1969 . 559012) (-1970 . 558853) (-1971 . 558522) (-1972 . 558451) - (-1973 . 558296) (-1974 . 558228) (-1975 . 558171) (-1976 . 557827) - (-1977 . 557773) (-1978 . 557718) (-1979 . 557511) (-1980 . 556909) - (-1981 . 556779) (-1982 . 556679) (-1983 . 556583) (-1984 . 556430) - (-1985 . 556160) (-1986 . 555720) (-1987 . 555634) (-1988 . 555384) - (-1989 . 555161) (-1990 . 554809) (-1991 . 554629) (-1992 . 554550) - (-1993 . 554413) (-1994 . 554227) (-1995 . 554174) (-1996 . 553927) - (-1997 . 553872) (-1998 . 553428) (-1999 . 553330) (-2000 . 553206) - (-2001 . 551428) (-2002 . 551203) (-2003 . 551141) (-2004 . 551090) - (-2005 . 550887) (-2006 . 550503) (-2007 . 550425) (-2008 . 550243) - (-2009 . 549834) (-2010 . 549649) (-2011 . 549592) (-2012 . 549539) - (-2013 . 549482) (-2014 . 549355) (-2015 . 549069) (-2016 . 547773) - (-2017 . 547305) (-2018 . 547224) (-2019 . 547145) (-2020 . 547017) - (-2021 . 546924) (-2022 . 546871) (-2023 . 546782) (-2024 . 546572) - (-2025 . 546367) (-2026 . 546230) (-2027 . 546153) (-2028 . 545645) - (-2029 . 545485) (-2030 . 545132) (-2031 . 545044) (-2032 . 544424) - (-2033 . 544323) (-2034 . 544239) (-2035 . 543963) (-2036 . 543611) - (-2037 . 543496) (-2038 . 543237) (-2039 . 543156) (-2040 . 542510) - (-2041 . 542427) (-2042 . 542399) (-2043 . 542348) (-2044 . 541756) - (-2045 . 541689) (-2046 . 541322) (-2047 . 540892) (-2048 . 540781) - (-2049 . 540715) (-2050 . 540573) (-2051 . 539981) (-2052 . 539174) - (-2053 . 539102) (-2054 . 538958) (-2055 . 538892) (-2056 . 538794) - (-2057 . 538539) (-2058 . 537358) (-2059 . 535628) (-2060 . 535578) - (-2061 . 535268) (-2062 . 535171) (-2063 . 535057) (-2064 . 534998) - (-2065 . 534928) (-2066 . 534829) (-2067 . 534763) (-2068 . 534511) - (-2069 . 534449) (-2070 . 534347) (-2071 . 534187) (-2072 . 534079) - (-2073 . 534008) (-2074 . 533340) (-2075 . 533218) (-2076 . 532915) - (-2077 . 532579) (-2078 . 531866) (-2079 . 531754) (-2080 . 531611) - (-2081 . 531528) (-2082 . 531462) (-2083 . 531360) (-2084 . 531251) - (-2085 . 531192) (-2086 . 531020) (-2087 . 530983) (-2088 . 530896) - (-2089 . 530844) (-2090 . 530756) (-2091 . 530557) (-2092 . 530471) - (-2093 . 530383) (-2094 . 530330) (-2095 . 530296) (-2096 . 530231) - (-2097 . 530130) (-2098 . 530004) (-2099 . 529794) (-2100 . 529555) - (-2101 . 529456) (-2102 . 529018) (-2103 . 528703) (-2104 . 528564) - (-2105 . 528514) (-2106 . 528295) (-2107 . 528230) (-2108 . 527711) - (-2109 . 527658) (-2110 . 526770) (-2111 . 526463) (-2112 . 526189) - (-2113 . 526005) (-2114 . 525889) (-2115 . 524691) (-2116 . 524521) - (-2117 . 524466) (-2118 . 524368) (-2119 . 524119) (-2120 . 523994) - (-2121 . 523831) (-2122 . 523753) (-2123 . 523685) (-2124 . 523459) - (-2125 . 523371) (-2126 . 523226) (-2127 . 523081) (-2128 . 523028) - (-2129 . 522996) (-2130 . 522821) (-2131 . 519158) (-2132 . 518927) - (-2133 . 518778) (-2134 . 518592) (-2135 . 518499) (-2136 . 518346) - (-2137 . 518129) (-2138 . 517162) (-2139 . 517028) (-2140 . 516947) - (-2141 . 516873) (-2142 . 516599) (-2143 . 516540) (-2144 . 516452) - (-2145 . 516400) (-2146 . 516177) (-2147 . 516019) (-2148 . 515821) - (-2149 . 515654) (-2150 . 515583) (-2151 . 515510) (-2152 . 514946) - (-2153 . 514873) (-2154 . 514626) (-2155 . 514535) (-2156 . 514449) - (-2157 . 514366) (-2158 . 513920) (-2159 . 513834) (-2160 . 513667) - (-2161 . 513315) (-2162 . 512990) (-2163 . 512765) (-2164 . 512641) - (-2165 . 512578) (-2166 . 512420) (-2167 . 512336) (-2168 . 512192) - (-2169 . 512133) (-2170 . 512037) (-2171 . 511947) (-2172 . 511897) - (-2173 . 511410) (-2174 . 511114) (-2175 . 511036) (-2176 . 510978) - (-2177 . 510870) (-2178 . 510817) (-2179 . 510481) (-2180 . 510395) - (-2181 . 510196) (-2182 . 510038) (-2183 . 509920) (-2184 . 509764) - (-2185 . 509624) (-2186 . 509504) (-2187 . 509056) (-2188 . 508961) - (-2189 . 508773) (-2190 . 508705) (-2191 . 507837) (-2192 . 507771) - (-2193 . 507553) (-2194 . 507400) (-2195 . 507312) (-2196 . 507280) - (-2197 . 507101) (-2198 . 506855) (-2199 . 506800) (-2200 . 506659) - (-2201 . 506314) (-2202 . 506034) (-2203 . 505981) (-2204 . 505863) - (-2205 . 505792) (-2206 . 505649) (-2207 . 505403) (-2208 . 501403) - (-2209 . 501343) (-2210 . 501277) (-2211 . 500856) (-2212 . 500763) - (-2213 . 500696) (-2214 . 500516) (-2215 . 500336) (-2216 . 494997) - (-2217 . 494905) (-2218 . 494825) (-2219 . 494724) (-2220 . 494597) - (-2221 . 494337) (-2222 . 494265) (-2223 . 494133) (-2224 . 493971) - (-2225 . 493761) (-2226 . 493554) (-2227 . 493401) (-2228 . 493130) - (-2229 . 493078) (-2230 . 492824) (-2231 . 492508) (-2232 . 492376) - (-2233 . 492298) (-2234 . 492181) (-2235 . 492065) (-2236 . 491902) - (-2237 . 491173) (-2238 . 491043) (-2239 . 490739) (-2240 . 490492) - (-2241 . 490195) (-2242 . 490118) (-2243 . 490059) (-2244 . 489708) - (-2245 . 489616) (-2246 . 489256) (-2247 . 489026) (-2248 . 488297) - (-2249 . 488189) (-2250 . 487995) (-2251 . 487865) (-2252 . 487794) - (-2253 . 487678) (-2254 . 487582) (-2255 . 487389) (-2256 . 487306) - (-2257 . 487214) (-2258 . 487052) (-2259 . 486376) (-2260 . 486282) - (-2261 . 486124) (-2262 . 486020) (-2263 . 485895) (-2264 . 485745) - (-2265 . 485637) (-2266 . 485446) (-2267 . 485360) (-2268 . 485300) - (-2269 . 484736) (-2270 . 484218) (-2271 . 484105) (-2272 . 483516) - (-2273 . 483428) (-2274 . 483186) (-2275 . 482925) (-2276 . 482748) - (-2277 . 482590) (-2278 . 482382) (-2279 . 482315) (-2280 . 482220) - (-2281 . 481656) (-2282 . 481400) (-2283 . 481259) (-2284 . 481054) - (-2285 . 480872) (-2286 . 480770) (-2287 . 480685) (-2288 . 480525) - (-2289 . 479961) (-2290 . 479477) (-2291 . 479377) (-2292 . 478888) - (-2293 . 478772) (-2294 . 478672) (-2295 . 478523) (-2296 . 478385) - (-2297 . 478289) (-2298 . 478169) (-2299 . 478050) (-2300 . 477376) - (-2301 . 477304) (-2302 . 476825) (-2303 . 476660) (-2304 . 476169) - (-2305 . 476084) (-2306 . 475934) (-2307 . 475879) (-2308 . 475685) - (-2309 . 475611) (-2310 . 475580) (-2311 . 474906) (-2312 . 474653) - (-2313 . 474515) (-2314 . 474438) (-2315 . 474334) (-2316 . 474127) - (-2317 . 474032) (-2318 . 473819) (-2319 . 473082) (-2320 . 472975) - (-2321 . 472872) (-2322 . 472801) (-2323 . 472746) (-2324 . 472640) - (-2325 . 472566) (-2326 . 471923) (-2327 . 471868) (-2328 . 471653) - (-2329 . 471091) (-2330 . 471038) (-2331 . 470931) (-2332 . 470761) - (-2333 . 470658) (-2334 . 470439) (-2335 . 470282) (-2336 . 470183) - (-2337 . 470069) (-2338 . 469918) (-2339 . 469356) (-2340 . 469249) - (-2341 . 469086) (-2342 . 468896) (-2343 . 468783) (-2344 . 468247) - (-2345 . 467962) (-2346 . 467866) (-2347 . 467708) (-2348 . 467146) - (-2349 . 466887) (-2350 . 466780) (-2351 . 466607) (-2352 . 466119) - (-2353 . 465928) (-2354 . 465613) (-2355 . 465557) (-2356 . 465166) - (-2357 . 464491) (-2358 . 464409) (-2359 . 464234) (-2360 . 464206) - (-2361 . 464141) (-2362 . 464058) (-2363 . 464005) (-2364 . 463908) - (-2365 . 463482) (-2366 . 463430) (-2367 . 462755) (-2368 . 462664) - (-2369 . 462607) (-2370 . 462554) (-2371 . 462476) (-2372 . 462424) - (-2373 . 462328) (-2374 . 462063) (-2375 . 461921) (-2376 . 461868) - (-2377 . 461771) (-2378 . 461096) (-2379 . 459554) (-2380 . 459166) - (-2381 . 459082) (-2382 . 458661) (-2383 . 458587) (-2384 . 458517) - (-2385 . 458411) (-2386 . 458193) (-2387 . 458109) (-2388 . 457953) - (-2389 . 457390) (-2390 . 457271) (-2391 . 457025) (-2392 . 456787) - (-2393 . 456472) (-2394 . 456435) (-2395 . 456173) (-2396 . 456072) - (-2397 . 455545) (-2398 . 455491) (-2399 . 455059) (-2400 . 454977) - (-2401 . 454883) (-2402 . 454776) (-2403 . 454213) (-2404 . 454128) - (-2405 . 454036) (-2406 . 453970) (-2407 . 453838) (-2408 . 453754) - (-2409 . 453672) (-2410 . 453525) (-2411 . 453424) (-2412 . 453347) - (-2413 . 453273) (-2414 . 453210) (-2415 . 453080) (-2416 . 452517) - (-2417 . 452113) (-2418 . 452062) (-2419 . 451833) (-2420 . 451776) - (-2421 . 451717) (-2422 . 451654) (-2423 . 451535) (-2424 . 451450) - (-2425 . 451332) (-2426 . 451084) (-2427 . 450522) (-2428 . 450421) - (-2429 . 450326) (-2430 . 450196) (-2431 . 450052) (-2432 . 449762) - (-2433 . 449682) (-2434 . 449367) (-2435 . 449315) (-2436 . 449249) - (-2437 . 449161) (-2438 . 449043) (-2439 . 448994) (-2440 . 448965) - (-2441 . 448909) (-2442 . 448347) (-2443 . 448270) (-2444 . 448117) - (-2445 . 448058) (-2446 . 447949) (-2447 . 447893) (-2448 . 447765) - (-2449 . 447703) (-2450 . 447545) (-2451 . 447485) (-2452 . 447350) - (-2453 . 447268) (-2454 . 447181) (-2455 . 446619) (-2456 . 446498) - (-2457 . 446258) (-2458 . 445985) (-2459 . 445932) (-2460 . 445837) - (-2461 . 445610) (-2462 . 445391) (-2463 . 445252) (-2464 . 444388) - (-2465 . 443424) (-2466 . 442862) (-2467 . 442761) (-2468 . 442504) - (-2469 . 442369) (-2470 . 442109) (-2471 . 441968) (-2472 . 441736) - (-2473 . 441678) (-2474 . 440925) (-2475 . 440869) (-2476 . 440790) - (-2477 . 440684) (-2478 . 440612) (-2479 . 440050) (-2480 . 439578) - (-2481 . 439363) (-2482 . 438447) (-2483 . 438316) (-2484 . 438195) - (-2485 . 438166) (-2486 . 438107) (-2487 . 437989) (-2488 . 437901) - (-2489 . 437798) (-2490 . 437008) (-2491 . 436793) (-2492 . 436733) - (-2493 . 436591) (-2494 . 436533) (-2495 . 436438) (-2496 . 436307) - (-2497 . 436135) (-2498 . 435976) (-2499 . 435923) (-2500 . 435769) - (-2501 . 435716) (-2502 . 435593) (-2503 . 435516) (-2504 . 435430) - (-2505 . 435357) (-2506 . 435277) (-2507 . 435191) (-2508 . 435123) - (-2509 . 435040) (-2510 . 434868) (-2511 . 434616) (-2512 . 434200) - (-2513 . 434099) (-2514 . 424649) (-2515 . 424522) (-2516 . 424456) - (-2517 . 424390) (-2518 . 424273) (-2519 . 424178) (-2520 . 424004) - (-2521 . 423790) (-2522 . 423618) (-2523 . 423032) (-2524 . 422494) - (-2525 . 422192) (-2526 . 422119) (-2527 . 422060) (-2528 . 421962) - (-2529 . 421789) (-2530 . 421569) (-2531 . 421489) (-2532 . 421401) - (-2533 . 421331) (-2534 . 421159) (-2535 . 420597) (-2536 . 419974) - (-2537 . 419872) (-2538 . 419689) (-2539 . 419661) (-2540 . 419608) - (-2541 . 419524) (-2542 . 419493) (-2543 . 419122) (-2544 . 419001) - (-2545 . 418762) (-2546 . 418685) (-2547 . 418608) (-2548 . 418470) - (-2549 . 418264) (-2550 . 418169) (-2551 . 417978) (-2552 . 417688) - (-2553 . 417591) (-2554 . 417443) (-2555 . 417311) (-2556 . 416844) - (-2557 . 416738) (-2558 . 416459) (-2559 . 416095) (-2560 . 415996) - (-2561 . 415859) (-2562 . 415763) (-2563 . 415106) (-2564 . 414876) - (-2565 . 414272) (-2566 . 414167) (-2567 . 414071) (-2568 . 413985) - (-2569 . 413439) (-2570 . 413161) (-2571 . 413064) (-2572 . 412990) - (-2573 . 412895) (-2574 . 412507) (-2575 . 412396) (-2576 . 412178) - (-2577 . 412083) (-2578 . 411971) (-2579 . 411813) (-2580 . 411253) - (-2581 . 411200) (-2582 . 411045) (-2583 . 410943) (-2584 . 410742) - (-2585 . 409590) (-2586 . 409524) (-2587 . 409050) (-2588 . 408349) - (-2589 . 408131) (-2590 . 407804) (-2591 . 407718) (-2592 . 407624) - (-2593 . 407517) (-2594 . 407294) (-2595 . 407207) (-2596 . 407149) - (-2597 . 406890) (-2598 . 406837) (-2599 . 406777) (-2600 . 406550) - (-2601 . 406498) (-2602 . 406317) (-2603 . 406219) (-2604 . 406158) - (-2605 . 406040) (-2606 . 405790) (-2607 . 405716) (-2608 . 405633) - (-2609 . 403218) (-2610 . 403060) (-2611 . 402974) (-2612 . 402870) - (-2613 . 402788) (-2614 . 402733) (-2615 . 402673) (-2616 . 402607) - (-2617 . 402523) (-2618 . 401721) (-2619 . 401617) (-2620 . 401516) - (-2621 . 401412) (-2622 . 401283) (-2623 . 401203) (-2624 . 400964) - (-2625 . 400883) (-2626 . 400645) (-2627 . 400585) (-2628 . 400263) - (-2629 . 400088) (-2630 . 399991) (-2631 . 399881) (-2632 . 399662) - (-2633 . 399476) (-2634 . 399316) (-2635 . 399235) (-2636 . 399060) - (-2637 . 398917) (-2638 . 398802) (-2639 . 398674) (-2640 . 398266) - (-2641 . 398193) (-2642 . 398121) (-2643 . 397875) (-2644 . 397775) - (-2645 . 397665) (-2646 . 397582) (-2647 . 397478) (-2648 . 397390) - (-2649 . 397362) (-2650 . 397256) (-2651 . 397176) (-2652 . 397053) - (-2653 . 397001) (-2654 . 396941) (-2655 . 396867) (-2656 . 396801) - (-2657 . 396705) (-2658 . 396652) (-2659 . 396122) (-2660 . 392172) - (-2661 . 392076) (-2662 . 391955) (-2663 . 391875) (-2664 . 391806) - (-2665 . 391700) (-2666 . 391546) (-2667 . 391403) (-2668 . 391321) - (-2669 . 391265) (-2670 . 391060) (-2671 . 390944) (-2672 . 390871) - (-2673 . 390812) (-2674 . 390593) (-2675 . 390561) (-2676 . 390476) - (-2677 . 390360) (-2678 . 390202) (-2679 . 390013) (-2680 . 389647) - (-2681 . 389536) (-2682 . 389420) (-2683 . 389366) (-2684 . 389243) - (-2685 . 389164) (-2686 . 388892) (-2687 . 388710) (-2688 . 388512) - (-2689 . 388440) (-2690 . 388345) (-2691 . 388224) (-2692 . 387915) - (-2693 . 387374) (-2694 . 387318) (-2695 . 387219) (-2696 . 387124) - (-2697 . 386251) (-2698 . 386114) (-2699 . 385726) (-2700 . 385607) - (-2701 . 385511) (-2702 . 385456) (-2703 . 385113) (-2704 . 384784) - (-2705 . 384666) (-2706 . 384508) (-2707 . 384363) (-2708 . 384213) - (-2709 . 384121) (-2710 . 383875) (-2711 . 383819) (-2712 . 383724) - (-2713 . 383526) (-2714 . 383398) (-2715 . 383201) (-2716 . 383145) - (-2717 . 382968) (-2718 . 382885) (-2719 . 382789) (-2720 . 381793) - (-2721 . 381670) (-2722 . 381546) (-2723 . 381457) (-2724 . 381011) - (-2725 . 378755) (-2726 . 378076) (-2727 . 378048) (-2728 . 377856) - (-2729 . 377782) (-2730 . 377714) (-2731 . 377662) (-2732 . 377610) - (-2733 . 377522) (-2734 . 377425) (-2735 . 377314) (-2736 . 377007) - (-2737 . 376701) (-2738 . 376609) (-2739 . 376535) (-2740 . 376392) - (-2741 . 375998) (-2742 . 375945) (-2743 . 375861) (-2744 . 375833) - (-2745 . 375416) (-2746 . 375344) (-2747 . 375267) (-2748 . 375210) - (-2749 . 375147) (-2750 . 375118) (-2751 . 375008) (-2752 . 374948) - (-2753 . 374847) (-2754 . 374674) (-2755 . 374382) (-2756 . 374086) - (-2757 . 373984) (-2758 . 373842) (-2759 . 373771) (-2760 . 373678) - (-2761 . 373439) (-2762 . 373405) (-2763 . 373352) (-2764 . 373216) - (-2765 . 373111) (-2766 . 373047) (-2767 . 372843) (-2768 . 372746) - (-2769 . 372663) (-2770 . 372546) (-2771 . 372400) (-2772 . 372271) - (-2773 . 372168) (-2774 . 371983) (-2775 . 371750) (-2776 . 371694) - (-2777 . 371581) (-2778 . 371413) (-2779 . 371270) (-2780 . 371218) - (-2781 . 371128) (-2782 . 371006) (-2783 . 370911) (-2784 . 370617) - (-2785 . 370186) (-2786 . 370062) (-2787 . 369978) (-2788 . 369643) - (-2789 . 369506) (-2790 . 369432) (-2791 . 369379) (-2792 . 369248) - (-2793 . 369021) (-2794 . 368962) (-2795 . 368770) (-2796 . 368672) - (-2797 . 368529) (-2798 . 368237) (-2799 . 368140) (-2800 . 368040) - (-2801 . 367629) (-2802 . 367510) (-2803 . 367415) (-2804 . 367335) - (-2805 . 367212) (-2806 . 366938) (-2807 . 366797) (-2808 . 366726) - (-2809 . 366629) (-2810 . 366486) (-2811 . 366389) (-2812 . 366137) - (-2813 . 366037) (-2814 . 365954) (-2815 . 365844) (-2816 . 365767) - (-2817 . 365711) (-2818 . 365642) (-2819 . 365443) (-2820 . 365370) - (-2821 . 365037) (-2822 . 364792) (-2823 . 364718) (-2824 . 364621) - (-2825 . 364587) (-2826 . 364521) (-2827 . 364433) (-2828 . 364362) - (-2829 . 364181) (-2830 . 364124) (-2831 . 364059) (-2832 . 363887) - (-2833 . 363510) (-2834 . 362887) (-2835 . 362383) (-2836 . 361872) - (-2837 . 361741) (-2838 . 361645) (-2839 . 361482) (-2840 . 361427) - (-2841 . 361350) (-2842 . 360764) (-2843 . 360563) (-2844 . 360252) - (-12 . 360080) (-2846 . 359672) (-2847 . 359544) (-2848 . 359457) - (-2849 . 359147) (-2850 . 359095) (-2851 . 359018) (-2852 . 358157) - (-2853 . 358001) (-2854 . 357796) (-2855 . 357728) (-2856 . 357675) - (-2857 . 357457) (-2858 . 357383) (-2859 . 357310) (-2860 . 357149) - (-2861 . 357010) (-2862 . 356557) (-2863 . 356470) (-2864 . 356384) - (-2865 . 356283) (-2866 . 356230) (-2867 . 355971) (-2868 . 355129) - (-2869 . 354889) (-2870 . 354830) (-2871 . 354678) (-2872 . 354570) - (-2873 . 354357) (-2874 . 354273) (-2875 . 354055) (-2876 . 353638) - (-2877 . 353548) (-2878 . 353429) (-2879 . 353372) (-2880 . 353066) - (-2881 . 349457) (-2882 . 349404) (-2883 . 349258) (-2884 . 349205) - (-2885 . 349139) (-2886 . 348037) (-2887 . 347721) (-2888 . 347548) - (-2889 . 347517) (-2890 . 347416) (-2891 . 347145) (-2892 . 346859) - (-2893 . 346557) (-2894 . 346484) (-2895 . 346456) (-2896 . 346404) - (-2897 . 346275) (-2898 . 346198) (-2899 . 346112) (-2900 . 345952) - (-2901 . 345828) (-2902 . 345749) (-2903 . 345554) (-2904 . 345433) - (-2905 . 345290) (-2906 . 345005) (-2907 . 344926) (-2908 . 344742) - (-2909 . 344595) (-2910 . 344525) (-2911 . 344134) (-2912 . 344019) - (-2913 . 343882) (-2914 . 343663) (-2915 . 343629) (-2916 . 343318) - (-2917 . 343008) (-2918 . 342632) (-2919 . 342035) (-2920 . 341855) - (-2921 . 341622) (-2922 . 341588) (-2923 . 341154) (-2924 . 340541) - (-2925 . 340447) (-2926 . 340315) (-2927 . 339675) (-2928 . 339606) - (-2929 . 339523) (-2930 . 337934) (-2931 . 337776) (-2932 . 337703) - (-2933 . 337669) (-2934 . 337242) (-2935 . 337190) (-2936 . 337060) - (-2937 . 336965) (-2938 . 336881) (-2939 . 336804) (-2940 . 336663) - (-2941 . 336488) (-2942 . 336427) (-2943 . 336085) (-2944 . 335984) - (-2945 . 335821) (-2946 . 335608) (-2947 . 334538) (-2948 . 334346) - (-2949 . 334293) (-2950 . 315718) (* . 311605) (-2952 . 311448) - (-2953 . 311414) (-2954 . 311068) (-2955 . 311013) (-2956 . 310855) - (-2957 . 310800) (-2958 . 310042) (-2959 . 309750) (-2960 . 309623) - (-2961 . 309493) (-2962 . 306672) (-2963 . 306571) (-2964 . 306475) - (-2965 . 306425) (-2966 . 306210) (-2967 . 306076) (-2968 . 305855) - (-2969 . 305784) (-2970 . 305080) (-2971 . 304627) (-2972 . 304575) - (-2973 . 304505) (-2974 . 304327) (-2975 . 303716) (-2976 . 303632) - (-2977 . 303582) (-2978 . 303502) (-2979 . 303407) (-2980 . 303283) - (-2981 . 302602) (-2982 . 302136) (-2983 . 301995) (-2984 . 301921) - (-2985 . 301649) (-2986 . 301327) (-2987 . 301204) (-2988 . 301124) - (-2989 . 300993) (-2990 . 300881) (-2991 . 300853) (-2992 . 300775) - (-2993 . 300563) (-2994 . 300459) (-2995 . 300386) (-2996 . 300055) - (-2997 . 300002) (-2998 . 299738) (-2999 . 299669) (-3000 . 299617) - (-3001 . 299504) (-3002 . 299373) (-3003 . 299120) (-3004 . 299068) - (-3005 . 298910) (-3006 . 298688) (-3007 . 298654) (-3008 . 298552) - (-3009 . 298321) (-3010 . 298238) (-3011 . 296895) (-3012 . 296662) - (-3013 . 296596) (-3014 . 296537) (-3015 . 296371) (-3016 . 296251) - (-3017 . 296184) (-3018 . 296097) (-3019 . 296026) (-3020 . 295879) - (-3021 . 295769) (-3022 . 295623) (-3023 . 295527) (-3024 . 295399) - (-3025 . 295289) (-3026 . 295206) (-3027 . 295030) (-3028 . 294840) - (-3029 . 294681) (-3030 . 294647) (-3031 . 294486) (-3032 . 294307) - (-3033 . 294212) (-3034 . 293785) (-3035 . 293327) (-3036 . 293011) - (-3037 . 292844) (-3038 . 292746) (-3039 . 292086) (-3040 . 291967) - (-3041 . 291880) (-3042 . 291772) (-3043 . 291619) (-3044 . 291443) - (-3045 . 291243) (-3046 . 291170) (-3047 . 291111) (-3048 . 290796) - (-3049 . 290578) (-3050 . 290505) (-3051 . 290078) (-3052 . 289340) - (-3053 . 289046) (-3054 . 288978) (-3055 . 288912) (-3056 . 288329) - (-3057 . 288186) (-3058 . 287641) (-3059 . 287613) (-3060 . 287191) - (-3061 . 287039) (-3062 . 286896) (-3063 . 286786) (-3064 . 286626) - (-3065 . 286536) (-3066 . 286466) (-3067 . 286411) (-3068 . 286163) - (-3069 . 286066) (-3070 . 286038) (-3071 . 285940) (-3072 . 285827) - (-3073 . 285793) (-3074 . 284607) (-3075 . 284575) (-3076 . 284473) - (-3077 . 284406) (-3078 . 284093) (-3079 . 283952) (-3080 . 283883) - (-3081 . 283694) (-3082 . 283310) (-3083 . 283142) (-3084 . 282221) - (-3085 . 282194) (-3086 . 281858) (-3087 . 281741) (-3088 . 281653) - (-3089 . 280471) (-3090 . 280412) (-3091 . 280233) (-3092 . 280092) - (-3093 . 280002) (-3094 . 279873) (-3095 . 279722) (-3096 . 279542) - (-3097 . 279471) (-3098 . 277263) (-3099 . 277109) (-3100 . 277056) - (-3101 . 276996) (-3102 . 276797) (-3103 . 276693) (-3104 . 276578) - (-3105 . 276516) (-3106 . 276431) (-3107 . 276199) (-3108 . 276011) - (-3109 . 275942) (-3110 . 275847) (-3111 . 273066) (-3112 . 271840) - (-3113 . 271721) (-3114 . 271428) (-3115 . 271174) (-3116 . 271071) - (-3117 . 271043) (-3118 . 270850) (-3119 . 270767) (-3120 . 270549) - (-3121 . 270330) (-3122 . 270129) (-3123 . 269967) (-3124 . 269901) - (-3125 . 269735) (-3126 . 269541) (-3127 . 269409) (-3128 . 269326) - (-3129 . 269274) (-3130 . 269246) (-3131 . 268959) (-3132 . 268375) - (-3133 . 268309) (-3134 . 267005) (-3135 . 266578) (-3136 . 266462) - (-3137 . 266336) (-3138 . 266281) (-3139 . 265986) (-3140 . 265854) - (-3141 . 265598) (-3142 . 265256) (-3143 . 265141) (-3144 . 265012) - (-3145 . 264919) (-3146 . 264714) (-3147 . 264584) (-3148 . 264098) - (-3149 . 263716) (-3150 . 263431) (-3151 . 263051) (-3152 . 262972) - (-3153 . 262807) (-3154 . 262754) (-3155 . 262526) (-3156 . 262199) - (-3157 . 262165) (-3158 . 261789) (-3159 . 261736) (-3160 . 261609) - (-3161 . 261538) (-3162 . 261390) (-3163 . 261333) (-3164 . 261237) - (-3165 . 261071) (-3166 . 260846) (-3167 . 260750) (-3168 . 260588) - (-3169 . 260484) (-3170 . 260418) (-3171 . 260322) (-3172 . 260149) - (-3173 . 259997) (-3174 . 259885) (-3175 . 259812) (-3176 . 259562) - (-3177 . 259417) (-3178 . 259358) (-3179 . 259276) (-3180 . 259202) - (-3181 . 258991) (-3182 . 258931) (-3183 . 258048) (-3184 . 257850) - (-3185 . 257754) (-3186 . 257677) (-3187 . 257544) (-3188 . 257438) - (-3189 . 257266) (-3190 . 256907) (-3191 . 256873) (-3192 . 256427) - (-3193 . 256117) (-3194 . 256083) (-3195 . 255980) (-3196 . 255542) - (-3197 . 255401) (-3198 . 255161) (-3199 . 255093) (-3200 . 254919) - (-3201 . 254825) (-3202 . 254734) (-3203 . 254619) (-3204 . 254511) - (-3205 . 254390) (-3206 . 254287) (-3207 . 254129) (-3208 . 253934) - (-3209 . 253860) (-3210 . 253798) (-3211 . 253746) (-3212 . 253601) - (-3213 . 253531) (-3214 . 253328) (-3215 . 253249) (-3216 . 253196) - (-3217 . 253144) (-3218 . 253066) (-3219 . 252988) (-3220 . 252892) - (-3221 . 252714) (-3222 . 252536) (-3223 . 252467) (-3224 . 252197) - (-3225 . 252132) (-3226 . 252054) (-3227 . 251710) (-3228 . 251612) - (-3229 . 251584) (-3230 . 251226) (-3231 . 250956) (-3232 . 250928) - (-3233 . 250770) (-3234 . 250684) (-3235 . 250621) (-3236 . 250474) - (-3237 . 250292) (-3238 . 250240) (-3239 . 250025) (-3240 . 249857) - (-3241 . 249578) (-3242 . 249326) (-3243 . 249180) (-3244 . 248990) - (-3245 . 248805) (-3246 . 248738) (-3247 . 248609) (-3248 . 248556) - (-3249 . 248507) (-3250 . 248392) (-3251 . 248274) (-3252 . 248195) - (-3253 . 248112) (-3254 . 247737) (-3255 . 247680) (-3256 . 247571) - (-3257 . 247036) (-3258 . 246941) (-3259 . 246584) (-3260 . 246523) - (-3261 . 246424) (-3262 . 246355) (-3263 . 246242) (-3264 . 246190) - (-3265 . 246094) (-3266 . 246006) (-3267 . 245420) (-3268 . 245318) - (-3269 . 245224) (-3270 . 245129) (-3271 . 244985) (-3272 . 244930) - (-3273 . 244736) (-3274 . 244581) (-3275 . 244529) (-3276 . 244329) - (-3277 . 244143) (-3278 . 244003) (-3279 . 243864) (-3280 . 243618) - (-3281 . 243521) (-3282 . 243422) (-3283 . 243341) (-3284 . 242453) - (-3285 . 242385) (-3286 . 242085) (-3287 . 241961) (-3288 . 241812) - (-3289 . 241652) (-3290 . 241592) (-3291 . 241330) (-3292 . 241278) - (-3293 . 241195) (-3294 . 241136) (-3295 . 241042) (-3296 . 240595) - (-3297 . 240434) (-3298 . 240225) (-3299 . 240142) (-3300 . 240013) - (-3301 . 239857) (-3302 . 239754) (-3303 . 239588) (-3304 . 239511) - (-3305 . 239364) (-3306 . 238878) (-3307 . 238819) (-3308 . 238709) - (-3309 . 238635) (-3310 . 238036) (-3311 . 237852) (-3312 . 237606) - (-3313 . 237498) (-3314 . 237302) (-3315 . 237247) (-3316 . 237074) - (-3317 . 237046) (-3318 . 236961) (-3319 . 236863) (-3320 . 236665) - (-3321 . 236348) (-3322 . 236032) (-3323 . 235919) (-3324 . 235719) - (-3325 . 235666) (-3326 . 235170) (-3327 . 235096) (-3328 . 235022) - (-3329 . 234840) (-3330 . 234771) (-3331 . 234475) (-3332 . 234144) - (-3333 . 233770) (-3334 . 233676) (-3335 . 233433) (-3336 . 233381) - (-3337 . 233233) (-3338 . 233029) (-3339 . 232892) (-3340 . 232798) - (-3341 . 232428) (-3342 . 232290) (-3343 . 232216) (-3344 . 232033) - (-3345 . 231965) (-3346 . 231869) (-3347 . 231841) (-3348 . 231704) - (-3349 . 231625) (-3350 . 231572) (-3351 . 231470) (-3352 . 231419) - (-3353 . 231359) (-3354 . 231218) (-3355 . 231132) (-3356 . 230395) - (-3357 . 229951) (-3358 . 229856) (-3359 . 229782) (-3360 . 229437) - (-3361 . 229370) (-3362 . 229231) (-3363 . 229137) (-3364 . 229085) - (-3365 . 228975) (-3366 . 228812) (-3367 . 228714) (-3368 . 228613) - (-3369 . 228192) (-3370 . 228126) (-3371 . 228056) (-3372 . 227769) - (-3373 . 227638) (-3374 . 227400) (-3375 . 227372) (-3376 . 227217) - (-3377 . 227165) (-3378 . 227110) (-3379 . 226980) (-3380 . 226773) - (-3381 . 226629) (-3382 . 226574) (-3383 . 226201) (-3384 . 226101) - (-3385 . 225964) (-3386 . 225836) (-3387 . 225557) (-3388 . 225463) - (-3389 . 225303) (-3390 . 225207) (-3391 . 224955) (-3392 . 224864) - (-3393 . 224698) (-3394 . 224646) (-3395 . 224500) (-3396 . 224448) - (-3397 . 224377) (-3398 . 224203) (-3399 . 224058) (-3400 . 223973) - (-3401 . 223899) (-3402 . 223769) (-3403 . 223596) (-3404 . 222518) - (-3405 . 222376) (-3406 . 222288) (-3407 . 222222) (-3408 . 222148) - (-3409 . 222060) (-3410 . 221822) (-3411 . 221685) (-3412 . 221097) - (-3413 . 220879) (-3414 . 220684) (-3415 . 220607) (-3416 . 220374) - (-3417 . 220261) (-3418 . 220132) (-3419 . 219811) (-3420 . 219723) - (-3421 . 219488) (-3422 . 219344) (-3423 . 219258) (-3424 . 219039) - (-3425 . 218825) (-3426 . 218699) (-3427 . 218307) (-3428 . 218176) - (-3429 . 218061) (-3430 . 218008) (-3431 . 217778) (-3432 . 217692) - (-3433 . 217513) (-3434 . 217354) (-3435 . 217252) (-3436 . 217099) - (-3437 . 217031) (-3438 . 216945) (-3439 . 216778) (-3440 . 216447) - (-3441 . 216349) (-3442 . 216229) (-3443 . 216087) (-3444 . 215666) - (-3445 . 215558) (-3446 . 215249) (-3447 . 215139) (-3448 . 215086) - (-3449 . 214949) (-3450 . 214573) (-3451 . 214494) (-3452 . 214444) - (-3453 . 214227) (-3454 . 214074) (-3455 . 213922) (-3456 . 213494) - (-3457 . 213346) (-3458 . 213273) (-3459 . 213132) (-3460 . 213022) - (-3461 . 212845) (-3462 . 212740) (-3463 . 212605) (-3464 . 212175) - (-3465 . 211822) (-3466 . 211709) (-3467 . 211551) (-3468 . 211469) - (-3469 . 211318) (-3470 . 211163) (-3471 . 211062) (-3472 . 210924) - (-3473 . 210846) (-3474 . 210787) (-3475 . 210651) (-3476 . 210601) - (-3477 . 210448) (-3478 . 210392) (-3479 . 210269) (-3480 . 209534) - (-3481 . 209457) (-3482 . 209078) (-3483 . 209016) (-3484 . 208960) - (-3485 . 208826) (-3486 . 208748) (-3487 . 208696) (-3488 . 208543) - (-3489 . 208419) (-3490 . 208354) (-3491 . 208136) (-3492 . 208083) - (-3493 . 207842) (-3494 . 207789) (-3495 . 207706) (-3496 . 207319) - (-3497 . 207253) (-3498 . 207074) (-3499 . 207003) (-3500 . 206845) - (-3501 . 206707) (-3502 . 205888) (-3503 . 205661) (-3504 . 205602) - (-3505 . 205475) (-3506 . 205380) (-3507 . 205085) (-3508 . 205026) - (-3509 . 204942) (-3510 . 204872) (-3511 . 204740) (-3512 . 204544) - (-3513 . 204472) (-3514 . 204255) (-3515 . 203857) (-3516 . 203666) - (-3517 . 203588) (-3518 . 203515) (-3519 . 203366) (-3520 . 202879) - (-3521 . 202771) (-3522 . 202490) (-3523 . 202416) (-3524 . 201740) - (-3525 . 201662) (-3526 . 201613) (-3527 . 201450) (-3528 . 201355) - (-3529 . 201060) (-3530 . 200895) (-3531 . 200824) (-3532 . 200747) - (-3533 . 200648) (-3534 . 199220) (-3535 . 199162) (-3536 . 199036) - (-3537 . 198700) (-3538 . 198626) (-3539 . 198498) (-3540 . 198441) - (-3541 . 198125) (-3542 . 198029) (-3543 . 197966) (-3544 . 197657) - (-3545 . 197584) (-3546 . 197480) (-3547 . 197411) (-3548 . 197328) - (-3549 . 197229) (-3550 . 197173) (-3551 . 196422) (-3552 . 194194) - (-3553 . 194050) (-3554 . 193998) (-3555 . 193746) (-3556 . 193526) - (-3557 . 192276) (-3558 . 192175) (-3559 . 191982) (-3560 . 191602) - (-3561 . 191507) (-3562 . 191297) (-3563 . 191177) (-3564 . 190539) - (-3565 . 190331) (-3566 . 190278) (-3567 . 190221) (-3568 . 190139) - (-3569 . 190082) (-3570 . 189977) (-3571 . 189314) (-3572 . 189262) - (-3573 . 189149) (-3574 . 188981) (-3575 . 188909) (-3576 . 188825) - (-3577 . 188754) (-3578 . 188495) (-3579 . 188101) (-3580 . 187946) - (-3581 . 187535) (-3582 . 187357) (-3583 . 186422) (-3584 . 184308) - (-3585 . 184187) (-3586 . 183856) (-3587 . 183654) (-3588 . 183551) - (-3589 . 183472) (-3590 . 183343) (-3591 . 183272) (-3592 . 182917) - (-3593 . 182833) (-3594 . 182587) (-3595 . 182536) (-3596 . 179695) - (-3597 . 179149) (-3598 . 179048) (-3599 . 178885) (-3600 . 178788) - (-3601 . 178630) (-3602 . 178440) (-3603 . 178388) (-3604 . 178284) - (-3605 . 178144) (-3606 . 177864) (-3607 . 177720) (-3608 . 177597) - (-3609 . 177418) (-3610 . 177011) (-3611 . 176937) (-3612 . 176754) - (-3613 . 176650) (-3614 . 176573) (-3615 . 176446) (-3616 . 176369) - (-3617 . 176191) (-3618 . 176073) (-3619 . 176045) (-3620 . 175966) - (-3621 . 175839) (-3622 . 175751) (-3623 . 175658) (-3624 . 175624) - (-3625 . 175363) (-3626 . 175241) (-3627 . 174966) (-3628 . 174910) - (-3629 . 174840) (-3630 . 174785) (-3631 . 174403) (-3632 . 174125) - (-3633 . 174046) (-3634 . 173613) (-3635 . 173527) (-3636 . 173119) - (-3637 . 172982) (-3638 . 172764) (-3639 . 172599) (-3640 . 172513) - (-3641 . 172397) (-3642 . 171893) (-3643 . 171778) (-3644 . 171445) - (-3645 . 171107) (-3646 . 171070) (-3647 . 170591) (-3648 . 170560) - (-3649 . 170481) (-3650 . 169804) (-3651 . 169732) (-3652 . 169647) - (-3653 . 169408) (-3654 . 169260) (-3655 . 169142) (-3656 . 169087) - (-3657 . 168544) (-3658 . 168374) (-3659 . 167888) (-3660 . 167839) - (-3661 . 167753) (-3662 . 167460) (-3663 . 167300) (-3664 . 167226) - (-3665 . 167023) (-3666 . 166869) (-3667 . 166744) (-3668 . 166683) - (-3669 . 166311) (-3670 . 166131) (-3671 . 165832) (-3672 . 165728) - (-3673 . 165597) (-3674 . 165513) (-3675 . 165388) (-3676 . 165250) - (-3677 . 165097) (-3678 . 164979) (-3679 . 164861) (-3680 . 164690) - (-3681 . 164549) (-3682 . 164308) (-3683 . 164187) (-3684 . 164131) - (-3685 . 164076) (-3686 . 164017) (-3687 . 163916) (-3688 . 163888) - (-3689 . 163726) (-3690 . 163594) (-3691 . 163438) (-3692 . 163379) - (-3693 . 163192) (-3694 . 162996) (-3695 . 162765) (-3696 . 162663) - (-3697 . 162593) (-3698 . 162251) (-3699 . 162199) (-3700 . 161974) - (-3701 . 161917) (-3702 . 161707) (-3703 . 161577) (-3704 . 161367) - (-3705 . 161242) (-3706 . 161186) (-3707 . 161108) (-3708 . 160989) - (-3709 . 160910) (-3710 . 160857) (-3711 . 160805) (-3712 . 160698) - (-3713 . 160624) (-3714 . 160504) (-3715 . 160278) (-3716 . 160083) - (-3717 . 159979) (-3718 . 159855) (-3719 . 159587) (-3720 . 159507) - (-3721 . 159372) (-3722 . 159136) (-3723 . 159084) (-3724 . 158971) - (-3725 . 158801) (-3726 . 158682) (-3727 . 158598) (-3728 . 158480) - (-3729 . 158386) (-3730 . 158248) (-3731 . 158198) (-3732 . 157911) - (-3733 . 157759) (-3734 . 157612) (-3735 . 157499) (-3736 . 157418) - (-3737 . 157312) (-3738 . 157233) (-3739 . 156921) (-3740 . 156756) - (-3741 . 156205) (-3742 . 156131) (-3743 . 155860) (-3744 . 155735) - (-3745 . 155647) (-3746 . 155619) (-3747 . 155459) (-3748 . 154661) - (-3749 . 153569) (-3750 . 152909) (-3751 . 152707) (-3752 . 151642) - (-3753 . 151556) (-3754 . 151463) (-3755 . 151260) (-3756 . 151180) - (-3757 . 150985) (-3758 . 150897) (-3759 . 150679) (-3760 . 150575) - (-3761 . 150448) (-3762 . 149921) (-3763 . 149151) (-3764 . 149081) - (-3765 . 148912) (-3766 . 148857) (-3767 . 148755) (-3768 . 148507) - (-3769 . 148328) (-3770 . 148294) (-3771 . 147764) (-3772 . 147641) - (-3773 . 147589) (-3774 . 147476) (-3775 . 147287) (-3776 . 147187) - (-3777 . 147063) (-3778 . 146997) (-3779 . 146769) (-3780 . 146738) - (-3781 . 146679) (-3782 . 146536) (-3783 . 146463) (-3784 . 146432) - (-3785 . 146378) (-3786 . 145997) (-3787 . 145886) (-3788 . 145783) - (-3789 . 145730) (-3790 . 145555) (-3791 . 145430) (-3792 . 145314) - (-3793 . 145212) (-3794 . 144922) (-3795 . 144785) (-3796 . 144704) - (-3797 . 144330) (-3798 . 144298) (-3799 . 144220) (-3800 . 144121) - (-3801 . 144005) (-3802 . 143885) (-3803 . 143802) (-3804 . 143611) - (-3805 . 143335) (-3806 . 143285) (-3807 . 143043) (-3808 . 142873) - (-3809 . 142820) (-3810 . 142687) (-3811 . 142573) (-3812 . 142434) - (-3813 . 142333) (-3814 . 142175) (-3815 . 141800) (-3816 . 141705) - (-3817 . 141653) (-3818 . 141565) (-3819 . 141457) (-3820 . 141312) - (-3821 . 141014) (-3822 . 140962) (-3823 . 140862) (-3824 . 140766) - (-3825 . 140623) (-3826 . 140537) (-3827 . 140432) (-3828 . 140351) - (-3829 . 140270) (-3830 . 140126) (-3831 . 139592) (-3832 . 139538) - (-3833 . 139381) (-3834 . 139157) (-3835 . 139050) (-3836 . 138937) - (-3837 . 138544) (-3838 . 138488) (-3839 . 138210) (-3840 . 137975) - (-3841 . 137811) (-3842 . 137620) (-3843 . 137504) (-3844 . 137358) - (-3845 . 137251) (-3846 . 137120) (-3847 . 137008) (-3848 . 136845) - (-3849 . 136598) (-3850 . 136325) (-3851 . 136091) (-3852 . 135864) - (-3853 . 135811) (-3854 . 135740) (-3855 . 135427) (-3856 . 134987) - (-3857 . 134864) (-3858 . 134811) (-3859 . 134625) (-3860 . 134522) - (-3861 . 134316) (-3862 . 134288) (-3863 . 134041) (-3864 . 133703) - (-3865 . 133626) (-3866 . 133532) (-3867 . 133479) (-3868 . 133153) - (-3869 . 133008) (-3870 . 132947) (-3871 . 132683) (-3872 . 132584) - (-3873 . 132440) (-3874 . 131412) (-3875 . 131297) (-3876 . 131245) - (-3877 . 130907) (-3878 . 128766) (-3879 . 128595) (-3880 . 128260) - (-3881 . 128145) (-3882 . 127634) (-3883 . 127518) (-3884 . 127466) - (-3885 . 127338) (-3886 . 127201) (-3887 . 126655) (-3888 . 126446) - (-3889 . 126228) (-3890 . 126125) (-3891 . 125886) (-3892 . 125290) - (-3893 . 125258) (-3894 . 125152) (-3895 . 125099) (-3896 . 125028) - (-3897 . 124686) (-3898 . 124634) (-3899 . 124533) (-3900 . 124430) - (-3901 . 124298) (-3902 . 123075) (-3903 . 122912) (-3904 . 122732) - (-3905 . 122655) (-3906 . 122571) (-3907 . 122409) (-3908 . 122352) - (-3909 . 122234) (-3910 . 122115) (-3911 . 120898) (-3912 . 120611) - (-3913 . 120515) (-3914 . 120347) (-3915 . 120251) (-3916 . 120146) - (-3917 . 120073) (-3918 . 119995) (-3919 . 119912) (-3920 . 119753) - (-3921 . 119526) (-3922 . 119233) (-3923 . 119078) (-3924 . 118803) - (-3925 . 118703) (-3926 . 118606) (-3927 . 118511) (-3928 . 117871) - (-3929 . 117761) (-3930 . 116184) (-3931 . 115994) (-3932 . 115745) - (-3933 . 115679) (-3934 . 115513) (-3935 . 115161) (-3936 . 115009) - (-3937 . 114939) (-3938 . 114758) (-3939 . 114704) (-3940 . 114583) - (-3941 . 114443) (-3942 . 114309) (-3943 . 114257) (-3944 . 114063) - (-3945 . 114009) (-3946 . 113585) (-3947 . 113122) (-3948 . 112883) - (-3949 . 112780) (-3950 . 112207) (-3951 . 112139) (-3952 . 112083) - (-3953 . 111873) (-3954 . 110600) (-3955 . 110270) (-3956 . 110097) - (-3957 . 109763) (-3958 . 109664) (-3959 . 109595) (-3960 . 109168) - (-3961 . 108524) (-3962 . 108313) (-3963 . 108243) (-3964 . 108157) - (-3965 . 107614) (-3966 . 107532) (-3967 . 107318) (-3968 . 107266) - (-3969 . 107121) (-3970 . 106975) (-3971 . 106831) (-3972 . 106779) - (-3973 . 106709) (-3974 . 106636) (-3975 . 106562) (-3976 . 106250) - (-3977 . 106125) (-3978 . 105987) (-3979 . 105780) (-3980 . 105627) - (-3981 . 105484) (-3982 . 105425) (-3983 . 105369) (-3984 . 105228) - (-3985 . 105127) (-3986 . 105054) (-3987 . 104954) (-3988 . 104114) - (-3989 . 103803) (-3990 . 103724) (-3991 . 103365) (-3992 . 103270) - (-3993 . 103141) (-3994 . 102965) (-3995 . 102681) (-3996 . 102554) - (-3997 . 102430) (-3998 . 102297) (-3999 . 102087) (-4000 . 101787) - (-4001 . 101732) (-4002 . 101644) (-4003 . 101573) (-4004 . 101418) - (-4005 . 101230) (-4006 . 100838) (-4007 . 100547) (-4008 . 100498) - (-4009 . 100393) (-4010 . 100229) (-4011 . 100116) (-4012 . 100023) - (-4013 . 99835) (-4014 . 99690) (-4015 . 99519) (-4016 . 99464) - (-4017 . 99111) (-4018 . 98883) (-4019 . 98017) (-4020 . 97698) - (-4021 . 97604) (-4022 . 97542) (-4023 . 97418) (-4024 . 97140) - (-4025 . 96714) (-4026 . 96442) (-4027 . 96289) (-4028 . 96257) - (-4029 . 96183) (-4030 . 96099) (-4031 . 95757) (-4032 . 95554) - (-4033 . 95320) (-4034 . 95211) (-4035 . 95045) (-4036 . 94941) - (-4037 . 94813) (-4038 . 94781) (-4039 . 94457) (-4040 . 93953) - (-4041 . 93859) (-4042 . 93800) (-4043 . 93668) (-4044 . 93554) - (-4045 . 93466) (-4046 . 93308) (-4047 . 93204) (-4048 . 93108) - (-4049 . 93024) (-4050 . 92929) (-4051 . 92855) (-4052 . 92477) - (-4053 . 92345) (-4054 . 92229) (-4055 . 92011) (-4056 . 91731) - (-4057 . 90955) (-4058 . 90752) (-4059 . 90699) (-4060 . 89401) - (-4061 . 89298) (-4062 . 89216) (-4063 . 89139) (-4064 . 89077) - (-4065 . 88938) (-4066 . 88666) (-4067 . 88495) (-4068 . 88189) - (-4069 . 88023) (-4070 . 87937) (-4071 . 87881) (-4072 . 87824) - (-4073 . 87738) (-4074 . 87616) (-4075 . 87502) (-4076 . 87206) - (-4077 . 86825) (-4078 . 84969) (-4079 . 84903) (-4080 . 84678) - (-4081 . 84391) (-4082 . 84362) (-4083 . 84152) (-4084 . 83972) - (-4085 . 83920) (-4086 . 83825) (-4087 . 83737) (-4088 . 83626) - (-4089 . 83511) (-4090 . 83438) (-4091 . 83370) (-4092 . 83260) - (-4093 . 82868) (-4094 . 82752) (-4095 . 82542) (-4096 . 82458) - (-4097 . 82255) (-4098 . 82142) (-4099 . 81739) (-4100 . 81623) - (-4101 . 81571) (-4102 . 81488) (-4103 . 81438) (-4104 . 81337) - (-4105 . 81285) (-4106 . 81132) (-4107 . 80998) (-4108 . 80322) - (-4109 . 80115) (-4110 . 79788) (-4111 . 79714) (-4112 . 79558) - (-4113 . 79424) (-4114 . 79347) (-4115 . 79239) (-4116 . 79153) - (-4117 . 77021) (-4118 . 76969) (-4119 . 76881) (-4120 . 76827) - (-4121 . 76560) (-4122 . 76486) (-4123 . 76392) (-4124 . 76295) - (-4125 . 76118) (-4126 . 76065) (-4127 . 75961) (-4128 . 75846) - (-4129 . 75662) (-4130 . 75564) (-4131 . 74934) (-4132 . 74816) - (-4133 . 74660) (-4134 . 74505) (-4135 . 74477) (-4136 . 74118) - (-4137 . 74087) (-4138 . 74025) (-4139 . 73777) (-4140 . 73680) - (-4141 . 73458) (-4142 . 73343) (-4143 . 73266) (-4144 . 73237) - (-4145 . 73138) (-4146 . 72841) (-4147 . 72769) (-4148 . 72402) - (-4149 . 72143) (-4150 . 70976) (-4151 . 70875) (-4152 . 70778) - (-4153 . 70671) (-4154 . 70287) (-4155 . 70132) (-4156 . 69989) - (-4157 . 69876) (-4158 . 69792) (-4159 . 69674) (-4160 . 69491) - (-4161 . 69333) (-4162 . 68950) (-4163 . 68548) (-4164 . 68457) - (-4165 . 68330) (-4166 . 67212) (-4167 . 67160) (-4168 . 67089) - (-4169 . 67001) (-4170 . 66398) (-4171 . 64996) (-4172 . 64866) - (-4173 . 64811) (-4174 . 64759) (-4175 . 64604) (-4176 . 63424) - (-4177 . 63271) (-4178 . 63219) (-4179 . 62966) (-4180 . 62547) - (-4181 . 62448) (-4182 . 62121) (-4183 . 62033) (-4184 . 61945) - (-4185 . 61792) (-4186 . 61583) (-4187 . 59802) (-4188 . 59088) - (-4189 . 58917) (-4190 . 58719) (-4191 . 58353) (-4192 . 58258) - (-4193 . 58136) (-4194 . 57836) (-4195 . 57741) (-4196 . 57679) - (-4197 . 57470) (-4198 . 57416) (-4199 . 57361) (-4200 . 51847) - (-4201 . 51776) (-4202 . 51748) (-4203 . 51669) (-4204 . 51513) - (-4205 . 51307) (-4206 . 50733) (-4207 . 49891) (-4208 . 49799) - (-4209 . 49481) (-4210 . 49403) (-4211 . 49010) (-4212 . 48760) - (-4213 . 48538) (-4214 . 47357) (-4215 . 47297) (-4216 . 47229) - (-4217 . 46977) (-4218 . 46878) (-4219 . 46810) (-4220 . 46757) - (-4221 . 46649) (-4222 . 46207) (-4223 . 46083) (-4224 . 46013) - (-4225 . 45944) (-4226 . 45583) (-4227 . 45484) (-4228 . 45344) - (-4229 . 45206) (-4230 . 45154) (-4231 . 44881) (-4232 . 44314) - (-4233 . 43979) (-4234 . 43327) (-4235 . 43250) (-4236 . 43169) - (-4237 . 42973) (-4238 . 42945) (-4239 . 42917) (-4240 . 42794) - (-4241 . 42636) (-4242 . 42584) (-4243 . 42507) (-4244 . 42436) - (-4245 . 42363) (-4246 . 42283) (-4247 . 42168) (-4248 . 42090) - (-4249 . 42038) (-4250 . 41816) (-4251 . 41536) (-4252 . 41299) - (-4253 . 41216) (-4254 . 41165) (-4255 . 41082) (-4256 . 41009) - (-4257 . 40926) (-4258 . 40766) (-4259 . 40710) (-4260 . 37411) - (-4261 . 37157) (-4262 . 37062) (-4263 . 37010) (-4264 . 36835) - (-4265 . 36539) (-4266 . 36372) (-4267 . 36242) (-4268 . 36027) - (-4269 . 35925) (-4270 . 35773) (-4271 . 35648) (-4272 . 35064) - (-4273 . 35012) (-4274 . 33672) (-4275 . 33602) (-4276 . 33394) - (-4277 . 33270) (-4278 . 33206) (-4279 . 32866) (-4280 . 32742) - (-4281 . 32453) (-4282 . 32279) (-4283 . 32178) (-4284 . 32099) - (-4285 . 31910) (-4286 . 31815) (-4287 . 31763) (-4288 . 31668) - (-4289 . 31453) (-4290 . 31351) (-4291 . 31245) (-4292 . 31104) - (-4293 . 31008) (-4294 . 30907) (-4295 . 30743) (-4296 . 30677) - (-4297 . 30139) (-4298 . 29847) (-4299 . 29332) (-4300 . 29280) - (-4301 . 29181) (-4302 . 28900) (-4303 . 28817) (-4304 . 28686) - (-4305 . 28658) (-4306 . 28542) (-4307 . 28468) (-4308 . 28345) - (-4309 . 28316) (-4310 . 28220) (-4311 . 27987) (-4312 . 27841) - (-4313 . 27780) (-4314 . 27679) (-4315 . 27608) (-4316 . 27514) - (-4317 . 27233) (-4318 . 27163) (-4319 . 26916) (-4320 . 26835) - (-4321 . 26447) (-4322 . 26323) (-4323 . 26178) (-4324 . 25997) - (-4325 . 25839) (-4326 . 25737) (-4327 . 24107) (-4328 . 23970) - (-4329 . 23626) (-4330 . 23501) (-4331 . 23310) (-4332 . 23165) - (-4333 . 22198) (-4334 . 21991) (-4335 . 21836) (-4336 . 21776) - (-4337 . 21705) (-4338 . 20846) (-4339 . 20668) (-4340 . 20410) - (-4341 . 20329) (-4342 . 20043) (-4343 . 19990) (-4344 . 19906) - (-4345 . 19853) (-4346 . 18661) (-4347 . 18453) (-4348 . 18335) - (-4349 . 17039) (-4350 . 16910) (-4351 . 16878) (-4352 . 16516) - (-4353 . 16444) (-4354 . 16389) (-4355 . 16304) (-4356 . 16270) - (-4357 . 16093) (-4358 . 15871) (-4359 . 15735) (-4360 . 15639) - (-4361 . 15354) (-4362 . 15301) (-4363 . 15068) (-4364 . 14894) - (-4365 . 14762) (-4366 . 14652) (-4367 . 14587) (-4368 . 14096) - (-4369 . 14037) (-4370 . 13888) (-4371 . 13800) (-4372 . 13621) - (-4373 . 13394) (-4374 . 13248) (-4375 . 13175) (-4376 . 12907) - (-4377 . 12855) (-4378 . 12609) (-4379 . 12391) (-4380 . 12241) - (-4381 . 12143) (-4382 . 12090) (-4383 . 12041) (-4384 . 11945) - (-4385 . 11832) (-4386 . 11753) (-4387 . 11688) (-4388 . 11336) - (-4389 . 11251) (-4390 . 11178) (-4391 . 11043) (-4392 . 10907) - (-4393 . 10736) (-4394 . 10359) (-4395 . 10226) (-4396 . 10149) - (-4397 . 9857) (-4398 . 9720) (-4399 . 9634) (-4400 . 9531) - (-4401 . 7765) (-4402 . 7599) (-4403 . 7496) (-4404 . 7353) - (-4405 . 7298) (-4406 . 7221) (-4407 . 7062) (-4408 . 6991) - (-4409 . 6905) (-4410 . 6833) (-4411 . 6351) (-4412 . 6203) - (-4413 . 4748) (-4414 . 4563) (-4415 . 4313) (-4416 . 4019) - (-4417 . 3874) (-4418 . 3797) (-4419 . 3645) (-4420 . 3431) - (-4421 . 3339) (-4422 . 3196) (-4423 . 3168) (-4424 . 2943) - (-4425 . 1453) (-4426 . 1251) (-4427 . 1180) (-4428 . 962) - (-4429 . 755) (-4430 . 649) (-4431 . 547) (-4432 . 490) (-4433 . 418) - (-4434 . 296) (-4435 . 247) (-4436 . 160) (-4437 . 126) (-4438 . 30)) \ No newline at end of file + (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1116))))) +(((*1 *2) + (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) + (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))) +((-1318 . 732290) (-1319 . 732218) (-1320 . 732152) (-1321 . 731893) + (-1322 . 731840) (-1323 . 731672) (-1324 . 731590) (-1325 . 731237) + (-1326 . 731132) (-1327 . 731063) (-1328 . 730327) (-1329 . 730211) + (-1330 . 730137) (-1331 . 729962) (-1332 . 729862) (-1333 . 729624) + (-1334 . 729423) (-1335 . 729335) (-1336 . 729247) (-1337 . 727186) + (-1338 . 727090) (-1339 . 726992) (-1340 . 726925) (-1341 . 726728) + (-1342 . 726597) (-1343 . 726434) (-1344 . 726033) (-1345 . 725914) + (-1346 . 725767) (-1347 . 725696) (-1348 . 725163) (-1349 . 725110) + (-1350 . 724981) (-1351 . 724697) (-1352 . 724400) (-1353 . 724322) + (-1354 . 724172) (-1355 . 724044) (-1356 . 723992) (-1357 . 723925) + (-1358 . 723629) (-1359 . 723402) (-1360 . 722856) (-1361 . 722717) + (-1362 . 722662) (-1363 . 722608) (-1364 . 722522) (-1365 . 722470) + (-1366 . 721826) (-1367 . 721748) (-1368 . 721625) (-1369 . 721493) + (-1370 . 721341) (-1371 . 721118) (-1372 . 720871) (-1373 . 720775) + (-1374 . 720678) (-1375 . 720448) (-1376 . 720395) (-1377 . 718818) + (-1378 . 717646) (-1379 . 716945) (-1380 . 716812) (-1381 . 715924) + (-1382 . 715808) (-1383 . 715780) (-1384 . 715684) (-1385 . 714492) + (-1386 . 713968) (-1387 . 713785) (-1388 . 713642) (-1389 . 713527) + (-1390 . 713368) (-1391 . 713198) (-1392 . 713125) (-1393 . 713027) + (-1394 . 712928) (-1395 . 712784) (-1396 . 712706) (-1397 . 712605) + (-1398 . 712461) (-1399 . 712023) (-1400 . 711953) (-1401 . 711839) + (-1402 . 710702) (-1403 . 710610) (-1404 . 710506) (-1405 . 710351) + (-1406 . 710220) (-1407 . 710118) (-1408 . 709026) (-1409 . 708974) + (-1410 . 708886) (-1411 . 708798) (-1412 . 708680) (-1413 . 707418) + (-1414 . 706664) (-1415 . 706501) (-1416 . 706360) (-1417 . 706060) + (-1418 . 705946) (-1419 . 705831) (-1420 . 705765) (-1421 . 705577) + (-1422 . 705449) (-1423 . 705321) (-1424 . 705217) (-1425 . 704965) + (-1426 . 704866) (-1427 . 704775) (-1428 . 704627) (-1429 . 704464) + (-1430 . 703645) (-1431 . 703158) (-1432 . 702524) (-1433 . 702393) + (-1434 . 702292) (-1435 . 702121) (-1436 . 701893) (-1437 . 701753) + (-1438 . 701467) (-1439 . 701387) (-1440 . 701290) (-1441 . 701166) + (-1442 . 700833) (-1443 . 700642) (-1444 . 700551) (-1445 . 700292) + (-1446 . 700112) (-1447 . 699956) (-1448 . 699818) (-1449 . 699717) + (-1450 . 699622) (-1451 . 699234) (-1452 . 698713) (-1453 . 698661) + (-1454 . 698495) (-1455 . 698357) (-1456 . 698184) (-1457 . 698042) + (-1458 . 697948) (-1459 . 697882) (-1460 . 697667) (-1461 . 697323) + (-1462 . 697227) (-1463 . 697046) (** . 694052) (-1465 . 694000) + (-1466 . 693942) (-1467 . 693889) (-1468 . 693703) (-1469 . 693188) + (-1470 . 692658) (-1471 . 692492) (-1472 . 692414) (-1473 . 692295) + (-1474 . 692239) (-1475 . 692187) (-1476 . 690847) (-1477 . 690701) + (-1478 . 690646) (-1479 . 690494) (-1480 . 690441) (-1481 . 690135) + (-1482 . 690058) (-1483 . 689913) (-1484 . 689835) (-1485 . 689701) + (-1486 . 689615) (-1487 . 689562) (-1488 . 688885) (-1489 . 688831) + (-1490 . 688752) (-1491 . 688699) (-1492 . 688529) (-1493 . 688170) + (-1494 . 687938) (-1495 . 687781) (-1496 . 686845) (-1497 . 686748) + (-1498 . 686229) (-1499 . 686006) (-1500 . 685714) (-1501 . 685418) + (-1502 . 685365) (-1503 . 685259) (-1504 . 684615) (-1505 . 684382) + (-1506 . 684284) (-1507 . 684180) (-1508 . 684061) (-1509 . 683834) + (-1510 . 683121) (-1511 . 682953) (-1512 . 682752) (-1513 . 682649) + (-1514 . 682552) (-1515 . 682423) (-1516 . 682339) (-1517 . 682217) + (-1518 . 681875) (-1519 . 681616) (-1520 . 681521) (-1521 . 681332) + (-1522 . 681246) (-1523 . 681078) (-1524 . 680905) (-1525 . 680723) + (-1526 . 680627) (-1527 . 680599) (-1528 . 680438) (-1529 . 680372) + (-1530 . 680345) (-1531 . 680229) (-1532 . 679783) (-1533 . 679727) + (-1534 . 679631) (-1535 . 679498) (-1536 . 679131) (-1537 . 679072) + (-1538 . 678995) (-1539 . 678603) (-1540 . 678165) (-1541 . 678007) + (-1542 . 677930) (-1543 . 677713) (-1544 . 677609) (-1545 . 677542) + (-1546 . 677324) (-1547 . 677136) (-1548 . 677058) (-1549 . 676935) + (-1550 . 676882) (-1551 . 676677) (-1552 . 676621) (-1553 . 676517) + (-1554 . 676427) (-1555 . 675892) (-1556 . 675811) (-1557 . 675648) + (-1558 . 675478) (-1559 . 675405) (-1560 . 675346) (-1561 . 675294) + (-1562 . 675118) (-1563 . 674953) (-1564 . 674559) (-1565 . 674455) + (-1566 . 674310) (-1567 . 674236) (-1568 . 673984) (-1569 . 673913) + (-1570 . 673885) (-1571 . 673821) (-1572 . 673741) (-1573 . 673689) + (-1574 . 673409) (-1575 . 673302) (-1576 . 673192) (-1577 . 673158) + (-1578 . 673061) (-1579 . 672964) (-1580 . 672798) (-1581 . 672548) + (-9 . 672520) (-1583 . 672339) (-1584 . 672268) (-1585 . 672189) + (-1586 . 672090) (-1587 . 671780) (-1588 . 671674) (-1589 . 671597) + (-1590 . 671535) (-1591 . 671372) (-1592 . 671320) (-1593 . 671253) + (-1594 . 671135) (-8 . 671107) (-1596 . 670934) (-1597 . 670716) + (-1598 . 670628) (-1599 . 670333) (-1600 . 670245) (-1601 . 670149) + (-1602 . 669993) (-1603 . 669814) (-1604 . 669639) (-1605 . 669543) + (-7 . 669515) (-1607 . 669225) (-1608 . 668896) (-1609 . 668747) + (-1610 . 667474) (-1611 . 667407) (-1612 . 667013) (-1613 . 666982) + (-1614 . 666926) (-1615 . 666852) (-1616 . 666697) (-1617 . 665497) + (-1618 . 665287) (-1619 . 665074) (-1620 . 665046) (-1621 . 664827) + (-1622 . 664681) (-1623 . 664491) (-1624 . 664460) (-1625 . 663986) + (-1626 . 663893) (-1627 . 663713) (-1628 . 662281) (-1629 . 662140) + (-1630 . 662062) (-1631 . 661940) (-1632 . 661906) (-1633 . 661714) + (-1634 . 661203) (-1635 . 661091) (-1636 . 661011) (-1637 . 660945) + (-1638 . 660638) (-1639 . 660523) (-1640 . 659607) (-1641 . 659470) + (-1642 . 659327) (-1643 . 658707) (-1644 . 658281) (-1645 . 658144) + (-1646 . 658040) (-1647 . 657897) (-1648 . 657719) (-1649 . 657660) + (-1650 . 657608) (-1651 . 657258) (-1652 . 657156) (-1653 . 656895) + (-1654 . 656701) (-1655 . 656544) (-1656 . 656324) (-1657 . 656203) + (-1658 . 656130) (-1659 . 656016) (-1660 . 655918) (-1661 . 655708) + (-1662 . 655656) (-1663 . 654840) (-1664 . 654699) (-1665 . 654604) + (-1666 . 654439) (-1667 . 654305) (-1668 . 654165) (-1669 . 653950) + (-1670 . 653855) (-1671 . 653727) (-1672 . 653695) (-1673 . 653639) + (-1674 . 653607) (-1675 . 653397) (-1676 . 653347) (-1677 . 653241) + (-1678 . 652677) (-1679 . 652531) (-1680 . 652449) (-1681 . 650663) + (-1682 . 650583) (-1683 . 650485) (-1684 . 650311) (-1685 . 650135) + (-1686 . 650032) (-1687 . 649817) (-1688 . 649760) (-1689 . 649569) + (-1690 . 649517) (-1691 . 649464) (-1692 . 649430) (-1693 . 649356) + (-1694 . 649306) (-1695 . 649060) (-1696 . 648736) (-1697 . 648653) + (-1698 . 648558) (-1699 . 648496) (-1700 . 648423) (-1701 . 648148) + (-1702 . 648046) (-1703 . 647995) (-1704 . 643452) (-1705 . 642793) + (-1706 . 642396) (-1707 . 642310) (-1708 . 642195) (-1709 . 641933) + (-1710 . 641881) (-1711 . 641730) (-1712 . 641675) (-1713 . 641604) + (-1714 . 641187) (-1715 . 641084) (-1716 . 641022) (-1717 . 640970) + (-1718 . 640655) (-1719 . 640234) (-1720 . 639624) (-1721 . 639545) + (-1722 . 639434) (-1723 . 639375) (-1724 . 639246) (-1725 . 639075) + (-1726 . 638981) (-1727 . 638783) (-1728 . 638715) (-1729 . 638573) + (-1730 . 638454) (-1731 . 638348) (-1732 . 638042) (-1733 . 637949) + (-1734 . 637707) (-1735 . 637121) (-1736 . 636617) (-1737 . 636475) + (-1738 . 636175) (-1739 . 635978) (-1740 . 635848) (-1741 . 635735) + (-1742 . 635175) (-1743 . 635122) (-1744 . 634791) (-1745 . 634628) + (-1746 . 634556) (-1747 . 634473) (-1748 . 634269) (-1749 . 634237) + (-1750 . 634015) (-1751 . 633938) (-1752 . 633831) (-1753 . 633301) + (-1754 . 632236) (-1755 . 632123) (-1756 . 631644) (-1757 . 631372) + (-1758 . 631056) (-1759 . 630847) (-1760 . 630720) (-1761 . 630276) + (-1762 . 630054) (-1763 . 629956) (-1764 . 629746) (-1765 . 629669) + (-1766 . 629292) (-1767 . 628933) (-1768 . 628905) (-1769 . 628789) + (-1770 . 628692) (-1771 . 628097) (-1772 . 627916) (-1773 . 627863) + (-1774 . 627835) (-1775 . 627785) (-1776 . 627527) (-1777 . 627318) + (-1778 . 627176) (-1779 . 626651) (-1780 . 626535) (-1781 . 626461) + (-1782 . 626152) (-1783 . 626062) (-1784 . 625963) (-1785 . 611731) + (-1786 . 611389) (-1787 . 611185) (-1788 . 611030) (-1789 . 610870) + (-1790 . 610797) (-1791 . 610654) (-1792 . 610558) (-1793 . 610388) + (-1794 . 610251) (-1795 . 610136) (-1796 . 610042) (-1797 . 609927) + (-1798 . 609843) (-1799 . 609604) (-1800 . 609137) (-1801 . 609085) + (-1802 . 608870) (-1803 . 608751) (-1804 . 608192) (-1805 . 607765) + (-1806 . 607665) (-1807 . 607248) (-1808 . 607149) (-1809 . 603086) + (-1810 . 603008) (-1811 . 602845) (-1812 . 602771) (-1813 . 602601) + (-1814 . 602042) (-1815 . 601986) (-1816 . 601901) (-1817 . 601710) + (-1818 . 601545) (-1819 . 601366) (-1820 . 601313) (-1821 . 600803) + (-1822 . 600595) (-1823 . 600399) (-1824 . 600328) (-1825 . 599992) + (-1826 . 599924) (-1827 . 599776) (-1828 . 599688) (-1829 . 599528) + (-1830 . 599121) (-1831 . 598768) (-1832 . 598713) (-1833 . 598685) + (-1834 . 598603) (-1835 . 598396) (-1836 . 598224) (-1837 . 597905) + (-1838 . 597563) (-1839 . 597479) (-1840 . 597312) (-1841 . 596927) + (-1842 . 596874) (-1843 . 596331) (-1844 . 592664) (-1845 . 592587) + (-1846 . 592528) (-1847 . 592100) (-1848 . 592034) (-1849 . 591949) + (-1850 . 591525) (-1851 . 591432) (-1852 . 591314) (-1853 . 591286) + (-1854 . 588941) (-1855 . 588777) (-1856 . 588661) (-1857 . 588240) + (-1858 . 588212) (-1859 . 588153) (-1860 . 588101) (-1861 . 587971) + (-1862 . 587790) (-1863 . 587391) (-1864 . 587303) (-1865 . 587204) + (-1866 . 586846) (-1867 . 586658) (-1868 . 586520) (-1869 . 586189) + (-1870 . 586088) (-1871 . 585812) (-1872 . 585691) (-1873 . 585625) + (-1874 . 585542) (-1875 . 585488) (-1876 . 585418) (-1877 . 585366) + (-1878 . 584825) (-1879 . 584683) (-1880 . 584475) (-1881 . 584394) + (-1882 . 584177) (-1883 . 584061) (-1884 . 583961) (-1885 . 583892) + (-1886 . 583840) (-1887 . 583569) (-1888 . 583401) (-1889 . 583132) + (-1890 . 582770) (-1891 . 582697) (-1892 . 582645) (-1893 . 582586) + (-1894 . 582549) (-1895 . 582478) (-1896 . 582392) (-1897 . 582310) + (-1898 . 582143) (-1899 . 582048) (-1900 . 581888) (-1901 . 581829) + (-1902 . 581476) (-1903 . 581363) (-1904 . 581273) (-1905 . 581190) + (-1906 . 581156) (-1907 . 581059) (-1908 . 580906) (-1909 . 580811) + (-1910 . 580674) (-1911 . 580500) (-1912 . 580359) (-1913 . 580264) + (-1914 . 580167) (-1915 . 580114) (-1916 . 578912) (-1917 . 578835) + (-1918 . 578528) (-1919 . 578427) (-1920 . 578341) (-1921 . 578112) + (-1922 . 577976) (-1923 . 577785) (-1924 . 577618) (-1925 . 577523) + (-1926 . 577238) (-1927 . 577141) (-1928 . 577057) (-1929 . 576953) + (-1930 . 576859) (-1931 . 576797) (-1932 . 576680) (-1933 . 576571) + (-1934 . 576474) (-1935 . 576292) (-1936 . 575846) (-1937 . 575706) + (-1938 . 575604) (-1939 . 575547) (-1940 . 575475) (-1941 . 575350) + (-1942 . 575268) (-1943 . 575169) (-1944 . 574877) (-1945 . 574484) + (-1946 . 574354) (-1947 . 574301) (-1948 . 574100) (-1949 . 574017) + (-1950 . 573967) (-1951 . 573521) (-1952 . 573405) (-1953 . 573350) + (-1954 . 573172) (-1955 . 573121) (-1956 . 573035) (-1957 . 572892) + (-1958 . 572840) (-1959 . 572588) (-1960 . 572482) (-1961 . 572410) + (-1962 . 572308) (-1963 . 571992) (-1964 . 571939) (-1965 . 571808) + (-1966 . 571685) (-1967 . 571612) (-1968 . 571511) (-1969 . 571437) + (-1970 . 571405) (-1971 . 571304) (-1972 . 571149) (-1973 . 570862) + (-1974 . 570805) (-1975 . 570581) (-1976 . 570432) (-1977 . 570101) + (-1978 . 569894) (-1979 . 569781) (-1980 . 569437) (-1981 . 569385) + (-1982 . 569201) (-1983 . 568885) (-1984 . 568745) (-1985 . 568552) + (-1986 . 568523) (-1987 . 568461) (-1988 . 568238) (-1989 . 568185) + (-1990 . 568061) (-1991 . 567900) (-1992 . 567740) (-1993 . 567687) + (-1994 . 567608) (-1995 . 567524) (-1996 . 567496) (-1997 . 567386) + (-1998 . 567325) (-1999 . 567180) (-2000 . 567061) (-2001 . 566221) + (-2002 . 566076) (-2003 . 565946) (-2004 . 565743) (-2005 . 565359) + (-2006 . 565243) (-2007 . 565141) (-2008 . 564946) (-2009 . 564836) + (-2010 . 564779) (-2011 . 564696) (-2012 . 564595) (-2013 . 564396) + (-2014 . 564047) (-2015 . 563995) (-2016 . 562699) (-2017 . 562276) + (-2018 . 562172) (-2019 . 562111) (-2020 . 561987) (-2021 . 561934) + (-2022 . 561831) (-2023 . 561489) (-2024 . 561366) (-2025 . 561125) + (-2026 . 561051) (-2027 . 560720) (-2028 . 560597) (-2029 . 560516) + (-2030 . 560465) (-2031 . 560352) (-2032 . 560088) (-2033 . 559913) + (-2034 . 559455) (-2035 . 559372) (-2036 . 559142) (-2037 . 559065) + (-2038 . 558862) (-2039 . 558216) (-2040 . 558130) (-2041 . 558102) + (-2042 . 558053) (-2043 . 557972) (-2044 . 557900) (-2045 . 557776) + (-2046 . 557464) (-2047 . 557385) (-2048 . 557274) (-2049 . 557091) + (-2050 . 556499) (-2051 . 556340) (-2052 . 556244) (-2053 . 556078) + (-2054 . 555984) (-2055 . 555879) (-2056 . 555764) (-2057 . 554583) + (-2058 . 554479) (-2059 . 554398) (-2060 . 554279) (-2061 . 554213) + (-2062 . 554130) (-2063 . 554042) (-2064 . 553959) (-2065 . 553804) + (-2066 . 552026) (-2067 . 551931) (-2068 . 551754) (-2069 . 551495) + (-2070 . 551429) (-2071 . 551319) (-2072 . 551248) (-2073 . 551178) + (-2074 . 551109) (-2075 . 550871) (-2076 . 550460) (-2077 . 550382) + (-2078 . 550270) (-2079 . 549047) (-2080 . 548719) (-2081 . 548665) + (-2082 . 548569) (-2083 . 548460) (-2084 . 548401) (-2085 . 548229) + (-2086 . 548018) (-2087 . 547522) (-2088 . 547396) (-2089 . 547310) + (-2090 . 546922) (-2091 . 546839) (-2092 . 546441) (-2093 . 545962) + (-2094 . 545729) (-2095 . 545664) (-2096 . 545578) (-2097 . 545435) + (-2098 . 545383) (-2099 . 545074) (-2100 . 544951) (-2101 . 544899) + (-2102 . 544584) (-2103 . 544292) (-2104 . 544164) (-2105 . 544006) + (-2106 . 543941) (-2107 . 543793) (-2108 . 543566) (-2109 . 543464) + (-2110 . 543345) (-2111 . 543230) (-2112 . 543178) (-2113 . 542880) + (-2114 . 542492) (-2115 . 542435) (-2116 . 542292) (-2117 . 542194) + (-2118 . 541976) (-2119 . 541891) (-2120 . 541695) (-2121 . 541446) + (-2122 . 541352) (-2123 . 541165) (-2124 . 541077) (-2125 . 541024) + (-2126 . 540778) (-2127 . 540598) (-2128 . 540380) (-2129 . 540205) + (-2130 . 536542) (-2131 . 536427) (-2132 . 536329) (-2133 . 536259) + (-2134 . 536158) (-2135 . 536054) (-2136 . 535087) (-2137 . 535010) + (-2138 . 534888) (-2139 . 534321) (-2140 . 534287) (-2141 . 534013) + (-2142 . 533876) (-2143 . 533775) (-2144 . 533577) (-2145 . 533509) + (-2146 . 533143) (-2147 . 532780) (-2148 . 532710) (-2149 . 532543) + (-2150 . 532461) (-2151 . 532388) (-2152 . 532317) (-2153 . 532070) + (-2154 . 531407) (-2155 . 531055) (-2156 . 530956) (-2157 . 530800) + (-2158 . 530582) (-2159 . 530494) (-2160 . 530327) (-2161 . 530299) + (-2162 . 529948) (-2163 . 529895) (-2164 . 529832) (-2165 . 529767) + (-2166 . 529708) (-2167 . 529583) (-2168 . 529533) (-2169 . 529408) + (-2170 . 529250) (-2171 . 529160) (-2172 . 528673) (-2173 . 528164) + (-2174 . 528035) (-2175 . 527939) (-2176 . 527781) (-2177 . 527728) + (-2178 . 527183) (-2179 . 527086) (-2180 . 526968) (-2181 . 526384) + (-2182 . 526260) (-2183 . 526160) (-2184 . 526062) (-2185 . 526030) + (-2186 . 525946) (-2187 . 525728) (-2188 . 525480) (-2189 . 525318) + (-2190 . 525240) (-2191 . 525026) (-2192 . 524819) (-2193 . 524452) + (-2194 . 524212) (-2195 . 524125) (-2196 . 523964) (-2197 . 523718) + (-2198 . 523655) (-2199 . 523482) (-2200 . 523430) (-2201 . 523037) + (-2202 . 522951) (-2203 . 522791) (-2204 . 522719) (-2205 . 522651) + (-2206 . 522405) (-2207 . 518405) (-2208 . 518335) (-2209 . 518193) + (-2210 . 518136) (-2211 . 518059) (-2212 . 518006) (-2213 . 517935) + (-2214 . 512596) (-2215 . 512501) (-2216 . 512249) (-2217 . 512175) + (-2218 . 511925) (-2219 . 511679) (-2220 . 511532) (-2221 . 511389) + (-2222 . 511257) (-2223 . 511169) (-2224 . 510998) (-2225 . 510791) + (-2226 . 510692) (-2227 . 510574) (-2228 . 510503) (-2229 . 510405) + (-2230 . 510309) (-2231 . 510249) (-2232 . 509369) (-2233 . 509066) + (-2234 . 508949) (-2235 . 508220) (-2236 . 508058) (-2237 . 507928) + (-2238 . 507900) (-2239 . 507828) (-2240 . 507613) (-2241 . 507516) + (-2242 . 507457) (-2243 . 507355) (-2244 . 507263) (-2245 . 507189) + (-2246 . 507116) (-2247 . 506387) (-2248 . 506237) (-2249 . 506178) + (-2250 . 506101) (-2251 . 505943) (-2252 . 505750) (-2253 . 505540) + (-2254 . 505313) (-2255 . 505194) (-2256 . 505095) (-2257 . 505003) + (-2258 . 504327) (-2259 . 504262) (-2260 . 504161) (-2261 . 504080) + (-2262 . 504027) (-2263 . 503918) (-2264 . 503835) (-2265 . 503785) + (-2266 . 503611) (-2267 . 503525) (-2268 . 503472) (-2269 . 502908) + (-2270 . 502856) (-2271 . 502683) (-2272 . 502585) (-2273 . 501926) + (-2274 . 501894) (-2275 . 501844) (-2276 . 501572) (-2277 . 501364) + (-2278 . 501185) (-2279 . 501099) (-2280 . 500535) (-2281 . 500371) + (-2282 . 500218) (-2283 . 500149) (-2284 . 499671) (-2285 . 499577) + (-2286 . 499525) (-2287 . 499397) (-2288 . 499369) (-2289 . 498805) + (-2290 . 498753) (-2291 . 498598) (-2292 . 498503) (-2293 . 498264) + (-2294 . 498080) (-2295 . 497815) (-2296 . 497064) (-2297 . 496944) + (-2298 . 496738) (-2299 . 496619) (-2300 . 496363) (-2301 . 495689) + (-2302 . 495576) (-2303 . 495485) (-2304 . 495328) (-2305 . 495257) + (-2306 . 495118) (-2307 . 494965) (-2308 . 494863) (-2309 . 494734) + (-2310 . 494549) (-2311 . 494518) (-2312 . 493844) (-2313 . 493738) + (-2314 . 493666) (-2315 . 492124) (-2316 . 492072) (-2317 . 491840) + (-2318 . 491766) (-2319 . 491549) (-2320 . 490812) (-2321 . 490705) + (-2322 . 490570) (-2323 . 490297) (-2324 . 489965) (-2325 . 489910) + (-2326 . 489858) (-2327 . 489767) (-2328 . 489715) (-2329 . 489645) + (-2330 . 489083) (-2331 . 488976) (-2332 . 488895) (-2333 . 488821) + (-2334 . 488718) (-2335 . 488662) (-2336 . 488542) (-2337 . 488131) + (-2338 . 488071) (-2339 . 487991) (-2340 . 487429) (-2341 . 487359) + (-2342 . 486987) (-2343 . 486806) (-2344 . 486554) (-2345 . 486407) + (-2346 . 486313) (-2347 . 486281) (-2348 . 485996) (-2349 . 485434) + (-2350 . 485175) (-2351 . 485030) (-2352 . 484977) (-2353 . 484912) + (-2354 . 484618) (-2355 . 484508) (-2356 . 484455) (-2357 . 484421) + (-2358 . 483746) (-2359 . 483651) (-2360 . 483574) (-2361 . 483258) + (-2362 . 483055) (-2363 . 482996) (-2364 . 482885) (-2365 . 482732) + (-2366 . 482454) (-2367 . 482356) (-2368 . 481681) (-2369 . 481557) + (-2370 . 481464) (-2371 . 481405) (-2372 . 481023) (-2373 . 480861) + (-2374 . 480714) (-2375 . 480658) (-2376 . 480532) (-2377 . 480479) + (-2378 . 480426) (-2379 . 479751) (-2380 . 479698) (-2381 . 479540) + (-2382 . 479470) (-2383 . 479391) (-2384 . 479317) (-2385 . 479239) + (-2386 . 479182) (-2387 . 478753) (-2388 . 478669) (-2389 . 478278) + (-2390 . 477715) (-2391 . 476847) (-2392 . 476793) (-2393 . 476205) + (-2394 . 475502) (-2395 . 475224) (-2396 . 475019) (-2397 . 474967) + (-2398 . 474691) (-2399 . 474429) (-2400 . 473997) (-2401 . 473788) + (-2402 . 473760) (-2403 . 473588) (-2404 . 473025) (-2405 . 472791) + (-2406 . 472340) (-2407 . 472197) (-2408 . 472065) (-2409 . 471964) + (-2410 . 471912) (-2411 . 471568) (-2412 . 471343) (-2413 . 471188) + (-2414 . 471146) (-2415 . 471088) (-2416 . 471033) (-2417 . 470470) + (-2418 . 470384) (-2419 . 470257) (-2420 . 469415) (-2421 . 469358) + (-2422 . 469257) (-2423 . 469039) (-2424 . 468296) (-2425 . 468183) + (-2426 . 468065) (-2427 . 467994) (-2428 . 467939) (-2429 . 467377) + (-2430 . 467262) (-2431 . 467120) (-2432 . 467007) (-2433 . 465809) + (-2434 . 465422) (-2435 . 465342) (-2436 . 465245) (-2437 . 465192) + (-2438 . 465084) (-2439 . 464966) (-2440 . 464873) (-2441 . 464844) + (-2442 . 464791) (-2443 . 464229) (-2444 . 463977) (-2445 . 463925) + (-2446 . 463810) (-2447 . 463781) (-2448 . 463726) (-2449 . 463183) + (-2450 . 463112) (-2451 . 463026) (-2452 . 462966) (-2453 . 462870) + (-2454 . 462818) (-2455 . 462740) (-2456 . 462178) (-2457 . 462110) + (-2458 . 461933) (-2459 . 461851) (-2460 . 461644) (-2461 . 461585) + (-2462 . 461358) (-2463 . 461234) (-2464 . 461047) (-2465 . 460997) + (-2466 . 460904) (-2467 . 460693) (-2468 . 460131) (-2469 . 459835) + (-2470 . 459655) (-2471 . 459476) (-2472 . 458133) (-2473 . 457901) + (-2474 . 457835) (-2475 . 457699) (-2476 . 457601) (-2477 . 457410) + (-2478 . 457351) (-2479 . 457073) (-2480 . 456511) (-2481 . 456459) + (-2482 . 456376) (-2483 . 456275) (-2484 . 455468) (-2485 . 455388) + (-2486 . 455186) (-2487 . 455133) (-2488 . 454915) (-2489 . 454793) + (-2490 . 454691) (-2491 . 454628) (-2492 . 453994) (-2493 . 453899) + (-2494 . 453786) (-2495 . 453650) (-2496 . 453543) (-2497 . 453438) + (-2498 . 453409) (-2499 . 453237) (-2500 . 453079) (-2501 . 452925) + (-2502 . 452751) (-2503 . 452639) (-2504 . 452124) (-2505 . 452045) + (-2506 . 451959) (-2507 . 451820) (-2508 . 451683) (-2509 . 451587) + (-2510 . 451532) (-2511 . 451360) (-2512 . 451008) (-2513 . 450592) + (-2514 . 450539) (-2515 . 450471) (-2516 . 450383) (-2517 . 450280) + (-2518 . 450167) (-2519 . 450082) (-2520 . 449926) (-2521 . 449855) + (-2522 . 449683) (-2523 . 449599) (-2524 . 449471) (-2525 . 449437) + (-2526 . 449383) (-2527 . 449289) (-2528 . 449145) (-2529 . 448960) + (-2530 . 448787) (-2531 . 448713) (-2532 . 448610) (-2533 . 448492) + (-2534 . 448369) (-2535 . 448197) (-2536 . 447635) (-2537 . 447436) + (-2538 . 447307) (-2539 . 447164) (-2540 . 446842) (-2541 . 446482) + (-2542 . 445896) (-2543 . 445733) (-2544 . 445632) (-2545 . 445560) + (-2546 . 445158) (-2547 . 445024) (-2548 . 444795) (-2549 . 444658) + (-2550 . 444452) (-2551 . 444216) (-2552 . 443895) (-2553 . 443825) + (-2554 . 443724) (-2555 . 443665) (-2556 . 443420) (-2557 . 443364) + (-2558 . 442998) (-2559 . 442719) (-2560 . 442603) (-2561 . 442377) + (-2562 . 442188) (-2563 . 442116) (-2564 . 442045) (-2565 . 441918) + (-2566 . 441821) (-2567 . 441594) (-2568 . 441520) (-2569 . 441465) + (-2570 . 441361) (-2571 . 441265) (-2572 . 441018) (-2573 . 440902) + (-2574 . 440846) (-2575 . 440773) (-2576 . 440745) (-2577 . 440672) + (-2578 . 440578) (-2579 . 440521) (-2580 . 439924) (-2581 . 439749) + (-2582 . 439696) (-2583 . 439619) (-2584 . 439391) (-2585 . 439228) + (-2586 . 438076) (-2587 . 438020) (-2588 . 437924) (-2589 . 437834) + (-2590 . 437616) (-2591 . 437289) (-2592 . 437078) (-2593 . 437000) + (-2594 . 436820) (-2595 . 436771) (-2596 . 436662) (-2597 . 436584) + (-2598 . 436358) (-2599 . 436262) (-2600 . 436218) (-2601 . 436165) + (-2602 . 436063) (-2603 . 435927) (-2604 . 435893) (-2605 . 435747) + (-2606 . 435629) (-2607 . 435410) (-2608 . 435228) (-2609 . 435125) + (-2610 . 435059) (-2611 . 435027) (-2612 . 434712) (-2613 . 434642) + (-2614 . 434521) (-2615 . 434091) (-2616 . 433999) (-2617 . 433916) + (-2618 . 433778) (-2619 . 433370) (-2620 . 433172) (-2621 . 433088) + (-2622 . 432992) (-2623 . 432539) (-2624 . 432459) (-2625 . 432077) + (-2626 . 431941) (-2627 . 431867) (-2628 . 431673) (-2629 . 431498) + (-2630 . 431010) (-2631 . 430940) (-2632 . 430830) (-2633 . 430496) + (-2634 . 430210) (-2635 . 430024) (-2636 . 429871) (-2637 . 429452) + (-2638 . 428885) (-2639 . 428770) (-2640 . 428550) (-2641 . 428467) + (-2642 . 428412) (-2643 . 428224) (-2644 . 427978) (-2645 . 427860) + (-2646 . 427750) (-2647 . 427602) (-2648 . 426517) (-2649 . 426270) + (-2650 . 426176) (-2651 . 425941) (-2652 . 425861) (-2653 . 425701) + (-2654 . 425549) (-2655 . 425494) (-2656 . 425192) (-2657 . 425108) + (-2658 . 425035) (-2659 . 424874) (-2660 . 424746) (-2661 . 420796) + (-2662 . 420681) (-2663 . 420624) (-2664 . 420544) (-2665 . 420449) + (-2666 . 420400) (-2667 . 420185) (-2668 . 420132) (-2669 . 420037) + (-2670 . 419871) (-2671 . 419661) (-2672 . 419481) (-2673 . 419392) + (-2674 . 419340) (-2675 . 419288) (-2676 . 419185) (-2677 . 419112) + (-2678 . 418952) (-2679 . 418815) (-2680 . 418593) (-2681 . 418470) + (-2682 . 418339) (-2683 . 418268) (-2684 . 418046) (-2685 . 417923) + (-2686 . 417470) (-2687 . 417091) (-2688 . 417008) (-2689 . 416942) + (-2690 . 416662) (-2691 . 416564) (-2692 . 416418) (-2693 . 416109) + (-2694 . 416037) (-2695 . 415953) (-2696 . 415776) (-2697 . 415657) + (-2698 . 414784) (-2699 . 413788) (-2700 . 413396) (-2701 . 413317) + (-2702 . 413162) (-2703 . 413105) (-2704 . 412805) (-2705 . 412700) + (-2706 . 411111) (-2707 . 410782) (-2708 . 410637) (-2709 . 410433) + (-2710 . 410333) (-2711 . 410086) (-2712 . 409559) (-2713 . 409427) + (-2714 . 409350) (-2715 . 409144) (-2716 . 409070) (-2717 . 408870) + (-2718 . 408598) (-2719 . 408379) (-2720 . 408075) (-2721 . 408001) + (-2722 . 407555) (-2723 . 407212) (-2724 . 406999) (-2725 . 406887) + (-2726 . 406618) (-2727 . 405939) (-2728 . 405580) (-2729 . 405188) + (-2730 . 404992) (-2731 . 404904) (-2732 . 404795) (-2733 . 404635) + (-2734 . 404582) (-2735 . 404142) (-2736 . 404021) (-2737 . 403878) + (-2738 . 403415) (-2739 . 403079) (-2740 . 403027) (-2741 . 402753) + (-2742 . 402696) (-2743 . 402525) (-2744 . 402444) (-2745 . 402305) + (-2746 . 402102) (-2747 . 401872) (-2748 . 401795) (-2749 . 401643) + (-2750 . 399913) (-2751 . 399799) (-2752 . 399705) (-2753 . 399581) + (-2754 . 399275) (-2755 . 399116) (-2756 . 398973) (-2757 . 398662) + (-2758 . 398611) (-2759 . 398273) (-2760 . 398187) (-2761 . 398106) + (-2762 . 398000) (-2763 . 397875) (-2764 . 397711) (-2765 . 397661) + (-2766 . 397503) (-2767 . 397350) (-2768 . 396922) (-2769 . 396832) + (-2770 . 396714) (-2771 . 396520) (-2772 . 396399) (-2773 . 396305) + (-2774 . 396167) (-2775 . 395873) (-2776 . 395836) (-2777 . 395687) + (-2778 . 394609) (-2779 . 394430) (-2780 . 394086) (-2781 . 394019) + (-2782 . 393726) (-2783 . 393346) (-2784 . 393251) (-2785 . 393168) + (-2786 . 392737) (-2787 . 392634) (-2788 . 392258) (-2789 . 391188) + (-2790 . 391107) (-2791 . 390943) (-2792 . 390821) (-2793 . 390529) + (-2794 . 390441) (-2795 . 390353) (-2796 . 390257) (-2797 . 390205) + (-2798 . 390152) (-2799 . 390083) (-2800 . 389986) (-2801 . 389915) + (-2802 . 389887) (-2803 . 389722) (-2804 . 389623) (-2805 . 389271) + (-2806 . 389148) (-2807 . 389019) (-2808 . 388894) (-2809 . 388793) + (-2810 . 388663) (-2811 . 388448) (-2812 . 388307) (-2813 . 388210) + (-2814 . 388142) (-2815 . 387958) (-2816 . 387795) (-2817 . 387690) + (-2818 . 387634) (-2819 . 387534) (-2820 . 387335) (-2821 . 387249) + (-2822 . 387176) (-2823 . 386931) (-2824 . 386688) (-2825 . 386496) + (-2826 . 386425) (-2827 . 386372) (-2828 . 386036) (-2829 . 385962) + (-2830 . 385777) (-2831 . 385720) (-2832 . 385579) (-2833 . 385407) + (-2834 . 385269) (-2835 . 384646) (-2836 . 384591) (-2837 . 384481) + (-2838 . 384338) (-2839 . 384225) (-2840 . 384062) (-2841 . 383991) + (-2842 . 383277) (-2843 . 383186) (-2844 . 383049) (-2845 . 382990) + (-12 . 382818) (-2847 . 382768) (-2848 . 382624) (-2849 . 382537) + (-2850 . 382344) (-2851 . 382252) (-2852 . 382136) (-2853 . 381275) + (-2854 . 381186) (-2855 . 381030) (-2856 . 380935) (-2857 . 380852) + (-2858 . 380824) (-2859 . 380684) (-2860 . 380589) (-2861 . 380162) + (-2862 . 380078) (-2863 . 380010) (-2864 . 379923) (-2865 . 379822) + (-2866 . 379685) (-2867 . 379541) (-2868 . 379457) (-2869 . 378615) + (-2870 . 378546) (-2871 . 378444) (-2872 . 378356) (-2873 . 378212) + (-2874 . 378153) (-2875 . 378083) (-2876 . 377858) (-2877 . 377441) + (-2878 . 377331) (-2879 . 377177) (-2880 . 377038) (-2881 . 376848) + (-2882 . 373239) (-2883 . 373106) (-2884 . 373075) (-2885 . 372846) + (-2886 . 372697) (-2887 . 371595) (-2888 . 371214) (-2889 . 371152) + (-2890 . 371121) (-2891 . 371024) (-2892 . 370966) (-2893 . 370384) + (-2894 . 369586) (-2895 . 369514) (-2896 . 369486) (-2897 . 369343) + (-2898 . 368477) (-2899 . 368196) (-2900 . 367677) (-2901 . 367367) + (-2902 . 367272) (-2903 . 367145) (-2904 . 366860) (-2905 . 365562) + (-2906 . 365474) (-2907 . 365401) (-2908 . 365268) (-2909 . 364844) + (-2910 . 364464) (-2911 . 364363) (-2912 . 363972) (-2913 . 363786) + (-2914 . 363536) (-2915 . 363377) (-2916 . 363059) (-2917 . 362974) + (-2918 . 362878) (-2919 . 362679) (-2920 . 362521) (-2921 . 362390) + (-2922 . 362356) (-2923 . 362285) (-2924 . 361851) (-2925 . 361238) + (-2926 . 361080) (-2927 . 360976) (-2928 . 360832) (-2929 . 360689) + (-2930 . 360548) (-2931 . 360420) (-2932 . 359302) (-2933 . 358924) + (-2934 . 358890) (-2935 . 358463) (-2936 . 358319) (-2937 . 358065) + (-2938 . 357580) (-2939 . 357523) (-2940 . 357439) (-2941 . 357339) + (-2942 . 357183) (-2943 . 357011) (-2944 . 356693) (-2945 . 356550) + (-2946 . 356177) (-2947 . 356109) (-2948 . 356043) (-2949 . 355836) + (-2950 . 355784) (-2951 . 337209) (* . 333096) (-2953 . 332968) + (-2954 . 332902) (-2955 . 332844) (-2956 . 332767) (-2957 . 332612) + (-2958 . 332456) (-2959 . 332372) (-2960 . 332282) (-2961 . 332186) + (-2962 . 332041) (-2963 . 329220) (-2964 . 329114) (-2965 . 329037) + (-2966 . 328954) (-2967 . 328828) (-2968 . 328769) (-2969 . 328348) + (-2970 . 328169) (-2971 . 327465) (-2972 . 327184) (-2973 . 327127) + (-2974 . 327026) (-2975 . 326415) (-2976 . 326363) (-2977 . 326260) + (-2978 . 326165) (-2979 . 326057) (-2980 . 325926) (-2981 . 325245) + (-2982 . 324884) (-2983 . 324632) (-2984 . 324153) (-2985 . 324029) + (-2986 . 323757) (-2987 . 323605) (-2988 . 323250) (-2989 . 323155) + (-2990 . 323031) (-2991 . 322584) (-2992 . 322524) (-2993 . 322286) + (-2994 . 321835) (-2995 . 321100) (-2996 . 320830) (-2997 . 320333) + (-2998 . 320241) (-2999 . 320088) (-3000 . 320036) (-3001 . 319921) + (-3002 . 319777) (-3003 . 319676) (-3004 . 319423) (-3005 . 319371) + (-3006 . 319288) (-3007 . 318991) (-3008 . 318869) (-3009 . 318638) + (-3010 . 318483) (-3011 . 318364) (-3012 . 318307) (-3013 . 318230) + (-3014 . 317782) (-3015 . 317291) (-3016 . 317125) (-3017 . 316999) + (-3018 . 316933) (-3019 . 316905) (-3020 . 316818) (-3021 . 316737) + (-3022 . 316466) (-3023 . 316187) (-3024 . 315968) (-3025 . 315808) + (-3026 . 315590) (-3027 . 315535) (-3028 . 315353) (-3029 . 315024) + (-3030 . 314865) (-3031 . 314357) (-3032 . 314212) (-3033 . 313829) + (-3034 . 313695) (-3035 . 313642) (-3036 . 313576) (-3037 . 313450) + (-3038 . 313355) (-3039 . 313244) (-3040 . 313158) (-3041 . 313103) + (-3042 . 313016) (-3043 . 311836) (-3044 . 311764) (-3045 . 311671) + (-3046 . 311550) (-3047 . 311423) (-3048 . 311299) (-3049 . 311265) + (-3050 . 311191) (-3051 . 311163) (-3052 . 311102) (-3053 . 310815) + (-3054 . 310729) (-3055 . 310307) (-3056 . 309703) (-3057 . 309615) + (-3058 . 309555) (-3059 . 309337) (-3060 . 309169) (-3061 . 308974) + (-3062 . 308829) (-3063 . 308738) (-3064 . 308630) (-3065 . 308408) + (-3066 . 308300) (-3067 . 308205) (-3068 . 308066) (-3069 . 307847) + (-3070 . 307775) (-3071 . 307423) (-3072 . 307327) (-3073 . 307162) + (-3074 . 305976) (-3075 . 305947) (-3076 . 305742) (-3077 . 305615) + (-3078 . 305553) (-3079 . 305240) (-3080 . 305188) (-3081 . 305119) + (-3082 . 305015) (-3083 . 304914) (-3084 . 304770) (-3085 . 303849) + (-3086 . 303766) (-3087 . 303430) (-3088 . 303371) (-3089 . 303180) + (-3090 . 301998) (-3091 . 301631) (-3092 . 301572) (-3093 . 301470) + (-3094 . 301438) (-3095 . 301278) (-3096 . 301116) (-3097 . 301001) + (-3098 . 300821) (-3099 . 300575) (-3100 . 300421) (-3101 . 300335) + (-3102 . 300137) (-3103 . 297929) (-3104 . 297823) (-3105 . 297751) + (-3106 . 297717) (-3107 . 297639) (-3108 . 297258) (-3109 . 297230) + (-3110 . 297166) (-3111 . 297093) (-3112 . 296766) (-3113 . 295540) + (-3114 . 295305) (-3115 . 295198) (-3116 . 294984) (-3117 . 294932) + (-3118 . 294854) (-3119 . 294501) (-3120 . 294343) (-3121 . 294195) + (-3122 . 294107) (-3123 . 293946) (-3124 . 293058) (-3125 . 292859) + (-3126 . 292788) (-3127 . 292630) (-3128 . 292524) (-3129 . 292361) + (-3130 . 292227) (-3131 . 292029) (-3132 . 291742) (-3133 . 291690) + (-3134 . 291410) (-3135 . 290106) (-3136 . 289908) (-3137 . 288606) + (-3138 . 288510) (-3139 . 288042) (-3140 . 287978) (-3141 . 287926) + (-3142 . 287353) (-3143 . 287276) (-3144 . 287155) (-3145 . 286628) + (-3146 . 286559) (-3147 . 286506) (-3148 . 286258) (-3149 . 285772) + (-3150 . 285567) (-3151 . 285414) (-3152 . 285261) (-3153 . 285179) + (-3154 . 284984) (-3155 . 284855) (-3156 . 284751) (-3157 . 284424) + (-3158 . 284162) (-3159 . 284010) (-3160 . 283982) (-3161 . 283839) + (-3162 . 283714) (-3163 . 283665) (-3164 . 283552) (-3165 . 283438) + (-3166 . 283252) (-3167 . 283156) (-3168 . 283088) (-3169 . 282885) + (-3170 . 282642) (-3171 . 282591) (-3172 . 282410) (-3173 . 282183) + (-3174 . 282052) (-3175 . 278753) (-3176 . 278680) (-3177 . 278594) + (-3178 . 278425) (-3179 . 278346) (-3180 . 278090) (-3181 . 277825) + (-3182 . 277577) (-3183 . 277464) (-3184 . 277200) (-3185 . 277127) + (-3186 . 277019) (-3187 . 276904) (-3188 . 276834) (-3189 . 276401) + (-3190 . 276203) (-3191 . 276107) (-3192 . 275644) (-3193 . 275534) + (-3194 . 275369) (-3195 . 275302) (-3196 . 275250) (-3197 . 274496) + (-3198 . 274256) (-3199 . 274121) (-3200 . 274059) (-3201 . 274006) + (-3202 . 273787) (-3203 . 273680) (-3204 . 273564) (-3205 . 273461) + (-3206 . 273367) (-3207 . 273224) (-3208 . 273083) (-3209 . 272953) + (-3210 . 272894) (-3211 . 272755) (-3212 . 272641) (-3213 . 272567) + (-3214 . 272371) (-3215 . 272300) (-3216 . 272205) (-3217 . 272131) + (-3218 . 271972) (-3219 . 271601) (-3220 . 271402) (-3221 . 270954) + (-3222 . 270871) (-3223 . 270819) (-3224 . 270732) (-3225 . 270462) + (-3226 . 270254) (-3227 . 270195) (-3228 . 270078) (-3229 . 269990) + (-3230 . 269874) (-3231 . 269516) (-3232 . 269246) (-3233 . 269088) + (-3234 . 269032) (-3235 . 268908) (-3236 . 268796) (-3237 . 268708) + (-3238 . 268680) (-3239 . 268581) (-3240 . 268481) (-3241 . 268347) + (-3242 . 268220) (-3243 . 268087) (-3244 . 267986) (-3245 . 267931) + (-3246 . 267707) (-3247 . 267451) (-3248 . 267333) (-3249 . 267175) + (-3250 . 266641) (-3251 . 266557) (-3252 . 266484) (-3253 . 266432) + (-3254 . 266364) (-3255 . 266287) (-3256 . 266218) (-3257 . 265801) + (-3258 . 265720) (-3259 . 265607) (-3260 . 265312) (-3261 . 265197) + (-3262 . 265147) (-3263 . 265094) (-3264 . 265022) (-3265 . 264729) + (-3266 . 262873) (-3267 . 262769) (-3268 . 262109) (-3269 . 262009) + (-3270 . 261884) (-3271 . 261796) (-3272 . 261525) (-3273 . 261410) + (-3274 . 261278) (-3275 . 261146) (-3276 . 261027) (-3277 . 260789) + (-3278 . 260671) (-3279 . 260205) (-3280 . 260039) (-3281 . 259851) + (-3282 . 259249) (-3283 . 259153) (-3284 . 259073) (-3285 . 256658) + (-3286 . 256500) (-3287 . 256370) (-3288 . 255710) (-3289 . 255676) + (-3290 . 255460) (-3291 . 255289) (-3292 . 255155) (-3293 . 255033) + (-3294 . 254938) (-3295 . 253157) (-3296 . 252898) (-3297 . 252802) + (-3298 . 252659) (-3299 . 252606) (-3300 . 252423) (-3301 . 252245) + (-3302 . 252127) (-3303 . 251968) (-3304 . 251898) (-3305 . 251791) + (-3306 . 251696) (-3307 . 251210) (-3308 . 251132) (-3309 . 251019) + (-3310 . 250916) (-3311 . 250317) (-3312 . 250215) (-3313 . 250083) + (-3314 . 249743) (-3315 . 249683) (-3316 . 249538) (-3317 . 249486) + (-3318 . 249431) (-3319 . 249044) (-3320 . 248792) (-3321 . 248743) + (-3322 . 248563) (-3323 . 248447) (-3324 . 247965) (-3325 . 247656) + (-3326 . 247607) (-3327 . 247530) (-3328 . 247465) (-3329 . 247396) + (-3330 . 247054) (-3331 . 246806) (-3332 . 246615) (-3333 . 246284) + (-3334 . 245910) (-3335 . 245692) (-3336 . 245315) (-3337 . 245237) + (-3338 . 245079) (-3339 . 245005) (-3340 . 244902) (-3341 . 244807) + (-3342 . 237864) (-3343 . 237726) (-3344 . 237643) (-3345 . 237525) + (-3346 . 237298) (-3347 . 237170) (-3348 . 237110) (-3349 . 236940) + (-3350 . 236866) (-3351 . 236648) (-3352 . 236402) (-3353 . 236038) + (-3354 . 235978) (-3355 . 235899) (-3356 . 235746) (-3357 . 235588) + (-3358 . 235535) (-3359 . 235482) (-3360 . 235422) (-3361 . 235390) + (-3362 . 235294) (-3363 . 235211) (-3364 . 235011) (-3365 . 234696) + (-3366 . 234562) (-3367 . 234462) (-3368 . 233916) (-3369 . 233425) + (-3370 . 233263) (-3371 . 233003) (-3372 . 232874) (-3373 . 232758) + (-3374 . 232660) (-3375 . 232374) (-3376 . 232346) (-3377 . 232200) + (-3378 . 231816) (-3379 . 231761) (-3380 . 231678) (-3381 . 231439) + (-3382 . 231385) (-3383 . 231241) (-3384 . 231056) (-3385 . 230690) + (-3386 . 230451) (-3387 . 230355) (-3388 . 230215) (-3389 . 230181) + (-3390 . 230051) (-3391 . 227270) (-3392 . 227143) (-3393 . 227002) + (-3394 . 226893) (-3395 . 226642) (-3396 . 226423) (-3397 . 226282) + (-3398 . 226245) (-3399 . 225998) (-3400 . 225866) (-3401 . 225800) + (-3402 . 225748) (-3403 . 225543) (-3404 . 225005) (-3405 . 224925) + (-3406 . 224761) (-3407 . 224650) (-3408 . 224402) (-3409 . 224319) + (-3410 . 223892) (-3411 . 223739) (-3412 . 223668) (-3413 . 223478) + (-3414 . 223325) (-3415 . 223251) (-3416 . 223152) (-3417 . 223026) + (-3418 . 222691) (-3419 . 222617) (-3420 . 222518) (-3421 . 222489) + (-3422 . 222392) (-3423 . 222248) (-3424 . 222119) (-3425 . 222067) + (-3426 . 221969) (-3427 . 221895) (-3428 . 221818) (-3429 . 221723) + (-3430 . 221607) (-3431 . 221512) (-3432 . 221444) (-3433 . 221386) + (-3434 . 221283) (-3435 . 221116) (-3436 . 221051) (-3437 . 220087) + (-3438 . 219869) (-3439 . 219756) (-3440 . 219704) (-3441 . 219653) + (-3442 . 219107) (-3443 . 219021) (-3444 . 218725) (-3445 . 218337) + (-3446 . 218083) (-3447 . 218031) (-3448 . 217894) (-3449 . 217770) + (-3450 . 217663) (-3451 . 217544) (-3452 . 217479) (-3453 . 217321) + (-3454 . 217248) (-3455 . 217189) (-3456 . 216759) (-3457 . 216657) + (-3458 . 216590) (-3459 . 216316) (-3460 . 216215) (-3461 . 216059) + (-3462 . 215980) (-3463 . 215835) (-3464 . 215579) (-3465 . 214398) + (-3466 . 213640) (-3467 . 213102) (-3468 . 213007) (-3469 . 212919) + (-3470 . 212862) (-3471 . 212833) (-3472 . 212732) (-3473 . 212582) + (-3474 . 212494) (-3475 . 212399) (-3476 . 212286) (-3477 . 211974) + (-3478 . 211762) (-3479 . 211656) (-3480 . 211016) (-3481 . 210923) + (-3482 . 210724) (-3483 . 210647) (-3484 . 210406) (-3485 . 210271) + (-3486 . 210106) (-3487 . 209771) (-3488 . 209675) (-3489 . 209498) + (-3490 . 209425) (-3491 . 209238) (-3492 . 209113) (-3493 . 208988) + (-3494 . 208850) (-3495 . 208797) (-3496 . 208668) (-3497 . 208316) + (-3498 . 208175) (-3499 . 208019) (-3500 . 207948) (-3501 . 207845) + (-3502 . 207738) (-3503 . 207710) (-3504 . 207498) (-3505 . 207424) + (-3506 . 207372) (-3507 . 207199) (-3508 . 207099) (-3509 . 206993) + (-3510 . 206404) (-3511 . 206325) (-3512 . 206293) (-3513 . 206211) + (-3514 . 205458) (-3515 . 205346) (-3516 . 204832) (-3517 . 204692) + (-3518 . 204539) (-3519 . 204452) (-3520 . 204380) (-3521 . 204054) + (-3522 . 203998) (-3523 . 203395) (-3524 . 203367) (-3525 . 202691) + (-3526 . 202418) (-3527 . 202187) (-3528 . 202121) (-3529 . 202062) + (-3530 . 201946) (-3531 . 201698) (-3532 . 201612) (-3533 . 201560) + (-3534 . 201474) (-3535 . 200046) (-3536 . 199988) (-3537 . 199864) + (-3538 . 199765) (-3539 . 199423) (-3540 . 199256) (-3541 . 199198) + (-3542 . 199080) (-3543 . 198928) (-3544 . 198601) (-3545 . 198527) + (-3546 . 198197) (-3547 . 195941) (-3548 . 195889) (-3549 . 195752) + (-3550 . 195588) (-3551 . 195560) (-3552 . 195452) (-3553 . 195263) + (-3554 . 195021) (-3555 . 194966) (-3556 . 193818) (-3557 . 193108) + (-3558 . 191858) (-3559 . 191681) (-3560 . 191507) (-3561 . 191441) + (-3562 . 191154) (-3563 . 191085) (-3564 . 190927) (-3565 . 190289) + (-3566 . 189785) (-3567 . 189680) (-3568 . 189598) (-3569 . 189527) + (-3570 . 189333) (-3571 . 189187) (-3572 . 189135) (-3573 . 188783) + (-3574 . 188305) (-3575 . 188137) (-3576 . 187802) (-3577 . 186984) + (-3578 . 186745) (-3579 . 186690) (-3580 . 184576) (-3581 . 184387) + (-3582 . 184204) (-3583 . 184116) (-3584 . 183238) (-3585 . 183177) + (-3586 . 183042) (-3587 . 182921) (-3588 . 182872) (-3589 . 182823) + (-3590 . 182740) (-3591 . 182593) (-3592 . 182456) (-3593 . 181489) + (-3594 . 181332) (-3595 . 181208) (-3596 . 181142) (-3597 . 178301) + (-3598 . 178215) (-3599 . 178141) (-3600 . 177831) (-3601 . 177729) + (-3602 . 177668) (-3603 . 177640) (-3604 . 177580) (-3605 . 177524) + (-3606 . 177379) (-3607 . 177089) (-3608 . 176930) (-3609 . 176810) + (-3610 . 176739) (-3611 . 176591) (-3612 . 176151) (-3613 . 176052) + (-3614 . 176000) (-3615 . 175923) (-3616 . 175791) (-3617 . 175511) + (-3618 . 175415) (-3619 . 175320) (-3620 . 175240) (-3621 . 174645) + (-3622 . 174535) (-3623 . 174315) (-3624 . 174238) (-3625 . 174204) + (-3626 . 174153) (-3627 . 174031) (-3628 . 173741) (-3629 . 173549) + (-3630 . 173404) (-3631 . 173352) (-3632 . 173257) (-3633 . 172848) + (-3634 . 172570) (-3635 . 172500) (-3636 . 172448) (-3637 . 172395) + (-3638 . 172265) (-3639 . 172129) (-3640 . 171955) (-3641 . 171732) + (-3642 . 171647) (-3643 . 171496) (-3644 . 170992) (-3645 . 170964) + (-3646 . 170518) (-3647 . 170447) (-3648 . 170349) (-3649 . 170220) + (-3650 . 169987) (-3651 . 169903) (-3652 . 169788) (-3653 . 169555) + (-3654 . 169432) (-3655 . 169297) (-3656 . 167329) (-3657 . 167258) + (-3658 . 167151) (-3659 . 166980) (-3660 . 166931) (-3661 . 166865) + (-3662 . 166711) (-3663 . 166115) (-3664 . 166044) (-3665 . 165970) + (-3666 . 165832) (-3667 . 165678) (-3668 . 165567) (-3669 . 165452) + (-3670 . 165399) (-3671 . 165256) (-3672 . 165184) (-3673 . 165130) + (-3674 . 165060) (-3675 . 165008) (-3676 . 164923) (-3677 . 164889) + (-3678 . 164731) (-3679 . 164668) (-3680 . 164550) (-3681 . 164471) + (-3682 . 164415) (-3683 . 164329) (-3684 . 164119) (-3685 . 164063) + (-3686 . 163985) (-3687 . 163926) (-3688 . 163748) (-3689 . 163545) + (-3690 . 163390) (-3691 . 163296) (-3692 . 163192) (-3693 . 163125) + (-3694 . 162946) (-3695 . 162851) (-3696 . 162620) (-3697 . 162518) + (-3698 . 162448) (-3699 . 162351) (-3700 . 162256) (-3701 . 162185) + (-3702 . 161781) (-3703 . 161726) (-3704 . 161638) (-3705 . 161453) + (-3706 . 161192) (-3707 . 161136) (-3708 . 160889) (-3709 . 160838) + (-3710 . 160759) (-3711 . 160107) (-3712 . 159911) (-3713 . 159772) + (-3714 . 159606) (-3715 . 159486) (-3716 . 159403) (-3717 . 159266) + (-3718 . 159072) (-3719 . 158988) (-3720 . 158720) (-3721 . 158562) + (-3722 . 158427) (-3723 . 158275) (-3724 . 158191) (-3725 . 158092) + (-3726 . 158039) (-3727 . 157856) (-3728 . 157770) (-3729 . 157691) + (-3730 . 157625) (-3731 . 157542) (-3732 . 157492) (-3733 . 157437) + (-3734 . 157366) (-3735 . 157229) (-3736 . 157084) (-3737 . 156727) + (-3738 . 156699) (-3739 . 156618) (-3740 . 156136) (-3741 . 156050) + (-3742 . 155499) (-3743 . 155425) (-3744 . 155351) (-3745 . 155278) + (-3746 . 155045) (-3747 . 154843) (-3748 . 154680) (-3749 . 154153) + (-3750 . 153567) (-3751 . 153348) (-3752 . 153146) (-3753 . 153057) + (-3754 . 152891) (-3755 . 152497) (-3756 . 152409) (-3757 . 152290) + (-3758 . 152216) (-3759 . 152149) (-3760 . 151931) (-3761 . 151706) + (-3762 . 151579) (-3763 . 151501) (-3764 . 150731) (-3765 . 150635) + (-3766 . 150569) (-3767 . 150452) (-3768 . 150315) (-3769 . 150266) + (-3770 . 150120) (-3771 . 150016) (-3772 . 149934) (-3773 . 149818) + (-3774 . 149766) (-3775 . 149653) (-3776 . 149428) (-3777 . 149307) + (-3778 . 149230) (-3779 . 149125) (-3780 . 149032) (-3781 . 148894) + (-3782 . 148863) (-3783 . 148783) (-3784 . 148653) (-3785 . 148622) + (-3786 . 148569) (-3787 . 147767) (-3788 . 147714) (-3789 . 147415) + (-3790 . 147327) (-3791 . 147202) (-3792 . 147077) (-3793 . 146943) + (-3794 . 146869) (-3795 . 146479) (-3796 . 146383) (-3797 . 146312) + (-3798 . 146173) (-3799 . 146120) (-3800 . 145913) (-3801 . 145857) + (-3802 . 145777) (-3803 . 145485) (-3804 . 145221) (-3805 . 145144) + (-3806 . 144868) (-3807 . 144494) (-3808 . 144420) (-3809 . 144335) + (-3810 . 143891) (-3811 . 143127) (-3812 . 143056) (-3813 . 142997) + (-3814 . 142260) (-3815 . 142172) (-3816 . 141797) (-3817 . 141711) + (-3818 . 141493) (-3819 . 141395) (-3820 . 141295) (-3821 . 141172) + (-3822 . 140904) (-3823 . 140682) (-3824 . 140572) (-3825 . 139964) + (-3826 . 139745) (-3827 . 139643) (-3828 . 139587) (-3829 . 139531) + (-3830 . 139448) (-3831 . 139354) (-3832 . 139073) (-3833 . 138957) + (-3834 . 138876) (-3835 . 138543) (-3836 . 138381) (-3837 . 138295) + (-3838 . 138267) (-3839 . 137616) (-3840 . 137338) (-3841 . 137179) + (-3842 . 136922) (-3843 . 136814) (-3844 . 136469) (-3845 . 136356) + (-3846 . 135492) (-3847 . 135274) (-3848 . 135195) (-3849 . 134882) + (-3850 . 134808) (-3851 . 134535) (-3852 . 134480) (-3853 . 134407) + (-3854 . 134227) (-3855 . 134049) (-3856 . 133673) (-3857 . 133504) + (-3858 . 133313) (-3859 . 133232) (-3860 . 133082) (-3861 . 132891) + (-3862 . 132688) (-3863 . 132633) (-3864 . 132567) (-3865 . 132229) + (-3866 . 132152) (-3867 . 132080) (-3868 . 131972) (-3869 . 131602) + (-3870 . 131473) (-3871 . 131412) (-3872 . 130951) (-3873 . 130852) + (-3874 . 130739) (-3875 . 130643) (-3876 . 130580) (-3877 . 129937) + (-3878 . 129599) (-3879 . 127515) (-3880 . 127441) (-3881 . 127261) + (-3882 . 127161) (-3883 . 127093) (-3884 . 126977) (-3885 . 126882) + (-3886 . 126831) (-3887 . 126609) (-3888 . 126463) (-3889 . 126411) + (-3890 . 126318) (-3891 . 125358) (-3892 . 125140) (-3893 . 124533) + (-3894 . 124396) (-3895 . 124255) (-3896 . 123632) (-3897 . 123489) + (-3898 . 123359) (-3899 . 123292) (-3900 . 122987) (-3901 . 122737) + (-3902 . 122655) (-3903 . 122562) (-3904 . 118402) (-3905 . 118374) + (-3906 . 118291) (-3907 . 118129) (-3908 . 117934) (-3909 . 117617) + (-3910 . 117433) (-3911 . 117291) (-3912 . 117112) (-3913 . 116951) + (-3914 . 116885) (-3915 . 116600) (-3916 . 116492) (-3917 . 115974) + (-3918 . 115658) (-3919 . 115327) (-3920 . 115217) (-3921 . 115119) + (-3922 . 115047) (-3923 . 114968) (-3924 . 114916) (-3925 . 114605) + (-3926 . 114521) (-3927 . 113745) (-3928 . 113523) (-3929 . 113399) + (-3930 . 113315) (-3931 . 113215) (-3932 . 112963) (-3933 . 112714) + (-3934 . 112585) (-3935 . 112525) (-3936 . 112039) (-3937 . 111455) + (-3938 . 111385) (-3939 . 111288) (-3940 . 111234) (-3941 . 111175) + (-3942 . 111123) (-3943 . 110916) (-3944 . 110864) (-3945 . 110755) + (-3946 . 110347) (-3947 . 109773) (-3948 . 109631) (-3949 . 109392) + (-3950 . 109183) (-3951 . 109075) (-3952 . 108825) (-3953 . 108745) + (-3954 . 108689) (-3955 . 108624) (-3956 . 108390) (-3957 . 108262) + (-3958 . 108168) (-3959 . 107943) (-3960 . 107764) (-3961 . 107691) + (-3962 . 107589) (-3963 . 107461) (-3964 . 107393) (-3965 . 107266) + (-3966 . 107011) (-3967 . 106858) (-3968 . 106755) (-3969 . 106651) + (-3970 . 106581) (-3971 . 106509) (-3972 . 106435) (-3973 . 106249) + (-3974 . 106193) (-3975 . 106078) (-3976 . 105992) (-3977 . 105904) + (-3978 . 105515) (-3979 . 105377) (-3980 . 105177) (-3981 . 104904) + (-3982 . 104796) (-3983 . 104128) (-3984 . 103994) (-3985 . 103924) + (-3986 . 103806) (-3987 . 94356) (-3988 . 94214) (-3989 . 93839) + (-3990 . 93528) (-3991 . 93451) (-3992 . 93382) (-3993 . 93184) + (-3994 . 93132) (-3995 . 93026) (-3996 . 92948) (-3997 . 92875) + (-3998 . 92642) (-3999 . 92587) (-4000 . 92377) (-4001 . 92136) + (-4002 . 91855) (-4003 . 91682) (-4004 . 91274) (-4005 . 91171) + (-4006 . 90849) (-4007 . 90711) (-4008 . 90420) (-4009 . 90346) + (-4010 . 90309) (-4011 . 90232) (-4012 . 90173) (-4013 . 89886) + (-4014 . 89833) (-4015 . 89780) (-4016 . 89478) (-4017 . 89323) + (-4018 . 89038) (-4019 . 88958) (-4020 . 88885) (-4021 . 88791) + (-4022 . 88613) (-4023 . 88225) (-4024 . 88067) (-4025 . 88033) + (-4026 . 87522) (-4027 . 87096) (-4028 . 87023) (-4029 . 86949) + (-4030 . 86881) (-4031 . 86556) (-4032 . 86471) (-4033 . 85982) + (-4034 . 85672) (-4035 . 85514) (-4036 . 85410) (-4037 . 85257) + (-4038 . 85112) (-4039 . 85028) (-4040 . 84943) (-4041 . 84914) + (-4042 . 84741) (-4043 . 84609) (-4044 . 84490) (-4045 . 84332) + (-4046 . 84224) (-4047 . 84124) (-4048 . 84044) (-4049 . 83797) + (-4050 . 83544) (-4051 . 83445) (-4052 . 83250) (-4053 . 83118) + (-4054 . 82646) (-4055 . 82454) (-4056 . 82136) (-4057 . 81842) + (-4058 . 80396) (-4059 . 80103) (-4060 . 80018) (-4061 . 79897) + (-4062 . 79790) (-4063 . 79658) (-4064 . 79581) (-4065 . 79522) + (-4066 . 79381) (-4067 . 78890) (-4068 . 78828) (-4069 . 78772) + (-4070 . 78512) (-4071 . 78383) (-4072 . 78007) (-4073 . 77950) + (-4074 . 77635) (-4075 . 77421) (-4076 . 76538) (-4077 . 76504) + (-4078 . 74276) (-4079 . 74097) (-4080 . 73857) (-4081 . 73784) + (-4082 . 73664) (-4083 . 73499) (-4084 . 73433) (-4085 . 73326) + (-4086 . 73199) (-4087 . 72887) (-4088 . 72149) (-4089 . 72090) + (-4090 . 72038) (-4091 . 71455) (-4092 . 71385) (-4093 . 71219) + (-4094 . 71009) (-4095 . 70941) (-4096 . 70857) (-4097 . 70718) + (-4098 . 70529) (-4099 . 70495) (-4100 . 70438) (-4101 . 70335) + (-4102 . 70145) (-4103 . 70077) (-4104 . 69976) (-4105 . 69866) + (-4106 . 69814) (-4107 . 69721) (-4108 . 69619) (-4109 . 68943) + (-4110 . 68597) (-4111 . 67957) (-4112 . 67784) (-4113 . 67733) + (-4114 . 67540) (-4115 . 65408) (-4116 . 65308) (-4117 . 65212) + (-4118 . 65139) (-4119 . 65111) (-4120 . 64974) (-4121 . 64920) + (-4122 . 64653) (-4123 . 64500) (-4124 . 64419) (-4125 . 64267) + (-4126 . 64124) (-4127 . 64027) (-4128 . 63897) (-4129 . 63741) + (-4130 . 63685) (-4131 . 63612) (-4132 . 62982) (-4133 . 62916) + (-4134 . 62600) (-4135 . 62423) (-4136 . 62210) (-4137 . 61393) + (-4138 . 61362) (-4139 . 61300) (-4140 . 61092) (-4141 . 61021) + (-4142 . 60825) (-4143 . 60676) (-4144 . 59886) (-4145 . 59833) + (-4146 . 59605) (-4147 . 59553) (-4148 . 59169) (-4149 . 59083) + (-4150 . 57916) (-4151 . 57513) (-4152 . 57263) (-4153 . 56836) + (-4154 . 56753) (-4155 . 56684) (-4156 . 56565) (-4157 . 56437) + (-4158 . 56191) (-4159 . 56022) (-4160 . 55956) (-4161 . 55897) + (-4162 . 55759) (-4163 . 55574) (-4164 . 55488) (-4165 . 55364) + (-4166 . 55280) (-4167 . 55177) (-4168 . 54998) (-4169 . 54924) + (-4170 . 54823) (-4171 . 54570) (-4172 . 54480) (-4173 . 53078) + (-4174 . 52776) (-4175 . 52690) (-4176 . 52616) (-4177 . 52543) + (-4178 . 52514) (-4179 . 52442) (-4180 . 52282) (-4181 . 51254) + (-4182 . 50718) (-4183 . 50663) (-4184 . 50556) (-4185 . 50431) + (-4186 . 50359) (-4187 . 50307) (-4188 . 50200) (-4189 . 50019) + (-4190 . 49953) (-4191 . 49890) (-4192 . 49700) (-4193 . 49621) + (-4194 . 49522) (-4195 . 49186) (-4196 . 49117) (-4197 . 49055) + (-4198 . 48954) (-4199 . 48895) (-4200 . 48813) (-4201 . 48714) + (-4202 . 43200) (-4203 . 43087) (-4204 . 42992) (-4205 . 42915) + (-4206 . 42837) (-4207 . 42785) (-4208 . 42689) (-4209 . 42618) + (-4210 . 42531) (-4211 . 42469) (-4212 . 42076) (-4213 . 42002) + (-4214 . 41882) (-4215 . 41468) (-4216 . 41357) (-4217 . 41061) + (-4218 . 40992) (-4219 . 40925) (-4220 . 40632) (-4221 . 40537) + (-4222 . 40357) (-4223 . 39915) (-4224 . 39785) (-4225 . 39574) + (-4226 . 39287) (-4227 . 39253) (-4228 . 39129) (-4229 . 39101) + (-4230 . 39048) (-4231 . 38622) (-4232 . 38569) (-4233 . 38428) + (-4234 . 38093) (-4235 . 38016) (-4236 . 37889) (-4237 . 37733) + (-4238 . 37573) (-4239 . 37418) (-4240 . 37390) (-4241 . 37169) + (-4242 . 37045) (-4243 . 36950) (-4244 . 36817) (-4245 . 36686) + (-4246 . 36406) (-4247 . 36326) (-4248 . 36219) (-4249 . 35798) + (-4250 . 35724) (-4251 . 35445) (-4252 . 35346) (-4253 . 35109) + (-4254 . 35049) (-4255 . 34931) (-4256 . 34681) (-4257 . 34589) + (-4258 . 34436) (-4259 . 34254) (-4260 . 34187) (-4261 . 33895) + (-4262 . 33839) (-4263 . 33603) (-4264 . 33472) (-4265 . 33131) + (-4266 . 32956) (-4267 . 32730) (-4268 . 32681) (-4269 . 32466) + (-4270 . 32364) (-4271 . 32150) (-4272 . 31974) (-4273 . 31886) + (-4274 . 31834) (-4275 . 31459) (-4276 . 31380) (-4277 . 31314) + (-4278 . 31177) (-4279 . 31122) (-4280 . 30964) (-4281 . 30840) + (-4282 . 30551) (-4283 . 30441) (-4284 . 30320) (-4285 . 30241) + (-4286 . 30142) (-4287 . 30092) (-4288 . 30013) (-4289 . 29848) + (-4290 . 29746) (-4291 . 29652) (-4292 . 29547) (-4293 . 29406) + (-4294 . 29111) (-4295 . 29045) (-4296 . 28993) (-4297 . 28870) + (-4298 . 28792) (-4299 . 28553) (-4300 . 28208) (-4301 . 28156) + (-4302 . 28096) (-4303 . 27995) (-4304 . 27907) (-4305 . 27847) + (-4306 . 27765) (-4307 . 27620) (-4308 . 27512) (-4309 . 27390) + (-4310 . 27258) (-4311 . 26994) (-4312 . 26906) (-4313 . 26760) + (-4314 . 26640) (-4315 . 26487) (-4316 . 26329) (-4317 . 26213) + (-4318 . 26065) (-4319 . 25961) (-4320 . 25862) (-4321 . 25767) + (-4322 . 24550) (-4323 . 24522) (-4324 . 24364) (-4325 . 24281) + (-4326 . 24253) (-4327 . 24179) (-4328 . 22549) (-4329 . 22454) + (-4330 . 22359) (-4331 . 22276) (-4332 . 22108) (-4333 . 22034) + (-4334 . 21971) (-4335 . 21877) (-4336 . 21800) (-4337 . 21772) + (-4338 . 21719) (-4339 . 20860) (-4340 . 20682) (-4341 . 20586) + (-4342 . 20513) (-4343 . 20267) (-4344 . 20171) (-4345 . 20099) + (-4346 . 20013) (-4347 . 19953) (-4348 . 19807) (-4349 . 19589) + (-4350 . 18293) (-4351 . 18198) (-4352 . 18085) (-4353 . 17723) + (-4354 . 17565) (-4355 . 17495) (-4356 . 17440) (-4357 . 17366) + (-4358 . 17314) (-4359 . 16944) (-4360 . 16878) (-4361 . 16818) + (-4362 . 16726) (-4363 . 16655) (-4364 . 16600) (-4365 . 16518) + (-4366 . 16437) (-4367 . 15438) (-4368 . 15361) (-4369 . 15238) + (-4370 . 15154) (-4371 . 15071) (-4372 . 14949) (-4373 . 14695) + (-4374 . 14424) (-4375 . 14149) (-4376 . 14057) (-4377 . 13465) + (-4378 . 13396) (-4379 . 12912) (-4380 . 12634) (-4381 . 12242) + (-4382 . 12205) (-4383 . 12075) (-4384 . 11977) (-4385 . 11821) + (-4386 . 11755) (-4387 . 11501) (-4388 . 11422) (-4389 . 11341) + (-4390 . 11211) (-4391 . 11058) (-4392 . 10911) (-4393 . 10795) + (-4394 . 10737) (-4395 . 10426) (-4396 . 10374) (-4397 . 10280) + (-4398 . 10149) (-4399 . 10099) (-4400 . 10047) (-4401 . 9934) + (-4402 . 8168) (-4403 . 8067) (-4404 . 7885) (-4405 . 7799) + (-4406 . 7656) (-4407 . 7446) (-4408 . 7393) (-4409 . 7190) + (-4410 . 7030) (-4411 . 6977) (-4412 . 6817) (-4413 . 6707) + (-4414 . 5252) (-4415 . 5158) (-4416 . 5007) (-4417 . 4904) + (-4418 . 4848) (-4419 . 4695) (-4420 . 4607) (-4421 . 4539) + (-4422 . 4473) (-4423 . 4416) (-4424 . 4331) (-4425 . 4106) + (-4426 . 2616) (-4427 . 2515) (-4428 . 2357) (-4429 . 2304) + (-4430 . 2245) (-4431 . 1371) (-4432 . 1237) (-4433 . 1153) + (-4434 . 950) (-4435 . 855) (-4436 . 473) (-4437 . 299) (-4438 . 128) + (-4439 . 30)) \ No newline at end of file -- cgit v1.2.3